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ABSTRACT OF THE DISSERTATION

From “where” to “how”:

computational approaches to assessing information representation

in neuroimaging studies of higher cognition

by

Jeffrey Chiang

Doctor of Philosophy in Psychology

University of California, Los Angeles, 2018

Professor Martin M. Monti, Chair

While a number of sophisticated computational and theoretical models exist for human

behavior in the cognitive science literature, the relationship between these models and the

underlying neural computation has rarely been explored. The aim of this thesis is to pro-

pose novel applications of neuroimaging analysis methods combined with explicit modeling

to bridge the gap between computational models and cognitive neuroscience, specifically

in studies of higher cognition. In Chapter 1, I provide the necessary methodological back-

ground to these projects, describing in detail current univariate and multivariate approaches

to functional MRI (fMRI) analysis. I then describe three approaches, cross-classification,

representational similarity analysis, and encoding analysis that allow claims about the un-

derlying representations and computations to be made in neuroimaging studies. In Chapters

2, 3, and 4, I present experiments using these approaches, showing how they allow us to ar-

bitrate between different theories of the representations and computations underlying higher
ii



cognition, building upon prior localization work. Finally, in Chapter 5 I propose a new

computational framework for encoding analyses that allows for directly integrating compu-

tational models with neuroimaging analysis.
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INTRODUCTION

The introduction of machine learning techniques to neuroimaging analysis (Haxby et al.,

2001) has led to new and profound understandings of the brain. Early studies used mul-

tivariate pattern (MVP) analyses to expand upon neuropsychological and animal model

findings with specific hypotheses. The early promise of MVP analyses was that by separat-

ing cognitive or mental states via classification, they could properly address “how”, and not

“where” information was represented in the brain.

However, as these methods became more widely adopted, it has become apparent that

on their own, MVP methods do not fulfill this promise. In contrast to the early, hypothesis

driven classification studies, recent studies have taken an “exploratory” flavor, applying big

data approaches (e.g., data mining and machine learning methods) to probe neural repre-

sentations (see Cohen et al., 2017; Hebart & Baker, 2017 for specific examples). On top of

separating cognitive states using classification, many studies interpret classifier performance

post-hoc (see reverse inference, Poldrack, 2006). From a neurocognitive standpoint, it has

been shown that these methods still only address “where” information is represented, except

from an information-theoretic framework (Haynes, 2015; Hebart & Baker, 2017), bringing

us no closer to understanding the underlying computation using these data-driven methods.

On the other hand, a number of sophisticated computational and theoretical models have

been proposed in the cognitive psychological literature. These models do provide computa-

tional or mechanistic explanations of behavior, but the relationship between these models

and the underlying neural computation has rarely been explored in fields other than visual

1



perception (Agrawal, Stansbury, Malik, & Gallant, 2014).

The aim of this thesis is to demonstrate novel applications of MVP methods combined

with explicit modeling to bridge the gap between the theoretical models from psychology and

cognitive neuroscience, specifically in studies of higher cognition. In Chapter 1, I provide the

necessary methodological background to these projects, describing in detail the multivariate

and encoding analyses that allow for new insights on the neural computations. In Chapter

2, I use multivariate pattern classification (MVPC) in a cross classification approach in

order to study shared neural representations across language and music. In Chapter 3, I

apply representational similarity analysis (RSA- Kriegeskorte, Mur, & Bandettini, 2008) to

arbitrate between theories of number representation in the parietal cortex. Chapter 4 uses a

combination of classification, RSA, and encoding analyses to propose a neurocomputational

account of analogical reasoning. Finally, in Chapter 5 I propose an extension to a popular

analysis framework (Naselaris, Kay, Nishimoto, & Gallant, 2011) that allows for directly

integrating computational models into neuroimaging analysis.
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CHAPTER 1

Task based fMRI analysis

Functional Magnetic Resonance Imaging (fMRI) aims to measure brain metabolic response

(Brain Oxygen Level Dependent- BOLD) across time (Ogawa, Lee, Kay, & Tank, 1990). In

a typical (1.5, 3, or 7 Tesla) MRI machine, subjects undergo a scanning session, typically an

hour long broken into several separate scans, which will be henceforth referred to as “runs”.

When coupled with an experimental task, the fMRI activity during different experimental

conditions can be compared to make inferences about brain activity.

Preprocessing Given the nature of the scanning equipment, human tendencies and hemo-

dynamic response (as understood by Buxton, Wong, & Frank, 1998; Boynton, Engel, Glover,

& Heeger, 1996, there are a number of standard processing techniques that are shared across

fMRI studies of healthy subjects in order to maximize signal to noise. As MR images are

highly susceptible to motion artifacts (which manifest as signal changes orders of magnitude

higher than signal changes associated with behavior, Jenkinson, Bannister, Brady, & Smith,

2002), raw data are typically motion corrected and temporally filtered. In order to make

cross-subject generalizations, data from each individual subject are aligned into a standard

or average template. In the univariate framework, spatial smoothing is commonly applied

to satisfy the assumptions of the model and to account for small heterogeneities in anatomy

3



from subject to subject (Monti, 2011). However, this technique is decreasingly common in

multivariate designs (Cohen et al., 2017), as these local heterogeneities can be very informa-

tive in a multivariate context. Finally, the BOLD signal is well known to be a slow response

profile. It is common to model this lag using a hemodynamic response function (HRF) ei-

ther using assuming a specific shape on the function, or non-parametrically modeling this lag

using multiple basis functions (e.g. Stephan, Harrison, Penny, & Friston, 2004; Mumford,

Turner, Ashby, & Poldrack, 2012).

1.1 Univariate analyses

The traditional “massive univariate” approach to fMRI time-series analysis assumes some

hemodynamic lag structure, and convolves this with the experimental design in order to fit

a general linear model (Haynes, 2015; Monti, 2011) for a summary and critique). In these

analyses we typically employ a condition-coded design, in which regressors serve as indicators

as to which experimental condition the subject was exposed to at a given timepoint. The

resulting condition weight estimates (i.e. β’s) are essentially HRF-weighted condition means,

and are passed to T-tests with contrasts specified by a contrast matrix (Posner & Deheane,

1994). The contrasts of interest rely heavily on the assumption of cognitive subtraction,

relying on experimental design to isolate the cognitive function of interest via subtraction.

This was and still is a prevailing strategy in fMRI analysis, capitalizing on the subtraction as-

sumption and clean experimental design. (Monti, 2011). These analyses apply “traditional”

statistical inference (i.e. evaluating t-statistics on activation differences between condition

averages), employing multiple comparison correction for valid inference. A crucial point in

4



the univariate analysis is that the GLM model is fit over the entire data set, as inference is

being conducted on the magnitude of activation parameters (as opposed to model fit, which

will be discussed later). In experiments in which multiple levels of conditions are shown, the

parametric univariate design (Braver et al., 1997) matrix (with values indicating the “level”

of each condition) can be employed.

After group aggregation (described above), voxels exhibiting a contrast significantly

greater than zero are termed “activations”. Within this framework, a significant “activa-

tion” indicates that a cognitive process of interest is associated with increased (or decreased)

activity within a specific region.

1.2 Multivariate analyses

Multivariate pattern analyses (sometimes multi-voxel pattern or MVP analyses) encompass

a broad range of techniques that assume that patterns of voxel activity, rather than the

activity of a single voxel across time, encode meaningful information (Kriegeskorte et al.,

2008; Haxby, Connolly, & Guntupalli, 2014; Haynes, 2015; Hebart & Baker, 2017; Cohen

et al., 2017). There are two primary approaches to MVP analyses that reflect different

information philosophies- one primarily driven by machine learning and by representational

geometry.

Additional preprocessing: Parameter estimation MVP and encoding analyses aim to

characterize trial-by-trial variability rather than condition-by-condition differences, nullifying

the signal to noise benefit of the condition coded univariate analysis. Typically, experimental
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trials span several timepoints. While using the time-series of each trial is a viable method-

(see (Turner, Mumford, Poldrack, & Ashby, 2012)), in these frameworks it is more common to

summarize each trial as a single parameter estimate representing the amplitude or magnitude

of activation. This has been accomplished either by averaging the TRs with the highest

expected activation given a priori knowledge of the hemodynamic response function (e.g.

Mitchell et al., 2008; Haxby et al., 2001; Rissman, Gazzaley, & Mark, 2004) or a GLM

approach in which a trial indicator matrix is convolved with an HRF, effectively computing

a weighted average of the timepoints comprising each trial (weighted by the shape of the

HRF at that time). Different GLM approaches have been explored: the two most common

approaches are Least-Squares All (LSA), in which all parameter estimates are simultaneously

calculated via GLM, and Least-Squares Single (LSS) in which each parameter estimate is

calculated iteratively, with its own GLM regression. Whereas the LSA procedure is proven

to provide unbiased estimates of activation amplitude, the LSS procedure trades a slight

bias for significant variance reduction (Mumford et al., 2012). Regardless of the procedure,

parameter estimates (aka “betas”) are concatenated to form a “beta-series” that serves as

the input to trial-by-trial analyses (Rissman et al., 2004).

Throughout this thesis, the primary dependent measure is fMRI signal that has under-

gone this preprocessing, that is, fMRI signal that has been preprocessed and parameterized

into condition or trial-by-trial activity. Parameterized data is typically fed into one or more

of the analyses below.
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1.2.1 MVPC

Multivariate pattern classification (MVPC), at present, is the most commonly used flavor of

MVP analysis. If multi-voxel activity patterns can be visualized in a high dimensional space,

MVPC aims find some boundary that separates points belonging to different cognitive states

or experimental conditions (see Figure 1 from Haxby et al., 2014). This is in contrast with the

univariate paradigm described above, in which cognitive states or experimental conditions

serve as the predictors for brain response which has implications for implementation and

inference (discussed below and in Naselaris et al., 2011, Figure 4). Many strategies for

finding this boundary exist (e.g. Alpaydin, 2009, though see Haynes, 2015 for a justification

of popular choices), and these general-purpose methods are directly applied to preprocessed

fMRI data. The boundary (i.e. classifier) is then evaluated on a test set by predicting

the data or labels, and generally a classification accuracy or confusion matrix serves as the

dependent measure. A successful classification is taken to mean that the pattern of voxel

activity is meaningful to representing the cognitive states of interest. Generally, machine

learning techniques can be directly adapted to preprocessed neuroimaging data. However, a

primary characteristic of experimentally acquired data is the relatively low number of trials,

which gives rise to the problems below.

A common problem in the machine learning literature is rank-deficiency, which generally

manifests in MVPC when the number of features (in this case voxels) is greater than the

number of samples (in this case trials). Nearly all linear classification methods involve an

inversion of the feature-by-feature variance-covariance matrix, which is ill-defined when data

are rank-deficient. Unfortunately, in most MVPC problems in which the brain response
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serves as the feature set and the trial labels serve as samples, the problem is almost always

rank-deficient. The support vector machine (SVM) classifier is typically used due to its

robustness to the case in which the number of trials is less than the number of features

(Chang & Lin, 2011), but it is not enough to overcome the rank-deficiency problem when

running a whole brain classification. Common solutions for this problem are addressed below.

Feature Selection The problem can be remedied by reducing the feature set, i.e. “select-

ing” voxels that we believe to be implicated and therefore reducing the rank of the feature

space. This manifests in several popular approaches: dimension reduction (Alpaydin, 2009),

the ROI based approach, in which a priori hypotheses direct the analysis to a small region

of the brain (e.g. (Kriegeskorte et al., 2008; Haxby et al., 2001; Friederici, 2011) , and a

searchlight approach (Kriegeskorte, Goebel, & Bandettini, 2006) in which many overlapping

ROI classifications which span the entire brain volume are run.

Dimension reduction is a general-purpose data driven approach to reducing the num-

ber of features by combining redundant information. This technique typically uses linear

methods such as Principal Component Analysis (PCA) to rotate the data into a new, more

concise basis set that is more efficient at explaining its variability. Another class of di-

mension reduction techniques involves “screening” variables for classification potential, for

example running an F-test to notice differences in conditions (Hanke, Halchenko, Sederberg,

Hanson, et al., 2009; Hanke, Halchenko, Sederberg, Olivetti, et al., 2009). However, these

methods need to be carefully implemented, as accidentally including validation samples in

the dimension reduction algorithm can greatly bias classification results (see double dipping).

ROI approaches have already been mentioned, in which prior research or theory motivates
8



the researcher to isolate their analysis to smaller regions of the brain (e.g. Allen et al 2014).

Dimension reduction techniques outlined above can also be combined with an ROI approach

to maximize classification performance, with the same double dipping caveats as above.

Searchlight approaches represent a compromise between the hypothesis-driven ROI ap-

proach and a whole-brain exploration (Kriegeskorte et al., 2008). This method involves iter-

ating through many small ROIs spanning the entire brain volume, mapping the score (typi-

cally classification accuracy) to the center voxel of the ROI. Thus the searchlight approach

reveals clusters of local classifiability—a significant cluster in such an analysis would indicate

that the surrounding area represents conditions in an information-theoretically meaningful

way.

Double Dipping The “crisis of replicability” (e.g.Poldrack et al., 2017) has brought sig-

nificant attention to MVP analyses, given their seeming ability to find any statistically

significant result. It is important to consider “double dipping” (Kriegeskorte, Simmons,

Bellgowan, & Baker, 2009), an implementation error in which analysts include either signal

from the testing data when fitting the model, or signal from training data when testing the

model. This error occurs because the model is “overfit” with respect to the training data

and generalizes poorly, and manifests in obvious as well as extremely subtle ways in fMRI

analysis.

The most obvious (and most rare) error is to mistake model training error for classification

performance. That is, after a model is fit on some dataset, it is run on the same dataset

and the result is interpreted. As the model was designed to minimize error on the training

dataset, it is no wonder that performance would be at its upper limit when evaluated on the
9



same set. While this mistake as presented is not common, quantitative “effect” in the training

dataset can “bleed into” the testing dataset without careful partitioning. For example, if the

entire dataset is standardized prior to model fit (a typical step in MVP analyses), the mean

of the testing dataset will be “exposed” to the model when training and artificially boost

validation performance while the final model generalizes poorly. This most often happens

when researchers try to “balance” the number of trials in each condition in the training and

validation sets, unknowingly mixing the two together such that the test set contains data

from the same runs as the training trials.

A related problem common to all fMRI analyses is that of temporal auto-correlations.

It is obvious through biology and time-series analyses that timepoints are not independent

of each other, and care must be taken when splitting training and testing sets such that the

same temporal dynamics are not shared between training and testing (Mumford, 2014; Etzel

& Braver, 2013). While parameter estimation reduces the likelihood of a trial “bleeding into”

the signal of another trial, the truly safe way to split training and testing sets is to leave an

entire scanning session (i.e. “run”) out for testing, at the cost of losing the power of having

that run in the fitted model (Etzel & Braver, 2013).

Limits on inference Given that all data for a single subject are typically acquired at

once, the typical “prediction” approach of machine learning is not applicable. That is,

we generally cannot train the classifier on one session and predict response in real-time, and

cross-subject variability makes between-subject designs difficult in practice. In order to assess

whether performance is statistically significant, the best practice is to run a “validation” or

“cross-validation” scheme (Etzel & Braver, 2013) in which 1) the data are partitioned into a
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“training” and “testing” set, 2) all model fitting (including standardization) is carried out on

only the training set 3) the classifier is evaluated on the “testing” set, and 4) this procedure is

optionally repeated for many different train/test splits, after which performance is averaged.

Using the cross-validation and validation approaches, we realize limits on the inferences

that can be drawn from the classification design devoid of hypotheses. Considering the cost

of scanning, time cost of experimental design and the high dimensionality of the data, any

decrease in power with any validation procedure strongly impacts inference ability. In fact,

different cross-validation procedures have different impacts on variance (Pedregosa et al.,

2011).

It is also important to keep in mind that these classifiers are sensitive to any meaningful

variation in the data. While one might be able to infer where cognitive states might be

represented, MVPC brings us no closer to understanding exactly how the region operates in

order to represent such information. A recent perspective has framed MVPC as redundant,

rather than complementary to univariate analyses as localization in an information theoretic

framework versus activation-based framework (Hebart & Baker, 2017). Crucially, the driver

of a successful classification can have a number of indistinguishable explanations (see Figure

2 and Figure 4, left and middle panels from Naselaris & Kay, 2015, making it impossible

to truly claim causes and perpetuating the “crisis of replicability” (Poldrack et al., 2017).

This ambiguity means that above-chance performance in these studies is not guaranteed to

reflect cognition (as it may correspond to other task-related behavior) and is not uniquely

related with effect size (Hebart & Baker, 2017). Because the distribution of classifier model

weights is unexplored, there is also no principled or parametric approach to conducting
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statistical inference on “significant” contributors to classification (Haynes, 2015). As this

thesis is concerned with experiments regarding higher cognition, these problems are especially

apparent. The psychological dimensions of the stimuli cannot be tightly controlled, and thus

unexplained factors can affect variance structure in unknown ways.

Proper use of MVPC With this assessment, I do not wish to discourage the use of

MVPC outright. Instead, there is a recent call to use MVPC as the first pass analysis,

given its interpretation as an information-theoretic localizer (Haynes, 2015; Hebart & Baker,

2017). Framed this way, MVPC can provide converging evidence with a hypothesized model.

In one example, Thurman, van Boxtel, Monti, Chiang, & Lu, 2016 used MVPC to show that

local versus global biological motion features could be represented in the posterior superior

temporal sulcus (pSTS), and followed up the finding with a hypothesis driven computational

investigation on whether subjects’ Autism Quotient scores could predict neural adaptation

in the region, further suggesting that these differences were the drivers of classification.

Cross classification: Representational inference using MVPC While proper cross-

validation and statistical techniques have been developed for MVPC (Etzel & Braver, 2013),

the information based inferences of MVPC are not supplemented by experimental design in

the same way as univariate analyses. This makes it impossible to determine, in a traditional

classification paradigm, the driver of the successful classification. In fact, from an information

theoretic standpoint, meaningful representation does not even guarantee high classification

accuracy as it does not have a one-to-one relationship with effect size (Hebart & Baker,

2017).
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MVPC analyses generally employ cross-validation (Etzel & Braver, 2013; Hebart & Baker,

2017; Cohen et al., 2017), which provide the conclusion that a region represents information

such that it can be classified. However, the answer of how remains to be determined. A

simple remedy is to align the prediction scheme outlined above with the hypothesis of interest

in what is termed cross classification in the context of this thesis. In an example of cross-

classification, a classifier trained on objects at one retinal position and tested at another can

be used to test whether visual object representations are position-tolerant (Cichy, Chen, &

Haynes, 2011; Cichy, Heinzle, & Haynes, 2012; Kravitz, Kriegeskorte, & Baker, 2010). It has

also been used to compare neural operations behind working memory and mental rotation

(Albers, Kok, Toni, Dijkerman, & de Lange, 2013; Christophel, Cichy, Hebart, & Haynes,

2015). Using a classifier to show that representations are shared across domains allows us to

invoke transitivity if we already understand processing in one domain, as the representation

or computation must be shared across stimulus sets in order for the cross classification to be

successful.

This method has potential in evaluating hypotheses concerning domain-generality. I ap-

ply cross-classification in chapter 2 to directly test the hypothesis that Broca’s area acts as a

supramodal structured sequence processor (Tettamanti & Weniger, 2006). By designing an

experiment such that cognitive operations might be shared from one domain to the other,

there are only two ways a classifier might be successful: 1) if it picks up on those common

cognitive operations (assuming proper experimental controls) and 2) if noise structure is id-

iosyncratically different from domain to domain. Generally, we assume arbitrary noise will

be constant within the same scanning session, especially if trials from different domains are
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interleaved, and we can assume that arbitrary noise differences are actually meaningful sig-

nal. It is still important to consider previously discussed nature of successful classifications,

particularly the pitfalls of interpreting classification accuracy, though relative comparisons

are valid (Hebart & Baker, 2017).

While Chapter 2 demonstrates that cross-classification can be used to establish cross-

domain representations, this approach is not appropriate for within-domain studies. For

more subtle representations, or within-domain inferences, there is a renewed push for us-

ing representational similarity and encoding models (Naselaris et al., 2011; Diedrichsen &

Kriegeskorte, 2017).

1.2.2 RSA

An increasingly popular alternative to MVPC is known as Representational Similarity Anal-

ysis (RSA- Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013; Nili et al., 2014). RSA

characterizes the representation in a brain region by a representational dissimilarity matrix

(RDM), and compares the empirical matrix with a model. An RDM is a square symmetric

matrix, with each entry referring to the dissimilarity between the activity patterns associated

with two trials (e.g., entry (1,2) would represent the dissimilarity between activity patterns

of trial 1 and trial 2 for a given participant). Procedurally, each element of the RDM is

calculated as 1 minus the Pearson correlation between the beta-series for each pair of trials.

Hypothesis models are manually generated to reflect idealized RDMs expected if the group

of voxels is indeed modulating its activity with respect to the manipulation (See chapters 3

and 4 for applications to higher cognition).
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RSA addresses the information representation issue raised by MVPC at the cost of com-

putational sophistication. By comparing distance matrices from several different models

with subject performance (i.e. “second-order distance”, Nili et al., 2014), it becomes possi-

ble to arbitrate between different representational models, thus providing insight as to the

computational level operations implemented in the brain (Marr, 1982). For example, it has

been used to compare deep learning architectures with different ROIs in the visual system

(Seyed-Mahdi & Kriegeskorte, 2014). In chapter 3 we employ RSA to arbitrate between

models of number representation in the parietal cortex, and in chapter 4 we use RSA to de-

termine which regions of the brain modulate activity with the predictions of computational

models of analogy.

While RSA doesn’t suffer from rank-deficiency like MVPC analyses, it is typically applied

in the ROI (Kriegeskorte et al., 2008) or searchlight (Kriegeskorte et al., 2006) approach in

order to reduce the number of features. This is because in its basic formulation, it assumes all

features (i.e. voxels) are of equal importance when calculating trial-by-trial distance (though

see Kriegeskorte & Diedrichsen, 2016, Walther et al., 2016, and Diedrichsen & Kriegeskorte,

2017 for a recent improvement). By introducing a priori ROIs or limiting region size via

searchlight, we maximize the chance that voxels meaningfully encode information and that

the calculated distance metrics are valid and not driven by uninformative voxels. RSA also

enjoys the advantage of being able to employ all samples (trials) within the dataset, rather

than needing to partition as in MVPC (Diedrichsen & Kriegeskorte, 2017).
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CHAPTER 2

The language of music: Common neural codes for

structured sequences in music and natural language

2.1 Abstract

The ability to process structured sequences is a central feature of natural language but also

characterizes many other domains of human cognition. In this fMRI study, we measured

brain metabolic response in musicians as they generated structured and non-structured se-

quences in language and music. We employed a univariate and multivariate cross-classification

approach to provide evidence that a common neural code underlies the production of struc-

tured sequences across the two domains. Crucially, the common substrate includes Broca’s

area, a region well known for processing structured sequences in language. These findings

have several implications. First, they directly support the hypothesis that language and

music share syntactic integration mechanisms. Second, they show that Broca’s area is capa-

ble of operating supramodally across these two domains. Finally, these results dismiss the

recent hypothesis that domain general processes of neighboring neural substrates explain the

previously observed “overlap” between neuroimaging activations across the two domains.
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2.2 Introduction

A central intuition in the study of human language as a cognitive phenomenon is the idea

that, while listening to a linear signal such as speech, our minds spontaneously build abstract

and structured hypotheses representing how discrete elements within a sequence relate to

each other (Chomsky, 1957, 1983; Lashley, 1951; Fitch & Martins, 2014; Jackendoff, 2002;

Monti, 2017). The use of such representations is most clearly displayed in natural language

(Ding, Melloni, Zhang, Tian, & Poeppel, 2016; Berwick, Friederici, Chomsky, & Bolhuis,

2013), but also characterizes other aspects of human cognition, such as logical reasoning

(Osherson, 1975; Monti & Osherson, 2012), algebraic cognition (Varley, Klessinger, Ro-

manowski, & Siegal, 2005; Monti, Parsons, & Osherson, 2012; Maruyama, Pallier, Jobert,

Sigman, & Dehaene, 2012), and music cognition (Patel, 2003; Katz & Pesetsky, 2011; Ler-

dahl, 2001), among others. The relationship between the syntactic operation of language and

the syntax-like operations of other aspects of human cognition has thus been at the center of

a long-standing debate concerning the degree to which human thought is embedded within,

or enabled by, natural language (e.g., Lashley, 1951; Boeckx, 2010; Gleitman & Papafragou,

2013; Fitch & Martins, 2014; Fitch, 2014; Monti, 2017).

Lashley (1951) commented on the prevalence of structured sequences across domains,

noticing that they exhibited the following three properties: (1) connectedness; i.e. no node

is isolated from the others, (2) a root element; i.e. “sentence” or “chord” that is superior

to others and (3) acyclic structure; establishing order as a unique property (Lashley, 1951;

Fitch & Martins, 2014). In the context of music cognition, the analogy with the structural

aspects of language is particularly pronounced. As discussed elsewhere (e.g., Lerdahl &
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Jackendoff, 1985; Patel, 2003; Fadiga, Craighero, & Alessandro, 2009; Fitch, 2014; Peretz,

Vuvan, Lagrois, & Armony, 2015), music and language are both characterized by discrete

elements (e.g., words, chords) which can be (recursively) combined, according to specific

rules, to form organized structures (e.g., sentences, melodies) which are typically encoded

within linear, time-dependent, signals.

Nonetheless, whether this analogy is substantial or merely superficial remains a debated

issue (cf., Peretz et al., 2015). At one end of the spectrum, it has been proposed that language

and music are governed by the very same syntactic processes applied to different building

blocks (e.g., words vs. notes). According to this view, “[a]ll formal differences between lan-

guage and music are a consequence of differences in their fundamental building blocks[; i]n

all other respects, language and music are identical” (Katz & Pesetsky, 2011). Along similar

lines, it has been proposed that the common representations underlying the structure pro-

cessing in language and music can be localized to the neural mechanisms encapsulated within

the left inferior frontal gyrus (IFG; often referred to as Broca’s Area), a region hypothesized

to operate as a “supramodal hierarchical parser” (Tettamanti & Weniger, 2006; Fadiga et al.,

2009). Consistent with this view, a rapidly growing neuroimaging literature has shown music

processing to recruit cortical regions overlapping with areas known to be involved in syn-

tactic and semantic aspects of natural language processing (Patel, Gibson, Ratner, Besson,

& of cognitive, 1998; Maess, Koelsch, Gunter, & Friederici, 2001; Koelsch, Gunter, Cramon,

& Neuroimage, 2002; Tillmann, Janata, & Research, 2003; Koelsch, Kasper, Sammler, &

Nature …, 2004; Koelsch, Gunter, Wittfoth, & Sammler, 2005; Brown, Martinez, & Parsons,

2006), see (Rogalsky, Rong, Saberi, & Hickok, 2011), for a conflicting result). Nonetheless,
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while the observation of overlapping neural substrates is often taken to imply the presence

of shared neurocognitive representations between language and music, this is not necessarily

the case (Peretz et al., 2015)) and indeed has never been shown to be true. This “missing

link” in the neuroscientific literature leaves open the possibility that commonly recruited

areas of the brain might, in fact, represent very different operations that do not translate, or

align, across the two domains, or that are entirely unrelated to the processing of these rela-

tionships. In line with this observation, it has been suggested that language and music are

in fact better thought of as modular and largely independent of each other (Marin & Perry,

1999; Peretz & Coltheart, 2003). In support of this view, a rich neuropsychological literature

has described cases of individuals who exhibit amusia in the absence of aphasia, as well as

aphasia in the absence of amusia (Luria, Tsvetkova, & of the neurological, 1965; Peretz,

1993; Peretz et al., 1994; Ayotte, Peretz, Rousseau, Bard, & Bojanowski, 2000; Piccirilli,

Sciarma, & Luzzi, 2000; Ayotte, Peretz, & Brain, 2002).

The reason for the contradicting evidence is still a matter of debate. According to some,

the fracture between neuropsychological and neuroimaging findings can be reconciled with

a middle-ground solution in which language and music are viewed as partially overlapping

systems (Patel, 2003; Patel, Iversen, Wassenaar, & Aphasiology, 2008)). Under this view,

referred to as the shared syntactic integration resource hypothesis, language and music are

characterized by both domain-specific (i.e., separate) and shared processes. The domain-

specific processes relate to the particular features of each syntax, which are recognized as

architecturally different, while shared processes provide neural resources for the activation

of the relevant stored syntactic representations (Patel, 2012). According to others, the
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inconsistency between the two sets of findings might instead be due to experimental and

neuroanatomical considerations (Fedorenko & Varley, 2016). Specifically, the overlap often

reported, in neuroimaging studies, in left inferior frontal regions could be a reflection of task-

general demands tied to the use of structural-violation paradigms (e.g., the P600 and the

early left/right anterior negativity effects reported in electrophysiological studies; Janata,

1995; Maess et al., 2001; Koelsch et al., 2002, 2005; Steinbeis & Koelsch, 2008; Tillmann et

al., 2003; and later localized to the inferior frontal gyri through neuroimaging; Musso et al.,

2015; Kunert, Willems, Casasanto, Patel, & Hagoort, 2015). Deviant events are indeed likely

to elicit ancillary processes including attentional capture, detection of violated expectations,

or error correction, regardless of whether the violation applies to natural language, music,

arithmetic, or motor sequences. Such processes are unrelated to the extracting or forging of

structured sequences and are known to elicit activation in domain-general regions (proximal

or partially overlapping with Broca’s Area; see Fedorenko & Varley, 2016, for a detailed

discussion).

In the present study, we address the relationship between the mechanisms of natural

language and those of music in a 3 Tesla functional magnetic resonance imaging (fMRI)

within-subjects design in which competent musicians generate structures in language (ac-

tive/passive voice sentences versus repeating a verb) and music (root/second-inversion po-

sition ascending triads versus repeating a note; cf., Figure 2.1 and Table 2.1). Crucially,

we employ a (rarely explored) generation task to avoid the confound of salient events, and

we use a multivariate cross-classification approach to resolve the interpretational ambiguity

present in the previous neuroimaging literature (which has been specifically advocated for;
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see Peretz et al., 2015), thereby helping resolve the question of whether natural language

and music share a common underlying neural code for representing structured sequences.

2.3 Methods

Participants We recruited 21 total participants to reach the predetermined sample size

(N=20, 8 female participants) based on previous literature Musso et al., 2015: N=11; Kunert

et al., 2015: N=19; Koelsch et al., 2002: N=20). An additional subject was recruited because

the data from one of the participants exhibited excessive motion during the procedure (see

below). Participants received $50 compensation for taking part in the experiment. All

participants were native English speakers, right handed, and competent musicians currently

enrolled in the UCLA Herb Alpert School of Music. Participants were only enrolled if they

could demonstrate proficiency in singing/generating both a root position and IInd inversion

ascending triad arpeggio. Participants with perfect pitch were excluded. Participants signed

informed consent prior to taking part in the session, as per the procedures approved by the

UCLA Institutional Review Board.

Stimuli For both materials (i.e., “language” and “music” trials), the first cue was delivered

visually, by presenting one of three icons in the middle of the screen. A ‘�’ symbol indicated

an active or root position trial (depending on whether the second cue was a word or a note,

respectively); a ‘�’ symbol indicated a passive or a IInd inversion trial; a ‘�’ symbol indicated

a non-structured (i.e., repeat) trial. The second cue was delivered aurally and consisted

of either a verb or a note, thus revealing whether the trial was a language or music trial,
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and allowing disambiguation of the instruction provided by the first cue. (See Table 2.1

and Figure 2.1 for sample stimuli.) Cues for language trials consisted of seven monosyllabic,

reversible, present tense verbs (i.e., “bring,” “tell,” “teach,” “throw,” “leave,” “give,” “pay”).

Cues for the music trials consisted of 7 notes recorded with an electronic piano. The notes

comprised a chromatic scale (i.e. each consecutive pitch was separated from the following

by a semitone, or a half step). Participants were allowed to choose, among three sets of

musical cues (high, middle, or low), whichever pitch range most comfortably matched their

vocal range. For each set, a perfect fifth (7 semitones/half steps) separated the lowest and

highest pitches of the cues. Combining the 7 cues (i.e., words/notes), 3 generative rules (2

structured, 1 repeat), and 2 materials (i.e., language, music), resulted in 42 unique trials

(i.e., 21 per material type).

Experimental Design Each participant viewed the 42 unique trials twice (once in the

first two runs, once in the second two runs). Trial types were equally distributed across 4

runs, and, within each, randomly presented. Stimuli were presented using PsychoPy (Peirce,

2009); visual cues were displayed through a custom-made MRI-compatible projection system

while auditory cues were delivered through a Magnetic Resonance headphone system. As

shown in Figure 2.1, each trial started with the generative rule cue (i.e., ‘♢, ♣, 	’), displayed

on screen for 1.5 s, followed by the second cue (i.e., word or note) presented, aurally, for 1.8 s.

After a variable jitter (between 6 and 8 s), a fixation symbol blinked four times (with a cycle

of 0.8 s of display and 0.35 s interval). The first blink (with a black square symbol) served as

a warning that the “performance/response” period was to begin. The following three blinks

(with a black circle symbol) marked the performance/response period and provided a tempo
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Language Active Passive Repeat

Cue 1 ♢ ♣ 	

Cue 2 “Give” “G” “Tell”

Response “X gave Y” “X was given Y” “tell, tell, tell”

Music Root position IInd Inversion Repeat

Cue 1 ♢ ♣ 	

Cue 2 “C” “D” “E”

Response “C-E-G” “D-G-B” ‘E-E-E”

Table 2.1: Sample cues & stimuli

for responding. The tempo was never varied, neither within nor across subjects, and was

only employed to provide participants with a consistent rhythm for responding.

Finally, a variable length fixation screen (with a random jitter between 5 and 7 s chosen,

on a trial-by-trial basis, from an exponential distribution) separated each trial from the

subsequent one. Each run lasted, on average, 293.57 s (S.D. = 15.81). Participants were

trained to asymptotic performance prior to the imaging session, in a separate room, after

having signed informed consent. The experimenter corrected any errors the participant made

until satisfactory performance was achieved (less than 2 errors per block of trials). Training

ceased when participants could perform at least 12 out of 13 trials correctly, minimizing the

sound production time across conditions.
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Figure 2.1: Sample music and language trials timelines.

Data Acquisition Data were acquired on a 3 Tesla Siemens Tim Trio Magnetic Resonance

Imaging (MRI) scanner at the Staglin IMHRO Center for Cognitive Neuroscience at UCLA.

Structural data were acquired using a T1-weighted sequence (MP RAGE, TR = 1,900 ms,

TE = 2.26 ms, voxel size 1 mm3 isovoxel). Blood oxygenation level dependent (BOLD) data

were acquired with a T2*-weighted Gradient Recall Echo sequence (TR = 3,000 ms, TE =

35 ms, 45 interleaved slices, voxel size 3 × 3 × 3.3 mm) with prospective motion correction

in order to reduce the impact of subject motion during performance.

Data Preprocessing Data analysis was carried out using FSL (Smith et al., 2004). Prior

to analysis, data underwent a series of conventional preprocessing steps including motion

correction, slice-timing correction (using Fourier-space time-series phase-shifting), spatial
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smoothing using a Gaussian kernel of 5 mm full-width half-max, and highpass temporal

filtering (Gaussian-weighted least-squares straight line fitting, with �=50.0s). Data from

each individual run were analyzed employing a univariate general linear model approach

(Monti, 2011) inclusive of a pre-whitening correction for autocorrelation. Following current

convention, any participant exhibiting average motion greater than 3 mm was excluded

(N=1).

Univariate Analysis For each run of each participant, a univariate analysis was con-

ducted using, as the main variables of interest, 6 regressors, one per trial type (i.e., language

active voice, language passive voice, language repeat, music root position, music IInd inver-

sion position, music repeat). Regressors marked the performance/response period of each

trial (see Figure 2.1). A number of additional nuisance regressors were employed to model

cue periods, motion (including first and second derivatives, and their difference), as well

as the short intervals between the second cue and task performance. This last regressor is

particularly important since it parcels out periods in which subjects are likely to be engaging

in strategies in anticipation of the task, which, in the absence of any participant feedback,

are un-controlled and thus difficult to interpret. For each run we computed 4 contrasts:

structured versus repeat trials for language and music materials (“simple effect” contrasts),

separately, and the interaction between the two simple effects (“interaction contrasts”) in

both directions (i.e., simple effect of structured trials in language greater than the simple

effect of structured trials in music, and vice versa). Data from individual runs were aggre-

gated employing a mixed effects model (i.e., employing both the within- and between-subject

variance), and using automatic outlier detection. Z (Gaussianised T) statistic images were
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thresholded using a cluster correction of Z>2.3 and a (corrected) cluster significance thresh-

old of P=0.05.

Multivariate Analysis The input to the multivariate analysis was a set of volumes of

regression coefficients (i.e., “β̂”) marking the magnitude of activation, for each voxel, in each

trial (per subject). These trial-wise “patterns of activations” were obtained by employing

the iterative Least Squares – Separate approach (LS-S; Mumford et al., 2012) in which a

separate GLM is run (here, using FILM with local autocorrelation) for each trial. At each

iteration, one regressor marks the trial of interest, while all remaining trials are collapsed

into a nuisance regressor (see (Mumford et al., 2012), Figure 2.1 for a visual depiction of this

approach). This approach has been shown, in simulations, to produce activation estimates

that have the highest correlation with true activation magnitudes (Mumford et al., 2012), and

has also been shown to adapt best to multivariate analyses when used in conjunction with

full randomization of trials (different for each subject) and with equal inter stimulus interval

across condition (Mumford et al., 2012), as we have done. The patterns of activation were

then concatenated across time to construct a subjectwise “β̂-series” of activation magnitude

per trial per voxel (Rissman et al., 2004).

In order to assess whether natural language and music share underlying neural represen-

tations, we employed a cross-classification searchlight analysis using a linear support vector

machine (SVM) algorithm. Cross-classification was performed by training the SVM classifier

to recognize structure vs. repeat trials in one domain, and then attempting to classify struc-

ture vs. repeat structure trials in the other domain (“M2L” and “L2M” cross-classifications

for training on music and testing on language and vice versa, respectively). L2M cross-
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classifications were performed over voxels found significant in the structure minus repeat

trials for language materials (only); M2L classifications were performed over voxels found

significant in the structure minus repeat trials for music materials (only). Because the sig-

nificant voxels in the two univariate contrasts could overlap, this feature selection ensures

that the training and testing datasets for each type of cross-classification (i.e., L2M, M2L)

remain completely separate, thereby avoiding any bias in the analysis. Classifications were

performed on a single subject basis, in native space, employing a 6 mm radius searchlight

approach (Kriegeskorte et al., 2006). To account for the imbalance between the number

of structure and repeat trials (28 and 14, respectively, per each domain) and avoid biasing

the classifier, we performed a resampling procedure in which, at each of 1000 iterations,

a subsample of 14 (structured) trials was randomly selected, in order to train and test the

classifier on a matching number of trials across conditions. Results across the 1000 iterations

were averaged to yield a single classification accuracy value for each searchlight sphere.

Then, in order to assess whether the two structured sequences of each domain could

be distinguished from one another on the basis of patterns of brain activity within Broca’s

area (i.e., Language Active Voice (LAV ) versus Language Passive Voice (LPV ) and Music

Root Position (MRP ) versus Music 2nd Inversion (MSI)), we performed a second searchlight

analysis (Kriegeskorte et al., 2006). Specifically, for each domain separately, we performed

an SVM classification on a single subject basis, in native space, employing a 6 mm radius

searchlight. At each iteration of the searchlight, classification accuracy was assessed using a

leave-one-run-out cross validation procedure in which the SVM was trained on the trials from

3 runs, and accuracy was assessed on the trials from the remaining run. This procedure was
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repeated for each run, and the 4 accuracies were then averaged to obtain overall accuracy

for each classification.

For both classification analyses, statistical significance was assessed, at the group level,

employing a permutation-based sign test and against a criterion of p= 0.05 corrected for

multiple comparisons at the cluster level (using FSL’s threshold free cluster enhancement,

Winkler, Ridgway, Webster, Smith, & Nichols, 2014). At the single subject level, significance

was assessed with a permutation procedure, in which the classification was repeated 1000

times, with shuffled testing labels, to construct a null distribution for each voxel (cf., Etzel

& Braver, 2013). Classifications falling within the top 5% of the null distribution were

considered significant.

2.4 Results

Univariate Analysis The simple effect contrast of structure versus repeat trials for lan-

guage materials uncovered a set of expected activations in left inferior frontal gyrus (including

its pars opercularis and triangularis, in Brodmann Areas [BA] 44, 45), posterior middle and

superior temporal cortices (BA 21, 22), bilateral parietal (spanning BA 7, 40) and medial

(BA 6), middle (BA 8), and superior frontal (BA 6) areas (mostly left lateralized; see Figure

2.2, below, and Table A.1 in the Supplemental Material available online for complete list of

local maxima).

When performed on music trials, the same contrast uncovered a number of activation

clusters across bilateral frontal and parietal regions (see Figure 2.2 and Table A.2). The

frontal cluster included bilateral maxima in the inferior frontal gyri (spanning its pars op-
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ercularis in BA 44, triangularis in BA 45, and orbitalis in BA 47), rostral insular cortex

(spanning BA 13 and its junction with 45 and 47), as well as bilateral foci across middle

(BA 6), superior (BA 6, 8) frontal, and cingulate (BA 32) gyri. In addition, bilateral acti-

vations were observed in the inferior (BA 40) and superior (BA 7) parietal lobuli, as well as

in the posterior cerebellum (see Table A.2 in the Supplemental Material available online for

the complete list of local maxima). As shown in Figure 2.2 (regions in yellow), the structure

versus repeat contrast uncovered a number of common areas across language and music ma-

terials, including the left inferior frontal (in its pars opercularis, BA 44) and middle frontal

(in BA 6) gyri, as well as the medial frontal/cingulate gyri (BA 6, 32), and bilateral posterior

parietal lobe (in both BA 7 and 40). In order to avoid interpreting a “reverse subtraction”,

we characterized the mean activity profile for structure and repeat conditions to identify the

primary driver in IFG. Mean z-scores from the IFG subregions (defined by external atlases:

pars opercularis and pars triangularis from Harvard-Oxford and pars orbitalis from AAL)

are displayed in figure A.2.

The interaction of structure versus repeat structure and materials revealed the left supe-

rior and middle temporal gyri (BA 21, 22) to be specific to language (see blue areas in Figure

A.1 and Table A.3), whereas foci surrounding the right orbital and sub-lobar segments of

the inferior frontal gyrus (mainly in BA 47 and 13), along with right superior frontal (BA

6), medial frontal (BA 6, 32) and contralateral posterior cerebellum appeared to be specific

to structure in music (see Figure A.1 and Table A.3 in the Supplemental Material available

in A).
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Figure 2.2: Overlay of the structure versus repeat contrast results for language (blue) and

music (green) (yellow marks overlap between the two tasks).

Multivariate Analysis In order to assess whether natural language and music share neu-

ral codes for representing structure, we performed a cross-classification multivariate pattern

analysis. In this approach, an SVM classifier was trained to recognize structure versus repeat

trials in one domain and was then tested on the other. That is to say, we trained a classifier

to distinguish structure versus repeat trials in language and then tested it by assessing its

ability to discriminate structure versus repeat trials in music (“L2M” cross-classification),

and vice versa (“M2L” cross-classification; see Methods).

As shown in Figure 2.3, significant cross-classifications were evident across a number

of regions within medial prefrontal cortex, bilateral posterior parietal cortices, as well as

left precentral, inferior (in the pars opercularis), and middle frontal gyri, matching areas of

univariate overlap between the two domains (i.e., yellow regions in Figure 2.2). In addition,

within each of these cross-classification clusters are areas (in yellow) capable of performing
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Figure 2.3: Green regions represent areas in which the SVM algorithm could significantly

classify, with above chance accuracy, structure vs. repeat trials in language materials af-

ter having been trained to recognize structure vs. repeat trials in music materials (i.e.,

M2L cross-classification). Blue regions represent areas in which the SVM algorithm could

significantly classify, with above chance accuracy, structure vs. repeat trials in music mate-

rials after having been trained to recognize structure vs. repeat trials in language materials

(i.e., L2M cross-classifications). Yellow areas show searchlight centers that can significantly

perform both classifications.

31



both L2M and M2L classifications, further demonstrating some extent of common underlying

neural representation across the two domains. Crucially, this effect could be observed at the

single-subject level, with median (single-subject) cross-classification accuracies at 61% for

both L2M and M2L classifications, and ranges between 59% and 65%, and 58% and 64%

for L2M and M2L classifications, respectively; with chance being 50%). Focusing on the

left inferior frontal gyrus in particular, Figure 2.4 depicts the reliability of the result at the

single-subject level. Figure 2.4 also demonstrates a significant across-subject variability in

the exact location of voxels sensitive to linguistic structure within the inferior frontal gyrus

(as previously shown; Fedorenko, Hsieh, A, S, & Kanwisher, 2010), something that we also

observe in music-structure sensitive voxels, resulting in a systematic but variably located

overlap in voxels capable of both L2M and M2L classifications within this region.

We then performed a searchlight classification in order to determine whether Broca’s

area was capable of discriminating between the two structured conditions (Active versus

Passive voice in Language, and Root vs 2nd Inversion position in Music). After correcting

for multiple comparisons, there was no evidence at the group level that regions able to classify

the structures within domains were consistent across subjects. However, at the single subject

level, a within-subject permutation test revealed that all 20 subjects exhibited, within Broca’s

area, regions capable of discriminating between the two language structures (LAV v LPV ; cf.

Figure 2.5, blue areas), 17 subjects exhibited regions capable of discriminating between the

two music structures (MRP v MSI ; cf. Figure 2.5, green areas), and for 8 subjects the two

sites overlapped (cf. Figure 2.5, yellow areas).
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Figure 2.4: Cortical flat-maps depicting, for each participant separately, searchlight centers

capable of significant cross-classifications (L2M in blue; M2L in green; overlap in yellow)

within the inferior frontal gyrus as defined anatomically (highlighted in red, at the top).

Each image (labeled as ‘S##’) represents the classification results for a single participant.33



Figure 2.5: Cortical flat-maps depicting, for each subject, searchlight centers capable of

discriminating between structures within each domain (LAV v LPV in blue, MRP v MSI in

green, Overlap in yellow) within the inferior frontal gyrus.
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2.5 Discussion

In this study we have addressed the question of the relationship between natural language

and human cognition by contrasting the neural substrates accompanying the generation of

structured sequences across language and music. Overall, our results provide direct evidence

for the hypothesis that language and music have a shared neural code for producing struc-

tured relationships – a phenomenon that we observe both at the group as well as at the

single subject level.

More specifically, we report three central findings. First, employing a magnitude-based

univariate approach, we find the generation of structured sequences in language to recruit

a well-known left lateralized network of frontal and temporal regions, along with posterior

parietal foci, while generation of music sequences engaged a larger, and strongly bilateral,

set of fronto-parietal regions. The neural substrate elicited by this performance paradigm

(which has remained almost unexplored in the context of music, with the exception of Brown

et al., 2006) matches very closely the neural substrate typically reported in tasks focusing

on competence in both language (e.g., Michal, Hendler, Kahn, Dafna, & Grodzinsky, 2003;

Monti, Parsons, & Osherson, 2009) and music (e.g., Maess et al., 2001; Koelsch et al., 2002,

2005; Cheung, Meyer, Friederici, & Koelsch, 2018.

Our second main finding, as evaluated with the same univariate activation-based ap-

proach, shows that the building of structured sequences in language and music relies on a

number of common regions across left lateral and medial frontal cortices, as well as bilateral

posterior parietal regions. In particular, the univariate analysis shows that the posterior-

most aspect of Broca’s Area, in the pars opercularis of the left inferior frontal gyrus, is

35



metabolically responsive to the presence of structure in the context of both language and

music materials (Figure A.2) – a finding that is consistent with results from previous stud-

ies Maess et al., 2001; Koelsch et al., 2002, 2004, 2005; Brown et al., 2006). Beyond the

left inferior frontal gyrus, our findings show that the interplay between language and music

might well extend to a set of regions in frontal and parietal cortices conventionally referred

to as the multiple-demands network (Duncan, 2010), which have been shown to be recruited

across a broad class of cognitive operations (Fedorenko, Duncan, & Kanwisher, 2013), and

medial frontal regions that are commonly recruited by motor planning (Tanji & Shima, 1994;

Tanji, Shima, & Mushiake, 2007; Haggard, 2008); and that have also been shown to play

a role in rhythm perception and generation of spontaneous movement in response to music

stimuli (Grahn & Brett, 2007; Lima, Krishnan, & Scott, 2016). The absence of temporal

regions identified by the domain-specific main effects (Figure A.1), specifically the involve-

ment of posterior STS (i.e. “Wernicke’s area”) in language tasks but not music, corroborates

previous work reporting that posterior temporal regions might engage a semantic/syntactic

interaction (See Friederici, 2011, 2012 for a review).

Finally, our third, and crucial, finding addresses the significance of the frequently re-

ported overlap between the neural substrate of language and that of music, thereby directly

addressing the question of whether the mechanisms of natural language play a role in pro-

cessing the structured sequences of music. Indeed, while regions of overlapping activation

for these two domains have been widely interpreted as marking areas of shared neurocogni-

tive processing (Kunert et al., 2015), these hypotheses had not been directly tested (until

now), prompting some to specifically advocate multivariate analyses such as the one adopted
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here (Peretz et al., 2015). As we reported above, we could find within each of the regions

of univariate overlap (in Broca’s area), areas capable of recognizing music structure on the

basis of language structure and vice versa. In fact, in each of these areas a subset of voxels

could perform, at the same time, cross-classifications in both directions (i.e., L2M and M2L),

demonstrating a degree of shared neuronal representation of structures across domains. Fur-

thermore, although the result was not significant at the group level, within Broca’s area

we could also find, at the single subject level, variably located sub-regions sensitive to the

different structures of language (i.e., active versus passive voice) and music (i.e., root ver-

sus 2nd inversion position). These findings thus provide evidence in favor of the idea that

language and music cognition share, within Broca’s area, resources related to establishing

structured relationships tying discrete elements into well-formed complex structures (Patel,

2003). Nonetheless, our data cannot address the issue of whether the neural representation of

specific operations (e.g., syntactic movement, Chomsky, 1957, 1995) can be directly mapped

across the two domains, as entailed by some views (Katz & Pesetsky, 2011).

In interpreting our results, however, two important limitations should be noted. First,

it is not possible, from our analysis, to determine the precise factor(s) driving the successful

classification of either structured versus non-structured trials across domains, or within the

structured sequences of each domain (cf., Hebart & Baker, 2017). Indeed, in both analyses,

stimuli differed across a number of important features including the presence of structured

sequences as well as working-memory demands (as shown by the common recruitment of

regions within the so-called multiple demands (Duncan, 2010), or extrinsic mode (Hugdahl,

Raichle, Mitra, & Specht, 2015), network). The degree to which each of these (and possibly
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other) factors drives our results cannot be assessed with our own data. Nonetheless, while

the co-localization of cross-classifying voxels within Broca’s area is open to such interpreta-

tional ambiguity, it is harder to make the same case for the little co-localization observed

in the classification of different ordered structures (within each domain). If indeed general

processes were responsible for the activations previously observed for music in Broca’s area

(Fedorenko & Varley, 2016)), a greater co-localization of voxels capable of classifying the

two structures within each domain would be expected. Furthermore, a recent study has

shown that increased (general) working memory demands are not sufficient to drive activa-

tion within Broca’s area, while activating a well-characterized network of frontal and parietal

regions (Coetzee & Monti, 2018).

A second important consideration is the fact that, for both music and language, our

structures were relatively simple as compared to previous work attempting to relate linguistic

and music sequences (e.g., Kunert et al., 2015). It is thus not clear whether the fact that

we fail to uncover a group effect in classifying, within each domain, the two structures (i.e.,

active/passive voice and root/2nd inversion position, for language and music respectively) is

due to this difference or other factors such as the high variability of the fine distribution of

neural representations across individuals (cf., Figure 2.5; see Fedorenko et al., 2010).

Overall, our findings are consistent with the idea that Broca’s area might play a role across

multiple domains, in the context of processing structured sequences, as envisioned in the

Supramodal Hierarchical Parser hypothesis (cf., Tettamanti & Weniger, 2006). Nonetheless,

it is important to note that to date this hypothesis has only found support in a narrow

sense (e.g., as conceived in Fadiga et al., 2009, and see de Cavey & Hartsuiker, 2016 for
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evidence of domain-general mechanisms), as it does not appear to extend to the hierarchical

relationships of algebra (e.g., Varley et al., 2005; Monti et al., 2012), logic inference (e.g.,

Monti, Osherson, Martinez, & Parsons, 2007; Monti et al., 2009; Monti & Osherson, 2012),

and spatial cognition (e.g., Bek, Blades, Siegal, & Varley, 2010). Thus far, it has only been

found to be consistent with findings in the domain of language (cf., Bookheimer, 2002),

music (here and in most previous neuroimaging reports; e.g., Maess et al., 2001; Koelsch et

al., 2002; Koelsch, Rohrmeier, Torrecuso, & Jentschke, 2013), and motor actifon sequences

(e.g., P. Fazio et al., 2009). In this sense, Broca’s area cannot be viewed as a central

parser capable of operating in any domain of cognition as one would expect of a domain

general processor or working memory component, though it may be a core component in

a network of regions engaging in hierarchical processing (Fitch, 2014)). While it might be

speculated that Broca’s area plays a role in cognitive domains where structured relationships

trigger automatic and effortless intuitions (compare the ease of detecting a non-grammatical

sentence or a sour note with the much more taxing task of detecting an incorrect algebraic

expression or logic argument), the crucial factor(s) determining its involvement in processing

structured sequences remains to be fully specified.

In conclusion, this report provides direct evidence that forging the structured sequences

of natural language and music relies also on a common neural representational space which

includes Broca’s area, a region traditionally associated with the syntactic operations of lan-

guage. Contrary to recent discussion (Fedorenko & Varley, 2016), we find that activations

within Broca’s area in response to music stimuli cannot be discounted as epiphenomenal to

salient events (e.g., violations, which were not present in our design) or due to recruitment
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of domain general processes (encapsulated in, or close to, Broca’s area). Whether the com-

mon mechanisms originally evolved in connection with one of the two domains, or whether

they jointly inherited their properties from a common anteceding cognitive domain (e.g., a

“prosodic protolanguage,” (Fitch, Hauser, & Chomsky, 2005); or the capacity for hierarchical

sequences of motor actions, (Lashley, 1951), remains to be understood.
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CHAPTER 3

Neural representations of magnitude for natural and

rational numbers

3.1 Abstract

Humans have developed multiple symbolic representations for numbers, including natural

numbers (positive integers) as well as rational numbers (both fractions and decimals). De-

spite a considerable body of behavioral and neuroimaging research, it is currently unknown

whether different notations map onto a single, fully abstract, magnitude code, or whether

separate representations exist for specific number types (e.g., natural versus rational) or

number representations (e.g., base-10 versus fractions). We address this question by com-

paring brain metabolic response during a magnitude comparison task involving (on differ-

ent trials) integers, decimals, and fractions. Univariate and multivariate analyses revealed

that the strength and pattern of activation for fractions differed systematically, within the

intraparietal sulcus, from that of both decimals and integers, while the latter two number

representations appeared virtually indistinguishable. These results demonstrate that the two

major notations formats for rational numbers, fractions and decimals, evoke distinct neural

representations of magnitude, with decimals representations being more closely linked to
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those of integers than to those of magnitude-equivalent fractions. Our findings thus sug-

gest that number representation (base-10 versus fractions) is an important organizational

principle for the neural substrate underlying mathematical cognition.

3.2 Introduction

Representations of Symbolic Number Types Humans are unique in having developed

symbolic notations for numbers. Given that a primary function of numbers is to convey

magnitude values, it is important to understand the mental and neural representations of

numerical magnitudes. The goal of the current study was to address the question of how

different symbolic notations (natural numbers, fractions, and decimals) map onto magnitude

codes. Specifically, we sought to determine whether different notations map onto a single,

fully abstract, magnitude code, or whether separate representations exist for specific number

types (e.g., natural versus rational) or number representations (e.g., base-10 versus fractions).

Numerous studies of numerical magnitude comparisons have yielded a symbolic distance

effect: comparisons of numbers that are closer in magnitude (e.g., 7 vs. 8) are slower and

more error prone than comparisons of numbers that are farther apart (e.g., 2 vs. 8; Moyer

& Landauer, 1967; Holyoak, 1978). A similar distance effect is observed in children (Barth,

La Mont, Lipton, & Spelke, 2005; Brannon, 2002). Rhesus monkeys display a distance

effect for numerosity comparisons; moreover, they are capable of learning shapes (Arabic

numerals) corresponding to small numerosities (1-4 dots), such that the shapes acquire neural

representations overlapping those of the corresponding perceptual numerosities (Diester &

Nieder, 2007).
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The distance effect and other phenomena have been interpreted as indications that nu-

merical magnitudes (at least for integers) are accessed quite automatically, and are associ-

ated with an analog magnitude representation akin to a mental number line (Dehaene &

Changeux, 1993; Gallistel, 1993; Opfer & Siegler, 2012). Neuroimaging studies with both

adults and children have implicated the intraparietal sulcus (IPS) as the central area for rep-

resenting and comparing symbolic integer magnitudes (and also non-symbolic magnitudes)

(Dehaene, Piazza, Pinel, & Cohen, 2003; Nieder & Dehaene, 2009; Piazza, Pinel, Le Bihan,

& Dehaene, 2007; Pinel, Dehaene, Riviere, & LeBihan, 2001). Further, IPS activation is

inversely related to the numerical distance between two numbers being compared (Cohen,

1973; Kaufmann, Koppelstaetter, Delazer, & Siedentopf, 2005), consistent with the behav-

ioral distance effect.

While the representation of whole-number magnitude has received considerable atten-

tion, far less is known about the representation of other symbolic number types, such as

the rational numbers (fractions and decimals). Some have argued that the representation

of magnitude in general is entirely abstract, and that all symbolic and non-symbolic mag-

nitudes can be represented using a single mental (and neural) number line (Eger, Sterzer,

Russ, Giraud, & Kleinschmidt, 2003; Naccache & Dehaene, 2001; Siegler, Thompson, &

Schneider, 2011). However, studies investigating this topic have as yet failed to reach a

consensus. Previous behavioral research has mainly focused on the extent to which frac-

tions are represented holistically. This work has focused on the issue of whether the overall

magnitude of a fraction is accessed automatically, like an integer (Kallai & of Human, 2009;

Meert, Grégoire, & Noël, 2010; Meert, Grégoire, & of Psychology, 2010; Schneider & Siegler,
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2010; Sprute & Temple, 2011). Evidence for automatic and holistic magnitude representa-

tion come from studies examining the distance effect during fraction comparisons. Many

studies (e.g. Schneider & Siegler, 2010) have found that adults show a distance effect when

representing fractions during comparisons. However, other studies have shown that depend-

ing on the stimuli and availability of various shortcut strategies, adults may represent only

the whole-number components of the fraction and not its holistic magnitude (e.g. Bonato,

Fabbri, Umiltà, & Zorzi, 2007; L. K. Fazio, DeWolf, & Siegler, 2016).

Moreover, other work has shown that even when a distance effect is found for fraction

comparisons, the size and scale of the effect is entirely different for fractions relative to

either integers or decimals. DeWolf, Grounds, Bassok, & Holyoak, 2014 had adults compare

fractions, matched decimals (rounded to three digits) and integers (created by multiplying the

equivalent decimal by 1000 to obtain a three-digit integer). Comparisons for all three number

types yielded reliable distance effects, based on the holistic magnitudes of the numbers being

compared. Importantly, however, response times and error rates for the fraction comparisons

were much higher than for comparisons of either decimals or integers, with the latter number

types showing no differences in response times or errors. Moreover, the distance effect was

much more pronounced for fractions, with response times averaging between 2 and 8 seconds

for far versus near number pairs. In contrast, response times for integers and decimals

overlapped with one another, and generally were no longer than 2 seconds. This dramatic

difference in the scale of the distance effect across number types suggests that the magnitude

information associated with fractions may be less precise than that associated with integers

or decimals, and that the process of accessing magnitudes is more effortful and less automatic
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for fractions than for either integer or decimal formats.

Using fMRI to Investigate Magnitude Representation Behavioral research investi-

gating rational number magnitudes suggests there are important differences between magni-

tude processing for fractions relative to other number types. Although neuroimaging meth-

ods, and fMRI in particular, have been employed to assess the neural substrates of numerical

magnitude representation (e.g., Damarla & Just, 2013), numerical symbols representations

(see Ansari, 2007) and algebra (e.g., Monti et al., 2012), there is no consensus regarding the

interpretation of the behavioral differences observed between fractions and other number

types. The present study applied neuroimaging methods to assess the relationships among

the neural representations of magnitude for different symbolic formats. If the representa-

tion of magnitude is entirely abstract, then the neural representations of a fraction and its

magnitude-equivalent decimal (e.g., 2/5 vs. .40) in the IPS might be expected to be identi-

cal. In contrast, if fractions and decimals are processed very differently (as some behavioral

studies suggest), then the neural codes for the different notations may differ. To date, these

alternative predictions remain untested. In fact, only two studies have ever probed the neu-

ral representations underlying the processing of fractional numbers (Ischebeck, Schocke, &

Delazer, 2009; Jacob & Nieder, 2009a), and neither of these assessed the neural represen-

tations underlying decimal numbers, or the relationship between neural representations of

magnitude across different formats for rational numbers.

A few other studies have examined how neural representations of magnitude differ as a

function of notation by comparing neural responses to whole numbers versus their verbal

equivalents (e.g., “12” versus “twelve”). Some studies have found that IPS activation was
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notation-independent (Eger et al., 2003; Naccache & Dehaene, 2001), whereas other stud-

ies suggest there may be both notation-specific and notation-independent areas (Bulthé,

De Smedt, & Op de Beeck, 2015; Cohen Kadosh, Cohen Kadosh, Kaas, Henik, & Goebel,

2007; Damarla & Just, 2013). However, these studies all compared a single mathematical

notation (whole numbers) versus natural language (number names). No work has been done

to investigate the question of whether alternative mathematical formats, such as fractions

versus decimals, evoke similar or distinct neural representations of magnitude.

As noted above, only two studies have investigated the representation of symbolic frac-

tion magnitudes using functional magnetic resonance imaging (fMRI). Jacob & Nieder, 2009a

used an adaptation paradigm to test symbolic fraction magnitudes (single and multi-digit

fractions). Recovery in the BOLD signal after habituation was observed in the frontoparietal

cortex, and specifically the IPS. The pattern of signal recovery was the same after presenta-

tion of either a new symbolic fraction (e.g., “1/2”) or a new fraction written as a word (e.g.,

“half”), suggesting that fractions and their verbal equivalents recruit the same or overlapping

neural areas.

The second study that investigated symbolic fraction notation with fMRI used a mag-

nitude comparison paradigm, rather than an adaptation paradigm. Ischebeck et al., 2009

had adult participants perform a simple magnitude comparison task with fractions, in which

participants saw two fractions simultaneously on the screen and pressed a button to indicate

which was larger in numerical magnitude. The stimuli included different types of fraction

pairs, some with common components, in order to enable a variety of potential strategies dur-

ing the comparison process. The results showed that activity in the right IPS was inversely
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correlated with the distance between the two fractions based on their holistic magnitude

difference, and not with the distances between any component parts. Ischebeck et al. inter-

preted their fMRI results as supporting the hypothesis that (despite an opportunity to use

componential strategies) fraction comparisons were performed using holistic magnitudes.

However, neither Ischebeck et al., 2009 nor Jacob & Nieder, 2009a directly compared

processing of fractions with that of other symbolic formats. Although previous work indi-

cates that magnitude representations for fractions involve roughly the same general neural

area (the IPS) as do magnitude representations for symbolic integers (and non-symbolic

numerosities; see Jacob & Nieder, 2009b; Jacob, Vallentin, & Nieder, 2012), the extent

to which processing and representation of magnitude is the same or different for fractions

relative to other number types has not been examined. Furthermore, the more general ques-

tion of whether different symbolic formats for numbers evoke the same or different abstract

magnitude representations remains unanswered.

The Present Study In the present experiment, we employ univariate and multivariate

analysis of fMRI data to compare, in a within-subject design, the neural representations of

magnitude across different symbolic notations (integers, decimals, and fractions). We hy-

pothesized that, consistent with previous research, all of the number types would activate

the IPS. The main questions concerned possible differences between the number types. If

all number types activate the same abstract neural representation (based on relative rather

than absolute magnitude, to take account of the scale difference between integers and ratio-

nal numbers), then no differences among the number types would be expected. A second

possibility is that neural activation of integers will differ from that of rational numbers
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(either fractions or decimals), both because the latter are more complex and because the

overall magnitude scale differs. A third possibility, based on the behavioral findings of

DeWolf et al., 2014, is that fractions will evoke a neural signature distinct from that of

either magnitude-equivalent decimals or integers, whereas the latter two number types will

evoke similar activation patterns.

3.3 Methods

Participants Sixteen participants (12 female, mean age 21 years) with no documented

history of neurological disorders were recruited at the University of California, Los Angeles

(UCLA) through a flyer distributed in the Psychology department. Participants signed

informed consent prior to the experimental session, and were paid $30 for their participation

in the 1-hour study, in compliance with the procedures accepted by the local institutional

review board (IRB).

Stimuli Stimuli consisted of pairs of numbers in one of three possible symbolic types:

fractions (e.g., 1/2, 3/4), decimals (e.g., .50, .75) or integers (e.g., 50, 75). Within each pair,

numbers were always of the same type. In order to control for the number of digits on the

screen across symbolic types, only single-digit fractions, double-digit decimals, and double-

digit whole numbers were presented. Thus, instances of the three symbolic number types

were always constructed from exactly two digits. All of the fraction comparison pairs were

comprised of fractions that did not have any common components. This constraint served

to minimize the use of shortcut strategies, thereby encouraging participants to access the
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holistic magnitude of each individual fraction. Magnitude-equivalent decimals were created

by dividing out the corresponding fraction and rounding the result to two decimal places.

Integers were created by multiplying the matched decimal by 100 to create a two-digit

number. A total of 40 unique comparison pairs were generated for each number type. Because

the numbers in the comparisons were shown sequentially, rather than simultaneously, each

pair was shown twice, once in each order. Accordingly, there were a total of 80 trials for

each of the three number types.

Behavioral Task Participants were given instructions before entering the scanning room,

after performing a routine safety check. Participants were told that they would see a series

of numbers presented sequentially in pairs. Each trial started with a fixation cross, at the

middle of the screen, for .5 s followed by a brief blank screen jittered for .1-2 s. The first

number was then presented for 1.5 s followed by a brief blank screen, which was jittered

for 2-7 s, and then a second number (see Figure 3.1). Participants controlled the length

of presentation of the second number by pressing a button to indicate whether the second

number was larger or smaller than the first number. They were instructed to try to go as

fast as possible without sacrificing accuracy. The 240 total trials (80 per symbolic type)

were evenly distributed across four runs. Allocation of pairs across the four runs and order

of presentation within each run was determined randomly for each participant.

fMRI Data Acquisition Data were acquired on a 3 Tesla Siemens Tim Trio Magnetic

Resonance Imaging (MRI) scanner at the Staglin IMHRO Center for Cognitive Neuroscience

at UCLA. Structural data were acquired using a T1-weighted sequence (MP RAGE, TR =
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Figure 3.1: Trial procedure for each of the number type conditions (integers, decimals,

fractions).

50



1,900 ms, TE = 2.26 ms, voxel size 1 mm3 isovoxel). Blood oxygenation level dependent

(BOLD) functional data were acquired with a T2-weighted Gradient Recall Echo sequence

(TR = 2,000 ms, TE = 30 ms, 32 interleaved slices, voxel size 3 × 3 × 4 mm, Flip Angle =

78 degrees). Overall, individual runs lasted an average of 566 s (min=492 s, max = 756 s).

Data preprocessing Data analysis was carried out using FSL (Smith et al., 2004). Prior

to analysis, data underwent a series of conventional preprocessing steps including motion

correction (Jenkinson et al., 2002), slice-timing correction (using Fourier-space time-series

phase- shifting), spatial smoothing using a Gaussian kernel of 5 mm full-width half-max, and

high-pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma

= 50 s). Data from each individual run were analyzed employing a univariate general linear

model approach (Monti, 2011) with pre-whitening correction for autocorrelation (Woolrich,

Ripley, Brady, & Smith, 2001).

Univariate analysis For each run of each participant, a univariate GLM analysis was

conducted with three regressors of interest marking the onset time and duration of the

presentation of the first number of each pair, separately for each notation type (fractions,

decimals, and integers). A number of additional regressors modeled the second number

presentation, cue periods, and motion (first and second derivatives, and their difference).

Data from the presentation of the second number was not analyzed further because it was

confounded with movement (from pressing the response button) and cognitive processes

relating to the comparison task (cf., Todd, Nystrom, & Cohen, 2013). For each run we

computed seven contrasts. These were based on the data collected during the presentation
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of the first number in a comparison pair. These included the simple effects of each notation

type (fraction vs. baseline, decimal vs. baseline and integer vs. baseline), as well as the

pairwise differences between them (fractions > decimals; fractions > integers; integers >

decimals; and decimals > integers). Prior to group analysis, individual statistical maps were

transformed into MNI template space via a 2-step procedure concatenating a boundary-

based co-registration to align functional data to single-subject anatomical data and a 12

degrees of freedom linear co-registration to align single-subject anatomical data to the MNI

template. Data from individual runs were aggregated using a mixed-effects model (i.e.,

employing both the within- and between-subject variance), using automatic outlier detection.

Z (Gaussianised t) statistic images were thresholded using a cluster correction of Z > 2.3

and a (corrected) cluster significance threshold of p = .05.

In order to avoid reverse subtractions (Morcom & Fletcher, 2007), for each A>B contrast

(e.g., fractions > decimals), we restricted the analysis to voxels for which the sum of the Z

statistic associated with task A (compared to fixation; ZA) and the Z statistic associated with

task B (compared to fixation; ZB) resulted in a number greater than zero (i.e., (ZA+ZB)>0).

In other words, for a voxel to be included in the contrast analysis, either ZA and ZB had to

both be positive values (in which case it is not possible to have reverse subtractions), or ZA

had to be more positive than ZB was negative, thereby preventing the possibility of a brain

activation resulting from a weak ZA coupled with a strongly negative ZB.

MVPA analysis The input to the multivariate pattern analysis (MVPA) was a set of

volumes of regression coefficients (i.e., “beta” values) marking the magnitude of activation,

for each voxel, in each trial (per participant). These trial-wise “patterns of activations” were
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obtained by employing the iterative Least Squares – Separate approach (LS-S; Mumford et

al., 2012) in which a separate GLM is run (here, using FILM with local autocorrelation;

Woolrich et al., 2001) for each trial. The patterns of activation were then concatenated

across time to construct a subject-wise “beta-series” of activation magnitude per trial per

voxel (Rissman et al., 2004).

Representational Similarity Analysis (RSA) was run on the beta-series of activation mag-

nitudes, in MATLAB using the RSA toolbox (Nili et al., 2014). RSA characterizes the

representation in a brain region by a representational dissimilarity matrix (RDM), and com-

pares the empirical matrix with a model. An RDM is a square symmetric matrix, with

each entry referring to the dissimilarity between the activity patterns associated with two

trials (e.g., entry (1,2) would represent the dissimilarity between activity patterns of trial 1

and trial 2 for a given participant). Each element of the RDM is calculated as 1 minus the

Spearman correlation between the beta-series for each pair of trials. Models were manually

generated to reflect idealized RDMs expected if the group of voxels was indeed modulating

its activity with respect to the manipulation (see models in Figure 3.2). The Number Type

Model (Figure 3.2a) was designed to test the overall ability to distinguish between each of

the three number types. We then compared each of the pairwise number-type combinations

to attempt to distinguish between each number type. The assumption behind the model

RDMs was that a group of voxels sensitive to an experimental condition would display lower

dissimilarity for same-condition trials as opposed to different-condition trials.

The RSA was performed with a searchlight approach (searchlight radius: 6mm or 2 voxels;

cf. Kriegeskorte et al., 2006) within an anatomical mask of the IPS as defined by the Jülich
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Figure 3.2: Ideal models generated for the RSA searchlight MVPA. Each matrix represents

a dissimilarity matrix where yellow (1) denotes completely dissimilar items and blue (0)

denotes maximally similar items.

Histological Atlas (available in FSL; Choi et al., 2006; Scheperjans et al., 2008). Within

each searchlight sphere, a Spearman coefficient was computed between the empirical and

model RDMs, yielding a single second-order similarity value per voxel, which reflected the

resemblance of searchlight sphere activity with the hypothesized model. These coefficients

were registered to the standard template, with the same 2-step procedure employed for

univariate single-subject statistical parametric maps, and assessed for significance (ρ > 0)

using FSL’s randomize with threshold-free cluster enhancement (corrected p < .05) (Smith

& Nichols, 2009; Winkler et al., 2014).
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3.4 Results

3.4.1 Behavioral Results

Mean accuracy on the magnitude comparison task for each number type was obtained by

averaging over all participants. A one-way repeated measures ANOVA revealed a significant

effect of number type (F(2, 30) = 23.23, MSE = .002, p < .001), with fractions having

lower accuracy than decimals (fractions: 84% vs. decimals: 92%, t(15) = 6.72, p < .001)

and integers (91%, t(15) = 4.82, p < .001). There was no difference in accuracy between

decimals and integers (t(15) = .69, p = .50).

Mean response times (RTs) for correct trials were averaged for each number type across

participants. A one-way repeated measures ANOVA revealed a significant effect of number

type (F(2, 30) = 24.34, MSE = .09, p < .001), with fractions being compared more slowly

than either decimals (fractions: 1.91 s vs. decimals: 1.30 s, t(15) = 5.22, p < .001) or

integers (1.24 s, t(15) = 5.19, p < .001). There was no significant difference in response time

between decimals and integers (t(15) = 1.15, p = .27). Because accuracy was at ceiling for

both decimals and integers, we focused on distance effects based on RTs for correct responses.

Figure 3.3 shows the average RT for each trial across participants for fractions, decimals, and

integers. In order to assess the distance effect, we conducted regression analyses for response

times based on a logarithmic distance measure (i.e., log(|first number – second number|),

which we will abbreviate as “log Dist” (see DeWolf et al., 2014; Hinrichs et al., 1981). Log

Dist significantly predicted RT outcomes for each of the number types (fractions: β = -64,

t(37) = 5.01, p < .001; decimals: β = -33, t(37) = 2.16, p = .04; integers: β = -33, t(37) =
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Figure 3.3: Average correct response times for each trial across participants for fractions,

decimals, and integers. Fitted lines represent predictions derived from LogDist models for

Fractions and Decimals. (Because predictions of the Integer model were nearly identical to

those of the Decimal model, the Integer model is excluded here for simplicity.)

2.12, p = .04). These results replicate the pattern of distance effects observed by DeWolf et

al. (2014), including (as evidenced by the much larger beta coefficient for fractions) a more

pronounced distance effect for fractions than for either of the other two number types.

3.4.2 fMRI Results

Univariate analyses The contrast of fractions versus decimals resulted in extensive acti-

vations within and around the left horizontal segment of the intraparietal sulcus, spanning

inferior (Brodmann Area [BA] 40) and superior (BA 7) parietal lobuli, as well as the junction

of the intraparietal and intraoccipital sulci. Additional left hemispheric activations were de-

tected in frontal cortex, centered around the precentral gyrus (BA 6) together with smaller

foci within the superior (BA 6) and middle (BA 9) frontal gyri, and in temporal cortex,
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Figure 3.4: Results of the univariate analysis for (a) comparison of fraction and decimal

activation and (b) comparison of fraction and integer activation, from dorsal, posterior, and

lateral views. Red areas represent significant differences in activations. The color scale

represents z-values for significant activations.

spanning the most caudal segments of the inferior and middle temporal gyri (BA 37). Fi-

nally, right lateralized activations were observed in the cerebellum, with foci in Crus I and

Lobules VI and VIIB (see Figure 3.4a and Table 3.1 for complete list of local maxima).

MNI Coordinates

x y z Hem Anatomical Label (BA) Z

Parietal

-42 -48 48 L Inferior Parietal Lobule (hIPS; 40) 4.30

-30 -58 44 L Superior Parietal Lobule (hIPS; 7) 3.93

-54 -38 48 L Inferior Parietal Lobule (40) 3.91

-28 -70 38 L Occipito-Parietal Junction (hIPS/IOS;40/7) 3.75

-28 -76 54 L Superior Parietal Lobule (hIPS; 7) 3.71
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-34 -50 42 L Inferior Parietal Lobule (hIPS; 40) 3.71

Frontal

-56 14 24 L Precentral Gyrus/Inferior Frontal Gyrus (6/44) 3.77

-50 6 32 L Precentral Gyrus (6) 3.65

-22 6 70 L Superior Frontal Gyrus (6) 3.27

-30 2 62 L Precentral Gyrus/Superior Frontal Gyrus (6) 3.25

-34 2 28 L Precentral Gyrus/Inferior Frontal Gyrus (6/44) 3.18

-36 2 62 L Precentral Gyrus/Superior Frontal Gyrus (6) 3.16

-54 8 46 L Precentral Gyrus (6) 2.93

-40 -4 56 L Precentral Gyrus (6) 2.93

-28 -8 58 L Precentral Gyrus (6) 2.91

-18 12 66 L Superior Frontal Gyrus (6) 2.85

-50 26 28 L Inferior Frontal Gyrus/Middle Frontal Gyrus (44/9) 2.70

-44 -4 30 L Precentral Gyrus (6) 2.68

Temporal

-50 -56 -22 L Inferior Temporal Gyrus (37) 3.18

-56 -56 -14 L Inferior Temporal Gyrus (37) 3.13

-48 -64 -4 L Inferior Temporal Gyrus (37) 3.03

-50 -60 0 L Middle Temporal Gyrus (37) 2.84

-48 -56 0 L Middle Temporal Gyrus (37) 2.60

Subcortical

38 -56 -32 R Crus I 3.88
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38 -60 -40 R Crus I 3.41

28 -76 -50 R Lobule VIIB 3.19

32 -72 -26 R Crus I 3.13

44 -66 -30 R Crus I 2.86

26 -60 -34 R Lobule VI 2.86

Table 3.1: Local Maxima for the Fractions > Decimals Univariate Contrast (Abrev.: hIPS:

horizontal segment of the intraparietal sulcus; IOS: intraoccipital sulcus; L: left; R: Right)

The contrast of fractions versus integers resulted in extensive activations in bilateral

parietal cortex (with L>R), centered within and around the horizontal segment of the in-

traparietal sulci, spanning inferior (BA 40) and superior (BA 7) parietal lobuli.1 Similarly

to the contrast of fractions versus decimals, left lateralized activations were also obtained in

frontal cortices, mostly within the precentral gyrus (BA 6) together with foci across superior

(BA 6, 8) and middle (BA 8) frontal gyri, and in the caudal section of temporal cortex, in

the inferior and middle temporal gyri (BA 37). Finally, right hemispheric activations were

again observed in the cerebellum, with foci in Crus I and II, and Lobule VI (see Figure 3.4b

and Table 3.2 for a complete list of local maxima).

Direct comparison of the decimal and integer conditions, in both directions (i.e., decimals

> integers; integers > decimals), failed to reveal any significant activation.

MNI Coordinates
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x y z Hem Anatomical Label (BA) Z

Parietal

-28 -62 46 L Superior Parietal Lobule (hIPS; 7) 4.71

-30 -74 54 L Superior Parietal Lobule (hIPS; 7) 4.39

-30 -70 54 L Superior Parietal Lobule (7) 4.21

-48 -50 52 L Inferior Parietal Lobule (40) 3.99

-48 -48 48 L Inferior Parietal Lobule (40) 3.98

-40 -46 46 L Inferior Parietal Lobule (hIPS; 40) 3.82

32 -68 48 R Inferior Parietal Lobule (40) 3.82

30 -60 50 R Superior Parietal Lobule (hIPS; 7) 3.74

28 -64 50 R Inferior Parital Lobule (40) 3.69

24 -68 48 R Superior Parietal Lobule (7) 3.58

42 -54 58 R Superior Parietal Lobule (7) 3.40

22 -72 50 R Superior Parietal Lobule (7) 3.33

Frontal

-50 10 28 L Precentral Gyrus (6) 3.88

-52 12 24 L Precentral Gyrus (6) 3.78

-52 10 36 L Precentral Gyrus (6) 3.62

-24 16 54 L Superior Frontal Gyrus (8) 3.62

-36 4 28 L Precentral Gyrus (6) 3.51

-24 12 58 L Middle Frontal Gyrus (8) 3.51

-46 6 34 L Precentral Gyrus (6) 3.41
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-36 2 62 L Precentral Gyrus (6) 3.37

-52 2 42 L Precentral Gyrus (6) 3.34

-18 12 64 L Superior Frontal Gyrus (6) 2.97

-24 8 46 L Middle Frontal Gyrus (8) 2.82

-24 14 66 L Superior Frontal Gyrus (8) 2.78

Temporal

-50 -56 -10 L Inferior Temporal Gyrus (37) 3.76

-54 -54 -14 L Inferior Temporal Gyrus (37) 3.65

-42 -60 -6 L Inferior Temporal Gyrus (37) 3.08

-56 -64 -10 L Inferior Temporal Gyrus (37) 2.98

-48 -64 -4 L Inferior Temporal Gyrus (37) 2.96

-48 -48 -14 L Inferior Temporal Gyrus (20/37) 2.76

Subcortical

38 -56 -30 R Crus I 3.87

36 -64 -44 R Crus II 3.25

40 -60 -38 R Crus I 3.24

20 -66 -26 R Lobule VI 3.21

38 -58 -42 R Crus II 3.18

32 -72 -26 R Crus I 3.18

Table 3.2: Local Maxima for the Fractions > Integers Univariate Contrast (Abrev.: hIPS:

horizontal segment of the intraparietal sulcus; L: left; R: Right)
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Figure 3.5: Results of the multivoxel pattern analysis (MVPA) from dorsal, posterior, and

lateral views for each of the four hypothesized models (see Figure 2). The color scale rep-

resents 1 - p-values (e.g., .95 to 1 would be significant). Note: The searchlight analysis was

restricted to the IPS, which was selected as a region of interest.

Multivariate analyses Because MVPA requires an equal number of trials across all con-

ditions, one participant was excluded from this analysis because she did not finish one of the

runs due to a computer error (missed two trials).

Figure 3.5 shows the areas within the IPS that yielded significant activations for each of

the four models. The Number Type model (distinguishing between the three number types)

shows a broad set of bilateral activations. Mirroring the results of the univariate analysis,

the Fraction vs. Decimal model shows mostly left-lateralized IPS activation, whereas the

Fraction vs. Integer model shows bilateral IPS activation. Unlike the results of the univariate
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analysis, the Decimal vs. Integer model yielded a small number ( 3) of significant voxels

that distinguished between decimals and integers. While this is a small area, it points

to a possible pattern difference in the encoding of decimals and integers beyond what the

univariate analysis revealed.

3.5 Discussion

Fraction Magnitudes are Neurally Distinct from Decimals and Integers The

central goal of the present study was to distinguish between possible models of neural repre-

sentation for different symbolic number formats. The behavioral results showed that each of

the number types elicited a reliable distance effect on correct RT. The presence of a distance

effect suggests that all number types were processed holistically. However, the neuroimaging

results showed that magnitudes evoked distinct neural patterns that distinguished the num-

ber types. Results of both a univariate analysis and MVPA indicate that while fractions,

decimals, and integers all activate areas of the IPS, fractions yield a distinct pattern of acti-

vation associated with a unique subarea of the IPS. In contrast, decimals and integers yielded

very similar and overlapping patterns, with MVPA identifying only a very small set of vox-

els that distinguished the latter two number types. These results suggest that while neural

representations, across notations, all elicit activation within the intraparietal sulcus, neural

representation appear to be sensitive to number representation (notably, base-10 numbers

versus fractions), but not to number type (natural versus rational).

To our knowledge, the present neuroimaging study is the first to compare fractions with

both decimals and integers. The two previous studies (Ischebeck et al., 2009; Jacob & Nieder,
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2009a) that investigated the representation of fraction magnitudes using fMRI had assumed

that because fractions activate the IPS (as do integers), and because fraction activation was

modulated by a distance effect based on holistic magnitude, the brain represents proportional

(fraction) magnitudes in the same way that it does absolute (integer) magnitudes. However,

by making direct comparisons among all three number types, the present study was able to

clearly dissociate magnitude activations for fractions as compared to those for either integers

or decimals.

Isolating Magnitude Representations for Individual Numbers An important method-

ological innovation of the present study is its use of a design based on sequential presentation

of individual numbers in a magnitude comparison task. Compared to passive observation

of numbers, the magnitude comparison task strongly guides participants to access holistic

magnitude representations for individual numbers. Moreover, the behavioral results from

the comparison task fully replicated previous work comparing performance with the three

number types (DeWolf et al., 2014). Comparisons were less accurate and slower for pairs

of fractions than for pairs of decimals or integers. A distance effect was obtained for all

number types, but was most pronounced for fractions. Our behavioral results thus confirm

that participants in our neuroimaging paradigm were performing magnitude comparisons in

essentially the same way as has been observed in previous behavioral studies.

At the same time, the sequential nature of the present design allowed us to decouple the

process of accessing a magnitude representation for an individual number from the process

of magnitude comparison. Our fMRI analyses focused solely on the initial 1.5s period when

a single number was displayed. During this period participants were motivated to access
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the magnitude of the presented number, but were unable to initiate a comparison because

the second number in the pair had not yet appeared. Previous neuroimaging studies with

fractions recorded neural signals during the comparison process itself. In contrast, our find-

ings provide a clear picture of the neural activity underlying access to the magnitude of a

single individual number, isolated from the additional activity that would be triggered by

comparing two magnitudes.

What is Special About Fraction Magnitudes? We considered three hypotheses about

the relation between magnitude representations for different symbolic notations. (1) All no-

tations might evoke some universal, fully abstract magnitude code; (2) the magnitude code

might differ between natural numbers (integers) and the more complex rational numbers

(fractions and decimals); or (3) the magnitude code for fractions might differ from that for

the base-10 notations (decimals and integers). Our findings clearly support the third of these

hypotheses. To the best of our knowledge, no previous study has shown such a strong disso-

ciation between the neural patterns elicited by alternative notations for the same magnitude.

Even though 2/5 and .40 express the same magnitude, the brain processes the two symbols

very differently. In contrast, the magnitude representations for a decimal (.40) and an inte-

ger expressing a magnitude 100 times larger (40) are very similar. Importantly, the latter

result implies that the neural code for numerical magnitude is on a scale that is fundamen-

tally relative rather than absolute. Thus base-10 notations evoke similar activation patterns

based on their relative magnitudes, whereas the bipartite fraction notation is processed very

differently from either.
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Future Directions The present study lays the groundwork for further exploration of the

differences among neural representations evoked by different symbolic number types. Be-

havioral evidence points to a major conceptual distinction between fractions and decimals,

with the former being selectively used to code the magnitudes of discrete entities (which can

be counted), and the latter selectively used to code the magnitudes of continuous quantities

(which can be either estimated or measured by imposing arbitrary units; see Rapp, Bas-

sok, DeWolf, & Holyoak, 2015). In addition, it is important to examine neural processing

in mathematical tasks other than those that focus on magnitudes. Whereas fractions are

disadvantaged relative to decimals in magnitude comparison tasks, fractions convey reliable

advantages in a variety of reasoning tasks. Because of their bipartite structure, fractions have

a much more natural correspondence to relational concepts based on ratios of countable sets

(DeWolf, Bassok, & Holyoak, 2015a). The relational aspects of fraction representations ap-

pear to make fraction understanding a critical bridge to learning algebra (DeWolf, Bassok,

& Holyoak, 2015b), which depends critically on grasping the concept of a variable (under-

stood to represent a quantity of unknown magnitude). The “isolation” technique introduced

in the present paper (imaging activity evoked by an individual number as the participant

prepares for a specific mathematical task performed immediately afterwards) might usefully

be extended to compare the neural patterns evoked by the same symbol (e.g., a fraction) in

preparation for tasks that require different types of information (e.g., magnitudes or rela-

tional concepts).

Footnote 1 The analyses comparing fractions to decimals and fractions to integers revealed

hemispheric differences, with the latter comparison resulting in bilateral parietal activations
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and the former resulting in left lateralized activations only. However, these differences were

mainly attributable to the non-linear nature of the thresholding procedure. Inspection of

uncorrected statistical parametric maps resulting from the fractions-minus-decimals contrast

revealed clusters of above-threshold voxels (i.e., individual Z > 2.3); however, these were too

small to survive the cluster-extent thresholding. These subthreshold activations explain why

no difference was apparent when directly comparing decimals and integers.

Acknowledgements Preparation of this paper was supported by pilot funding from the

Staglin IMHRO Center for Cognitive Neuroscience at UCLA, and by NSF Fellowship DGE-

1144087 to MD. We thank Michael Ambrosi and Jingqi Yu for assistance with collecting

fMRI data.

67



CHAPTER 4

Neurocomputational models predict brain activity

during analogical reasoning

4.1 Introduction

A key component of human reasoning, creativity, and problem solving is the ability to draw

inferences based not only on individual concepts, but also on relations between concepts. A

paradigmatic example of relational processing is analogical reasoning (Holyoak, 2012). To

determine whether or not a verbal analogy in the canonical form A:B :: C:D (e.g., rob:steal ::

cry:weep) is valid, two basic computations are required. First, it is necessary to represent the

relation or relations between A and B (e.g., synonym), and that between C and D. Second,

it is necessary to compare the two relations to determine whether they are the same (a valid

analogy) or different (invalid).

Previous work on the neural substrate of analogical reasoning has focused on the process

of relational comparison, which has been localized to a primarily fronto-parietal network

(Vendetti & Bunge, 2014; Wendelken, Ferrer, Whitaker, & Bunge, 2016). Notably, the

left rostrolateral prefrontal cortex (rlPFC), corresponding to Brodmann areas 10 and 47,

is activated in a graded manner in response to increases in the complexity of the relations
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being compared (Christoff et al., 2001; Bunge, Helskog, & Neuroimage, 2009) or the semantic

distance between the A:B and C:D concepts (Green, Kraemer, Fugelsang, Gray, & Dunbar,

2010, 2012; for meta-analysis see Vartanian, 2012; Hobeika, Capucine, Garcin, Levy, &

Volle, 2016). For verbal analogy tasks, additional frontal regions (Brodmann areas 44, 45,

46, and 6) appear to be involved in retrieving relational and abstract information (Bunge,

Wendelken, Badre, & Wagner, 2005; Della Rosa, Catricalà, Canini, Vigliocco, & Cappa,

2018). Parietal activations, particularly around the intraparietal sulcus and supramarginal

gyrus, have been associated with relational reasoning across several domains (see Wendelken,

2015).

The neural substrate of relation representations has received much less attention. Al-

though progress has been made in mapping semantic representations of individual words and

word combinations (Pereira et al., 2018), major hurdles have impeded progress in determin-

ing the neural basis for the kinds of abstract and structured relations that underlie analogical

reasoning. In particular, it is difficult to distinguish the representation of a relation (e.g.,

opposite) from that of the individual concepts being related (e.g., friend:enemy), particularly

because verbal analogies do not provide a relation name as part of the linguistic input.

Recent advances in machine learning provide potential theoretical tools for investigating

the neural basis of relation representations. In the present paper, we applied neurocompu-

tational models to guide an investigation of the neural substrate for analogical reasoning.

The three models considered here (see Methods) are based directly or indirectly on seman-

tic representations of individual words created using a deep-learning algorithm, Word2vec

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Le & Mikolov, 2014). After learning to
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predict words in local contexts taken from a large text corpus, Word2vec yields a vector of

semantic features (300 features, each with continuous values) for individual words. Recent

work has shown that these representations can predict the similarity of neural responses to

individual words, which we will term first-order similarity (Pereira et al., 2018). However,

additional computations are necessary to model relation representations, which may involve

second-order similarity. Consider a word pair such as friend:enemy. A first-order represen-

tation of the meaning of the pair can be formed by simply concatenating the feature vectors

for the two individual words (creating a vector of length 600). We term this model, directly

calculated from Word2vec vectors, Word2vec-concat.

To represent the general relation between any two words, Mikolov et al., 2013 suggested

using the difference between the vectors of the individual words (a difference vector of length

300). This model, termed Word2vec-diff, treats the difference vector as a general measure of

the second-order semantic relation between a pair of words (e.g., the same basic measure is

used to represent both friend-enemy and rob-steal, even though the specific relations differ

in the two cases).

A third model, BART (Bayesian Analogy with Relational Transformations; Lu, Chen, &

Holyoak, 2012), aims to represent the specific relation between each pair of words. BART

takes as inputs pairs of Word2vec vectors labeled as positive or negative examples of a spe-

cific relation, and applies Bayesian regression to derive a weight distribution predicting the

posterior probability that any word pair exemplifies that relation. The model is trained

on 79 abstract semantic relations (from a linguistic taxonomy created by Bejar, Chaffin,

& Embretson, 1991 ), using example pairs taken from norms collected by Jurgens, Turney,
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Mohammad, & Holyoak, 2012. After learning, BART represents the specific relation be-

tween any two words as a vector of posterior probabilities across the 79 relations. The model

captures the intuition that many word pairs involve multiple relations to some degree (e.g.,

friend-enemy mainly exemplifies the relation opposite, but also involves a type of similar-

ity in that both words refer to social categories). The three models thus allow us to test

three alternative hypotheses regarding human relation representations: patterns of neural

responses may be based solely on first-order similarity (Word2vec-concat); or on a general

measure of second-order similarity (Word2vec-diff); or on a measure of specific relation(s)

that contribute to second-order similarity (BART).

In the present study, we used univariate and multivariate methods to investigate the

underlying neural activity during two critical stages of analogical reasoning: relation repre-

sentation and relational comparison. We employed a sequential design (see DeWolf, Chiang,

Bassok, Holyoak, & Monti, 2016 to separate the two operations. In a rapid event-related

fMRI design, 16 healthy volunteers were asked to evaluate two pairs of semantic concepts.

Each analogy was presented as two pairs of words, an A:B pair (e.g., up:down) followed by a

C:D pair (e.g., high:low) exemplifying the same relation as the A:B pair (valid analogy), or

else a C’:D’ pair (e.g., couch:sofa) exemplifying a different relation (invalid). All analogies

were based on word pairs exemplifying three abstract relation types (similar, contrast, and

cause-purpose) from the Jurgens et al., 2012 norms (see Table 1). The A:B phase provided

a relatively pure measure of neural activity involved in coding the A:B relation, whereas

the C:D phase included neural activity required to maintain the A:B relation, form the C:D

relation, and compare the two.
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Figure 4.1: Subjects were shown two word pairs, first an A:B pair for 2 seconds, then a

C:D pair for 2 seconds after a jitter. Subjects responded by pressing a button box, but the

location of “yes” and “no” varied from trial to trial.

Figure 4.2: The first three models from left to right were derived from the computational

models. The categorical model (right) reflects the Jurgens et al. (2012) norms.
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4.2 Results

Localization of relational reasoning We computed the main effects of the A:B and C:D

phases in order to uncover regions engaged in relation representation (Figure 4.3). The main

effects of the A:B and C:D stage of each trial were associated with mostly left-lateralized

frontal and temporal activity, bilateral parietal activity, and activity in the occipital lobe.

A:B trials were uniquely associated with clusters of increased activation in the supplementary

motor cortex and caudate (for a full list consult table B.1), while C:D trials were uniquely

associated with clusters of increased activity in left inferior frontal gyrus as well as bilateral

superior parietal cortex (for a full list consult table B.2). A:B and C:D analogical stimuli

shared coactivations in the inferior lateral occipital cortex, fusiform gyrus and left frontal

regions spanning the rostrolateral prefrontal cortex (Brodmann areas 10 and 47).

A direct univariate subtraction was run between the C:D and A:B phases to identify

regions engaging in relational comparison (Figure 4.4). Notable clusters were observed in the

left inferior frontal gyrus, bilateral superior parietal regions, fusiform gyrus, and rostrolateral

prefrontal cortex. Local maxima are listed in supplementary table B.3.

Neural distribution of abstract relation representation We applied a searchlight

(Kriegeskorte et al., 2006) classification analysis to determine where information relevant

to abstract relation representation could be decoded. As shown in Figure 4.5, the main

relationships (synonym, antonym, and cause-effect) could be distinguished during the A:B

trials in left frontal, left temporal, and bilateral parietal cortices. The relationships could

be distinguished during the C:D trials in many of the same regions, with additional discrim-
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Figure 4.3: Main effects during A:B and C:D phases

74



Figure 4.4: CD - AB.

75



Figure 4.5: Local multivariate results. Significant regions indicate relational representation

inability in the right hemisphere. These areas broadly overlapped across the two stages in

the left prefrontal, left temporal, and bilateral parietal cortices.

We ran an ROI-based classification analysis to identify regions engaged in relational

comparison during the C:D phase. Classifiers were trained to discriminate between C:D

(valid) and C’:D’ (invalid) trials. As shown in Figure 4.6, frontal regions (BAs 10, 44, 45, 46,

47), the inferior parietal regions (aSMG, pSMG, AG), and the left posterior MTG displayed

significantly above chance performance (p < 0.05).
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Figure 4.6: ROI ability to discriminate between valid and invalid trials
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Computational accounts of relational reasoning Representational Similarity Anal-

ysis (RSA; Kriegeskorte et al., 2008) was used to characterize the similarities of neural

responses across word pairs. RSA characterizes the representation in a region of interest

(ROI) by a trial-by-trial representational dissimilarity matrix (RDM), and compares this

empirical matrix with a theoretical model (Carota, Kriegeskorte, Nili, & Pulvermüller, 2017;

Nili et al., 2014).

For each ROI (see Methods), empirical RDMs were compared with idealized models

shown in Figure 4.2. RDMs derived from the left IFG (BAs 44 and 45), the parietal cortex

(pSMG), and the temporo-parietal junction (toMTG) were significantly correlated with all

three models. Other parietal ROIs (SPL and aSMG) were significantly correlated with the

Word2vec difference model and Bayesian model representations.

RDMs from each ROI were also compared with a categorical hypothesis model, created

using the labels provided by the Jurgens et al., 2012 norms. This model was correlated

with activity in frontal (BAs 44, 45, 47), posterior temporal (pMTG, pSTG, toMTG), and

parietal regions (lSPL, lAG, lSMG, pSMG).

Within the left SPL, the BART-derived RDM was significantly more correlated with the

neural RDM than both the Word2vec difference RDM and the categorical RDM (Figure

4.2).

For each analogy, that is, every valid A:B::C:D trial, a relational similarity measure

was calculated by taking the cosine distance between word pair representations. Relational

similarity in the context of these analogies is related to difficulty- the farther apart A:B and

C:D are in relation representational space, the harder the analogy ought to be. Relational
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similarity scores for each trial were correlated with voxel activity to identify brain regions

that track this measure.

Relational similarity was computed, using the three different model representations, for

each trial and was correlated (using Spearman’s rho) with the corresponding beta-values

during the C:D (valid) phase to produce a correlation map. Significance was assessed using

FSL randomise (Winkler et al., 2014) with TFCE cluster correction (Smith & Nichols, 2009).

Regions correlated with the BART-derived relational similarity values are shown in Figure

4.8. BART predictions were significantly negatively correlated with voxel activity primarily

in the left frontal cortex, left supramarginal gyrus and left posterior middle temporal gyrus.

No regions were significantly correlated (after threshold-free cluster correction) with the two

Word2vec derived relation representations.

4.3 Discussion

By separating the analogy task into two temporally distinct phases, our sequential design

allowed us to separately study the neural operations underlying relation representation (e.g.,

the retrieval or encoding of the abstract relation itself) and relational comparison (e.g., eval-

uating whether A:B and C:D are of the same relation - DeWolf et al., 2016). We discuss our

results in the context of these two phases below, and then relate them to our computational

analysis to provide an account for the operations being carried out by previously reported

regions.
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Figure 4.7: Each bar represents the average Spearman correlation between the empirical

RDM and hypothesis model
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Figure 4.8: ROI analysis correlating mean voxel activity (within the ROI) with relational

similarity calculated from the three models. Word2vec-diff did not explain ROI activity

in any regions, while Word2vec-concat was correlated with mean ROI activity in frontal

ROIs. BART was significantly correlated with ROI activity in frontal, parietal, and temporal

regions, and significantly more correlated than Word2vec-concat.
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Neural distribution of abstract relations One primary aim of this study was to lo-

calize and characterize relation representation in the brain. By analyzing the fMRI activity

measured when reading the first word pair, we captured cognitive processes associated only

with representing the first-order relation between words A and B, as described in DeWolf et

al., 2016.

The searchlight analysis shows that the abstract relations used in this study are repre-

sented in a primarily left-lateralized fronto-temporo-parietal network. This suggests that

higher-order relations (which may not arise intuitively from semantic features) are encoded

to some degree within the same “semantic network” found in studies of single-word seman-

tics (Binder, Desai, Graves, & Conant, 2009; Carota et al., 2017; de Heer, Huth, Griffiths,

Gallant, & Theunissen, 2017; Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016). How-

ever, whether the widespread distribution of these representations are due to truly abstract

relational representations or simply due to the linguistic nature of our task is a subject for

future study.

Neural correlates of relational comparison The sequential design of this study was

also tailored to investigate the neural correlates of relational comparison. We analyzed the

difference between processing the C:D word pair and the A:B word pair using a univariate

contrast analysis, and probed whether more active regions encoded information meaningful to

comparing the two relations using a multivariate classification, following up with a voxelwise

correlation analysis.

Within the prefrontal cortex, the univariate subtraction in Figure 4.4 revealed significant

clusters in the left rostrolateral PFC, replicating prior results showing that the rlPFC is more
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active during higher-order relational comparison (Christoff et al., 2001; Bunge et al., 2009).

Consistent with this account, the multivariate patterns within the frontal pole (BA10) and

left rlPFC (BA47) were able to discriminate between the valid and invalid trials, further

highlighting their involvement in analogy.

Within the prefrontal cortex, the univariate subtraction in Figure 4.4 revealed significant

clusters in the left frontal pole and left inferior frontal gyrus, corroborating previous results

that the left rostrolateral PFC is engaged in analogical processing (Hobeika et al., 2016;

Knowlton, Morrison, Hummel, & Holyoak, 2012; Vartanian, 2012; Wertheim & Ragni, 2018).

Consistent with this account, the multivariate patterns within the frontal pole (BA10) and

left rlPFC (BA47) were able to discriminate between the valid and invalid trials, further

highlighting their involvement in analogy.

We also observed significant clusters preferentially activated during the C:D phase over

the A:B phase outside of the rostrolateral PFC, specifically in occipital cortex, the left inferior

frontal gyrus, and bilateral posterior parietal cortex. We found that the occipital region did

not represent meaningful information to discriminating between valid and invalid analogies

(Figure 4.6), consistent with the hypothesis that these activations reflect general difficulty

demands, possibly due to participants looking longer at the screen for more difficult or

semantically distant stimuli (Green, Fugelsang, Kraemer, Shamosh, & Dunbar, 2006; Green

et al., 2010, 2012).

Among the remaining regions, the left IFG and left inferior parietal ROIs did appear to

also represent relevant information to discriminating between C:D and C’:D’. It has been

recently reported that the left rlPFC and posterior parietal cortex are strongly functionally
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associated during reasoning tasks, but not known to have a direct anatomical connection

(Vendetti & Bunge, 2014; Wendelken et al., 2016). As the left IFG has been implicated

in “representing” and “retrieving” relational information (Krawczyk, 2012), it is possible

that the superior longitudinal fasciculus, which connects the IFG to the inferior parietal

lobe (Burks et al., 2017) facilitates the transfer of relational information from the inferior

parietal cortex to rlPFC through the IFG.

On the other hand, activity in the left IFG and posterior parietal regions have also

been shown to reflect task general (e.g. working memory and difficulty-related) demands

(Fedorenko, Duncan, & Kanwisher, 2012; Fedorenko et al., 2013; Fedorenko & Varley, 2016).

While the lack of a working memory control task limits our ability to discuss the task-

generality or specificity of the IFG, we see a gradient of information representation in the

posterior parietal cortex (PPC). The classification results indicate that while the superior

parietal lobe did not meaningfully encode whether the participant was considering a valid or

invalid trial, the inferior regions (aSMG, pSMG) could, supporting results from a recent meta

analysis that implicate the inferior PPC in reasoning across domains (Wendelken, 2015).

The neural computations underlying analogy By testing the trial-by-trial predictions

of these models, we were able to characterize what information was being computed during

the two stages. The RSA analysis on relation representation indicates that the left frontal

cortex and posterior temporal cortex represent the semantic attributes corresponding to the

two words in the word pair, consistent with prior accounts of these regions (Vendetti &

Bunge, 2014; Wendelken et al., 2016). During this stage, we did not observe correlations

within the rostrolateral PFC, which is consistent with the account that the rlPFC is primarily
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engaged when evaluating second order relations (Wendelken, 2015).

We did observe significant correlations with the relational models (Word2vec-diff and

BART) in left posterior parietal cortex (SPL, aSMG, pSMG) and near the temporo-parietal

junction (AG, toMTG), consistent with prior studies and meta-analyses that directly impli-

cate the posterior parietal cortex in relational reasoning (see Wendelken, 2015 for a review).

According to our RSA analysis on the relation representation stage, the left frontal cortex

encoded both semantic (the Word2vec-concat) and higher order (BART) relational informa-

tion between the two constituent word pairs. However, the voxelwise analysis provided

further insight as to the computations necessary for the brain to process analogies. By

correlating trial-by-trial relational similarity derived from our computational models with

voxel activations, we found that BART-derived relational similarity successfully predicted

neural activations in the same frontal regions, while the other two models, Word2vec-concat

and Word2vvec-diff, could not. A small cluster in parietal cortex was also correlated with

BART-derived relational similarity (and not other models), supporting the hypothesis that

relations are formed in the parietal cortex and then transmitted to rlPFC for higher-order

reasoning operations.

A neurocomputational model of analogical reasoning Taken together, our results

support a recent proposal that subdivisions the left posterior parietal cortex (PPC) are

critical to relational reasoning in general (Wendelken, 2015), rather than only visuospatial

processing (Krawczyk, 2012; Hobeika et al., 2016), while others are specialized for the many

other operations (Duncan, 2010).
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By analyzing these two subprocesses via our sequential design, our results also support a

coarse, but neurobiologically plausible sequence of events for analogical reasoning. We find

that during relational representation, the left parietal cortex computes first order relations

between constituents, which are then represented in the fronto-temporal “semantic network”.

During comparison or integration, the rlPFC computes second order relational judgments

over these representations. Despite the lack of direct anatomical connection between rlPFC

and the left PPC, it has been recently reported that these two regions are functionally con-

nected, and that this connectivity predicts reasoning ability during development (Vendetti &

Bunge, 2014; Wendelken et al., 2016, 2017). Additionally, this sequence of events is corrobo-

rated by lesion studies of general reasoning. In one case, when comparing stroke patients with

damage to rlPFC or PPC, only patients with damage in PPC were significantly impaired on

a transitive inference task (Waechter, Goel, Raymont, Kruger, & Grafman, 2013).

Finally, we also provide an account for the computations carried out in PPC and rlPFC

during analogical reasoning. BART captures the higher order process involved in forming

an abstract relation. We observed that BART predictions were correlated with ROIs in the

posterior parietal cortex, providing a computational account for how relations are formed.

Interestingly, in an exploratory (i.e. voxelwise) approach, we found that the rlPFC and

other previously implicated frontal regions tracked relational similarity scores derived from

BART representations, while other models were not sufficient to explain voxel activity in

these regions.
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4.4 Methods

Participants 16 participants (8 female) were recruited at the University of California,

Los Angeles (UCLA) through a flyer distributed in the Psychology department. Partici-

pants signed informed consent prior to the experimental session, and were paid $50 for their

participation in the 1-hour study, in compliance with the procedures accepted by the local

institutional review board (IRB).

Stimuli The experiment was administered using PsychoPy2 (Peirce, 2009). The basic

stimuli were a set of analogy problems constructed on the basis of prototypicality norms

for examples of two-word semantic relations (Jurgens et al., 2012). These norms were in

turn based on a taxonomy of semantic relations described by (Bejar et al., 1991). The full

norms include examples of word pairs instantiating ten high-level categories (e.g., Similar,

Contrast, Cause-Purpose), each with five to ten more specific subcategories, for a total of

79 distinct subcategories. For the present study, we focused on three high-level categories

(those listed above), with three subcategories of each for a total of nine subcategories.

For each subcategory, the (Jurgens et al., 2012) norms rank roughly 35 word pairs from

most to least illustrative, based on human ratings. Each pair is assigned a “prototypicality

score” reflecting its level of goodness as an example of the specified relation. Because we

wished to create analogy problems with clear correct answers, for each subcategory we se-

lected 16 word pairs from among the most highly rated examples. In making this selection

we avoided duplicate pairs that were simple reversals (e.g., happy-sad and sad-happy), in

such cases choosing just the pair with the higher rank. Pairs that included conspicuously
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long or low-frequency words were also excluded. Because for some subcategories it proved

difficult to identify 16 pairs that passed our selection criteria, we also included some pairs

that (Jurgens et al., 2012) had used as “seed” examples to elicit word pairs from humans.

These were considered excellent examples (most taken from (Bejar et al., 1991); hence we

assigned them a prototypicality score equal to that of the most highly ranked example for

the subcategory.

Counterbalancing to form analogy problems Using the 144 (16 examples x 9 subcat-

egories) distinct word pairs selected as described above, we formed pairs of pairs to create

verbal analogy problems in the form A:B :: C:D (valid) or else A:B :: C’:D’ (invalid),

where all pairs were drawn from the pool of 144. For the invalid pairs, the C’:D’ pair was

drawn from a different higher-order relation category than was A:B. We avoided creating

invalid items using different subcategories within the same superordinate category (e.g.,

subcategories Contrary and Pseudoantonym, both subtypes of Contrast) because pilot work

suggested that such “near-miss” problems would lead to excessive errors in a task involving

time pressure. At the same time, C’:D’ pairs always instantiated a natural semantic rela-

tion (rather than being semantically anomalous), forcing participants to consider the paired

relations carefully in judging validity of the analogies.

Counterbalancing was used to create four complete sets of analogy problems. To form an

individual set, for each of the nine subcategories, eight of the 16 pairs were assigned to the

A:B role and four to the C:D role. The remaining four pairs were assigned to the C’:D’ role

associated with A:B pairs for four of the six subcategories representing the two remaining

higher-order categories. Assignments to the C:D role were random subject to the above
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restriction. Subject to all of the above restrictions, specific 4-term analogy problems were

created by random pairing of word pairs. Each set thus consisted of 72 analogy problems (9

subcategories x 8 problems each). For each subcategory, four problems were valid and four

were invalid. Within a set of 72 problems, each of the 144 word pairs occurred twice in the

A:B role and once in each of the C:D and C’:D’ roles.

The same procedure was used to create a total of four sets, each with 72 problems

distributed as described above. Across all four sets, each of the 144 word pairs appeared

in each role with the same proportions (i.e., twice as often as A:B than as C:D or C’D’).

The four sets, with a total of 288 problems (4 sets x 72 problems each), were treated as

four blocks administered to each participant. The procedure for problem generation ensured

that any individual analogy problem occurred only once in the set of 288 problems. The

order of problems was randomized within each block, and the order of the four blocks was

counterbalanced across participants. The overall aim of this procedure for problem creation

was to ensure that data analyses could be based on neural patterns associated with each of

the 16 word pairs representing each of the nine relational categories (144 pairs in total), in

each of the three possible roles (A:B, C:D, C’:D’), while avoiding any confounding between

specific pairs and roles. Finally, each of these four sets was further split into two sets of 36

for subject convenience.

Procedure On each trial (see Figure 4.1), participants were first shown the A:B word

pair for 2s, then the C:D pair for 2s (with an average .5s jitter in between). The words

“yes” or “no” then appeared on the left and right of the screen, indicating the assignment

of two response buttons used to indicate whether or not the two pairs represented the same
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relation. Critically, the assignment of “yes” and “no” buttons was randomly varied, ensuring

that participants could not begin planning a motor response during the earlier phases of the

trial.

Overall, subjects completed the task with an average accuracy of 82% (SD: 6.8%) and

response time of 981ms (SD: 30.7).

fMRI Data Acquisition Data were acquired on a 3 Tesla Siemens Prisma Magnetic

Resonance Imaging (MRI) scanner at the Staglin IMHRO Center for Cognitive Neuroscience

at UCLA. Structural data were acquired using a T1-weighted sequence (MPRAGE, TR =

1,900 ms, TE = 2.26 ms, voxel size 1 mm3 isovoxel). Blood oxygenation level dependent

(BOLD) data were acquired with a T2*-weighted Gradient Recall Echo sequence (TR =

1,000 ms, TE = 37 ms, 60 interleaved slices (2mm gap), voxel size 2x2x2 mm, 6x multiband

acceleration).

fMRI Preprocessing Data preprocessing was carried out using FSL (Smith et al., 2004).

Prior to univariate analyses, data underwent preprocessing steps including motion correc-

tion, slice-timing correction (using Fourier-space time-series phase-shifting), spatial smooth-

ing using a Gaussian kernel of 5 mm full-width half-max, and highpass temporal filtering

(Gaussian-weighted least-squares straight line fitting, with s=50.0s). Data from each in-

dividual run were analyzed employing a univariate general linear model approach (Monti,

2011) inclusive of a pre-whitening correction for autocorrelation.

Spatial smoothing was omitted from the above preprocessing steps for classification and

representational similarity analysis in order to preserve spatial heterogeneities. Beta-series
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(Rissman et al., 2004) parameter estimates were derived using the Least Squares-Separate

(LS-S, Mumford et al., 2012 approach, in which all parameter estimates were calculated one

at a time in an iterative manner using a general linear model.

Univariate Analysis All A:B and C:D trials were coded by main relationship for a uni-

variate analysis using the GLM approach (Monti, 2011) to identify regions engaged in form-

ing semantic relations. The probe condition was included as a condition of non-interest, as

well as motion parameters. The GLM analysis was carried out using FSL FEAT (Smith et

al., 2004; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2011). Data from individual

runs were aggregated employing a mixed effects model (i.e., employing both the within- and

between-subject variance), and using automatic outlier detection.

For the main effects (i.e., A:B – rest, C:D – rest) analysis, Z (Gaussianised t) statistic

images were thresholded using a cluster correction of Z>2.3 and a (corrected) cluster sig-

nificance threshold of p=.05. For the contrast analysis (i.e., C:D – A:B), significance was

assessed using FSL randomise with TFCE cluster correction. To correct for “reverse subtrac-

tions” (Morcom & Fletcher, 2007), the resulting parametric maps were masked by regions in

which C:D had a Z-score greater than 2.3 (i.e., the main effect of C:D phase was significant).

Classification Analyses Classifiers were trained to distinguish between the three main

relations (similar, contrast, cause-purpose), and were evaluated using a leave-one-run-out

cross validation approach (see Etzel & Braver, 2013 ). For each participant, two such clas-

sifications were run: one on the A:B trials and one on the C:D (valid) trials. C:D (valid)

trials were selected so that the relation representations during the C:D phase would not
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be confounded by additional cognitive operations associated with processing an inconsistent

relation. We used a 5mm radius sphere and a linear SVM (Abraham et al., 2014; Pedregosa

et al., 2011) . Statistical significance was assessed using FSL randomise with TFCE cluster

correction (Smith & Nichols, 2009; Winkler et al., 2014).

Representational Similarity Analysis Representational Similarity Analysis (RSA; Kriegeskorte

et al., 2008; Kriegeskorte & Kievit, 2013 ) was used to characterize the similarities of neural

responses across pairs. RSA characterizes the representation in a brain region by a represen-

tational dissimilarity matrix (RDM), and compares this empirical matrix with a theoretical

model. An RDM is a square symmetric matrix, with each entry referring to the dissimilarity

between the activity patterns associated with two trials (e.g., entry (1,2) would represent the

dissimilarity between activity patterns on trial 1 and trial 2). Procedurally, each element of

the RDM is calculated as 1 minus the Pearson correlation between the beta-series for each

pair of trials (Carota et al., 2017; Nili et al., 2014).

Hypothesis models were manually generated to reflect idealized RDMs expected given a

theoretical representational space. We generated theoretical RDMs from each of the three

neurocomputational models. Each model uses a different calculation to yield a feature vector

characterizing a word pair, but the RDM was calculated in the same way for all models as

the cosine distance between word-pair representations.

RDMs and hypothesis models were compared by calculating a “second-order similarity”

(Nili et al., 2014) which was the Spearman correlation coefficient between the two matrices.

All analyses were carried out using Python, making extensive use of the machine learning

packages Scikit-learn (Pedregosa et al., 2011) and NiLearn (Abraham et al., 2014). Data
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and Analysis code is available online.

ROI selection Within the left prefrontal cortex, we selected the following regions: the left

rostrolateral prefrontal cortex (rlPFC- BAs 10 and 47) , the left inferior frontal gyrus (BA 44,

45, 47), and the middle frontal gyrus (BA46). The left temporal cortex was segmented into

the following ROIs: the temporal pole (TP), anterior superior and inferior temporal gyrus

(aSTG, aITG), and the posterior superior, middle, and temporal gyrus (pSTG, pMTG,

pITG). At the temporo-parieto-occipital junction, we selected the middle temporal gyrus

(toMTG), and the angular gyrus (AG). Finally, we selected the left superior and inferior

parietal lobe (SPL, aSMG, pSMG) in the in the parietal cortex. All ROIs were defined using

the Harvard-Oxford Atlas (Desikan et al., 2006) except for the occipital, which was selected

from the AAL (Tzourio-Mazoyer et al., 2002) . ROIs were selected mostly based on two

reviews (Binder et al., 2009; Krawczyk, 2012). As a control, cerebral spinal fluid (CSF), a

region that would not plausibly be involved in processing of abstract semantic relations, was

included as a “region of disinterest”. The CSF ROI was manually drawn for each subject.

Model details All quantitative models used to create theoretical RDMs for the RSA anal-

ysis were based directly (Word2vec-concat, Word2vec-diff) or indirectly (BART) on the out-

puts of a machine learning model, Word2vec (Mikolov et al., 2013). This model takes a large

text corpus (Google News) as input, examines distributional statistics relating each word to

neighboring words in sentences (local context), and outputs a modular vector representation

for each individual word, termed a word embedding. Word2vec vectors of length 300 were

obtained for all words used in the present study. Word2vec-concat (the concatenation of the
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vectors for the two words in a pair) and Word2vec-diff (the difference vector derived from

the two individual vectors) were calculated and used to create theoretical RDMs.

The BART model (Bayesian Analogy with Relational Transformations; Lu et al., 2012)

was applied to learn specific relations between word pairs. BART takes as inputs pairs of

positive and negative examples of a given relation, where each pair is represented by the

concatenation of the Word2vec vector for each word. For example, a vector formed by

concatenating the individual vectors for love and hate would constitute a positive example

of the antonymy relation, but a negative example of the category membership relation. The

model used supervised learning with 20 positive examples and a fixed set of 64-74 negative

instances (the top example for each relation from each general category other than that

of the target relation) to form weight distributions representing each of the 79 relations in

the Jurgens et al., 2012. For each word pair used in the study, these learned weights were

used to calculate the posterior probability that the pair instantiated each of the 79 learned

relations. The vector of length 79 formed by these posterior probabilities represented the

specific relation between the two words in the pair. These vectors were used to create BART’s

theoretical RDMs.

Similar

Synonym Attribute Similarity Change

big:large book:magazine acceleration:speed

boat:ship chair:sofa darken:color

car:auto fence:hedge death:population

careful:cautious hill:mountain dim:light
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couch:sofa house:tent discount:price

cute:adorable ladder:stairs flood:water

house:home paper:parchment force:pressure

kid:child pencil:pen heat:temperature

make:manufacture picture:drawing inflation:price

option:choice pillow:cushion lower:volume

pants:trousers rake:fork raise:salary

pretty:beautiful shovel:spoon rise:tide

raise:elevate stairs:ladder shorten:distance

run:sprint sword:knife soften:voice

spin:twirl table:desk speed:movement

teach:instruct wagon:trailer terror:fear

Contrast

Contrary Directional Pseudoantonym

accept:reject ahead:behind bright:dull

big:small below:above day:evening

black:white climb:descend enthusiastic:lazy

bright:dark east:west fun:boring

dark:light forward:backward funny:serious

difficult:easy front:back good:wrong

dirty:clean high:low high:down

fast:slow in:out just:unfair
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fat:thin interior:exterior loud:discreet

good:bad left:right low:up

hot:cold north:south majority:small

old:young rise:sink obey:protest

pretty:ugly start:finish powerful:meek

rich:poor top:bottom right:bad

tall:short under:over smiling:sad

warm:cool up:down witty:dumb

Cause/Purpose

Cause:effect Cause:compensatory action Activity:goal

accident:damage anger:yell advertise:promote

bath:cleanliness coldness:shiver bathe:clean

disease:sickness danger:flee breathe:live

exercise:fitness dirtiness:bathe burnish:shine

explosion:damage dirty:bathe cook:eat

fire:burns fright:scream drink:hydrate

germs:sickness happiness:smile exercise:healthy

heater:warmth heat:sweat flee:escape

illness:discomfort hunger:eat ignite:burn

injury:pain loneliness:socialize read:learn

joke:laughter nervousness:sweat sleep:rest

loss:grief sadness:cry speak:express
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repetition:boredom sickness:medicate study:learn

stimulus:response thirst:drink trim:shorten

tragedy:tears thirsty:drink wash:clean

workout:sweat tiredness:rest work:earn

Table 4.1: Word pairs
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CHAPTER 5

Incorporating priors from computational models into

neuroimaging encoding methods via Tikhonov

regularization

5.1 Introduction

Voxelwise encoding methods (Naselaris et al., 2011) have recently gained popularity as a

framework for linking cognitive neuroscience with advances in computational modeling. They

have been used to relate image representations in the brain with psychophysics and machine

learning inspired models (Kay, Naselaris, Prenger, & Gallant, 2008) and with computational

linguistics (Mitchell et al., 2008; Huth, Nishimoto, Vu, & Gallant, 2012; Pereira, Botvinick,

& Detre, 2013), and also have been used to relate the neural representation of natural lan-

guage with computational linguistics (Huth et al., 2016; Wehbe et al., 2014; de Heer et

al., 2017). These methods are among the leading approaches behind the recent push for

characterizing how stimulus features are represented in neural space, as opposed to simply

localizing cognitive operations (Diedrichsen & Kriegeskorte, 2017), allowing for a more com-

prehensive functional description of brain regions than conventional approaches (Naselaris

et al., 2011) within the same simple framework as parametric univariate analysis (Posner &
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Deheane, 1994).

What makes these approaches so appealing is the fact that by using feature spaces de-

rived from computational models, as opposed to indicator columns coding for when a given

condition is on or at different levels of intensity (Huth et al., 2012, 2016), the encoding

framework uses brain data to evaluate the (neural) plausibility of computational models of

human behavior and adjudicate between different proposals on the basis of how well they

fit neural data (Huth et al., 2016). Furthermore, since the feature spaces can be flexibly

specified by the researcher to best capture the most central properties of a model (Cohen et

al., 2017), these models allow for naturalistic experimental conditions (Haxby et al., 2011;

Wehbe et al., 2014; Nishimoto & Nishida, 2016; Huth et al., 2016; de Heer et al., 2017) as

well as more “classical” controlled experimental designs (Mitchell et al., 2008; Kay et al.,

2008; Huth et al., 2012). However, encoding methods have been relatively slow to catch

on compared to others (for example, (Haxby et al., 2014)) for one main reason: in order

to use high dimensional feature spaces, enough observations (i.e., timepoints) are needed to

properly fit the model.

One particular tool that addresses this issue is regularization. In the GLM framework,

regularization is typically used to fit ill-posed or rank-deficient problems, generally when

there are as many, if not more predictors than observations. As will be shown below, the

most common form of regularization in neuroimaging analysis, ridge regression (Hoerl &

Kennard, 1970), operates by limiting the overall magnitude of the estimated parameters.

When using this technique, all parameter estimates are “penalized”, (i.e. pushed towards

zero), so less meaningful features will contribute less to prediction.
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A recent development in the encoding framework is the renewed emphasis on the idea

that regularized solutions to the General Linear Model (GLM) can be interpreted as Bayesian

inference (Diedrichsen & Kriegeskorte, 2017). As will be explained below, the regulariza-

tion technique is mathematically identical to imposing a prior belief upon the relationship

between our predictors. In the case of ridge regression, the implicit prior assumption is

that all features ought to be equally penalized (i.e., they are all independent from one an-

other). While this is a general-purpose approach that has been used to great effect, there

is no reason why we cannot apply more penalization to some predictors and less to others.

Tikhonov regularization (Tikhonov, 1943, 1963) is the generalization of Ridge regression

beyond the “equal penalty” assumption, providing a mechanism for incorporating arbitrary

penalty configurations, but at the cost of losing an analytic solution (which allows for ef-

ficient computing). From a computational modeling standpoint, this implies that not only

does the encoding approach allow us to incorporate rich feature spaces that represent the

stimuli, but via Tikhonov regularization we are also able to include information on how those

features ought to be related to each other (Figure 5.1.

In this paper, we review Tikhonov regularization (Tikhonov, 1943, 1963) within the

Bayesian framework (as shown in Vogel, 2002). Then, we describe an efficient implementation

for Tikhonov regularization, which rotates the data such that existing GLM solvers can be

used. We validate these two points first using a simulation study and then on a case study

connecting a deep-learning derived feature set (Mikolov et al., 2013) an existing fMRI dataset

(Wehbe et al., 2014).
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a. OLS solution b. Ridge solution c. Tikhonov solution

Figure 5.1: Left: OLS does not assume any prior distribution on parameter estimates.

Middle: Ridge regression assumes that parameter estimates follow multivariate normal (with

identity covariance matrix). Right: Tikhonov regression allows for parameter estimates to

follow a multivariate normal with arbitrary variance-covariance matrix.
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5.1.1 Linear encoding: a probabilistic perspective

The General Linear Model (GLM) based encoding framework assumes a linear relationship

between the cognitive feature space (X) and brain signal (Y ) (Monti, 2011; Huth et al.,

2012, 2016; Kay et al., 2008; Diedrichsen & Kriegeskorte, 2017; Cohen et al., 2017) such

that:

Y = Xβ + ϵ (5.1)

In this framework, several techniques exist to minimize the estimation error ϵ by finding

the best estimate for β, (β̂) (e.g., Waldorp, 2009), with the most commonly used being the

ordinary least squares (OLS) solution:

β̂OLS = (XTX)−1XTy (5.2)

An additional constraint on the OLS model is that the errors are independent and iden-

tically distributed, following a Gaussian distribution such that:

ϵ ∼ Normal(0, σ2) (5.3)

Given the constraint of Gaussian error, the linear regression problem can also be formu-

lated probabilistically, as follows:

p(y|X, β, σ2) ∝ (σ2)−n/2 exp (1/2σ2(y −Xβ)
T
(y −Xβ)) (5.4)

With solution (by optimizing beta over the log-likelihood, see details in the Appendix):
102



β̂MLE = (XTX)−1XTy (5.5)

Thus the Ordinary Least Squares solution for weight estimation (eq. 5.2) can be under-

stood as the maximum likelihood estimator (MLE; eq. 5.5), the best estimator given only

our data assuming errors are independent and identically distributed (iid).

This probabilistic re-framing of the linear model approach is what allows the integration

of a priori knowledge from experimental data (Mitchell et al., 2008) or computational models

(Kay et al., 2008; Huth et al., 2016) into the estimation. Thus, the relationship between

the contributions of these features P (β) can be known or measured. The use of Bayes rule

allows us to convert the MLE solution to Maximum a Posteriori (MAP) inference.

We can use Bayes rule to reveal the form of the posterior:

p(β|y,X, σ2) ∝ (y|X, β, σ2)p(β) = p(y|X, β, σ2)p(β) (5.6)

While the MAP estimator does not have a general analytic solution, conjugate priors can

be employed to derive analytic estimators. Specifically, the likelihood function (equation

5.5) follows a Gaussian distribution, which allows us to choose the conjugate prior for β to

be a Gaussian:

p(β) ∝ (τ 2)
−
p

2 exp (− 1

2τ 2
(β − µ)T (Λ)(β − µ)) (5.7)

β ∼ Normal(µ, τ 2Λ−1) (5.8)
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Resulting in the full multiplication:

p(β|y,X, σ2) ∝ p(y|X, β, σ2)p(β) (5.9)

By optimizing the log of the above function w.r.t. β, the maximum a posteriori estimate

is: (see appendix for proof)

β̂MAP = (XTX + cΛ)−1(XTy + cΛµ) (5.10)

The identical estimator can be derived by optimizing the least squared error function,

subject to a magnitude constraint:

||Lβ||2 < c (5.11)

resulting in

β̂ = (XTX + cLTL)−1XTy (5.12)

By setting LTL to be the inverse variance-covariance matrix (Λ) from equation (5.10) , we

see that Tikhonov regularization (Tikhonov, 1963, 1943) is equivalent to the MAP extension

to the general linear model.

The Gaussian prior P (β) can be characterized by two parameters. In most cases the

data are de-meaned or standardized prior to analysis, so prior mean µ is 0. This exposes a

mechanism for incorporating the prior—we can choose the regularization matrix such that it
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is the inverse of the desired covariance matrix. We are left with the free parameter c, which

reflects the how much weight to place on prior knowledge.

We also can the special case when the covariance matrix Λ is the Identity matrix, such

that

β ∼ Normal(0, I) (5.13)

The solution is identical to that of Ridge (L2-regularized) Regression which, from a

Bayesian perspective, assumes the prior that all features are independent of one another.

β̂ridge = (XTX + cI)−1XTy (5.14)

As outlined in Diedrichsen & Kriegeskorte, 2017, ridge regression can be interpreted as

Bayesian inference in which the prior distribution is multivariate Gaussian with a diagonal

(identity) variance-covariance matrix. Therefore, ridge regression carries the assumption

that all features are independent of one another and thus are (equally) penalized. Model fit

is optimized by tuning the scaling parameter c, which controls the compromise between the

prior information and likelihood function.

Given enough training data, ridge regression has been used to successfully map rich

feature spaces to neuroimaging data (Pereira et al., 2013), and to run encoding models using

a finite impulse response hemodynamic model (which increases the number of predictors by

a factor of the number of finite impulses assumed), (Wehbe et al., 2014; Huth et al., 2016).

However, from a Bayesian modeling perspective this approach is suboptimal, because the

prior distribution is mis-specified.
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By incorporating an independently derived covariance structure (Λ−1, above), we can

construct a model that contains a priori knowledge of the underlying feature space (rather

than assuming independence of features) for a better fit. For example, when fitting an FIR

model instead of a hemodynamic response, temporal correlations can be incorporated via the

prior distribution. At a higher level, in computational studies on human cognition (usually

in psychophysics), we can explicitly define the covariance structure of features.

I propose in the following section an efficient method for computing the Tikhonov solution

given a covariance structure of interest.

5.2 Tikhonov regularization in practice

To efficiently apply Tikhonov regularization in the “massive univariate approach” (Monti,

2011) on neuroimaging data, it is necessary to have an efficient algorithm. As outlined in

(Stout, Kalivas, & Héberger, 2007), it is possible to rotate the feature space with linear

transformation L such that all features are independent (i.e., following equation 5.13 and

satisfying the assumptions for ridge regression). With this rotation, it is then trivial to fit

the model using an existing ridge regression implementation, then rotate the results back to

the original space. Below, I propose a procedure for finding this rotation matrix L.

Formally, given some symmetric and invertible covariance structure Σ we want to find

the Tikhonov matrix L such that

LTL = Σ−1 (5.15)
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We can take advantage of the singular value decomposition (SVD) of the inverse variance-

covariance matrix such that:

Σ−1 = USV T (5.16)

Where S is a matrix with elements only on the diagonal, and U and V T are the left and

right eigenvectors, respectively. In the case where Σ−1 is symmetric (as is the case here), we

can select L = DV T where D is the square root of every element in S. With the selection

of L, we are able to rotate the Tikhonov regularization problem such that the regularization

matrix is the identity matrix (transforming into the “standard form” L2-regularization (Stout

et al., 2007)) in order for efficient computation. That is, when Tikhonov matrix L is known,

any problem

argminβ(Xβ − y) + ||Lβ||2 (5.17)

can be converted to ridge regression

argminβ̃(X̃β̃ − y) + ||β̃||2 (5.18)

With the following transformations.

X̃ = XL−1, ỹ = y (5.19)

After which we can recover the desired coefficients with the following:
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L−1β̃ = β (5.20)

Where L−1 can be the Moore-Penrose pseudoinverse of L.

This transformation makes it possible to harness existing efficient implementations of

Ridge regression (e.g., Pedregosa et al., 2011) to quickly apply Tikhonov regularization. We

apply this implementation to simulations and an already established dataset (Wehbe et al.,

2014) to compare this rotation against Ridge regression in the context of comparing feature

spaces in neuroimaging studies.

5.3 Simulation

Regularized linear models are typically been employed when the number of predictors (hence-

forth “features”) approaches or exceeds the number of datapoints (henceforth “samples”).

By adding a slight bias via the penalty matrix, regularization provides numerical stability

when computing the regression solution. With the understanding that Tikhonov regular-

ization as a refinement of the feature independence assumption in the penalty matrix, we

expect that it should outperform other methods in a data-starved setting. The following

simulation study was run to verify this behavior.

5.3.1 Method

In order to compare the regression methods, a feature set (X), weights (β), and trial-by-trial

noise (ϵ) were randomly generated with the following distributions:
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X ∼ Unif(−1, 1) (5.21)

β ∼ Normal(0,Σ) (5.22)

ϵ ∼ Normal(0, I) (5.23)

The signal y was created according to the linear model (equation 5.1).

The goal of this simulation was to characterize the performance gains (or losses) arising

from the Tikhonov regularization technique as a function of amount of available data. As

previously stated, we expected performance to converge to ceiling given enough data points.

However, performance should increase faster with a properly specified prior.

GLM estimation was carried out using ordinary least squares (OLS), ridge regression,

Tikhonov regression with the properly specified prior (Σ), and Tikhonov regression with an

improperly specified prior (Σ−1). The inverse prior was selected as a worst-case scenario

for prior specification, to observe how harmful a poor specification could be. The ratio of

features to samples was manipulated. In each case, model fitting was performed on 80% of

these samples, and the regularization scaling parameter c was fixed at 1. We specifically

avoided tuning this parameter because it was possible that in some cases it may be optimal

to set c as low as possible (and thus ignore the penalty matrix). Predictive correlation (Huth

et al., 2016) between the predicted responses and the actual values of the remaining 20%

left-out samples was recorded. For each data scenario, the process was repeated 1000 times.
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Figure 5.2: Performance when manipulating the number of samples relative to features.

As expected, performance increases as more data is available. However, with the properly

specified prior Tikhonov regularization outperforms all other methods when there is less

data.

5.3.2 Results

Figure 5.2 depicts the result of these simulations. As the ratio of samples to features ap-

proaches 1, the regression methods approach maximal predictive correlation. Notably, with

fewer samples than features, the proper Tikhonov matrix outperforms all other methods,

while the misspecified Tikhonov regularization matrix harms predictive correlation, in addi-

tion to being the slwest to converge..
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5.4 Tikhonov encoding in neuroimaging

A key limitation of the simulation study is that we imposed a noise structure consistent

with the assumptions of the model. Specifically, our errors were independent and identi-

cally distributed, which is seldom the case in neuroimaging analysis (Weisskoff et al., 1993;

Woolrich et al., 2001; Bright & Murphy, 2015). Additionally, we were assured that the prior

distribution was properly specified. In this section, we leverage an existing dataset (Wehbe

et al., 2014) and feature space (Word2vec- Mikolov et al., 2013) to test this approach on real

functional neuroimaging data.

Wehbe et al., 2014 acquired fMRI data from 9 subjects at Carnegie Mellon University as

they passively read a chapter from Harry Potter and the Sorcerer’s Stone (Rowling, 1998).

They collected a number of features derived from computational linguistics and applied them

(using ridge regression) in an encoding framework (Kay et al., 2008; Huth et al., 2012) to

show that features specific to different aspects of language processing (e.g. syntax, semantics)

were predictive in different (language related) regions of the brain.

Wehbe and colleagues used a non-negative sparse embedding of word co-occurence fre-

quencies (Murphy, Talukdar, & Mitchell, 2012) as a feature space representing semantic

meaning. In this reanalysis of their data, we adopted the feature space defined by Word2Vec,

which has been shown to perform similarly to co-occurence derived features (Mikolov et al.,

2013) to test the Tikhonov rotation described above. Critically, our selection of Word2Vec

vectors allows us to calculate a prior matrix, which we defined as the correlation between the

300 features according to all of the other words in the vocabulary. We restrict our analysis

to the regions found to be “semantically relevant” by Wehbe et al., 2014.
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Figure 5.3: Priors derived from Word2vec

5.4.1 Method

As previously described, participants passively read a chapter of Harry Potter and the Sor-

cerer’s Stone. Wehbe and colleagues used a number of features derived from computational

linguistics in the encoding framework to identify brain regions involved in processing natural

language and found that, for different regions of interest, different feature sets corresponding

to linguistic aspects (e.g., syntax, semantics) held the most predictive power.

Design matrices We adapted the classification procedure described by Mitchell et al.,

2008 andWehbe et al., 2014, manipulating the underlying GLM solver and amount of training

data. The last 340 timepoints (roughly 20%) were left out as a test set to ensure that the

training and testing data could not temporally overlap. Then a voxelwise GLM model

was trained on a subset of the remaining timepoints and used to predict the timeseries

for the left-out set. To construct the regressors corresponding to word2vec features, the
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300-dimensional representations for each word (Mikolov et al., 2013) were convolved with a

canonical double-gamma hemodynamic response (HRF) to form the design matrix (NIPY).

The predicted timeseries and the left-out timeseries were segmented into non-overlapping

sequences of 20 TRs as described in Wehbe et al., 2014, and a classification task was created

by comparing the predicted sequence with its corresponding left-out data partition compared

with a different randomly selected sequence.

As Word2Vec has been shown to correlate with human semantic judgments (Mikolov

et al., 2013), we selected semantically relevant ROIs as determined by Wehbe et al., 2014.

Specifically, we restricted our analysis to voxels falling within the inferior frontal gyrus.

We ran the above procedure for varying values of training samples (50-700), across 3

estimation methods: Ordinary Least Squares, Ridge regresion, and Tikhonov regression.

5.4.2 Results

Wehbe et al., 2014 reported up to 74% classification accuracy in this task when using all

available linguistic features. With word2vec features alone (which presumably account for

only semantics, and not syntax or other thematic relations), the model reaches 65% accuracy.

As the number of training samples decreases, performance diminishes across all methods.

However, the regularized regression methods gradually decline in performance, while there

is a sharp drop using ordinary least squares. When replicating the clasification task defined

by (Wehbe et al., 2014; Mitchell et al., 2008) in which Euclidean distance was used to

compare predicted and left-out activity, the magnitude of these distances increased by orders

of magnitude as the design matrix was increasingly rank-deficient (not shown).
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Figure 5.4: Performance when manipulating the number of samples relative to features. As

expected, performance increases as more data is available. Predictive correlation is greater

for the regularized regression methods while the number of samples is less than the number

of features.
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5.5 Discussion

This report connects Tikhonov regularization with the Bayesian analysis framework, provid-

ing a GLM based mechanism for incorporating prior knowledge into neuroimaging analysis.

We accompany this proposal with an efficient implementation in Python to interface with

the popular machine learning package Scikit-learn (Pedregosa et al., 2011), and validate the

approach on a simulation and neuroimaging analysis.

Simulation As implied by the proof in Appendix C.2 (Vogel, 2002), Tikhonov regulariza-

tion, when the regularization matrix is properly specified, requires less data to fit a model

that reaches maximal predictive power (Figure 5.2). Importantly, model fit appears to in-

crease at a faster rate than simply using ridge regression, which improves at the same rate as

the ordinary least squares solution as a function of amount of available training data. This

can be attributed to the off-diagonal elements in the regularization matrix, which allow for

subsets of variables to be penalized together.

The negative performance associated with a misspecified regularization matrix is a di-

rect consequence of the same off-diagonal elements in the regularization matrix. With two

variables that are not truly correlated, artificially linking them together has the effect of

pushing the estimator away from the true solution. This underscores the need to carefully

measure and incorporate these prior assumptions. If the regression problem is biased in the

opposite direction as the true model, the model will at best approximate the OLS solution

by reducing the scaling factor c to near zero. However, properly tuning this hyperparameter

would cost data, destroying the benefit of needing less data to fit the model.
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fMRI case study We applied our implementation to a novel combination of a recent

feature space and neuroimaging dataset. Figure 5.4 generally depicts the same pattern of

results from the simulation study, in that the regularization methods “learn” to predict the

left out test set faster as a function of available training data. While we did not reach the

accuracy level (74%) reported by Wehbe et al., 2014, we note that our methods differed in

two important ways.

First, Wehbe and colleagues modeled the hemodynamic response function nonparamet-

rically, using a finite impulse response (FIR) type approach (see Pedregosa, Eickenberg,

Ciuciu, Thirion, & Gramfort, 2015), while we applied a canonical double gamma hemody-

namic response model (Monti, 2011) in order to fit the model. FIR approaches multiply

the number of parameters by a factor of t, where t is the number of timepoints used to

model the HRF for each voxel, and have been shown to display better predictive accuracy

(Marino, Redondo, Luna, Sanchez, & Torres, 2014), but have not been widely adopted due

to the propensity to overfit. This is consistent with accounts that the HRF is not consistent

across the brain, and simply estimating the amplitude of the double-gamma response func-

tion results in temporal information loss. Nonetheless, we chose not to use an FIR approach

because the number of required parameters would exceed the number of timepoints, and, as

shown in our simulations, we would not have a valid comparison with the OLS method.

Second, Wehbe and colleagues included a number of linguistically relevant features to

achieve their optimal prediction. While the Word2vec representation has been shown to

capture semantic judgments and associations well (Mikolov et al., 2013), it does not capture

any syntactic, relational, or perceptual information (as was included in the full model).
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In the applied setting, Tikhonov regression did not outperform standard Ridge regression

as it did in the simulation. As shown in figure 5.3, it is possible that the prior matrix as

computed by other Word2vec words (which is known to be a very dense representation) was

not very different from the prior implied by ridge regression, that is, the 300 dimensions are

already nearly independent of one another.

Relation to dimensionality reduction One of the primary goals regularization is to

provide numerical stability to the parameter estimate. As previously discussed, the instabil-

ity in neuroimaging tends to arise from rank-deficiency corresponding to not having enough

data. Data-driven dimension reduction techniques (e.g. principal components analysis, in-

dependent components analysis) have been used to fit these models at the cost of rotating

data into an arbitrary space. Thus, in voxelwise modeling and encoding analyses which aim

to interpret the feature spaces being used, this approach might be preferable to these other

techniques.

Alternative uses While this study proposes a method for incorporating prior knowledge

into the GLM neuroimaging framework, it should be noted that this approach has already

been adopted in other imaging domains. Tikhonov regularization has been used for noise

reduction in spectrometry studies (Stout & Kalivas, 2007; Stout et al., 2007), in which

a regularization matrix functioning as a spectral filter was constructed from known noise

characteristics. Also, they have been incorporated into medical image analysis. In a recent

study, Lehnert et al., 2018 used Tikhonov regularization in order to increase signal to noise

in cardiac MRI by incorporating prior knowledge on signal intensities.
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Along those lines, the introduction of Bayesian principles into neuroimaging analysis is

not new. Standard structural analysis, particularly segmentations, also incorporate prior

expectations on MRI intensity as guided by anatomy (Patenaude, Smith, Kennedy, & Jenk-

inson, 2011; Jenkinson et al., 2011). However, these algorithms are generally time-inefficient

because the posterior distributions typically do not have an analytic form and thus must be

approximated using sampling methods. The second contribution of this paper, the rotation

procedure, can be applied in these settings to improve development and deployment of new

methods, as a rotation of these problems allow for an analytic (ridge) solution rather than

relying on an optimization or sampling procedure.

Limitations and Future Directions One limitation that has restricted widespread use

of explicit modeling is the need to propose and specify feature spaces for the data. Because

model fit serves as the dependent measure, many choices of feature space and prior covariance

can result in the same performance (Diedrichsen & Kriegeskorte, 2017). One way to address

this is to check when two models actually span the same representational space. This can be

determined by comparing the second-moment (covariance) matrix of these feature spaces and

priors. Specifically, if two candidate feature spaces’ covariances share the same eigenspace,

they explain the same intrinsic data and are completely confounded with each other given the

available data (see Diedrichsen & Kriegeskorte, 2017 for a detailed explanation and proof).

Beyond the span of the representational spaces themselves, it is also likely that different

areas of the brain respond to different feature sets, thereby representing complementary in-

formation. Variance partitioning is a recent technique designed to select the best contributors

to model fit in different regions of the brain (de Heer et al., 2017).
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Finally, as with any study within the Bayesian framework, the choice of prior knowledge

is critical. A promising approach may be to measure them in a complementary naturalistic

task, as analogous to the hyperalignment technique described in (Haxby et al., 2011, 2014).

Concluding remarks Tikhonov regularization, as presented in this report, can be under-

stood as maximum posterior estimation (MAP) within the GLM framework. It provides a

principled method for introducing prior knowledge about a model’s predictors into a regres-

sion analysis, in addition to providing numerical stability. We provide an efficient frame-

work for implementing this technique by framing it as a rotation into a space where the

ridge regression assumption is satisfied. In the context of encoding analysis in neuroimaging

research, Tikhonov regularization is a promising framework for bridging the gap between

computational modeling and neuroimaging.
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CONCLUDING REMARKS

Future directions Among the many theoretical future directions discussed in the individ-

ual chapters, several methodological questions persist after the studies in this thesis. These

generally reflect preprocessing and free parameter choices that have not been systematically

investigated and are not clearly reported in analyses.

While parameter estimation techniques were discussed in Chapter 1, it was apparent

when conducting these studies that a more comprehensive follow-up needs to be conducted.

While LS-A, LS-S, and the basis function approach to HRF modeling have compared with

respect to rapid event-related designs (Mumford et al., 2012), they have not been system-

atically compared with the FIR method nor have the methods been compared in studies

using different organizations for stimuli. For example, in cross-domain tasks (as outlined in

Chapter 2), there were several options for coding the nuisance regressor in the LS-S proce-

dure. Along similar lines, it is unclear how these techniques should translate to naturalistic

stimuli, despite the field tending towards that direction (Haxby et al., 2014; Huth et al.,

2016, for some recent examples).

Similarly, representational similarity analysis is still a developing technique. As it is still

under development, there are several new reports showing that different choices of distance

metrics provide qualitatively different results (Walther et al., 2016).

Finally, I claim in Chapter 5 that encoding models connect Bayesian modeling with

cognitive neuroscience. However, that carries all of the critiques of both analyses. It is still

unclear how these priors ought to be specified. A follow up in a psychophysical dataset, in
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which the prior expectations are clearly known, would be a useful validation of the technique.

Overall, these future directions amount to defining a principled approach to selecting

the free parameters for each of the techniques involved in information mapping. Such an

overview for each of these methods would be essential for widespread adoption of the methods

as well as the reliability of results. The field would benefit from a systematic study of these

methods, as well as where to apply them and why.

General Summary The aim of this thesis was to provide a principled approach to bridging

the gap between computational modeling in psychology and neuroimaging analysis. The

techniques I outline allow researchers to ask probe the underlying computations in previously

identified neural correlates of higher cognition.

In Chapter 2, I used canonical multivariate pattern classification (MVPC) in a cross

classification approach in order to study shared neural representations across language and

music. Specifically, we used classification across domains to show that structured sequence

representation must be shared across language and music within Broca’s area, providing a

direct link between the extensive prior work on investigating both domains separately.

In Chapter 3, I applied representational similarity analysis (RSA) to arbitrate between

theories of number representation in the parietal cortex. Because competing theories on

rational number representation could explain behavioral data equally well, we turned to

neural representations and found that fractions are indeed represented separately from other

number types in the posterior parietal cortex.

Chapter 4 represented a combination of classification, RSA, and encoding analyses to
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propose a neurocomputational account of relational reasoning. While the neural correlates

and computational processes underlying relational reasoning have been extensively explored

separately, they have not been directly linked. I applied RSA and encoding-like analyses to

let fMRI data arbitrate between three different computational accounts of relation represen-

tation and comparison, showing that relational reasoning is indeed a process separate from

semantic representation, which is likely carried out in a left fronto-parietal network.

As a theoretical extension to Chapter 4, in Chapter 5 I proposed an extension for encoding

analyses (Naselaris et al., 2011) that allows for directly integrating computational models

with neuroimaging analysis. I provided an efficient implementation that I will continue to

maintain, and validated it in both a simulation study and replication of recent findings on a

publicly available dataset.

Taken together, this thesis provide a comprehensive (at the time of writing) list of avail-

able techniques for understanding ”how”, and not just ”where” higher cognition happens in

the brain.
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APPENDIX A

Appendix to Chapter 2

Supplementary Materials for Chiang et al.

Supplementary Tables Table A.1. Activations for the structure versus repeat contrast

for language materials. Table A.2. Activations for the structure versus repeat contrast for

music materials. Table A.3. Activations for the interaction effect of structure versus repeat

and materials.

Supplementary Figures Figure A.1. Univariate analysis. Interaction of the structure

versus repeat contrast and materials (i.e., language, music). Figure A.2. ROI mean activity.

Coord (MNI)

x y z Z Hem Anatomical Label (BA)

Frontal

-44 6 46 5.63 L Middle Frontal Gyrus (8)

-54 12 16 4.16 L Precentral Gyrus (44)

-2 10 52 4.04 L Medial Frontal Gyrus (6)

-58 16 18 3.98 L Inferior Frontal Gyrus (44)

-4 14 48 3.74 L Medial Frontal Gyrus (6)

-56 16 12 3.69 L Inferior Frontal Gyrus (44)
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36 -34 62 3.64 R Precentral Gyrus (4)

-54 26 22 3.62 L Inferior Frontal Gyrus (45)

6 18 44 3.59 R Cingulate Gyrus (32)

-4 10 70 3.43 L Superior Frontal Gyrus (6)

-2 4 70 3.12 L Superior Frontal Gyrus (6)

-2 14 64 3.1 L Superior Frontal Gyrus (6)

Temporal

-52 -46 6 4.78 L Middle Temporal Gyrus (21)

-58 -30 2 4.49 L Superior Temporal Gyrus (22)

-52 -50 6 4.19 L Middle Temporal Gyrus (21)

-62 -48 16 4.17 L Superior Temporal Gyrus (22)

-50 -34 2 4.11 L Middle/Superior Temporal Gyrus (22)

Parietal

40 -44 48 4.84 R Inferior Parietal Lobule (40)

40 -40 46 4.81 R Inferior Parietal Lobule (40)

-38 -40 42 4.51 L Inferior Parietal Lobule (40)

-64 -44 28 4.43 L Inferior Parietal Lobule (40)

-34 -44 52 3.98 L Inferior Parietal Lobule (40)

-48 -36 48 3.92 L Inferior Parietal Lobule (40)

32 -60 50 3.64 R Superior Parietal Lobule (7)

34 -50 54 3.48 R Superior Parietal Lobule (7)

22 -62 52 3.43 R Superior Parietal Lobule (7)
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Table A.1: Activations for the structure versus repeat contrast for language materials.

Coord (MNI)

x y z Z Hem Anatomical Label (BA)

Frontal

-2 10 58 6.8 L Superior Frontal Gyrus (6)

36 20 4 6.4 R Insula (13)

-32 24 0 6.2 L Insula (13/47)

-30 22 6 6.1 L Insula (13/45)

4 16 48 6 R Superior Frontal Gyrus (6)

42 22 0 5.8 R Inferior Frontal Gyrus (47)

50 14 -4 5.6 R Inferior Frontal Gyrus (47)

-24 -6 56 5.6 L Middle Frontal Gyrus (6)

-54 -12 4 5.4 L Inferior Frontal Gyrus (45)

-26 2 56 5.3 L Middle Frontal Gyrus (6)

46 12 4 5.2 R Insula (13)

-40 18 -4 5.1 L Inferior Frontal Gyrus (47)

-4 20 34 5 L Cingulate Gyrus (32)

8 16 56 4.9 R Superior Frontal Gyrus (8)

54 10 18 4.8 R Inferior Frontal Gurys (44)

28 4 58 4.6 R Middle Frontal Gyrus (6)
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10 18 32 4.3 R Cingulate Gyrus (32)

32 6 64 4.2 R Middle Frontal Gyrus (6)

10 8 68 4.2 R Superior Frontal Gyrus (6)

26 10 64 4 R Middle Frontal Gyrus (6)

28 -6 48 3.2 R Middle Frontal Gyrus (6)

Parietal

42 -40 54 7.1 R Inferior Parietal Lobule (40)

-36 -38 40 6.4 L Inferior Parietal Lobule (40)

-40 -46 54 6 L Inferior Parietal Lobule (40)

-2 -60 60 5.4 L Superior Parietal Lobule (7)

-50 -38 48 5.1 L Inferior Parietal Lobule (40)

-30 -52 62 5 L Superior Parietal Lobule (7)

-50 -32 48 4.9 L Inferior Parietal Lobule (40)

48 -30 48 4.8 R Inferior Parietal Lobule (40)

24 -66 56 4.3 R Superior Parietal Lobule (7)

18 -62 46 4 R Precuneus (7)

56 -30 52 3.9 R Postcentral Gyrus (40)

40 -34 36 3.8 R Inferior Parietal Lobule (40)

Subcortical

34 -66 -24 5.3 R Lobule VI, Posterior Cerebellum

-24 -72 -26 5 L Lobule VI, Posterior Cerebellum

10 6 6 4.8 R Caudate Head
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26 -70 -18 4.3 R Lobule VI, Posterior Cerebellum

2 -56 -22 4.3 R Lobule V (vermis), Anterior Cerebellum

Table A.2: Activations for the structure versus repeat contrast for music materials.

Coord (MNI)

x y z Z Hem Anatomical Label (BA)

Interaction:Language v Music

Temporal

-64 -44 4 3.87 L Superior Temoral Gyrus (22)

-50 -34 0 3.15 L Middle Temporal Gyrus (21)

-64 -46 -6 3.14 L Middle Temporal Gyrus (21)

-50 -46 6 3.01 L Middle Temporal Gyrus (21)

-50 -54 10 2.89 L Superior Temoral Gyrus (22)

Interaction:Music v Language

Frontal

4 10 60 4.44 R Superior Frontal Gyrus (6)

46 26 -4 4.08 R Inferior Frontal Gyrus (47)

42 24 0 3.86 R Inferior Frontal Gyrus (47)

52 22 -10 3.78 R Inferior Frontal Gyrus (47)

48 -6 -4 3.64 R Insula (13)

52 14 -6 3.57 R Inferior Frontal Gyrus (47)
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8 12 66 3.55 R Superior Frontal Gyrus (6)

8 12 70 3.52 R Superior Frontal Gyrus (6)

-6 18 34 3.34 L Cingulate Gyrus (32)

0 22 52 3.09 Medial Frontal Gyrus (8)

2 18 38 2.88 R Cingulate Gyrus (32)

Subcortical

-22 -74 -28 4.07 L Lobule VI, Posterior Cerebellum

-34 -78 -22 3.58 L Lobule VI, Posterior Cerebellum

-34 -68 -22 3.57 L Lobule VI, Posterior Cerebellum

-22 -80 -24 3.52 L Lobule VI, Posterior Cerebellum

Table A.3: Activations for the interaction effect of the structure versus repeat and materials.
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Figure A.1: Interaction of the structure versus repeat contrast and materials (i.e., language,

music).

Figure A.2: Mean activity of independently defined subregions of left IFG are presented to

demonstrate the pattern of results. The absence of negative values rules out repetition sup-

pression as the primary driver of the significant univariate contrast. (LA, LP, LR: Language

Active, Passive, and Repeat; MC, MI, MR: Music Chord, Inversion and Repeat)
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APPENDIX B

Appendix to Chapter 4

Coord (MNI)

x y z Z Hem Anatomical Label (BA)

Frontal

-54 14 2 4.67 L Inferior Frontal Gyrus (pars opercularis)

-50 10 4 4.66 L Inferior Frontal Gyrus (pars opercularis)

-4 2 64 5.2 L Juxtapositional Lobule Cortex (SMA)

0 8 70 4.55 Juxtapositional Lobule Cortex (SMA)

-44 28 -12 4.86 L Orbitofrontal Cortex

-50 -6 42 4.9 L Precentral Gyrus

-52 -4 48 4.68 L Precentral Gyrus

-6 -4 72 3.38 L Superior Frontal Gyrus

20 -2 14 3.69 R WM

Occipital

-34 -88 -4 5.98 L Lateral Occipital Cortex (inferior division)

-36 -86 -8 5.93 L Lateral Occipital Cortex (inferior division)

-40 -86 -6 5.81 L Lateral Occipital Cortex (inferior division)
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-46 -70 -18 5.43 L Lateral Occipital Cortex (inferior division)

48 -64 -22 5.25 R Occipital Fusiform Gyrus

-34 -92 -2 5.7 L Occipital Pole

-30 -96 -2 5.48 L Occipital Pole

22 -92 -12 6.55 R Occipital Pole

32 -90 -12 6.47 R Occipital Pole

28 -90 0 6.08 R Occipital Pole

22 -96 -6 5.5 R Occipital Pole

24 -94 0 5.33 R Occipital Pole

Subcortical

26 2 -14 3.82 R Amygdala

16 10 4 4.12 R Caudate

20 10 14 3.83 R Caudate

-20 10 10 5.63 L Putamen

24 4 2 4.26 R Putamen

28 12 -2 3.71 R Putamen

Table B.1: Local maxima for the A:B trials versus rest contrast.

Coord (MNI)

x y z Z Hem Anatomical Label (BA)

Frontal
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-48 40 4 6.29 L Frontal Pole

30 40 14 3.33 R Frontal Pole

-44 16 28 6.43 L Inferior Frontal Gyrus (pars opercularis)

-44 18 24 5.75 L Inferior Frontal Gyrus (pars opercularis)

30 30 16 3.83 R Inferior Frontal Gyrus (pars triangularis)

28 18 12 3.4 R Insula

38 28 24 4.1 R Middle Frontal Gyrus

22 18 20 3.71 R None

28 36 14 3.58 R None

-42 6 30 6.16 L Precentral Gyrus

28 -14 52 5.88 R Precentral Gyrus

30 -12 56 5.62 R Precentral Gyrus

Occipital

-36 -84 -8 7.45 L Lateral Occipital Cortex (inferior division)

-30 -90 -4 7.09 L Lateral Occipital Cortex (inferior division)

28 -86 -8 7.66 R Occipital Fusiform Gyrus

22 -92 -12 8.36 R Occipital Pole

32 -90 -12 7.84 R Occipital Pole

22 -94 -6 7.75 R Occipital Pole

Parietal

-24 -62 40 5.32 L Lateral Occipital Cortex (superior division)

-28 -60 40 5.15 L Lateral Occipital Cortex (superior division)
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-26 -64 46 5.03 L Lateral Occipital Cortex (superior division)

-26 -64 34 4.94 L Lateral Occipital Cortex (superior division)

-26 -50 38 6.62 L Superior Parietal Lobule

-40 -40 42 5.86 L Supramarginal Gyrus (anterior division)

Table B.2: Local maxima for the C:D trials versus rest contrast.

Coord (MNI)

x y z Z Hem Anatomical Label (BA)

Frontal

32 28 14 3.36 R Frontal Operculum Cortex

-44 40 2 5.21 L Frontal Pole

32 42 14 3.28 R Frontal Pole

-42 16 26 5.53 L Inferior Frontal Gyrus (pars opercularis)

-46 20 22 4.9 L Inferior Frontal Gyrus (pars opercularis)

36 26 18 3.42 R Inferior Frontal Gyrus (pars triangularis)

-46 24 24 5.16 L Middle Frontal Gyrus

40 30 24 3.58 R Middle Frontal Gyrus

48 34 26 3.45 R Middle Frontal Gyrus

42 34 20 3.4 R Middle Frontal Gyrus

-42 8 28 4.98 L Precentral Gyrus

-44 6 32 4.86 L Precentral Gyrus
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42 -2 14 4.3 R Central Opercular Cortex

42 2 14 4.08 R Central Opercular Cortex

48 -4 12 3.51 R Central Opercular Cortex

40 -2 20 3.27 R Central Opercular Cortex

38 -20 22 3.52 R Parietal Operculum Cortex

38 -24 20 3.32 R Parietal Operculum Cortex

Occipital

38 -84 -2 5.75 R Lateral Occipital Cortex (inferior division)

-48 -68 -6 5.72 L Lateral Occipital Cortex (inferior division)

40 -80 2 5.63 R Lateral Occipital Cortex (inferior division)

48 -76 4 5.63 R Lateral Occipital Cortex (inferior division)

20 -96 4 8.45 R Occipital Pole

16 -92 -14 7.41 R Occipital Pole

36 -62 54 6.06 R Lateral Occipital Cortex (superior division)

24 -58 40 5.56 R Lateral Occipital Cortex (superior division)

-30 -72 48 5.61 L Lateral Occipital Cortex (superior division)

-18 -70 44 4.46 L Lateral Occipital Cortex (superior division)

-22 -66 46 4.46 L Lateral Occipital Cortex (superior division)

Parietal

2 8 48 5.29 R Paracingulate Gyrus

40 -28 56 5.59 R Postcentral Gyrus

32 -28 50 5.34 R Postcentral Gyrus
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30 -12 52 5.17 R Precentral Gyrus

-26 -50 40 4.94 L Superior Parietal Lobule

-32 -50 44 4.74 L Superior Parietal Lobule

-40 -40 42 5.7 L Supramarginal Gyrus (anterior division)

Temporal

-62 -42 4 5.67 L Middle Temporal Gyrus (posterior division)

-52 -48 4 4.48 L Middle Temporal Gyrus (temporooccipital part)

-64 -36 6 5.4 L Superior Temporal Gyrus (posterior division)

-48 -32 -2 4.61 L Superior Temporal Gyrus (posterior division)

-50 -40 8 4.56 L Superior Temporal Gyrus (posterior division)

-52 -46 10 4.68 L Supramarginal Gyrus (posterior division)

Table B.3: Local maxima for the C:D - A:B contrast.
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APPENDIX C

Appendix to Chapter 5

C.1 MLE OLS Derivation

In this section we repeat the MLE solution to the General Linear Model.

An additional constraint on the OLS model is that the errors are independent and iden-

tically distributed, following a Gaussian distribution such that:

ϵ ∼ Normal(0, σ2) (C.1)

Given the constraint of Gaussian error, the linear regression problem can be formulated

probabilistically.

p(y|X, β, σ2) ∝ (σ2)−n/2 exp (1/2σ2(y −Xβ)
T
(y −Xβ)) (C.2)

d

dβ
log(p(y|X, β, σ2)) (C.3)

=
d

dβ

1

2σ2 (y −Xβ)T (y −Xβ) = 0 (C.4)
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With solution (by optimizing beta over the log-likelihood, see details in the Appendix):

β̂MLE = (XTX)−1XTy (C.5)

C.2 Relating Tikhonov regression to MAP estimation

The posterior distribution for β is the following:

p(β|y,X, σ2) ∝ p(y|X, β, σ2)p(β) (C.6)

We optimize this function with respect to β to find the maximum posterior estimate.

d

dβ
log(p(β|y,X, σ2)) =

d

dβ
(− 1

2σ2
(y −Xβ)T (y −Xβ)− 1

2τ 2
(β − µ)T (Λ)(β − µ)) (C.7)

=
d

dβ
(− 1

2σ2
(yTy − 2βTXTy + βTXTXβ)− 1

2τ 2
(βTΛβ − 2βTΛµ+ µTΛµ)) (C.8)

0 = − 1

2σ2
(2XTXβ − 2XTy)− 1

2τ 2
(2Λβ − 2Λµ)XTXβ +

σ2

τ 2
Λβ (C.9)

= XTy +
σ2

τ 2
Λ ˆβMAP (C.10)

Solving for β, the maximum a posteriori estimate is:
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β̂MAP = (XTX + cΛ)−1(XTy + cΛµ) (C.11)
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