
UC San Diego
UC San Diego Previously Published Works

Title
Multi‐scale affinities with missing data: Estimation and applications

Permalink
https://escholarship.org/uc/item/6kd7g2p9

Journal
Statistical Analysis and Data Mining The ASA Data Science Journal, 15(3)

ISSN
1932-1864

Authors
Zhang, Min
Mishne, Gal
C., Eric

Publication Date
2022-06-01

DOI
10.1002/sam.11561
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6kd7g2p9
https://escholarship.org
http://www.cdlib.org/


Multi-scale affinities with missing data: Estimation and 
applications

Min Zhang1, Gal Mishne2, Eric C. Chi3

1Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA

2Halcıoğlu Data Science Institute, University of California, San Diego, California, USA

3Department of Statistics, Rice University, Houston, Texas, USA

Abstract

Many machine learning algorithms depend on weights that quantify row and column similarities 

of a data matrix. The choice of weights can dramatically impact the effectiveness of the algorithm. 

Nonetheless, the problem of choosing weights has arguably not been given enough study. When 

a data matrix is completely observed, Gaussian kernel affinities can be used to quantify the local 

similarity between pairs of rows and pairs of columns. Computing weights in the presence of 

missing data, however, becomes challenging. In this paper, we propose a new method to construct 

row and column affinities even when data are missing by building off a co-clustering technique. 

This method takes advantage of solving the optimization problem for multiple pairs of cost 

parameters and filling in the missing values with increasingly smooth estimates. It exploits the 

coupled similarity structure among both the rows and columns of a data matrix. We show these 

affinities can be used to perform tasks such as data imputation, clustering, and matrix completion 

on graphs.

Keywords

kernels; missing data; penalized estimation

1 | INTRODUCTION

In many applications, data are two-dimensional and represented as data matrices where 

each row represents an observation, whereas each column represents a feature of each 

observation. Weights, or affinities, quantifying pairwise similarity between observations or 

features in a dataset are widely used in many machine learning problems. The choice of 

weights can dramatically impact the effectiveness of the algorithm. In unsupervised learning, 

the success of clustering techniques depends on the choice of the similarity measure between 
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data points being clustered. Such pairwise similarity measures or pairwise distances of data 

points can be used to construct a graph on the data. Spectral clustering [31, 38], treating 

data points as nodes of a graph, makes use of the eigenvectors of a graph affinity matrix as 

a new representation space in which to partition data into disjoint meaningful groups. An 

ideal affinity graph gives a perfect clustering result [38]. In convex clustering [20, 24, 32], a 

proper choice of weights will ensure the construction of a well-nested hierarchical partition 

tree [9]. In supervised learning, kernel regression [30, 39] is a nonparametric estimation 

technique that uses a kernel function to weight the observations of the learning sample, 

depending on their “distance” from the predicted observation. In the k-nearest neighbors 

(k-NN) algorithm, which can be used for both classification and regression, a useful 

technique is to assign weights to the contributions of the neighbors so that closer neighbors 

contribute more to the average than more distant ones. Setting the weights appropriately can 

dramatically improve the generalization of the k-NN algorithm [25].

When there is no missing data, the most common practice to quantify similarities as weights 

between pairs of rows and pairs of columns of the data matrix is to use Gaussian kernel 

affinities. When data are missing, however, computing affinity weights becomes nontrivial. 

For example, kernel-based manifold learning methods rely on calculating a similarity matrix 

between observations to yield a new embedding of the data through an eigen-decomposition 

[2, 12]. Naively ignoring missing values can distort the distances between data points and 

sabotage efforts to learn representative embeddings. Recently, Gilbert and Sonthalia [17] 

proposed the MR-MISSING algorithm and used a graph metric repair strategy to learn 

metrics and metric embeddings from incompletely observed data. They first estimated an 

initial distance matrix from the incomplete data. Then they used the increase only metric 

repair (IOMR) [16] method to fix the distance matrix so that it can be used as the metric 

to compute low-dimensional representations. Methods like MR-MISSING, however, account 

for similarities along either only the rows (observations) or only the columns (features) of 

a data matrix and do not account for any potential coupled structure of the rows and the 

columns.

Yet in many applications, for example, gene expression analysis [6], neuroscience [29], 

and recommendation systems [3], there is an underlying geometry to both the rows 

(observations) and the columns (features) of the data matrix [6, 11, 15, 28, 29, 33, 35, 36, 

40]. In gene expression data, subsets of samples (observations) have similar genetic profiles, 

and subsets of genes (features) have similar expressions across groups of samples. The 

relationships between the rows may be informed by the relationships between the columns, 

and vice versa.

Recent works [1, 11, 15, 28, 29] exploit this coupled correlation structure of both rows 

and columns to co-organize matrices. Gavish and Coifman [15] introduced an approach 

for matrix structured datasets to recover the smooth joint organization of the features and 

observations. The organization of the data relies on the construction of a pair of hierarchical 

partition trees on the observations and on the features. Mishne et al. [28] proposed multi-

scale data-driven transforms and metrics based on trees that are smooth with respect to 

an underlying geometric structure in the data. None of these methods, however, learns the 

geometry of both rows and columns simultaneously. Additionally, these constructed metrics 

Zhang et al. Page 2

Stat Anal Data Min. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are based on the complete data and do not address the critical problem of missing data. If we 

are given those metrics as prior knowledge, we can reliably recover the underlying coupled 

geometry [11]. Yet how to construct them in the presence of missing data remains an open 

question. In these cases, we seek a method that can exploit the correlations among both the 

rows and columns of the data matrix to efficiently compute the affinities in a missing data 

setting.

In this paper, we propose a flexible framework to compute affinity weights that 

simultaneously account for the coupled structure of the rows and columns in the presence 

of missing data. We present a multi-scale metric that captures the geometry of the complete 

data matrix and represents the row and column similarities. This metric can be used to 

calculate the affinity weights in many applications where data are often missing. Mishne et 

al. [27] exploited the multi-scale metric to learn low-dimensional co-manifold embeddings 

of both the rows and columns of a data matrix. By applying diffusion maps [13], a 

dimension reduction technique, on the multi-scale distances, local connections found in the 

data are integrated into a global representation. We will show how this affinity construction 

strategy can address a wider range of machine learning problems beyond learning low-

dimensional co-manifold embeddings.

In the multi-scale approach, we estimate a collection of complete matrix approximations of 

a partially observed data matrix that have been smoothed along their rows and columns to 

different degrees. Row and column multi-scale metrics are calculated based on the collection 

of estimated completed matrices to encode the affinities between pairs of rows and columns. 

We offer the following contributions:

• We propose a general method to simultaneously construct row and column 

affinities of the data matrix when the matrix is only partially observed. This 

method is distinct from other related methods in that our ultimate goal is not 

to perform specific tasks such as manifold learning or clustering. We present 

a general framework that integrates the task of encoding similarity structure as 

hyperparameters in many real applications and aim to provide better solutions to 

those applications through our multi-scale procedure.

• We present a multi-scale metric that leverages both row and column smoothness 

between pairs of rows and pairs of columns under an optimization framework. 

By exploiting correlations that exist among both rows and columns, the new 

metric introduces a coupling between the rows and the columns.

• The estimation runs at multiple scales to encode different levels of smoothness 

instead of determining a single scale of the solution as in Reference [6]. We 

aggregate solutions at different scales to estimate the underlying geometry both 

locally and globally. Consequently, our approach eliminates the need to identify 

a single “ideal” scale at which to fill in the points.

• We present experimental results to illustrate the effectiveness of the method on 

common machine learning problems, and show the metric can be easily adapted 

to other applications.
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The rest of the paper is organized as follows. In Section 2, we present an optimization 

framework obtaining smooth estimates of a partially observed data matrix that will be 

combined to calculate row and column multi-scale metrics. In Sections 3–5, we show a 

sampling of the breadth of how our multi-scale affinities can be used in common problems 

in supervised and unsupervised learning to demonstrate its effectiveness and flexibility. We 

apply the new metric in different applications and compare the performance of the proposed 

methods through experimental results on different tasks.

2 | PRELIMINARIES

Let X ∈ ℝn × p be a partially observed data matrix, where Θ ⊂ [n] × [p] is the subset of 

indices for which xij is observed and [n] denotes the set of indices {1, …, n}. Let PΘ denote 

the projection operator of n × p matrices onto the index set Θ such that PΘ(X) ij is xij 

if (i, j) ∈ Θ and is 0 otherwise. The ith row and jth column of the matrix X are denoted 

by Xi· and X·j, respectively. Let Gr = Vr, ℰr, W r  denote an undirected weighted row graph 

with a vertex set Vr = [n] and an edge set ℰr = Vr × Vr where i, i′ ∈ ℰr has an edge weight 

wii′ defined by the ii′ th entry of a nonnegative symmetric weight matrix W r ∈ ℝn × n. The 

column graph Gc = Vc, ℰc, W c  is defined analogously.

We construct affinity weights through a multi-scale procedure that requires computing a 

collection of smooth estimates of the incomplete data matrix at different levels of row 

and column smoothness. A new multi-scale metric is presented to estimate a coupled row 

and column geometry of the complete data matrix both locally and globally. Our approach 

consists of two stages. In the first stage, given the partially observed data matrix, we solve a 

collection of co-clustering problems to obtain a smooth estimate of the observed data matrix 

and a filled-in data matrix. Then a weighted distance between pairs of rows and pairs of 

columns is calculated based on the filled-in data matrix. Multiple weighted distances are 

computed for different combinations of row and column smoothness. In the second stage, 

new row and column multi-scale metrics are obtained by taking a weighted average of 

distances computed across different smoothness scales.

Thus, in our multi-scale distance approach, we estimate a collection of complete matrix 

approximations of a partially observed data matrix that have been smoothed along their rows 

and columns to different degrees. Row and column multi-scale metrics are calculated based 

on the collection of estimated completed matrices to encode the affinities between pairs 

of rows and columns. This multi-scale metric captures the geometry of the complete data 

matrix both locally and globally, and encodes the row and column similarities.

2.1 | Smooth estimates

We use a variation on the co-clustering method proposed in Reference [6] to estimate the 

complete matrix from a partially observed matrix. To recover the smooth estimate of the 

incomplete data matrix X along both the rows and columns, we seek a minimizer U(γr, γc) 

of the objective function described below:
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f U; γr, γc = 1
2 PΘ(X) − PΘ(U) F

2 + γrJr(U) + γcJc(U) . (1)

Here γr and γc are nonnegative tuning parameters, and Jr(U) and Jc(U) are regularization 

terms that impose smoothness in U along its rows and columns. By varying the penalty 

parameters γr and γc, we can trade off how well the estimate U agrees with X over the 

observed indices Θ against how smooth U is along its rows and column. Smaller γr and γc 

enforce less smoothness on rows and columns of the data matrix.

Following [27], we employ the following regularization terms in Equation (1)

Jr(U) =
(i, j) ∈ ℰr

Ω Ui · − Uj · 2 and

Jc(U) =
(i, j) ∈ ℰc

Ω U · i − U · j 2 ,

where Ω is a folded concave penalty [14, 41], which will induce sparsity in differences 

between pairs of rows and pairs of columns in U. This sparsity will be useful for 

determining which U(γr, γc) to use in our multi-scale affinities. In this paper, Ω is an 

approximate snowflake metric:

Ω(z) = 1
2 0

z 1
u + εdu,

where ε is a small positive number. As ε tends to zero, Ω(‖Ui· − Uj·‖2) converges to a 

snowflake metric d Ui · , Uj · = Ui · − Uj · 2. As a result, small differences between 

rows and columns are penalized significantly more than larger differences. We refer readers 

to Reference [27] for more detailed discussion about this choice. The graphs ℰr and ℰc
quantify the similarities between pairs of rows and pairs of columns of the data matrix. 

When the data matrix is fully observed, ℰr and ℰc are typically computed using a k-NN 

graph based on the observed values [38]. Since we do not observe a complete matrix, 

however, a distance based on the observed values, used in related work for image inpainting 

[34], is used to calculate the k-NN graph. We use the CO-CLUSTER-MISSING algorithm 

proposed by Mishne et al. [27] to solve the minimization problem in Equation (1).

2.2 | Multi-scale affinities

After obtaining a smooth estimate U(γr, γc), we fill in the data matrix as 

X = PΘ(X) + PΘc U γr, γc . We repeat the co-clustering procedure with multiple pairs of 

parameters (γr, γc) to encode different scales of the row and column smoothness. Then we 

leverage those estimates of X to calculate a new multi-scale metric. This metric takes full 

advantage of the coupling between both modes by taking into account all joint scales of the 

data as the estimate U is smoothed across rows and columns simultaneously.
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Instead of determining an optimal single scale of the solution, namely a single pair of (γr, 
γc), we aggregate solutions over a wide range of different scales to better estimate the 

underlying geometry. This eliminates the need to identify a single “ideal” scale at which to 

fill in the missing elements, as different elements in the matrix may have different optimal 

scales. We create a collection of pairs of (γr, γc) as follows. We first pick small values of γr 

and γc. By solving the optimization problem (1), each pair of the cost parameters yields a 

smooth estimate U(γr, γc), a filled-in matrix X, and the numbers of distinct row and column 

clusters denoted by nr and nc respectively. We increase γr and γc along a log-linear scale of 

γr = 2l, γc = 2k, until both nr and nc shrink to 1 [27]. In the end, we obtain the collection 

X(l, k)
l, k with each X(l, k) at different smoothing levels ranging from coarse to fine. Here l 

and k denote the power of 2 taken for specific row and column cost parameters (γr, γc) in 

the solution.

Based on this collection, a new multi-scale metric for both rows and columns using the 

filled-in matrices at multiple scales is defined. This new metric estimates both local and 

global geometry of the complete data matrix. We next detail how we compute our new 

metric.

At each joint scale, we calculate the Euclidean distance between columns for the filled-in 

matrix and weigh it by the product of γr and γc raised to a parameter α:

d X · i
(l, k), X · j

(l, k) = γrγc
α X · i

(l, k) − X · j
(l, k)

2 . (2)

The parameter α can be chosen to emphasize local or global structure. Negative values 

of α favor local over global structure, and positive values of α favor global over local 

structure. The decision to emphasize local structure over global structure or vice versa is 

application-dependent.

After solving the joint optimization for multiple pairs from the solution surface at different 

scales, we obtain the multi-scale distance for pairwise columns by summing over the 

distances at different joint scales:

dc(i, j) =
l, k

d X · i
(l, k), X · j

(l, k) . (3)

As noted earlier, the choice of α depends on the application, but typically we will take 

α to be large in order to emphasize differences at the coarser scales. If two columns are 

very similar at all smoothing levels, their multi-scale distance will be small. If two columns 

are different at all but the most smoothed scale, they will be far apart in the multi-scale 

distance. In this way, small differences between pairs of columns will be washed out, 

whereas material differences in pairs of columns will persist. The multi-scale distance for 

pairwise rows is calculated in a similar way. This computed distance matrix adheres to a 

metric that quantifies data affinities.
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Algorithm 1 provides a detailed summary of how multi-scale row and column affinities 

are computed. For all examples in the paper, we set l0 and k0 to be −6. Figure 1 provides 

a higher-level overview of our approach. In many cases, one does not observe a full data 

matrix (A), but rather an incompletely sampled matrix (B). Smooth estimates of the data 

matrix at different scales are computed by co-clustering for different combinations of the 

trade-off parameters γr and γc. These control the level of row and column smoothing, 

respectively. We construct multi-scale affinities in the presence of missing data (D) by 

leveraging this collection of smooth estimates of the matrix at multiple scales through 

Formulas (2) and (3). In our experiments, given a full data matrix, we remove a sub-sample 

of the entries at random.

3 | DATA IMPUTATION

Missing data present a challenge for machine learning algorithms that require completely 

observed data. Consequently, imputation of missing data is often performed as a 

preprocessing step for downstream tasks. Commonly used nonparametric imputation 

methods for missing response values include kernel imputation, which depends on the 

“distance” between data points. In general, if good distance measurements are available, 

estimation by interpolation is straightforward.

The inverse distance weighting (IDW) method is an interpolation approach to estimate 

the unknown value at a location using some known values with corresponding weighted 

values. The IDW method is widely applied because of its low computational cost and easy 

implementation. The classical IDW is essentially a zeroth-order local Nadaraya–Watson 

kernel regression [30, 39] method with an inverse distance weight function. To predict xij for 

all (i, j) ∈ Θc, a general form of finding an interpolated value xij at a given location based on 

observed samples using IDW is given as follows:

xij =
(s, t) ∈ Θ

νij(s, t)
(s, t) ∈ Θνij(s, t)

xst,

where νij: [n] × [p] ℝ+ and νij(s, t) ≥ νij(s , t) for all l ∈ [p] if dr(i, s) ≤ dr(i, s ) and likewise 

νij(s, t) ≥ νij(s, t ) for all s ∈ [n] if dc(j, t) ≤ dc(j, t ).

Algorithm 1.

Multi-scale affinities with missing data

Initialize ℰr and ℰc
Set dr(i, j) = 0 and dc(i, j) = 0

Set nr = m, nc = n, k = k0 and l = l0

while nr > 1 do

 while nc > 1 do

  U(l, k), X(l, k), nr, nc  ← CO-CLUSTER-MISSING PΘ(X), γr = 2l, γc = 2k
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  d Xi ·
(l, k), Xj ·

(l, k) γrγc
α Xi ·

(l, k) − Xj ·
(l, k)

2

  d X · i
(l, k), X · j

(l, k) γrγc
α X · i

(l, k) − X · j
(l, k)

2

  Update row distances: dr(i, j) + = d Xi ·
(l, k), Xj ·

(l, k)

  Update column distances: dc(i, j) + = d X · i
(l, k), X . j

(l, k)

  k ← k + 1

 end while

 l ← l + 1

end while

Return dr(i, j) and dc(i, j)

The weight is a function of the distances between pairs of points that measures the similarity 

between them. The underlying assumption is that data points near the target points carry 

a larger weight than those further away. A larger weight means the point has a closer 

relationship to the estimated one and thus should be given more importance. To reflect the 

correlations and similarities of those data points, it is natural to employ our multi-scale 

distances in computing IDW weights. The row and column multi-scale distances can serve to 

calculate the IDW weights by taking the form:

νij(s, t) =
exp −dr(i, s)

s′ = 1
n exp −dr i, s′

exp −dc(j, t)

t′ = 1
p exp −dc j, t′

.

When the multi-scale distance is smaller, we put more weights on those data points.

IDW has the advantage of being intuitive and is popular for its simplicity, computational 

speed, and good empirical results. We demonstrate the utility of our affinities learned 

through the multi-scale procedure in imputing missing entries by conducting numerical 

experiments on different datasets. We compare a simple IDW approach using our multi-scale 

row and column affinities with the two-directional Laplacian pyramid (2D Pyds) imputation 

method proposed in Reference [33], which is also a multi-scale approach based on the 

pairwise distances between rows and columns of the known matrix. We also include in our 

comparison standard techniques that replace the missing values in each column by its mean 

(Mean) and replace the missing values by the most frequent value (Freq).

We follow the simulations in Reference [33] and test our methods on two public datasets 

from the UCI repository (http://archive.ics.uci.edu/ml/datasets). The data are normalized 

such that each column has mean 0 and standard deviation 1. The mice protein expression 

data [19] contain expression levels of 77 proteins and a total of 1080 measurements per 

protein. Each measurement can be considered as an independent sample/mouse. While 

mice of the same class may have similar protein expression levels, at the same time, 

similar protein expression levels are likely to be in the same class. The original dataset 

has many missing values. We extract a smaller, complete dataset X of size M × N = 
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1000 × 66 from the original data in order to evaluate the results. The voice rehabilitation 

dataset [37] contains data for 126 patients and 309 features. Each feature corresponds to 

the application of a speech signal processing algorithm, including wavelet-based, frequency-

based, and nonlinear time-series algorithms that aim to objectively characterize the signal. 

Consequently, there is likely correlation between rows of this dataset as well as between its 

columns [33].

Tables 1 and 2 summarize the imputation performance measured by the average root mean 

square errors (RMSE) for 10 replicates of the four methods. Results for 2D Pyds, Mean, 

and Freq are reported in Reference [33]. IDW refers to the proposed procedure of estimating 

missing entries by IDW with weights derived from the multi-scale distances. To obtain 

the multi-scale distances in this example, we set α = 0.5 to emphasize a global structure. 

The performances are evaluated under different settings with 20%, 50%, and 80% missing 

entries, respectively. For each mode, each method is repeated 10 times, and each time the 

missing data locations are chosen at random. The average RMSE for the 10 replicates is 

computed. We observe that our method outperforms the multi-scale 2D Pyds approach in 

terms of reconstruction errors. By solving the joint optimization for both rows and columns, 

this multi-scale distance accounts for the coupling connections found in the data, and thus 

provides a good formulation of those weights.

Note that the simple IDW method can suffer from an underestimation bias when the missing 

percentage is high, as seen in Table 1 when the missing fraction is 80%. Since missing 

entries are computed as an average over observed values in IDW, by construction all imputed 

values will always lie within the range of the observed data. In short, IDW can never impute 

a value with a magnitude larger than that observed within the data. Despite the intrinsic 

limitation of IDW, our emphasis here is that once we obtain good affinities, a simple method 

such as IDW can still have good performance. These affinity weights can also be employed 

in other more sophisticated imputation methods for future work.

4 | CLUSTERING

Clustering is the task of dividing a collection of objects into groups so that objects in the 

same group are more similar to each other than to those in other groups. The quality of 

clustering relies on the similarity criterion between points. Missing values can complicate 

the application of clustering algorithms as similarity criteria are usually computed between 

completely observed data points. To deal with missing values in the context of clustering, 

it is a common practice to impute the missing values first and then apply the clustering 

algorithm on the completed data [4].

The multi-scale affinity approach learns the underlying geometry that can be exploited to 

impute missing values. Depending on the downstream task for which weights are used, the 

best single pair of parameters for one task may not be optimal for another. Specifically, 

the optimal pair of cost parameters at a single scale for imputation and clustering is not 

necessarily the same. Moreover, it is unclear whether a single ideal scale exists. Our multi-

scale approach enjoys the property of not requiring the identification of the ideal scale at 

which to fill in missing values. Consequently, our multi-scale approach eliminates the need 

Zhang et al. Page 9

Stat Anal Data Min. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for extensively tuning and picking a single pair of the cost parameters and can fully take 

advantage of the estimates at different smoothing levels.

Lung500 is a real-world dataset that contains 56 lung cancer patients and their gene 

expressions across 500 genes with the greatest sample variance from the original collection 

of 12,625 genes [23]. Patients belong to one of four subgroups; they are either normal 

subjects (Normal) or have been diagnosed with one of three types of cancers: pulmonary 

carcinoid tumors (Carcinoid), colon metastases (Colon), and small cell carcinoma (Small 

Cell).

Figure 2 shows the adjusted rand index (ARI) [21] with respect to the ground-truth labels 

of the four cancer types for the Lung500 dataset, comparing our approach to competing 

methods. The ARI measures the agreement between the clustering results and the ground-

truth labels in a way that higher values indicate better clustering quality. Four techniques 

are used to process data of different missing percentages. We evaluate the clustering result 

using k-means on data imputed by IDW using the multi-scale affinity weights, as well as 

k-means on the co-manifold embeddings [27] for lower dimension representation based on 

these multi-scale distances. To obtain the multi-scale distances in these two approaches, we 

set α = 0.5 to emphasize a global structure. For the purpose of clustering, rows and columns 

are more smoothed in IDW compared with the imputation task. The k-POD algorithm [10] is 

a method of performing k-means clustering on partially observed data. It identifies a cluster 

that is in accord with the observed data even when the missingness mechanism is unknown 

and when external information is unavailable. Fast robust PCA on graphs [35] (FRPCAG) 

is a fast dimensionality reduction algorithm for mining clusters from high-dimensional and 

large low-rank datasets. It also introduces graph smoothness on both rows and columns 

of the data matrix and handles corruption in the data. FRPCAG targets an approximate 

recovery of low-rank signals that exploit the linear coupled geometry and may fail when 

the data lie on a nonlinear manifold or suffer from high percentage of missing values, as it 

assumes these are sparse in the data.

The multi-scale metric takes the coupled structure of the genes and the samples into 

account and gives the best clustering result among those methods. When data are not 

terribly corrupted, the performance is unaffected by increasing the missing fractions of data. 

FRPCAG aims to recover an approximate low-rank matrix with dual-graph regularization 

and requires tuning the cost parameters for row graph and column graph. However, it did 

not address the problem of how to choose those regularization parameters, and it targets 

solely the recovery of the low-rank matrix, which makes data-driven approaches to search 

for optimal parameters infeasible. We pick two choices of cost parameters (γ = 0.01 and γ 
= 1) and observe they have similar performance and observe that FRPCAG’s performance 

is more affected by data corruption. In contrast, our approach eliminates this parameter 

selection step, and our approach’s performance begins to significantly degrade only at 90% 

missing values.
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5 | MATRIX COMPLETION

The goal of matrix completion is to estimate missing entries of a partially observed matrix, 

a task that bears some similarity to missing data imputation. Indeed, the matrix completion 

problem can be cast as a special case of the missing data analysis (MDA) problem [8], where 

one of the inference tasks in MDA is missing data imputation. While matrix completion 

shares some goals with missing data imputation, matrix completion problems differ from 

standard missing data imputation problems in nontrivial ways. The MDA problem assumes 

more general models, and the missing mechanism can be more complex. While the matrix 

completion problem assumes data to be missing completely at random (MCAR), the missing 

mechanism can depend on the data in the MDA problem. The missing proportion in matrix 

completion is significantly higher than that in MDA. When no missing data are present, 

the MDA problem becomes the standard problem with repeated measurements for the same 

model parameters. In matrix completion, we seek to complete the missing entries of a 

partially observed matrix with one sample for each observation. The problem of recovering 

the full matrix from incomplete observation, however, is ill-posed and underdetermined 

without any assumptions or restrictions on the completed matrix. The most common 

assumption is that the unknown matrix is low rank or approximately low rank.

Candès and Recht [5] proved that most low-rank matrix matrices can be completed 

accurately with high probability by solving a convex optimization problem. Mazumder et al. 

[26] considered the scenarios when the observations are noisy and proposed the softImpute 

algorithm using convex relaxation techniques to solve a nuclear norm regularized problem. 

It is pointed out in Reference [22] that the standard low-rank matrix recovery problem 

can be further improved by using similarity information about rows and columns. They 

borrow ideas from the field of manifold learning and force the solution to be smooth on the 

manifolds of users and movies through graph regularizations. A similar idea was exploited 

in Reference [7], where the authors considered the problem of performing matrix completion 

with side information on row-by-row and column-by-column similarities under a structural 

assumption that is closely related to the low-rank assumption.

In this section, we focus on the matrix completion on graphs (MCG) model, where the row 

and column structures are simultaneously taken into consideration. In Reference [22], the 

authors show that the standard low-rank matrix recovery problem can be further improved 

using similarity information about rows and columns. We evaluate the proximity structure 

encoded in the multi-scale metric and show the effectiveness of these row and column 

affinities when data are missing.

Let Z ∈ ℝn × p be the matrix that we want to recover. The MCG problem is formulated as 

follows:

min1
2 PΘ(X) − PΘ(Z) F

2 + γn Z
*

+ γr
2 tr ZLrZ + γc

2 tr ZLcZ , (4)

where Lr is the Laplacian of the row graph given by

Zhang et al. Page 11

Stat Anal Data Min. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lijr = i, i′ ∈ ℰr
wii′

r if i = j

−wijr otherwise,

and Lc is the Laplacian of the column graph defined in the same way. If γr and γc are both 0, 

problem (4) solves the same problem as in Reference [26]. If γn is 0, problem (4) reduces to 

the biclustered matrix completion (BMC) problem in Reference [7].

The biggest challenge in Reference [22] is to construct the graphs of rows and columns 

that well represent the similarity structure in the presence of missing data. The multi-

scale distances encode coupling proximity information about rows and columns, and this 

information can be taken advantage of by introducing structures via graphs. The graphs for 

row and column graph Laplacians based on the row and column multi-scale distances are 

constructed by algorithms such as k-NN and then passed into the MCG algorithm. In this 

way, we incorporate the additional row and column structures into the matrix completion 

problem.

The MovieLens 10M dataset [18] contains ratings (“stars”) from 1 to 5 (increments of 1) 

given by 71,567 users for 10,677 movies. In the original MCG paper [22], the authors use 

information outside of the subset matrix as features to construct the row and column graphs. 

Figure 3 illustrates how ratings outside of the complete submatrix are used as features to 

construct the column and row graphs. The rows (users) and columns (movies) are sorted by 

order of increasing sampling frequency. After a row and column permutation, the original 

MovieLens 10M matrix A is partitioned in blocks A = [M, Fu; Fm, R], where M is the 100 

× 200 complete data matrix we use in the experiment, and Fu is used as the users feature 

matrix and Fm is used as the movies feature matrix. For comparison, we consider MCG 

using row and column graphs constructed using Fu and Fm as described in Reference [22].

Figure 4 shows the prediction error as a function of missing percentage for softImpute [26], 

which leverages only low-rank structure, and MCG using three different ways of generating 

graphs: oracle graphs, graphs described in Reference [22], and graphs constructed using 

multi-scale affinities. The multi-scale affinities were computed with α = −0.1 to emphasize a 

local structure. Although different methods might call for slightly different graph parameters 

for optimal results, for the given dataset, we use the same graph parameters for those 

methods to ensure a fair comparison. The oracle graphs are computed as the k-NN graphs 

based on true complete data. We see the multi-scale affinities can be used to construct graphs 

that capture nearly as much coupling similarity structure along both rows and columns as the 

oracle graphs even when a large fraction of the entries are missing.

6 | CONCLUSION

In this paper, we presented a new method for learning pairwise affinities of both the rows 

and columns of a matrix with missing data. We seek a collection of estimated complete 

matrices at multiple scales of smoothness by solving a family of optimization problems 

with different regularization parameters, which encode a smoothness scale of the estimate 
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along the rows and columns. We combine these multi-scale estimates into a new metric that 

captures the joint row and column geometry of the complete data matrix and represents 

similarities among rows and columns when data are partially observed. The new metric can 

serve as affinity weights in many applications even when data are incomplete. The metric 

presented in this paper is general and may be adapted to other tasks. In future work, we can 

further broaden the scope of this framework by extending it to more applications.
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FIGURE 1. 
Multi-scale affinity calculation in the presence of missing data by leveraging smooth 

estimates of the data matrix at multiple scales via co-clustering. Ideally, we would have at 

our disposal a completely observed data matrix (A), but we may instead only have on hand 

an incompletely observed matrix (B). In this example, the entries are missing completely 

at random (MCAR). Given the incomplete data (B), we obtain a collection of complete 

matrix approximations of the incomplete data matrix by performing co-clustering at multiple 

scales. The co-clustering problem is posed as an optimization problem in Equation (1) with 

trade-off parameters γr and γc controlling the smoothness level along rows and columns. 

Having solved the co-clustering problem for multiple pairs of the trade-off parameters γr 

and γc to obtain a collection of smooth estimates, we calculate the multi-scale metric based 

on those smooth estimates (D). The red and yellow lines represent X · i and X · j, the ith 

column and jth column of the matrix, respectively. For a given pair of parameters γr, γc, we 

calculate pairwise distance between two columns in Equation (2) and then aggregate these 

distances by taking their weighted sum across multiple scales of the smooth estimates (3). 

For pairs of rows the multi-scale metric is computed in an analogous way
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FIGURE 2. 
Comparing k-means clustering applied to data processed by four techniques. Higher ARI 

indicates better agreement between two clusterings
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FIGURE 3. 
For the Movielens 10M dataset, in original MCG model graphs are constructed by 

leveraging prior information about Fu and Fm. The blocks Fu and Fm are used to construct 

the movie and user graphs. The submatrix M of A is used for training and testing

Zhang et al. Page 18

Stat Anal Data Min. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
Reconstruction error of experiments on the complete subset of Movielens 10M. MCG 

with oracle graph means generating graphs from the multi-scale affinities algorithm that 

is initialized by the oracle graph. MCG with oracle graph is the procedure mentioned in 

Reference [22] where additional information about users and movies are used to build the 

graph. MCG with multi-scale affinities uses the k-NN graphs computed from the multi-scale 

affinity matrix. softImpute solves the problem using only nuclear norm regularization
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TABLE 1

Root mean square errors (RMSE) for the Mice dataset

% missing IDW 2D Pyds Mean Freq

20% 0.3596 0.381 1.0024 3.0918

50% 0.4392 0.5198 0.9999 3.0890

80% 0.9341 0.7697 1.0028 2.8001
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TABLE 2

Root mean square errors (RMSE) for the voice dataset

% missing IDW 2D Pyds Mean Freq

20% 0.5872 0.7586 0.9952 3.2704

50% 0.6753 0.8207 1.0086 2.9594

80% 0.8840 0.9002 1.0205 2.2059
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