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ABSTRACT OF THE DISSERTATION

Simultaneous global extraction of transverse momentum-dependent distribution functions

by

Fidele Johnson Twagirayezu

Doctor of Philosophy in Physics

University of California, Los Angeles, 2025

Professor Zhongbo Kang, Chair

Scientific investigations show that nucleons are the building blocks of atomic nuclei, which

constitute nearly all the mass of visible matter in the universe. Unlike electrons, which are

fundamental particles, nucleons have an internal structure composed of quarks and gluons.

While much has been learned about nucleon structure, many details remain to be understood.

There is broad consensus that understanding the fundamental properties of matter requires

understanding the nucleon’s internal structure in terms of its constituents. In Quantum

Chromodynamics (QCD), the theory of strong interactions, the nucleon is described as a

relativistic bound state of quarks and gluons, interacting strongly through the exchange

of gluons. These partons are permanently confined within hadrons due to the property of

color confinement, which prevents their direct isolation but still allows their dynamics to be

studied through high-energy scattering experiments. However, at sufficiently small distance

scales, QCD exhibits the property of asymptotic freedom [1, 2], where the strong coupling

becomes significantly weaker. This allows QCD factorization to be used in perturbative

calculations, enabling the study of nucleon structure [3].
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One of the key challenges in QCD is the full understanding the spin structure of the

nucleon in terms of its constituents. A nucleon is known to be a fermion with a spin of

1/2, and while we understand how to distribute the nucleon’s spin between the orbital

angular momentum and the spins of quarks and gluons, the exact numerical values of each

contribution remain uncertain, especially when it comes to the orbital angular momentum.

In this context, three-dimensional distributions of quarks and gluons in momentum space

are crucial tools, as they capture all possible spin-orbit and spin-spin interactions between

the proton and its constituents. A thorough understanding of these distributions can offer

valuable insights into the roles of quarks and gluons in determining the nucleon’s spin. The

early studies focused on processes involving collinear functions to understand the nucleon

spin structure. While these functions offer valuable insight into the internal composition

of nucleons, it was quickly realized that they were not sufficient since they only provide a

one-dimensional and, therefore, partial perspective on the complex structure of the nucleon.

The search for alternative methods beyond collinear factorization to fully describe the

nucleon internal structure has led to the development of a robust transverse momentum

dependent (TMD) factorization framework. This framework allows to acquire the three-

dimensional (3D) dynamics of quarks and gluons within a colliding nucleon. These new

and precise data provide the means to determine transverse momentum dependent parton

distributions, often referred to as TMDs. In this dissertation, we develop TMD formalisms

to perform simultaneous global analysis of Sivers asymmetries and Collins asymmetries.

The TMD Sivers formalism allows us to extract simultaneously the Sivers function from

semi-inclusive deep inelastic scattering, Drell-Yan production, and jet production in proton-

proton collisions. The TMD Collins formalism allows us to extract simultaneously the Collins

fragmentation function from semi-inclusive deep inelastic scattering, e+e− annihilation, and

hadron production inside jets in proton-proton collisions.

iii



The dissertation of Fidele Johnson Twagirayezu is approved.

Stuart Brown

Huan Z. Huang

James Rosenzweig

Zhongbo Kang, Committee Chair

University of California, Los Angeles

2025

iv



Dedication

To my mom, Félicité
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Outline

In this dissertation, after introducing the origin of quark theories in Chapter (1) we quickly

proceed to introduce the notion of transverse single spin asymmetry (TSSA) in the same

Chapter (1) because of its essential utility to extract TMD functions of interest. In Chap-

ter (2) we discuss the SCET due to its capability to provide a systematic framework for

describing processes where different types of modes are present, especially in the context

of high-energy hadronic physics. In other words, The SCET provides an effective descrip-

tion of a theory. Since Wilson lines appear frequently in gauge theories, we discuss their

importance for non-local operators in gauge theories and present different types of Wilson

lines and some physical interpretations in Chapter (3). Since our TMD formalisms involve

the use of twist-2 and twist-3 functions, we discuss the derivations of these functions from

correlation functions (correlators) in Chapter (4). We also discuss the TMD factorization

theorems, a powerful tool in quantum field theory (QFT), which allow us to express cross

sections in terms of perturbatively calculable quantities and non-perturbative quantities. In

addition, we discuss one of different regulators to eliminate rapidity divergences. Since our

TMD formalisms involve QCD evolutions, we discuss derivations of evolution equations and

solutions to evolution equations in Chapter (5). Because of the importance of SCET, we

also discuss TMD factorization and TMD evolution in SCET in Chapter (5). The Sivers

formalism and results are presented in Chapter (6). The Collins formalism is presented in

Chapter (7). Finally, the dissertation is summarized in Chapter (8).

1



Chapter 1

Introduction

1.1 Origin of quark model

In search for understanding of nature, mankind has made some remarkable progress. Nowa-

days, it is known that all elements which are building blocks of nature are made of protons

of positive charges and neutrons of neural charges, forming atomic nucleus, surrounded by

orbiting electrons of negative charges to form atoms. In the early 20th century, experiments

with particle accelerators revealed a plethora of subatomic particles beyond the proton, neu-

tron, and electron. Physicists found a bewildering array of particles, leading to a desire to

understand their underlying structure and organization. The discovery of the strange mesons

suggested that that there might be more fundamental building blocks underlying the known

particles.

Various classification schemes were developed to organize the ever-growing list of ob-

served particles. The constituent quark model which is based on an SU(3) flavor symmetry,

proposed by Murray Gell-Mann [20, 21] and independently by George Zweig [22, 23], was

one such scheme that provided insight into the underlying structure of hadrons (particles

like protons and neutrons). The quark model, suggests the presence of fundamental parti-

cles termed quarks. These quarks are believed to exhibit a fundamental symmetry described
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by the SU(3) group theory, leading to the identification of three elementary particles: up,

down, and strange quarks. Experimental validation of this model came from measurements

conducted by SLAC [24, 25], where electron-proton and electron-neutron collisions in deep-

inelastic scattering (DIS) experiments provided evidence supporting the existence of up and

down quarks. Additional quarks were predicted and their existence was also confirmed by

experiments.

Later, it was realized that quarks are bound inside nucleons. Since quarks carry an electric

charge, their presence raised the question of how nucleons could remain bound together

despite electrostatic repulsion. This led to the proposal of a strong, short-range force that

overcomes the electromagnetic force at nuclear scales. The first significant theory of the

strong interaction was put forward by Yukawa, who proposed that the proton and neutron

are held together by the exchange of a force-mediating particle. This exchange particle is

now known as the pion.

1.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the fundamental theory describing the strong interac-

tion, one of the four known forces of nature. It explains how quarks and gluons, the building

blocks of protons, neutrons, and other hadrons, interact through the exchange of force-carrier

particles called gluons. QCD is a type of quantum field theory, and it operates under the prin-

ciple that quarks possess a property known as color charge, a fundamental property of quarks

and gluons, analogous to electric charge in quantum electrodynamics(QED) and comes in

three types, traditionally referred to as red, green, and blue. Unlike the electromagnetic force

(which involves electric charge), the strong force is incredibly powerful at short distances but

becomes weaker at longer ranges due to a phenomenon called asymptotic freedom, where the

interaction strength between quarks and gluons decreases at higher energies. This theory is

central to understanding particle physics, as it governs the behavior of matter at the small-
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est scales, playing a key role in high-energy processes such as those occurring in particle

accelerators and the early universe. The QCD Lagrangian density [26] is usually expressed

as

LQCD = −
1

4
Ga

µνG
aµν + i

n

∑
j=1
ψ̄α
j γ

µ(Dµ)αβψβ
j −

n

∑
j=1
mjψ̄

α
j ψj,α −

1

2αG

∂µAa
µ∂µA

µ
a

− ∂µϕ̄aD
µϕa,

(1.1)

where Ga
µν ≡ ∂µAa

ν − ∂νAa
µ + gsfabcAb

µA
c
ν (a ≡ 1,2, ...,8) are the Yang-Mills strength tensors

expressed in terms of gluon fields Aa
µ(x). The quark field of flavor j and mass mj is repre-

sented by ψj and ϕa(x) represents eight Grassmann-valued fields in the 8 representation of

SU(3). These ghost fields ϕa(x) are associated with the gauge fixing procedure and ensure

the correct treatment of redundancies in the gauge theory. The covariant derivative Dµ is

expressed as

(Dµ)αβ = δαβ∂µ − igs∑
a

1

2
taαβA

a
µ . (1.2)

The covariant derivative Dµ acts on the quark color component α,β. The 3 × 3 color ma-

trices taαβ are the eight generators of the SU(3) gauge group, and fabc represents the fully

antisymmetric structure constants of the gauge group, defined by the commutation relation

[T a, T b] = ifabcT c, where (T a)αβ = (1/2)taαβ in the fundamental color 3 representation, and

(Ta)bc = −ifabc in the adjoint 8 representation. The last two terms in the Lagrangian density

are the gauge-fixing term for a covariant quantization in the gluon sector, αG = 1(0) in the

Feynman (Landau) gauge respectively, and the Faddeev-Popov ghost term [27] to remove

nonphysical degrees of freedom. The parameter gs is the interaction strength and it is related

to the more conventional strong coupling constant αs as follows

αs =
g2s
4π

. (1.3)

The asymptotic freedom is one of the essential characteristics of QCD. The discovery of

asymptotic freedom earned D. Gross, H. Politzer, and F. Wilczek the Nobel Prize in Physics
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in 2004 [28, 29]. This behavior is captured by the renormalization group equation for the

strong coupling constant αs(µ), [30] given by

µ2∂αs

∂µ2
= ∂αs

∂ lnµ2
= β(αs) , β(αs) = −α2

s (b0 + b1αs + b2α2
s + . . . ) , (1.4)

where b0 is the 1-loop coefficient of the β-function, and b1, b2, . . . are the 2-loop and 3-loop

coefficients, respectively. The coefficient b0 is given by

b0 =
11CA − 4nfTR

12π
= 33 − 2nf

12π
, (1.5)

where CA = 3, TR = 1/2, and nf denotes the number of quark flavors. With six quark flavors

(u, d, s, c, b, t), we have nf = 6, resulting in b0 > 0. The negative sign in Eq. (1.4) is

responsible for asymptotic freedom, indicating that αs(µ) decreases as µ increases. For a

given physical process, the renormalization scale µ is typically chosen to match the momen-

tum transfer Q in that process, so αs(µ2 = Q2) reflects the effective strength of the strong

interaction involved. Figure (1.1) displays the running coupling αs measured as a function

Figure 1.1: The result for the running coupling αs(Q) is shown as a function of the energy
scale Q in [4]. The running coupling αs(Q), determined with CT10 − NLO, is compared
with the world average of αs(Mz) = 0.1185 ± 0.0006 [5]. The error bars on the data points
correspond to the total uncertainty.
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of the energy scale Q , taken from [4]. The figure shows measurements of the running αs(Q)

from different experiments. For high Q values, the coupling αs is weak which allows the use

of perturbation methods. The coupling αs increases at low energies and becomes divergent

at the scale ΛQCD. As a result, QCD becomes strongly interacting at scales around and

below 1 GeV. In this energy regime, perturbative methods are no longer reliable.

1.3 Transverse spin asymmetries

In high-energy nuclear and particle physics, understanding the spin structure of hadrons is

essential for uncovering the complex dynamics of strong interactions. A key observable in

this area is the transverse single spin asymmetry (TSSA), which refers to the asymmetry

in the distribution of particles produced in a scattering process when one of the colliding

particles is transversely polarized. Unlike longitudinal polarization, which is more commonly

studied in hadronic physics, transverse polarization provides unique insights into the internal

structure and dynamics of hadrons.

Transverse single spin asymmetry arises when the spin of a hadron is oriented perpen-

dicular to the direction of motion, and it is observed as an imbalance in the distribution

of final-state particles, such as in the azimuthal angle of produced particles relative to the

spin axis. This asymmetry has been experimentally observed in various processes, particu-

larly in high-energy scattering experiments involving protons and hadronic collisions, such

as in proton-proton (pp) or proton-nucleus (pA) interactions. In general, the TSSA for an

inclusive process such as A↑B → C +X is expressed as

AN =
dσ↑ − dσ↓
dσ↑ + dσ↓

(1.6)

where dσ↑(↓) is the differential cross section for the production of a hadron C when A is

transversely polarized in the upward or the downward direction. For illustration purposes,

Figure (1.2) shows the measured xF -dependent TSSA for the production of π± [6]. The study

6



Figure 1.2: The TSSA as a function of xF for the production of π+(red circles) and
π−(blue circles) at fixed pT values: (a) 0.4< pT <0.5, (b) 0.5< pT <0.6, (c) 0.6< pT <0.8, (d)
0.8< pT <1.0, and (e) 1.0< pT <1.2 GeV/c [6].

of TSSA is important because it reflects the interplay between the intrinsic spin and orbital

motion of quarks and gluons inside a hadron. It is sensitive to the partonic structure, espe-

cially the spin-orbit correlations and the transverse momentum distribution of quarks, which

are not fully described by simple collinear parton distribution functions (PDFs). Instead,

TSSA is a probe of more sophisticated and less understood distributions, such as the trans-

verse momentum-dependent parton distribution functions (TMD PDFs), which account for

both the momentum and spin structure of the partons inside a hadron.

Theoretical frameworks, including models of hadron dynamics and QCD, are actively

being developed to explain and predict the magnitude and patterns of transverse single spin

asymmetries. These studies are critical for advancing our understanding of hadron structure

and spin physics, and they offer insight into the mechanisms of QCD at a fundamental level.
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Chapter 2

Soft Collinear Effective Theory

2.1 Introduction

The soft-collinear effective Theory (SCET) is an effective field description of QCD that is

particularly suitable for dealing with interactions where soft and collinear degrees of freedom

are the most relevant. SCET provides a systematic way to describe the behavior of high-

energy particles, such as those found in jet processes or hadronic scattering, by separating

the contributions from large and small momentum scales.

The core idea behind SCET is the decoupling of soft and collinear degrees of freedom.

Collinear momenta correspond to particles moving nearly parallel to the direction of the high-

energy particle’s motion, while soft momenta correspond to low-energy particles with small

momentum components in all directions. By organizing the theory to focus on these two

distinct momentum regimes, SCET simplifies the calculation of cross-sections and hadronic

processes in scenarios like heavy-ion collisions or hadron colliders, where soft and collinear

modes dominate.

SCET is particularly useful in calculating jet observables, factorization theorems, and

resummation techniques, enabling precise predictions for experiments like those at the Large

Hadron Collider (LHC). Its framework has also been extended to incorporate various high-
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energy phenomena, such as the study of the form factors, parton distribution functions, and

the calculation of hard scattering amplitudes in QCD.

2.2 SCET modes

The natural description of soft and collinear particles usually adopts the use of light cone

coordinates system where two light-like vectors nµ
i and n̄

µ
i which are assigned to each collinear

sector i satisfy the following properties

n2
i = 0, n̄2

i = 0, ni.n̄i = 2, (2.1)

such that the momentum of each ni-collinear particle is aligned to ni. Such light-like vectors

are can be expressed as

nµ
i = (1,ni), n̄µ

i = (1,−ni). (2.2)

In this light cone coordinate system, a given four-vector pµ can be expressed as

pµ = (n̄i.p)
nµ
i

2
+ (ni.p)

n̄µ
i

2
+ pµ⊥ = (p+, p−,pT )i, (2.3)

where

p+ = ni.p, p− = n̄i.p, p2
T = p+p− − p2 = −p2⊥. (2.4)

To determine the momentum of particles within the effective theory, one analyzes an

energy jet Q traveling in the direction of ni. This jet comprises collimated particles with

transverse momentum p⊥ that satisfies p⊥ ∼∆≪ Q. As a result, this produces the following

momentum scaling

pµc = (p+, p−,pT ) ∼ (∆2/Q,Q,∆) = Q(λ2,1, λ), (2.5)
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where the scaling parameter is defined as λ ∼ ∆/Q. furthermore, the scaling p+ ∼ Qλ2 is

obtaining by imposing the condition p2 = 0, therefore, p+ ∼ p2⊥/p−. Alongside collinear modes,

there are also low-energy modes that exhibit isotropic scaling

pµs ∼ Q(λ,λ, λ), pµus(λ2, λ2, λ2), (2.6)

where the subscripts s, us denote soft and ultrasoft modes respectively. These modes lead to

different effective theories, known as SCET1, and SCET2. In SCET, the hyperbolas represent

the virtuality of modes, the principal difference between these two theories is that collinear

and ultrasoft modes in SCET1 are located on different hyperbolas, whereas collinear and soft

modes in SCET2 are located on the same hyperbola.

The SCET Lagrangian is obtained by expanding the QCD Lagrangian in terms of the

counting parameter λ. In this section, one focuses on SCET1, the effective theory for collinear

and ultrasoft modes. In order to obtain the SCET Lagrangian, one can start by constructing

two projection operators in spinor spaces

Pn =
/n /̄n
4
= 1

2

⎛
⎜⎜
⎝

I σ3

σ3 I

⎞
⎟⎟
⎠
, Pn̄ =

/̄n/n
4
= 1

2

⎛
⎜⎜
⎝

I −σ3

−σ3 I

⎞
⎟⎟
⎠
, (2.7)

where Pn + Pn̄ = 1. The quark field ψ can be expressed in terms of projectors Pn and Pn̄ as

follows

ψ = Pnψ + Pn̄ψ = ξ̂n + φn̄, (2.8)

where Pnψ = ξ̂n and Pn̄φn̄ = φn̄. Thus, if on considers massless fermions, the QCD La-
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grangian can be expressed as

LQCD =ψ̄i /Dψ

=( ¯̂ξn + φ̄n̄)(
/̄n
2
in.D + /n

2
in̄.D + i /D⊥)(ξ̂n + φn̄)

= ¯̂ξn
/̂n
2
in.Dξ̂n + φ̄n̄i /D⊥ξ̂n +

¯̂
ξni /D⊥φn̄ + φ̄n̄

/n
2
in̄.Dφn̄,

(2.9)

where the expressions for various covariant derivatives are

in.D = in.∂ + gn.An + gnAus,

in̄.Dn = in̄.P + gn̄.An,

i /Dn⊥ = i /P⊥ + gAn,⊥,

(2.10)

where An, Aus are the collinear gluon and ultrasoft gluon fields respectively.

Since the n̄ component of φn is relevant only at a subleading power of λ, it can be

eliminated. By applying the equation of motion, we can express the leading power Lagrangian

for collinear modes as follows.

L(0)
ξ̂n
= ¯̂
ξn(in.D + i /Dn⊥

1

in̄.D
i /Dn⊥)

/̄n
2
ξ̂n. (2.11)

One can expresses the collinear momenta pµc as the sum of pure O(λ), and O(λ2) terms, and

hence the collinear quark field ξ̂ can be written as

ξ̂n(x) = ∫
d4p

(2π)4 e
−ip.xξ̃n(p)

= ∑
pl≠0
∫

d4pr
(2π)4 e

−ipl.xe−ipr.xξ̃n,pl(pr) = ∑
pl≠0

e−ipl.xξn,pl(x),
(2.12)

where pµc = pµl +p
µ
r . The quantity p

µ
l scales as pµl ∼ (0,1, λ), and the quantity pµr ∼ (λ2, λ2, λ2).
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The expression for ξn,pl(x) is given by

ξn,pl(x) = ∫
d4pr
(2π)4 e

−ipr.xξ̃n,pl(pr). (2.13)

The dependence on x is associated with a purely ultrasoft momentum, leading to the following

scaling xµ ∼ λ−2. The Taylor expansion in λ of the QCD Lagrangian gives the following SCET

Lagrangian at leading order O(λ0),

L(0) = L(0)nξ +L
(0)
ng +L(0)us , (2.14)

where L(0)nξ is the Lagrangian for collinear quarks, L(0)ng is the Lagrangian for collinear gluons,

and L(0)us is the Lagrangian for ultrasoft fields

L(0)nξ =ξ̄n(in.D + i /Dn⊥
1

in̄.Dn

i /Dn⊥)
/̄n
2
ξn,

L(0)ng =
1

2g2
Tr{[iDµ, iDν]2} + τTr{[iDµ

us,Anµ]2} + 2Tr{c̄n[iDus
µ , [iDµ, cn]]},

L(0)us =q̄usiDusqus −
1

2
Tr{Gµν

usG
us
µν} + λusTr{(i∂µ.Aµ

us)
2

} + 2Tr{c̄usi∂µiDµ
uscus}.

(2.15)

where g is the gauge coupling. In the Lagrangian L(0)ng , the quantities λ, and λus are collinear

and ultrasoft gauge fixing parameters, and cn and cus are the associated ghost fields. The

covariant derivatives in the Lagrangian L(0)ng are defined as

iDµ =n
µ

2
(P̄ + gn̄.An) + (Pµ

⊥ + gAµ
n⊥) +

n̄

2
+ (in.∂ + gn.An + gn.Aus),

iDµ
us =

nµ

2
P̄ +Pµ

⊥ +
n̄µ

2
in.∂ + n̄

2
gn.Aus.

(2.16)

The ultrasoft Lagrangian L(0)us is the same as the full QCD Lagrangian because ultrasoft

fields have isotropic scaling, Aµ
us ∼ (λ2, λ2, λ2), assuming that fields and covariant derivatives

in the full QCD Lagrangian satisfy ultrasoft scaling.
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One of the most important properties that should be preserved in the formulation of

SCET is gauge invariance. In SCET there are two types of gauge transformations because

gluon fields are split into collinear and ultrasoft fields. These two types of gauge transfor-

mations can be expressed as follows

Un(x) = exp{iαA
n (x)TA}, Uus(x) = exp{iαA

us(x)TA}. (2.17)

The gauge transformations of Eq.(2.17) should satisfy collinear and ultrasoft scaling respec-

tively as follows

i∂µUn(x) ∼ Q(λ2,1, λ)Un(x), i∂µUus(x) ∼ Q(λ2, λ2, λ2)Uus(x). (2.18)

Since ultrasoft fields have longer wavelengths than collinear fields, they act like a back-

ground for collinear fields. Hence, ultrasoft fields do not transform under collinear gauge

transformations

qus(x)→ qus, Aµ
us(x)→ Aµ

us(x), (2.19)

where qus are ultrasoft quark fields, and Aµ
us are ultrasoft gluon fields. However, collinear

fields transform under ultrasoft gauge transformations while ultrasoft fields satisfy the stan-

dard QCD transformations

ξn(x)→ Uus(x)ξn(x), qus(x)→ Uus(x)qus(x),

Aµ
n(x)→ Uus(x)Aµ

n(x)U †
us(x), Aµ

us(x)→ Uus(x)(Aµ
us(x) +

i

g
∂µ)U †

us(x).
(2.20)

Since the gauge transformations of non-local operators require Wilson lines, the SCET re-

quires two distinct Wilson lines, one for each mode.
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Chapter 3

Wilson lines

In gauge theories, the Wilson line is a crucial mathematical construct used to describe the

effect of gauge fields along a specified path in spacetime. The Wilson line captures how the

gauge connection affects the phase of a quantum state as it is transported from one point

to another. Formally, it is defined as a path-ordered exponential of the gauge field, which

encodes the information about the field’s configuration along the path. Wilson lines play

a key role in various physical contexts, including confinement in quantum chromodynamics

(QCD) and the study of topological features in gauge theories. They are also instrumen-

tal in understanding the non-perturbative aspects of these theories, providing insights into

phenomena such as string tension and the behavior of gauge theories in strong coupling

regimes.

3.1 Smooth Wilson lines

A Wilson line along a path is a path-ordered exponential of a line integral of a gauge field

along a path C

UC = P exp{ig∫
C
dzµAµ(z)}, (3.1)
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where Aµ(z) is a gauge field, and g is a gauge coupling. The Taylor expansion of the Wilson

line UC can be expressed as

UC =
∞
∑
n=0

1

n!
(ig)nP ∫

C
dzµn

n ⋯dzµ1

1 Aµn(zn)⋯Aµ1(z1). (3.2)

Physically, the n-th order expansion is thought as the radiation of n gauge fields. The

presence of P which stands for path ordering ensures that radiated gauge fields are ordered

along the path C. The path ordering requirement for fields can be expressed as

PAµ1(z1)⋯Aµn(zn) = ∑
σ(ζ1⋯ζn)

(
n−1
∏
i=1
θ(ζi+1 − ζi))Aµ1(ζ1)⋯Aµn(ζn), (3.3)

where the sum runs over all possible permutations of ζi. For abelian gauge fields the path

ordering has no effect because fields commute

PAµ1(z1)⋯Aµn(zn) = Aµ1(z1)⋯Aµn(zn). (3.4)

Since each term in the expansion represents a power of the same integral, a Wilson line for

abelian gauge fields is expressed as

UCa =
∞
∑
n=0

1

n!
(ig)n(∫

C
dzµAµ(z))

n

. (3.5)

Obviously, a Wilson line has both a path and field content. The Fourier transform can be

utilized to separate one content from another. The path content is given by the integrals

In =
1

n!
(ig)nP ∫ dζ1⋯dζn(zµ1

1 )′⋯(zµn
n )′ exp{i

n

∏ki.zi}, (3.6)
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where ζ is a path parameter and ki is a momentum. The n-th order term of the Wilson line

expansion is expressed as

Un = ∫
dwkn
(2π)w⋯

dwk1
(2π)wAµn(−kn)⋯Aµ1(−k1)In. (3.7)

3.2 Piece-wise Wilson lines

AWilson line path C can have cusps rather than being smooth [31]. At these points, the path

is continuous, but its derivative is discontinuous. Hence, the evaluation of such a Wilson

line follows a piece-wise scheme. Since cusps are not natural, they can just appear as a

result of interaction with an external force on a smooth path. To evaluate a Wilson line on a

piece-wise path C with N smooth segments, we first define the following piece-wise function

p(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(ζ) if ζ = a1⋯a2,

p2(ζ) if ζ = a2⋯a3,

⋮ ⋮

pN(ζ) if ζ = aN⋯aN ′ .

(3.8)

Even though the path C is not entirely smooth because of the presence of cusps, each path

of a segment is smooth, thus pJ is a smooth function. The first-order integral over the J-th

segment involves only the J-th part of p(ζ)

SJ
1 = ∫

aJ+1

aJ
dζp(ζ) = ∫

aJ+1

aJ
dζpJ(ζ). (3.9)

The first-order integral is

I1 =
N

∑
J=1
∫

aJ+1

aJ
dζpJ(ζ). (3.10)
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The second-order integral is more complex than the first-order integral, and one of compli-

cations is that the portion of the integral is a piece-wise function

S̄1
ζ1
(i + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̄1
ζ1
(i + 1) if ζ1 = a1⋯a2,

S1(i + 1) + S̄2
ζ1
(i + 1) if ζ1 = a2⋯a3,

⋮ ⋮

S̃J(i + 1) + S̄N
ζ1
(i + 1) if ζ1 = aN⋯aN ′ ,

(3.11)

where S̄J
ζ1
, and S̃J are given by

S̄J
ζ1
(i + 1) = ∫

ζ1

aJ
dζ2pi+1(ζ2), S̃J(i + 1) =

N−1
∑
J=1

SJ(i + 1). (3.12)

At this point it is important to clarify the presence of i in the above expressions which are

related to the second-order integral. Obviously, the value of i equals 1, but the presence i

instead of its value is beneficial because it allows to easily establish general expressions. The

second-order integral is defined by

I2 = {∫
aN+1

a1
dζ1pi(ζ1)}{∫

ζ1

a1
dζ2pi+1(ζ2)}

= ∫
a2

a1
dζ1pi(ζ1)∫

ζ1

a1
dζ2pi+1(ζ2) + ∫

a3

a2
dζ1pi(ζ1){(S1(i + 1) + ∫

ζ1

a2
dζ2pi+1(ζ2)} +⋯

+ ∫
aN+1

aN
dζ1pi(ζ1){

N−1
∑
J=1

SJ(i + 1) + ∫
ζ1

aN
dζ2pi+1(ζ2)} .

(3.13)

The second-order segment integral is defined by

SJ
2 (i) = ∫

aJ+1

aJ
dζ1∫

ζ1

aJ
dζ2p

J
i (ζ1)pJi+1(ζ2). (3.14)
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Substituting Eq.(3.9), and Eq.(3.14) into Eq.(3.13), the expression of I2 becomes [31]

I2 =
N

∑
J=1

SJ
2 (1) +

N

∑
J=2

J−1
∑
K=1

SJ
1 (1)SK

1 (2). (3.15)

The remaining task is to find the expression for the full path integral over separate segments.

We first observe that S2 relies solely on the J-th segment, with no mixing between segments.

We expect this to hold for all orders. Also, for successive segment integrals, there is an

increment in the argument, and this is expected to be true for all orders

SJ1
n1
(i)SJ2

n2
(i + 1)⋯SJk

nk
(i + k − 1). (3.16)

Thus, it is simple to obtain the expression for the n-th order integral. We simply need to

create all potential combinations of Si’s that result in n internal p’s, ensuring we also include

the appropriate number of summation symbols while maintaining the order. The n-th order

integral is expressed as

In =
n

∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
i

∏
j=1

Jj−1−1

∑
Jj=1−j+1

)
J0−1=N

⎛
⎜⎜⎜⎜
⎝

all terms of the form
i

∑
j=1
S
Jj
lj

such that
i

∑
j=1
lj = n

⎞
⎟⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.17)

The corresponding recursion relation is given by

In =
N

∑
J=1

SJ
n +

N

∑
J=2

n−1
∑
i=1
SJ
i In−1(J − 1). (3.18)

The expression for the Wilson line can be obtained by replacing every S with U in the last

two equations. For example, replacing S with U in the recursion relation, one obtains the

expression for the Wilson line

Un =
N

∑
J=1
UJ
n +

N

∑
J=2

n−1
∑
i=1
UJ
i Un−1(J − 1), (3.19)
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where UJ
n is defined by

UJ
n = (

ig

16π4
)
n

∫ d4k1⋯d4knAµ1(k1)⋯Aµn(kn)SJ
n . (3.20)

The ordering of UJ
n is necessary because the gauge fields Aµ(k) are non-commutative due to

the color generators.

3.3 Infinite Wilson lines

The Wilson line path can be composed of linear segments [31]. In this case, a segment can

have one or more infinite end-points, one end of a segment can extend to infinity, or both

end-points can extend to infinity connecting −∞ and +∞. We consider a path that starts

from a point aµ to infinity along a direction nµ, so that zµ = aµ+nµζ, where ζ is a parameter,

ζ = 0,⋯,∞. Then, using the path-ordering Eq. (3.6) can be rewritten as

In = (ig)nnµ1⋯nµn exp(ia∑
j

kj)∫
∞

0
∫
∞

ζ1
∫
∞

ζn−1
dζ1⋯dζn exp(i∑

j

(n.kj + iη))ζj. (3.21)

Furthermore, we can simplify the expression for In by evaluating the integrals. First, we

realize that the general integral is just the Fourier transform of a Heaviside θ-function, hence

we can simply write

∫
∞

ζn−1
dζn exp{i(n.kn + iη)ζn} =

i

n.kn + iη
exp{i(n.kn + iη)ζn−1}. (3.22)

The result of the above integral has a factor of 1/(n.kn) and the result of the next integral

has a factor of 1/(n.kn + n.kn−1). The appearance of similar terms allows to write in the

compact form the expression for In. After evaluating all integrals, the quantity In can be
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Figure 3.1: The diagram for n-gluon radiation for a Wilson line going from aµ to +∞.
The Wilson line path is parametrized with ζ = 0,⋯,∞.

expressed as

In = (ig)nnµ1⋯nµn exp{ia∑
j

kj}
n

∏
j=1

i

n.
n

∑
l=j
kl + iη

.
(3.23)

The result of the above equation can be easily obtained by applying the Feynman rules for

Wilson lines. These Feynman rules are for momenta that point outward from the Wilson

line. The resulting n-th order diagram is shown in Figure (3.1). For inward momenta, the

prescription ki → −ki is utilized to obtain the appropriate Feynman rules.

The path of Wilson line can be put into a reversal direction. The action of reversing the

path of a Wilson line U(a,b) can be represented by

U(a,b) = P exp(ig∫
b

a
dzµAµ)→ P̄ exp( − ig∫

b

a
dzµAµ), (3.24)

where P̄ is the anti-path ordering which ensures that fields are ordered in reverse. This

shows that reversing the path of a Wilson line is directly equivalent to taking a Hermitian

conjugate, thus we can simply write

U(a,b) = U †
(b,a). (3.25)

However, in the standard path ordering, the final result should require to perform the sub-

stitution, k → −k since the field Aµ(k) transforms as A†
µ(k) = Aµ(−k). We can also study
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how an infinite Wilson line transforms under the action of the path reversal. In this case,

we consider a Wilson line from −∞ to bµ.

U †
b,−∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞
∑
n=0
(ig)n∫

dωkn
(2π)ωn.A(−kn)⋯n.A(−k1) exp{ib.

n

∑
j

kj}
n

∏
j=1

−i

n.
j

∑
l=1
kl − iη

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=U(b,−∞)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

†

,

=
∞
∑
n=0
(−ig)n∫

dωkn
(2π)ωn.A

†(k1)⋯n.A†(kn) exp{ − ib.
n

∑
j

kj}
n

∏
j=1

i

n.
n

∑
l=1
kj + iη

=
∞
∑
n=0
(−ig)n∫

dωkn
(2π)ωn.A(−k1)⋯n.A(−kn) exp{ib.

n

∑
j

kj}
n

∏
j=1

−i

n.
n

∑
l=1
kj − iη

=
∞
∑
n=0
(−ig)n∫

dωkn
(2π)ωn.A(−kn)⋯n.A(−k1) exp{ib.

n

∑
j

kj}
n

∏
j=1

−i

n.
n

∑
l=1
kj − iη

,

(3.26)

where we have relabeled the fields according to the prescription, 1 → n,2 → n − 1,⋯, n→ 1

in the last line of Eq. (3.26). To elucidate the ramifications of the Hermitian conjugate, we

reformulate the final expression in terms of the n-th integrals as follows

U †
(b,−∞) =

∞
∑
n=0
∫

dωkn
(2π)ω⋯

dωk1
(2π)ωAµn(−kn)⋯Aµ1(−k1)I†

n, (3.27)

where

I†
n =(ig)n(−nµ1)⋯(−nµn) exp{ib.

n

∑
j

kj}
n

∏
j=1

i

−n.
n

∑
l=j
kj + iη

.
(3.28)

The expression for the n-integrals shows that under the prescription nµj → −nµj , the Hermi-

tian conjugate of a Wilson line from bµ to −∞ is equivalent to a Wilson line from bµ to +∞.

Similarly, the Hermitian conjugate of a Wilson line from bµ to +∞ is equivalent to a Wilson
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Figure 3.2: Changing the path direction of the Wilson line U(b,−∞) is equivalent to taking

the Hermitian conjugate U †
(b,−∞). However, the representation with the standard path order-

ing requires the prescription, nµj → −nµj , and the new path direction that goes from bµ to
+∞.

line from bµ to −∞ under the same prescription

U †
(b,−∞) = U(+∞,b)∣nµj→−nµj ,

U †
(+∞,b) = U(b,−∞)∣nµj→−nµj .

(3.29)

The path flow from left to right implies the presence of nµj whereas the path flow from

right to left implies the presence of −nµj in the n-integrals. Figure (3.2) shows the reversed

Wilson line of U(b,−∞), the arrow on the Wilson line indicates the direction of the path flow.

Now, we consider a finite Wilson line of path C from a point aµ to a point bµ. In terms of

the parameter ζ we define the variable

zµ = aµ + nµζ, λ = 0,⋯, ∥b − a∥ = (aµ − bµ)/nµ (3.30)

Assume that there exist two paths C1 and C2 such that C = C1 + C2. Then, we can express

the Wilson line U of a path C as

U(b,a) = U(b,+∞)U(+∞,a) = U(b,−∞)U(−∞,a). (3.31)
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The corresponding n-th segment integral is expressed as

In = (ig)nnµ1⋯nµn exp{ia.∑
j

kj}∫
∥b−a∥

0
∫

ζn

0
⋯∫

ζ2

0
dζn⋯dζ1 exp{in.

n

∑
j

kjζj}. (3.32)

For the moment, we can disregard the factors in front of the integrals without loss of gener-

ality. The result of the first-order integral is expressed as

I1(k1) = ∫
∥b−a∥

0
dζ1 exp{in.k1ζ1} =

−i
n.k1
( exp{i(b − a).k1 − 1}). (3.33)

The derivation of the recursive relation can be done without much effort. The expression for

the n-th order term is given by

In =
n−1
∑
m=0
( exp{i.(b − a).

n

∑
m+1

kj} − 1)
⎛
⎜⎜⎜⎜
⎝

m

∏
j=1

i

n.
m

∑
l=j
kl

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

n

∏
j=m+1

−i

n.
n

∑
l=m+1

kl

⎞
⎟⎟⎟⎟
⎠
. (3.34)

As expected, we realize that the n-th order term vanishes in the limit, a → b. There are

exactly n term without exponential, thus the eikonal identity can be obtained if we add to

the sum of these n terms another term m = n

n

∑
m=0

⎛
⎜⎜⎜⎜
⎝

m

∏
j=1

i

n.
m

∑
l=j
kl

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

n

∏
j=m+1

−i

n.
n

∑
l=m+1

kl

⎞
⎟⎟⎟⎟
⎠
= 0. (3.35)

The above expression represents the eikonal identity and is useful in the abelian limit of

QCD. The eikonal identity allows to write the equality

⎛
⎜⎜⎜⎜
⎝

m

∏
j=1

i

n.
m

∑
l=j
kl

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

n

∏
j=m+1

−i

n.
n

∑
l=m+1

kl

⎞
⎟⎟⎟⎟
⎠
= −

n

∏
j=1

i

n.
m

∑
l=j
kj

. (3.36)
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The substitution of the above equality into the expression for the n-order term leads to the

following expression

In =
n−1
∑
m=0

exp{i(b − a).
n

∑
m+1

kj}
⎛
⎜⎜⎜⎜
⎝

m

∏
j=1

i

n.
m

∑
l=j
kl

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

n

∏
j=m+1

−i

n.
n

∑
l=m+1

kl

⎞
⎟⎟⎟⎟
⎠
+

n

∏
j=1

i

n.
n

∑
l=j
kj

=
n

∑
m=0

exp{i(b − a).
n

∑
m+1

kj}
⎛
⎜⎜⎜⎜
⎝

m

∏
j=1

i

n.
m

∑
l=j
kl

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

n

∏
j=m+1

−i

n.
n

∑
l=m+1

kl

⎞
⎟⎟⎟⎟
⎠
.

(3.37)

Incorporating the factors in front of Eq. (3.32) into Eq. (3.37) and simplifying the overall

first factor, the resulting path content can be expressed as

In =
n

∑
m=0

⎛
⎜⎜⎜⎜
⎝

m

∏
j=1
(ig)nµj

i

n.
m

∑
j

kj

exp (ia.kj)
⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

n

∏
j=m+1

(ig)nµj
−i

n.
j

∑
l=m+1

kl

exp (ib.kj)

⎞
⎟⎟⎟⎟⎟
⎠

. (3.38)

Also, we can sum over n from zero to infinity and add the same convergence terms in the

fractions to obtain a product of two half-infinite Wilson lines. Hence, the path content of a

product of two half-infinite Wilson lines can be expressed as

Ĩn =
⎛
⎜⎜⎜⎜
⎝

∞
∑
n=0
(

n

∏
j=1
(ig)nµj

i

n.
n

∑
j

kj ± iη
exp (ia.kj)

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

∞
∑
n=0

n

∏
j=1
(ig)nµj

−i

n.
j

∑
l=1
kl ± iη

exp (ib.kj)

⎞
⎟⎟⎟⎟⎟
⎠

. (3.39)

Here, + and − in ±iη indicate that the path content corresponds to two lower bound and two

upper bound Wilson lines respectively.

A Wilson line can have an infinite linear segment from −∞ to +∞. If the path of direction
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nµ contains a point rµ, for a parameter ζ, we define the following variable

zµ = rµ + nµζ, ζ = −∞,⋯,+∞. (3.40)

In this case, the path content is expressed as

I = (ig)nnµ1⋯nµn exp{ir.∑
j

kj}∫
+∞

−∞
⋯∫

ζ2

−∞
dζn⋯dζ1 exp{in.

n

∑
j

kjζj}. (3.41)

We can compute each integral to obtain the final expression for I. Using the usual method

of the Fourier transform of a Heaviside θ-function to find the result of each integral, we

realize that the integral from −∞ to +∞ is divergent when other integrals are each finite

and, vice versa. The solution to resolve the issue would be to regulate the path [32]. The

parametrization for the regularized path is defined as

zµξ = rµ +
2

ξ
tanh(ξ

2
ζ)nµ, ξ > 0, ζ = −∞,⋯,+∞. (3.42)

The result for the first-order integral is expressed as

I1 = ∫
ζ2

−∞
dζ1sech

2(ξ
2
ζ1) exp{i

2

ξ
(n.k1 − iη) tanh(

ξ

2
ζ1)}

= −i
n.k1 − iη

[exp{i2
ξ
(n.k1 − iη) tanh(

ξ

2
ζ2)} − exp{ − i

2

ξ
(n.k1 − iη)}] .

(3.43)

Using the recursion relation, we find that the n-th term is defined by

In =2i
n−1
∑
m=0

exp{ − i2
ξ
(n.

m

∑
l

kj − iη)} sin [
2

ξ
(n.

n

∑
m+1

kj − iη)]

×
m

∏
l

i

n.
m

∑
j

kl − iη

n

∏
m+1

−i

n.
j

∑
m+1

kj − iη
.

(3.44)

The n-th term for the original path can be obtained by taking the limit, ξ → 0. By incorpo-
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Figure 3.3: The diagram for n-gluon radiation from a Wilson line going from −∞ to +∞.
The red line belongs to the cut propagator. The Wilson line path is parametrized with ζ =
-∞,⋯,+∞ .

rating the factors in front the n-th term path for the original path is expressed as

In = (ig)nnµ1⋯nµn

⎛
⎜⎜⎜⎜⎜
⎝

n−1
∏
1

−i

n.
j

∑
1

kl − iη

⎞
⎟⎟⎟⎟⎟
⎠

2πδ(n.
n

∑
1

kj − iη), (3.45)

where δ is the nascent delta function with the weak limit, lim
>

ξ→0

δξ(x) = δ(x), for an infinitesimal

parameter ξ > 0, which relates δξ and δ through the shifting property.

One proper method to represent an infinite Wilson line is to position all emitted gluons

on one side of the point rµ as shown in Figure (3.3). The diagram shows that there are n

gluons and kn is the momentum of the n-th momentum. In this case, the contribution for

the cut propagator is δ(n.k + iη).
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Chapter 4

Transverse Momentum Dependent

(TMD) Physics

4.1 Introduction

This section presents an introduction to transverse momentum dependent distributions, com-

monly known as TMDs. These distributions encapsulate the quantum correlations between

hadron polarization and the motion and polarization of quarks and gluons within it. We will

include a detailed examination of the fundamental and universally applicable TMDs, along

with their defining characteristics. We will explore TMD factorization formalisms, which

allow the alignment of these quantum distributions with physical observables observed in

high-energy scattering experiments. Additionally, we will delve into various phenomenologi-

cal methodologies for extracting these distributions from meticulously gathered experimental

data. The subsequent portion of this section will offer an intuitive overview of the TMDs

and their significance in elucidating the internal structure of hadrons.
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4.1.1 Twist-2 TMD functions

Cross sections of DIS processes can be expressed in terms of a leptonic tensor and a hadronic

tensor. In the Bjorken limit, it is possible to write the hadronic part in terms of the hard part

and the soft part, containing the information on the parton distribution inside a hadron. This

soft part is just a correlation function of quark fields between hadronic states. In one-particle

inclusive processes, two types of correlation functions are necessary, one that characterizes

the distributions of quarks and another that describes the hadronization of quarks into

observable hadrons. At leading order in 1/Q (twist-2), where Q represents the hard scale

of collision, the primary correlation functions of interest are the quark-quark correlation

functions. The quark-quark correlation functions can be expressed as

Φq
ij(k,P,S∣n) =∫

dξ−

2π
eik.ξ

−⟨P,S∣ψ̄q
j (0)W0(0, ξ−)∣n)ψq

i (ξ−)∣P,S⟩, (4.1)

∆
h/q
i,j (p,Ph, Sh∣n̄) = ⨋

X
∫

d4ξ

(2π)4 e
ip.ξ⟨0∣W1(∞, ξ∣n̄)ψq

i (ξ)∣Ph, Sh,X⟩

× ⟨Ph, Sh,X ∣ψ̄q
j (0)W2(0,∞)∣n̄)∣0⟩,

(4.2)

where ⨋X ≡ ∑
X
∫ d3PX/(2π)32P 0

X . The quark q emerging from the target proton has a

momentum k, and the quark q decaying into a hadron has a momentum p. The Wilson line

is denoted by Wa. The quantity P (Ph) is the momentum of the proton(outgoing hadron)

of spin S(Sh), and n(n̄) is the lightlike vector conjugate to the momentum P (Ph). If the

hadron in the final state has a small but nonzero transverse momentum, ΛQCD ≲ Ph⊥ ≪ Q,

that is likely to originate from the transverse motion of quarks inside a hadron, one can

apply the TMD formalism. Thus, the correlation functions can be expressed as

Φq
ij(x,k⊥, P, S∣n) = ∫ dk−Φq

ij(k,P,S∣n)

= ∫
dξ−d2ξ⊥
(2π)3 eik.ξ [⟨P,S∣Φ̄q

j(0)W0(0, ξ)∣n)Φq
i (ξ)∣P,S⟩]ξ+=0 ,

(4.3)

28



∆
h/q
ij (z,p⊥, Ph, Sh∣n̄) = ∫ dp+∆q

ij(p,Ph, Sh∣n̄)

= ⨋
X
∫

dξ+d2ξ⊥
(2π)3 eip.ξ[⟨0∣W1(∞, ξ∣n̄)ψq

i (ξ)∣Ph, Sh,X⟩

× ⟨Ph, Sh,X ∣ψ̄q
j (0)∣W2(0,∞)∣n̄)∣0⟩]ξ−=0.

(4.4)

The leading twist contributions are obtained by performing the Sudakov decomposition of

Lorentz structures. Starting from the correlation function for PDF, we define a new k⊥-

dependent correlation function in terms of Dirac traces as follows

ΦqΓ(x,k⊥, P, S∣n) =
1

2
Tr [Φq(x,k⊥, P, S∣n)Γ] . (4.5)

These traces allow to express the correlation function ΦqΓ(x,k⊥, P, S∣n) in terms of eight

twist-2 TMD PDFs as follows [33, 34]

Φq[γ+] =f q
1 (x,k2

1) −
ϵij⊥ ki⊥S

j
⊥

M
f⊥q1T (x,k2

⊥),

Φq[γ+γ5] =λgq1T (x,k2
⊥) +

k⊥.S⊥
M

gq1T (x,k2
⊥),

Φq[iσi+γ5] =Si
⊥h

q
1T (x,k2

⊥) +
ϵij⊥ k

j
⊥

M
h⊥q1 (x,k2

⊥) +
ki⊥
M
[λh⊥q1L(x,k2

⊥) +
k⊥.S⊥
M

h⊥q1T (x,k2
⊥)] ,

(4.6)

where M represents the mass of the nucleon (e.g., proton) in the initial state. We adopt

the definitions, ϵij⊥ = ϵ−+ij with ϵ12⊥ = 1, and 2σµν = i[γµ, γν]. The collinear counterparts

U L T

U f1 h⊥1
L g1L h⊥1L
T f⊥1T g1T h1,h

⊥
1T

Table 4.1: Illustration of eight twist-2 TMD-PDFs. The notations U, L, T correspond to
unpolarized, longitudinally or transversely polarized quarks (columns) and nucleons (rows)
respectively.

are obtained by integrating over the transverse momentum k⊥, for instance the collinear
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unpolarized PDF is given by

f q
1 (x) = ∫ d2k⊥f

q
1 (x,k2

1) = ∫ d2k⊥Φ
q[γ+]. (4.7)

There is no contribution from f⊥q1T to the collinear PDF because not all twist-2 functions

possess counterparts upon integration over k⊥, the only functions that possess counterparts

are shown in blue in Table (4.1). The functions which change sign under time-reversal are

shown in red, while those that do not change sign under time-reversal are shown in black

in Table (4.1). Similarly, starting from the correlation function for FF, we define a new

p⊥-dependent correlation in terms of Dirac traces as follows

∆h/q[Γ](z,p⊥, Ph, Sh∣n̄) =
1

4z
Tr [∆h/q(z,p⊥, Ph, Sh∣n̄)Γ] . (4.8)

The traces provide various forms of correlation function ∆h/q[Γ](z,p⊥, Ph, Sh∣n̄) which are

expressed in terms of eight twist-2 TMD FFs as follows [35]

∆h/q[γ−] =Dh/q
1 (z, z2p2

⊥) +
ϵijP i

⊥S
j
h⊥

Mh

D
⊥h/q
1T (z, z2p2

⊥),

∆h/q[γ−γ5] = λhGh/q
1L (z, z2p2

⊥) +
p⊥.Sh⊥

Mh

G
h/q
1T , (z, z2p2

⊥),

∆h/q[iσi−γ5] = Si
h⊥H

h/q
1T (z, z2p2

⊥) −
ϵij⊥ p

j
⊥

Mh

H
⊥h/q
1 (z, z2p2

⊥)

× pi⊥
Mh

[λhH⊥h/q1T (z, z2p2
⊥) +

p⊥.Sh⊥

Mh

H
⊥h/q
1T (z, z2p2

⊥)] ,

(4.9)

where Mh is the mass of the outgoing hadron. The collinear counterparts are obtained by

integrating over the transverse momentum of the outgoing hadron Ph⊥. Table (4.2) shows

the eight twist-2 TMD FFs. The fragmentation functions that possess the counterparts are

shown in blue in Table (4.2). The functions that change sign under time-reversal in shown

in red in Table (4.2). The function D⊥1T is the polarizing fragmentation function and can

thus be regarded as the analog of the Sivers function for FFs. Sometimes quantities such
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U L T

U D1 H⊥1
L G1L H⊥1L
T D⊥1T G1T H1,H

⊥
1T

Table 4.2: Illustration of eight twist-2 TMD-FFs. The notations U, L, T correspond to
unpolarized, longitudinally or transversely polarized quarks (columns) and nucleons (rows)
respectively.

as structures functions can be easily expressed in terms of the k⊥(p⊥)-moments of TMD

distributions. The general expressions for these k⊥(p⊥)-moments are

f (n)(x) = ∫ d2k⊥ (
k2⊥
2M2

)
n

f(x, k2⊥), D(n)(z) = z2∫ d2p⊥ (
p2⊥

2M2
h

)
n

D(z, z2p2⊥), (4.10)

Hence, one can obtain an expression of the n-th moment for each TMD function. For

instance, the first moments for the Sivers function f⊥1T and the Collins fragmentation function

H⊥1 are given by

f
⊥(1)
1T (x) = ∫ d2k⊥ (

k2⊥
2M2

) f⊥1T (x, k2⊥), H
⊥(1)
1 (z) = z2∫ d2p⊥ (

p2⊥
2M2

h

)H⊥1 (z, z2p2⊥). (4.11)

The above moments are related to collinear twist-3 functions. The first moment of the Sivers

function is related to the Qiu-Sterman function, and the first moment of the Collins function

is related to the twist-3 fragmentation function.

4.1.2 Twist-3 TMD functions

Twist-3 correlation functions are key objects in the study of hadronic structure, particularly

in the context of non-perturbative QCD effects. Unlike twist-2 functions, which describe the

leading behavior at high energies, twist-3 functions, on the other hand, describe subleading

effects and provide additional information about the hadronic structure, including contri-
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butions from quark-gluon correlations and higher-order QCD effects. These functions arise

in the description of phenomena like higher-twist contributions to deep inelastic scattering

(DIS), as well as in the study of hadronic transverse momentum distributions, the transverse

spin structure, and the analysis of certain asymmetries. Mathematically, twist-3 correlators

typically involve higher derivatives or more intricate tensor structures compared to twist-2,

and they play a crucial role in understanding the dynamics of partons inside hadrons at a

more detailed level, particularly in the presence of non-perturbative effects that cannot be

captured by leading-order approximations. In the twist-3 case, we can consider the following

quark-quark and quark-gluon-quark correlation functions [36]

Φq
ij(x,P,S⊥) = ∫

dξ−

2π
eixP

+ξ−⟨P,S⊥∣ψ̄q
j (0)ψ

q
i (ξ−)∣P,S⊥⟩, (4.12)

Φq,µ
∂⊥,ij
(x,P,S⊥) = ∫

dξ−

2π
eixP

+ξ−⟨P,S⊥∣ψ̄q
j (0)∂

µ
⊥ψ

q
i (ξ−)∣P,S⊥⟩, (4.13)

Φq,µ
A,ij(x,x1, P, S⊥) = ∫

dξ−

2π

dζ−

2π
eix1P

+ξ−ei(x−x1)P+ζ−⟨P,S⊥∣ψ̄q
j (0)A

µ
⊥(ζ−)ψq

i (ξ−)∣P,S⊥⟩. (4.14)

Here, we emphasize that Wilson lines have been suppressed in the above correlators. It

is worth to mention that Wilson lines are reduced to unity in the light-cone gauge. For

gauge invariance, the gluon field A⊥ in Eq. (4.14) for the quark-gluon-quark correlator can

be replaced either with the covariant derivative iDρ
⊥ = i∂ρ + gAρ

⊥ or the field strength tensor

F +ρ⊥ in the light-cone gauge (A+ = 0). The expansion allows the quark-gluon-quark correlator

to be expressed in terms of twist-3 correlation functions [37]

Φq,µ
D,ij(x,x1, P, ST ) =

1

2
M [F q

DT (x,x1)iϵ
µν
⊥ S⊥νγ

− +Gq
DT (x,x1)S

µ
⊥γ5γ

−](ij) , (4.15)

Φq,µ
F,ij(x,x1, P, ST ) =

1

2
M ′ [F q

FT (x,x1)ϵ
µν
⊥ S⊥νγ

− −Gq
FT (x,x1)iS

µ
⊥γ5γ

−](ij) , (4.16)

where M ′ =M/P +. The field A⊥ in Eq. (4.14) has been replaced by iDρ
⊥ and F

+ρ
⊥ to obtain

Eq. (4.15) and Eq. (4.16) respectively. The parity and time reversal implies the following
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relations

F q
DT (x,x1) = −F

q
DT (x1, x), Gq

DT (x,x1) = G
q
DT (x1, x), (4.17)

F q
FT (x,x1) = F

q
FT (x1, x), Gq

FT (x,x1) = −G
q
FT (x1, x). (4.18)

The above expressions form the following relations

F q
DT (x,x1) =PV

1

x − x1
F q
FT (x,x1),

Gq
DT (x,x1) =PV

1

x − x1
Gq

FT (x,x1) + δ(x − x1)g̃q(x).
(4.19)

Here, PV is the principal value, and g̃ is the additional twist-3 function which is defined as the

first k⊥-moment of gq1T [36]. The quark-quark correlator of Eq. (4.12) leads to a contribution

from the twist-3 ggT as follows

Tr [Φq(x,P,S⊥)] =
2M

P +
Sµ
⊥g

q
⊥(x). (4.20)

Hence, we have already identified six twist-3 PDFs. In the twist-3 FF case, we can consider

the following correlation functions

∆
h/q
ij (z,Ph) = ⨋

X
z∫

dξ+

2π
eiP

−
h ξ+/z⟨0∣ψq

i (ξ+)∣Ph,X⟩⟨Ph,X ∣ψ̄q
i (0)∣0⟩, (4.21)

∆
h/q,µ
∂⊥,ij
(z,Ph) = ⨋

X
z∫

dξ+

2π
eiPhξ

+/z⟨0∣∂µ⊥ψq
i (ξ+)∣Ph,X⟩⟨Ph,X ∣ψ̄q

j (0)∣0⟩, (4.22)

∆
h/q,µ
A,ij (z, z1, Ph) =⨋

X

1

z ∫
dξ+

2π

dζ+

2π
eiP

−
h ξ+/z1ei(z1−z)P

−
h ζ+/z1z⟨0∣Aµ

⊥(ζ+)ψq
i (ξ+)∣Ph,X⟩

× ⟨Ph,X ∣ψ̄q
j (0)∣0⟩.

(4.23)

Similar to twist-3 distribution correlators, the Wilson lines are suppressed and will not

contribute in the light-cone gauge (A+ = 0). Similar to twist-3 distribution correlators, the

gluon field A⊥ in Eq. (4.23) can be replaced by the covariant derivative iDρ or the field
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strength tensor F +ρ⊥ which lead to the following twist-3 FFs

∆
h/q,µ
F,ij (z, z1, Ph) = −Mh [iϵµν⊥ σ+νγ5Ĥ

h/q
FU (z, z1)](ij) , (4.24)

∆
h/q,µ
D,ij (z, z1, Ph) = −

Mh

P −h
[ϵµν⊥ σ+νγ5Ĥ

h/q
DU(z, z1)](ij) , (4.25)

where Ĥ
h/q
FU (z, z1) and Ĥ

h/q
DU(z, z1) are twist-3 complex functions. In terms of the principle

value PV , and the twist-3 function Ĥh/q(z), they can be expressed as

Ĥ
h/q
DU(z, z1) = PV

1

/Z
Ĥ

h/q
FU (z, z1) −

i

z2
Ĥh/q(z)δ( /Z), (4.26)

where /Z = (z1 − z)/zz1. The function H̄h/q(z) can be obtained from the Collins func-

tion H
⊥h/q
1 (z, z2p2

⊥) by double-integrating over p⊥, thus Ĥh/q(z) is similar to the function

H
⊥h/q(1)
1 (z) which is the first p⊥-moment of the Collins function. The quark-quark correla-

tion function ∆
h/q
ij (z,Ph) leads to the following expressions [33]

Tr [∆h/q(z,Ph)iσµνγ5] =
4Mh

P −h
ϵµν⊥ H

h/q(z), Tr [∆h/q(z,Ph).1l] =
4Mh

Ph

Eh/q(z), (4.27)

where Hh/q(z) and Eh/q(z) are the twist-3 functions. These twist-3 functions also can be

expressed in terms of the z1-integration of imaginary part of Ĥ
h/q
DU(z, z1) and the real part of

Ĥ
h/q
FU (z, z1) respectively. Eq. (4.26) contains three twist-3 FFs and Eq. (4.27) contains two

twist-3 FFs; thus, we obtain five twist-3 FFs.

4.2 TMD factorization theorems

This section presents a fundamental overview of the TMD factorization theorems pertaining

to the Drell-Yan process, pp → γ∗/Z → l+l−, involving unpolarized protons. This serves

the purpose of establishing fundamental notations and concepts essential to elucidate TMD

factorization. To explore hard scattering processes effectively, employing light-cone coordi-
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nates proves advantageous. This choice is driven by the fact that the dynamics of hadrons

are predominantly examined along the collision axis, involving partons whose behavior is

characterized by fluctuations near the light-cone. The momenta PA, and PB of the incoming

protons in Drell-Yan process are defined as

P µ
A = P +A(1, e−2YA ,0T ), P µ

B = P −B(e+2YB ,1,0T ), (4.28)

where the components have the form, pµ = (p+, p−,pT ) and the proton rapidities are defined

as

YA =
1

2
ln
P +A
P −A
= 1

2
ln

2(P +A)2
m2

p

, YB =
1

2
ln
P +B
P −B
= 1

2
ln

m2
p

2(P −B)2
, (4.29)

where mp is the proton mass. The massless limit, mp → 0, leads to YA,B → ±∞, and then

the protons are exactly aligned along the light-cone directions. For a lepton pair l+l− of

total momentum qµ and invariant mass Q2 = q2, the lepton pair rapidity Y and transverse

momentum qT are defined as

Y = 1

2
ln
q+

q−
, qµT = (0, qxT , q

y
T ,0). (4.30)

Here, qµT is defined with respect to the Minkowski space-time (t, x, y, z). The Euclidean

transverse momentum is denoted by qT . Assuming that Q2 ≫ Λ2
QCD, the cross section is

decomposed as

dσ

dQdY d2qT

=
⎛
⎝

dσW

dQdY d2qT

+ dσY

dQdY d2qT

)[1 +O(
Λ2

QCD

Q2
)], (4.31)

where dσW represents the portion of the cross section that predominates at small qT values

and is commonly referred to as the W term. This part of the cross section includes all terms

that are proportional to 1/q2T as qT approaches zero at any order of expansion in the strong

coupling αs. The remaining portion dσY , usually referred as the Y term [38, 39, 40], is
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suppressed by O(q2T /Q2) with respect to dσW . The TMD factorization was first put forward

by Collins, Soper and Sterman (CSS) and in their original formulation, the σW is expressed

as
dσW

dQdY d2qT

=∑
j

Hj,j(Q2, µ, ρ)∫ d2bT e
ibT .qT f̃j/p(xa,bT , µ, ζ̃a, ρ)

× f̃j/p(xb,bT , µ, ζ̃b, ρ),
(4.32)

where ζ̃ and ρ are rapidity regulator parameters, and bT is the two-dimensional variable

which is conjugate to the transverse momentum qT . The hard function Hqq stands for

corrections to the hard process, qq → γ∗/Z → l+l−. In the modern formulation proposed

by Collins [41], which results in a factorization theorem analogous to several definitions in

soft-collinear effective theories (SCET) [42, 43, 44, 45, 46, 47, 48] the cross section dσW is

expressed as

dσW

dQdY d2qT

=∑
j

Hj,j(Q2, µ)∫ d2bT e
ibT .qT f̃j/p(xa,bT , µ, ζa)f̃j/p(xb,bT , µ, ζb)

=∑
j

Hj,j(Q2, µ)∫ d2bT e
ibT .qT B̃j/p(xa,bT , µ, ζa/ν2)

× B̃j/p(xb,bT , µ, ζb/ν2)S̃(bT , µ, ν),

(4.33)

where S̃ is the soft function which encodes soft exchange between partons (j, j), and ν is the

rapidity renormalization scale. The function f̃ is the unpolarized TMD parton distribution

function (PDF), and the function B̃ is the TMD beam function(BF). This function describes

the collinear radiation close to the proton. For a quark flavor q, the simple relation between

these two functions can be expressed as

f̃q/p(x,bT , µ, ζ) = B̃q/p(x,bT , µ, ζ/ν2)
√
S̃(bT , µ, ν). (4.34)

The dependence of the TMD PDFs on both µ and ζ are governed by evolution equations

which allow to evolve from initial scales µ0 and ζ0 to final scales µ and ζ. The final Collins-
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Soper scales ζa,b are defined as

ζa = 2(xaP +A)2e−2y = x2am2
pe

2(YA−y), ζb = 2(xbP +A)2e−2y = x2bm2
pe

2(YB−y), (4.35)

where YA and YB are the rapidities of protons A and B respectively. In the center of mo-

mentum frame, YA = YB. The variable y represents the rapidity which govern an additional

scheme dependence that cancels between the two TMD PDFs. The combination of ζa and

ζb is directly related to the hard scale Q as follows

ζaζb = (2xaxbP +AP −B)2 = Q4. (4.36)

The quantity, 2P +AP
−
B = (P +A +P −B)2 is just the center of mass energy s of the proton-proton

(pp) collision. Since y does not have other great benefit than allowing to obtain evolution

equations with respect to ζa,b the frequently adopted choice is y = 0. The main difference

between Eq. (4.32) and Eq. (4.33) is the nature of the scheme which is utilized for the

hard function Hj,j that directly defines the scheme for the remaining functions because the

cross section σW is scheme-independent. The hard function Hj,j described in Eq. (4.33) is

established within the MS framework, therefore affected solely by the hard scale Q and the

renormalization scale µ. The hard function Hj,j in Eq. (4.33) can be obtained using MS

subtractions of 1/ϵ poles in dimensional regularization with d = 4 − 2ϵ. However, The hard

function Hj,j in Eq. (4.32) depends on an additional scale ρ, and the TMD formalism uses

different Collins-Soper scales.

4.3 TMD parton distribution functions

This section explores fundamental field theory definitions of transverse momentum dependent

parton distribution functions(TMDPDFs). For more details, see Ref. [49]. In Drell-Yan
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process, the definition for a TMDPDF can be expressed as

f̃i/p(x,bT , µ, ζ) = lim
ϵ→0
τ→0

Zi
uv(µ, ζ, ϵ)

f̃
0(u)
i/p (x,bT , ϵ, τ, xP +)
S̃(0)s(bT , ϵ, τ)

√
S̃(0)(bT , ϵ, τ), (4.37)

where expressions with the superscript 0 are bare quantities, for example, S̃(0) is the bare

soft function, and S̃(0)s is the subtracted bare soft function. They experience both ultravio-

let (UV) and rapidity divergences. The UV divergences can be regulated using dimensional

regularization with d = 4 − 2ϵ dimensions, and rapidity divergences necessitate a regula-

tor [50, 38, 51, 52, 42, 45, 53] which is indicated by τ in Eq. (4.37). The divergences in

rapidity effectively nullify each other across different factors in Eq. (4.37) , such that the

renormalization counterterm Zi
uv in Eq. (4.37) only addresses divergences in ϵ. Typically,

UV divergences lead to the introduction of the renormalization scale µ, which is established

within the MS scheme. Similarly, the presence of rapidity divergences introduces sensitivity

to the Collins-Soper scale ζ [39, 54], the precise definition of which relies on the chosen

regulator ϵ. Since there are two protons in the process of interest, half of the soft func-

tion integrates into the TMDPDF fi/p, while the other half integrates into the TMDPDF

fj/p associated with the other proton. After the renormalization of both UV and rapidity

divergences, the renormalized beam and soft functions in Eq. (4.33) are expressed as

B̃i/p(x,bT , µ, ζ/ν2) = lim
ϵ→0
τ→0

Zi
uv(B)(bT , µ, ν, ϵ, τ, xP +)B̃0i/p(x,bT , ϵ, τ, xP

+),

S̃(bT , µ, ν) = lim
ϵ→0
τ→0

Zi
uv(S)(bT , µ, ν, ϵ, τ)S̃0(bT , ϵ, τ).

(4.38)

The bare beam function B̃0 can be expressed in terms of the bare unsubtracted PDF f̃ 0(u)

as

B̃0i/p(x,bT , ϵ, τ, xP
+) =

f̃
0(u)
i/p (x,bT , ϵ, τ, xP +)
S̃(0)s(bT , ϵ, τ)

. (4.39)
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Here, ν is the rapidity renormalization scale which emerges because of the subtraction of

poles in τ . Notice that Eq. (4.34) can easily be obtained from Eq. (4.38) and Eq. (4.39).

The ν dependence in Eq. (4.34) cancels between beam and soft functions, and thus, in terms

of rapidity, f̃ only depends on the Collins-Soper scale ζ.

To establish the gauge invariance, the bare unsubtracted TMD PDF (or equivalently the

bare beam function) and the bare soft function should be expressed in terms of the Wilson

lines W⊏ and W> as

f̃ 0(u)(x,bT , ϵ, τ, xP
+) =∫

db−

2π
e−ib

−(xP+)⟨p(P )∣[ψ0

i (bµ)W⊏(bµ,0)
γ+

2
ψ0
i (0)]

τ

∣p(P )⟩,

S̃0(bT , ϵ, τ) =
1

Nc

⟨0∣Tr[W>(bT )]τ ∣0⟩,
(4.40)

where the notation [⋯]τ means that operators inside depend on an additional rapidity

Figure 4.1: Illustration of the structure of the Wilson line W⊏ of the TMD parton distri-
bution function (left) and that of the Wilson line W> of the soft function S̃ (right).

regulator τ . The proton p is moving close to the light-cone direction nµ
a = (1,0,0T ) with a

momentum P µ = P +(1, e−2y,0T ). If the proton is moving along the direction nµ
b = (0,1,0T ),

the corresponding expressions can be obtained from Eq. (4.40) by using the prescription

na ↔ nb. Due to Poincare invariance, the matrix element of the proton solely relies on the

difference in position of the quark fields, denoted as bµ − 0 = bµ, with bµ = (0, b−,bT ). The
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Wilson lines W⊏ corresponding to f̃ is

W⊏(bµ,0) =Wnb
(bµ,−∞,0)Wb̂T

(−∞nb,0, bT )Wnb
(0µ,0,−∞), (4.41)

and for the soft function S̃ the Wilson line W> is defined as

W>(bT ) =Wna(bT ,−∞,0)Wnb
(bT ,−∞,0)Wb̂T

(−∞nb,0, bT )Wnb
(0,0,−∞)

×Wna(0,−∞,0)Wb̂T
(−∞na, bT ,0),

(4.42)

where b̂µT = bµT /bT . Here, the Wilson line along a general path γ is defined by the following

the path-ordered exponential

W [γ] = P exp{−ig0∫
γ
dxµAc0

µ (x)tc}, (4.43)

where tc are the generators of SU(3) in the fundamental representation, g0 denotes the bare

strong coupling and Ac0 stands for the bare gluon fields. The Wilson line of the form,

W (x, a, b) is defined as path-ordered exponential which links the point xµ + anµ to xµ + bnµ

along the direction n

Wn(xn, a, b) = P exp{−ig0∫
b

a
dsn.Ac0(xµ + snµ)tc}, (4.44)

where n is a four-vector. The symbol P employed in Wn(xn, a, b) indicates the path ordering

utilized for the expanded exponential. In this ordering, the matrices tc are arranged based

on their respective values along a specific path, starting from the right and going to the

left. The diagrams depicting the Wilson line structures present in the unsubtracted TMD

PDF and soft functions are shown in Figure (4.1). The transverse Wilson lines WbT follow a

straight line path in the transverse plane at the light-cone −∞. The particular shape of the

Wilson line W⊏ is dictated by the proof of factorization.
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4.4 Rapidity regulator

The emergence of rapidity divergences stems from the derivation of TMD factorization, where

the cross section is partitioned into distinct hard, collinear, and soft regions. Perturbatively,

Feynman diagrams are dissected into these delineated sectors. Assume a full theory that

contains the integrand 1/k . The integral of 1/k can be expanded into collinear and soft

regions as

∫
Q

qT

dk

k
= lim

τ→0
∫

Q

0

dk

k
Rc(k, τ) + lim

τ→0
∫
∞

qT

dk

k
Rs(k, τ) = ln (Q/qT ). (4.45)

In the collinear region, the transverse momentum qT which is much small compared to

Q is expanded away, and in the soft region, the large momentum Q is expanded away.

These expansions are inevitable because they are the cornerstone for the derivation of the

factorization theorem. The divergence of collinear and soft integrals requires the introduction

of respective regulating functions Rc(k, τ) and Rs(k, τ) where τ is a regulator. The final

result is obtained by removing the regulator, τ → 0, in all sectors.

Here, we present a rapidity regulator that is used to regularize the rapidity divergence

in our TMD formalisms. This is called the η-regulator in the literature. The η regulator

changes the Wilson lines in the unsubtracted TMD PDF and soft functions [53]. This requires

the introduction of factors ∣k+/ν∣−η in the Wilson lines in Wc(bµ,0) and factors ∣kz/ν∣−η/2 in

the soft function S̃. Amplitudes undergo an expansion in the limit, η → 0 and rapidity

divergences arise as poles in η. This regulator is often used for the renormalization of either

the unsubtracted TMD PDF or soft functions. The rapidity renormalization factor removes

poles in η and this leads to an appearance of a rapidity ν. In this regulating scheme, the
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expression for the renormalized TMD PDF is [53]

f̃i/p(x,bT , µ, ζ) = lim
ϵ→0
η→0

Zi
uv(µ, ζ, ϵ)f̃

0(u)
i/p (x,bT , ϵ, η, xP

+)
√
S̃0(bT , ϵ, η)

=B̃i/p(x,bT , µ,
√
ζ/ν)
√
S̃(bT , µ, ν),

(4.46)

where the Collins-Soper kernel is given by ζ = 2(xP +)2.

4.5 One-loop TMD parton distribution functions

This section introduces the perturbative study of the quark TMD PDF at one loop. For

more details, see Ref. [49]. The purpose is to show the origin of rapidity divergences and

different methods for their regularization. We focus on both unsubtracted quark TMD PDF

and soft function, which can be combined into TMD PDF. Consider the following expression

for the unsubtracted TMD PDF at next-to-leading order (NLO)

f̃
0(u)
q/q′ (x,bT , ϵ, τ) = ∫

db−

2π
e−ib

−(xp+)⟨q′(p)∣[ψ0

q(bµ)W⊏(bµ,0)
γ+

2
ψ0
q(0)]

τ

∣q′(0)⟩, (4.47)

where the subscript on fq′/q means that the analysis is about the contribution from an

external parton of flavor q′ to the quark TMD PDF of flavor q. At one loop, q = q′, this

means that quark flavors are identical, but for high-order loops, quark flavors can be different,

q ≠ q′. In addition, there can exist contributions from a mixture of quarks with gluons at

one loop, which will not be the subject of investigation.

Thus, we require q to be a non-singlet combination of quark flavors. As illustrated in

Fig. (4.2), there are no more than four Feynman diagrams and their mirror diagrams at

one-loop level. Since we work in the Feynman gauge which a physical gauge transverse

gauge links have no contributions. The nature of gluon exchange between the quarks and

Wilson lines leads to different diagrams. The presence of Wilson lines in the diagrams

requires the Feynman rules for the connection of a gluon to a Wilson line where k is the
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Figure 4.2: The diagrams for the one-loop contribution to the quark-TMD parton distri-
bution function. The double lines and the dashed line represent the Wilson lines and the
on-shell cut respectively. Since diagrams (c) and (d) are scaleless, only diagrams (a) and (b)
contribute in the dimensional regularization.

incoming gluon momentum, a is the color index, and ϵµ is the polarization vector. There

are no contributions from gluon exchange between the Wilson line portions since such gluon

exchange is proportional to n2
b which is just equal to zero. The dimensional regularization

with d = 4−2ϵ dimensions is chosen to regulate infrared (IR) and ultraviolet (UV) divergences.

The application of Feynman rules for diagrams (4.2) leads to the following expressions

Ma = −ig20CF ∫
ddk

(2π)d ∫
db−

2π
e−ib

−(xP+)ei(p−k).b {u(p)γ
µ(�p −��k)γ+(�p −��k)γµu(p)

2[(p − k)2 + i0]2(k2 + i0) } , (4.48)

Mb = −2ig20CF ∫
ddk

(2π)d ∫
db−

2π
e−ib

−(xP+)ei(p−k).b { u(p)γ+(�p −��k)γ+u(p)
2(k+ + i0)[(p − k)2 + i0]2(k2 + i0)} ,

(4.49)

where qµ is the momentum flowing out the right vertex ⊗. There are no contributions from

diagrams (c) and (d) in dimensional regularization because they depend on integrals which

vanish in the dimensional regularization. The overall factor of 2 inMb is due to the mirror

diagram. The b− integral in expressions for Ma and Mb can be evaluated in the following

way

∫
db−

2π
e−ib

−(xP+)ei(p−k).b =∫
db−

2π
exp{−ib− [(1 − x)p+ − k+] + ibT .kT}

=δ [(1 − x)p+ − k+] exp{ibT .kT} ,
(4.50)

where we have chosen b+ = p− = 0. Thus, the phase in final result depends solely on the

transverse momentum. The b− integral result indicates that the gluon is emitted with the
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longitudinal momentum k+ = (1 − x)p+ and the remaining momentum xp+ is carried by the

quark field. Now, the b− integral result can be used in the evaluation ofMa, andMb. After

the Dirac algebra calculations, expressions forMa andMb become

Ma = ig20CF ∫
dd−2kT

(2π)d e
ibT .kT ∫ dk−

(2 − d)(1 − x)p+
[(p − k)2 + i0] (k2 + i0) , (4.51)

Mb = ig20CF ∫
dd−2kT

(2π)d e
ibT .kT ∫ dk−

−4x/(1 − x)p+
[(p − k)2 + i0] (k2 + i0) , (4.52)

The residue theorem can be utilized to compute the k− integral,

∫ dk−
1

[(p − k)2 + i0] (k2 + i0) =∫ dk−
1

(−2xp+k− − k2
T + 0i) [2(1 − x)p+k− − k2

T + i0]

= iπ

p+k2
T

θ(x)θ(1 − x),

(4.53)

If x and 1 − x have opposite signs, the residues of k− live in the same complex plane, and

the deformation of the k− contour can lead to a vanishing integral. The only values of x

that provide physical contributions are 0 < x < 1, and, surprisingly, these are expected values

for the momentum fraction. The condition of the gluon on the shell is k2 = 0, which is the

same as choosing the residue at k− = k2
T /(2k+) > 0. The one-loop contribution to the bare

unsubtracted quark TMD PDF is obtained by combining expressions forMa andMb, and

the resulting expression is

Ma +Mb =
g20CF

2π
[1 + x

2

1 − x − ϵ(1 − x)]∫
dd−2kT

(2π)d−2
eibT .kT

k2
T

, (4.54)

The evaluation of the kT integral requires making choice for kT and bT in 2−2ϵ dimensions,

the choice can be arbitrary because every choice yields the same TMD PDFs. The choice

of kT =(bT ,0,0−2ϵ) and kT = kT (cos θ, sin θ,0−2ϵ) leads to the following result for the kT
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integral

∫
dd−2kT

(2π)d−2
eibT .kT

k2
T

= Ω−2ϵ
(2π)2−2ϵ ∫ dkTk

1−2ϵ
T ∫

π

0
dθ sin−2ϵ θ

eibT kT cos θ

k2T
= Γ(−ϵ)

4π
(πb2

T )ϵ, (4.55)

where Ωn is defined as the area of a unit n-sphere. Using the kT integral result, the sum of

the matrix elementsMa andMb becomes

Ma +Mb =
αs(µ)CF

2π
[1 + x

2

1 − x − ϵ(1 − x)]Γ(−ϵ)(
b2
Tµ

2

4e−γE
)
ϵ

. (4.56)

The use of the MS scheme allowed to replace the bare coupling by renormalized coupling.

In this scheme, the relation between the bare and renormalized coupling is

g0 = Zgµ
ϵg(µ)(e

γE

4π
)
ϵ/2

, αs(µ) =
g(µ)2
4π

, (4.57)

where Zq = 1 +O(g2) is the counterterm for the strong coupling. The presence of the factor

(eγE/4π)ϵ/2 indicates the use of the MS scheme. The expansion of Eq. (4.56) in ϵ → 0 leads

to the desired bare result. However, there is an appearance of poles 1/ϵ resulting from the

regularization of the kT → 0 region in Eq. (4.55). In addition, there is a divergence in

Eq. (4.56) in the limit all energy is transferred to the struck quark, x → 1, which means

that the emitted gluon would carry no energy, k+ → 0. This is the rapidity divergence and

will only be canceled by the divergence, kµ → 0, in the soft function. The proper inclusion

of the soft function to cancel the rapidity divergence requires a regulator which can then

be removed to obtain the finite result. The regulator that can be easily incorporated into

Eq. (4.56) is the η regulator1

Rc(k, τ) = ∣
√
2k+

ν
∣
−τ

= ((1 − x)p
+

ν/
√
2
)
−τ

. (4.58)

1The regularization is done using the η regulator, but it is denoted as τ . The factor of
√

2 is due to the
use of different light-cone conventions.
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This regulator allows to cancel divergence in Eq. (4.56) through the following identity

1 + x2
1 − x (1 − x)

−τ = −(2
τ
+ 3

2
)δ(1 − x) + [1 + x

2

1 − x ]+
+O(τ). (4.59)

The application of Eq. (4.58) to Eq. (4.56), and the substitution of Eq. (4.59) lead to the

following expression for the bare unsubtracted TMD PDF

f̃
0(u)(1)
q/q (x,bT , ϵ, τ) =

αs(µ)CF

2π
{ − (1

ϵ
+Lb)[Pqq(x)]+ + (1 − x) + δ(1 − x)(

1

ϵ
+Lb)

× (3
2
+ 2

τ
− 2 ln xp+

ν/
√
2
) +O(τ) +O(ϵ)},

(4.60)

where

Lb = ln
b2
Tµ

2

b20
, b0 = 2e−γE . (4.61)

The exponent γE is the Euler’s constant. The quark-quark one loop splitting function in

Eq. (4.60) is expressed as

Pqq(x) =
1 + x2
1 − x .

(4.62)

The divergence as x → 0 in Eq. (4.60) is regulated through [Pqq(x)]+, and this causes the

divergence to show up as a pole in 1/τ . In addition, there is a presence of a pole 1/ϵ from the

kT → 0 region of the integral in Eq. (4.55). The divergence which is proportional to Pqq(x)

in Eq. (4.60) is also present in the collinear PDF.

The diagrams for the one-loop calculation of the soft function are shown in Fig. (4.3) and

previous methods of calculations for unsubtracted TMD PDF can be applied for evaluations

of diagrams for the soft function. The matrix element for the soft function can be expressed

46



Figure 4.3: The diagrams for the one-loop contribution to the soft function S̃. The double
lines represent the Wilson lines and the dashed lines indicate the one-shell cut. Since the
diagram (a) is scaleless, its contribution to S̃ vanishes in dimensional regularization.

as

MS = 2g20CF ∫
ddk

(2π)d e
ibT .kT

−i
(2k+k− − k2

T + i0)
1

(k+ − i0)(−k− + i0)

= 2g20CF ∫
ddk

(2π)d e
ibT .kT (2π)δ+(k2)

1

k+k−

= g
2
0CF

π ∫
d2−2ϵkT

(2π)d−2
eibT .kT

k2T
∫

dk−

k−
.

(4.63)

Clearly, there are divergences in Eq. (4.63) when k− → 0 and k− → ∞. Since the rapidity

is defined by, yk = (1/2) ln (k+/k−), the limits k− → 0 or k+ → ∞ lead to yk → ±∞, in

other words, the rapidity divergence. Using the methods used for the calculations of the

unsubstrated TMD PDFs, the regulation of this rapidity divergence requires the following η

regulator

Rs(k, τ) = ∣
k+ − k−
ν/
√
2
∣
−τ

w2(τ, ν), (4.64)

where, w(τ, ν) is the bookkeeping parameter of the rapidity divergence, and is related to a

bare parameter by w0 = w(τ, ν)ντ/2. Thus, the regulation with Rs(k, τ) leads to the following

regulated integral

∫
∞

0

dk−

k−
→ w2( ν√

2
)
τ

∫
∞

0

dk−

k−
∣ k

2
⊥

2k−
− k−∣

−τ

= ν
τk−τ⊥

2τ
√
π
Γ(1

2
− τ
2
)Γ(1

2
). (4.65)

The substitution of Eq. (4.65) into Eq. (4.63) yields the following rapidity-regulated soft
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function

S̃
0(1)
q (b⊥, ϵ, τ) =

g20CF

π

ντ

2τ
√
π
Γ(1

2
− τ
2
)Γ(τ

2
)∫

d2−2ϵk⊥
(2π)d−2

eib⊥.k⊥

k2+τ⊥

=g
2
0CF

π

ντ

2τ
√
π
Γ(1

2
− τ
2
)Γ(τ

2
) π

ϵΓ(−ϵ − τ/2)
4π2τΓ(1 + τ/2)b

2ϵ+τ
T ,

(4.66)

where the k⊥ integral is the same as the kT integral of Eq. (4.55). After expanding in ϵ→ 0

and τ → 0 and using Eq. (4.57) the bare rapidity-regulated soft function becomes

S̃
0(1)
q (b⊥, ϵ, τ) =

αs(µ)CF

2π
[ 2
ϵ2
+ 4(1

ϵ
+Lb)(−

1

τ
+ ln µ

ν
) −L2

b −
π2

6
] +O(τ) +O(ϵ). (4.67)

Now, using the calculated unsubtracted TMD PDF and soft function the physical TMD

PDF is

f̃i/H(x,bT , µ, ζ) = lim
ϵ→0
τ→0

Zi
uv(µ, ζ, ϵ)f̃

0(u)
i/H (x,bT , ϵ, τ, xP

+)
√
S̃0(bT , ϵ, τ). (4.68)

The product of f̃
0(u)
q/q

√
S̃0 leads to the cancellation of poles in τ in Eq. (4.68) and the final

bare result of the physical TMD PDF at the one-loop is

˜
f
0(1)
q/q (x,bT , ϵ, ζ) =

αs(µ)CF

2π
[ − (1

ϵ
+Lb)[Pqq(x)]+ + (1 − x)]

+ αsCF

2π
δ(1 − x)[ 1

ϵ2
− L

2
b

2
+ (1

ϵ
+ bb)(

3

2
+ ln µ

2

ζ
) − π

2

12
] +O(ϵ).

(4.69)

There are an infrared (IR) 1/ϵ pole and ultraviolet (UV) 1/ϵ poles in the first and second

lines of Eq. (4.69) respectively, these poles are removed by renormalization. The renormalized

TMD PDF fq/q is obtained by canceling out all UV 1/ϵ poles with the counterterm Zq
UV which

is defined in MS as follows

Zq
UV (µ, ζ, ϵ) = 1 −

αs(µ)CF

2π
[ 1
ϵ2
+ 1

ϵ
(3
2
+ ln µ

2

ζ
)] +O(α2

s). (4.70)

The substitution of Eq. (4.70) and other expressions into Eq. (4.37) lead to the quark-to-
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quark contribution to the renormalized TMD PDF at one-loop as follows

f̃
(1)
q/q (x,bT , µ, ζ) =

αs(µ)CF

2π

× [−(1
ϵ
+Lb)[Pqq(x)]+ + (1 − x) −

L2
b

2
+Lb(

3

2
+ ln µ

2

ζ
) − π

2

12
].

(4.71)

The remaining 1/ϵ pole is just the IR pole. This collinear divergence is also present for the

PDF and serves for matching the TMD PDF onto the PDF for perturbative bT . There is no

dependence of the chosen rapidity regulator in the results of Eqs. (4.69) and (4.71).

4.6 TMD fragmentation functions

This section provides a short introduction to the TMD fragmentation functions (FFs) which

describe the final-state nonperturbative process of a quark that is produced in hard interac-

tion and then fragments into a detected hadron. To better introduce TMD FFs and compare

with with TMD PDFs, one may start with DY process. The factorization theorem in the

DY process, p(PA) + p(PB) → ℓ+(l) + ℓ−(l′) + X, is appropriate when measuring q = l + l′

of ℓ+ℓ− final state at small qT , thus the cross section can be expressed as

dσW

dQdY d2q⊥
∼ ∫ d2bT e

ibT .qT f̃i/p(xa,bT , µ, ζa)f̃ī/p(xb,bT , µ, ζb), (4.72)

where f̃i/p denotes the TMD PDF that characterizes the process of extracting a parton of

flavor i from the hadron p at low transverse momentum. The SIDIS process, e−(l) + p(P )

→ e−(l′) + h(Ph) + X, can be obtained from the DY process by exchanging the incoming

hadron with outgoing hadron, thus q = l − l′. For a small transverse momentum Ph⊥ of the

produced hadron, the factorization is appropriate, thus the cross section can be expressed as

dσW

dxdydzhd2PhT

∼ ∫ d2bT e
ibT .PhT /zh f̃i/p(x,bT , µ, ζa)D̃h/i(zh,bT , µ, ζb). (4.73)
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The TMD PDF f̃i/p in Eq. (4.73) is similar to that in the DY process as it plays the identical

role of extracting a parton from a hadron, however the second TMD PDF was replaced by

the TMD FF D̃h/i which describes the fragmentation of the parton of flavor i into the hadron

h that carries a longitudinal momentum fraction zh.

The bare unsubtracted TMD FF for a parton of flavor i inside a hadron h is expressed

as

∆̃
0(u)
h/i (zh,bT , ϵ, τ, P

+/zh) =
1

4Nczh
Tr∫

db−

2π
∑
X

eib
−(P+/zh)γ+αα′

× ⟨0∣[(W⌟ψ0α
i )(b)]τ ∣h(P ),X⟩⟨h(P ),X∣[(ψ̄0α′

i W⌝)(0)]τ ∣0⟩,
(4.74)

where P denotes the hadron momentum, bµ = (0, b−,bT ), and τ is a rapidity regulator. The

quantity, 1/Nczh, is the normalization factor where Nc is the number of colors. The Wilson

lines W⌟ and W⌝ each represent half of the Wilson line W⊐. The trace runs over color and

spin indices α, α′. The hadron state is just an out-state in the matrix element as indicated

in Eq. (4.74). Since P in Eq. (4.74) has no transverse component, the TMD FF in the

momentum space is defined with respect to the transverse momentum p′T of the quark field

ψ as

∆̃
0(u)
h/i (zh,bT , ϵ, τ, P

+/zh) = ∫ d2p′T e
ip′T .bT∆

0(u)
h/i (zh,−zhp

′
T , ϵ, τ, P

+/zh). (4.75)

Finally, the TMD FF can be expressed in terms of Eq. (4.75) by incorporating the soft

function and the UV renormalization factor as follows

∆̃h/i(z,bT , µ, ζ) = lim
ϵ→0
τ→0

Zi
uv(µ, ζ, ϵ)

∆̃
0(u)
h/i (z,b⊥, ϵ, τ, P +/z)
S̃0(s)(bT , ϵ, τ)

√
S̃0(bT , ϵ, τ), (4.76)

where ζ depends on the rapidity cutoff parameter η̃. Hence, the Fourier transform of

Eq. (4.76) can yield the TMD FF in the momentum space.
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Chapter 5

TMD Evolution

5.1 Importance of resummation

The renormalization group equation (RGE) of a function G(q, µ) which contains ln (q/µ) can

be expressed as

µ
dG(q, µ)
dµ

= −αsG(q, µ), (5.1)

where the anomalous dimension γG is replaced by −αs. Assuming that the µ dependence of

αs is negligible, then the solution to the RGE equation is

G(q, µ) = G(q, µ0)G̃(µ0, µ), G̃(µ0, µ) = exp (αs ln (µ0/µ)), (5.2)

where µ0 is an arbitrary reference scale and G̃(µ0, µ) is the evolution kernel with G̃(µ0, µ0) = 1.

The boundary condition is defined by G at the reference scale µ0, namely, G(q, µ0). The

exponential in G̃(µ0, µ) allows the resummation of the logarithms ln (µ0/µ). In perturbation

theory, if q is a scalar quantity then the boundary term G(q, µ0) can have a logarithmic

structure

G(q, µ0) = 1 + αs ln
q

µ0

+ 1

2
α2
s ln

2 q

µ0

+⋯. (5.3)
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The choice on the reference scale, µ0 = q, eliminates all large logarithms in the boundary

function G. Thus under this particular choice, the boundary function G becomes finite,

G(q, µ0 = q) = 1 +⋯, then the function G(q, µ) can be expressed as

G(q, µ) =(1 +⋯)G̃(µ0 = q, µ)

=1 + αs ln
q

µ0

+ 1

2
α2
s ln

2 q

µ0

+⋯,
(5.4)

in this particular choice, the evolution kernel G̃ is capable of predicting and resumming all

large logarithms in G(q, µ) to all orders in αs. However, this depends on the nature of the

boundary term G(q, µ0) and is usually possible whenever G(q, µ0) is a regular function.

5.2 Resummation through RG evolution

The resummation through RG evolution incorporates naturally a classification of the order

of accuracy

µ
dG(q, µ)
dµ

=γG(q, µ)G(q, µ),

γG(q, µ) = − 2Γcusp(αs(µ)) ln
q

µ
− γG(αs(µ)),

(5.5)

where Γcusp(αs), and γG(αs) are cusp and non-cusp anomalous dimensions respectively. For

µ0 = q, the solution to Eq. (5.5) is expressed as

G(q, µ) =G(q, q) exp(∫
µ

q

dµ′

µ′
γG(k,µ′))

=G(q, q) exp( − 2∫
µ

q

dµ′

µ′
Γcusp(αs(µ′)) ln

q

µ′
− ∫

µ

q

dµ′

µ′
ln (αs(µ′)))

=G(q, q) exp(Γcusp(αs(µ)) ln2 q

µ
+ γG(αs(µ)) ln

q

µ
+⋯),

(5.6)

where (...) stands for higher-order expansion terms in αs. In certain situations, for instance

L = ln (q/µ) ∼ 1/αs, the perturbative expansion in αs of the exponential factor in G(q, µ)

becomes divergent. Then the resummation method plays an important role to resum the
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large logarithms. For the case of L = ln (q/µ) ∼ 1/αs, the expansion of G(q, µ) can be

expressed in the single-logarithmic resummation scheme as

G(q, µ) = G(q, q) exp{Γ0(
αs

4π
)L2 − 2

3
Γ0β0(

αs

4π
)
2

L3 +O(αn
sL

n+1)

+ Γ1(
αs

4π
)
2

L2 + γ0
αs

4π
L − 2

3
Γ0β1(

αs

4π
)
3

L3 +O(αn
sL

n)

+ Γ2(
αs

4π
)
3

L2 + γ1(
αs

4π
)
2

L − 2

3
Γ0β2(

αs

4π
)
4

L3 +O(αn
sL

n−1)},

(5.7)

where βn are the coefficients of the beta function. Each line in Eq. (5.7) corresponds to a

particular order in αs. Using the scaling parameter L ∼ 1/αs , it is obvious that the first line

corresponds to α−1s , the second line corresponds to α0
s, and the third line corresponds to α1

s.

The expansion up to O(αn
sL

n+1) corresponds to a leading-logarithmic (LL) accuracy, the

expansion up to O(αn
sL

n) corresponds to a next-to-leading logarithmic (NLL) accuracy, and

the expansion up to O(αn
sL

n−1) corresponds to a next-to-next-to-leading logarithmic (NNLL)

accuracy. In addition, the boundary term G(q, q) that possesses an expansion in terms of

αs, can be consistently incorporated in the expansion.

The QCD factorization requires two scales q and Q and is only relevant up to power cor-

rections O(q/Q) where q is the resolution scale and Q is the hard scale of the collision.

However, if q ∼ Q the singular logarithms ln (q/Q) are small, thus the resummation is not

necessary and should be turned off for better results. To prove that one can start with the

cross section as follows
dσ

dq
∼1 + αs ln

q/Q
1 + q/Q +⋯

=1 + αs ln
Q

q
− αs ln(1 +

Q

q
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=O(q/Q)

+⋯, (5.8)

where (⋯) stands for additional terms. The logarithms ln (q/Q) can be resummed at all

orders in αs and the logarithm ln (1 + q/Q) is only included as fixed order. Both logarithmic

terms are of similar magnitude if q ∼ Q, and for q/Q ≫ 1, there is a cancellation among
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these two logarithmic terms and with the naive resummation, the cross section of Eq. (5.8)

is expressed as
dσ

dq
∼ exp(αs ln

Q

q
) − αs ln(1 +

Q

q
) +⋯

=1 + αs ln
q/Q

1 + q/Q +
1

2
α2
s ln

2 Q

q
+⋯.

(5.9)

However, there is a cancellation only at O(αs) and hence the resummation should be turned

off at this order of expansion to avoid the inclusion of unnecessary high-order terms. To

achieve that, the reference scale µ0 can be chosen as µ0(q) so that the expression for the

cross section becomes

dσ

dq
∼ exp(αs ln

Q

µ0(q)
) − αs ln(1 +

Q

q
) +⋯

=1 + αs ln
µ0(q)/Q
1 + q/Q +

1

2
α2
s ln

2 Q

µ0(q)
+⋯.

(5.10)

The scale µ0(q) should satisfy the following relations

µ0(q) ∼ q, q ≪ Q,

µ0(q) ∼ Q, q ≥ Q.
(5.11)

This method allows the resummation of all logarithms in the limit, q ≪ Q, but the

resummation is turned off at q ∼ Q to avoid the inclusion of unnecessary terms, in order

words, the O(α2) terms.

5.3 TMD evolution equations

This section provides on overview of the derivation of the TMD evolution equations for the

rapidity and renormalization scales, ζ and µ, respectively. In the CSS scheme [38, 55, 41],

the evolution equations for the TMD PDFs of flavor q are expressed as
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∂ ln f̃i/p(x,bT , µ, ζ)
∂ ln
√
ζ

=K̃(bT , µ), (5.12)

d ln f̃i/p(x,bT , µ, ζ)
d lnµ

=γq(αs(µ), ζ/µ2), (5.13)

dK̃(bT , µ)
d lnµ

= − γK(αs(µ)), (5.14)

where K̃ is the Collins-Soper (CS) kernel, and γq and γK are anomalous dimensions. The

first equation is the rapidity evolution equation for the Collins-Soper scale ζ originating from

regulating rapidity divergences. The last two equations are the usual RG evolution equations

for the renormalization scale µ originating from the UV renormalization. Using the evolution

equations, the relation between the anomalous dimensions γq and γK can be expressed as

∂γq(αs(µ), ζ/µ2)
∂ ln (

√
ζ)

= −γK(αs(µ)). (5.15)

The direct integration of Eq. (5.15) with respect to ζ ,where ζ0 ∼ µ2, yields the following

expression solution

γq(αs(µ), ζ/µ2) = −1
2
γK(αs(µ)) ln

ζ

µ2
+ γq(αs(µ),1), (5.16)

where γK is the anomalous dimension in the differential equation of the SC kernel. Further-

more, the expression of the Collins-Soper kernel, K̃, can be obtained by the integration of

Eq. (5.14) with respect to µ as follows

K̃(bT , µ) = −∫
µ

1/b̄T

dµ′

µ′
γK(αs(µ′)) + K̃(bT ,1/b̄T ), (5.17)

where b̄T =bT /b0, b0 = 2e−γE . The first term directly depends on the SC equation, but

the remaining term arises due to the boundary condition, therefore such term cannot be
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predicted by the SC evolution equation. The solutions of the TMD evolution equations for

TMD PDFs can generically expressed as

f̃i/p(x,bT , µ, ζ) = f̃i/p(x,bT , µ0, ζ0)URG(µ0, µ, ζ0)VRRG(ζ0, ζ,bT , µ), (5.18)

where URG is the contribution of the evolution from a scale µ0 to another scale µ, and VRRG

is the contribution of the evolution from a rapidity scale ζ0 to another scale ζ. Since URG is

the solution obtained by integrating Eq. (5.13) over the renormalization scale µ′, and VRRG

is the solution obtained by integrating Eq. (5.12) over the rapidity scale ζ ′, then the evolved

TMD PDFs can be expressed as follows

f̃i/p(x,bT , µ, ζ) = f̃i/p(x,bT , µ0, ζ0)

× exp{∫
µ

µ0

dµ′

µ′
γq(αs(µ′), ζ0/µ′2)} exp{K̃(bT , µ) ln

√
ζ

ζ0
},

(5.19)

where γq controls the RG evolution between µ0 and µ scales, and K̃ controls the rapidity

evolution between ζ0 and ζ scales. Since the full description of the TMD PDFs requires the

Fourier integration over bT to involve all values of bT , which demands the consideration of

both perturbative and non-perturbative domains of bT , and the existence of large logarithms

from higher order terms in the fixed order perturbation expansion of the CS kernel K̃(bT , µ),

then the standard perturbation approach is not applicable. To deal with this issue, the CSS

formalism utilizes the b∗-prescription function to connect smoothly both perturbative and

non-perturbative domains.

b∗ = b∗(bT ) =
bT√

1 + b2T /b2MAX

, (5.20)

where bMAX is the cutoff. The prescription clearly shows that for large bT , the value of b∗

is bMAX . The value of bMAX is chosen to be ∼ 1 GeV−1. The implementation of the b∗
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prescription allows to express the evolved TMD PDFs as follows

f̃i/p(x,bT , µ, ζ) = f̃i/p(x,b∗, µ, ζ)
f̃i/p(x,bT , µ, ζ)
f̃i/p(x,b∗, µ, ζ)

. (5.21)

For large bT the mismatch between f̃i/p(x,bT , µ, ζ) and f̃i/p(x,b∗, µ, ζ) can be expressed in

terms of functions gj/p(x, bT , bM) and gk(bT , bM) as follows

f̃i/p(x,bT , µ, ζ)
f̃i/p(x,b∗, µ, ζ)

=
f̃i/p(x,bT , µ0, ζ ′0)
f̃i/p(x,b∗, µ0, ζ ′0)

exp

⎧⎪⎪⎨⎪⎪⎩
ln

√
ζ

ζ ′0
(K̃(bT , µ) − K̃(b∗, µ))

⎫⎪⎪⎬⎪⎪⎭

= exp{ − gi/p(x, bT )} exp
⎧⎪⎪⎨⎪⎪⎩
− ln
√

ζ

ζ ′0
gk(bT , bMAX)

⎫⎪⎪⎬⎪⎪⎭
.

(5.22)

Here, the quantities gj/p(x, bT , bMAX) and gk(bT , bMAX) are the nonperturbative universal

functions which do not depend on scales. The nonperturbative part of the Collins-Soper

kernel gk(bT , bMAX) is defined as

gk(bT , bMAX) = K̃(b∗, µ0) − K̃(bT , µ0). (5.23)

And the function gi/p(x, bT ) is related to the intrinsic transverse momentum distribution.

The functions, gj/p(x, bT , bMAX) and gk(bT , bMAX) are independent of ζ and µ scales and

they tend to vanish in the limit, bT → 0. The substitution of Eq. (5.22) and Eq. (5.23) into

Eq. (5.19) allows the evolved TMD PDF can be written as

f̃i/p(x,bT , µ, ζ) =f̃i/p(x,b∗, µ0, ζ0)

× exp
⎡⎢⎢⎢⎢⎣
ln

√
ζ

ζ0
K̃(b∗, µ0) + ∫

µ

µ0

dµ′

µ′
(γq(αs(µ′),1) − ln

√
ζ

µ′
γK(αs(µ′)))

⎤⎥⎥⎥⎥⎦

× exp
⎡⎢⎢⎢⎢⎣
− gi/p(x, bT ) − ln(

√
ζ

ζ ′0
gk(bT , bMAX))

⎤⎥⎥⎥⎥⎦
.

(5.24)
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Perturbative calculations of K̃ and f̃ require the application of the respective RG and RRG

transformations, µ0 → 1/b∗, ζ0 → 1/b2∗, thus Eq. (5.27) can be expressed as

f̃i/p(x,bT , µ, ζ) =f̃i/p(x,b∗, µb∗ , µ
2
b∗
)

× exp
⎡⎢⎢⎢⎢⎣
ln

¿
ÁÁÀ ζ

µ2
b∗

K̃(b∗, µb∗) + ∫
µ

µb∗

dµ′

µ′
(γq(αs(µ′),1) − ln

√
ζ

µ′
γK(αs(µ′)))

⎤⎥⎥⎥⎥⎦

× exp
⎡⎢⎢⎢⎢⎣
− gi/p(x, bT ) − ln(

√
ζ

ζ ′0
gk(bT , bMAX))

⎤⎥⎥⎥⎥⎦
,

(5.25)

where µb∗ = C1/b∗ is the hard scale which is usually utilized to perform perturbative cal-

culations of b∗-dependent quantities, and C1 is a constant whose value is selected to avoid

large logarithms in perturbative methods [41, 56]. For small bT , the TMD PDFs can be

expressed in terms of collinear PDFs using operator product expansion (OPE) as follows

f̃i/p(x,b∗, µb∗ , µ
2
b∗
) =∑

j
∫

1

x

dx̂

x̂
C̃i/j(

x

x̂
, bT , µb∗ , µ

2
b∗
, αs(µb∗))fj/p(x̂, µb∗) +O((mb∗(bT ))p),

(5.26)

where the sum is taken over all flavors j = q, g. The substitution of Eq. (5.26) into Eq. (5.27)

leads to the following expression for the evolved TMD PDF

f̃i/p(x,bT , µ, ζ) =∑
j
∫

1

x

dx̂

x̂
C̃ij(

x

x̂
, bT , µb∗ , µ

2
b∗
, αs(µb∗))fj/p(x̂, µb∗)

× exp
⎡⎢⎢⎢⎢⎣
ln

¿
ÁÁÀ ζ

µ2
b∗

K̃(b∗, µb∗) + ∫
µ

µb∗

dµ′

µ′
(γq(αs(µ′),1) − ln

√
ζ

µ′
γK(αs(µ′)))

⎤⎥⎥⎥⎥⎦

× exp
⎡⎢⎢⎢⎢⎣
− gi/p(x, bT ) − ln(

√
ζ

ζ ′0
)gk(bT , bMAX)

⎤⎥⎥⎥⎥⎦
,

(5.27)

where µb∗ is the renormalization scale for the collinear PDF fj/p. In the CS scheme, the

rapidity divergence is regulated by tilting a space-like gauge link away from the light-cone.

A similar method of tilting is used in the Ji-Ma-Yuan (JMY) scheme, where a time-like

gauge link is tilted away from the light-front direction to regulate the rapidity divergence.
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The off-light-front direction ν of the gauge link introduces a rapidity regulator ζ2 = (ν.P )/ν2.

5.4 Evolution in Soft Collinear Effective Theory

This section provides the TMD PDF evolution equations which are obtained in terms of

RG evolution and rapidity RG evolution equations of beam and soft functions for collinear

and soft modes in the context of SCET. Without loss of generality, we will consider in this

section the DY process.

5.4.1 Evolution equations in SCET

The differential cross section in terms of beam function and soft function for the DY process

can be expressed as

dσW

dQdY d2qT

=H(Q,µ)∫ d2bT e
ibT .qT B̃(xa,bT , µ, ζa/ν2)B̃(xb,bT , µ, ζb/ν2)S̃(bT , µ, ν),

(5.28)

where H is the hard function, B̃ is the beam function, and S̃ is the soft function. Anomalous

dimension for µ and ν evolution equations which are associated with the beam and soft

functions are expressed as

γBµ (µ, ζ/ν2) = −(Z̃B)−1µ
d

dµ
Z̃B(bT , µ, ν, xP ), γSµ (µ,µ/ν) = −(Z̃S)−1µ

q

dµ
Z̃S(bT , µ, ν),

γBv (bT , µ) = −(Z̃B)−1ν
d

dν
Z̃B(bT , µ, ν, xP ), γSν (bT , µ) = −(Z̃S)−1ν

d

dν
Z̃S(bT , µ, ν),

(5.29)

where Z̃B, and Z̃S are the counter-terms for the beam function and soft function respectively.

The expression xP is either equal to xaP +a or xbP −b depending on whether the beam function

depends on xa or xb. Since the hard functionH does not depend on ν, the only one anomalous
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evolution equation is for the scale µ

γHµ = −(ZH)−1µ
d

dµ
ZH(Q,µ), (5.30)

where ZH is the hard function counter-term. The RG and rapidity RG evolution equations

for the beam and soft functions are expressed as

µ
d

dµ
B̂ = γB̂µ (µ, ζ/ν2)B̂, ν

d

dν
B̂ = γB̂ν (bT , µ)B̂, (5.31)

µ
d

dµ
Ŝ = γŜµ (µ,µ/ν)Ŝ, ν

d

dν
Ŝ = γŜν (bT , µ)Ŝ, (5.32)

where B̂ ≡ B̃(x,bT , µ, ζ/ν2), and Ŝ ≡ S̃(bT , µ, ν). And the RG evolution equation for the

hard function H is expressed as

µ
d

dµ
H(Q,µ) = γHµ (Q,µ)H(Q,µ), (5.33)

Since the DY cross section is an observable, there is no dependence on the RG and ra-

pidity RG scales µ, ν, hence such independence yields additional equations for anomalous

dimensions

0 = γHµ (Q,µ) + γSµ (µ,µ/ν) + γBµ (µ, ζa/ν2) + γBµ (µ, ζb/ν2),

0 = γSν (bT , µ) + 2γBν (bT , µ).
(5.34)

An additional significant equation arises due to the commuting properties between µ and ν

derivatives, and can be expressed as

µ
d

dµ
γν = ν

d

dν
γBµ = 2Γ

(g,q)
cusp . (5.35)

The above equation establishes a strong restriction on the beam and soft anomalous dimen-

sions, ensuring the equivalence between RG evolutions along two different paths. Thus, the
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RG evolution becomes path-independent.

5.4.2 Solutions to evolution equations

The RG and RRG solutions are obtained by solving RG and RRG evolutions equations

respectively. The solutions to RG and RRG evolution equations for the beam function B

and the soft function S are expressed as

B = BHUB(µL, µ, ν)ŪB(νH , ν, µL), S = SLUS(µL, µ, ν)ŪS(νL, ν, µL) (5.36)

where BH ≡ B̃(x,bT , µL, ζ/ν2H) and SL ≡ S̃(bT , µL, νL). The functions B and S are de-

rived from their natural scales, where the fixed-order logarithms in their expansions remain

relatively small. The corresponding RG evolution kernels are defined by

UB(µL, µ, ν) = exp [∫
µ

µL

dµ′

µ′
γBµ (µ′, /B)], US(µL, µ, ν) = exp [∫

µ

µL

dµ′

µ′
γSµ (µ′, /S)], (5.37)

where /B = ζ/ν2 and /S = µ′/ν. The corresponding RRG evolution kernels are defined by

ŪB(νH , ν, µ) = exp [∫
ν

νH

dν′

ν′
γBν (bT , µ)], ŪS(νL, ν, µ) = exp [∫

ν

νL

dν′

ν′
γSν (bT , µ)]. (5.38)

The natural scales of the function B are µL, νH , and the natural scales for the function S

are µL, νL. While the beam and soft functions undergo both RG and RRG evolutions, the

hard function undergoes RG evolution only.
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Chapter 6

Simultaneous Extraction of Sivers

function in TMD physics

6.1 Introduction

This chapter is partially based on the paper titled ‘Simultaneous global analysis of the Sivers

Asymmetry in SIDIS, Drell-Yan, and Jet Production’, in preparation to submit to JHEP,

authored by Zhong-Bo Kang, John Terry, and Fidele J. Twagirayezu.

Transverse momentum-dependent distribution functions (TMDs) are crucial ingredients

for understanding the three-dimensional partonic structure of nucleons in momentum space.

TMDs provide non-perturbative information, and thus they are obtained either through

lattice calculations [57, 58] or by global fit of the spin asymmetry data within the framework

of TMD factorization theorems [41, 59, 38, 45, 60, 61, 62]. Due to the intense ongoing effort

to understand the partonic structure of matter, significant effort has been dedicated to

extracting TMDs to enhance our understanding of the internal structure of nucleons [63,

64, 57, 65, 49, 41]. The correlation between the partonic transverse momentum and the

nucleon’s transverse spin is governed by the Sivers function [66, 67], which plays a key role

in probing the contributions of quark and gluon orbital angular momentum (OAM) to the
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nucleon spin [68]. The study of the Sivers function has greatly advanced our understanding of

spin-momentum interactions and QCD factorization theorems [62, 69, 70, 41]. A key feature

of the Sivers function is its process dependence, meaning it varies depending on the hard

scattering process through which it is probed and extracted. This variation stems from the

differences in the initial-state and final-state interactions between the active parton and the

nucleon remnant [71, 72]. A well-known example is the sign flip of the quark Sivers function

between the semi-inclusive deep-inelastic scattering (SIDIS) process to the Drell-Yan (DY)

process. This arises because, in the SIDIS process, the outgoing quark undergoes “final-

state” interactions with the nucleon remnant after the quark-photon interaction, while in

the DY process, the incoming quark experiences “initial-state” interactions with the nucleon

remnant before the quark-antiquark annihilation into a virtual photon [69, 62, 71, 73, 74,

75]. The extraction of the Sivers function presents several challenges. Firstly, experimental

measurements of the Sivers asymmetry are normalized by the unpolarized cross section.

Thus extraction of the Sivers function requires a careful extraction of the unpolarized TMDs.

Modern extractions of the unpolarized TMDs have been performed in for instance [76, 77,

78, 79, 80] where the most precise extractions have utilized data from both SIDIS and DY

production and resummation has been performed up to N4LL accuracy with the exception

of the complete 5 loop cusp anomalous dimension. In [81], a global extraction of the Sivers

function from SIDIS and Drell-Yan data was performed at NLO and NNLL accuracy, while

a NLL extraction was performed in [82]. In [83], a global extraction of the Sivers function

from SIDIS, Drell-Yan lepton pair, and W /Z production processes was performed using

resummation at N3LL using the ζ-prescription. Despite the progress in the perturbative

accuracy used for these extractions, additional experimental data is required to uncover

the behavior of these functions at regions of large x. The second challenge in obtaining

an extraction of the Sivers function is the relatively limited. The previous study for the

first global analysis of the Sivers asymmetry took into consideration experimental data from

SIDIS [13, 84, 9, 10, 11] and from DY collisions [85, 15]. In this study, it was shown that there
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was tension between the STAR measurement and the remaining experimental measurements.

A key requirement for resolving this tension was the introduction of additional experimental

measurements that are sensitive to the Sivers function.

6.2 Sivers Formalism

This section we present the TMD factorization formalism for the Sivers asymmetry in semi-

inclusive deep inelastic scattering (SIDIS), Drell-Yan(DY), W /Z productions and single jet

production in pp collisions. The Sivers formalism in SIDIS is presented in (6.2.1), the Sivers

formalism in DY is presented in (6.2.2), the Sivers formalism in W/Z productions is presented

in (6.2.3), and the AN formalism for single jet production in pp collisions is presented in

(6.2.4) respectively.

6.2.1 Sivers Formalism in SIDIS process

The differential cross section for SIDIS, e(ℓ) + n (P,S⊥)→ e (ℓ′) + h (Ph) +X can be written

in the following form [86, 87]

64



lepton
plane

l

l′

hadron plane

P

Ph

Ph⊥

S⊥
ϕhϕS

q

Figure 6.1: The kinematics for Semi-Inclusive DIS. The exchanged photon carries a mo-
mentum q. The quantity S⊥ is the transverse polarization of the proton, ϕS is the azimuthal
angle between S⊥ and the lepton plane, and ϕh is the azimuthal angle between the hadron
plane and the lepton plane. In this case, the modulation depends on the difference between
azimuthal angles.

dσ

dPS = σ
DIS
0 [FUU + sin(ϕh − ϕs)F sin(ϕh−ϕs)

UT ] , (6.1)

where the phase space dPS = dxB dQ2 dzh d2Ph⊥, the electron-proton center-of-mass (CM)

energy S = (P + ℓ)2 and the exchanged virtual photon momentum q = ℓ′ − ℓ with Q2 = −q2,

and the usual SIDIS kinematic variables are defined as

xB =
Q2

2P ⋅ q , y = Q2

xBS
, zh =

P ⋅ Ph

P ⋅ q . (6.2)

The plane containing the initial and final lepton momentum vectors is termed the lepton

plane, while the momentum vectors of the photon and final state hadron establish the hadron

plane, see Fig. (6.1). The azimuthal angle of the hadron plane with respect to the lepton plane

is designated as ϕh, while the azimuthal angle of the transversely polarized proton spin with
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respect to the lepton plane is designed as ϕs. We utilize the Trento conventions [88] to define

these azimuthal angles. In this expression, σDIS
0 is the leading order (LO) electromagnetic

scattering cross section given by

σDIS
0 = 2πα2

EM

Q4
[1 + (1 − y)2] (6.3)

where αEM is the electromagnetic fine structure constant.

The quantities FUU and F
sin(ϕh−ϕs)
UT in (6.1) represent the spin-independent and spin-

dependent structure functions, respectively. The experimentally measured quantity, the

Sivers asymmetry, A
sin(ϕh−ϕs)
UT , for this process is written in terms of the structure functions

as follows

A
sin(ϕh−ϕs)
UT = F

sin(ϕh−ϕs)
UT

FUU

(6.4)

The structure functions FUU and F
sin(ϕh−ϕs)
UT in the momentum space are expressed as follows

FUU(xB, zh, Ph⊥,Q) =HDIS(Q,µ)CDIS [fD] ,

F
sin(ϕh−ϕs)
UT (xB, zh, Ph⊥,Q) =HDIS(Q,µ)CDIS [− ĥ ⋅ k⊥

M
f⊥1TD]

(6.5)

where the expression of the the hard factor, HDIS(Q,µ), is given in [89, 90] as follows

HDIS(Q,µ) = 1 + αs

π
CF [

3

2
ln(Q

2

µ2
) − 1

2
ln2 (Q

2

µ2
) − 4 + π

2

12
] (6.6)

The shorthand notation utilized in the expressions of structure functions is given by

CDIS [wAB] =∑
q

e2q ∫ d2k⊥d
2p⊥δ

2 (zhk⊥ + p⊥ −Ph⊥)

×w(k⊥,p⊥)Aq/p(xB, k2⊥, µ, ζA)Bh/q(zh, p2⊥, µ, ζB)
(6.7)

for the convolution integrals. The factors, A and B represent the quark distribution function
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and fragmentation function respectively, while eq denotes the fractional electric charge for the

quarks. k⊥ represents the transverse momentum of the quark relative to the nucleon, while

p⊥ is the transverse momentum of the final-state hadron relative to the fragmenting quark.

ĥ = Ph⊥/Ph⊥ is the unit vector that points in the direction of the transverse momentum of the

final-state hadron and M is the mass of the struck nucleon. fq/p(xB, k2⊥, µ, ζ) is the unpolar-

ized TMDPDF, while f⊥
1T,q/p(xB, k2⊥, µ, ζ) is the SIDIS Sivers function and Dh/q(zh, p2⊥, µ, ζ)

is the unpolarized TMDFF. These functions are dependent of µ and ζ which are just the

renormalization and rapidity (Collins-Soper) scales [41], they are utilized to regulate ultra-

violet and rapidity divergences, respectively. Moreover, the rapidity scales obey the relation

ζAζB = Q4 [90, 61, 45, 91] in the TMD region.

The expressions for the structure functions are simplified by going to the b⊥-space, the

Fourier conjugate space to the transverse momentum space. In the b⊥-space, these expres-

sions become

FUU(xB, zh, Ph⊥,Q) =HDIS(Q,µ)∑
q

e2q ∫
∞

0

b⊥ db⊥
2π

× J0 (
b⊥Ph⊥

zh
) fq/p(xB, b⊥, µ, ζA)Dh/q(zh, b⊥, µ, ζB) ,

(6.8)

F
sin(ϕh−ϕs)
UT (xB, zh, Ph⊥,Q) =HDIS(Q,µ)∑

q

e2q ∫
∞

0

b2⊥ db⊥
4π

× J1 (
b⊥Ph⊥

zh
) f1T,q/p(xB, b⊥, µ, ζA)Dh/q(zh, b⊥, µ, ζB).

(6.9)

Here the b⊥-space TMDs are defined as

fq/p(x, b⊥, µ, ζ) =∫ d2k⊥e
−ik⊥⋅b⊥fq/p(x, k2⊥, µ, ζ) (6.10)

Dh/q(z, b⊥, µ, ζ) =∫
d2p⊥
z2

e−ip⊥⋅b⊥/zDh/q(z, p2⊥, µ, ζ) , (6.11)

f⊥αSIDIS
1T,q/p (x, b⊥, µ, ζ) =

1

M ∫ d2k⊥ k
α
⊥ e
−ik⊥⋅b⊥f⊥SIDIS

1T,q/p (x, k2⊥, µ, ζ)

≡(ib
α
⊥
2
) f⊥1T,q/p(x, b⊥, µ, ζ) .

(6.12)
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At small b⊥ where 1/b⊥ ≫ ΛQCD, one can perform an operator product expansion (OPE) of

these functions in terms of their collinear counterparts as follows

fq/p(x, b⊥, µ, ζ) = [Cq←i ⊗ fi/p] (x, b⊥, µ, ζ) , (6.13)

Dh/q(z, b⊥, µ, ζ) =
1

z2
[Ĉi←q ⊗Dh/i] (z, b⊥, µ, ζ) , (6.14)

f⊥1T,q/p(x, b⊥, µ, ζ) = [C̄q←i ⊗ TF i/p](x, b⊥, µ, ζ) , (6.15)

where fi/p(x,µ), Dh/i(z, µ) and TF i/p(x1, x2, µ) are the collinear PDF, FF and the Qiu-

Sterman function, respectively [37, 92, 93]. The operator ⊗ denotes the convolution over the

parton momentum fractions and are given by

[Cq←i ⊗ fi/p] (x, b⊥, µ, ζ) =∫
1

x

dx̂

x̂
Cq←i (

x

x̂
, b⊥, µ, ζ) fi/p (x̂, µ) , (6.16)

for fi/p and likewise for Dh/i. In these expressions, the sum over the index i = (q, g) is

implicit. The convolution in the case of the Sivers function is more complicated, since it

involves two kinematic variables x̂1 and x̂2

[C̄q←i ⊗ TF i/p](x, b⊥, µ, ζ) = ∫
1

x

dx̂1
x̂1

dx̂2
x̂2

C̄q←i(x/x̂1, x/x̂2, b⊥, µ, ζ)TF i/p(x̂1, x̂2, µ) . (6.17)

The C functions in the above equations are the Wilson coefficient functions, and their ex-

pressions at NLO are in Appendix of Ref. [81].

A few remarks are necessary regarding the Sivers function case. At the outset, although

the coefficient function exhibits complexity across various scales µ and ζ, it notably simplifies

under the selection of canonical scales µ =
√
ζ = µb = c0/b, where c0 = 2e−γE and γE denotes

the Euler constant. Such scales are commonly known as the intrinsic scales of the TMDs.

Additionally, there exist diverse conventions for the normalization of the Qiu-Sterman func-

tion. In our approach, we initially adhere to the Trento convention [88] for the quark Sivers

68



function, and subsequently, the convention for the Qiu-Sterman function ensures that the

coefficient C̄ function in Eq.(6.15) simplifies to a straightforward delta function at lead-

ing order. Our choice aligns with the concept of the first transverse moment of the Sivers

function [71, 94].

f
⊥ (1)
1T q/p(x,Q) = −

1

2M
TF q/p(x,x,Q) . (6.18)

where M is the nucleon mass. The operator ⊗ in the above equations represents the convo-

lution over the parton momentum fractions and are given by

[Cq←i ⊗ fi/p] (x, b⊥, µ, ζ) =∫
1

x

dx̂

x̂
Cq←i (

x

x̂
, b⊥, µ, ζ) fi/p (x̂, µ) , (6.19)

for fi/p and likewise for Dh/i where i = {q, g}. The sum over the index i is implicit. For the

Sivers function, the convolution is given by

[C̄q←i ⊗ TF, i/p](x, b⊥, µ, ζ) = ∫
1

x

dx̂1
x̂1

dx̂2
x̂2

C̄q←i(x/x̂1, x/x̂2, b⊥, µ, ζ)TF, i/p(x̂1, x̂2, µ) . (6.20)

It is important to realize that the C-function for the Sivers function is in general complex

since it involves two momentum fractions x1 and x2. However, it reduces to a simple form

at the nominal scales µi =
√
ζi = µb, where the convolution reduces to a single convolution

and one depends on the diagonal part of the ETQS function, TF, q/p(x,x,µb), at the scale

µb. The C-functions in the above equations are the Wilson coefficient functions, and their

expressions at NLO are found in Ref. [81].

Finally, in the large b⊥ region where b⊥ ≳ 1/ΛQCD, the TMD evolution extends into the

non-perturbative domain. To take into account the non-perturbative contribution, we adopt

the conventional b∗-prescription [40]

b∗ = b⊥/
√
1 + b2⊥/b2MAX , (6.21)
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with bMAX = 1.5 GeV−1. With the b∗ prescription, the resulting expressions for the structure

functions are written as follows

FUU(xB, zh, Ph⊥,Q) =HDIS(Q,Q)∫
∞

0

db⊥b⊥
2π

J0 (b⊥q⊥)∑
q

e2q (6.22)

× [Cq←i ⊗ fi/p] (xB, b∗, µb∗ , µ
2
b∗
) 1

z2h
[Ĉj←q ⊗Dh/j] (zh, b∗, µb∗ , µ

2
b∗
)

× exp [ − 2Spert(b∗, µb∗ , µ
2
b∗
,Q,Q2) − Sf

NP(xB, b⊥,Q0,Q) − SD
NP(zh, b⊥,Q0,Q)] ,

F
sin(ϕh−ϕs)
UT (xB, zh, Ph⊥,Q) =HDIS(Q,Q)∫

∞

0

db⊥ b2⊥
4π

J1 (b⊥q⊥)∑
q

e2q (6.23)

× [C̄q←i ⊗ TF, i/p](xB, b∗, µb∗ , µ
2
b∗
) 1
z2h
[Ĉj←q ⊗Dh/j] (zh, b∗, µb∗ , µ

2
b∗
)

× exp [ − 2Spert(b∗, µb∗ , µ
2
b∗
,Q,Q2) − Ss

NP(xB, b⊥,Q0,Q) − SD
NP(zh, b⊥,Q0,Q)] ,

where q⊥ = −Ph⊥/zh with q⊥ = ∣q⊥∣, µb has been substituted with µb∗ = b0/b∗, and Q0 denotes

the reference scale of the TMDs. The functions Sf
NP, S

D
NP, and S

s
NP represent the respective

non-perturbative Sudakov form factors for the unpolarized TMDPDF, TMDFF, and the

Sivers function which will be elaborated upon in the subsequent section.

It is important to emphasize that the ETQS function, TF, q/p(x,x,µ), is an important

ingredient in the above TMD evolution formalism through the OPE procedure for the quark

Sivers function, as encoded in the spin-dependent structure function F
sin(ϕh−ϕs)
UT . Since the

TSSA for single inclusive jet production in proton-proton collisions crucially depends on the

ETQS function, this allows us to perform a combined fit of the TSSA for single jet production

within the collinear factorization at twist-three level and the Sivers asymmetry within the

TMD factorization.

6.2.2 Sivers Formalism in Drell-Yan process

For Drell-Yan lepton pair production in transversely polarized proton-proton collisions,

p(PA,S⊥)+p(PB)→ [γ∗(q)→]ℓ+ℓ− +X, the differential cross section with the relevant terms

70



is given in [95, 74, 96, 97] by the expression

dσ

dPS = σ
DY
0 [WUU + sin(ϕq − ϕs)W sin(ϕq−ϕs)

UT +⋯] , (6.24)

where dPS = dQ2 dy d2q⊥, y stands for the rapidity of the lepton pair while q⊥ and Q repre-

sents the transverse momentum and invariant mass of the virtual photon, respectively.

hadron
plane

lepton
plane

S⊥

PA

PB

ϕS

ϕq

q⊥

z x

y γ∗(q)

l+
l−

Figure 6.2: The diagram for the Drell-Yan vector boson production in collisions of hadrons
A and B. The transversely polarized hadron A is moving in the +z-direction, while the
unpolarized hadron B is along the -z-direction. The transverse momentum q⊥ of the vector
boson is represented by a dotted line

The expression for the leading-order electromagnetic scattering cross section is as follows

σDY
0 = 4πα2

EM

3SQ2NC

, (6.25)

where S = (PA + PB)2 is the center of mass energy squared and NC = 3 is the number of

color. We study the Drell-Yan production in the center-of-mass frame of the incoming proton

beams. The polarized proton moves along the +z axis, while the transverse spin vector of

the proton S⊥ and the transverse momentum of the virtual photon q⊥ have azimuthal angles

ϕs and ϕq, respectively.

As usual,WUU andW
sin(ϕq−ϕs)
UT represent the unpolarized and transversely polarized struc-
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ture functions, respectively. The Sivers asymmetry in Drell-Yan processes can be formulated

using the structure function as follows

A
sin(ϕq−ϕs)
UT = W

sin(ϕq−ϕs)
UT

WUU

. (6.26)

In the TMD formalism, these structure functions are given by the following expressions

WUU(xa, xb, q⊥,Q) =HDY(Q,µ)CDY [f f] , (6.27)

W
sin(ϕq−ϕs)
UT (xa, xb, q⊥,Q) =HDY(Q,µ)CDY [ q̂⊥ ⋅ ka⊥

M
f⊥1T f] . (6.28)

For Drell-Yan process, the above convolution in the structure functions is expressed as follows

CDY [wAB] =∑
q

e2q ∫ d2ka⊥d
2kb⊥δ

2 (ka⊥ + kb⊥ − q⊥)w(ka⊥,kb⊥)

×Aq/A(xa, k2a⊥, µ, ζA)Bq̄/B(xb, k2b⊥, µ, ζB) . (6.29)

Here, xa and xb represent the momentum fractions of the hadrons carried by the quarks, and

they are given by

xa =
Q√
S
ey , xb =

Q√
S
e−y . (6.30)

In this process, the standard Feynman-x can be expressed in terms of xa,b as xF = xa − xb, a

relation that will be referenced in the subsequent section. Additionally, ka⊥ and kb⊥ represent

the transverse momenta of the partons relative to their respective nucleons. The expression

of the hard function is provided in [45] by

HDY(Q,µ) = 1 + αs

π
CF [

3

2
ln(Q

2

µ2
) − 1

2
ln2 (Q

2

µ2
) + 7

12
π2 − 4] . (6.31)

At this point, it is crucial to reiterate that there is a sign flip between the Sivers function
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f⊥1T for the Drell-Yan process and its counterpart in SIDIS:

f⊥DY
1T (x, k2⊥, µ, ζ) = −f⊥SIDIS

1T (x, k2⊥, µ, ζ) . (6.32)

This will lead to slightly different definition for the Sivers function in the b⊥-space

f⊥αDY
1T,q/p (x, b⊥, µ, ζ) =

1

M ∫ d2k⊥ k
α
⊥ e
−ik⊥⋅b⊥f⊥DY

1T,q/p(x, k2⊥, µ, ζ) ≡ (−
ibα⊥
2
) f⊥1T,q/p(x, b⊥, µ, ζ).

Including the Sudakov factor, we have the following expressions for the b⊥-space structure

functions

WUU(xa, xb, q⊥,Q) =HDY(Q,Q)∫
db⊥ b⊥
2π

J0(b⊥q⊥)∑
q

e2q (6.33)

× [Cq←i ⊗ fi/A] (xa, b∗, µb∗ , µ
2
b∗
) [Cq̄←j ⊗ fj/B] (xb, b∗, µb∗ , µ

2
b∗
)

× exp [ − 2Spert(b∗, µb∗ , µ
2
b∗
,Q,Q2) − Sf

NP(xa, b⊥,Q0,Q) − Sf
NP(xb, b⊥,Q0,Q)] ,

W
sin(ϕq−ϕs)
UT (xa, xb, q⊥,Q) =HDY(Q,Q)∫

db⊥ b2⊥
4π

J1(b⊥q⊥)∑
q

e2q (6.34)

× [C̄q←i ⊗ TF, i/p](xa, b∗, µb∗ , µ
2
b∗
)[Cq̄←j ⊗ fj/B] (xb, b∗, µb∗ , µ

2
b∗
)

× exp [ − 2Spert(b∗, µb∗ , µ
2
b∗
,Q,Q2) − Ss

NP(xa, b⊥,Q0,Q) − Sf
NP(xb, b⊥,Q0,Q)] .

6.2.3 Sivers Formalism in W/Z production

The production of W /Z bosons in proton-proton collisions closely resembles that of virtual-

photon production. Here, the hard scale Q is defined as the mass of the vector boson

produced, denoted Q = MW,Z . The differential cross-section expression for this process is

provided as follows

dσV
dPS = σ

V
0 [WUU,V + sin(ϕq − ϕs)W sin(ϕq−ϕs)

UT,V ] , (6.35)
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where the phase space dPS = dy d2q⊥ and V = W, Z. The leading-order scattering cross

sections are given by

σW
0 =
√
2πGFM2

W

SNC

, (6.36)

σZ
0 =
√
2πGFM2

Z

SNC

, (6.37)

where GF is the Fermi weak coupling constant. On the other hand, the structure functions

are given by

WUU,V (xa, xb, q⊥,Q) =HDY(Q,Q)∫
db⊥ b⊥
2π

J0(b⊥q⊥)∑
q,q′
e2qq′,V (6.38)

× [Cq←i ⊗ fi/A] (xa, b∗, µb∗ , µ
2
b∗
) [Cq′←j ⊗ fj/B] (xb, b∗, µb∗ , µ

2
b∗
)

× exp [ − 2Spert(b∗, µb∗ , µ
2
b∗
,Q,Q2) − Sf

NP(xa, b⊥,Q0,Q) − Sf
NP(xb, b⊥,Q0,Q)] ,

W
sin(ϕq−ϕs)
UT,V (xa, xb, q⊥,Q) =HDY(Q,Q)∫

db⊥ b2⊥
4π

J1(b⊥q⊥)∑
q,q′
e2qq′,V (6.39)

× [C̄q←i ⊗ TF, i/p](xa, b∗, µb∗ , µ
2
b∗
)[Cq′←j ⊗ fj/B] (xb, b∗, µb∗ , µ

2
b∗
)

× exp [ − 2Spert(b∗, µb∗ , µ
2
b∗
,Q,Q2) − Ss

NP(xa, b⊥,Q0,Q) − Sf
NP(xb, b⊥,Q0,Q)] ,

where we have

e2qq′,W = ∣Vqq′ ∣2 , e2qq′,Z = (V 2
q +A2

q) δqq′ . (6.40)

In this context, ∣Vqq′ ∣2 represents the Cabibbo-Kobayashi-Maskawa (CKM) matrix, while Vq

and Aq denote the vector and axial couplings of the Z boson to a flavor quark q. Similarly

to Eq. (6.26) discussed in the preceding section, the asymmetry can be expressed as a ratio

of these structure functions in an analogous way.
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6.2.4 Sivers Formalism in AN single jet production in pp collisions

Consider a single-inclusive jet production from transversely polarized proton-proton p↑ p

collisions

p(P1,S⊥) + p(P2)→ jet(PJ) +X, (6.41)

where the momentum of the incoming transversely polarized proton is denoted by P1 with

a transverse polarization vector given by S⊥. The momenta of the unpolarized proton and

the final jet produced are denoted by P2 and PJ , respectively. The energy of the center

of mass is defined as S = (P1 + P2)2. In the center-of-mass frame of the incoming proton

beams where P1 (P2) moves along the +z (−z) direction, we define ϕS and ϕJ as azimuthal

angles for the spin vector S⊥ and the transverse momentum of the jet P⊥, respectively. A

convenient choice of frame is illustrated in Fig. (6.3), where we introduce the so-called the

reaction plane, which is formed by the incoming proton momenta and the final state jet axis.

In this frame, one has ϕJ = 0.

P1 P2

S⊥

ϕS

z

y x

jet

Figure 6.3: Illustration for single inclusive jet production in transversely polarized proton-
proton collisions, p(P1,S⊥) + p(P2) → jet(PJ) +X. The azimuthal angle of the transverse
spin vector, S⊥, with respect to the reaction plane is denoted by ϕS.

The differential cross section for single-inclusive jet production for transversely polarized
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p↑ p collisions is given by

EJ
dσ(S⊥)
d3PJ

= EJ
dσ

d3PJ

+ sin (ϕS − ϕJ)EJ
d∆σ

d3PJ

, (6.42)

where the first term on the right hand side of this expression is the spin-averaged cross section,

and the second term is a spin-dependent cross section. Within the collinear factorization

formalism [98], the spin-averaged cross section at the leading order can be written as

EJ
dσ

d3PJ

= α
2
s

S
∑
a,b
∫

dxa
xa

dxb
xb
fa/p(xa, µ)fb/p(xb, µ)HU

ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û) , (6.43)

where fa,b/p are the collinear parton distribution functions (PDFs) with xa and xb the mo-

mentum fractions of the proton carried by the partons. On the other hand, HU
ab→c are the

well-known leading-order (LO) hard functions for the unpolarized process, which are given,

for example, in [99, 74]. The strong coupling constant is denoted by αs, and ŝ, t̂, û are the

standard partonic Mandelstam variables.

On the other hand, the second term on the right-hand side of Eq. (6.42) is the spin-

dependent contribution. Within the collinear factorization at twist-three level [100], the

spin-dependent cross section can be written as

EJ
d∆σ

d3PJ

= − PJ⊥
α2
s

S
∑
a,b
∫

dxa
xa

dxb
xb
fb/p(xb, µ)

1

û
HSivers

ab→c (ŝ, t̂, û)δ(ŝ + t̂ + û)

× [TF,a/p(xa, xa, µ) − xa
d

dxa
TF,a/p(xa, xa, µ)] . (6.44)

Here TF,a/p(xa, xa, µ) is the ETQS function that is often referred to as the quark-gluon-

quark correlator inside the proton. HSivers
ab→c is the hard function for the polarized case, which

takes into account the initial-state and final-state interactions, and they can be written as

76



follows [100, 101]

HSivers
ab→c (ŝ, t̂, û) =H I

ab→c(ŝ, t̂, û) +HF
ab→c(ŝ, t̂, û) (1 +

û

t̂
) , (6.45)

whereH I
ab→c andH

F
ab→c incorporates the initial-state and final-state interactions, respectively.

Finally, the transverse single spin asymmetry AN for the single inclusive jet production

is defined as the ratio of the spin-dependent and spin-averaged cross sections

AN = EJ
d∆σ

d3PJ

/EJ
dσ

d3PJ

. (6.46)

Since EJdσ/d3PJ = dσ/dηjetd2P⊥, the jet asymmetry would be a function of rapidity ηjet

and transverse momentum P⊥. Another commonly used variable, xF = 2Pz/
√
S, called the

Feynman-x, is related to ηjet and P⊥ as follows

xF =
P⊥√
S
(eηjet − e−ηjet) . (6.47)

6.3 Results

In this section we present the results of the simultaneous global analysis of the Sivers asym-

metries in SIDIS, DY lepton pair, andW /Z production, both with and without the inclusion

of jet AN data. We begin by detailing the non-perturbative parametrization used in our the-

oretical framework, followed by an explanation of our fitting procedure. Finally, we discuss

the impact of jet AN data on the Sivers asymmetries and the extracted Sivers functions.

6.3.1 Non-perturbative parametrization

The fitting is carried out at NLO+NNLL accuracy as described in Ref. [81], where we use

the following non-perturbative parametrization for the unpolarized TMD PDFs and TMD
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FFs

U f
NP(x, b⊥, ζ0, ζ) = exp(−g

f
1 b

2
⊥ −

g2
4
ln
ζ

ζ0
ln
b⊥
b∗
) ,

UD
NP(z, b⊥, ζ0, ζ) = exp(−gD1

b2⊥
z2
− g2

4
ln
ζ

ζ0
ln
b⊥
b∗
) ,

(6.48)

with the values of g1 and g2 given by

gf1 = 0.106 GeV2, gD1 = 0.042 GeV2, g2 = 0.84 . (6.49)

To describe the COMPASS Drell-Yan production in π+p scattering, we use gf1 = 0.082 GeV2

for the pion beam [102] and use collinear pion PDFs in [103]. For numerical calculations,

the HERAPDF20 NLO VAR parametrization [104] was utilized for the proton PDFs. The

DSS14 parametrization [105] was utilized for the collinear pion FFs. In addition, the DSS17

parametrization [106] was utilized for the collinear kaon FFs. And for unidentified charged

hadrons, the collinear FF could be viewed as the sum of the collinear pion FF and collinear

kaon FF [77].

On the other hand, the non-perturbative parametrization of the Sivers function is

U
f⊥1T
NP (z, b⊥, ζ0, ζ) = exp(−gT1 b2⊥ −

g2
4
ln
ζ

ζ0
ln
b⊥
b∗
) . (6.50)

Note that the term written in terms of g2 is universal. In this case, gT1 gives the information

about the width of the Sivers function, and it will be a fit parameter. The ETQS function

TF, q/p(x,x,µ0) is parametrized in terms of the unpolarized collinear PDF at an initial scale

µ0 [47]

TF, q/p(x,x,µ0) = Nq

(αq + βq)(αq+βq)

α
αq
q β

βq
q

xαq(1 − x)βq fq/p(x,µ0) . (6.51)

To obtain the ETQS function at other scale µ, we use the diagonal piece as an approximation
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in its evolution equation [74, 107, 108, 109, 110, 111, 112, 113, 114]

dTF, q/p(x,x,µ)
d lnµ2

= αs(µ2)
2π

[P T
q←q ⊗ TF, q/p](x,µ) , (6.52)

where P T
q←q is the quark to quark splitting (kernel) function

P T
q←q(x) = CF [

1 + x2
(1 − x)+

+ 3

2
δ(1 − x)] − η δ(1 − x) . (6.53)

The fitting was performed with η = 0. Finally, the fit parameters are Nq, αq, and βq, where

q stands for quark flavors, q={u, d, s}. We choose Nu, Nd, Ns, Nū, Nd̄, Ns̄, αu, αd, βu, βd,

gT1 , along with αsea and βsea for ū, d̄, s, s̄. In total, there are 13 fit parameters.

6.3.2 Fitting procedure

To proceed with the fit, we utilize the MINUIT package to minimize χ2

χ2({a}) =
N

∑
i=1

Ni

∑
j=1

(Tj({a}) −Ej)2
(∆Ej)2

, (6.54)

for i = 1, ..N data sets each containing Ni data points. Experimental measurement of each

point is Ej, and the experimental uncertainty is ∆Ej. The theoretical estimate Tj depends on

a set of parameters {a} which are just fit parameters. We take into account both statistical

and systematic uncertainties in quadrature. The uncertainty band is generated by following

the replica method [47, 115, 116]. We generate 200 replicas and perform the fit on both

noisy and noise-free datasets, resulting in 201 sets of fit parameters. Using these 201 sets

of parameters, we calculate the asymmetry for each data point and other observables. To

determine the uncertainty band at each point, we select the central (middle) 68% of the 200

replicas.
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6.3.3 Impact of jet data on the Sivers function

In this section, we present our global extraction of the Sivers and ETQS functions by fitting

the Sivers asymmetry from various datasets, along with the jet AN data. The datasets

include SIDIS measurements from JLab on a neutron target [11], recent HERMES data [14]

with three-dimensional kinematic binning for charged pion production on a proton target,

and COMPASS data on both proton [9] and deuteron targets [10]. We also incorporate DY

lepton pair data from the COMPASS collaboration [12] andW /Z boson production data from

RHIC [15, 16]. The jet AN data are provided by the STAR [7] and AnDY [8] collaborations

at RHIC. Additionally, we include previous HERMES SIDIS data on π0 production [13], as

the three-dimensional binning is only available for charged pions. The datasets used in our

fit are summarized in Table (6.1).

We apply the same kinematic cuts as described in Ref. [47]: q⊥/Q < 0.75, Ph⊥ < 1 GeV,

and zh < 0.7. The jet AN data covers a wide range of xF , providing additional constraints

on the quark Sivers function in the large-x region. In the following, we analyze the impact

of including the jet AN data on the extraction of the Sivers function. To this end, we

perform two separate fits: one without the jet AN data, referred to as the ‘SIDIS+DY’ fit,

which consists of Sivers asymmetry data from SIDIS, DY lepton pair production, and W /Z

production; and another, the ‘SIDIS+DY+jet’ fit, which incorporates the jet AN data from

RHIC.

In Table. (6.1), we present the χ2/dof for each of the sets as a well as the χ2/dof of all

sets of the SIDIS+DY+jet data. It can be seen that there is an excellent agreement between

the theoretical model and the experiment with a global χ2/dof = 1.145. Next, we will start

detailing and interpreting our results.

Even though the global χ2/dof is already very good, Table. (6.2) shows that a significantly

improved global χ2/dof= 1.047 is achieved if the AnDY jet data is not included in the fit.

And the STAR 200 and STAR 500 jet data yield χ2/Ndata = 1.445, and χ2/Ndata = 0.645

respectively. Therefore, the theoretical model is more compatible with STAR jet data than
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AnDY jet data.
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Collab Ref Process Ndata χ2/Ndata

JLAB [11]
lN → lπ+X 4 0.807

lN → lπ−X 4 1.446

HERMES
[14]

lp→ lK−X 38 1.292

lp→ lK+X 40 0.992

lp→ lπ−X 38 0.995

lp→ lπ+X 40 1.186

[13] lp→ lπ0X 4 1.482

COMPASS

[10]

ld→ lK0X 7 0.780

ld→ lK−X 11 1.389

ld→ lK+X 13 0.701

ld→ lπ−X 11 0.788

ld→ lπ+X 12 0.842

[9]
lp→ lh−X 41 1.058

lp→ lh+X 42 0.772

COMPASS (Drell-Yan) [12] π−p→ γ∗X 15 0.588

RHIC (W /Z)
[15]

pp→W +X 8 2.135

pp→W −X 8 1.102

pp→ Z0X 1 0.246

[16] pp→ Z0X 1 0.862

RHIC (jet)
[7]

STAR 200: pp→ jetX 9 2.217

STAR 500: pp→ jetX 9 0.716

[8] AnDY 500: pp→ jetX 5 4.885

Total 361 1.145

Table 6.1: The table presents the experimental data used in our ‘SIDIS+DY+jet’ fit,
showing the χ2/Ndata for each dataset. The last number (at the bottom) in the right column
is the global χ2/dof . The total number of fitted data points after the kinematic cut is 361.
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Figure 6.4: The result illustrates the impact of jet AN data. The fit results with and
without jet AN data are compared to STAR measurements at

√
s = 200 GeV and

√
s = 500

GeV [7], as well as AnDY measurements at
√
s = 500 GeV [8]. For each case, the result is

plotted as a function of xF . The π−p → γ∗X and pp → W /ZX processes are considered as
DY process.
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Collab Ref Process Ndata χ2/Ndata

JLAB [11]
lN → lπ+X 4 0.711

lN → lπ−X 4 0.799

HERMES
[14]

lp→ lK−X 38 1.264

lp→ lK+X 40 1.021

lp→ lπ−X 38 0.951

lp→ lπ+X 40 1.153

[13] lp→ lπ0X 4 1.635

COMPASS

[10]

ld→ lK0X 7 0.619

ld→ lK−X 11 1.742

ld→ lK+X 13 1.230

ld→ lπ−X 11 0.793

ld→ lπ+X 12 0.856

[9]
lp→ lh−X 41 0.956

lp→ lh+X 42 0.786

COMPASS (Drell-Yan) [12] π−p→ γ∗X 15 0.219

RHIC (W /Z)
[15]

pp→W +X 8 2.246

pp→W −X 8 1.097

pp→ Z0X 1 0.208

[16] pp→ Z0X 1 0.862

RHIC (jet)
[7]

STAR 200: pp→ jetX 9 1.445

STAR 500: pp→ jetX 9 0.645

Total 356 1.074

Table 6.2: The table presents the experimental data used in our fit with jet A
(∗)
N data only,

showing the χ2/Ndata for each dataset and the global χ2/dof . The total number of fitted
data points after the kinematic cut is 356. The symbol (∗) indicates that the jet AN data
consists of STAR data only.
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Figure 6.5: The comparison of the fit result without jet A
(∗)
N data with the fit result with

jet A
(∗)
N data for SIDIS measurement for h+ [9]. In both cases, the results are plotted for

different hard scale intervals as a function of xB, zh, and Ph⊥. The symbol (∗) indicates that
the jet AN data consists of STAR data only.
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Figure 6.6: The comparison of the fit result without jet A
(∗)
N data and the fit result with

jet A
(∗)
N data for SIDIS measurement for h− [9]. In both cases, the results are shown for

different hard scale intervals as a function of xB, zh, and Ph⊥. The symbol (∗) indicates that
the jet AN data consists of STAR data only.
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(∗)
N data with the fit result with
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N data for SIDIS measurements [10] for π+, π−, K+, K− and K0. In both cases, the

results are plotted as a function of xB, zh, and Ph⊥. The symbol (∗) indicates that the jet
AN data consists of STAR data only.
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Figure 6.10: The comparison of the fit result without jet A
(∗)
N data with the fit result with

jet A
(∗)
N data for SIDIS measurements [13] for π0. In both cases, the results are plotted as a

function of xB, zh, and Ph⊥. The symbol (∗) indicates that the jet AN data consists of STAR
data only.
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Figure 6.12: The comparison of the fit result without jet A
(∗)
N data with the fit result with

jet A
(∗)
N data for HERMES π− measurement [14]. For both cases, the results are shown for

different Ph⊥- and z-intervals as a function of x. The symbol (∗) indicates that the jet AN

data consists of STAR data only.
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Figure 6.15: The first moment of the sivers
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(∗+A)
N data) as a

function of x.

Figure (6.4) shows the AN for the fit result without jet AN data and the fit result with

jet AN data in comparison with RHIC data at 200 and 500 GeV for different ranges of jet

rapidity ηjet and mean jet rapidity ⟨ηjet⟩. This involves STAR measurement at
√
s = 200

GeV,(3.0 < ηjet < 3.5) and
√
s = 500 GeV, (3.4 < ηjet < 3.7) and AnDY measurement at

√
s

= 500 GeV, (⟨ηjet⟩ = 3.31). It can be seen that the fit result with jet AN data agree very

well with RHIC data for each center-of-mass energy. In addition, the comparison of fit result
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Figure 6.16: The comparison of the ratio of uncertainty of first moment of the Sivers
function with jet A

(∗)
N data and the ratio of uncertainty of the first moment of the Sivers

function without jet A
(∗)
N data. In both cases, the results for u- and d-quarks are plotted as

function of x.

without jet AN data with the fit result with jet AN data shows that the inclusion of jet AN

data has a tendency to reduce the uncertainty.

Table (6.3) shows the values for fit parameters from both fit with and without jet AN

along with the corresponding χ2/dof . The uncertainties are obtained by selecting only 68 %

of replicas among 201 sets of parameters. Table (6.3) shows that χ2/dof for the fit without

jet AN data is slightly less than χ2/dof for the fit with jet AN data.

Figures (6.5), and (6.6) show the plots of the Sivers asymmetry for different hard scale

intervals, 1 < Q2 < 4, 4 < Q2 < 6.25, 6.25 < Q2 < 16, and 16 < Q2 < 81 GeV2 for the fit

without jet A
(∗)
N data and the fit with jet A

(∗)
N data. Figure (6.5) shows the fit result for the

production of hadron h+, and Figure (6.6) shows the fit result for the production of hadron

h−. For each interval, the asymmetry is plotted as a function of the momentum fractions

xB, zh, and hadron transverse momentum Ph⊥. While there is a slight change attributed

to the jet A
(∗)
N data, in both cases, the results show that the fitted asymmetry describe the

experimental data very well.

Figure (6.7) shows the plots of the Sivers asymmetry for the hadron production of π+ ,

π−, K+, K−, and K0 for both the fit without jet A
(∗)
N data and the fit with jet A

(∗)
N data.
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SIDIS+DY SIDIS+DY+jet

Nu = 0.068+0.015−0.005 GeV Nu = 0.064+0.024−0.074 GeV

Nd =−0.128+0.025−0.091 GeV Nd =−0.267+0.290−0.063 GeV

Ns = 0.251+0.060−0.147 GeV Ns = −0.112+0.002−3.815 GeV

Nū =−0.088+0.060−0.202 GeV Nū = 0.017+2.706−0.101 GeV

Nd̄ =−0.136+0.078−0.032 GeV Nd̄ = −0.076+0.634−0.771 GeV

Ns̄ = 0.044+0.236−0.455 GeV Ns̄ = 1.200+0.047−0.203 GeV

αu = 0.832+0.132−0.178 αu = 1.323+1.817−0.702

αd = 1.636+0.620−0.922 αd = 1.206+1.053−0.092

βu = 2.633+1.353−1.092 βu = 4.067+0.440−4.563

βd = 7.397+2.519−3.998 βd = 1.709+1.020−0.175

αsea = 0.510+0.395−0.010 αsea = 1.002+0.187−0.065

βsea = 0.005+0.197−0.031 βsea = 0.595+0.481−0.017

gT1 = 0.024+0.085−0.014 GeV2 gT1 = 0.085+0.254−0.154 GeV2

χ2/dof = 1.017 χ2/dof = 1.145

Table 6.3: Summary of the results for the fitted parameters and χ2/dof . From left, the
first column shows the result from the fit without jet AN data, and the second column shows
the result from the fit with jet AN data. The π−p → γ∗X and pp → W /ZX processes are
considered as DY process.

For each hadron, the asymmetry is plotted as a function of the momentum fractions xB, zh,

and hadron transverse momentum Ph⊥. Similar to Figures (6.5) and (6.6), the comparison

between the two cases shown in Figure (6.7) also indicates a slight change attributed to the

jet A
(∗)
N data. In both cases, the fitted asymmetry describes the experimental data very well.

Figure (6.8) shows the plots of the Sivers asymmetry for π−, and π+ for the fit without

jet A
(∗)
N data and the fit with jet A

(∗)
N data. The experimental data for the production of

π− and π+ was obtained using the neutron target. In both cases, the results are plotted as

function of the momentum fraction xB. The comparison between the fit result without jet

A
(∗)
N data and the fit result with jet A

(∗)
N data shows a difference that is attributed to the jet
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A
(∗)
N data.

Figure (6.9) shows the plots of the Sivers asymmetry for the fit without jet A
(∗)
N data

and the fit with jet A
(∗)
N data. In both cases, the results are plotted as function of transverse

momentum qT , invariance mass Q, Feynman variable xF=xπ − xN , momentum fraction xN

in the nucleon target, and momentum fraction xπ in the pion target respectively. The effect

of jet A
(∗)
N generates a slight difference, but the results from both cases show that the fitted

asymmetry agrees with the experimental data very well.

Figure (6.10) shows the plot of the Sivers asymmetry for π0 production for the fit without

the inclusion of jet A
(∗)
N data and the fit with jet A

(∗)
N data. Both fit results are shown as

function of xB, zh, and Ph⊥. The comparison shows that both fit results agree very well with

the experiment result. The jet A
(∗)
N data induces a change but the impact is easily noticeable

for the fit results as function of Ph⊥.

Figures (6.11), and (6.12) show the plots of the Sivers asymmetries for π+, and π− pro-

ductions for the fit without jet A
(∗)
N data and the fit with jet A

(∗)
N data. For both cases, the

fit results are shown for different Ph⊥- and z-interval ranges as a function of x. In both case,

the results show that the fitted asymmetry describes the experimental data very well. In

addition, the comparison shows a difference that is attributed to the effect of the jet A
(∗)
N

data. This difference becomes more noticeable in the large z-region.

Figure (6.13) shows the plots of the A
(∗)
N asymmetry for W −, W +, and Z vector bosons

for the fit without jet A
(∗)
N data and the fit with jet A

(∗)
N data. In both cases, the results are

plotted as function of the rapidity y. The most recent data for the Z vector boson [14] is

plotted with the empty circle. The transverse momentum of the vector boson is integrated

over the range 0.5 < q⊥ < 10 GeV. In both cases, the uncertainty band is very small especially

for for W − and Z vector bosons. The result also shows that the change due to the jet AN

(∗) data is more noticeable for W +.

The Figure (6.14) shows the plots for the extracted first transverse moment of the Sivers

function for u- and d-quarks, f
⊥(1)
1T (x,µ0), and uncertainty bands with and without jet A

(∗)
N
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data. And Figure (6.15) shows the plots for the extracted first transverse moment of the

Sivers function for u- and d-quarks, f
⊥(1)
1T (x,µ0), and uncertainty bands with and without

jet A
(∗+A)
N data. The first transverse moment of the Sivers function is plotted as function

of x at the initial scale µ0 =
√
1.9 GeV. In each case, the Sivers d function is positive and

the Sivers u function is negative, and the magnitude of the Sivers d function is greater

than that of the Sivers u function. The results in both Figure (6.14) and Figure (6.15)

clearly show the opposite effect of the jet A
(∗)
N data and A

(∗+A)
N data, respectively. The xF -

interval for both jet A
(∗)
N data and A

(∗+A)
N data is roughly the large x-region, 0.2 ≤ xF ≤ 0.6.

While the jet A
(∗+A)
N data increases the uncertainty, it can be seen that the jet A

(∗)
N data

reduces significantly the uncertainty on the quark sivers function. The reduction of the

uncertainty is an indication that the jet A
(∗)
N data provides an important information about

the quark Sivers function in the large x-region. The result also indicates that the jet A
(∗)
N

data provides a significant complementary information to the low x-region, and there is an

excellent compatibility between the jet A
(∗)
N data and other data. Figure (6.16) shows the

comparison of the ratio of uncertainty for the first moment of the Sivers function from the fit

with the jet A
(∗)
N data with that of the Sivers function without the jet A

(∗)
N data. We realize

that the result in Figure (6.16) agrees with result in Figure (6.14), for instance, in the region

of roughly 0.2 ≤ x ≤ 0.5, there is a significant reduction of uncertainty for d-quarks.

6.4 Conclusions

In this article, we studied for the first time the impact of jet AN data on the quark Sivers

function at NLO+NNLL within the TMD factorization formalism. To achieve this, we first

extracted the quark Sivers function from the Sivers asymmetry with and without the jet AN

data, and we then compared the extracted quark Sivers function without the inclusion of

jet AN data with the extracted quark Sivers function with the inclusion of jet AN data. We

found that the inclusion of the jet A
(∗)
N data allowed to improve and extend the knowledge
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of the quark Sivers function in the large x-region which was not explored in other data, the

jet A
(∗)
N data led to the remarkable constraint and reduction of the uncertainty on the Sivers

function in such large x-region, especially for d quarks. Our finding was obtained using the

most recent experimental data, but we expect that future high-precision measurements with

reduced uncertainties at COMPASS, JLAB, RHIC or the future EIC [117, 118] will further

constrain the Sivers function. This will allow to gather more information on the impact of the

jet A
(∗)
N data on the Sivers function which is crucial in the model-dependent determination

of the nucleon spin.
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Chapter 7

Simultaneous extraction of Collins

fragmentation function in TMD

physics

7.1 Introduction

This chapter is partially based on the paper titled ‘A simultaneous global extraction of

the Collins function in e+e− collisions, semi-inclusive DIS, and hadron-in-jet production’, in

preparation to submit to JHEP, authored by Zhong-Bo Kang, Fidele J. Twagirayezu, and

Yiyu Zhou.

Transverse momentum dependent functions (TMDs) are important objects in TMD

physics because they allow to acquire the three-dimensional representation of the inter-

nal nucleon structure. In addition, TMDs can facilitate a better understanding of QCD

properties such as hadronization described by fragmentation function . The TMD function

that describes the hadronization of a transversely polarized hadron into unpolarized hadron

is the Collins fragmentation function [70]. The Collins effect is experimentally measurable

with Collins asymmetry. The Collins effect can be studied in the semi-inclusive deep inelas-
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tic scattering (SIDIS) process [10, 11, 15, 119] where the Collins fragmentation function

is coupled to the transversity distribution. The modulation is proportional of sin (ϕs + ϕh)

where ϕs is the azimuthal angle of the transverse spin of the nucleon and ϕh is the azimuthal

angle of the hadron transverse momentum in the final state with respect to the reaction

plane. The collins effect can be studied in di-hadron productions in semi-inclusive electron-

positron annihilation [120, 121, 122, 123]. In the hadronic-plane method, the modulation

is proportional to cos (2ϕ0) where ϕ0 is the azimuthal angle between the two hadrons. In

addition, the Collins effect can be studied in hadron production in a highly energetic jets

in proton-proton collisions [124]. For the universality property, the Collins fragmentation

function is the same in the SIDIS process and electron-positron annihilation [125]. Also,

Kang et al.[19] showed the universality of the Collins fragmentation function in hadron pro-

duction inside jets in proton-proton collisions. To test further the universality property of

the Collins fragmentation function, we establish a formalism to extract the Collins fragmen-

tation function from the combination of SIDIS process, electron-positron annihilation and

hadron production inside jets in proton-proton collisions.

7.2 Collins Formalism

This section we present the TMD factorization formalism for the Collins asymmetry in semi-

inclusive deep inelastic scattering (SIDIS), electron-positron (e+e−) processes, and hadron

in jet production from proton-proton (pp) collisions. The Collins formalism in SIDIS is

presented in (7.2.1), the Collins formalism in e+e− process is presented in (7.2.2), and the

Collins formalism for hadron in jet production from pp collisions is presented in (7.2.3)

respectively.
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7.2.1 Collins formalism in SIDIS

We consider an electron e that scatters on a polarized proton p, by exchanging a virtual

photon of momentum q, and produce a hadron h in the final state.

e(l) + p(P )→ e(l′) + h(Ph) +X (7.1)

The exchanged momentum q is directly related to the hard scale Q through the invariant

mass, −q2 = Q2.

lepton
plane

l

l′

hadron plane

P

Ph

Ph⊥

S⊥
ϕhϕS

q

Figure 7.1: The kinematics for Semi-Inclusive DIS. The exchanged photon carries a mo-
mentum q. The quantity S⊥ is the transverse polarization of the proton, ϕS is the azimuthal
angle between S⊥ and the lepton plane, and ϕh is the azimuthal angle between the hadron
plane and the lepton plane. In this case, the modulation depends on the sum of azimuthal
angles.

The Collins asymmetry is defined as

A
sin(ϕh+ϕs)
UT =DNN

F
sin(ϕh+ϕs)
UT

FUU

, (7.2)
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where DNN is the depolarization factor which is given by

DNN =
2(1 − y)

1 + (1 − y)2 , (7.3)

while FUU and F
sin(ϕh+ϕs)
UT denote the unpolarized and polarized structure functions. These

structure functions are related to the cross section for Semi-Inclusive DIS as

dσ

dPSDIS

= σ0(x, y,Q2)[FUU + sin(ϕh + ϕs)DNNF
sin(ϕh+ϕs)
UT +⋯ , ] (7.4)

where the dots denote additional structure functions that do not contribute to the Collins

asymmetry. The quantity, sin (ϕh + ϕs), is the modulation in the Collins formalism. In this

expression, dPSDIS denotes the phase space, which is given by

dPSDIS = dxdydzd2P h⊥ (7.5)

where we have the usual parton fraction variables defined as

x = Q2

2P ⋅ q , y = P ⋅ q
P ⋅ l , z = P ⋅ Ph

P ⋅ q , (7.6)

while Ph⊥ denotes the transverse momentum of the final-state hadron. The structure func-

tions in Eq. (7.4) can be written as convolutions of TMDs as

FUU = CDIS [f D] , F
sin(ϕh+ϕs)
UT = CDIS[

P̂h⊥ ⋅ p⊥
zMh

h1H
⊥
1 ], (7.7)

where the convolution integral is given by

CDIS[cAB] =HDIS(Q,µ)∑
q

e2q ∫ d2k⊥d
2p⊥ δ

2(zk⊥ + p⊥ −Ph⊥)c(k⊥,p⊥, P̂h⊥)

×Aq/p(x, k⊥, µ, ζ1)Bh/q(z, p⊥, µ, ζ2) , (7.8)
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where c denotes an arbitrary kinematic prefactor, A denotes a TMD PDF and B denotes a

TMD FF. Namely, f1 and D1 denote the unpolarized TMD PDF and TMD FF, while h1 and

H⊥1 denote the transversity TMD PDF and the Collins fragmentation function. Additionally,

k⊥ denotes the transverse momentum of the incoming quark with respect to the incoming

hadron, while p⊥ denotes the transverse momentum of the final-state hadron with respect to

the fragmenting quark. These convolution integrals can be simplified by working in b-space,

the conjugate space to −Ph⊥/z. After converting these convolutions to b-space, we have the

expression for the unpolarized structure function

FUU =HDIS(Q,µ)∑
q

e2q ∫
bdb

2π
J0(bPh⊥/z)f1 q/p(x, b, µ, ζ1)D1 q/p(z, b, µ, ζ2) , (7.9)

where J0 is the zeroth Bessel function of the first kind. In this expression, we have introduced

and we have introduced HDIS, the hard function for DIS, as well as the b-dependent TMDs,

which are defined as

f1 q/p(x, b, µ, ζ) = ∫ d2k⊥e
−ib⋅k⊥f1 q/p(x, k⊥, µ, ζ) , (7.10)

D1h/q(z, b, µ, ζ) =
1

z2 ∫ d2p⊥e
−ib⋅p⊥/zD1h/q(z, p⊥, µ, ζ) . (7.11)

For the unpolarized TMDs, we can perturbatively match them onto the collinear distributions

as follows

f1 q/p(x, b, µ, ζ1) = [C ⊗ f](x, b, µ, ζ1) ,

D1 q/p(z, b, µ, ζ2) =
1

z2
[Ĉ ⊗D](z, b, µ, ζ2) , (7.12)
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where the convolutions for the TMD PDFs and TMD FFs are given by

[C ⊗A](x, b, µ, ζ) =∑
i
∫

1

x

dx̂

x̂
Cq/i(

x

x̂
, b, µ, ζ)Ai/p(x̂, µ) , (7.13)

[Ĉ ⊗B](z, b, µ, ζ) =∑
i
∫

1

z

dẑ

ẑ
Ĉi/q(

z

ẑ
, b, µ, ζ)Bh/i(ẑ, µ) . (7.14)

These operator product expansions involve large logarithms which must be resummed. This

resummation is captured by the perturbative Sudakov term

Spert(b, µi, ζi, µf , ζf) =∫
µf

µi

dµ′

µ′
[γV + Γcusp ln( ζf

µ′2
)] +D(b, µi) ln(

ζf
ζi
) , (7.15)

where γV , Γcusp, and D denote the non-cusp, cusp, and rapidity anomalous dimension. In

Appendix (B), we have included the expressions for these anomalous dimensions up to NNLL

accuracy.

The convolution entering into the polarized structure function can also be simplified by

working in b-space as

F
sin(ϕh+ϕs)
UT = − 1

2z
∑
q

e2qHDIS(Q,µ)∫
b2db

2π
J1(bPh⊥/z)h1 q/p(x, b, µ, ζ1)H⊥1 q/p(z, b, µ, ζ2) ,

(7.16)

where we have introduced the b-space spin-dependent TMDs which are defined as Fourier

transforms of the momentum space ones

h1 q/p(x, b, µ, ζ) = ∫ d2k⊥e
−ib⋅k⊥h1 q/p (x, k⊥, µ, ζ) , (7.17)

H⊥α1h/q(z, b, µ, ζ) =
1

z2 ∫ d2p⊥e
−ib⋅p⊥/z p

α
⊥

Mh

H⊥1h/q (z, p⊥, µ, ζ) . (7.18)

We can once again perform an operator product expansion of these distributions onto
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collinear ones

h1 ,q/p (x, b, µ, ζ1) = [Ch⊗, h] (x, b, µ, ζ1) . (7.19)

We note that there is additional complications associated with the matching of the Collins

function. This is due to the prefactor of pα⊥ , which causes the Collins function to match onto

a higher twist collinear distributions. The matching procedure can be performed as follows

H⊥α1 q/p (z, b, µ, ζ2) = −
ibα

2z
H⊥1 q/p (z, b, µ, ζ2) , (7.20)

H⊥1 q/p (z, b, µ, ζ2) =
1

z2
[CH ⊗H(3)] (z, b, µ, ζ2) , (7.21)

where the H(3) denotes a twist-3 collinear distribution. As in the case of the unpolarized

TMDs, this OPE contains large logarithms which need to be resummed by the perturbative

Sudakov in Eq. (7.15). After resumming the large logarithms in the unpolarized and polarized

TMDs, we have the expressions for the cross section

FUU(x, z,Ph⊥,Q) =HDIS(Q,µf)
1

z2 ∫
∞

0

b db

2π
J0 (bPh⊥/z)∑

q

e2q (7.22)

× [C ⊗ f1] (x, b, µi, ζi) [Ĉ ⊗D1] (z, b, µi, ζi)

× exp [ − 2Spert(b, µi, ζi, µf , ζf) − Sf
NP(x, b,Q0, ζf) − SD

NP(z, b,Q0, ζf)] ,

F
sin(ϕh+ϕs)
UT (x, z,Ph⊥,Q) = −

1

z
HDIS(Q,µf)

1

z2 ∫
∞

0

b2 db

4π
J1 (bPh⊥/z)∑

q

e2q (7.23)

× [Ch ⊗ h1](x, b, µi, ζi)[CH ⊗H(3)] (z, b, µi, ζi)

× exp [ − 2Spert(b, µi, ζi, µf , ζf) − Sh
NP(x, b,Q0, ζf) − SH

NP(z, b,Q0, ζf)] ,

where one usually takes µ2
i = ζi = µ2

b and µ2
f = ζf = Q2. In these expressions, we have

introduced the non-perturbative Sudakov terms associated with each TMD as well as the
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initial TMD scale Q0. We will discuss these functions in more depth in Sec. (7.3).

7.2.2 Collins formalism in e+e−

In this section we present the Collins formalism of the di-hadron productions in the e+e−

process,

e+(l+) + e−(l−)→ h1h1X (7.24)

where l+ and l− are initial momenta, Ph1 and Ph2 are the momenta of hadrons h1 and

h2 respectively. The center of mass energy is defined as, S = Q2 = (l+ + l−)2. The hard

scale Q is expressed in terms of the hadron momentum Phi as, zhi = 2∣Phi∣/Q, where zhi is

the longitudinal momentum associated with fragmentation functions. The thrust-axis and

hadronic-plane methods are two methods which are frequently utilized to study the collins

effects. The thrust-axis method consists of defining a thrust-axis and measure the azimuthal

correlation between hadrons, see Figure (7.2), this method corresponds to A12 asymmetries.

The hadronic-plane method consists of choosing one hadron as a reference to define the

azimuthal angle of another hadron, see Figure (7.3); this method that will be the subject of

use in our formalism, is the cornerstone for A0 asymmetries.
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Ph2

Ph2⊥

Ph1

Ph1⊥

e+

e−

ϕ1

ϕ2

θ

Figure 7.2: The kinematics for double-inclusive annihilation in the thrust-axis method.
Ph1 and Ph2 are the momenta of the produced hadrons h1 and h2 respectively.

In the hadronic-plane method the differential cross section for di-hadron productions in

e+e− annihilation can be written in terms of the unpolarized structure function Ze+e−
UU , and

the double Collins structure function Ze+e−
Collins as follows

dσ

dPS⊛
= σU

0 Z
e+e−
UU + cos (2ϕ0)σT

0 Z
e+e−
Collins + . . . (7.25)
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Ph2

Ph1

Ph⊥

e+

e−

ϕ0

θ

Figure 7.3: The kinematics for double-inclusive annihilation in the hadronic plane method.
The hadron h2 is chosen to be a reference to measure the azimuthal angle ϕ0 for the hadron
h1.

where the unintegrated phase space is given by dPS⊛ = dz1 dz2 d2Ph⊥ d cos θ and the Born

cross section for the unpolarized and transversely polarized quarks are given by

σU
0 =

Ncπα2
em

2Q2
(1 + cos2 θ) , σT

0 =
sin2 θ

1 + cos2 θσ
U
0 . (7.26)

The structure functions can be written as a convolution of the unpolarized TMD FF and

the Collins function as

Ze+e−
UU = C [D1D2] ,

Ze+e−
Collins = C [

1

zh1zh2M1M2

(2P̂h⊥ ⋅ p1⊥P̂h⊥ ⋅ p2⊥ − p1⊥ ⋅ p2⊥) H⊥1 H⊥2 ] , (7.27)
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where the convolution for e+e− is given by

C [cB1B2] =∑
q

e2qH (Q,µ) ∫ d2p1⊥ d
2p2⊥ δ

2 (Ph⊥ − p1⊥ −
zh1
zh2

p2⊥)

× c (p1⊥,p1⊥, P̂h⊥) Bq/h1
(zh1, p1⊥, µ, ζ1) Bq/h2

(zh2, p2⊥, µ, ζ2) . (7.28)

By Fourier transform, the structure functions for the unpolarized and double Collins asym-

metries take the following form, from the b-space to the momentum space.

Ze+e−
UU =

1

z2h1
HU(Q,µ) ∫

d2b

(2π)2
eib⋅Ph⊥/z1∑

q

e2q

×Dh1/q (zh1, b, µ, ζ1) Dh2/q̄ (zh2, b, µ, ζ2) , (7.29)

Ze+e−
Collins =

1

z2h1
HC(Q,µ) ∫

d2b

(2π)2
eib⋅Ph⊥/z1 ∑

q

e2q (2P̂α
h⊥ P̂

β
h⊥ − g

αβ
⊥ )

×H⊥α1h1/q (zh1, b, µ, ζ1) H
⊥β
1h2/q̄ (zh2, b, µ, ζ2) . (7.30)

After performing the OPE for the TMDs and resumming the large logs, the expressions for
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the structure functions are given by

Ze+e−
UU (Ph⊥,Q) =HU(Q,µf)∫

∞

0

b db

2π
J0 (bPh⊥/zh1)∑

q

e2q

× [ĈD ⊗D1] (zh1, b, µi, ζi) [ĈD ⊗D1] (zh2, b, µi, ζi)

× exp [ − 2Spert(b, µi, ζi, µf , ζf) − SD
NP(zh1, b,Q0, ζf) − SD

NP(zh2, b,Q0, ζf)] ,

(7.31)

Ze+e−
Collins(Ph⊥,Q) = −

1

z2h1

1

zh1zh2
HC(Q,µf)∫

∞

0

b3 db

8π
J2 (bPh⊥/z)∑

q

e2q

× [δCC ⊗H(3)](x, b, µi, ζi)[δCC ⊗H(3)] (z, b, µi, ζi)

× exp [ − 2Spert(b, µi, ζi, µf , ζf) − SC
NP(zh1, b,Q0, ζf) − SC

NP(zh2, b,Q0, ζf)] .

(7.32)

To eliminate false asymmetries, BELLE and BABAR consider the ratios of unlike-sign “U”

, like “L”, and conjugate “C” pion pairs in the asymmetries.

U ≡ (π+π− + π−π+) , L ≡ (π+π+ + π−π−) , C ≡ (π+π+ + π−π− + π+π− + π−π+) . (7.33)

The asymmetries AUL
0 and AUC

0 are written as

AUL
0 (zh1, zh2, θ, Ph⊥) =

sin2 θ

1 + cos2 θ (PU − PL) , (7.34)

AUC
0 (zh1, zh2, θ, Ph⊥) =

sin2 θ

1 + cos2 θ (PU − PC) (7.35)

where

PU = Zcos(2ϕ0)
COL,U /ZUU,U, PL = Zcos(2ϕ0)

COL,L /ZUU,L, PC = Zcos(2ϕ0)
COL,C /ZUU,C. (7.36)
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Here, the subscript COL is simply a shorthand notation for Collins. Similarly, one can define

the Ph⊥-integrated asymmetries as

AUL
0 (zh1, zh2, θ) =

sin2 θ

1 + cos2 θ
⎛
⎝
∫ Ph⊥dPh⊥Z

cos(2ϕ0)
COL,U

∫ Ph⊥dPh⊥ZUU,U

− ∫
Ph⊥dPh⊥Z

cos(2ϕ0)
COL,L

∫ Ph⊥dPh⊥ZUU,L

⎞
⎠
, (7.37)

AUC
0 (zh1, zh2, θ) =

sin2 θ

1 + cos2 θ
⎛
⎝
∫ Ph⊥dPh⊥Z

cos(2ϕ0)
COL,U

∫ Ph⊥dPh⊥ZUU,U

− ∫
Ph⊥dPh⊥Z

cos(2ϕ0)
COL,C

∫ Ph⊥dPh⊥ZUU,C

⎞
⎠
. (7.38)

For the structure function Ze+e−
uu , the hard factor HU is the same as that for Drell-Yan

lepton pair production but differs for SIDIS. The reason for this is that the virtual photon

is time-like (q2 > 0) in e+e− and Drell-Yan processes, whereas in SIDIS, the virtual photon

is space-like (q2 < 0). Additionally, the hard part HC of the structure function Ze+e−

Collins is the

same as that of the structure function Ze+e−
uu due to the spin-independence of hard interaction

in perturbative QCD.

7.2.3 Collins formalism for hadron-in-jet production from proton-

proton pp collisions

We consider the hadron azimuthal distribution inside jets in transversely polarized p↑p col-

lisions,

p↑(PA, ST , ϕSA
) + p(PB)→jet(η, pT )h(zh, j⊥, ϕh) +X, (7.39)

where PA is the four-momentum of a transversely polarized proton with a transverse po-

larization vector ST moving the +z-direction, and PB is the four-momentum of unpolarized

proton moving in the −z-direction. The azimuthal angle of ST with respect to the reaction

plane is denoted by ϕSA
. For the jet function, η is the rapidity, and pT is the transverse

momentum of a jet in the final state. For the hadron function, zh is the momentum fraction
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of a hadron, jT is the transverse momentum of a hadron inside a jet which forms an angle

ϕh with the reaction plane. Here, j⊥ is defined with respect to the standard jet axis, the

choice of this type of axis is due to the fact that it allows a direct relation to the transverse

momentum fragmentation functions (TMDFFs).

PA PB

jeth

S⊥
ϕS

ϕh

x

z

y

Figure 7.4: Illustration for single inclusive jet production in transversely polarized proton-
proton collisions, p(PA,S⊥)+p(PB)→ h(η, pT )jet(zh, j⊥, ϕh)+X. The azimuthal angle of the
transverse spin vector, S⊥, with respect to the reaction plane is denoted by ϕS.

The differential cross-section of hadron azimuthal distribution inside jets in transversely

polarized p↑p collisions can be expressed as

dσ

dηd2pTdzhd2j⊥
= FUU + sin(ϕS − ϕh)F sin(ϕS−ϕh)

UT +⋯, (7.40)

where the dots contain additional asymmetries which do not contribute to the Collins asym-

metry. Once again FUU and F
sin(ϕS−ϕh)
UT denote the spin averaged and spin-dependent struc-

ture functions respectively. The Collins azimuthal spin asymmetry can be expressed in terms

of structure functions FUU and F
sin(ϕS−ϕh)
UT as follows

A
sin(ϕS−ϕh)
UT (zh, j⊥, η, pT ) =

F
sin(ϕS−ϕh)
UT

FUU

. (7.41)

The structure functions FUU and F
sin(ϕS−ϕh)
UT depend on zh, j⊥, η, and pT , but we will
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omit η and pT for simplicity. The QCD factorization at the lowest approximation or leading

order (LO) leads to the following expressions for the structures functions

FUU(zh, j⊥) =
α2
s

s
∑
a,b,c
∫

1

x̃1

dx1
x1

fa/A(x1, µ)∫
1

x̃2

dx2
x2

fb/B(x2, µ)Dh/c(zh, j⊥, µ, ζJ)

×HU
ab→c(ŝ, t̂, û, µ) δ(ŝ + t̂ + û), (7.42)

F
sin(ϕS−ϕh)
UT (zh, j⊥) =

α2
s

s
∑
a,b,c
∫

1

x̃1

dx1
x1

ha1(x1, µ)∫
1

x̃2

dx2
x2

fb/B(x2, µ)
j⊥

zhMh

H⊥1h/c(zh, j⊥, µ, ζJ)

×HCollins
ab→c (ŝ, t̂, û, µ) δ(ŝ + t̂ + û). (7.43)

The factorization for the above structure functions involves two steps: the first step is a

collinear factorization for the production of the jet and the second step is a TMD factorization

for the hadron j⊥-distribution inside the jet. The factorized form for the above structure

functions was derived within the standard soft-collinear effective theory (SCET). The hard

function HU
ab→c is related to the unpolarized structure function and the hard function HCollins

ab→c

is related to the Collins fragmentation function. The sum is taken over all relevant channels

ab → c. The center of mass energy squared is defined by s = (PA + PB)2 and Mh is the

observed hadron mass inside a jet. The strong coupling constant is denoted by αs and ŝ, t̂,

and û are the usual partonic Mandelstam variables. In terms of pT and η, the Mandelstam

variables û and t̂ are expressed as

û = −x1pT
√
se−η, t̂ = −x2pT

√
seη, (7.44)

where x1 and x2 are momentum fractions. In the parton massless limit, the expression for the

Mandelstam variable ŝ is deduced from the condition ŝ + û + t̂ = 0. The functions fa/A(x1, µ)

and fb/B(x2, µ) are the unpolarized parton distribution functions (PDFs) for protons A and
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B respectively, while the function ha1(x1, µ) is the collinear transversity distribution function.

x̃1 =
xT eη

2 − xT e−η
, x̃2 = x1

xT e−η

2x1 − xT eη
, (7.45)

where xT = 2pT /
√
s. The unpolarized TMD fragmentation functions and Collins fragmen-

tation function are denoted by Dh/q(zh, j⊥, µ, ζJ) and H⊥
1h/q(zh, j⊥, µ, ζJ) respectively. The

momentum scale Q represents the appropriate factorization scale for both the unpolarized

TMD fragmentation functions and Collins fragmentation functions. The Q-dependence of

these TMD functions is referred as the TMD evolution, thus the TMD evolution is different

from the DGLAP evolution associated with the scale µ. The TMD fragmentation functions

can be expressed as

Dh/q(zh, j⊥, µ, ζJ) =
1

z2h
∫
∞

0

bdb

(2π)J0(j⊥b/zh) [Ĉ ⊗D] (zh, µi)

× exp [−Spert(b, µi, ζi, µ, ζJ) − SD1

NP(z, b,Q0, ζJ)] , (7.46)

j⊥
zhMh

H⊥1h/q(zh, j⊥, µ, ζJ) =
1

z2h
∫
∞

0

b2db

(2π)J1(j⊥b/zh) [C
H ⊗ Ĥ⊥(1)1 ] (zh, µi)

× exp [−Spert(b, µi, ζi, µ, ζJ) − SH
NP(z, b,Q0, ζJ)] , (7.47)

where J0 and J1 are the usual Bessel functions, and Q0 is just the initial scale. The relevant

scale Q for TMD fragmentation functions for hadron distribution inside a jet is usually set

by the jet dynamics scale µJ ∼ pTR where R is the jet size parameter. Thus, one should

have a TMD evolution from µb to µJ ∼ pTR scale to resum double logs to all orders in the

strong coupling constant and a DGLAP evolution from µJ ∼ pTR to µ ∼ pT scale to resum

single logs to all orders in the strong coupling constant. But, at LO in QCD there is no

dependence on the jet parameter R. In this paper, we work at LO so Q is simply set to pT

for TMDs and also we set µ to pT for collinear PDFs and quark transversity function.
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7.3 Non-perturbative parameterization

In order to reconstruct the measured cross-section, one needs to perform the Fourier trans-

form over all values of b. However, the TMD evolution contains a non-perturbative piece

in the region where 1/b ≫ ΛQCD. This requires the introduction of a certain prescription

to extrapolate smoothly between the perturbative small-b region and the non-perturbative

large-b region. Similar to our Sivers formalism, we choose the standard b∗ prescription of

the form

b∗ =
b√

1 + b2/b2MAX

, (7.48)

One can see that b∗ → bMAX for large b. Here, bMAX is the cut-off parameter in the prescrip-

tion and is usually chosen to be bMAX = 1.5 GeV−1. After introducing b∗ in the Sudakov

factor, the total Sudakov factor is just the sum of a perturbative factor Spert(Q, b∗) and a

non-perturbative Sudakov factor SNP(Q, b). In this prescription, the b∗ variable lives in the

perturbative region. The expressions for SNP(Q, b) for both unpolarized TMD fragmentation

functions and Collins fragmentation functions are written as

SD1

NP(Q, b) =
g2
2
ln( b

b∗
) ln( Q

Q0

) + gh
z2h
b2, (7.49)

SC
NP(Q, b) =

g2
2
ln( b

b∗
) ln( Q

Q0

) + gh − gc
z2h

b2, (7.50)

where Q2
0 = 2.4 GeV2, g2 = 0.84, gh = 0.042 GeV2, and gc = 0.0236 ± 0.0007 GeV2. In

the parametrization of the Sudakov function, ln(b/b∗) ∝ ln(1 + b2/b2MAX), which is impor-

tant for including low-Q2 data. This parametrization at small b is in agreement with the

standard b2 parametization that was used in high-Q2 extraction. The favored and unfavored

twist-3 Collins fragmentation functions are parametrized in terms of unpolarized collinear
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fragmentation functions as follows

H
(3)
fav(z,Q0) = N c

uz
αu(1 − z)βuDπ+/u(z,Q0), (7.51)

H
(3)
unf(z,Q0) = N c

dz
αd(1 − z)βdDπ+/d(z,Q0), (7.52)

The parametrization of the strange quark fragmentation function in terms of its collinear

counterpart is given in Ref. [126]. In addition, the quark transversity distribution function

hq1 is parametrized at the initial scale Q0 as follows

hq1(x,Q0) = Nh
q x

aq(1 − x)bq (aq + bq)
aq+bq

a
aq
q b

bq
q

1

2
(f q

1 (x,Q0) + gq1(x,Q0)), (7.53)

where f q
1 is the collinear quark distribution function and gq1 is the quark helicity distribution

function at the initial scale Q0.

7.4 Current status

Unpolarized FF with TMD evolution is defined as

Dh/q(z, b,Q) =
1

z2
b

2π
ĈD1

i←q ⊗Dh/i(z, µb)

× exp(−1
2
Spert(Q, b∗) − SD1

NP(Q, b)) .
(7.54)

Figure (7.5) displays TMD unpolarized FF at z = 0.4 and at different scales Q2 = 2.4 (dotted

line), Q2 = 10 (solid line), andQ2 = 1000 (dashed line) GeV2. We observe that the unpolarized

FF at Q2 = 1000 (dashed line) peaks in the perturbative region, and the peak shifts towards

the non-perturbative region as the energy decreases. The Collins FF with TMD evolution is

defined as

H⊥1h/q(z, b,Q)T =
1

z2
b2

2π
δĈC

i←q ⊗H
⊥(1)
1h/j (z, µb)T

× exp(−1
2
Spert(Q, b∗) − SC

NP(Q, b)) .
(7.55)

114



where the subscript T indicates the use of the Trento convention. Figure (7.6) shows that

the TMD Collins FF at Q2 = 1000 (dashed line) peaks in the perturbative region, and the

peak shifts towards the non-perturbative region as the energy decreases.

Figure 7.5: Unpolarised FF u → π+ as function of b at three different scales Q2 = 2.4
(dotted line), Q2 =10 (solid line) and Q2 = 1000 (dashed line) GeV2.

Figure 7.6: Collins FF u → π+ as function of b at three different scales Q2 = 2.4 (dotted
line), Q2 =10 (solid line) and Q2 = 1000 (dashed line) GeV2.

STAR collaboration at RHIC has performed measurement for Collins asymmetry of

hadron-in-jet in transversely polarized proton-proton collisions. The experimental data was

compared with the theory prediction based on the Collins functions extracted from e+e−

collisions and SIDIS process.
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Figure 7.7: The comparison of STAR measurements [17] to the previous theoretical calcu-
lations with the DMP+2013 model of Ref. [18] and the KPRY model of Ref. [19] .

Figure (7.7) clearly shows that the theory curves do not describe the Collins asymmetry

very well, especially for π− at large z region. This indicates that the previous extraction of

the Collins function based on e+e− and SIDIS do not give a good constrain on the Collins

function at large z, most likely the d-quark Collins functions. This points to the new direction

we are undertaking in the future, that is, to perform a global analysis of the Collins function

by including the data from e+e−, SIDIS and hadron-in-jet in proton-proton collisions.
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Chapter 8

Summary

Asymmetries and transverse polarization effects offer vital insights into the internal archi-

tecture of hadrons and the intricacies of the hadronization process, particularly with respect

to parton distribution and fragmentation functions. Early investigations primarily examined

collinear parton distribution and fragmentation functions; however, it soon became evident

that these collinear functions alone were insufficient to fully elucidate the internal structure

of hadrons. This realization underscored the need for a more comprehensive understanding,

leading to the development of transverse momentum-dependent functions (TMDs).

In the introductory section of this dissertation, we explore the concept of transverse

single spin asymmetry (TSSA), highlighting its essential role in deriving the TMD functions

central to our study. We also delve into Soft-Collinear Effective Theory (SCET), valued

for its robust framework that systematically addresses processes involving diverse modes,

particularly within the realm of high-energy hadronic physics. SCET enables us to exclude

modes irrelevant to the asymptotic behavior of Quantum Chromodynamics (QCD), thereby

providing an effective description. Given the recurring significance of Wilson lines in gauge

theories, we elaborate on their relevance to non-local operators, delineating various types of

Wilson lines and offering some physical interpretations.

As our TMD frameworks incorporate twist-2 and twist-3 functions, we detail their deriva-
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tions from correlation functions (correlators). We also examine TMD factorization theo-

rems—a potent tool in quantum field theory (QFT)—which facilitate the expression of cross

sections through a combination of perturbatively calculable and non-perturbative quantities.

Furthermore, we address the use of the η regulator to mitigate rapidity divergences. Given

that our TMD frameworks involve QCD evolutions, we outline the derivations of evolution

equations and their solutions. The significance of SCET prompts further discussion on TMD

factorization and evolution within this context.

The primary objective of this dissertation is to develop TMD formalisms for the con-

current global extraction of Sivers and Collins asymmetries. Initially, we establish a TMD

formalism for the simultaneous global extraction of Sivers asymmetries across Semi-Inclusive

Deep Inelastic Scattering (SIDIS), the Drell-Yan (DY) process, and W/Z production, with

and without jet AN data from proton-proton (pp) collisions. In both scenarios, the fitted

asymmetries align exceptionally well with experimental data, and the Sivers function is con-

sistently extracted. Comparing outcomes with and without jet AN data reveals a marked

reduction in uncertainty for the Sivers function when jet AN data is included. The results

are found in Sec. (6.3). Subsequently, we formulate a TMD framework for the simultane-

ous extraction of Collins asymmetries in the SIDIS process, e+e− annihilation, and hadron

production within jets in pp collisions.
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A Mellin Transformation

In this section, we outline the approach for streamlining the OPE and DGLAP evolution

of the transversity TMD PDF and the Collins TMD FF through the use of Mellin space

techniques. The transversity TMD PDF can be perturbatively matched to the collinear

transversity PDF using Eq. (7.19). In this equation, the matching is implemented as a

convolution that can be simplified by employing Mellin space techniques.

h1 q/P (N,µb, µi, ζi) = Ch (N,µb, µi, ζi)h (x,µi) , (1)

where we have introduced the Mellin transform, which is explicitly given by

A(N) = ∫
1

0
dxxN−1A(x) , (2)

while the inverse Mellin transform is defined as

A(x) = 1

π ∫
∞

0
dzI[eiϕx−c−zeiϕA(N)] . (3)

Taking the canonical scale choice for the TMDs, µ2
i = µ2

b = ζi, the Mellin-space M̄S matching

coefficient for the transversity TMD PDF is given by:

Ch (N,µb, µi, ζi) = 1 +
αsCF

4π

π2

6
+O (α2

s) . (4)

Thus the Mellin-space formalism reduces the integration in x to an integration in the complex

plane. However, the Mellin-space formalism also simplifies the evolution of the collinear

transversity TMD PDF as well. Namely, the evolution equation of this distribution is given

by
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∂h(x,µ)
∂ lnµ2

= αs [P h
qq ⊗ h] (x,µ) , (5)

which can be simplified in Mellin space. The solution to the Mellin transform of this

equation is given by

h(N,µ) = h(N,µ0)(
αs(µ)
αs(µ0)

)
− 1

β0
Ph
qq(N)

(6)

where we have introduced the Mellin transform of the transversity PDFs splitting function

P h
qq(N) = ∫ xN−1P h

qq(x) = −2H(N) +
3

2
, (7)

for the harmonic number, H(n). OPE of the transversity TMD PDF can be written as a

single integral in the complex plane as

[Ch ⊗ h1] (x,µb, µb, ζ
2
b ) =

1

π ∫
∞

0
dzI [eiϕx−c−zeiϕCh (N,µb, µb, µ

2
b)h (N,µb)] . (8)

Following the same procedure, the expression for the Collins TMD FF is given by

[CH ⊗H(3)] (z, µb, µb, ζ
2
b ) =

1

π ∫
∞

0
dzI [eiϕx−c−zeiϕCH (N,µb, µb, µ

2
b)H(3) (N,µb)] , (9)

where the Mellin-space matching coefficient is given by

CH (N,µb, µb, µ
2
b) = 1 +

αsCF

4π
[−8ψ1(1 + n) − π

2

6
] , (10)

where ψ1 is the tri-gamma function while the twist-3 collinear FF follows the same evolution
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equation as the transversity PDF such that

H3(N,µ) =H3(N,µ0)(
αs(µ)
αs(µ0)

)
− 1

β0
Ph
qq(N)

. (11)

B Anomalous dimensions

Below we give the expressions for the anomalous dimensions and the QCD β-function, in

the MS renormalization scheme. We use the following expansions

Γcusp =
∞
∑
n=1

Γn−1 (
αs

4π
)
n

, (12)

γV =
∞
∑
n=1

γVn−1 (
αs

4π
)
n

, (13)

β = −2αs

∞
∑
n=1

βn−1 (
αs

4π
)
n

. (14)

The coefficients for the cusp anomalous dimension Γcusp are

Γ0 = 4CF , (15)

Γ1 = 4CF [(
67

9
− π

2

3
)CA −

20

9
TFnf] , (16)

Γ2 = 4CF

⎡⎢⎢⎢⎢⎣
C2

A (
245

6
− 134π2

27
+ 11π4

45
+ 22

3
ζ3)

+CATFnf (−
418

27
+ 40π2

27
− 56

3
ζ3)

+CFTFnf (−
55

3
+ 16ζ3)

− 16

27
T 2
Fn

2
f

⎤⎥⎥⎥⎥⎦
. (17)

The anomalous dimension γV can be determined up to three-loop order from the partial
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three-loop expression for the on-shell quark form factor in QCD. We have

γV0 = − 6CF , (18)

γV1 =C2
F (−3 + 4π2 − 48ζ3) +CFCA (−

961

27
− 11π2

3
+ 52ζ3) +CFTFnf (

260

27
+ 4π2

3
) . (19)

The rapidity anomalous dimension, Collins-Soper kernel, is defined perturbatively as

D(b, µ) =
∞
∑
n=1

n

∑
k=0

d(n,k) (αs

4π
)
n

Lk , (20)

where the coefficients up to NNLL are given by

d(1,0) =0, d(1,1) = Γ0/2, (21)

d(2,0) =CACF (
404

27
− 14ζ3) −

112

27
CFTFnf , (22)

d(2,1) =Γ1/2, d(2,2) = Γ0β0/4. (23)

The description of the perturbative TMD evolution requires finding the analytic solution to

the following expression

I = ∫
µU

µL

dµ̄

µ̄
[γV + Γcusp ln(

µ2
U

µ̄2
)] (24)

where the coefficients of perturbative expansions of the anomalous dimensions up to NNLL

accuracy are found in Ref. [81].
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