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Abstract

Acute respiratory distress syndrome (ARDS) has high rates of mortality and multisystem

morbidity. Pre-clinical data suggest that fibroblast growth factor 23 (FGF23) may contribute

to pulmonary pathology, and FGF23 is associated with mortality and morbidity, including

acute kidney injury (AKI), in non-ARDS cohorts. Here, we assess whether FGF23 is associ-

ated with AKI and/or mortality in a cohort of 161 pediatric ARDS patients. Plasma total

(intact + C-terminal) FGF23 and intact FGF23 concentrations were measured within 24

hours of ARDS diagnosis (Day 1), and associations with Day 3 AKI and 60-day mortality

were evaluated. 35 patients (22%) developed AKI by 3 days post-ARDS diagnosis, and 25

(16%) died by 60 days post-ARDS diagnosis. In unadjusted models, higher Day 1 total

FGF23 was associated with Day 3 AKI (odds ratio (OR) 2.22 [95% confidence interval (CI)

1.62, 3.03], p<0.001), but Day 1 intact FGF23 was not. In a model adjusted for demograph-

ics and disease severity, total FGF23 remained associated with AKI (OR 1.52 [95% CI 1.02,

2.26], p = 0.039). In unadjusted models, both higher Day 1 total and intact FGF23 were

associated with 60-day mortality (OR 1.43 [95% CI 1.07, 1.91], p = 0.014; and OR 1.44

[95% CI 1.02, 2.05], p = 0.039, respectively). In the adjusted model, only total FGF23

remained associated with 60-day mortality (OR 1.62 [95% CI 1.07, 2.45], p = 0.023). In a

subgroup analysis of patients with Day 1 plasma IL-6 concentrations available, inflammation

partially mediated the association between total FGF23 and AKI. Our data suggest both

inflammation-dependent and inflammation-independent associations between total FGF23

and clinical outcomes in pediatric ARDS patients.
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Introduction

Acute respiratory distress syndrome (ARDS) is defined as the presence of hypoxia in the con-

text of a new lung infiltrate occurring within seven days of a known insult [1]. In children,

ARDS is accompanied by high mortality rates—with an estimated overall mortality rate of

24% [2]—and extra-pulmonary comorbidities, including renal dysfunction, which occurs

commonly and contributes substantially to morbidity and mortality [3–5]. ARDS may be pre-

cipitated by a pulmonary insult, such as pneumonia or aspiration (direct ARDS), or by a non-

pulmonary insult, such as sepsis or transfusion reaction (indirect ARDS), resulting in non-car-

diogenic pulmonary edema and massive pulmonary inflammation [1, 6, 7].

One factor that may contribute to pulmonary inflammation is fibroblast growth factor 23

(FGF23). FGF23 is a predominantly bone-derived hormone that acts on the kidney and physi-

ologically functions to maintain phosphate homeostasis; however, FGF23 can also have patho-

logic, “off-target” effects. Specifically, FGF23 can induce cardiomyocyte hypertrophy [8],

impair neutrophil function [9], and stimulate hepatic secretion of the inflammatory cytokines

interleukin-6 (IL-6) and C-reactive protein [10], as has been demonstrated in in vitro and

murine studies. Recently, it has also been shown that FGF23 can stimulate IL-6 release from

cultured bronchial epithelial cells [11], suggesting a possible pro-inflammatory role of FGF23

in pathologic pulmonary conditions such as ARDS.

Therefore, FGF23 may induce inflammation, but interestingly, inflammation also affects

FGF23. Inflammation promotes FGF23 proteolysis, resulting in increased levels of FGF23 frag-

ments [12]. In the circulation, concentrations of both total FGF23 (intact FGF23 + C-terminal

FGF23) and intact FGF23 alone can be measured. Whereas intact FGF23 is known to be bio-

logically active, the effects of FGF23 fragments remain unclear.

In many human cohorts, higher circulating concentrations of total FGF23 and/or intact

FGF23 have been associated with adverse clinical outcomes, including all-cause mortality [13–

16], cardiovascular morbidity [8, 17–20], progression of chronic kidney disease [14, 21, 22],

development of acute kidney injury (AKI) [23–28], and infection-related hospitalization [29].

However, whether FGF23 levels are associated with poor clinical outcomes in pediatric ARDS

is unknown, and characterization of the FGF23 profile in this population may improve risk

stratification and better define the pathophysiology of this heterogeneous clinical condition

[30]. Therefore, in the current study, we assessed whether circulating total and intact FGF23

levels are associated with the development of AKI and/or mortality in a multicenter cohort of

pediatric ARDS patients.

Methods

Study subjects

Data were collected from a multicenter observational study of pediatric intensive care unit

patients with ARDS admitted between 2008 and 2016. Subjects were enrolled in five academic

pediatric intensive care units: Children’s Hospital Los Angeles; Children’s Hospital Central

California; American Family Children’s Hospital, University of Wisconsin-Madison; and the

University of California San Francisco (UCSF) Benioff Children’s Hospitals in Oakland and

San Francisco. The study was approved by the individual Institutional Review Boards at partic-

ipating centers.

Pediatric patients with bilateral chest X-ray infiltrates, receiving respiratory support in the

form of continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP),

or invasive positive pressure ventilation, were screened for eligibility. Guardians were

approached for informed written consent if the patients met the American-European
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Consensus Conference definition of Acute Lung Injury/Acute Respiratory Distress Syndrome

[31]. Chest x-ray results used for diagnosing ARDS were based on interpretations performed

by site investigators. Exclusion criteria included patients <1 month of age, <36 weeks cor-

rected gestational age, >18 years of age, and/or with a documented Do Not Resuscitate or Do

Not Intubate order at the time of screening.

Data collection

Demographic data, anthropometric data, and causes of lung injury were obtained from the

medical record. On the day of ARDS diagnosis (Day 1), plasma was collected for measurement

of total (intact + C-terminal) FGF23 and intact FGF23, assessed with ELISA kits (Quidel, San

Diego, CA). FGF23 can be proteolytically cleaved into fragments. The total FGF23 assay uses a

C-terminal capture antibody and a C-terminal detection antibody, both of which recognize

epitopes distal to the FGF23 cleavage site. Thus, the total FGF23 assay detects both full-length,

intact FGF23 protein and C-terminal FGF23 proteolytic fragments. Conversely, the intact

FGF23 assay uses an N-terminal capture antibody and a C-terminal detection antibody, thus

detecting only full-length FGF23 (Fig 1) [32]. As the human total FGF23 assay measures con-

centrations in RU/ml, but the human intact FGF23 assay measures concentrations in pg/ml,

direct calculation of C-terminal FGF23 fragment concentrations is not possible with these

assays.

Serum creatinine was assessed daily, and glomerular filtration rate (GFR) was estimated

using the revised Schwartz equation [33]. Consistent with the pediatric Risk, Injury, Failure,

Fig 1. The total FGF23 and intact FGF23 enzyme-linked immunosorbent assays (ELISA). Whereas the total fibroblast growth factor 23 (FGF23) ELISA detects both

the full-length, intact protein and its C-terminal proteolytic fragments, the intact FGF23 assay detects only the full-length form of the hormone.

https://doi.org/10.1371/journal.pone.0222065.g001
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Loss, End-Stage (pRIFLE) criteria [34], AKI was defined as a decrease in estimated GFR

(eGFR) of�50%. As baseline (prior to Day 1) serum creatinine measurements were not avail-

able, a baseline eGFR of 120 mL/min/1.73 m2 was assumed, as has been done in previous anal-

yses of AKI in this cohort [35]. As a measurement of disease severity, Pediatric Risk of

Mortality (PRISM) 3 scores were calculated [36]. PRISM 3 is a score developed specifically for

mortality prediction, utilizing the worst values of 17 laboratory and vital sign parameters from

the first 24 hours of intensive care [36]. PaO2/FiO2 (P/F) ratios were also calculated. For those

subjects without recorded arterial blood gas data, with pulse oximetry saturations between 80

and 97%, and for whom FiO2 was available, predicted P/F was calculated using the saturation/

FiO2 ratio [37]. A subgroup of patients had Day 1 plasma IL-6 concentrations available, which

were measured with a Luminex multiplex ELISA (Myriad RBM, Austin, TX).

Statistical analysis

All analyses were performed using STATA statistical software, version 13.1 (StataCorp, College

Station, TX). Continuous data are presented as medians and interquartile ranges (IQR), and

categorical data are presented as frequencies (percentage). Statistical tests used to compare

data between groups were the Wilcoxon rank-sum test for continuous variables and the chi-

squared test for categorical variables. Logistic regression modeling was performed to assess

whether FGF23 levels at the time of diagnosis were associated with AKI at 3 days post-diagno-

sis or with mortality at 60 days post-diagnosis. Given skewed data distributions, natural log

transformed FGF23 levels were used in the regression models. In the Day 3 AKI models, covar-

iates included demographics (age, sex); measures of disease severity (P/F ratio, PRISM score);

and the presence or absence of AKI at the time of diagnosis. In the 60-day mortality models,

covariates included demographics (age, sex); measures of disease severity (P/F ratio, PRISM

score); and the presence or absence of AKI. These models were fitted using a complete cases

approach, and numbers of included patients are reported for each regression model. Separate

analyses were performed including plasma IL-6 as a covariate, due to only a subset of patients

having non-missing data. Given skewed data distributions, natural log transformed IL-6 was

used in the regression models. Correlations between IL-6 and FGF23 concentrations were

assessed with Spearman’s rank correlation coefficients. Also, in this subset, we performed

mediation analysis [38, 39] to quantify the degree to which variation in IL-6 concentrations

mediated associations between FGF23 levels and clinical outcomes. In all analyses, a two-sided

p-value <0.05 was considered significant.

Results

Cohort characteristics

The cohort included 161 pediatric ARDS patients, 57% male, 70% Caucasian, with a median

age of 4.4 [IQR 1.1, 11.7] years (Table 1). The major risk factors for ARDS were pneumonia

(60%), sepsis (19%), and aspiration (6%). At the time of ARDS diagnosis (Day 1), the median

plasma total FGF23 level in this cohort was markedly elevated at 223 [IQR 114, 774] RU/ml.

(In healthy children, median total FGF23 concentrations range from 50 to 105 RU/ml,

depending on age [40].) Contrastingly, the Day 1 median intact FGF23 level was not elevated

(23 [IQR 11, 60] pg/ml). (In healthy children, the median intact FGF23 concentration is 35

[range 9–120] pg/ml [41].) Of the 161 subjects, 35 (22%) had AKI on Day 3 post-ARDS diag-

nosis (S1 Table), and 25 (16%) died by 60 days post-ARDS diagnosis.

FGF23 in Pediatric ARDS

PLOS ONE | https://doi.org/10.1371/journal.pone.0222065 September 5, 2019 4 / 14

https://doi.org/10.1371/journal.pone.0222065


Day 1 FGF23 levels and Day 3 AKI

Cohort characteristics at the time of ARDS diagnosis, stratified by the presence or absence of

Day 3 AKI, are shown in Table 1. Day 1 total FGF23 concentrations were significantly higher

in subjects with Day 3 AKI than in those without Day 3 AKI (median 944 [IQR 357, 6556] RU/

ml vs. median 166 [IQR 89, 466] RU/ml, p<0.001) (Fig 2A). However, Day 1 intact FGF23 lev-

els did not significantly differ between the two groups (median 28 [IQR 13, 105] pg/ml in the

AKI group vs. median 21 [IQR 11, 41] pg/ml in the non-AKI group, p = 0.09) (Fig 2B).

Higher Day 1 total FGF23 levels were significantly associated with the presence of Day 3

AKI (odds ratio (OR) 2.21 [95% confidence interval (CI) 1.61, 3.03], p<0.001) (Table 2,

Model 1). The association persisted after adjustment for the presence of Day 1 AKI (OR 1.51

[95% CI 1.05, 2.17], p = 0.027) (Table 2, Model 2), and after further adjustment for Day 1

covariates (age, sex, P/F ratio, and PRISM score) (OR 1.52 [95% CI 1.02, 2.26], p = 0.039)

(Table 2, Model 3). On the contrary, Day 1 intact FGF23 concentrations were not significantly

associated with Day 3 AKI in any of the models.

Table 1. Cohort characteristics at the time of ARDS diagnosis, stratified by the presence/absence of Day 3 AKI and stratified by 60-day mortality.

Variable All

(n = 161)

No Day 3 AKI

(n = 126, 78%)

Day 3 AKI

(n = 35, 22%)

p value Survived

(n = 136, 84%)

Deceased

(n = 25, 16%)

p value

Age (years) 4.4 (1.1, 11.7) 5.9 (1.5, 11.8) 2.2 (0.4, 11.3) 0.21 3.4 (1.1, 11.3) 10.4 (2.9, 13.9) 0.11

Sex (% male) 92 (57%) 71 (56%) 21 (60%) 0.70 73 (54%) 19 (76%) 0.038

Race: 0.21 1.00

Caucasian/white 112 (70%) 91 (72%) 21 (60%) 95 (70%) 17 (68%)

African-American/black 14 (9%) 9 (7%) 5 (14%) 12 (9%) 2 (8%)

Asian/Pacific Islander 13 (8%) 8 (6%) 5 (14%) 11 (8%) 2 (8%)

Other 22 (14%) 18 (14%) 4 (11%) 18 (13%) 4 (16%)

ARDS etiology: 0.40 0.49

Pneumonia 96 (60%) 78 (62%) 18 (51%) 80 (58%) 16 (64%)

Sepsis 30 (19%) 21 (17%) 9 (26%) 25 (18%) 5 (20%)

Aspiration 9 (6%) 6 (5%) 3 (9%) 7 (5%) 2 (8%)

Trauma 6 (4%) 5 (4%) 1 (3%) 5 (4%) 1 (4%)

Transfusion 1 (1%) 1 (1%) 0 (0%) 1 (1%) 0 (0%)

Other 18 (11%) 15 (12%) 3 (9%) 18 (13%) 0 (0%)

Missing 1 (1%) 0 (0%) 1 (3%) 0 (0%) 1 (4%)

Primary insult (% direct ARDS) 107 (66%) 86 (68%) 21 (62%) 0.48 89 (65%) 18 (75%) 0.36

Type of respiratory support: 0.67 0.65

Conventional mechanical ventilation 144 (89%) 112 (89%) 32 (91%) 121 (89%) 23 (92%)

High frequency oscillatory ventilation 7 (4%) 6 (5%) 1 (3%) 6 (4%) 1 (4%)

CPAP or BiPAP 10 (6%) 8 (6%) 2 (6%) 9 (7%) 1 (4%)

Kidney function (% AKI) 35 (22%) n/a n/a n/a 28 (21%) 7 (28%) 0.41

Day 1 PaO2/FiO2 ratio 153 (91, 228) 162 (93, 223) 129 (89, 243) 0.50 163 (92, 246) 135 (84, 172) 0.06

Day 1 oxygenation index 9 (5, 18) 8 (5, 16) 12 (6, 19) 0.25 8 (5, 16) 10 (8, 24) 0.07

Day 1 PRISM score 11 (6, 18) 10 (5, 17) 16 (10, 22) 0.001 11 (5, 17) 15 (9, 19) 0.04

Day 1 serum IL-6 (pg/ml) (n = 135) 75 (26, 227) 70 (18, 185) 138 (41, 1540) 0.004 72 (24, 222) 107 (28, 689) 0.21

Day 1 plasma total FGF23 (RU/ml) 223 (114, 774) 166 (89, 466) 944 (357, 6556) <0.001 202 (100, 669) 529 (172, 1490) 0.017

Day 1 plasma intact FGF23 (pg/ml) 23 (11, 60) 21 (11, 41) 28 (13, 105) 0.09 21 (10, 43) 38 (13, 128) 0.037

Data presented as numbers (percentages) or medians (interquartile range).

https://doi.org/10.1371/journal.pone.0222065.t001
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Day 1 FGF23 levels and 60-day mortality

Cohort characteristics at the time of ARDS diagnosis, stratified by mortality, are shown in

Table 1. Day 1 total FGF23 concentrations were significantly higher in subjects that died than

in those that survived (median 529 [IQR 172, 1490] RU/ml vs. median 202 [IQR 100, 669] RU/

ml, p = 0.017) (Fig 3A). Day 1 intact FGF23 concentrations were also significantly higher in

subjects that died than in those that survived (median 38 [IQR 13, 128] pg/ml vs. median 21

[IQR 10, 43] pg/ml, p = 0.037) (Fig 3B).

Both higher Day 1 total FGF23 levels and higher Day 1 intact FGF23 levels were signifi-

cantly associated with mortality at 60 days (OR 1.43 [95% CI 1.07, 1.91], p = 0.014; and OR

1.44 [95% CI 1.02, 2.05], p = 0.039, respectively) (Table 3, Model 1). After adjustment for Day

1 covariates (age, sex, presence/absence of AKI, P/F ratio, and PRISM score), Day 1 total

FGF23 levels remained significantly associated with 60-day mortality (OR 1.62 [95% CI 1.07,

2.45], p = 0.023), but Day 1 intact FGF23 levels did not (OR 1.30 [95% CI 0.89, 1.90], p = 0.17)

(Table 3, Model 2).

Subgroup of patients with Day 1 IL-6 concentrations

Given that stronger associations were observed with total FGF23 than with intact FGF23, and

that inflammation is known to increase total FGF23 out of proportion to intact FGF23 [12],

we assessed how the addition of an inflammatory marker to our models evaluating total

Fig 2. Day 1 plasma FGF23 concentrations stratified by the presence or absence of Day 3 AKI. Day 1 plasma total fibroblast growth factor 23 (cFGF23)

concentrations were significantly higher in subjects who had acute kidney injury (AKI) on Day 3 than in those that did not (Fig 2A). Day 1 plasma intact FGF23

concentrations were not significantly different between the two groups (Fig 2B). Data are presented as medians and interquartile ranges, and the Wilcoxon rank-sum

test was used to compare groups.

https://doi.org/10.1371/journal.pone.0222065.g002

Table 2. Multivariable logistic regression modeling, with a dependent variable of acute kidney injury (AKI) at three days post-ARDS diagnosis.

Dependent Variable Independent Variable Model 1 Model 2 Model 3

Day 3 AKI Total FGF23 2.22 (1.62, 3.03), p<0.001 1.51 (1.05, 2.17), p = 0.027 1.52 (1.02, 2.26), p = 0.039

Day 3 AKI Intact FGF23 1.28 (0.95, 1.72), p = 0.11 0.99 (0.69, 1.42), p = 0.95 1.02 (0.69, 1.52), p = 0.92

In these models, the independent variable is Day 1 plasma total FGF23 or intact FGF23, both of which were log-transformed to correct for skewness. Model 1 is

unadjusted. Model 2 is adjusted for the presence or absence of Day 1 AKI. Model 3 is adjusted for Day 1 AKI, age, sex, P/F ratio, and PRISM score. Data shown are odds

ratios and 95% confidence intervals. As only subjects with complete covariate data are included in the regression analysis, n = 150 for all models.

https://doi.org/10.1371/journal.pone.0222065.t002
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FGF23 affected the results. In a subgroup of patients (n = 135), Day 1 plasma IL-6 concentra-

tions were available. In these patients, plasma IL-6 levels were markedly elevated compared to

what is observed in healthy subjects [42]. Total FGF23 levels positively correlated with plasma

IL-6 concentrations (Spearman’s rank correlation coefficient = 0.35, p<0.001), but intact

FGF23 levels did not (Spearman’s rank correlation coefficient = 0.06, p = 0.45).

Regarding the outcome of AKI, the addition of IL-6 as a covariate to the subgroup adjusted

model decreased the Day 1 total FGF23 OR from 1.42 (95% CI 0.95, 2.14; p = 0.09) to 1.26

(95% CI 0.81, 1.96; p = 0.31) (Table 4). In this adjusted model, plasma IL-6 concentrations

were independently associated with Day 3 AKI (OR 1.59 [95% CI 1.13, 2.22], p = 0.007), simi-

lar to what has been observed in other analyses of this cohort [35]. Given the association

between IL-6 and AKI, we performed mediation analysis to quantify the degree to which varia-

tion in IL-6 concentrations mediated the FGF23-AKI association. In this analysis, although the

p-value for the indirect effect did not reach statistical significance (p = 0.12), likely contributed

to by decreased sample size, it was estimated that 36.4% of the association between total

FGF23 and AKI was explained by IL-6 (S2 Table), suggesting partial mediation.

Regarding the outcome of mortality, the addition of IL-6 as a covariate to the subgroup

adjusted model did not alter the Day 1 total FGF23 OR (1.38 [95% CI 0.90, 2.11], p = 0.14 with-

out IL-6 vs. 1.35 [95% CI 0.88, 2.09], p = 0.17 with IL-6) (Table 4).

Fig 3. Day 1 plasma FGF23 concentrations stratified by 60-day mortality. Day 1 plasma total fibroblast growth factor 23 (cFGF23) concentrations (Fig 3A) and intact

FGF23 concentrations (Fig 3B) were significantly higher in subjects who did not survive. Data are presented as medians and interquartile ranges, and the Wilcoxon

rank-sum test was used to compare groups.

https://doi.org/10.1371/journal.pone.0222065.g003

Table 3. Multivariable logistic regression modeling, with a dependent variable of mortality by 60 days post-ARDS diagnosis.

Dependent Variable Independent Variable Model 1 Model 2

Day 60 mortality Total FGF23 1.43 (1.07, 1.91), p = 0.014 1.62 (1.07, 2.45), p = 0.023

Day 60 mortality Intact FGF23 1.44 (1.02, 2.05), p = 0.039 1.30 (0.89, 1.90), p = 0.17

In these models, the independent variable is Day 1 plasma total FGF23 or intact FGF23, both of which were log-transformed to correct for skewness. Model 1 is

unadjusted. Model 2 is adjusted for age, sex, the presence or absence of Day 1 AKI, P/F ratio, and PRISM score. Data shown are odds ratios and 95% confidence

intervals. As only subjects with complete covariate data are included in the regression analysis, n = 150 for both models.

https://doi.org/10.1371/journal.pone.0222065.t003
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Discussion

In this study of a multicenter cohort of pediatric ARDS patients, we found that higher levels of

plasma total FGF23, but not intact FGF23, measured at the time of ARDS diagnosis (Day 1)

are associated with Day 3 AKI in unadjusted and adjusted models. We also found that higher

levels of both Day 1 total and intact FGF23 are associated with 60-day mortality in unadjusted

models, but in adjusted models, this association with mortality persists for only total FGF23.

FGF23 is a hormone that is primary secreted by osteocytes. Intracellularly, FGF23 produc-

tion is regulated at both the transcriptional and post-translational stages. Prior to secretion,

translated, full-length FGF23 protein can be cleaved by furin into N-terminal and C-terminal

fragments, the biological functions of which are unclear. Therefore, what is secreted into the

circulation is a mix of intact FGF23 protein and FGF23 proteolytic fragments, and post-trans-

lational cleavage mechanisms determine how much of the total FGF23 secreted from the cell is

intact and how much is fragmented.

As the total FGF23 ELISA detects both intact and fragmented FGF23 in the circulation, it

functions as a surrogate marker of total FGF23 translated and secreted. A profile of circulating

FGF23 concentrations characterized by increased total FGF23 but normal intact FGF23 is con-

sistent with complete coupling of increased FGF23 transcription with increased post-transla-

tional cleavage, resulting in increased circulating levels of FGF23 fragments. Notably, several

stimuli couple increased FGF23 transcription with increased post-translational cleavage,

including inflammation [12], iron deficiency [12, 43–45], erythropoietin [46–51], and parathy-

roid hormone [52], resulting in elevated concentrations of circulating total FGF23 but not

intact FGF23. Indeed, in murine models of acute and chronic inflammation, bone Fgf23
mRNA expression and circulating total FGF23 are increased, but circulating levels of intact

FGF23 remain normal or near-normal [12]. As ARDS is an inflammatory condition, inflam-

mation may have contributed to the differing results we observed for total FGF23 vs. intact

FGF23.

In our cohort, circulating levels of total FGF23 were elevated, but not intact FGF23, consis-

tent with what is observed in the presence of inflammation [12]. A subgroup of patients had

plasma IL-6 concentrations—an inflammatory cytokine—available for analysis. Plasma IL-6

concentrations were elevated, and positively correlated with total FGF23 but not intact FGF23.

In this subgroup, plasma IL-6 was independently associated with AKI, and the addition of IL-6

as a covariate to the adjusted regression model partially attenuated the association between

total FGF23 and AKI, with mediation analysis demonstrating partial mediation by IL-6. Given

the presence of partial mediation, these data suggest both inflammation-dependent and

inflammation-independent associations between total FGF23 and AKI. Regarding possible

inflammation-dependent effects, previous studies have demonstrated that higher circulating

IL-6 levels are independently associated with AKI [35, 53–55], and that IL-6 may play a role in

AKI pathophysiology [56]. Regarding possible inflammation-independent effects, the

Table 4. Multivariable logistic regression modeling in the subgroup of patients with Day 1 plasma IL-6 concentrations available.

Dependent Variable Independent Variable Model 1 Model 2 Model 3

Day 3 AKI Total FGF23 1.99 (1.44, 2.75), p<0.001 1.42 (0.95, 2.14), p = 0.09 1.26 (0.81, 1.96), p = 0.31

Day 60 mortality Total FGF23 1.27 (0.92, 1.75), p = 0.14 1.38 (0.90, 2.11), p = 0.14 1.35 (0.88, 2.09), p = 0.17

This subgroup includes 135 subjects. In these models, the dependent variable is acute kidney injury (AKI) at three days post-ARDS diagnosis or mortality by 60 days

post-ARDS diagnosis. The independent variable is Day 1 plasma total FGF23, which was log-transformed to correct for skewness. Model 1 is unadjusted. Model 2 is

adjusted for age, sex, the presence or absence of Day 1 AKI, P/F ratio, and PRISM score. Model 3 is further adjusted for log-transformed Day 1 plasma IL-6. Data shown

are odds ratios and 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0222065.t004
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pathophysiologic mechanisms related to high concentrations of FGF23 fragments remain to

be elucidated. Although several conditions result in high FGF23 fragment concentrations,

studies assessing the direct effects of these fragments are limited. However, one recent study

provides some data demonstrating a direct adverse effect of the C-terminal FGF23 fragment

on cardiomyocytes [57].

In the limited subgroup of patients with both IL-6 and FGF23 levels, the addition of IL-6 as

a covariate to the adjusted regression model examining the association of total FGF23 with

mortality did not alter the odds ratio, suggesting inflammation-independent effects. However,

it should be noted that the p-value associated with this odds ratio did not reach statistical sig-

nificance, possibly contributed to by decreased power associated with the smaller subgroup

sample size.

In a similar study, Leaf et al assessed FGF23-mortality associations in the Validating Acute

Lung Injury biomarkers for Diagnosis (VALID) cohort, which comprised 710 adult ARDS

patients recruited from a single ICU [58]. In that study, the highest vs. lowest quartile of

FGF23 concentrations at enrollment was independently associated with a significantly

increased risk of both 60-day and 1-year mortality after adjustment for demographics, comor-

bidities, and measures of illness severity [58]. Although both total FGF23 and intact FGF23 lev-

els were independently associated with mortality, the association effect sizes were stronger for

total FGF23 than intact FGF23, similar to what we observed in our pediatric ARDS cohort. Of

note, in the VALID cohort, circulating IL-6 concentrations were not available for analysis, so

this marker of inflammation could not be added to the models. However, in another critically

ill cohort, without ARDS, but in which plasma IL-6 levels were available, Leaf et al observed

that both total FGF23 and intact FGF23 levels remained associated with mortality after adjust-

ment for IL-6, suggesting inflammation-independent effects of FGF23 [58].

Although our study is novel in its assessment of FGF23 in the pediatric ARDS population, it

has some limitations, including a lack of IL-6 concentrations in all patients and possible contri-

butions from unmeasured ARDS-relevant factors. Another limitation is that we measured

FGF23 concentrations only at the time of ARDS diagnosis; it is unknown whether changes in

FGF23 over time are associated with clinical outcomes. Lastly, as this was an observational

study, only associative data was generated, without providing any evidence of causality

between predictor variables and clinical outcomes.

In conclusion, based on pre-clinical data suggesting that FGF23 may contribute to pulmo-

nary pathology [11, 59, 60], we assessed whether circulating FGF23 levels are associated with

clinical outcomes in a multicenter cohort of pediatric ARDS patients. Total (intact + C-termi-

nal) FGF23, but not intact FGF23 alone, was associated with AKI in unadjusted and adjusted

models. Total and intact FGF23 were associated with mortality in unadjusted models, but only

total FGF23 was associated with mortality in an adjusted model. In a subset of patients, plasma

IL-6 concentrations correlated with total FGF23 but not intact FGF23, and partially mediated

the association between total FGF23 and AKI, suggesting both inflammation-dependent and

inflammation-independent effects. Building on the findings of previous studies, this study fur-

ther demonstrates the robustness and utility of total FGF23 as a biomarker of adverse clinical

outcomes in critically ill patient populations, potentially helping to identify those at highest

risk. Further mechanistic studies are required to assess the possible direct pathophysiologic

effects of FGF23 fragments.
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