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Improving hospital quality risk‑adjustment 
models using interactions identified 
by hierarchical group lasso regularisation
Monika Ray1,2*, Sharon Zhao3, Sheng Wang3, Alex Bohl3 and Patrick S. Romano1,2 

Abstract 

Background  Risk-adjustment (RA) models are used to account for severity of illness in comparing patient outcomes 
across hospitals. Researchers specify covariates as main effects, but they often ignore interactions or use stratification 
to account for effect modification, despite limitations due to rare events and sparse data. Three Agency for Healthcare 
Research and Quality (AHRQ) hospital-level Quality Indicators currently use stratified models, but their variable perfor-
mance and limited interpretability motivated the design of better models.

Methods  We analysed patient discharge de-identified data from 14 State Inpatient Databases, AHRQ Healthcare Cost 
and Utilization Project, California Department of Health Care Access and Information, and New York State Department 
of Health. We used hierarchical group lasso regularisation (HGLR) to identify first-order interactions in several AHRQ 
inpatient quality indicators (IQI) - IQI 09 (Pancreatic Resection Mortality Rate), IQI 11 (Abdominal Aortic Aneurysm 
Repair Mortality Rate), and Patient Safety Indicator 14 (Postoperative Wound Dehiscence Rate). These models were 
compared with stratum-specific and composite main effects models with covariates selected by least absolute shrink-
age and selection operator (LASSO).

Results  HGLR identified clinically meaningful interactions for all models. Synergistic IQI 11 interactions, such 
as between hypertension and respiratory failure, suggest patients who merit special attention in perioperative care. 
Antagonistic IQI 11 interactions, such as between shock and chronic comorbidities, illustrate that naïve main effects 
models overestimate risk in key subpopulations. Interactions for PSI 14 suggest key subpopulations for whom the risk 
of wound dehiscence is similar between open and laparoscopic approaches, whereas laparoscopic approach is safer 
for other groups. Model performance was similar or superior for composite models with HGLR-selected features, com-
pared to those with LASSO-selected features.

Conclusions  In this application to high-profile, high-stakes risk-adjustment models, HGLR selected interactions 
that maintained or improved model performance in populations with heterogeneous risk, while identifying clinically 
important interactions. The HGLR package is scalable to handle a large number of covariates and their interactions 
and is customisable to use multiple CPU cores to reduce analysis time. The HGLR method will allow scholars to avoid 
creating stratified models on sparse data, improve model calibration, and reduce bias. Future work involves testing 
using other combinations of risk factors, such as vital signs and laboratory values. Our study focuses on a real-world 
problem of considerable importance to hospitals and policy-makers who must use RA models for statutorily man-
dated public reporting and payment programmes.
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Introduction
In health care, risk-adjusted (RA) outcome measures 
are widely used to compare performance across health 
care organisations. Stakeholders such as the Centers for 
Medicare & Medicaid Services (CMS), use these meas-
ures to rate hospitals (e.g., Care Compare [14]), to inform 
accreditation processes, to assign financial rewards and 
penalties (e.g., Hospital-Acquired Conditions Reduction 
Program), and to drive quality improvement activities. 
As the lead federal agency tasked with improving the 
safety and quality of American health care, the Agency 
for Healthcare Research and Quality (AHRQ) devel-
ops and maintains a suite of measures called the AHRQ 
Quality Indicators (QIs) [3, 5]. AHRQ’s Inpatient Quality 
Indicators (IQIs) focus on risk-adjusted mortality among 
patients hospitalised with life-threatening conditions 
(e.g., heart attack, pneumonia, stroke) and invasive sur-
gical procedures (e.g., abdominal aortic aneurysm repair, 
hip fracture repair), while the Patient Safety Indicators 
(PSIs) focus on potentially preventable complications of 
hospital care.

Several AHRQ QIs employ stratified RA models 
because their denominator populations are heterogenous 
while their numerator definitions are identical. Although 
stratified models represent a valid approach for estimat-
ing heterogeneous effects [11], the resulting models have 
highly variable performance due to extremely low event 
rates and limitations of stratum-specific feature selec-
tion. A better and interpretable solution to the problem 
of population heterogeneity in RA models would involve 
including linear interactions in the model [25, 35]. Fur-
thermore, predictive models for health outcomes often 
have poor calibration, potentially due to interactions 
that are ignored by standard methods [21]. Surgical out-
come reports have shown that these interactions can be 
either synergistic or antagonistic [10, 23, 24, 31], yet they 
are often overlooked in RA models. Some vendors have 
developed risk-adjustment approaches that pre-specify 
interactions, such as 3M’s All Patient Refined Diagno-
sis Related Groups (APR-DRGs) [1], but public agencies 
such as AHRQ [5] have stopped using proprietary tools 
due to their cost and opaqueness.

Least absolute shrinkage and selection operator 
(LASSO) is a feature selection method for develop-
ing risk models that relies upon penalised regression, 
and shrinking coefficients to zero [41], which offers 
important benefits over stepwise selection approaches 
based on p values [38]. However, it does not have a 

mechanism to automatically identify all pairwise inter-
actions but rather depends on manual specification of 
each interaction to test. This procedure leads to spuri-
ous interactions being forced into the model or impor-
tant interactions being omitted when there are several 
hundred covariates/dimensions as is the case with 
healthcare datasets. Most standard implementations 
of regularised models fail to satisfactorily address two 
issues that characterise healthcare data - (a) the quad-
ratic explosion of interactions, and (b) the presence 
of categorical variables with multiple levels of values, 
such as Medicare Severity Diagnosis Related Groups 
(MS-DRGs) and Major Diagnostic Categories (MDCs). 
Hierarchical Group-LASSO Regularisation (HGLR) is 
a novel feature selection method for identifying first 
order interactions that enforces strong hierarchy based 
on regression trees [26]. HGLR sets up main effects and 
interactions via groups of variables, and then performs 
feature selection via group-LASSO, which is a gener-
alisation of the LASSO for selecting groups of variables 
[42]. Both HGLR and LASSO are regularisation meth-
ods that shrink non-informative features’ coefficients to 
zero, thereby removing them from the model. HGLR is 
attractive because (1) if there are no true interactions, 
then glinternet only selects the main effects, and (2) it 
is a linear model with complexity comparable to penal-
ised regression. Therefore, it can handle problems with 
several thousand features and retain the interpretability 
of linear models.

Our aim was to investigate whether AHRQ’s strati-
fied QI RA models could be replaced by compos-
ite RA models, using HGLR to select and estimate 
clinically meaningful and interpretable interactions. 
These AHRQ QIs represent a useful test case for this 
novel approach given their widespread use by fed-
eral and state health agencies, and other stakeholders 
such as employer coalitions [40], for ranking hospitals 
and assigning rewards and financial penalties. IQI 11, 
Abdominal Aortic Aneurysm (AAA) Repair Mortality 
Rate, is stratified into four groups based on the type of 
AAA repair (open vs. endovascular) and AAA rupture 
status. IQI 09, Pancreatic Resection Mortality Rate, is 
stratified into two groups based on the absence or pres-
ence of a pancreatic cancer diagnosis. PSI 14, Postop-
erative Wound Dehiscence Rate, is stratified into two 
groups based on whether the salient abdominopelvic 
operation was performed by open or laparoscopic (non-
open) approach. PSI 04, Death Rate among Surgical 
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Inpatients with Serious Treatable Complications, is 
stratified into five groups based on the type of trigger-
ing complication, but this PSI was not analysed as it is 
being currently redesigned. The QI stratified models 
have demonstrated variable performance; for example, 
the currently reported C-Statistics for IQI 11 stratified 
models range from 74% to 87% [4, 7]. Some stratified 
models are also limited by rare events; for example, the 
current version of PSI 14 has just 101 numerator events 
among 567,439 denominator encounters in the non-
open stratum. Our approach involved re-estimating 
these stratified models using HGLR to identify impor-
tant interactions, and comparing the results with tradi-
tional LASSO selection of main effects alone.

Methods
Data
We analysed hospital stays of adults (Age ≥ 18 years) 
using de-identified inpatient discharge data from the 
14 State Inpatient Databases (SID), Healthcare Cost 
and Utilization Project (HCUP), Agency for Healthcare 
Research and Quality [2], the California Department of 
Health Care Access and Information (HCAI), and the 
New York State Department of Health (NYSDOH). Our 
IQI data included 2016, 2017, and 2018 records from Ari-
zona, California, New York, Maryland, Iowa, Massachu-
setts, New Jersey, New Mexico, Florida, Kentucky, Maine, 
Minnesota, Nebraska, Nevada, Vermont and Washing-
ton. Our PSI data included 2019, 2020, and 2021 records 
from California, New York, Maryland, and Florida. In 
these data, each row refers to an inpatient encounter and 
columns include encrypted hospital and patient iden-
tifiers, MS-DRGs, MDCs, admission source and type, 
ICD-10-CM diagnosis codes and ICD-10-PCS procedure 
codes etc. [2, 6].

Analytic approach
Population
First, we ran AHRQ’s v2021 IQI and v2022 PSI software 
on the inpatient discharge data to identify the population 
(denominator) and adverse events (numerator) for each 
indicator [6], based on the ICD-10-CM diagnosis and 
ICD-10-PCS procedure codes in the data, and the cor-
responding ‘present on admission’ (POA) diagnosis flags 
and procedure dates. AHRQ’s Clinical Classification Soft-
ware Refined (CCSR) was applied to all POA and POA-
exempt diagnoses [8], following CMS’ approach [13], to 
adjust only for clinical conditions that were present on 
admission to the hospital. The CCSR software groups all 
diagnosis codes into 540 binary categorical variables.

We then combined multiple population strata in IQI 
09, IQI 11, and PSI 14 into a single composite model for 
each indicator, with the same numerator outcome, and 

represented the strata in a new variable named IQIS-
trata or PSIStrata. IQIStrata had four levels (Open Rup-
tured, Endo Ruptured, Open Unruptured, Endo 
Unruptured) in IQI 11 and two levels (With Cancer, 
Without Cancer) in IQI 09. PSIStrata had two levels 
(Open And Non-Open) in PSI 14. The input features for 
the IQI models were DXCCSR binary categorical varia-
bles, 4 age categories, gender, hospital transfer status, and 
the IQIstrata. The features for PSI 14 included MS-DRGs 
collapsed into Modified DRGs by combining adjacent 
MS-DRGs with or without comorbidities or complica-
tions, 25 MDCs, age categories, sex, do-not-resuscitate 
(DNR) status, hospital transfer status, HCUP Elixhauser 
Comorbidity Software Refined [20], and PSIStrata. The 
MS-DRGs and MDCs were generated using CMS’s v39.1 
MS-DRG Classifications software [12]. The outcome 
for the IQIs is mortality and that for PSI 14 is wound 
dehiscence.

Data preprocessing
In order for these models to meet AHRQ/CMS needs, 
we had to address several practical challenges, related to 
the clinical context and computing resources. Due to the 
large data set and sparsity of PSI 14 events, we undersam-
pled the data to have 10,000 records for feature selection 
and removed some Modified DRG variables that repre-
sent complications of inpatient care (e.g., tracheostomy, 
abdominal wall hernia procedure) or provide no useful 
clinical information (e.g., "Operating Room (OR) proce-
dure unrelated to principal diagnosis"). Random under-
sampling of non-event cases was performed using the 
Random Over-Sampling Examples (ROSE package in R) 
method [29, 30]. These sampling strategies do not pertain 
to the IQIs as their event rates were much higher. We also 
removed extremely low-frequency covariates before fea-
ture selection, as selection of these features would have 
led to convergence problems during subsequent maxi-
mum likelihood estimation in LASSO.

Feature selection phase
We used the following R packages - glinternet for HGLR, 
glmnet for LASSO, logistf for Firth’s logistic regression 
[18, 37], precrec [39] for precision-recall performance 
metrics. The data were split into 80-20% training-test 
sets. Feature selection was performed using ten-fold 
cross-validation (CV). The final model along with the 
corresponding regularisation parameter (lambda) value 
was chosen based on model’s performance (cross-vali-
dation error rate/area under the receiver operating char-
acteristic (AUC)) on the training set, following standard 
machine learning protocols.
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Final risk‑adjusted models
As both AHRQ and CMS release their RA models as 
logistic regression models for transparency and inter-
pretability, we reported the performance of logistic 
regression models using either the HGLR-selected (with 
interactions) or LASSO-selected (without interactions) 
features on the 20% test set. We report the area under the 
receiver operating characteristic (AUROC or C-Statistic) 

and the area under the precision-recall curve (AUPRC) 
as measures of discrimination in large imbalanced data-
sets. We used Firth’s logistic regression for PSI 14 due to 
the large standard errors for the parameters of interest, 
given the extremely low event rate and sparse cells. Firth’s 
method is specifically designed for these scenarios and 
is a suitable alternative to standard logistic regression 
for rare events [18, 37]. Model calibration was evaluated 

Table 1  Characteristics of IQI 11 abdominal aortic aneurysm repair mortality rate and IQI 09 pancreatic resection mortality rate

Abbreviations: RUPT Ruptured, UNRUP Unruptured, Em Emergency, U Urgent, El Elective, O Other admission types, Composite non-stratified model

AHRQ QI Event Popul.(N) Mean Age Male Mean LOS Admit Type
rate(%) (yrs) (%) ±Std.(Days) (%)

IQI 11
  OPEN RUPT 38.73 1,322 72.4±9.8 75.0 12.4±14.5 Em: 69.3

U:16.6

El:5.0

O:9.1

  ENDO RUPT 20.94 2,082 74.2±10.0 78.3 8.3±10.8 Em:66.9

U:18.3

El:8.2

O:6.7

  OPEN UNRUP 5.73 4,154 69.9±9.0 71.4 9.9±9.0 Em:14.8

U:7.8

El:75.1

O:2.3

  ENDO UNRUP 0.84 29,611 74.3±8.7 80.4 2.9±4.4 Em: 10.9

U:6.8

El:81.0

O:1.3

Composite 3.86 37,169 73.7±9.0 79.1 4.27±6.8 Em: 16.6

U: 7.9

El: 73.6

O: 2.0

IQI 09
  WITH 2.11 12,177 66.5±11 52.0 11.2±9.6 Em:7.6

  CANCER U: 5.2

El:85.7

O: 1.6

  WITHOUT 2.49 10,017 58.2±15.2 47.8 10.9±13.1 Em: 9.7

  CANCER U: 5.9

El:80.4

O: 4.1

Composite 2.28 22,194 62.8±13.8 50.1 11.1±11.3 Em: 8.5

U: 5.5

El: 83.3

O: 2.7

PSI 14
  OPEN 0.24 530,751 59.7±16 45.6 8.7±12.9 NA

  NON-OPEN 0.01 438,531 55.0±18 41.2 5.2± 8.5 NA

Composite 0.13 969,282 57.6±17 43.6 7.1±11.3 NA
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using calibration belts, where the x-axis represents the 
predicted risk of the event and the y-axis represents the 
observed risk. Finazzi et al. developed a method to assess 
calibration of models for binary outcomes called the cali-
bration belt [32, 33]. A calibration belt graphically shows 
the confidence band around the calibration curve and is 
constructed from a function based on a generalisation of 
Cox’s seminal work [15]. This method is a useful alter-
native to HL calibration plots [33] as it helps in under-
standing the model’s behaviour without binning samples 
and is particularly important in large datasets [17, 34]. 
High p-values indicate that the difference between the 
observed and predicted scores is negligible.

Results
Table 1 depicts the population characteristics for the all 
the AHRQ QIs, and the positive event rates across them. 
The IQI 11 sample was predominantly male (71.4-80.4%) 
with an average age of 73.7 years. By contrast, IQI 09 had 
roughly equal numbers of men and women in each stra-
tum and a mean age of 62.8 years. The IQI 11 strata for 
open and endovascular treatment of ruptured aneurysms 
were dominated (66.9-69.3%) by emergency admissions 
with long LOS (mean 8.3-12.4 days) and high inpatient 
mortality (20.9-38.7%), while the other strata were domi-
nated by elective admissions with low inpatient mortality 
(0.8-5.7%). The PSI 14 cohort was predominantly female 
(54.4-58.8%) with younger mean age (55.0-59.7 years). 
Most importantly, PSI 14 had an extremely low event 
rate.

Table 2 shows the performance of the feature selection 
models, HGLR and LASSO, on the hold-out test set. The 
HGLR model has two-way interaction terms (interac-
tion model) whereas the LASSO model (non-interaction 
model) does not. Table 3 shows the performance of the 
risk-adjusted models of the three composite outcomes 
estimated with either LASSO-selected or HGLR-selected 
features. For IQI 11, interactions accounted for about half 
of the entire feature set and including these terms did not 
adversely affect the model’s performance or cause con-
vergence issues. While both HGLR and LASSO selected 
IQIStrata (the population stratum) as a main effect in 
IQI 11 model, HGLR was able to automatically identify 
several clinically important interaction effects involving 
IQIStrata. Similarly, HGLR was able to identify five clini-
cally important interaction effects involving PSIstrata 
in the PSI 14 model, with little impact on model per-
formance despite substantially fewer main effects in the 
model with HGLR-selected features.

Table 4 shows the performance of stratified RA models 
with LASSO-selected features for comparison with the 
composite models shown in Table 3. Model discrimina-
tion using LASSO-selected features varies substantially 

across strata, from 0.689 to 0.834 for IQI 09, and from 
0.683 to 0.801 for IQI 11. The Fig.  1 shows an interac-
tion plot between shock and respiratory failure for IQI 
11, demonstrating a significant negative interaction or 
antagonistic effect, with logistic parameter estimates of 
0.871, 0.516, and -0.577 for shock, respiratory failure, and 
their two-way interaction, respectively. These estimates 
indicate that the presence of shock essentially negates 
the marginal effect of respiratory failure among patients 
undergoing AAA repair, such that the co-occurrence 
of both conditions is similar to having either condition 
alone. A negative interaction was also found between 
shock and gastrointestinal disease (Fig.  2). Interactions 

Table 2  Feature selection model performance

AHRQ QI Model C-Stat AUPRC

PSI 14 composite HGLR 0.856 0.008

LASSO 0.853 0.008

IQI 11 composite HGLR 0.917 0.407

LASSO 0.910 0.427

IQI 09 composite HGLR 0.761 0.126

LASSO 0.762 0.129

Table 3  Risk-adjusted model performance

The HGLR feature set includes interactions while the LASSO feature set does not. 
Abbreviation: ftrs - Features

AHRQ QI Features Set C-Stat AUPRC Total No.
Features

PSI 14 composite HGLR ftrs 0.840 0.007 21

LASSO ftrs 0.856 0.008 52

IQI 11 composite HGLR ftrs 0.915 0.405 38

LASSO ftrs 0.903 0.408 21

IQI 09 composite HGLR ftrs 0.760 0.120 75

LASSO ftrs 0.765 0.130 20

Table 4  Risk-adjusted model with LASSO features: stratified 
models performance

AHRQ QI C-Stat AUPRC

PSI 14 OPEN 0.774 0.008

PSI 14 NON-OPEN 0.826 0.000

IQI 11 OPEN RUPTURED 0.701 0.597

IQI 11 ENDO RUPTURED 0.763 0.444

IQI 11 OPEN UNRUPTURED 0.683 0.138

IQI 11 ENDO UNRUPTURED 0.801 0.061

IQI 09 with CANCER 0.689 0.081

IQI 09 without CANCER 0.834 0.212
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with IQIStrata generally showed larger relative effects 
in strata with lower baseline risk. The IQI 11 compos-
ite interaction model demonstrated slightly better dis-
crimination (AUC, 0.915 versus 0.903) than the model 
with LASSO selected features, with similar calibration 
(Table 4; Fig. 3).

For PSI 14, the main effect of the non-open approach, 
relative to the open approach, was highly significant with 
adjusted odds ratios of 0.039 (95% confidence interval 
[CI], 0.028-0.055) in the non-interaction model and 0.047 
(95% CI, 0.027-0.078) in the interaction model. However, 
the interaction model revealed that this beneficial effect 
of laparoscopic surgery was eliminated for patients in 
MDC 08 (Diseases and Disorders of the Musculoskeletal 
System and Connective Tissue), MDC 13 (Diseases and 
Disorders of the Female Reproductive System), and Mod-
ified DRG 1304 (Uterine and Adnexa Procedure for Non-
Malignancy). Although LASSO selected over twice as 
many main effects as HGLR and achieved similar model 
discrimination as HGLR, it could not identify the interac-
tions shown in Figs. 4, 5, and 6, which improved model 
calibration for higher risk patients as shown in Fig.  7 

(goodness-of-fit p=0.067 for HGLR-selected features ver-
sus p=0.002 for LASSO-selected features).

Discussion
This research was motivated by a practical problem in the 
development of RA models for high-stakes, policy-rele-
vant applications, such as hospital quality measurement 
and payment. Specifically, model developers often either 
ignore clinically important two-way interactions, leading 
to prediction error for subpopulations that may cluster at 
specific sites, or estimate fully stratified models, thereby 
wasting degrees of freedom and limiting the ability to 
select a robust feature set for every stratum. We inves-
tigated an innovative solution to this challenge, using 
HGLR to estimate composite models instead of stratified 
models while identifying clinically important interac-
tions representing a robust set of heterogeneous effects. 
Given several hundred features in these applications, it is 
infeasible to manually specify all possible two-way com-
binations, nor is it advisable to specify such a model due 
to issues that arise during feature selection or parameter 
estimation such as collinearity and quasi-completeness.

Fig. 1  Interaction plot of shock and respiratory failure identified by HGLR for IQI 11 composite
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Fig. 2  Interaction plot of shock and other gastrointestinal disease identified by HGLR for IQI 11 composite

Fig. 3  IQI 11 composite- Calibration belts of logistic regression models using A) HGLR or B) LASSO selected features
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Clinical significance
Analysis of IQI 11 revealed important findings with 
respect to the specific features selected. We were able to 
combine four strata and estimate a single, more robust 
model with interactions, which is more efficient and 
generates more easily interpreted estimates of effect het-
erogeneity. The most common pattern of the selected 
interactions was that comorbidities such as chronic kid-
ney disease, pleural effusion, other lower respiratory tract 
disease, fluid and electrolyte disorders, heart failure and 
malnutrition were associated with markedly increased 
mortality among patients with unruptured aneurysms 
who were treated with endovascular repair, but had little 
marginal effect among patients with ruptured aneurysms 
for whom baseline mortality was very high. This pattern 
is clinically logical and consistent with prior literature 
on obesity [27], as comorbid conditions may have less 
relative impact on inpatient mortality in the setting of a 
catastrophic acute condition than with a stable chronic 
condition, such as an intact aneurysm. The exception to 
this pattern was for shock, which is a marker of the sever-
ity of acute aneurysm rupture.

Using HGLR, we were also able to identify sev-
eral previously unsuspected but clinically meaningful 
interactions among comorbid conditions. When these 
interaction effects were positive or synergistic, as for 
hypertension and respiratory failure, they suggest com-
binations of risk factors that may merit special atten-
tion as part of perioperative care. More commonly, 
these interaction effects were negative or antagonistic, 
suggesting that the combination of interacting factors 
was associated with little or no marginal increase in 
risk, compared with having one of those factors alone. 
For example, the presence of shock at admission is an 
important predictor of postoperative death. Shock was 
found to interact with several other clinical factors 
(e.g., peripheral vascular disease, respiratory failure, 
other gastrointestinal disorders) such that the presence 
of shock virtually eliminated or reduced the marginal 
effect of the interacting factor on inpatient mortality. 
Failure to account for such important interactions may 
lead to overestimation of risk among patients with com-
binations of risk factors, and thus miscalibration of risk-
adjustment models in portions of the risk distribution. 

Fig. 4  Interaction plot of MDC 08 (Diseases and Disorders of the Musculoskeletal System and Connective Tissue) and Population Strata identified 
by HGLR for PSI 14 composite
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Such miscalibration may bias risk-standardized out-
come rates for specific facilities that attract patients 
with combinations of risk factors. Two-way interactions 
were also identified for IQI 09, but given the similar risk 
of inpatient death between patients with and without 
cancer undergoing pancreatic resection, these interac-
tions were less clinically interesting than those in IQI 11 
and PSI 14 models.

For PSI 14, the two strata have markedly different event 
rates, with a very low event rate in the non-open stratum. 
It is widely accepted that the risk of postoperative wound 
dehiscence is higher with the open approach than with 
the laparoscopic approach, but the HGLR-derived model 
suggests that this difference is unexpectedly heterogene-
ous, and that the laparoscopic approach may not confer 
benefit (in terms of postoperative wound dehiscence) for 
patients undergoing musculoskeletal operations, such as 
lumbar diskectomy, or operations on the female repro-
ductive system, such as hysterectomy. This intriguing 
finding requires validation in other large data sets.

Model performance
Since RA models are often used to evaluate healthcare 
entities using data beyond the reference population on 
which the model was estimated, it is important to evalu-
ate the predictive and generalisation capabilities of the 
model. The ROC curve and the area under it show the 
degree of separability between the two classes (i.e., event-
positive and event-negative patients). The AUPRC shows 
the predictive performance of the model and is helpful 
to understand models developed on imbalanced data-
sets, where the number of negative events far exceeds 
the number of positive events [16, 36, 39]. Our results 
show that combined models perform as well or better 
than stratified models, and that an automated approach 
to selecting linear interactions from an extremely large 
number of possibilities yields combined models with 
similar or better performance than traditional LASSO-
based feature selection, limited to main effects. Notably, 
we found that HGLR never failed to converge, even when 
LASSO demonstrated convergence problems.

Fig. 5  Interaction plot of MDC 13 (Diseases and Disorders of the Female Reproductive System) and Population Strata identified by HGLR for PSI 14 
composite
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Fig. 6  Interaction plot of Modified DRG 1304 (Uterine and Adnexa Procedure for Non-Malignancy) and Population Strata identified by HGLR for PSI 
14 composite

Fig. 7  PSI 14 composite- Calibration belts of logistic regression models using A) HGLR or B) LASSO selected features
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Conclusion
Key strengths of this study include the large, diverse, and 
population-based sample of patients from numerous US 
states, and our focus on a real-world problem of consid-
erable importance to hospitals, health care providers, 
researchers, and policy-makers who must use risk-adjust-
ment models for statutorily mandated public report-
ing and payment programmes. HGLR has been used in 
various domains such as to analyse energy consumption 
in buildings in New York City [22], environmental effect 
of exposome on health [9], drug interactions from elec-
tronic health records and biomolecular data [28], and val-
uation of variable annuity portfolios [19], but it has not 
been used in health services research. Notably, the HGLR 
package has been implemented to be scalable to handle a 
large number of covariates and test all their interactions, 
and to be customisable to use multiple computing cores 
to reduce analysis time, which is an important consid-
eration in the current era of big data and testing a large 
number of pairwise interactions. Limitations of this study 
will be addressed in future work by applying HGLR to 
other quality indicators, including unstratified models, as 
our work suggests that it may be advantageous to iden-
tify unsuspected interactions among clinical features. We 
will also test HGLR and other interaction methods using 
other risk factors (vital signs, laboratory values, etc.) and 
data from more U.S. states for assessing generalisability.

In risk-adjustment models for clinical events, it is often 
critical to include interactions accounting for synergistic 
and antagonistic effects. However, identifying such two-
way interactions has been technically challenging, leading 
scholars to favour stratified models or to select a limited 
set of manually constructed interactions for evaluation. 
The former approach is inefficient and leads to models 
that are not directly comparable, as they are built on dif-
ferent populations and therefore do not support formal 
testing for heterogeneous covariate effects [11]. The latter 
approach is intuitively attractive for minimising the risk of 
spurious interactions, but it precludes discovering unsus-
pected interactions, and HGLR manages the risk of false 
discovery through multiple cross-validation and testing 
in a hold-out sample. In this application to widely used, 
high-stakes RA models, we have shown that HGLR allows 
users to identify a robust set of interactions that main-
tain or improve model performance in populations with 
heterogeneous risk, while identifying clinically important 
effect modification. Robustly selecting two-way interac-
tions will allow developers to avoid stratified models on 
sparse data, improve model discrimination or calibration, 
and reduce bias in comparing risk-standardised outcomes 
across facilities. Based on our results shown here, AHRQ 
is considering using HGLR to eliminate stratified models 
in the next iteration of their RA model development.
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