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Abstract

The C'ascade model of cognitive skill acquisition
was developed to integrate a number of Al tech-
nigues and to account for psychological results on
the self-cxplanation effect. In previous work, we
compared (‘ascade’s behavior to aggregate data
collected from the protocols of 9 subjects in a self-
explanation study. Here, we report the results of
a fine-grained analysis, in which we matched Cas-
cade’s behavior to the individual protocols of each
of the subjects. Our analyses demonstrate empir-
ically that ('ascade is a good model of subject be-
havior at the level of goals and inferences. It cov-
ers ahout 75% of the subjects’ example-studying
hehavior and 60% to 90% of their problem-solving
hehavior. In addition, this research forced us to
develop general feasible methods for matching a
simulation to large protocols (approximately 3000
pages total). Finally, the analyses point out some
weaknesses in the C'ascade system and provide us
with direction for future analyses of the model and
data.

Introduction

('ascade is an integrated model of cognitive skill
acquisition. It incorporates a number of methods
from artificial intelligence, and was designed with
attention to robust psychological findings. Else-
where (VanLehn, Jones, & Chi, 1991, 1992), we
have demonstrated that C'ascade’s mechanisms in-
leract to account for the main qualitative findings
involved in the self-explanation effect (Bielaczyc
& Recker, 1991; Chi, Bassok, Lewis, Reimann, &
Gilaser, 1989; Chi, de Leeuw, Chiu, & LaVancher,
1991; Fergusson-Hessler & de Jong, 1990; Pirolli
& Bielaczye, 1989). In that research, we compared
(‘ascade’s behavior to aggregate data taken from
the protocols of the 9 subjects in Chi et al.’s (1989)
study.

In this paper, we refine the evaluation of (‘as-
cade by matching its behavior to the individual
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protocols of Chi et al.'s subjects. This research is
similar to Newell and Simon's (1972) classic study
on human problem solving, in that both attempt
to determine how closely an Al prograimn can simu-
late the protocols of individual subjects. However,
there are three important differences between our
study and Newell and Simon's. First, our task
domain is physics, which is arguably much richer
than the task domains they studied. Second, a
considerable amount of learning occurs in the Chi
et al. protocols. Third, the Chi et al. data con-
sist of 252 protocols, each averaging 12 pages in
length, so it would be infeasible to analyze them
with problem-behavior graphs.

This work makes two important contributions.
First, it provides evidence that C'ascade’s model
of the subjects in Chi et al.’s study is quite ac-
curate, even at the level of individual rules and
goals. Second, it demonstrates a practical method
for large scale comparisons of a simulation system
to protocol data. We begin with an overview of the
(C'ascade system. This is followed by a description
of our paradigm for matching C'ascade to the pro-
tocols and a brief discussion of our results. The
paper concludes by describing implications of the
results on future research with C'ascade.

The Cascade system

Cascade is an Al system that integrates multiple

strategies for problem solving and learning. Al-
though the system has been applied to elementary
probability and naive physics, the current. analysis
involves the domain of Newtonian physics, hecause
this is the domain studied by the subjects. Due
to space restrictions, we can only provide a sun-
mary of the system here. A detailed treatment. can
be found elsewhere (VanLehn & Jones, in press-a:
VanLehn, Jones, & Chi, 1992).
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Problem solving mechanisms

(‘ascade’s overall control structure is based on a
hackward-chaining theorem prover (similar to Pro-
log). but it distinguishes between explaining exam-
ples and solving problems. Problems are presented
as a set of literals describing a physical situation
and a list of quantities for which ('ascade must
find values. An example is a problem along with
a solution that consists of a sequence of lines de-
scribing partial results that lead up to the answer
to the problem. To explain an example, Cascade
explains (proves) each line. Whereas in problem
solving ('ascade must find a value, 1", for a sought
quantity, Q. in explaining an example line C'ascade
must prove why @ has a given value, 1". Expla-
nation is simpler than ordinary problem solving
hecause the provided values help control search.
People rarely explain every detail of every line, so
(‘ascade can also accepf that the current quantity
has the stated value, instead of explaining it.

As ('ascade explains an example, it stores a
trace of its explanation (useful for solving subse-
quent problems), so more explanation leads to a
larger stored derivation.

During problem solving, ("ascade attempts to
use its rule-based knowledge to find a value for a
sought quantity. If this fails, the system tries to
use a form of fransformational analogy (Carbonell,
1983). That is. the system retrieves an example
that is similar to the current problem and looks
for a line in the example that mentions the sought
quantity. If possible, it uses such a line to deter-
mine a value for the quantity. As Carbonell also
found. this type of reasoning often leads to incor-
rect results. However, it is a strategy that subjects
exhibit quite often.

Learning mechanisms

('ascade also includes two learning mechanisms
for improving its problem-solving behavior. First,
as we have mentioned, C'ascade stores a trace of
its solution as it explains examples. Many of the
problems are analogous to one or more of the ex-
amples. Therefore, when the system works on a
problem, it first attempts to create an analogical
mapping between the problem and any similar ex-
amples. Then. when C'ascade needs to solve a par-
ticular goal, it checks whether an analogous goal
appeared in the example. If so, the system deter-
mines how it solved the goal in the example and
uses that action in the current problem. In gen-
eral, this mechanism leads to less search because
it implies a better ordering of the rules in memory.
This is a symbol-level learning mechanism called
analogical search control (Jones, in press).

The second mechanism learns at the knowledge
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level (Dietterich, 1986), and is called explanation-
based learning of correciness (Vanlehn, Ball, &
Kowalski, 1990). C'ascade’s knowledge hase con-
tains a number of overly general rules that are not
used for general problem solving. However, when
the system reaches an impasse on a problem or
example and decides that the impasse is due to
missing knowledge, it can use the overly general
rules to patch its knowledge and introduce new
standard rules. This method of learning is simi-
lar to knowledge-level learning methods proposed
by Schank (1986), Lewis (1988). Anderson (1990),
and others.

Fitting to individual subjects

For each subject, we set Clascade’s parameters in

order to approximate the subject’s initial knowl-
edge and example-explaining behavior. We then
ran Cascade on the examples and problems that
the subject worked on, collected data from the run,
and analyzed them in several ways in order to de-
termine Cascade's empirical accuracy. First we
describe the parameter fitting and then the results
of our analyses.

Initializing Cascade’s parameters

(‘ascade’s model of the subjects includes two pa-
rameters: the subjects’ knowledge just hefore they
explain the examples, and the subjects’ decisions
about which pieces of the examples to accept witli-
out explanation. Each paramaler will he discussed
in turn.

The subjects acquired their initial knowledge
by reading the first several chapters of the text-
book and from their earlier studies of physics and
mathematics. Because we have no access to their
learning history, nor a detailed test of their ini-
tial knowledge, we must guess their initial knowl-
edge. Clascade’s initial knowledge hase for each
subject was a subset of a fixed “rule library.” The
rule library consisted of 110 rules, including rules
from the textbook, common sense rules, rules that
are learnable via overly general rules, and 3 buggy
physics rules that some subjects appeared to have.
One buggy rule applies F' = ma to any force and
not just a net force. Another asserts that the mass
of a body is equal to its weight. The third assumes
that the sign of all vector projections is positive.

There is no easy way to determine what a sub-
Ject’s initial knowledge is, but we made the best
approximation we could by looking for rule use
throughout each subject’s entire set of protocols.
As we found later, we sometimes made mistakes
in selecting the initial knowledge. In these cases,
we need to fix the mistakes, rerun the simulations
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Subject

Cascade

Figure 1. Matching the behaviors of C'ascade
and a subject

and redo our analyses. However, this will require
months of work, so for now, we report the analy-
ses with our imperfect choices of initial knowledge
left intact. There were only a few of these cases,
so we don’t feel that the qualitative nature of our
results will change.

The second parameter concerns how deeply the
subjects explained the examples. When studying
examples, subjects choose to explain some lines
but not others. Even when they do explain a line,
they may explain it only down to a certain level of
detail and decide to take the example's word for
the rest, For example, they might explain most
of the line, F,, = —F,cos(30), but not bother
to explain where the minus sign comes from. Cas-
cade does not model how the subjects decide which
lines to explain and how deeply to explain them,
so it must be told explicitly which sections to ex-
plain. Therefore, whenever Cascade is about to
explain the the proposition, @ = V', it first checks
to see if the literal accept(Q,V) is in the exam-
ple’s description. If the system finds such a literal,
it merely accepts that Q's value is V* without at-
temmpting to explain it.

We added accept propositions to C'ascade hy
inspecting the subject’s example protocols. If the
subject merely read a line and said nothing else
about it, then we entered an accept literal for the
whole line. If the subject omitted discussion of a
detail in a line, then we only accepted that detail,
allowing C'ascade to explain other goals involved
in the line. In this fashion, the protocol data com-
pletely determined which lines and parts of lines
(‘ascade explained.

The fit between Cascade and individual
subjects

We are interested in two types of comparisons
hetween the model and subject data. Suppose the
diagram in Figure | represents the behaviors of
a particular subject and C'ascade’s model of that
subject. Region A represents subject behavior
that ('ascade failed to match. Region B represents
the behavior that (‘ascade and the subject have in
common. Region ' represents ('ascade behavior
that the subject did not exhibit. The two compar-
isons we want are the ratio of region B behavior
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Table 1. Analyses of C'ascade’s simulation of
individual subjects.

1. How many of Cascade's example studying in-

ferences were also made by the subject (BC' vs,
B)?

2. How many of the subject’s example studying

inferences were also made by ('ascade (AB vs.
B)?

3. How many of Cascade’s problem solving infer-

ences were also made by the subject (B(' vs.
B)?

4. How many of the subject’s problem solving in-

ferences were also made by C'ascade (AB vs. B)?

5. Do the search control decisions made by the

subject match those made by (‘ascade (AB vs.
B()?

to Cascade’s total behavior (regions B and (*) and
to the subject’s total behavior (regions A and B).
Table 1 shows the specific analyses conducted and
their types.

In order to carry out these five analyses, we
needed a way to quantify behaviors, which implies
choosing a unit of analysis. This was not hard
for matching region B to (ascade’s behavior, be-
cause Cascade’s hehavior is well defined and ex-
plicit. For analyses 1 and 3, we used goals as
the unit of analysis. After running Cascade. we
classified each of its goals depending on the type
of action C'ascade took at that point. When ex-
plaining examples (analysis 1), these actions in-
cluded deductively explaining the goal. accepting
the goal without attempting to explain it, and en-
countering an impasse and learning a new rule.
For problem solving (analysis 3), the actions in-
cluded regular rule-based problem solving, regu-
lar use of transformational analogy, forced use of
transformational analogy (for cases where the sub-
ject used transformational analogy but (‘ascade’s
normal control structure would have used regu-
lar problem solving), and encountering an impasse
and learning a new rule. After classifying (‘as-
cade’'s behaviors, we determined what the sub-
ject’s behavior was at each goal. We used the
same classifications for subject behavior, but in-
cluded the possibility of having an impasse and
not learning a new rule (because the impasse was
never resolved).

It was not as easy to determine a unit of analysis
for matching region B to the subjects’ behavior, so
we used a variety of units, depending on the type
of analysis being conducted. For analysis 2. we ex-
tended an earlier encoding of inferences made by
subjects while explaining examples (Chi & Van-
Lehn, 1991) and compared those to the inferences
made by C'ascade. For analysis 4, we coded a sam-
ple of the protocols at the level of C'ascade-like
goals. These goals are at the same grain size as
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("ascade’s goals, so the comparison is direct.

Because we are more interested in Cascade’s
siimulation of the subjects' acquisition of physics
rules than in its simulation of the chronology of
their reasoning, analyses 1-4 ignored the order in
which Cascade and the subject made inferences.
Both (‘ascade’s hehavior and the subject’s hehav-
ior were reduced to sets of inferences. We sim-
ply calculated the intersections and differences be-
fween the sets, just as shown in Figure I. How-
ever, we cannot entirely ignore the chronology of
inferences, because an earlier study indicated that
analogical search control affects the location of
impasses, which in turn determines what can be
learned during problem solving (VanLehn & Jones,
in press-a), Therefore, we used analysis b to deter-
mine whether subjects’ rule choices during prob-
lem solving could be predicted by analogical search
control.

Results of the analyses

Unfortunately, there is not enough space here to
present the simulation runs and analyses in detail,
so we will present a general summary and conclu-
sions from the analyses. The details are presented
elsewhere (VanLehn & Jones, in press-b).

Results on example explaining. We found
that 95% of the example-explaining behavior gen-
erated by Cascade was matched by the subjects’
hehavior (analysis 1). This is not surprising be-
canse most of ('ascade’s example-studying behav-
ior is determined by the parameter settings.

In analysis 2. we found that Cascade success-
fully accounted for 63% of the 227 explanation
episodes in the subjects’ example-studying pro-
tocols. Of the unmatched explanations, 61 were
concerned with cognitive skills that we are not in-
terested in modeling, such as algebraic equation
solving. That left only 23 explanations (10% of the
227 total explanations) that C'ascade should have
heen able to model. These fell into two groups:
incorrect explanations (14 cases) and general com-
ments (Y cases). The incorrect explanations indi-
cate that ('ascade needs more buggy rules than it
currently has. In particular, many of the missing
rules contained misconceptions about the relation-
ship between acceleration and motion. The gen-
eral comments indicate that the subjects have an
ability to break out of (ascade’s strict backward-
chaining control structure and do plan recognition
or mental modeling. These are certainly interest-
ing and important cognitive skills, but we were
surprised that they were used so rarely in this
study. When we began developing (ascade, we
expected plan recognition to be the most impor-
tant kind of explanation. This analysis indicates
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that it occurs rarely and probably has little in-
fluence on subsequent. problem solving. Overall,
('ascade fails to model only 23 (14%) of the 166
explanation episodes that are relevant to the task
domain, and we are encouraged by this result.

Results on problem solving. In analysis 3,
we found that 97% of the 3947 goals generated by
(‘ascade during problem solving were handled in
the same way by the subjects. Of the 118 episodes
that weren't matched by the subjects, most (98)
involved transformational analogy. We were sur-
prised by the prevalence of transformational anal-
ogy during problem solving, although it was cer-
tainly due in part to the fact that 12 of the 21
problems in the study were isomorphic (or nearly
so) to one of the three examples.

Cascade’s model of transformmational analogy is
too simple to describe adequately all the ways that
transformational analogy was used by the sub-
jects. A large number of the 98 cases occurred
when subjects used a force diagram from an ex-
ample to aid in drawing the force diagram for a
problem. Cascade currently represents force dia-
grams in its standard equation-based representa-
tion, whereas the subjects were almost certainly
using some type of visual representation. This
partially explains why C'ascade's transformational
analogy fails in these cases.

Analysis 4 was quite time consuming, so we were
only able to examine a small sample. Of the 225
total problem-solving protocols, we selected 4 that
we thought were representative of the variety of
approaches used by the subjects. T'wo protocols
were from “good” problem solvers who got cor-
rect answers and two were from “poor™ problems
solvers who got incorrect answers. In addition.
each of the pairs included a protocol that used
mostly transformational analogy and a protocol
that used mostly regular rule-based problem solv-
ing. This sample is clearly inuch too small, but it
is a start. In the four protocols, we counted 151
total goals or inferences, excluding trivial arith-
metic and algebraic goals. We found 15 cases in
this analysis that the current implementation ol
C'ascade failed to account for, so 90% of the sub-
jects” problem-solving behavior is matched hy the
(C'ascade model. After several years of experience
with these protocols. we feel intuitively that this
figure is too high, and that a larger saiple might
yield a match that could be as low as 60%.

Results on search control. The first four anal-
yses concentrated on matching the knowledge con-
tent of Cascade and the subjects without paying
attention to when the knowledge is used. The or-
der of inferences is determined by Cascade’s con-
trol structure (backwards chaining) and its inecha-
nism for choosing which rule to try first for achiev-
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ing a goal (analogical search control, or if no ana-
logical advice is available, then a default order-
ing ol rules). As part of analysis 4, we fit the
151 subject goals to a backward-chaining control
structure. Only 3 goals could not be fit, indical

ing that subjects occasionally make opportunistic
inferences about the current situation that are not
directly relevant to the current goal.

Iu order to evaluate ('ascade’s policy for choos-
ing rules to apply to the current goal, we matched
its choices for all 3947 goals to the choices of the
subjects, and they agreed in 97.7% of the cases.
In short, (‘ascade’s simple control regime turned
out to he a fairly good predictor of the order in
which subjects make inferences.

Discussion

One contribution of this work is that it demon-
strates a method for comparing large-scale Al sim-
ulations with protocols. Our general method con-
sists of comparing the amount of shared behavior
hetween the simulation and the subjects to the to-
tal simulation behavior and the total subject be-
havior. The unit of analysis for matching simu-
lation behavior is straightforward, because Cas-
cade’s behavior is explicit for each goal it consid-
ers when explaining examples or solving problems.
For matching subject behavior, we used two sep-
arale measures. In analysis 2 (explaining exam-
ples), we coded the subject protocols at the level
of individual physics or math explanations, and
compared the inferences with Cascade’s. In anal-
ysis 4 (solving problems). we undertook a much
more ambitious method. coding the protocols at
the level of (‘ascade-like goals. This analysis al-
lowed us to mateh the subjects’ hehavior to (‘as-
cade goal by goal, noting the locations where ('as-
cade’s model diverged from the subjects’ behavior.
Although rather time-consuming, our success with
this type of encoding encourages us to continue the
analysis with a larger sample of protocols.

The second contribution of this research is an
empirical evaluation of C'ascade’s ability to model
the behavior of individual subjects at a fine grain
size. We discovered that C'ascade can explain most
of the subjects’ example-studying and problem-
solving behavior with its three major performance
mechanisms: deduction, simple acceptance of ex-
ample statements, and transformational analogy.
Analyses 1-4 indicate that these three processes
cover about 75% of the example studying behavior
and 60-90% of the problem solving behavior. In
addition, the behavior they do not cover mostly in-
volves mathematical manipulations or other types
of cognition that are outside the domain of study.

Finally, analysis 5 demonstrates that (‘ascade
rather accurately models the subjects’ overall con-
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trol structure and local control choices. We were
pleasantly surprised by this result, hecause we did
not concentrate on these aspects during the sys-
tem's development.

To put these results in perspective, we look at
two other attempts to match cognitive models to
individual subjects. Newell and Siimon (1972) used
GPS to match 80% of an indidividual subjects” he-
havior on cryptarithinetic problems. VanLehn's
(1991) model for strategy discovery accounted for
96% of the behavior of a subject solving the “tower
of Hanoi” problem. It is important to note that
both of these studies involved modeling the he-
havior of a single subject. We used (‘ascade to
model the behavior of several individuals, which
is almost guaranteed to reduce the model’s overall
accuracy. With this in mind, Cascade’s account
of human behavior compares well with the older
models.

Perhaps the most important benefit of this re-
search is that it has shown us where some of (‘as-
cade's weaknesses are, and it has pointed out some
more aspects of the data that should also be an-
alyzed. For example, we found that C'ascade’s
simple model of transformational analogy is in-
adequate. Subjects were quite clever at forming
useful analogies with the examples, and especially
their force diagrams. In addition, we were sur-
prised to find that there were so few clear-cut cases
of impasse-driven learning in the protocols. Dur-
ing analyses 1 and 3, we found that subjects only
showed signs of impasses at 18 of the 44 times
that Clascade encountered an impasse and used
explanation-based learning of correctness to get
out of it. Our initial hypothesis is that these
events arise either from ingenious use of transfor-
mational analogy by the subjects, or they were
actual impasses that were simply not verbalized
in the protocols. Our future analyses will concen-
trate on these learning aspects and should tell us
exactly why there were so few clear cases of learn-

ing.
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