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We consider the discrimination of two pure quantum states with three allowed outcomes: a correct
guess, an incorrect guess, and a non-guess. To find an optimum measurement procedure, we define a
tunable cost that penalizes the incorrect guess and non-guess outcomes. Minimizing this cost over all
projective measurements produces a rigorous cost bound that includes the usual Helstrom discrim-
ination bound as a special case. We then show that nonprojective measurements can outperform
this modified Helstrom bound for certain choices of cost function. The Ivanovic-Dieks-Peres unam-
biguous state discrimination protocol is recovered as a special case of this improvement. Notably,
while the cost advantage of the latter protocol is destroyed with the introduction of any amount
of experimental noise, other choices of cost function have optima for which nonprojective measure-
ments robustly show an appreciable, and thus experimentally measurable, cost advantage. Such an
experiment would be an unambiguous demonstration of a benefit from nonprojective measurements.

A fundamental consequence of quantum mechanics is
the inability to perfectly distinguish between two non-
orthogonal quantum states. Any attempt to guess which
state is which after making a measurement will have an
unavoidable probability of error that is bounded from be-
low, as shown originally by Helstrom [1, 2] and in related
work by Holevo [3]. This lower bound, known as the Hel-
strom bound (HB), grows with the overlap of the two
states being discriminated.

The HB can be circumvented, however, if a third op-
tion is added to the guessing game. Ivanovic, Dieks, and
Peres showed that if one can also decline to guess after
a measurement, then it is possible to reduce the prob-
ability of error to zero while still retaining a significant
chance of guessing correctly [4–6]. Intriguingly, to maxi-
mize the correct guess probability in such “Unambiguous
State Discrimination” (USD), it is not sufficient to use
standard projective measurements; instead, one must use
generalized (nonprojective) measurements [7, 8].

This advantage of nonprojective measurements in state
discrimination is so surprising that it has become a fea-
tured example in modern quantum information text-
books (e.g., [9, 10]), and has led to considerable research,
both in theory [11–27] and experiment [28–37] (reviewed,
e.g., in [38, 39]). Most of this work has focused on the
extreme cases of zero declining (as with the HB) or zero
error (as with USD), with fewer papers considering in-
termediate cases that minimize the declining probability
given a fixed nonzero error rate [23–27]. Moreover, to
our knowledge all but one [27] of these few works have
neglected the effect that experimental imperfections will
have upon the accessible minima. We are thus not aware
of any paper that discusses a rigorous bound suitable to
experimentally demonstrate that nonprojective measure-
ments have a definitive advantage over projective mea-
surements.

In this paper, we provide such a bound by consider-
ing a simple cost function that interpolates between the

HB and USD extremes as special cases. This approach
allows us to formulate a rigorous lower bound for this
cost that is accessible to projective measurements, and
then demonstrate that nonprojective measurements can
violate this bound. Realistic experimental noise changes
the theoretical minimum for each choice of cost, affecting
which violations can be observed. Notably, the cost ad-
vantage of USD is completely destroyed with any amount
of experimental noise. Nevertheless, we show that non-
projective measurements still show an appreciable ad-
vantage for intermediate cost functions, making this ad-
vantage experimentally accessible to current implementa-
tions of generalized measurements, including experiments
with superconducting qubits [40–45].
State Discrimination.— Consider the following game:

An agent, whom we shall name Alice, prepares one of
two pure quantum states with equal probability,

|ψ0〉 = |0〉, |ψ1〉 = cos θ |0〉+ sin θ |1〉, (1)

and sends it to another agent, Bob, who wishes to de-
termine which state Alice has prepared. To write these
states, we have used the fact that any two states lie in
a plane that can be spanned by two orthogonal vectors,
which we label |0〉 and |1〉. These states form a basis
for an effective qubit, even though the implementation
Hilbert space may have more dimensions.
Once he has obtained a state from Alice, Bob is allowed

to measure it in any way that he pleases, after which he
must either guess the state or decline to guess. There
are thus three possible results for a single trial of this
game: (1) Bob can guess the state correctly, (2) Bob
can guess the state incorrectly, or (3) Bob can decline
to guess. Hence, if Bob uses a consistent measurement
strategy for many trials, three probabilities will emerge
that correspond to these results: (1) correctly guessing
with probability pc, (2) wrongly guessing with probability
pw, and (3) declining to guess with probability pd. These
probabilities will satisfy pc + pw + pd = 1.
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To quantify how well Bob is playing the game, Alice
defines a suitable cost function that penalizes the unfa-
vorable outcomes (i.e., pw and pd) in some proportion.
The simplest linear cost function has the general form

C = w pw + d pd, (2)

where w and d are positive weights that penalize incorrect
guesses and non-guesses, respectively.
For simplicity of discussion, in most of what follows

we will normalize the cost function by the weight w (i.e.,
C → C/w), to leave only a single parameter k,

C = pw + k pd, k = d/w, (3)

that indicates the penalty for not guessing relative to that
of incorrectly guessing. To analyze the limit w → ∞, we
can use the modified cost C/k = pw/k + pd.
In terms of the single parameter k, we have the fol-

lowing limiting behaviors: (i) When k → ∞, non-
guesses are intolerable, so the minimized cost effectively
reduces to min(C) = min(pw), subject to the constraint
pd = 0. This limiting case corresponds to the standard
two-outcome discrimination game [1–3], so the minimized
cost will be equal to the usual HB. (ii) When k → 0, there
is no penalty for non-guesses, so it is always better to de-
cline (pd = 1) to produce min(C) → 0. However, after
rescaling to C/k the limit k → 0 is non-trivial: Then
wrong guesses become intolerable, so the minimized cost
reduces to min(C/k) = min(pd) subject to the constraint
pw = 0, which corresponds to the USD game [4–6].
We see that our formulation of the state discrimination

game with a linear cost function is sufficiently general to
contain both the HB and USD games as special cases at
extremes of k. We are thus particularly interested in the
optimal strategies for cost functions between these well-
known extremes. For intermediate k, we analyze when
nonprojective quantum measurements are advantageous
compared with projective measurements, and find the
size of this advantage under realistic experimental condi-
tions.
Modified Helstrom Bound.— We first find a rigorous

lower bound for the cost function (2) if only projec-
tive measurements are allowed within the qubit space.
Nonprojective measurements will be able to violate this
bound. Note that a projective measurement of a qubit
fully determines the post-measurement state, so an ad-
ditional measurement would not bring additional infor-
mation. Therefore, there are only two possible optimal
strategies for discriminating two pure states:

(a) Always guess both states. That is, perform
one projective measurement in an orthogonal basis
{|φ0〉, |φ1〉}, identifying |φ0〉 as a guess of |ψ0〉 and
the orthogonal state |φ1〉 as a guess of |ψ1〉.

(b) Only guess one state. That is, perform one projective
measurement in an orthogonal basis {|φ0〉, |φ1〉}, with

|φ0〉 used as a guess of |ψ0〉, while treating |φ1〉 as a
non-guess outcome.

Other intermediate strategies that probabilistically com-
bine these two will not be optimal due to the convexity
of the linear cost function. Trivial state exchanges 0 ↔ 1
give the same performance.
For strategy (a) the game probabilities are pd = 0 and

pw =
|〈φ0|ψ1〉|2 + |〈φ1|ψ0〉|2

2
= 〈φ0|Â|φ0〉, (4)

where Â =
(

1̂ + |ψ1〉〈ψ1| − |ψ0〉〈ψ0|
)

/2 and the factor of
1/2 indicates the 50:50 preparation probability for each
state |ψi〉. The minimum pw is the minimum eigenvalue
of Â, so the minimum cost in Eq. (2) for strategy (a) is
this eigenvalue scaled by w:

C
(a)
min = w (1− |sin θ|) /2. (5)

The weight w vanishes when using the normalization of
Eq. (3), so the cost reduces to the usual HB [1, 2].
For strategy (b) the game probabilities are

pw =
|〈φ0|ψ1〉|2

2
, pd =

|〈φ1|ψ0〉|2 + |〈φ1|ψ1〉|2
2

, (6)

so the minimum cost is the minimum eigen-
value of the operator B̂ = w |ψ1〉〈ψ1|/2 +
d
[

1̂− (|ψ0〉〈ψ0|+ |ψ1〉〈ψ1|) /2
]

, which is

C
(b)
min =

w + 2d

4
−

√

[

w − 2d

4

]2

+
d [w − d]

4
sin2 θ. (7)

For the normalization of Eq. (3), this cost simplifies to

C
(b)
min = [1 + 2k −

√

1− 2k(1− k)(1 + cos 2θ)]/4.
The minimum cost of these two possible strategies is

the best that Bob can do using projective measurements;
we will call it the modified Helstrom (MH) bound

CMH = min{C(a)
min, C

(b)
min}. (8)

This bound [with the normalization of Eq. (3)] as a func-
tion of k is illustrated with dashed lines in Figs. 1(a) and
1(b) for various choices of the separation angle θ between
|ψ0〉 and |ψ1〉. Each kink indicates a switch between the

two projective strategies where C
(a)
min = C

(b)
min. As we

discuss later, nonprojective measurements maximally vi-
olate the MH bound at precisely these critical (optimal)
values of k, which depend on the separation angle θ,

kopt(θ) =
1

2

[

1 +

√
1 + 3 cos2 θ − 2

|sin θ|

]

. (9)

Nonprojective Measurements.— Unlike projective
strategies that can have only two physical outcomes, non-
projective measurements can naturally use three physi-
cal outcomes for the three choices in the discrimination
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FIG. 1. (a) Minimum cost for discriminating |ψ0〉 = |0〉 and
|ψ1〉 = cos θ |0〉 + sin θ |1〉 by a measurement, using the cost
function C(k) = pw + k pd to penalize wrong, pw, and de-
clined, pd, guess probabilities. Shown are separation angles
θ in increments of π/10. Dashed lines show the modified
Helstrom bound CMH, Eq. (8), attainable with a projective
measurement, with the horizontal part being the usual Hel-
strom bound. Solid lines (same colors in all panels) show the
minimum cost Cmin for nonprojective measurements, and vi-
olate the MH bound for a range of k. (b) Same as in (a)
for the scaled cost function C(k)/k. This scaling permits the
case of unambiguous state discrimination to be recovered at
k → 0. (c) Violation of the MH bound, ∆Cmin = CMH−Cmin,
showing the difference between the dashed and solid curves in
(a). (d) Violation of the scaled bound, ∆Cmin/k. (e) and (f)
Same as (c,d) but with 5% probability pDP of depolarizing the
states. (g) and (h) Same as (c,d) but with 2% probability pM
of misidentifying the measured result. These imperfections in-
crease Cmin and therefore decrease the violation ∆Cmin. Note
that for the USD case [k → 0 in (f) and (h)] the cost advan-
tage is fully destroyed by experimental imperfections, but the
MH bound violation is still possible for intermediate k.

game. This is what permits nonprojective measurements
to have an advantage over projective measurements. (It
is simple to show that using four or more physical out-
comes will not lead to further improvement.)

Without loss of generality, we consider a concrete im-

plementation of a three-outcome nonprojective strategy
as a cascade of two binary-outcome measurements, the
first being a partial projection (see, e.g., [45]) and the
second being a full projection. (For optimal cascaded
strategies, the second measurement will always be projec-
tive so that it extracts the maximum remaining informa-
tion.) The advantage of using this cascading strategy is a
relatively easy implementation with existing experimen-
tal qubit architectures, especially with superconducting
qubits [40–44].
To implement the three-outcome cascade, Bob uses the

following procedure:

(a) Measure in a basis that includes the state |φ(1)0 〉 =
cosϕ1|0〉 + sinϕ1|1〉, with a strength s ∈ [0, 1] (see,

e.g., [45]). If the outcome |φ(1)0 〉 is obtained, treat
this as a guess of |ψ0〉.

(b) Otherwise, perform a second projective measurement

in a basis that includes the state |φ(2)1 〉 = cosϕ2|0〉+
sinϕ2|1〉. If the outcome |φ(2)1 〉 is obtained, treat this
as a guess of |ψ1〉.

(c) The remaining outcome is treated as a non-guess.

Note that we omit relative phases in both measurement
bases above, since optimal measurements of any strength
will always be in the same plane as the two states being
discriminated.
The three possible measurement outcomes of this cas-

cade then correspond to the following partial projection
operators [9, 45] that are parametrized by the two angles
ϕ1, ϕ2 ∈ [−π, π], as well as the strength s ∈ [0, 1]:

M̂0 = s|φ(1)0 〉〈φ(1)0 |, (10a)

M̂1 = |φ(2)1 〉〈φ(2)1 |
√

1̂− s2|φ(1)0 〉〈φ(1)0 |, (10b)

M̂d =

√

1̂− |φ(2)1 〉〈φ(2)1 |
√

1̂− s2|φ(1)0 〉〈φ(1)0 |. (10c)

These operators satisfy the usual completeness condition
M̂ †

0M̂0 + M̂ †
1M̂1 + M̂ †

d
M̂d = 1̂, and produce the game

probabilities:

pc =
1

2

(

〈ψ0|M̂ †
0M̂0|ψ0〉+ 〈ψ1|M̂ †

1M̂1|ψ1〉
)

, (11a)

pw =
1

2

(

〈ψ0|M̂ †
1M̂1|ψ0〉+ 〈ψ1|M̂ †

0M̂0|ψ1〉
)

, (11b)

pd =
1

2

(

〈ψ0|M̂ †
d
M̂d|ψ0〉+ 〈ψ1|M̂ †

d
M̂d|ψ1〉

)

. (11c)

With the strength s = 1 this cascading implementation
can reproduce either of the projective strategies consid-
ered before, thus recovering the MH bound CMH when
projections are indeed optimal.
To find the minimum cost, as well as the optimum pa-

rameters (ϕ1, ϕ2, s), we numerically minimize the cost
function in Eq. (3) for each k independently, using a
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Nelder Mead optimization algorithm. In Fig. 1(a) we
show the resulting minimum cost Cmin for each k as the
solid curves. For each separation angle θ, there is a cer-
tain value kHB(θ) ≤ 1/2, above which the usual Helstrom
bound in Eq. (5) is recovered (the horizontal part of the
line): in this regime projective measurements are the op-
timal strategy. However, for 0 < k < kHB(θ) the nonpro-
jective measurements violate the HB as well as the MH
bound (dashed lines). Using the results in Ref. [23], we
also derive the analytic form of the ideal minimum cost
in this range (which coincides with the numerical results)

Cmin = k[k − (1 − k) cos θ]/(2k − 1). (12)

For k ≥ kHB, Cmin is the HB in Eq. (5) (with w = 1).
The maximum violation for each θ is shown in

Figs. 2(a) and (b), and occurs at the MH bound kinks
kopt(θ) given by Eq. (9) [lower curve in Fig. 2(c)]. The
values of the optimal parameters (ϕ1, ϕ2, s) minimizing
the cost at these kinks are shown in Figs. 2(c) and (d) as
the solid lines. We also show the result for minimizing
the scaled cost C/k in Fig. 1(b), which recovers the spe-
cial case of USD in the limit k → 0. For visual clarity, we
show the cost improvement ∆Cmin = CMH − Cmin (the
difference between the MH bound and minimized cost)
in Figs. 1(c) and 1(d).
Experimental Imperfections.—We use two simple mod-

els to describe experimental imperfections, which may re-
duce or fully destroy the possible violations of the MH
bound. First, we model decoherence with the depolariza-
tion process, assuming that the initial state prepared by
Alice is replaced by the fully mixed state with a proba-
bility pDP . Second, we assume that the binary readouts
of the cascaded measurement can be misidentified with
an error probability pM , which introduces spurious iden-
tification noise into the game.
In Figs. 1(e) and (f) we show the effect of depolariza-

tion decoherence with pDP = 0.05 for the optimized cost
improvement. Similarly, in (g) and (h) we show the effect
of adding misidentification noise with pM = 0.02. These
plots can be compared to the ideal results in Figs. 1(c)
and (d). Both types of imperfections have a similar effect
on the maximum violations (with more sensitivity to pM
than to pDP ), despite different dependences on k.
The cost improvement for USD case (k → 0) in

Fig. 1(d) is completely destroyed for any pDP > 0 or
pM > 0, making this well-known protocol actually worse
than ideal projective measurements for any experimen-
tally realistic implementation of the state discrimination
game. Nevertheless, the globally maximum cost improve-
ment, shown in Fig. 2(a) and (b), only decreases approx-
imately linearly as either pDP or pM increase. Even with
these imperfections, nonprojective measurements show
an improvement over projective measurements around
the critical parameter values kopt(θ). The angles and
strength associated with these maximum cost improve-
ments including misidentification noise with pM = 0.02

FIG. 2. (a) Maximum violation of the modified Helstrom
bound as a function of the state-separation angle θ. The ideal
violation (solid line) is reduced in the presence of depolariza-
tion decoherence with strength pDP increasing in increments
of 2%. (dashed lines). (b) The ideal violation (solid line) is
similarly reduced in the presence of measurement misidenti-
fication errors with probability pM increasing in increments
of 1%. (c) Lower curve: the optimal cost parameter kopt(θ)
for the maximum MH bound violation [Eq. (9), peaks in Fig.
1(c)] in the ideal case. Upper curves: the optimal measure-
ment strength s for the cascaded partial measurement scheme,
as a function of θ, for the optimal cost parameter kopt(θ). (d)
Optimal angles ϕ1 (lower curves) and ϕ2 (upper curves) for
the cascaded partial measurement scheme. In both (c) and (d)
the solid curves are for the ideal case, while the (almost iden-
tical) dashed curves include 2% misidentification noise. The
black dots indicate the globally maximum ideal violation.

are shown in Figs. 2(c) and (d) as the dashed lines, which
do not significantly differ from the ideal values. The MH
bound violation requires pDP < 0.101 and pM < 0.041.

Conclusion.— We have considered the two-state three-
outcome discrimination game using a simple linear cost
function to penalize the unfavorable outcomes. The orig-
inal Helstrom discrimination problem, as well as the un-
ambiguous state discrimination of Ivonovic, Dieks, and
Peres are recovered as special cases. Minimizing the cost
function using only projective measurements produces
what we name the modified Helstrom bound.

Nonprojective measurements can violate this modi-
fied bound. Notably, for cost functions intermediate be-
tween the well-studied extremes, the violations are ro-
bust against the introduction of (small) experimental im-
perfections. In contrast, the cost advantage of the un-
ambiguous state discrimination is completely destroyed
with the addition of any amount of noise. An experi-
mental demonstration of modified Helstrom bound vio-
lations would require less than ∼10% decoherence and
∼4% readout error, making it a stringent-but-accessible
test for modern quantum computing implementations.

Acknowledgments.— We thank Eyob Sete for valuable
comments. The research was funded by the Office of
the Director of National Intelligence (ODNI), Intelligence



5

Advanced Research Projects Activity (IARPA), through
the Army Research Office (ARO) Grant No. W911NF-
10-1-0334. All statements of fact, opinion, or conclusions
contained herein are those of the authors and should not
be construed as representing the official views or policies
of IARPA, the ODNI, or the U.S. Government. We also
acknowledge support from the ARO MURI Grant No.
W911NF-11-1-0268.

[1] C. W. Helstrom, Inf. Control. 10, 254–291 (1967).
[2] C. W. Helstrom, Inf. Control. 13, 156–171 (1968).
[3] A. S. Holevo, J. Multivariate Anal. 3, 337–394 (1973).
[4] I. D. Ivanovic, Phys. Lett. A 123, 257–259 (1987).
[5] D. Dieks, Phys. Lett. A 126, 303–306 (1988).
[6] A. Peres, Phys. Lett. A 128, 19 (1988).
[7] E. B. Davies, Quantum Theory of Open Systems (Aca-

demic Press, London, 1976).
[8] K. Kraus, States, Effects and Operations: Fundamen-

tal Notions of Quantum Theory (Springer-Verlag, Berlin,
1983).

[9] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information, (Cambridge University Press,
Cambridge 2000).

[10] S. M. Barnett, Quantum Information (Oxford U. Press,
2009).

[11] H. P. Yuen, R. S. Kennedy, and M. Lax, IEEE Trans.
Inf. Theory 21, 125–134 (1975).

[12] A. Chefles, Phys. Lett. A 239, 339–347 (1998).
[13] A. Chefles and S. M. Barnett, Phys. Lett. A 250, 223–229

(1998).
[14] X. Sun, S. Zhang, Y. Feng, and M. Ying, Phys. Rev. A

65, 044306 (2002).
[15] Y. C. Eldar, A. Mergretski, and G. C. Verghese, IEEE

Trans. Inf. Theory 49, 1007–1012 (2003).
[16] T. Rudolph, R. W. Spekkens, and P. S. Turner, Phys.

Rev. A 68, 010301 (2003).
[17] P. Raynal, N. Lütkenhaus, and S. J. van Enk, Phys. Rev.

A 68, 022308 (2003).
[18] Y. Feng, R. Duan, and M. Ying, Phys. Rev. A 70, 012308

(2004).
[19] Y. C. Eldar, M. Stojnic, and B. Hassibi, Phys. Rev. A

69, 062318 (2004).
[20] S. Croke, E. Andersson, S. M. Barnett, C. R. Gilson, and

J. Jeffers, Phys. Rev. Lett. 96, 070401 (2006).
[21] J. A. Bergou, J. Phys.: Conf. Ser. 84, 012001 (2007).
[22] J. Bae and W.-Y. Hwang, Phys. Rev. A 87, 012334

(2013).
[23] A. Chefles and S. M. Barnett, J. Mod. Opt. 45, 1295–

1302 (1998).
[24] C.-W. Zhang, C.-F. Li, and G.-C. Guo, Phys. Lett. A

261, 25–29 (1999).
[25] J. Fiurás̆ek and M. Jez̆ek, Phys. Rev. A 67, 012321

(2003).
[26] M. A. P. Touzel, R. B. A. Adamson, and A. M. Steinberg,

Phys. Rev. A 76, 062314 (2007).
[27] E. Andersson, Phys. Rev. A 86, 012120 (2012).
[28] B. Huttner, A. Muller, J. D. Gautier, H. Zbinden, and

N. Gisin, Phys. Rev. A 54, 3783–3789 (1996).
[29] S. M. Barnett and E. Riis, J. Mod. Opt. 44, 1061–1064

(1997).
[30] R. B. M. Clarke, A. Chefles, S. M. Barnett, and E. Riis,

Phys. Rev. A 63, 040305(R) (2001).
[31] M. Mohseni, A. M. Steinberg, and J. A. Bergou, Phys.

Rev. Lett. 93, 200403 (2004).
[32] S. M. Barnett, Quantum Inf. Comput. 4, 450–459 (2004).
[33] P. J. Mosley, S. Croke, I. A. Walmsley, and S. M. Barnett,

Phys. Rev. Lett. 97, 193601 (2006).
[34] C. Wittmann, M. Takeoka, K. N. Cassemiro, M. Sasaki,

G. Leuchs, and U. L. Andersen, Phys. Rev. Lett. 101,
210501 (2008).

[35] Y. Lu, N. Coish, R. Kaltenbaek, D. R. Hamel, S. Croke,
and K. J. Resch, Phys. Rev. A 82, 042340 (2010).

[36] G. A. Steudle, S. Knauer, U. Herzog, E. Stock, V. A.
Haisler, D. Bimberg, and O. Benson, Phys. Rev. A 83,
050304(R) (2011).

[37] F. E. Becerra, J. Fan and A. Migdall, Nature. Comm. 4,
2028 (2013).

[38] S. Barnett and S. Croke, Adv. Opt. Photon. 1, 238–278
(2009).

[39] J. A. Bergou, J. Mod. Opt. 57, 160–180 (2010).
[40] N. Katz, M. Ansmann, R. C. Bialczak, E. Lucero, R.

McDermott, M. Neeley, M. Steffen, E. M.Weig, A. N.
Cleland, J. M. Martinis, and A. N. Korotkov, Science
312, 1498 (2006).

[41] S. J. Weber, A. Chantasri, J. Dressel, A. N. Jordan, K.
W. Murch, and I. Siddiqi, Nature (London) 511, 570
(2014).

[42] M. S. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert,
K. Geerlings, T. Brecht, K. M. Sliwa, B. Abdo, L. Frun-
zio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret,
Science 339, 178 (2013).
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