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Chapter 1.  Introduction 
 
1.1  Project Background and History 
 
This project was created in order to continue progress toward a future in which vehicle 
automation technologies are able to improve transportation operations.  In the wake of the 
termination of the National Automated Highway Systems Consortium (NAHSC) program 
in 1998, the California Department of Transportation (Caltrans) created The Phoenix 
Project to bring together the organizations that remained interested in this future vision.  
The discussions within The Phoenix Project focused on the opportunities that could be 
gained from earlier deployment of automation technologies on transit buses and heavy 
trucks, as compared to passenger cars.  PATH was already doing intensive research and 
testing on automation of one heavy truck, which provided a starting point for further 
work. 
 
Caltrans recognized the value of public demonstrations in building interest and support 
for additional research and development work and for educating stakeholders about the 
benefits of deploying the technologies.  Consequently, they decided to create “Demo 
2002” as a high-profile public demonstration of bus and truck automation technologies, 
scheduling it for the summer of 2002.  This was planned to include three transit buses and 
three Class-8 tractor-trailer rigs, driving a variety of realistic scenarios on the I-15 HOV 
lanes in San Diego.  In order to facilitate the implementation of the latest technologies on 
the test vehicles, it was recognized that it was important to start with new production 
vehicles, equipped to the current state of the art.   
 
The test trucks were acquired within the planned schedule, but the 18-month lead time for 
delivery of new transit buses made it impossible to meet the summer 2002 demonstration 
milestone.  Consequently, the project schedule was extended to accommodate the 
demonstration in the summer of 2003 and it was renamed “Demo 2003”.  When the 
California state budget crisis deepened in late 2002, Caltrans decided that it would not be 
politically advisable to have a high-profile public demonstration, but that the technology 
development and testing work of the project should still be completed as planned.  
Because transit buses are politically “safer” than trucks, they agreed that the testing of the 
buses could be witnessed by a limited group of visitors from within the ITS and transit 
industries, so visitors from the ITS America Board of Directors, the TRB Committee on 
Vehicle-Highway Automation, and the attendees of the TRB Workshop on Automated 
Bus Rapid Transit were able to witness the bus tests on I-15 during the weekend of 
August 23-24, 2003.  That was the last weekend that the I-15 HOV lanes were available 
for testing, because from that time forward the lanes were open to the public on weekends 
as well as weekdays.  
 
 
1.2  Goals and Performance/Functional Requirements 
 
The performance and functional requirements for the vehicle technologies were derived 
based on the goals of the project.  These goals were: 
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a) Showing how automation technologies could produce benefits to the operation of 
transit buses and trucks; 

b) Showing multiple steps of a deployment sequence from present-day manual driving 
to future automated driving, not just the “end state”; 

c) Helping stakeholders recognize the user-friendliness of the automation technologies, 
in terms of both driver and traveler comfort and convenience; 

d) Demonstrating functional capabilities that could not be shown in Demo ’97, to 
indicate advances since then in areas such as: 

a. Easy, natural transitions between manual and automated driving 
b. User interface with realistic driver controls and display 
c. New functions such as precision docking of buses 
d. Coordination of diverse vehicles within a tightly-coupled platoon. 

 
 
Based on Goal (a), it was necessary to achieve accurate lane-tracking and close coupling 
of vehicles within a platoon, as well as flexibility in forming and separating platoons: 
 
• Lane-tracking accuracy with lateral errors of no more than +/-15 cm makes it possible 

for a full-width bus to operate within a bus lane that is only 10 ft. (3 m) wide rather 
than the standard width of 12 ft. (3.6 m), providing opportunities for considerable 
savings in construction and right-of-way costs, as well as the flexibility to fit bus 
lanes within space-constrained locations that would otherwise be impractical.   

• Bus platoons with separations between buses of 15 m make it possible for a bus lane 
accommodating platoons of up to three buses such as those used in this project (two 
40-ft buses and one 60-ft articulated bus) to provide a capacity of more than 70,000 
seats per hour, which means that a bus lane could be fully competitive with heavy rail 
transit for the highest-demand urban corridors. 

• Truck platoons with separations between trucks of a half truck-length or less make it 
possible to reduce aerodynamic drag by enough to produce significant savings in fuel 
consumption and pollutant emissions. 

• Automatic lane changing and platoon join and separate maneuvers make it possible 
for platoons to be reconfigured easily to accommodate different origins and 
destinations for the trucks or buses in the platoons, so that their operations do not 
need to be constrained by waiting for other vehicles with the same destination. 

 
Based on Goal (b), it was necessary to include partial automation as well as full 
automation, and to address automation for specialized near-term applications: 
 
• Automatic steering control could be done while the vehicle is operating under 

conventional cruise control or following a pre-determined speed profile, or while the 
driver is controlling speed. 

• Precision docking of a bus at low speed, for application at bus stops or terminals, 
shows an application of steering automation that could be implemented relatively 
quickly, with a minimum of infrastructure modification, and with the driver retaining 
responsibility for speed control and obstacle detection. 
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Based on Goal (c), it was necessary to develop an attractive and user-friendly driver 
interface, as well as ways of showing system capabilities to the vehicle passengers: 
 
• Very smooth ride quality, in both lateral and longitudinal motions, had to be designed 

into all the vehicle control systems.  This was a dominant consideration relative to 
accuracy because passengers are more likely to develop a negative or uncomfortable 
impression from a rough or jerky ride than from a somewhat less accurate 
performance (even though the latter would reduce the directly-quantifiable benefits 
from the lateral and longitudinal control systems). 

• Smooth transitions between automatic and manual driving, so that both drivers and 
passengers can perceive the ease of making these transitions and not be intimidated 
by the new mode of automated driving. 

• Driver-vehicle interface with well-designed display and simple controls for the driver 
to use,  

• Graphical display for passengers to be able to observe aspects of vehicle performance 
(such as driver interface features, steering and lane changing accuracy, and progress 
of longitudinal maneuvers) that they might not be able to perceive directly during a 
ride. 

 
Most of the new functions associated with Goal (d) have already been addressed in 
satisfying the other goals.  However, the coordination of diverse vehicles within a tightly-
coupled platoon is an additional functional capability that is not necessarily directly 
perceived as significant by passengers on a demonstration ride, but requires considerable 
technical efforts to achieve.  This also represents a significant advance beyond what was 
shown in Demo ’97. 
 
 
1.3  Benefits of Transit Bus Automation  
 
Transit bus operations are particularly amenable to automated driving for a variety of 
reasons, as previously described in [1].  Productivity enhancement benefits can be a 
strong economic incentive to use of the technologies, and since transit agencies in some 
cases have responsibility for both vehicle and infrastructure (guideway), the vehicle-
infrastructure coordination issues can be simpler than they would be for other types of 
vehicle operations.  Moreover, various transit agencies already have experience with 
operation of automated and even driverless vehicles, so the cultural issues with 
automation are more manageable than they are with other transportation modes. 
 
The reasons for applying automation to transit buses were set forth in one of the handout 
documents provided to the visitors who witnessed the testing in August 2003, the 
contents of which are inserted here, with modest updates: 
 
Automated Bus Rapid Transit (ABRT) 
 
Automated Bus Rapid Transit (ABRT) may be viewed as the integration of several elements: 
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 • Precursor systems such as transit information and operational improvements to enhance fleet 
management and provide more accurate and timely information to passengers, and collision warning 
systems to improve bus safety 
 • Bus Rapid Transit (BRT) service innovations in fare collection procedures, station design and location, 
and more attractive vehicle designs 
 • Automatic precision docking to enable buses to stop immediately adjacent to a loading platform, 
providing passengers with quick and easy boarding and alighting, even for those whose mobility is 
impaired 
 • Automated bus operation on segregated busways, providing rail-like ride quality while minimizing the 
needed right-of-way width. 
 
 
How will it function and with what technologies? 
 
Bus transit automation will consist of automation functions and complementary elements (advanced public 
transportation systems) and include certain design attributes.  
 
Automation functions: 
 • Precision docking 
 • Lane keeping 
 • Automated speed and spacing control 
 • Maintenance yard operations 
 
Complementary elements:   
 • Collision warning (forward, side, and rear) 
 • Vehicle diagnostics warnings 
 • Transit management center operations 
  ° Trip information for travelers at stops, stations and on-board buses 
  ° Electronic fare payment and pre-pay systems 
  ° Passenger counting systems 
  ° Traffic signal priority systems 

 
Supporting design attributes: 
 • Bus design changes (low floor, wide doors) 
 • Bus stop/station design 
 • Infrastructure (bus bulbs, queue-jumpers, dedicated lane, check-in/check-out system, vehicle-roadside - 
   communications) 
 • Bus components (electronic throttle, brake, and steering control) 
 
Why demonstrate automated buses now? 
 
The earliest deployments of automation technologies in road vehicles will likely be on heavy vehicles—
buses and trucks—operating on their own special rights-of-way because: 
• It’s easier to develop and acquire rights-of-way for public purposes like transit service 
• In some cases, buses already operate on separate facilities, which could, if demand warranted, be  
  switched over to automation 
• Costs of the technologies are a smaller percentage of total bus costs and buses are used much more  
  intensively so these costs are amortized faster 
• Benefits in travel-time reduction, trip reliability and safety can be translated more directly into cost  
  savings and revenue increases than for private passenger cars 
• Customized, small-lot production of vehicles makes it possible to introduce automation technologies into  
  the bus production process faster than for automotive mass production 
• Packaging of new technological elements is easier on buses than on passenger cars 
• Buses already have more onboard electronic infrastructure (such as data buses and electronic engine 
controls)  to use as a foundation for more advanced capabilities than passenger cars 
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• Maturing technologies can be used more safely by professionally trained bus drivers on professionally  
  maintained buses than by the general public on passenger cars that may not be well maintained. 
 
Who benefits and how? 
 
 • Transit properties 
 • Bus drivers (employees) 
 • Bus passengers (general public) 
 • Infrastructure owners and operators 

 
The overall benefit will be an improved level of people movement, mobility, and quality of service. More 
specifically: 
 
Transit Properties 
• Reduced dwell time at bus stops for loading and unloading of passengers and avoiding need for  
 maintenance-intensive wheelchair ramps by use of precision docking with low floor buses 
• Precision docking at bus stops should help reduce tire  scuffing against the curb, resulting in reduced 
 wear-and-tear on the bus’s tires and corresponding  maintenance costs 
• Rail-like line-haul service at a much lower capital cost 
• Narrower rights-of-way and structures for busways are possible with the use of automated steering/lane 
keeping 
•  Potentially reduced operating costs (labor, fuel and vehicle productivity) for the automated portion of the 
bus trip (line-haul) 
• Facilitating maintenance operations and saving yard space and labor, (i.e., reducing costs), ordinarily 
used to move buses through routine maintenance processes  
• Greater vehicle and passenger lane-capacity, by enabling buses to operate at shorter headway than  
 under manual control 
• Reduced fuel consumption and emissions for buses that can operate in automated platoons with small  
  enough separations that aerodynamic drag can be reduced 
• Potential safety improvements should have direct benefits in terms of reduced insurance costs and less  
 time lost from buses taken out of revenue service while being repaired for crash damage 
• Increased ridership is a collateral benefit that could result from the cumulative effect of the previously  
  stated benefits 
 
Bus Drivers 
• Automating precision docking at bus stops will make this operation easier and less stressful  
• Automated line-haul operations reduce workload and stress 
 
Bus Passengers 
• Reduced travel time can result from having automated bus travel on a dedicated lane 
• Improved bus stop arrival reliability  
• Enhanced access to and from buses for mobility impaired passengers and reduced time for -loading  
  and unloading of all passengers from bus stop - precision docking   
• Smoother travel for passengers and increased  passenger riding comfort  
• Flexibility to perform in “dual mode”: collection and distribution, and line-haul portion (even with  
 intermediate stops). This may reduce need for passengers to make transfers, allowing  
 passengers to remain on same vehicle for entire “door-to-door” service. The bus would “transfer” 
 between a local neighborhood collector/distributor and a line-haul rail-like mode of operation. 
 
Infrastructure Owners and Operators 
• Permitting operations on narrower rights-of-way (reduced lane widths), thereby saving on land use and 
physical infrastructure costs 
•  Accommodating bus-only lanes in locations where they would otherwise not be able to fit at all 
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What are some of the challenges facing successful deployment? 
 
Solution strategies are currently being sought for these and other challenges.  
The transit industry may have concerns over the complexity and reliability of new technologies associated 
with bus transit automation. These concerns may influence the acceptability of technological changes that 
could potentially impact: 
• Role of the driver (driver training, salaries, and work rules, additional driver responsibilities) 
•  Maintenance cost and complexity 
• Safety 
• Liability (changing risk and responsibility assignment).  
 
Large-scale public transportation projects have the potential for influencing travel patterns and surrounding 
land uses. Automated bus transit operations, intended to replicate high-level transit service, (e.g., rail 
transit), though more flexible, may raise concerns over:  
• How they fit into a region’s overall transportation plans to be considered as a credible alternative for 
 regional public transportation investment 
• How their inherent flexibility over rail transit may be perceived instead as a lack of permanence and 
inhibit potential developers from investing heavily along such transit corridors.    
 
Will bus transit automation cost more?  
 
There will be incremental costs associated with the use of bus automation technologies: additional 
electronic equipment installed and maintained on buses and busways and some additional protection of the 
busways to prevent intrusion by pedestrians, animals, unauthorized vehicles and debris. 
 
Additional bus equipment is likely to consist of: 
• Electronically controlled brake actuator (but this may soon become standard equipment associated with 
anti-lock braking anyway) 
• Electronically controlled steering actuator 
• Lateral-position sensing system 
• Forward ranging sensor system similar to - commercially available sensors for adaptive cruise   
 control systems 
• Vehicle-to-roadside  and vehicle-to-vehicle data communications systems, which could build on existing 
and impending traffic signal priority system and DSRC technologies 
• Collision warning sensor systems, which are already available for some vehicle applications and are 
under commercial development for others 
• Onboard control computer similar in power to standard personal computers 
 
At early stages of development, the total costs of these systems are likely to add no more than 5% to 10% 
to the cost of a new transit bus, and over time those Incremental costs should decrease by another factor of 
4 or 5.  It is important to consider these additional cost elements in the context of the costs of providing 
higher quality transit services by other means, such as light or heavy rail transit systems. In the context of 
such costs, these incremental costs are negligible. 
 
How do we get from today’s bus transit system to automation? 
 
The specific development and deployment sequence will likely vary by location, depending on local and 
regional needs and constraints, so some locations will undoubtedly be able to make faster progress than -
others. However, a generic sequence can be defined, -building on technologies already available or nearly 
available and then combining additional technologies and service elements in building-block fashion to 
achieve increasing levels of capability. 
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There are existing and currently emerging technologies commercially available today in at least one major 
sector of the world (Europe, North America, or Asia/ Pacific) for at least some vehicle classes or for 
specialized applications. They are: 
• Forward collision warning 
• Lane-departure warning 
• Adaptive cruise control (ACC) 
• Vehicle-roadside communication 
 
Transit forward collision warning is being developed now by PATH for the San Mateo County (California) 
Transit District (SamTrans) under the sponsorship of the Transit Intelligent Vehicle Initiative. 
 
Special capabilities can be added to transit buses with moderate levels of development and deployment 
costs: 
• Vehicle-vehicle data communication for cooperative adaptive cruise control (CACC)  
• Low-speed precision docking of buses at stops 
• Automation of bus movements through maintenance facilities 
 
A next level of deployment includes protected-lane opportunities, particularly useful in locations where 
there are strong needs for enhanced transit services and/or where the right-of-way can be made available. In 
these locations, the operating agency can set aside a separated, protected lane for transit use. It then 
becomes possible to implement automatic steering control safely, permitting use of a narrower lane and 
relieving the bus driver of the steering responsibility.  
 
Integrating a combination of these elements can form the basis of an initial operational scenario for bus 
transit automation, such as a pure line-haul run with few intermediate stops. Passengers could be collected 
from their origin locations at normal local bus stops, where the bus would be driven manually (except for 
the assistance of precision docking at stops). At the entrance to the protected busway or bus lane, the driver 
would switch the bus to automated operation and it would continue to operate automatically until it reached 
the busway’s destination end. There could be intermediate stops along the automated busway, where the 
bus would operate exactly the way automated metros or automated guideway transit systems do now. At 
the end of the automated busway, the driver would resume manual control of the bus and could take the 
passengers to their desired local bus stops. Through this kind of “dual mode” operation, the automated bus 
provides the collection and distribution flexibility of conventional buses and the line-haul efficiency and 
service speed of conventional rail transit, while saving passengers the inconvenience and time associated 
with transfers. This is the great service advantage automated buses can provide.  
 
Over the longer term, with further advancements: 
• Access to the ABRT lane could be provided to suitably equipped vanpools and then carpools 
• Buses or vans could be coupled together more closely with their counterparts to form platoons, increasing 
capacity while reducing drag, to save fuel and reduced emissions 
• Entry maneuvers could be automated with the addition of more sophisticated vehicle-roadside 
communication 
• Higher-level management functions could be implemented to serve a network of connected ABRT  
 lanes. These could indeed become the precursors to an automated highway network. 
 
 
 
Functions to Observe In Testing 
 
• Precision docking, in configurations suitable for terminal or station (in-line) or at conventional arterial 

bus stops (full lane change) 
o Very small gap between platform and bus entrance 
o Accessibility for mobility-impaired passengers 
o Reduced stress for driver 
o Reduced likelihood of scuffing tires at curb 
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• Smooth and easy transitions between normal manual driving and automation functions 
o Simple user interface 
o Easy resumption of driver control when needed 
o Smooth control transitions 

 
• Lane-keeping assistance 

o Highly-accurate lane tracking in tightly constrained locations 
o Smooth steering response 
o Reduced driver stress and workload 
o Rail-like service quality 

 
•  Automatic vehicle-following control 

o cooperative adaptive cruise control to reduce driver workload 
o close-formation vehicle following for increased capacity in high-density locations (an 

electronically-coupled bus train) 
o smooth acceleration and deceleration for passenger comfort and reducing energy consumption 

and emissions 
 
 
1.4  Benefits of Truck Automation 
 
The benefits of truck automation are somewhat different from those for transit bus 
automation, based largely on the differences between the operating characteristics and 
normal uses of buses and trucks.  The opportunities that can be gained from automating 
the driving of trucks were described in [2], and those were summarized in background 
material prepared for the planned (but subsequently cancelled) demonstration of the 
automated trucks: 
 
 
Why Consider Dedicated Truck Lanes? 
 
Heavy trucks and passenger cars are so different from each other that it is in some ways 
remarkable that they generally share the same highway lanes almost everywhere today.  Although 
this sharing of lanes simplifies the development and operation of the roadway infrastructure, it 
also has some significant adverse safety and economic implications.  The relevant differences 
between trucks and cars include: 
 
• Factor of up to 40 in mass 
• Factor of up to 4 in length 
• Factor of 4 to 20 in acceleration capability 
• Factor of 2 to 3 in braking capability 
• Factor of up to 2 in width 
 
If trucks and cars were separated from each other on sections of highway that have heavy 
volumes of truck traffic it would be possible to separately optimize the design and operations of 
these costly infrastructure systems.  This could offer a variety of significant benefits: 
 
• Eliminating the truck-car conflicts and incompatibilities that are responsible for the majority 

of crashes involving trucks; 
• Enabling trucks to avoid the traffic congestion caused by large volumes of automobile traffic; 
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• Enabling lane widths to be optimized for the different vehicle widths, so that the trucks could 
retain full-width lanes, but the cars could use narrower lanes, making it possible to fit more 
lanes within the same highway structures and rights of way; 

• Enabling pavement design and maintenance to be optimized for the different loadings 
imposed by trucks and cars, so that costs could be significantly reduced for the lanes used 
only by the light-duty vehicles; 

• Reducing the driving stress of drivers of both heavy and light vehicles, who would not need 
to worry about their incompatibility with the other class of vehicles; 

• Facilitating use of different operating speeds where appropriate, such as on steep grades; 
• Facilitating different schemes for paying for highway use, based on different priorities for 

timely arrival (particularly for trucks engaged in “just-in-time” deliveries). 
 
What is truck automation? 
 
Truck automation provides the capability for a truck to be driven automatically, without the 
intervention of a driver.  This is most likely to be used for access to freight movement hubs such 
as ports and intermodal rail terminals or for long-distance driving in special-purpose truck lanes, 
where the trucks could be separated from other traffic to simplify their driving environment and 
reduce hazards.  The trucks could be electronically coupled to form virtual trains or platoons in 
order to save fuel and reduce emissions, as well as to increase lane capacity.  The driver could 
still serve a supervisory or managerial role, while the automatic control system takes care of the 
tedious and stressful lower-level driving tasks.  Or a driver could operate the first truck in the 
platoon while the others might be driverless. 
 
Precursor technologies include drive- and steer-by-wire technologies, and also the various driver-
assist and collision warning technologies currently under research with the IVI program and 
development by industry.  But truck automation goes well beyond IVI and industry product 
development – in addition to the IVI safety goals, truck automation will directly and favorably 
impact fuel economy and other operating costs incurred in delivering goods to the consumer.  
Also, truck automation should contribute to reducing congestion by helping to increase highway 
capacity. 
 
How will truck automation function and what technologies will it use? 
 
Truck automation will consist of both automation functions and complementary functions and 
will also include certain design attributes.  
 
Automation functions include: 

• Automatic speed and spacing control 
• Lane keeping 
• Automatic backing to a loading dock 

 
Complementary functions may include: 

• Forward, side and rear collision warning and/or avoidance 
• Driver drowsiness detection 
• Vehicle condition warning 
• Truck management center (operations) for the processing of information from 

advanced communication and advanced vehicle location systems 
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Supporting design attributes include: 
• Infrastructure (dedicated truck lane, check-in and -out, interface to local non-automated 

traffic) 
• Vehicle (electronic fueling and brake actuator, steering control, driver-vehicle interface) 
• Wireless communication (vehicle-vehicle and vehicle-roadway) 
• Fault management system 
 
Why develop automated trucks now? 
 
The earliest deployments of automation technologies will likely be on heavy vehicles ― buses 
and truck s― operating on their own special rights of way because: 
 
• Costs of the technologies are a smaller percentage of total truck costs, and trucks are used 

much more intensively so these costs are amortized much faster 
• Benefits in travel-time reduction, trip reliability and safety can be translated more directly 

into cost savings than for private passenger cars 
• Special truck-only lanes are already under consideration for other reasons 
• Customized, small-lot production of vehicles makes it possible to introduce automation 

technologies into the truck production process faster than for automotive mass production 
• Packaging of new technological elements is easier on trucks than on passenger cars 
• Trucks already have more onboard electronic infrastructure to use as a foundation for more 

advanced capabilities than passenger cars 
• Maturing technologies can be used more safely by professionally trained truck drivers on 

professionally maintained fleets than by the general public on passenger cars that may not be 
well maintained. 

 
Who benefits from truck automation and how? 
 
Commercial Vehicle Operators 
• Economic benefits for commercial vehicle operators could be substantial. A heavy truck 

typically costs at least five times as much as a passenger car and would be driven annually at 
least ten times as far. Thus, the economic return from an investment in automation equipment 
is more attractive for trucks than for passenger cars. Moreover, it will probably be easier to 
install automation equipment on a truck than on a car for several reasons, e.g., less 
constrained space for packaging equipment, vehicles built to order in smaller quantities than 
passenger cars, shorter lead time from design to production.  

• Perhaps most importantly, with truck platooning, the reduction in fuel consumption could be 
substantial – anywhere from 10 – 20 %.  Hence, overall operating costs could be considerably 
reduced. 

• Reduced and predictable travel times with automated trucks on dedicated lanes will improve 
the utilization of capital equipment, and improve the ability to meet performance targets for 
“just in time” deliveries.  

• Potential safety improvements should have direct economic benefits in terms of reduced 
insurance costs and less time lost from productive use of trucks while being repaired for crash 
damage.  

• Automated trucks could make possible significant changes in driving duty cycles and pay 
rates. Fully automated trucks could make it possible for drivers to travel long distances while 
resting, yet still earn payment. Some of the current problems with driver fatigue and duty 
hours conflicting with sleep cycles could be solved.  
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Truck Drivers 
Automation of long-distance truck driving can improve the quality of life for truck drivers in 
several ways, particularly because they normally need to spend many hours a day driving, 
regardless of adverse weather, visibility and traffic conditions.  Their benefits should include: 

• Reduced stress, by avoiding direct interactions with bad behaviors of other drivers 
• Smoother ride 
• Ability to give attention to issues other than the immediate driving environment while 

driving 
• Enhanced personal safety 
• Reduced risk of fatigue on long trips 
• Ability to operate under adverse conditions, without any increase in workload 
• (In the long term) Potential changes to hours of service regulations and work rules, 

permitting more flexibility in scheduling driving times and possibly increasing earning 
potential as well. 

 
Infrastructure Owners and Operators 
Roadway owners and operators are concerned with traffic flow and congestion and public safety, 
as well as roadway maintenance and other operating expenses. Benefits include: 
• Lane widths could be optimized for the different vehicle classes 
• Collisions involving trucks and light-duty vehicles could be greatly reduced, saving lives and 

reducing injuries  
• Separate lanes could be used for different speeds, more suitable for separate vehicle classes  
• Roadway structure and pavement designs could be optimized for different vehicle classes  
• Permitting operations on narrower rights-of-way (reduced lane widths and/or fewer number 

of lanes required), thereby saving on land use and physical infrastructure costs 
 
General Public/Societal  
By reducing aerodynamic drag when trucks are traveling in platoon formation, automation can 
reduce emissions and contribute to overall improvement in air quality, as well as saving energy 
and reducing dependence on imported petroleum.   
 
What are some of the challenges facing successful deployment of truck automation? 
 
The challenges discussed here are currently under investigation to find solution strategies:  
 
• Industry concerns about the complexity, reliability and maintainability of new technologies 
• Changing role of the driver (hours of service, driver training, salaries, and work rules, additional 

driver responsibilities) 
• Safety 
• Insurance 
• Liability (changing assignment of risk and responsibility).  
 
In the end, the benefits (primarily in reduced operating costs via fuel economy but with the addition 
of others discussed above) for each stakeholder category must be clear, calculable and attainable.  If 
so, the decision from commercial as well as public sectors will be justifiable and easier. 
 
What extra costs will be associated with truck automation technologies?  
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There will be incremental costs associated with the use of truck automation technologies, 
primarily in terms of additional electronic equipment installed on trucks and dedicated truck lanes 
(together with their continuing maintenance), and some additional protection for the dedicated 
lanes to prevent intrusion by unauthorized vehicles and debris. 
 
Additional truck equipment is likely to consist of: 

• Electronically-controlled brake actuator that may soon become standard equipment 
associated with anti-lock braking anyway 

• Electronically-controlled steering actuator 
• Lateral-position sensing system 
• Forward ranging sensor system similar to commercially available sensors for 

adaptive cruise control systems 
• Collision warning sensor systems which are already available for some vehicle 

applications and are under commercial development for others 
• Vehicle-to-vehicle data communications system 
• Vehicle-to-roadside data communications system which could build on existing and 

impending electronic toll collection technologies 
• Onboard control computer that needs to be no more powerful than standard personal 

computers 
 
How do we get from today’s trucks to automation? 
 
Existing precursor technologies are: 
• By wire control 
• Forward collision warning 
• Lane-departure warning 
• Adaptive cruise control (ACC) 
• Vehicle-roadside communication 
• Electronic tow bar 
 
Some of these are being developed by manufacturers and suppliers, and some are undergoing testing 
via the USDOT IVI Program and the California PATH Program.  The electronic tow bar concept is 
being tested by DaimlerChrysler, under a European Commission program called CHAUFFEUR. 
 
With the above as a basis, special capabilities can be added to trucks with moderate levels of 
development and deployment costs, including: 
• Vehicle-vehicle data communication for cooperative adaptive cruise control (CACC)  
• Automated backing function or assistance 
 
A next level of deployment includes dedicated-lane opportunities. This would be particularly useful 
in locations where there is high truck volume, and where congestion concerns are quite important.  It 
could also be useful where road maintenance and safety with car-truck interactions are important.  
There are locales (e.g., I-15, I-710 and SR-60 in Southern California, and I-10 across the U.S.) where 
such dedicated lanes have been considered.  It then becomes possible to implement automatic 
steering control safely, permitting use of a narrower lane and relieving the driver of the steering 
responsibility.  
 
These technologies can form the basis of an initial operational scenario for truck automation, such as 
a long-distance line-haul operation. 
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At the entrance to the dedicated lane, the driver would switch the truck to automated operation, 
join behind another truck and operate automatically until he reached his destination.  
 
Over the longer term, with further advancements: 
• The entry maneuvers could be automated with the addition of more sophisticated vehicle-

roadside communication 
• Higher-level management functions could be implemented to serve a network of connected 

dedicated truck lanes. These could indeed become the precursors to an automated highway 
network. 

 
 
1.5  Overview of Report 
 
This report provides documentation of the development of the experimental buses and 
trucks and their testing, to show what performance can be achieved with use of the 
automation technologies.  Section 2 describes the host vehicle platforms that were chosen 
for automation, both buses and trucks.  Section 3 then describes the hardware and software 
modifications that were made to the production vehicles in order to give them automated 
driving capabilities, while Section 4 reports on the performance that was achieved by the 
automation systems, with experimental data derived from testing of the vehicles.  Section 5 
provides a brief set of conclusions regarding what was learned from the testing and from the 
reactions of visitors who participated in some of the testing. 
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Chapter 2.  Host Vehicle Platforms 
 
2.1  Transit Buses 
 
The transit buses were chosen to represent two significantly different vehicle types in 
order to demonstrate that the automation technology could work effectively across a 
representative sample of heavy-duty buses in regular service in the U.S.  In particular, 
two of the buses were 12 m (40 ft.) single-unit buses powered by compressed natural gas 
(CNG) in spark-ignition engines, since this type of propulsion system has become 
increasingly popular among U.S. transit agencies in order to reduce bus emissions of 
pollutants and noise.  The third bus is an 18 m (60 ft.) articulated bus powered by a diesel 
engine, as used in many of the heaviest-duty transit services in the U.S.  All three buses 
were acquired from New Flyer through the cooperation of San Diego Transit, who added 
them to a pre-existing order that they had already placed with New Flyer.  Since that 
order was already in the production queue, it saved approximately one year of delay for 
delivery, which would have occurred if we had placed a completely new order for the 
demonstration buses. 
 
It was important to show that buses with significantly different engines and performance 
characteristics could be closely-coupled within an automated platoon for the 
demonstration, in order to verify the flexibility of the longitudinal control systems that 
were being demonstrated.  Similarly, the lateral dynamics of single-unit and articulated 
buses differ significantly from each other, yet the same lateral control system was 
demonstrated to work effectively on both types of buses. 
 
Although provided by the same manufacturer, New Flyer, the 12 m (40 ft.) and 18 m (60 
ft.) buses had different components.  The 18 m (60 ft.) articulated bus is powered by a 
diesel engine, provided by Detroit Diesel, and both the 12 m (40 ft.) single-unit buses are 
powered by a CNG spark-ignition engine, provided by Cummins.  Other relevant 
specifications are in Table 2.1.1 below:   
 

Table 2.1.1. New Flyer Bus Specifications.  Engine and Transmission Details for both 
18 m and 12 m Buses. 

 18 m (60 ft.) Articulated 12 m (40 ft.) Single-Unit 
Engine Mfr. Detroit Diesel1 Cummins 
Engine Model Series 50 CGAS+280 
HP 330 280 
RPM 2100 2400 
Transmission Mfr. Allison Allison 
Transmission Model B500R B400 
Weights (Curb Weight 
and Gross Veh. Weight) 

CW: 41,500 lbs (18,820kg) 
GVWR: 63,880 lbs (28,980 kg)

CW: 28,875 lb (13,100 kg) 
GVWR: 39,630 lb (17,980 kg) 

 

                                                 
1 The Detroit Diesel has a max torque of 850 lb-ft at 1400 RPM. 
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2.1.1 Longitudinal Dynamics of Transit Buses 
 
A mathematical model was developed of the longitudinal dynamics of the buses in order 
to support the development of the longitudinal controller. The model had to be complex 
enough to capture dynamic characteristics of the system, and simple enough to make the 
controller efficient for real-time application. In this section, it will be shown how the 
control model can be simplified with information via the J1939 bus. Moreover, the 
control model will be unified in the sense that the equations of motion between two 
transit bus models are similar, with the exception of minor differences. It will allow us to 
design the unified longitudinal controller later. Finally, all variables and parameters are 
listed in Tables 2.1.2 and 2.1.3 at the end of Section 2.1.1. 
 
① Longitudinal equations of motion 
 
Three-state nonlinear equations of motion are proposed to represent both a 40-foot and a 
60-foot transit bus. One state is used for chassis dynamics and the others are for engine 
and brake dynamics respectively. Before deriving the longitudinal dynamics of the bus, 
the considered assumptions are summarized as follows: 
z A symmetric rigid body of vehicle chassis 
z No slip between the wheels and ground, i.e., hv w ⋅= ω . 
z The torque converter is locked, i.e., gew R⋅= ωω . 
z The accessory engine power is constant, i.e., fan,...)(A/C,CT eacc =⋅ω . 
z The vehicle mass and road grade are known a priori. 
 

It is noted that the constant value in the next-to-last assumption relies on the status of an 
air conditioner (A/C), a fan, and thermal conditions. Moreover, huge changes of the mass 
and road grade have large impacts on the longitudinal vehicle dynamics. Therefore, if 
they cannot be pre-determined, it may be necessary to estimate them dynamically, as in 
[1]. 
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Figure 2.1.1 Free body diagram for longitudinal motion 
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Using the first through third assumptions above and balancing the forces in the 
longitudinal direction, we can derive the longitudinal equation of motion. However, these 
longitudinal dynamics were introduced in [2] and similarly used for the passenger vehicle 
[3]. Hence, the resulting single state dynamics are derived without detailed descriptions 
as follows: 
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It is remarked that there are three variables in (2.1.1) which may vary dramatically with 
respect to time. That is, we need to have the corresponding models for the production of 
net engine torque (Te), brake torque (Tb), and effective gear ratio (Rg), which are 
discussed next. 
 
② Engine Model 
 
In general, the characteristics of the engine are highly nonlinear and complicated, no 
matter whether it is a CNG or a diesel engine [4, 5]. There are even several proprietary 
engine controllers embedded by the engine manufacturer for the purposes of engine 
protection, noise and emission reduction [6]. However, regardless of the type and 
complexity of engines, the measurement of the engine torque which is transferred to a 
transmission may be preferable in the sense that the ultimate goal of the engine model is 
to estimate the generated engine torque in equation (2.1.1). Despite this intuitive idea, 
many complex engine models have been developed in the literature to estimate the engine 
torque due to lack of reliability and accuracy of the torque sensor as well as cost 
consideration [7, 8]. However, it is interesting to remark that the in-vehicle sensor 
information available via the J-1939 bus has the indicated engine torque (so-called the 
actual engine torque in SAE J-1939 handbook [6]) and nominal friction engine torque, 
which are measured and/or calculated by the engine manufacturer [6]. Hence, using this 
information, the measured engine torque is regarded as 

friceindmease TcTT ⋅−=.     (2.1.2) 
where ce is a tunable parameter which will be identified later with comparison of manual 
driving data of transit buses. 
 
Two engine control actuator methods are used for two different types of engines as 
follows: one is to use a torque control command (TCC) via the J-1939 bus for the diesel 
engine and the other is to use an acceleration pedal command via an analog voltage signal 
for the CNG engine. Although the use of TCC allows us to control the engine torque 
directly in the sense that the empirical engine map or data are not necessary, the 
Cummins CNG engine on the 40-foot New Flyer transit bus does not provide the 
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capability of TCC yet. Hence, the approach previously used for gasoline engine control 
was used for the CNG engine due to their similarities shown in [5].  That is, an empirical 
engine map is used to capture the characteristics of the CNG engine and its controllers 
quantitatively.  Finally, the dynamics of the two engines are represented by the first order 
lag systems as follows [2]: 
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where Tmap is the empirical engine torque map which indicates the net engine torque for 
the given engine speed and accelerator pedal position, and Tcmd is the torque control 
command via a J1939 bus. 

 
③ Transmission model  
 
The transmission is also a highly nonlinear and complex system like the engine above.  It 
is generally very hard to derive a simple set of mathematical equations to represent a 
complete transmission model. However, if equation (2.1.1) is simple enough to capture 
the equation of motion for the transit bus, only two values are required from the 
transmission model, i.e., effective gear ratio (Rg) and transmission retarder braking torque 
(Ttr).  The former comes from the engaged gear ratio (Rt) multiplied by the final gear 
ratio.  The transmission information directly available from the J1939 bus includes 
selected and current gear, actual gear ratio, and an index of “shift in progress”.  However, 
accurate gear ratio information is not available while a gear shift is occurring.  The gear 
ratio during gear shifting can be estimated as follows: If the shift-in-progress is on, 
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where Rsel and Rcur are the selected and current gear ratio, respectively. 
 
A plot of the measured gear shift information and the model estimate for a representative 
experimental run is shown in Figure 2.1.2. The bottom plot shows estimation error in the 
term of gear ratio where the measured value is based on both input and output shaft speed 
in the transmission. It is noted that some peaks in the figure result from uncertainty in 
pure time delay (∆tg) in equation (2.1.4), while the constant time delay is used for the 
estimation. 
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Figure 2.1.2 Time response of gear ratio from 1st to 5th gear and the corresponding 
gear ratio estimation error 

 
The transmission retarder braking torque required from the transmission model is 
controlled and reported by the J-bus. Although the capacity of the transmission retarder 
braking torque is limited, its time response is usually faster than that of a pneumatic 
braking system.  Hence, an integrated braking approach combining the transmission 
retarder and pneumatic braking torque is used for the braking control. Then, the overall 
braking torque can be decoupled as follows: 

pntrb TTT +=  
where Ttr is produced by the percentage transmission retarder torque command via J-bus 
[6]. Furthermore, it is noted that the transmission retarder dynamics are neglected for the 
control model because they are relatively faster than chassis and pneumatic brake 
dynamics.  Next, it will be discussed in the following section how Tpn from the pneumatic 
brake system is produced and modeled. 
 
 
④ Pneumatic brake model 
 
A schematic of a pneumatic brake system for a front wheel of the transit bus is shown in 
Figure 2.1.3.  While the pressure coming from the dual brake valve in the figure is 
typically controlled by a driver's foot for manual driving, an electrical brake actuator is 
implemented in parallel to generate additional brake pressure, Pbv.  Sequentially, the 
brake pressure is the maximum of two pressure values through the mixing valve shown in 
Figure 2.1.3. Assuming that brake torque has a proportional relation with the brake 
pressure in the diaphragm chamber of a pneumatic brake system and that there is no 
driver command, the brake pressure dynamics to the brake chamber shown in Figure 
2.1.3 can be derived as follows [9]: 
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where Pbv is an empirical function of the brake control command uβ. 
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Figure 2.1.3 Schematic of a pneumatic brake system with an electrical brake 

actuator 
 
The time responses for step inputs to the pneumatic brake system with an electrical brake 
actuator are presented in Figure 2.1.4 when the transit bus is stationary.  Three brake 
pressure measurements from brake pressure transducers located in different positions are 
shown in the figure: Pbv is measured from an embedded sensor in the electrical brake 
actuator, Pint and Pb are measured near the mixing valve and the front wheel, respectively 
(also see in Figure 2.1.3). Finally, the time response of the brake pressure model shown 
in equation (2.1.5) is plotted together to show the accuracy of the proposed model. 
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Figure 2.1.4 Time responses of pneumatic brake pressures in the air brake system 

and estimated brake pressure from the brake model 
 
⑤ Model validation 
 
Data acquisition of two types of the transit buses manually driven was performed at the 
Crow's Landing Test Facility.  All information such as wheel-based speed, engine speed, 
current gear, and an accelerator pedal position were acquired via the J1939 bus. Then, 
their time responses are compared with those of the transit bus model proposed above. 
For instance, Figure 2.1.5 shows the time responses of the 40-foot transit bus in the 
operating velocity range from 10 to 25 (m/s), during which the gear shifts from 2nd to 5th 
gear and the torque converter remains locked.  With the appropriate system parameters 
listed in Table 2.1.3, the accuracy of the model is such that the deviation in terms of 
velocity and engine speed is within 5% as shown in Figure 2.1.5 (a) and (b). 
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Figure 2.1.5 Time responses of velocity, engine speed, and acceleration pedal 

position for a 40-ft transit bus driven manually 
 
Similarly, the experimental validation of the 60-foot bus model is shown in Figure 2.1.6. 
With the appropriate system parameters listed in Table 2.1.3, Figure 2.1.6 shows the time 
responses of the 60-foot articulated bus in the operating velocity range up to 23 (m/s). 
The accuracy of the model is described in terms of the velocity and engine speed 
deviation, and is within 5-6% as shown in Figure 2.1.6 (a) and (b). Consequently, these 
experimental results in Figure 2.1.5 and 2.1.6 show that the proposed control model 
represents longitudinal dynamics of two different types of transit buses qualitatively.  
 
Finally, Figure 2.1.7 shows how much the change of aerodynamic coefficient and 
accessory engine torque affects the overall vehicle dynamics in terms of vehicle velocity 
and engine speed. In other words, a lane-change maneuver was conducted and an air 
conditioner (A/C) was switched on and off during the manual driving in order to change 
the aerodynamic coefficient and accessory engine torque due to A/C. Figure 2.1.7 (a) and 
(b) show that the velocity deviation remains within 5-8%. Although it may be said that 
the model accuracy is degraded due to the change of system parameters, it would rather 
be interpreted that the change of aerodynamic coefficient and accessory engine torque is 
insensitive to the proposed control model.   
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Figure 2.1.6 Time responses of velocity, engine speed, and acceleration pedal 

position for a 60-ft articulated bus driven manually 
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Figure 2.1.7 Time responses of a transit bus driven manually during lane-change 

maneuver 
 
 

Table 2.1.2 Variables for Transit Bus Longitudinal Control Model 
 
Variable Description Variable Description 

v Velocity of the vehicle [m/s] Rg Effective gear ratio, i.e., Rt·Rf 
Rt Gear ratio in a transmission Tacc Accessory engine torque [N·m] 
Te Net engine torque [N·m] Tb Braking torque [N·m] 

Tind Indicated engine torque [N·m] Tfric Frictional engine torque [N·m] 

Ttr 
Transmission retarder braking 
torque [N·m] Tpn 

Braking torque coming from a 
pneumatic brake system [N·m] 

Fr Rolling resistance force [N] Fa Aerodynamic drag force [N] 
ωe Engine speed [rad/s] ωw Wheel speed [rad/s] 
uα Accelerator pedal position uβ Brake control command 
θ Road slope angle [rad] Pb Brake line pressure [KPa] 
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Table 2.1.3 Parameter Values for Transit Bus Longitudinal Control Model 
 

Parameter Description Value for a 40-ft 
bus 

Value for a 60-ft 
bus 

h Effective wheel radius 0.4775 [m] 0.4775 [m] 
Rf Final drive ratio 0.1887 0.1916 
m Total weight of the vehicle 13,381 [Kg] 18,757 [Kg] 
Je Inertia of the engine 1.8818 [Kg·m2] 1.2117 [Kg·m2] 
Jw Overall inertia of the axle 42.4 [Kg·m2] 63.6 [Kg·m2] 
Po Push-out pressure 34.48 [KPa] 34.48 [KPa] 
Cr Rolling resistance coefficient 0.01 0.0175 
Ca Aerodynamic drag coefficient 2.9436 [Kg/m] 2.4242 [Kg/m] 

τcng, τdiesel 
Time constant for engine and 
throttle actuator delay τcng = 0.03 τdiesel = 0.01 

∆te Pure time delay for TCC  0.03 

τbf 
Time constant for brake actuator 
during filling process 0.13 0.13 

τbe 
Time constant for brake actuator 
during emptying process 0.07 0.07 

∆tb 
Pure time delay during filling 
process 0.07 0.07 

τg Time constant for gear shifting 0.35 0.35 

∆tg 
Pure time delay during gear 
shifting 0.4 0.4 

g gravity 9.81 [m/s2] 9.81 [m/s2] 
Kb Brake torque coefficient 10 [N·m/KPa] 10 [N·m/KPa] 

ce 
Tunable parameter for net engine 
torque 1 0.3 

C(A/C on) Accessory engine torque with A/C 
on 36.0 (Hp) 36.0 (Hp) 

C(A/C off) Accessory engine torque with A/C 
off 30.8 (Hp) 30.8 (Hp) 

 
 
2.1.2  Lateral Dynamics of Transit Buses 

 
Mathematical models were developed for the lateral dynamics of the buses to support the 
development of the lateral controller. A simple bicycle model, a 3-DOF yaw/lateral/roll 
model, and a bicyle model with trailer were used to represent the fundamental vehicle 
dynamics of the transit buses at various design stages.  
 
2.1.2.1 Bicycle Model 
 
Bicycle model is the most common model used for lateral control design. A linearized 
model is generally regarded to be sufficient for studying vehicle steering under normal 
conditions. Assuming small angles, this allows the use of the classical bicycle model 
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shown in Figure 2.1.8. The linearized state-space model, derived by balancing the force 
and moment equations, can be found in [24] as 
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where β  is the side slip angle between vehicle longitudinal axis and velocity vector v at 
CG, and &ψ  the vehicle yaw rate. Other variables in Eq. (2.1.6) are: δf the front steering 
angle, Iψ the yaw moment of inertia, M the mass of the vehicle, l=lf+lr the wheel base, 
and cf  and cr the linear cornering stiffness of the front and rear tires, respectively. 
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Figure 2.1.8: Bicycle model 

 
 
2.1.2.2 Vehicle Model with Roll Dynamics Coupling 
 
Many researchers use the bicycle model for vehicle steering control. However, most 
buses have a relatively soft suspension. The soft suspension significant alters the 
frequency characteristics of the latearal vehicle dynamics from that predicted by the 
bicycle model. In order to study the influence of the suspension roll dynamics on the 
steering control design, a 3 DOF vehicle model that includes lateral, yaw and roll 
dynamics is used for the controller design. The schematic diagram of the 3 DOF vehicle 
model is shown in Figure 2.1.9. The sprung mass (ms) interacts with the front and rear 
unsprung masses via the front and the rear suspensions, where Kf, Df and Kr, Dr are the 
rotational spring and damper coefficients for front and rear suspension, respectively. The 
roll axis is defined as the line connecting the roll centers of the front and rear suspension 
as shown in Figure 2.1.9. It can be found that the vehicle geometric parameter that affects 
the coupling between lateral and roll dynamics the most is 

smh , the distance between the 
sprung mass CG and the roll axis. Additional vehicle parameters are defined as follows: β  
is the side slip angle between vehicle longitudinal axis and velocity vector v at CG, and 
&ψ  the vehicle yaw rate. Other parameters are the same as the bicycle model: δf the front 

steering angle, Iψ the yaw moment of inertia, M the mass of the vehicle, l=lf+lr the wheel 
base, and cf and cr the linear cornering stiffness of the front and rear tires, respectively. 
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Figure 2.1.9: Schematic diagram of 3 DOF vehicle model 

 
Under constant speed condition, the dynamic equations of motion are derived using the 
Newtonian method. Assuming small angles and using the linear tire model, the linear 
dynamics equations of the vehicle model with respect to the road reference frame are 
derived and shown in Eq. (2.1.7) [25]. The state-space representation takes the form of 

dBxAx ++= δ& . The state variables are: rr yy &, , the lateral displacement at CG w.r.t. 
road reference frame and its derivative; rr ψψ &, , the yaw angle w.r.t. the road reference 
frame and its derivative; as well as rr φφ &, , the roll angle and its derivative. The road 
reference frame is attached to the road center at a point adjacent to the vehicle CG with X 
axis tangent to the road trajectory and moves along the road with the same speed as the 
vehicle. The input is the front steering angle (δ). The disturbances are: ρ , the road 
curvature; dψ& , the desired yaw rate from the road; Fwy, the disturbance force at CG along 
the y direction; and Fx, the front tire force along the tire orientation. 
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where the coefficients are defined as follows: 
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2.1.2.3 Articulated Bus Model 
 
The lateral dynamic model for basic tractor and semi-trailer combination was adopted for 
the single articulated bus [26, 27] where the articulated section of the bus is treated as the 
trailer and the front section of the bus is treated as the tractor. The states of the model are 
described relative to a “road coordinate system” which is centered at a point on the road 
centerline such that it is closest to the tractor center of gravity. The axes of this 
coordinate system are aligned along the tangent, normal and binormal to the road 
centerline. Under simplifying assumptions such as small relative yaw of the tractor with 
respect to the road, small articulation angle and small steering angle, the dynamics of the 
bus front section and the bus articulated section, similar to the tractor semi-trailer, in the 
form of dBxAx ++= δ& , are given by: 
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where [ ]Tfrrr yq εε ,,= and rq& are the states of the system. yr is the distance of the bus 
front section center of gravity from the road centerline, εr is the yaw angle between the 
bus articulated section longitudinal axis and the axis of the road coordinate system along 
the tangent to road centerline, and εf is the articulation angle (see Figure 2.1.10). A lateral 
displacement sensor (either a real sensor or a virtual sensor located at distance ds meters 
ahead of the bus front section’s center of gravity) measures its distance, ys, from the road 
centerline. The input to the model is δ, the steering angle of the front wheel. ρε vd =&  is 
the angular velocity of the road coordinate system where v is the longitudinal velocity of 
the vehicle and ρ is the road curvature. Matrices appearing in the system equation are 
given below. 

( )
















+++−
++++++−

−+−+
=

2
322312

2
32232

312
2
322

2
31221312

3231221

)(
)(

dmIddmdmIdm
ddmdmIddmIIddm

dmddmmm
M

zz

zzz  (2.1.11) 

( )
( ) ( ) ( )

( ) 















+−
+++++−−

−+−−++
=

ttt

ttrftrf

ttrftrf

ClCdllCl
CdllCdlClClCdlClCl

ClCdlClClCCC

v
C

2
31333

133
2

13
2
2

2
11321

313212  (2.1.12) 



2.16 

( )
( )( ) ( )
















++−−−

−++−
=

tt

ttrf

ttrf

ClCl
CdlCdlClCl

CCCC
K

33

131321

220
220

220
 (2.1.13) 

[ ]T
f lCF 012 1=  (2.1.14) 

( ) ( )( )
( ) ( )( )

( ) 





















+−

+++−+

+−−−+−

=

t

trf

trf

Cdll
v

vdm

CdlClCl
v

vddm

CdlClCl
v

vmm

E

13332

2
13

2
2

2
1312

132121

1

2

2

2

 (2.1.15) 

( )
( )( )

( ) 















++−
+++−

+
=

312
2
322

2
31221

312

2

ddmdmI
ddmII

ddm
E

z

zz  (2.1.16) 

m1 and m2 are the mass of the bus front section and the mass of bus articulated section 
respectively. Iz1 and Iz2 are the moments of inertia of the bus front section and the bus 
articulated section respectively. 2Cαf, 2Cαr and 2Cαt are the combined cornering stiffness 
coefficients of the front tires of the bus front section, rear tires of the front section and 
tires of the articulated section respectively. Geometric parameters associated with the 
tractor semi-trailer model are illustrated in Figure 2.1.10.  
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Figure 2.1.10: Geometric parameters of the tractor semi-trailer/articulate bus model 
 
 
2.1.2.4 Bus Parameters 
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The parameters for the models for the New Flyer 40 ft CNG buses and 60 ft articulated 
bus are shown in Table 2.1.4, and Table 2.1.5, respectively. Due to delays in the bus 
instrumentations and the high noise in the inertial sensors measurements during the initial 
data collection phase, no validation data were available before the buses were shipped to 
San Diego. Therefore, the bus parameters were generated using available data with 
certain engineering guesses. The values in Table 2.1.4 and Table 2.1.5 with * indicate 
there are some uncertainties in these numbers. The controller designs were thus focused 
on robustness that tolerate significant parameter uncertainties. 
 
Table 2.1.4 New Flyer 40 foot CNG Bus Parameters 

Description Values 
Mass of empty bus (kg) 13,381 
Bus yaw moment of inertia (kgm2) 172,455* 
Bus front tire stiffness (N/rad) 152,000* 
Bus rear tire stiffness (N/rad) 310,020* 
Bus wheel base (m) 7.5 
Bus length (m) 12.4 
Bus width (m) 2.57 
Bus height (m) 3.4 
Distance: front sensor bar to front axle (m) 1.1 
Distance: front sensor bar to rear sensor bar 
(m) 

5.4 

Distance: CG to front axle (m) 4.79* 
Steering ratio 17.1 
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Table 2.1.5 New Flyer 60 foot Diesel Articulated Bus Parameters 

Description Values 
Mass of empty bus (kg) 18.597 
Mass of front section (kg) 8,210* 
Mass of articulated section (kg) 10,387* 
Front section yaw moment of inertia 
(kgm2) 

58,344* 

Articulated section yaw moment of inertia 
(kgm2) 

93,221* 

Front section front tire stiffness (N/rad) 143,000* 
Front section rear tire stiffness (N/rad) 250,452* 
Articulated section tire stiffness (N/rad) 285,300* 
Bus length (m) 18.5 
Bus width (m) 2.57 
Bus height (m) 2.8 
Front section wheel base (m) 5.8 
Distance: front sensor bar to front axle (m) 0.38 
Distance: front sensor bar to rear sensor bar 
(m) 

5.16 

Distance: front axle to articulation joint (m) 8.1 
Distance: front section CG to front axle (m) 2.28* 
Distance: articulation joint to articulated 
section axle (m) 

5.69 

Distance: articulated section CG to 
articulation joint (m) 

5.2* 

Steering ratio 17.1 
 
Note: data with * is estimated value 
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2.2  Freightliner Century Trucks  
 
The acquisition of the three heavy-duty tractor-trailer trucks for the demonstration was 
based on an open procurement issued by Caltrans, relying on technical specifications 
provided by PATH.  The intent of this procurement was to acquire heavy-duty trucks 
with the highest level of in-vehicle technology available, in order to minimize the work 
involved in modifying them for demonstration purposes, and with maximum-size cabs in 
order to accommodate the maximum number of demonstration riders.  This meant, for 
example, that the trucks should have as many functions as possible integrated on the 
CAN bus, and should be equipped with Eaton-Vorad EVT-300 radar systems for 
collision warning and adaptive cruise control.  The most favorable bid submitted in 
response to the Caltrans procurement was from Freightliner, for their Century-Class 
trucks, so these were selected and purchased. 
 
It was deemed essential to equip the trucks with automatic transmissions in order to avoid 
the need to implement a mechanical robot to shift gears.  The highest-capacity automatic 
transmission that was available (from Allison) imposed the governing power limit on the 
trucks, and required that they be equipped with engines that could provide only 435 Hp.  
Although higher-power engines were available, they could not be used with the automatic 
transmission. 
 
The Freightliner Century Class vehicles had engines manufactured by Cummins, and 
transmission provided by Allison as mentioned previously.  Specific details about the 
transmission and engine are in Table 2.2.1 below: 
 

Table 2.2.1.  Freightliner Century Class Specifications   
 

 Freightliner Century 
Class 

Engine Mfr. Cummins 
Engine Model N14-435EI 
HP 435 
RPM 2100 
Transmission Mfr. Allison 
Transmission Model HD4060 
Vehicle Weight 17,280 lbs 

 
 
2.2.1  Longitudinal Dynamics of the Trucks 
 
In contrast to passenger cars, longitudinal control of a heavy truck has the following 
characteristics:  
(a) Mass dominant: Any minor change of a mass-related factor (such as road grade or 
acceleration demand) causes large variations in torque demand. This, in turn, makes the 
control system performance highly sensitive to the assumed vehicle mass, putting a 
premium on real-time mass estimation;  
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(b) Low power/mass ratio: It is easy to cause actuator saturation, which eventually leads 
to the loss of controllability. This ends up with the situation that there is no power 
available for speed and distance control. In this case, both the closed-loop stability and 
string stability may be destroyed;  
(c) Large actuator delays: These delays come from, but are not restricted to, engine 
indicated torque production, the transmission torque converter, pneumatic brake and 
transmission retarder. These delays are the main obstacles to string stability;  
(d) Disturbances during gear shifting are more prominent if the vehicle is accelerating, 
which is due to the large vehicle inertia and zero engine torque passed to wheels during 
the shift.  
 
These factors determine naturally that short-inter vehicle distance following for heavy 
trucks is more difficult than that for passenger cars. To relieve this difficulty, it is 
necessary to analyze the main factors in vehicle dynamic modeling for control.  
 
Vehicle modeling for longitudinal control includes the dynamics of the following 
components: vehicle body, engine, brake, transmission and tires.  The overall dynamic 
system is intrinsically high dimensional and highly nonlinear.  Previous research at 
PATH has shown that control based on a simplified linear model cannot achieve such a 
goal.  This is understandable because, from the real-time control design point of view, the 
following factors degrade control performance:  model mismatch, external disturbances, 
measurement noise and time delays.  
 
To maximally achieve robust performance of a controller, one needs to reduce all those 
effects. External disturbances can be compensated for by the robustness of a properly 
designed controller. Measurement noise can be rejected by proper filtering and data 
fusion techniques, which are intended to achieve the smallest estimation error, the 
strongest noise rejection property and the least time delay.  It is important to obtain a 
good model of the system to be controlled, which should be simple enough to be used for 
control design, but complicated enough to capture the intrinsic vehicle dynamics.  This 
necessarily implies a nonlinear model.  The model to be used here is based on the 
following assumptions: 
 
1. Turbocharger dynamics are separated from the engine dynamics under the assumption 
that the booster pressure (manifold pressure between turbocharger and the cylinders) is 
measured and explicitly accounted for. 
 
2. A static nonlinear engine mapping, which defines the functional relationship between 
engine speed, booster pressure, fuel rate and indicated torque is used. 
 
3. For the pneumatic brake system, the built-in Electronic Braking System (EBS) is used 
as the lower level brake control actuator.  For modeling this system, two delays are 
involved: pure time delays from actuation and release, and a first-order lag representation 
of pneumatic system dynamics. A variable-structure second-order brake model is 
established to count for the difference between activation and release delays. 
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4. Engine control: The built-in engine speed and torque P-I control of the engine 
controller is used as the lower-level (inner loop) actuator.  
 
5.  Tire slip directly reflects vehicle longitudinal dynamics and vehicle moving distance 
measurement. A moving average tire slip estimation proposed in [10] is adopted.  
 
With these separations and simplifications, the second-order vehicle dynamics is globally 
feedback linearizable.  In vehicle dynamics, one of the major components is the total 
resistance, which can be divided into three parts: aerodynamic drag force, rolling 
resistance and engine braking force.  The drag force term depends on the drag coefficient, 
which can be determined by wind tunnel experiments.  Rolling resistance depends on 
vehicle mass and weakly on speed.  The engine braking force is quite different from that 
of passenger cars, and has not yet been reported in previous work.  
 
Compression (“Jake”) braking [11,12] is a special feature of modern turbocharged diesel 
engines, which does not exist in passenger cars.  For a 6  cylinder engine, one can switch 
on 2 4,  and 6  cylinders respectively to produce retarding torque to the vehicle. The 
maximum retarding power can be as high as the engine active horsepower [12].  The 
advantages of using the Jake brake is its faster response than pneumatic brakes, which is 
particularly desirable for longitudinal control.  The disadvantage is that vehicle-following 
control needs a continuous spectrum of braking torque levels at all vehicle speeds. 
Obviously, the Jake brake alone does not have such a feature, so a combined braking 
system, including the Jake brake, pneumatic brake and transmission retarder will be used 
for future control design.  
 
For reader’s convenience, all notation used in describing the truck longitudinal control 
will be listed at the start of the section.  
 
 
2.2.1.1 Truck Hardware and Modeling 
 
2.2.1.1.1 Notation: 
 
M −  vehicle mass  
ω −  engine speed  

idleω −  engine idle speed  

pω −  torque converter pump speed, pω ω=   

tω −  torque converter turbine speed  

tbω −  turbocharger speed  

trω −  transmission output speed  

1drω −  propeller-shaft speed including front part of final gear  

2drω −  drive-shaft speed including front rear of final gear, final drive end  

drω −  drive-line speed (considered as lump sum), final drive end  
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wω −  wheel angular speed  
v −  vehicle wheel speed (longitudinal) is used for all control design  
a −  acceleration  
α −  throttle angle  

fα − fueling rate  

eI −  engine inertia  

trI −  transmission inertia  

1drI −  drive line inertia (before final gear)  

2drI −  drive line inertia (after final gear)  

drI −  lump sum drive line inertia ( 1 2dr dr drI I I= + )  

wI −  wheel inertia  

mP −  intake manifold pressure or turbocharger booster pressure   

dT −  drive-line torque loss  

indT −  engine indicated torque  

netT −  engine net output torque  

pT −  torque converter pump torque, p netT T=   

tT −  torque converter turbine torque  

bT −  service brake torque  

jakeT −  engine brake torque  

trT −  transmission output torque  

1drT −  final gear input torque (or equivalently propeller shaft final end torque)  

2drT −  final gear output torque  

wT −  engine torque passed onto wheel  

rtdT −  transmission retarder torque  

fricT −  engine friction torque  

e_brkT −  engine braking effect torque when net net_desT T<   

aF −  aerodynamic resistance force  

rF −  rolling resistance force  

fF −  friction force  

eng brkF − −  engine braking force transmitted to wheels when throttle is released  

total r eng brkF F F −= +   
Fω −  engine brake force when clutch is engaged and fueling is in idle  

rh −  effective tire radius  
θ −  road grade, 0θ >  means ascending  

gr −  transmission gear ratio  

dr −  final-drive gear ratio  
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gR −gear ratio g

r

vR
g g d t hR r r ω= , =   

aV −  relative speed to the pneumatic in the longitudinal direction  

airρ −  air density  
 
 
2.2.1.1.2 Overall System Structure and Vehicle Dynamics Modeling 
 
For precise longitudinal control of heavy vehicles, we need more detailed models than 
those that are normally described in the vehicle dynamics literature [13-15]. Engine 
power transmitted through the powertrain is characterized by two states: engine speed 
and net output torque.  Engine speed is closely related to wheel speed, while output 
torque is related to wheel acceleration.  To establish a vehicle dynamics equation, one can 
choose wheel speed, engine speed, or even a speed of any powertrain element between 
them, as the fundamental state variable.  Here we use wheel speed for the convenience of 
implementation. The power flow chart is depicted as in Fig. 2.2.1.  

 
Fig. 2.2.1  Power Flow Chart  

 

1. Engine Driving Mode 

The engine net output torque is represented by:  
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where it is assumed that the clutch is locked up. If the torque converter is on, pT  should 
be calculated from a torque converter model.  A possible torque converter model is the 
popularly recognized static Kotwicki model [16].  Following the power flow in Fig. 1 and 
notice the following relationships  
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Longitudinal vehicle dynamics is obtained as:  
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where  
 20 5a a air aF C AVρ= .  

 
bT  and totalF  will be modeled separately.  The modeling of aerodynamic factors for trucks 

is described in [17]. 
 

2. Other Driving Modes 

1. Engine Braking Mode: ( 0 2 4 6)net jakeT T Jake= − = , , ,  is used in (2.2)  
2. Transmission Retarder Mode: 0netT =  in (2.2) 
 

3. Vehicle Mass Preliminary Estimation:  
Vehicle mass could be estimated from (2.2)  
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but this is a singular expression if  
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 sin 0gv θ
.

+ =  (2.3) 

 
Physically, this implies that to estimate the vehicle mass, the vehicle acceleration must be 
non-zero, which may be generated by engine torque and/or road grade.  
 
It is noted that this formula only provides a rough mass estimation because all the 
measurements contain noise. Besides, at low speed, the torque converter plays an 
important part, which aggravates the situation. For best performance, vehicle mass 
estimation is needed, and it will probably be advisable to incorporate this directly into the 
data available on the vehicle’s internal data bus when the truck is weighed at the start of 
each trip.  
 
 
2.2.1.1.3 Engine Modeling 
 
Diesel and turbocharged diesel engine modeling and control have been conducted in [18, 
19] and diesel engines with turbocharger and EGR (Exhaust Gas Recirculation) are 
considered in [20].  If booster pressure is measured and taken as input to the engine, the 
dynamic relationship between the engine and turbocharger can be decoupled. This 
simplification is sufficient for vehicle control.  

 
Fig. 2.2.2 Cummins N14-435 Turbocharged Diesel Engine Internal Control 
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Strictly speaking, engine output torque is produced by discontinuous explosion strokes. 
However, for longitudinal control purpose, a continuous mean-torque-value output is 
assumed.  A static engine mapping can be used to define the relationship among engine 
speed, net output torque, fuel rate and booster pressure net f mT Pω α 

 
 
, , ,  [13,16].  The 

input-to-torque production delay, which depends on engine speed with other factors such 
as injection time, engine temperature, etc., is implicitly captured by the mapping. This 
mapping can be used to find (by interpolating) the desired fuel rate from the desired 
engine speed and torque. If engine fuel rate control is accessible, this approach 
implements the engine control [13, 21, 22].  However, direct access to fuel rate control is 
prohibited on modern trucks due to their internal engine control structure. Thus, the 
engine control approach had to be reconsidered.  
 
The Cummins N14_435 turbocharged diesel engine for the Freightliner Century Truck 
has internal electronic control (Fig. 2.2.2, Engine Control Module -ECM), which takes 
input from the driver’s pedal deflection and interprets it as either speed control command 
or torque control command.  These commands are passed through the J-1939 data bus.  
The output of the controller is fuel rate (as input) to the engine.  The principle of the 
control strategy is based on obtaining desired torque at a certain speed, while optimizing 
with respect to, among others, emissions, fueling time, output torque and fuel 
consumption. To practically use it, a simulator is necessary to interface between the 
vehicle longitudinal control computer and the engine ECM.  Because of this structure, 
one cannot use engine mapping to generate fuel rate commands.  Rather, the desired net 
output torque and desired engine speed are directly fed into the ECM.  The internal 
controller here acts as an inverted engine map, and its performance will therefore 
significantly affect the longitudinal controller.  
 

1. Engine Braking Effect 
Engine braking effect comes from the mismatch between engine speed and wheel speed 
while gear is engaged and either the torque converter is on or the transmission clutch is 
locked-up.  It is a retarding effect in addition to the vehicle’s rolling resistance.  
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This effect is taken into account whenever engine fueling is relaxed and a gear is 
engaged. Suppose vehicle acceleration a  and road grade θ  are measured/estimated. 
These parameters can be obtained as follows:  
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(1) When vehicle speed reaches a specified value maxv ,  relax fueling to idle and keep gear 
engaged to leave the vehicle free rolling. From  
 
 sintotalF Ma Mg θ= +  

one obtains totalF ;  
 
(2) Repeating this procedure but setting gear to neutral, one obtains  
 
 sinrF Ma Mg θ= +  

Then  
 eng brk total rF F F− = −  

 
A test result using the Freightliner Century truck is shown in Fig. 2.2.3.  

 
Fig. 2.2.3  Engine braking effect when throttle is released. 

 
In the test case shown in Figure 2.2.3, the fuel pedal was released at about t = 20, when 
the speed reached 55 mph, and the truck was allowed to coast down.  It shifted from fifth 
to second gear in the process of coasting down, and the discontinuities associated with 
the gear shifts are evident in the lower right plot, showing engine speed and the upper 
right plot, showing engine braking force.  The rolling resistance force is shown in the 
lower left plot.   
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2.2.1.1.4 Braking System Modeling 
 
2.2.1.1.4.1 Engine Compression Brake 
 
The compression (Jake) brake system provides discrete and limited braking torque on 
driving wheels with fast response.  Its retarding force mainly depends on engine speed. 
The engine braking effect proposed in [11] is caused by the mismatch between engine 
speed and wheel speed when fueling is relaxed and the drive-line is engaged. It is 
recognized that this effect can be considered as a special case of Jake Brake when no 
valve is open. From this point of view, the braking torque on driving wheels provided by 
the engine can be modeled in a variable structure model as: 
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which is a generalization from the engine braking effect in [11].  The general principle of 
the compression brake is illustrated in Figure 2.2.4, and data from testing a Freightliner 
Century truck with two, four and six cylinders of compression braking are shown in 
Figures 2.2.5 – 2.2.7. 
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Fig.2.2.4  Engine Brake Principle 

 
Fig. 2.2.5  Effect of 2 Cylinders of Compression Braking ON 
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Fig.2.2.6  Effect of 4 Cylinders of Compression Braking ON 

 
 

 
Fig. 2.2.7 Effect of 6 Cylinders of Compression Braking ON 
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In each of these figures, the upper left plot shows the truck speed in m/s and the 
commanded and actual engine fueling rates.  The middle and lower left plots show engine 
speed in rpm and measured vehicle acceleration.  The vehicle acceleration data are too 
noisy to use for quantitative characterization of system performance, but they serve to 
show the choppy ride quality associated with the application of the compression brake 
during the deceleration.  The upper and middle right plots show the application of the two 
and four-cylinder increments of compression braking, with “on” corresponding to a -10 
value on the plot, while the lower right plots show the engine manifold pressure. 
  
The modeling of the effect of the compression braking for purposes of control system 
design is based on use of the engine speed and vehicle speed data from these tests.  The 
slope of the truck speed curve represents the deceleration of the truck, and after the 
rolling resistance effects are subtracted out, the contribution of the compression brake to 
truck deceleration can be estimated. 
 
 
2.2.1.1.4.2 Transmission Retarder 
 
The transmission retarder can provide continuous braking torque on the driving wheels, 
but with slow response and limited braking torque [12,23].  A model of transmission 
retarder behavior is proposed as follows: 
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0trτ −  pure time delay parameter 1 5[ ]s.�   

rtdV −  voltage or transmission retarder pedal deflection  

( )rtd drVς ω, −  a nonlinear function  
1 5[ ]tr sκ ≈ .   

 
It is noted that the pure time delay parameter trκ  is time varying and it disappears after 
1 5[ ]s. . This time period is used for filling up the liquid into the retarder chamber.  
The applied torque at the wheels is calculated as: 
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2.2.1.1.4.3 Euro-EBS: Electronic Braking System (EBS) 
 
The Euro-EBS braking system is not used in the U.S., and had to be acquired by special 
arrangement with the supplier WABCO-Meritor, so it should really be considered as part 
of the modifications that PATH had to make on the trucks in order to make them capable 
of automated driving. 
 
The features of Euro-EBS are described below. The critical part relevant to automatic 
longitudinal control of the trucks is the Central Module: 
 

• Function: To control and monitor the EBS 
• Input:  

1. signal from brake signal transmitter (vehicle desired retardation) 
2. Wheel speed sensor 

• Output: index pressure values Îfront axle, rear axle and trailer control valve 
• Front axle:  Relay valve is used to compensate for any difference of applied and 

measured pressure values 
• Trailer Pressure Control: similar 
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Fig. 2.2.8  EBS Control System – General Picture 

 
Fig. 2.2.9  Brake Signal Transmitter 
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Fig. 2.2.10 Central Module 
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Fig. 2.2.11 Control System for EBS 

 
Freightliner Century trucks have built-in Electronic Braking System (EBS). The main 
characteristics of this system are:  
 
(a) Control on each individual wheel  
(b) Incompatibility in braking torque between tractor and trailer is compensated  
(c) Fault detection is available for brake components as they are managed in real-time  
(d) Shorter response and pressure buildup time  
(e) Optimized stability and traction  
(f) Electro-pneumatic and pure pneumatic (parallel) redundancies for all brake circuits  
Electro-pneumatic circuit is used for default and pneumatic circuit is used when the 
former fails.  
 
To fully exploit the advantages of EBS, the internal control system will be used. To 
achieve this, a simulator circuit was developed to generate modulated pulse-width signals 
to replace the Brake Signal Generator in EBS to interface with a computer.  
 
 
From the brake structure, the functional relationship from applied brake pressure to brake 
torque has the following characteristics:  
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dP −  brake pressure force (push-rod force) at brake drum or output pressure of 

diaphragm  
dr −  brake drum radius  

dσ −  friction coefficient between brake drum and brake pad  

appP −  applied brake pressure  

dA −  area of diaphragm  

resP −  air pressure at reservoir  

bV −  applied brake voltage (equivalent to brake pedal deflection)  

0σ −  constant coefficient determined by manufacturer  
For all the parameters, only dσ  needs to be identified, while the other parameters can be 
measured or estimated from data.  
 
In brake modeling, there is a pure time delay, which is observed in both activation and 
release, combined with a dynamic lag.  Combining them both, practical brake pressure at 
the wheel is obtained as: 
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where: 

aτ −  activation time delay (pure time delay)  

rτ −  release time delay (pure time delay)  

baτ −  dynamic time constant for activation  

brτ −  dynamic time constant for release  
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2.2.1.1.5 Open Loop Response of Powertrain 
 
The following figures show the open-loop response of the powertrain of a Freightliner 
Century truck pulling an empty trailer.  They give the qualitative and quantitative 
relationships among the following parameters:  
 
Figure 2.2.12 shows the transmission input shaft speed and output shaft speed, which in 
turn give the dynamical relationship between input and output of the torque converter and 
gear shifting characteristics. 
 
Figure 2.2.13 shows the engine speed, together with fuel rate and percentage torque 
generated, together with the estimated engine friction torque. 
 
Finally, Figure 2.2.14 shows fuel rate, pedal position and wheel speed, indicating the 
response of vehicle speed to fuel rate. 

 

 
 
 

Fig. 2.2.12  Input/output shaft speed of transmission [rpm] 
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Fig. 2.2.13 Engine speed [rpm]; Scaled fuel rate and percentage torque estimated; 

Nominal friction percentage torque 

 
 
 
 

Fig. 2.2.14 Wheel speed and ground speed from GPS; fuel rate and pedal position 
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2.2.2 Lateral Dynamics of the Trucks 
 
2.2.2.1 Mathematical Model 
 
Mathematical models were developed for the lateral dynamics of the trucks to support the 
development of the lateral controller. The dynamical equations representing lateral 
dynamics of a tractor semi-trailer combination are shown in Eq. (2.2.2.1) where the state 
variables of the model are described relative to a “road coordinate system” centered at a 
point on the road centerline such that it is closest to the tractor center of gravity. The axes 
of this coordinate system are aligned along the tangent, normal and binormal to the road 
centerline. Under simplifying assumptions such as small relative yaw of the tractor with 
respect to the road, small articulation angle and small steering angle, the dynamics of the 
tractor semi-trailer, in the form of dBxAx ++= δ& , are given by [26, 27] as: 
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where [ ]Tfrrr yq εε ,,= and rq& are the state variables of the system. yr is the distance of the 
tractor center of gravity from the road centerline, εr is the yaw angle between the tractor 
longitudinal axis and the axis of the road coordinate system along the tangent to road 
centerline, and εf is the articulation angle (see Figure 2.1.10). The input to the model is δ, 
the steering angle of the front wheel. ρε vd =&  is the angular velocity of the road 
coordinate system where v is the longitudinal velocity of the vehicle and ρ is the road 
curvature. Matrices appearing in the system equation are given as those for the articulated 
bus in Eqs. (2.1.11) to (2.1.16). Similarly, m1 and m2 are the mass of the tractor and the 
mass of semi-trailer respectively. Iz1 and Iz2 are the moments of inertia of the tractor and 
the semi-trailer respectively. 2Cαf, 2Cαr and 2Cαt are the combined cornering stiffness 
coefficients of the front tires of the tractor, rear tires of the tractor and tires of the trailer 
respectively. Geometric parameters associated with the tractor semi-trailer model are also 
illustrated in Figure 2.1.10.  
 
The parameters for the models for a Freightliner Century tractor and a box trailer and a 
lowboy trailer are shown in Table 2.2.2. Those parameters were obtained by tuning the 
parameters to fit the experimental frequency responses as in Figure 2.2.15a – Figure 
2.2.15c. Due to delays in the truck instrumentations and the high noise in the inertial 
sensors measurements during the initial data collection phase, the truck parameters were 
generated using available data with certain engineering guesses. The values in Table 
2.2.2 with * indicate there are some uncertainties in these numbers. The controller 
designs were thus focused on robustness that tolerates significant parameter uncertainties. 
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Figure 2.2.15a: Frequency Sweep: Steer command to Tractor yaw rate  

(Tractor only, v= 9,18,27 m/s) 
 

  
Figure 2.2.15b: Frequency Sweep: Steer command to Tractor (left) and Trailer (right) yaw rate 

(Tractor with fully loaded Lowboy trailer, v= 9,18,27 m/s) 
 

  
Figure 2.2.15c: Frequency Sweep: Steer command to Tractor (left) and Trailer (right) yaw rate 

(Tractor with empty Lowboy trailer, v= 9,18,27 m/s) 
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Table 2.2.2 Model parameters for the tractor semi-trailer 

Description Value 
Mass of Tractor (kg) 8,400 
Mass of empty lowboy trailer (kg) 6,465 
Mass of empty box trailer (kg) 5,455 
Mass of trailer load (kg) 8,100* 
Tractor yaw moment of inertia (kgm2) 46,068* 
Trailer yaw moment of  inertia (kgm2) 162,400* 
Tractor front tire stiffness (N/rad) 180,000* 
Tractor rear tire stiffness (N/rad) 415,000* 
Trailer tire corning stiffness (N/rad) 332,000* 
Distance: tractor front axle to CG (m) 1.9* 
Distance: tractor rear axle to CG (m) 3.92* 
Distance: trailer axle to king pin (m) 10.0 
Distance: king pin to tractor CG (m) 3.30* 
Distance: trailer CG to king pin (m) 3.5* 
Distance: sensor to tractor CG (m) 1.8* 
Tractor length (m) 7.5 
Steering ratio 18 
 
 
2.2.2.2 Tractor Semi-Trailer Model Sensitivity Comparisons 

 
In order to understand the dynamics of the tractor semi-trailer lateral responses, the 
transfer functions from steering angle to tractor lateral acceleration at CG (Vr(s)), to 
tractor yaw rate ( )(sVε& ), and to articulation angle (Vf(s)) were obtained and analyzed: 
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The following is the summary of the observations from the comparisons [28]: 
� The most sensitive parameters with respect to the tractor semi-trailer dynamics are the 

tire stiffness and the vehicle speed. The “worst” dynamic appears when low tire 
stiffness is combined with high speeds. 

� The tractor dynamics are not very sensitive to the trailer loading conditions (as shown 
in Figure 2.2.16). However, the degree of the articulation coupling to the lateral 
dynamics increases as the CG of the trailer load moves significantly behind the trailer 
center; this effect is more noticeable with heavy load and at higher speed. 

� Unlike tires of the passenger cars, the tire stiffness of the truck tires usually increases 
as the normal load increases, even beyond its rated load. Under the assumption that 
the truck tire stiffness is proportional to the normal load, the sensitivity of the tractor 
lateral dynamics with respect to other parameters is reduced as observed in Figure 
2.2.16. 
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Figure 2.2.16: Tractor semi-trailer transfer function from steering angle to lateral 
acceleration at tractor CG with changing loading locations (tire stiffness proportional to 
normal load) 
 
The tractor dynamics when the trailer is hooked up are then compared with the case 
where there is no trailer attached. A simple bicycle model is used to represent the tractor 
dynamics without trailer: 
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Figure 2.2.17 illustrates the general observations of the comparisons between tractor 
semi-trailer and tractor only under the constant tire stiffness assumption (which results in 
larger model variation): 
� The tractor’s lateral dynamics with and without trailer exhibit very similar trends with 

respect to all vehicle parameters as long as both loading and tire stiffness are within 
the specifications. 

� The major differences between the dynamics of tractor with and without trailer are: 
(1) Higher gains at lower frequency especially under higher speeds. This is attributed 
to the fact that the trailer is dragging the tail end of the tractor, resulting in a smaller 
radius. (2) More delays around the articulation mode frequency, which is the result of 
the transfer of the lateral energy from tractor to trailer. 
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Figure 2.2.17: Tractor semi-trailer and Tractor only transfer function from steering angle 
to lateral acceleration at tractor CG (constant tire stiffness) 
 
Figure 2.2.18 shows a very interesting counter-intuitive result. The lateral dynamics of 
tractor semi-trailer combinations change significantly with respect to speeds, trailer 
loading conditions, as well as tire stiffness changes. The major differences between the 
dynamics of tractor with and without trailer are: (1) Higher gains at lower frequency 
especially under higher speeds. This is attributed to the fact that the trailer is dragging the 
tail end of the tractor, resulting in a smaller radius. (2) Delay around the articulation 
mode frequency, which is the result of transferring the lateral energy from tractor to 
trailer. However, by practicing driving the tractor with trailer, one will realize that its 
lateral dynamics are very stable while driving forward except in the situation of severe 
braking. The only additional skill a driver needs is to properly adjust the steering so that 
the trailer can be positioned at the right location during turning. Very little additional 
dynamic compensation is necessary. Figures 2.2.18 and 2.2.19 compare the lateral 
acceleration dynamics at the vehicle CG and at 1-tractor length ahead of the vehicle 
under significant parameter variations. The comparison (especially between 0.2 to 1 Hz) 
suggests that “looking-ahead” dramatically desensitizes the vehicle steering dynamic 
variations. By looking ahead, the driver does not need to alter its steering dynamic 
compensation significantly to stabilize different vehicles. This observation suggests that 
(1) it is difficult to identify correctly the parameters of tractor and semi-trailer 
combinations, (2) the tractor semi-trailer dynamics changes drastically with respect many 
operational and loading conditions, (3) “look-ahead,” which the controller should 
provide, will desensitize these parameter uncertainties. 
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Figure 2.2.18: Tractor semi-trailer transfer function from steering angle to lateral 
acceleration at tractor CG: v=10,20,30 m/s; trailer load=0,5000,10000,15000 kg; CG of 
load=1,5,9 m behind king pin; possible 50% reduction in tire stiffness (assuming tire 
stiffness does not vary with load) 
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Figure 2.2.19: Tractor semi-trailer transfer function from steering angle to lateral 
acceleration at tractor at 1-tractor length ahead: v=10,20,30 m/s; trailer 
load=0,5000,10000,15000 kg; CG of load=1,5,9 m behind king pin; possible 50% 
reduction in tire stiffness (assuming tire stiffness does not vary with load) 
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Chapter 3.  Modifications to the Host Vehicle Platforms 
 
3.1  Overview Description  
 
The base vehicles acquired from the manufacturers had to be extensively modified in 
order to provide them with the capabilities for automated driving.  These modifications 
are described in this chapter.  An overview of the modifications can best be visualized 
using Figures 3.1.1 and 3.1.2 for the buses and trucks respectively.  As these figures 
indicate, the modifications are quite similar as soon as we rise above the level of the 
different actuation means for engine and braking. 
 

 
 
 
 

Fig. 3.1.1 – Bus Component Additions 
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Fig. 3.1.2 – Truck Component Additions 
 
Installing all these components required not only mechanical integration with the base 
vehicles, but also electrical integration, which involved significant installation of wiring 
and connectors.  These details are specific to the individual vehicles and components 
involved, and are not of more general relevance. 

 
 

3.2  Modifications to Buses, for Automation and Data Acquisition  
 

3.2.1  PC-104 Control/Data acquisition and DVI Computers  
 
3.2.1.1  Hardware Overview 
 
PATH has adopted the PC/104 computer standard for control of heavy vehicles which 
includes three Freightliner trucks and three New Flyer transit buses. The PC/104 was 
chosen since it is rapidly becoming a standard for computers often found in factories, 
laboratories, and machines to provide programmable control of complex systems. PC/104 
is a standard for PC-compatible modules (circuit boards) that can be stacked together to 
create a complete computer system. These types of systems are often found in factories, 
laboratories, and machinery to provide programmable control of a complex system. 
PC/104 systems are very similar to standard desktop PCs but with a different form factor. 
The name "PC/104" is derived from this likeness and the special stackable bus connector 
having 104 pins (Figures 3.2.1 and 3.2.2). 
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Figure 3.2.1. Typical PC/104 Stack. 

 These systems can be programmed with the same development tools used with full-
size PCs which reduces the need and cost of custom development efforts. Although only 
about 100 cm x 100 cm, PC/104 boards are very powerful for their size. PC/104 products 
are designed for minimal power consumption, small foot print, modularity, expandability, 
and ruggedness. 

 The computer system configuration used on the transit buses is shown in Figure 3.2.2 
and consists of four major components: 
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Figure 3.2.2. Computer system Configuration 

 

1. The Control Computer. Used to read all sensors, issue speed and steering commands, 
and communicate state information to the other buses. 

2-3. The DVI (Driver Vehicle Interface) Computer/DVI Control Box. This system is 
designed to generate a graphical interface of the system state to the driver. The state 
information is transferred to the DVI computer from the control computer using a bi-
directional serial line. The DVI not only shows vehicle information, but also allows 
control mode/menu switching using a push button pad next to the display. 

4. In-Bus Display. A 19” flat panel computer monitor was installed viewable to the 
passengers showing the display from the DVI control box.  This was used since the 
control box display is small and viewable only to the driver. 

 The vehicle control computers used in the PATH heavy vehicles consist of 10 stacked 
boards shown in Figure 3.2.3, and the DVI computer stack is shown in Figure 3.2.4. 
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Figure 3.2.3. PC/104 Stack for the Control Computer. 
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Figure 3.2.4. PC/104 Stack for the DVI Computer. 
 
 
 A photograph of the control computer as installed in the New Flyer transit bus is 
shown in Figure 3.2.5.  
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Figure 3.2.5. PC/104 Control Computer Installed in New Flyer Transit Bus. 
 
The control computer is located in a compartment above the front window and behind the 
destination sign. The computer and associated cables/terminal blocks are mounted to a 
shelf that can be moved in and out of the compartment for ease of maintenance.  
 
 
3.2.1.2 Individual Board Descriptions and Functionality 
 
 A brief description of each board and function is given below: 
 
1. CPU: Intel 400 MHz P3Celeron MSM-P3SEV. The board includes VGA, 

100/10Base-T LAN ethernet, E-IDE hard disk interface, 3.5” micro Floppy disk 
interface, and COM1, COM2 serial ports. Vendor: Advanced Digital Logic. 

 

 
MSM-P3SEV 
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2. PCMCIA: 2-slot PCMCIA board MSMJ104D. Used for holding an Orinoco 
802.11b vehicle-to-vehicle communications card. Vendor: Advanced Digital 
Logic. 

 

 
MSMJ104D 

 
 

3. Serial ports: 8-port RS-232 serial port board EMERALD-8232-XT. Includes 8 
programmable digital I/O lines. The ports are used for reading the radar, lidar, rate 
gyroscope, J1587 bus, and GPS. It also communicates information to and from the 
DVI computer. Vendor: Diamond Systems. 

 
 

 
EMERALD-8232-XT 

 
 

4. 32-channel 16-bit 200KHz analog to digital board DIAMOND-MM-32-AT. Includes 
4 12-bit analog output channels, 24 programmable digital I/O lines, and 1 32-bit 
counter/timer. This board reads the analog signals from the magnetometers, 
accelerometer, steering potentiometer. Vendor: Diamond Systems. 
 

 
DIAMOND-MM-32-AT 

 
 

5. Dual CAN field bus interface board: CAN2104-30-20. Includes 32 32-bit  digital I/O 
lines. The J1939 data bus is read with this board. Vendor: SSV Embedded Systems. 
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CAN2104-30-20 

 
6. 3-channel quadrature decoder/counter board MSI-P400-3CH. The steering wheel 

angular position is read by this card .Vendor: MicroComputer Systems. 
 

 
MSI-P400-3CH 

 
 
 

7. 16-channel 12-bit digital to analog output board RUBY-MM-1612-XT. Includes 
24 digital I/O lines. The analog outputs are used for the steering torque, 
accelerator pedal, and brake valve commands, while the digital I/O lines monitor 
the magnetometer health states, and send control transitions. Vendor: Diamond 
Systems. 

 
 

 
RUBY-MM-1612-XT 

 
 

8. 50 watt DC/DC power supply board: HE104-512-V512. Vendor: Diamond Systems. 
 

 
HE104-512-V512 
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The following are PC/104 boards are used in the DVI computer: 
 
9. SoundBlaster Pro compatible full-duplex, high-power 16-Bit stereo audio board 

CRYSTAL-MM-HP-EX. Vendor: Diamond Systems 
 

 
CRYSTAL-MM-HP-EX 

 
 
10. 48-line high current digital I/O: GARNET-MM-48. The push button pad inputs are 
read with this board. Vendor: Diamond Systems 
 

 
GARNET-MM-48 

 
All computers are enclosed in a PC/104 mounting enclosure, Can-Tainer. Vendor: Tri-M 
Engineering. 
 

 
 
 

Can-Tainer 
 
 

More detailed descriptions of the board configurations are found in Appendix A. 
 

 
3.2.2  Magnetometer Sensors and Sensor Bars  
 
The development of a reliable and accurate lateral referencing system is crucial to the 
success of the lateral guidance system for any lane assist systems of heavy vehicles. 
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Since the bus precision docking system has the tightest accuracy requirements, it was 
used as the benchmark system for the magnetometer sensor design. For the precision 
docking system, the accuracy requirement for the lateral sensing system is directly 
proportional to the required docking accuracy especially along the docking platform. The 
lateral sensing accuracy requirement was set to be better than 1 centimeter for the 
docking accuracy targeted to be better than the same value. The assumption is that the 
installation and measurement errors are randomly and evenly distributed relative to the 
correct position.  
 
PATH has proposed and developed a lateral referencing and sensing system that is based 
on magnetic markers embedded in the road center to provide the lateral position and road 
geometric information. The automatic steering guidance system based on such 
technology provides the control system with the following two fundamental pieces of 
information: the vehicle position with respect to the roadway, and the current and future 
road geometry. Two arrays of magnetometers, one located just behind the front bumper 
and the other at about 4-6 meters behind the front sensors, were used to “simultaneously” 
obtain front and rear lateral offset measurements. 
 
Extensive development and experiments have been performed on magnetic marker-based 
lateral sensing systems for many PATH vehicles equipped with automated steering 
control. The vast knowledge available about this lateral sensing technique as well as its 
high reliability were two of the primary reasons that this technology was first chosen to 
support the heavy vehicle automation including Precision Docking steering guidance 
system. Other positive characteristics of this lateral sensing technique include good 
accuracy (better than one centimeter), insensitivity to weather conditions, and support for 
binary coding. The requirement of modifying the infrastructure (installing magnets) and 
the inherent “look-down” nature (the sensor measures the lateral displacement at 
locations within the vehicle physical boundaries, versus look-ahead ability) of the sensing 
system are two known limitations of this technology. The principal idea for this sensing 
system is straightforward. Magnetic markers are installed under the roadway delineating 
the center of each lane or any other appropriate lines for the specific applications. 
Magnetometers mounted under the vehicle sense the strength of the magnetic field as the 
vehicle passes over each magnet. Onboard signal processing software calculates the 
relative displacement from the vehicle to the magnet based on the magnetic strength and 
the knowledge of the magnetic characteristics of the marker. This computation is 
designed to be insensitive to the vehicle bouncing (e.g., heave and pitch) and the ever-
present natural and man-made magnetic noises. Furthermore, the road geometric 
information, such as bus docking locations, road curvatures, lane change areas, can be 
encoded as a sequence of bits, with each bit corresponding to a magnet. The polarity of 
each magnet represents either 1 (one) or 0 (zero) in the code. In addition to the lateral 
displacement measurement and road geometry preview information, other vehicle 
measurements such as yaw rate, lateral acceleration, and steering wheel angle may also 
be used to improve the performance of such a lateral guidance system. 
 
 
3.2.2.1 Magnetic Noise Effects 
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Four major noise sources are usually present in the magnetic signal measurements in a 
typical vehicle operational environment: ambient geomagnetic field, local magnetic field 
distortion, vehicle internal electromagnetic field, and electrical noise. 
 
The most frequent external disturbance is the ever-present earth’s permanent magnetic 
field, which is usually on the order of 0.5 Gauss. The value of the earth field measured by 
the magnetometers on the vehicle depends on the location of the vehicle on earth as well 
as the altitude and orientation of the vehicle. Although the earth magnetic field usually 
changes slowly, sharp turns and severe braking can quickly change the field 
measurements along the vehicle axes.  
 
The most serious noise problems are caused by local anomalies due to the presence of 
roadway structural supports, reinforcing rebar, and the ferrous components in the vehicle 
or under the roadway. Underground power lines are another source of such local field 
distortion. Rebar or structural support usually creates a sharp change in the background 
magnetic field and sometimes is difficult to identify. Most signal processing algorithms 
will have some difficulty recovering from such sharp distortions. The ferrous components 
in the vehicle, on the other hand, can be isolated as long as their locations are fixed with 
respect to the magnetometers, or are located at a significant distance from the sensors. 
 
A third source of noise comes from the alternating electric fields generated by various 
motors or rotating permanent magnets or magnetized materials operating in the vehicle. 
These rotating “magnets” may include alternator, fan, electric pump, steel belts inside 
tires, compressor and other actuators. However, their effects vary according to the 
rotational speed and distance from the magnetometers. The higher the rotating speed or 
the farther it is placed away from the magnetometers, the less the resultant noise. 
Sometimes modest changes in sensor placement can alter the size of such disturbances. 
 
The last common noise source arises from the electronic noise in the measurement signal 
itself. Such noise can be created by the voltage fluctuations in the electrical grounding or 
from the power source. It can also be a result of poor wiring insulation against 
electromagnetic disturbances. Usually, the longer the wire, the higher such noise. 
Although low-pass filtering can reduce the magnitude of such disturbances, noticeable 
degradation of the magnetic sensor signal processing algorithm occurs when such noise 
level exceeds 0.04 Gauss. Digital transmission of magnetic field measurements or local 
embedded processing are two possible approaches that can significantly reduce such 
noise. 
 
 
3.2.2.2 Magnetic Sensing Algorithm 
 
One of the important attributes of the lateral sensing system is its reliability. Currently, 
there exist several algorithms designed to detect the relative position between the marker 
and sensor (magnetometer), as well as to read the code embedded within a sequence of 
these markers. Three magnetic marker detection and mapping algorithms have been 
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experimented with by PATH. The first is called the “peak-mapping” method, which 
utilizes a single magnetometer to estimate the marker’s relative lateral position when the 
sensor is passing over the magnet. The second algorithm is the “vector ratio” method that 
requires a pair of magnetometers to sample the field at two locations. It returns a 
sequence of lateral estimates in a neighborhood surrounding, but not including the peak. 
The third is the “differential peak-mapping” algorithm that compares the magnetic field 
measurements at two observation points to eliminate the common-mode contributions 
and reconstructs a functional relationship between the differential sensor readings and the 
lateral position using the knowledge of the sensor geometry. The “peak-mapping” 
algorithm was selected for the precision docking project because it has been proven 
effective over a wide range of speeds and has been widely applied in many experimental 
applications conducted by PATH. 
 
In the heavy vehicle operational environment, the magnetic field maps can deviate quite 
significantly from the theoretical dipole equation prediction because of the massive 
amount of ferrous material from the body structure located just above the magnetometers. 
Numerical mapping created by empirical data gathering (calibration) is used to create the 
associated inverse maps. Figures 3.2.6 and 3.2.7 show the front and rear magnetic tables 
for the 40’ bus (C1), respectively. The figures consist of tables of the seven 
magnetometers starting from the right side of the bus to the left, designated as follows: 
right-right, right, center-right, center, center-left, left and left-left. Each table is obtained 
with two sets of calibration data, one at a lower sensor height (at around 7 inches from 
the magnetometer to the magnet) and the other at a higher sensor height (at 11 inches 
from the magnetometer to the magnet). Each half-circle in the table consists of vertical 
and horizontal fields of the marker that are collected at 2-cm interval of lateral 
displacement. The magnetic tables clearly depict the nonsymmetrical nature of the 
magnetic field due the adjacent ferrous material. The calibration process was repeated for 
every bus and every truck to ensure that the static local magnetic effects for each heavy 
duty vehicles were accounted for. 
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Figure 3.2.6: 40’ Bus (C1) Front Magnetometer Calibration Tables 

 

 
Figure 3.2.7: 40’ Bus (C1) Rear Magnetometer Calibration Table 
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3.2.2.3 Signal Processing 
 
The magnetometers signal processing for the “peak-mapping” method involves three 
procedures: peak detection, earth field removal and lateral displacement table look-up 
(see Figure 3.2.8 for block diagram of signal processing algorithm). Although it is 
straightforward in principle, it becomes complicated when the reliability of the process is 
the major concern. Many parameters in the lateral sensing signal processing software 
need to be tuned in order to provide consistent lateral displacement information 
regardless of vehicle speeds, orientations, operating lateral offsets and vehicle body 
motions. Debugging can become very time consuming when failure conditions cannot be 
recreated. To improve the reliability of the lateral sensing system with the magnetic road 
markers, PATH has developed a “reconstructive” software system for the lateral sensing 
signal processing that supports the tuning of the parameters using stored real-time data. In 
such a setup, any erroneous situation can be recreated in a lab environment and debugged 
with ease.  
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Figure 3.2.8: “Peak-Mapping” Magnetometer Signal Processing Block Diagram 
 

 
3.2.3  Steering Actuators  
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Fig. 3.2.9 Schematic of Steering Actuator Hardware 
 
3.2.3.1 System Configuration 
 
Fig.3.2.9 shows the block diagram of the PATH steering actuator. The motor assembly is 
manufactured by NSK.  As shown in Fig. 3.2.10, the steering actuator motor assembly 
consists of a steering column, DC motor actuating steering column, an electromagnetic 
clutch and angle sensors measuring steering wheel position.  The DC motor connects to 
the steering column through a clutch and reduction gear.  An incremental encoder is 
mounted on the motor shaft to measure the relative position of the steering wheel.  A 
multi-turn potentiometer is connected with the column shaft via a pulley gear and belt to 
measure the absolute position of the steering wheel. Motor current and clutch ON/OFF 
are controlled by the ECU. The ECU receives the torque command from the upper-level 
computer and issues a corresponding current command so that the DC motor will 
generate the required torque.  The clutch can also be controlled by the upper-level 
computer by issuing clutch command to the ECU.   The ECU has built-in self-diagnostic 
features.  The health condition of the motor is fed back to the upper-level computer 
through the motor condition signal. 
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   Fig. 3.2.10 - Schematic of Steering Actuator Motor Assembly 
 
 
The steering actuator controller is a software package designed by PATH to have the 
following functions: 
 
1. Calibration:  The function of calibration is to find zero steering angle of the bus. 
2. Position servo:  Position servo is a closed loop controller. It receives the steering 

angle command and issues the torque command to the steering actuator hardware so 
that the steering wheel will turn to the desired steering wheel angle position. 

3. Smooth transition between manual and automatic control. 
4. Fault detection for sensors and motor. 
 
 
3.2.3.2  Position Servo Design 
 
The position servo is the key function of the steering actuator system. Successful lateral 
controller design requires at least 4-5 Hz closed servo loop bandwidth with 1 degree 
accuracy on the steering wheel. Before the servo design could be carried out, extensive 
experiments were conducted to study the open-loop characteristics of the steering 
actuator.  The experimental results revealed a quite challenging servo design problem.  
Since the Freightliner trucks have a more powerful hydraulic power steering system and 
the trucks’ steering mechanism does not have the significant backlash problem that the 
buses do, the design of the truck steering actuator was not that challenging compared 
with the design of the bus steering actuator.  Therefore, the design of the steering actuator 
system for the 40-foot bus will be used as an example for illustration purposes.   
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Fig. 3.2.11 -  Steering Actuator Open Loop Frequency Response for 40-foot Bus 

 
 

First, sine sweep tests were used to identify the open-loop frequency response from 
torque command (V) to steering wheel angle (degree) with different input amplitudes.  As 
shown in Fig. 3.2.11, the open-loop bandwidth of the 40 foot bus steering actuator is less 
than 1 Hz.  The experimental data in the range of 10 Hz and above are not usable because 
at these higher frequencies the steering wheel hardly moves and the signal-to-noise ratio 
is poor.  The model represented by the solid line in Figure 3.2.11 was used for designing 
the inner-loop steering actuator controller. 
 
Second, a slow ramp input was used to study the effect of friction on the road.  As shown 
in Fig. 3.2.12, the friction effect is so dominant that the steering wheel starts moving only 
when the torque command reaches almost half of its full capacity (2V).  This means that 
the actuating motor is seriously “under powered”.  Although this may facilitate the driver 
taking over under emergency situations, the “under powered” motor poses significant 
difficulty for servo loop design.  This is especially true for low-speed applications such as 
precision docking, where the friction effect is dominant.  Third, the steering mechanism 
of the original bus has about 20 degrees of backlash at the steering wheel. Such a hard 
nonlinearity, if not properly treated, may lower tracking accuracy, introduce limit cycles 
or even destabilize the entire control loop.      
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Fig. 3.2.12 – Torque Command and Steering Wheel Response to Ramp Input 

 
 

To address the design difficulties mentioned above, different strategies were adopted.  
First, loop shaping was used to increase closed-loop bandwidth as much as possible. 
Second, a low-and-high gain design technique was used to address actuator saturation 
introduced by the “under powered” steering motor.  Third, nonlinear compensation is 
used to address the nonlinear friction effect and to avoid a limit cycle due to the backlash 
of the steering mechanism.  
 
The results of the final design are shown in the following figures.  Fig. 3.2.13 shows the 
closed-loop frequency response, again recalling that the results at 10 Hz and above are 
not valid.   
 

 
 Fig. 3.2.13 – Closed-Loop Steering System Frequency Response 
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   Fig. 3.2.14 – Steering Actuator Step Responses 
 
Fig. 3.2.14 shows the step responses for different magnitude step commands, indicating 
the success of the closed-loop actuator design. 
 

 
3.2.4  Body Sensors (acceleration, yaw rate)  

 
It was important to obtain accurate inertial measurements of vehicle body motions in 
order to provide feedback of these motions to the vehicle control laws.  The key inertial 
measurement systems that were installed on each vehicle were: 
 
- Summit Instruments 2-axis accelerometer, with analog output and 1 g maximum 

range, to provide lateral and longitudinal vehicle accelerations. 
- KVH Industries E-Core 2000 fiber-optic gyro, with 30 degrees per second maximum 

range and digital output, to provide yaw rate sensing. 
 
 

3.2.5  Wireless Communication System 
 
An integral part of the PATH longitudinal vehicle control system is the use of a wireless 
communications link to pass vehicle state information among the vehicles within a 
platoon. The vehicle state information consists primarily of inter-vehicle distance, 
velocity, and acceleration measurements, along with platoon coordination information, 
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such as fault status and operating mode. The requirements for the wireless 
communication system are strict, requiring real-time operation with transmission of the 
state information for all vehicles within the platoon within one control cycle (a period of 
20 milliseconds).   At the beginning of this project, a number of potential wireless 
communication technologies were investigated for application to this problem.  
 
 
3.2.5.1  Potential Technologies 
 
The ubiquity of commercial off-the-shelf wireless systems over the past few years gave a 
range of potential technologies that could have been used for the communications system.  
Several key requirements   were used to narrow the potential candidates, including 
performance, availability of hardware, and the existence/feasibility of developing device 
drivers for the QNX operating system.  The IEEE 802.11 standard for wireless LAN's 
was chosen due to its compatibility with the specified requirements and potential for 
continued support.  Within this standard, several subgroups were commercially available 
and viable for use, including 802.11a and 802.11b.  Although IEEE 802.11a had been 
chosen as the basis for developing the new standard for Dedicated Short Range 
Communications (DSRC), the technology was not sufficiently mature for experimental 
vehicle testing throughout the vehicle development process.  On the other hand, the IEEE 
802.11b standard had been widely accepted for a range of applications and offered the 
greatest amount of hardware implementations, availability of device drivers, and 
technical support. 
 
While the IEEE 802.11b standard provides a physical specification and fundamental 
wireless networking capabilities, a higher-level communications protocol is required to 
provide an applications-layer interface among wireless nodes.  Several protocols were 
investigated, including standard TCP/IP and the Wireless Token Ring Protocol (WTRP).  
WTRP was initially chosen as the communications protocol, including a port of its 
existing Linux implementation to QNX, however unresolved timing issues necessitated 
the development of a simple token ring protocol termed Real Time Token Ring (RTTR).   
 
The following sections present an overview of the Orinoco 802.11b driver and RTTR 
protocol developed for QNX, as well as some representative characterizations of their 
performance.  The interested reader can find detailed reference manuals for both in the 
Appendices of this report. 
 
 
3.2.5.2 Orinoco 802.11b Driver  
 
The Orinoco 802.11b PCMCIA cards are not officially supported under QNX, so a 
significant portion of this project involved development of a device driver.  The open 
source orinoco_cs driver for Linux was used as a starting point, and a rudimentary 
networking stack was also created that mimics its Linux counterpart.  Direct use of the 
default QNX network stack was not incorporated into the driver, since the operating 
system interface is proprietary.    
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The device driver runs as a process called ori, and access to the driver is conducted 
through atomic query-reply sequences using QNX inter-process messaging.  This type of 
interface was used for efficiency, modularity, and flexibility.  Although only the RTTR 
and WTRP protocols are currently supported by the driver process, other protocols could 
easily be included through this interface. 
 
 
3.2.5.3  Real Time Token Ring (RTTR)  
 
The Real Time Token Ring (RTTR) protocol is a simple token ring protocol that relies on 
implicit token passing to ensure that each node in a ring has an allocated time slot on 
which to transmit.  The topology of a ring includes a single Master node and one or more 
Slave nodes.  Each node is also given a prespecified node number, indicating its relation 
to the other nodes in the ring.  A diagram of a three-node ring is shown below in Figure 
3.2.15.   
 
A single rotation in an RTTR ring is initiated by the broadcast of a message by the 
Master node after an a priori chosen desired rotation time termed rotation_time.  
During this period, all other nodes in the ring listen for incoming messages.  The first 
Slave node, assigned node number 2, takes the token and transmits its own messages 
when either the Master node's message has been received or a timeout of 
rotation_time/N  milliseconds has occurred, where N is the total number of nodes 
in the ring.  Similarly,  all other Slave nodes in the ring transmit when either the previous 
node’s message has been received or a timeout of (n-1)*rotation_time/N 
milliseconds has occurred, where n is the Slave's node number. 
 
Like the Orinoco driver, the RTTR protocol also runs as a separate process called rttr.  
It accesses the physical radio through the interprocess messaging interface described in 
the previous section.  Control application processes, primarily the longitudinal controller, 
interact with the communications system through a set of data structures maintained 
within the PATH Database.  These data structures are all instances of a fixed packet 
format that contains all information described in the introduction, along with additional 
fields used for timing and error detection.  Prior to transmission, the RTTR process reads 
the current packet to transmit from the DB_COMM_TX variable in the database.  
Similarly, any packet received over the wireless link is stored in the database variable 
DB_COMM_RXn, where n is the originating node number of the packet.        
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Figure 3.2.15  Example RTTR ring topology 

 
  
3.2.5.4 Experimental Results 
 
Validation and performance testing of the wireless communication system were 
conducted at several test facilities, including the Richmond Field Station, Crow's 
Landing, and I-15 in San Diego.  The entire communications system is composed of an 
Orinoco 802.11b wireless card, a Hypergain omnidirectional antenna (HG2408U), and a 
Hyperamp 1 Watt AGC amplifier (HA2401-AGC1000).  
 
To demonstrate the typical performance of the wireless communications system, results 
for high-speed tests of a two-vehicle platoon on I-15 in San Diego will be presented.  The 
first set of plots in Figure 3.2.16 below shows the occurrence of lost packets and the 
round-trip time for the token as a function of elapsed time during the run.   
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As seen in the top plot, a minimal number of packets are lost during the run, and the 
average round trip time of the ring is around 3 milliseconds.  A histogram of the round 
trip time is shown in Figure 3.2.17. 
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Figure 3.2.16 Communication Performance During an Experimental Run on I-15 
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Figure 3.2.17 Histogram of Round-Trip Time 
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To give an indication of the reliability of maintaining the 21 millisecond update time for 
the communicated variables, a histogram of the latency between database updates for a 
given node is shown in 3.2.18. 
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Figure 3.2.18 Histogram of Database Update Latencies 

 

3.2.5.5  Conclusions on Wireless System 
 
The implementation of the RTTR protocol on top of the Orinoco 802.11b driver in QNX 
4 provides a high-performance wireless communication system suitable for real-time 
application.  Although the protocol does not easily scale to large numbers of nodes, its 
simplicity and flexibility for small numbers of nodes makes it ideal for development and 
prototyping environments.  For longer-term application of vehicle-to-vehicle 
communication, further research and development of WTRP is suggested because of the 
protocol’s superiority in terms of dynamically changing the ring topology and providing 
transparent TCP/IP services to user applications. 
 

 
 

3.2.6  Range and Range Rate Measurement Sensors  
 
 An essential part for longitudinal control of automated transit buses is the 
measurement of the range and range rate between vehicles. In realistic operating 
conditions, the quality of these measurements can be highly variable due to the time-
varying environment, the operating principles of the sensors, and the potential for sensor 
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failures.  One means of improving both the reliability and accuracy can be obtained 
through the use of multiple sensors in conjunction with sensor fusion and fault diagnostic 
techniques.  Although the design of the sensor fusion and fault diagnostic systems are 
commonly discussed independently in the literature [1-3], it is quite natural to consider 
the combination of two systems since they have both complementary goals and 
methodology.  Recent interest in the development of distributed estimation and signal 
processing in wireless sensor networks has fostered similar research [4,5]. 
 
To obtain the measurement of the range and range rate for the automated transit buses, a 
virtual range rate sensor was created by combining local sensor measurements and a 
wireless communication link mentioned above between vehicles is fused with 
measurements from a radar and lidar.  The radar mounted on the experimental vehicle is 
an Eaton VORAD EVT-300 24 GHz Doppler radar.  This radar is a component of a 
commercial adaptive cruise control (ACC) system developed primarily for heavy vehicle 
applications.  The radar has a 12 degree beam width, and a range of 100 m. It tracks up to 
seven simultaneous targets, providing the range, range rate, and azimuth of each target at 
a sample rate of 65 (msec) [6].  A 2D scanning lidar manufactured by Denso is used for 
automotive ACC applications as well.  The lidar has a 16 degree lateral field of view, a 
4.4 vertical degree field of view, and a range of 120 (m). It can track up to eight 
simultaneous targets, and provides a wealth of information about each target at a sample 
rate of 100 (msec).  The third measurement of the relative speed is computed by a virtual 
range rate sensor composed of the difference between the following vehicle speed with 
that of the preceding vehicle. The preceding vehicle information is obtained via wireless 
communication, while the vehicle speed is measured directly using the vehicle stock 
wheel speed sensors. 
 
The sensor fusion is conducted by using a sequential variant of the nonparametric 
probabilistic data association filter (NPDAF) with validation gating.  Fault diagnostics 
are incorporated into the sensor fusion by thresholding the Mahalanobis distance 
computed in the validation stage.  Verification of the proposed integrated sensor fusion 
and diagnostic (ISFD) system was conducted using experimental data obtained from a 
40-foot and a 60-foot New Flyer transit buses.  All mathematical explanations in detail 
can be found in the published paper [7].  

. 

Detection range 0-120m 
Detection angle 40 deg (lateral, ±20deg) 
Detection angle 4.4 deg (elevation) 

Update rate 100 ms 
Laser wave length 850 nm 
Laser beam size 0.2 deg (lateral), 

 0.9deg (elevation) 
Number of detection points 265 (lateral), 6 (elevation) 

total: 1590points/cycle 
Table 3.2.1   Lidar specifications 
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3.2.7  Range and Range Rate Sensor Fusion 
 
Verification of the integrated sensor fusion and diagnostic (ISFD) system was conducted 
using experimental data obtained from both 40-foot and  60-foot New Flyer transit buses 
at both Crow’s Landing and I-15 in San Diego.  The following plots give representative 
results of the sensor fusion algorithms’ performance.  
 
Figure 3.2.19 shows the range and range rate measurements of the primary Lidar target 
during a typical experimental run on I-15 in San Diego, CA.  The estimate produced by 
the sensor fusion algorithm is overlaid on the plots.  As is easily seen in both plots, the 
fused estimate tracks the lidar measurements quite well, with a slight reduction of the 
high frequency noise present in the raw signal.  The sensor measurements are quite clean 
because an additional prefiltering stage was added to ignore targets that have an indicated 
width different from that of the bus (a range of 2 - 4 m was used).  The target width is an 
additional measurement provided by the lidar’s internal signal processing, and the 
estimated width during this run is shown in Figure 3.2.20.  This additional stage was 
added to reduce false returns from overpasses, reflective signs, and guard rails that were 
encountered during testing. 
 
The Radar sensor measurements for the same run are shown in Figure 3.2.21 and Figure 
3.2.22.  As shown in both of these plots, the radar tends to have numerous dropouts and 
false returns throughout the run.  Many of the dropouts are due to the low relative 
velocity between the vehicles, since the radar loses any target with a relative velocity less 
than 0.1 m/s.  The false returns were due to the numerous roadside objects that were 
present in the environment.  Although the Radar performance is poor while the following 
vehicle is maintaining a constant spacing from the lead vehicle (at t > 30 s in these 
figures), the sensor measurements are quite good during the initial transient period when 
the follower joins the platoon. 
 
To give further indication of the performance of the sensor fusion algorithm, the number 
of targets detected and validated by each of the sensors is shown in Figure 3.2.23. 
 
Conclusions 
 
The performance of the sensor fusion algorithm was verified and demonstrated in the 
real- time application of heavy vehicle control.  The fused estimates were shown to be 
tolerant to dropouts and false returns in both the radar and lidar.  Furthermore, the 
estimates are of reasonable quality and inherently account for multiple possible targets.    
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Figure 3.2.19: Lidar Measurements for the Following Vehicle on an I-15 Experimental 

Run 
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Figure 3.2.20: Target Width as Indicated by the Lidar Internal Signal Processing 
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Figure 3.2.21: Radar Measurements of the Following Vehicle on an I-15 Experimental 

Run 
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Figure 3.2.22: A Close-up View of the Radar Measurements 



3.30 

0 100 200 300 400 500 600
0

1

2

3

N
o.

 R
ad

ar
 T

ar
ge

ts

valid
raw

0 100 200 300 400 500 600
0

2

4

6

8

Time (s)

N
o.

 L
id

ar
 T

ar
ge

ts

valid
raw

 
Figure 3.2.23: Number of Targets Detected by both the Radar and Lidar 

 

3.2.8  Brake Actuation System  
 
The brake actuation design considered two main options, one operating in parallel with 
the pedal, and the other a wheel by wheel design.  Wheel by wheel brake application 
would reduce the braking response time by eliminating most of the delays in the existing 
pneumatic braking system, but would not incorporate the extensive safety backup and 
ABS systems available with the stock braking system.  It was decided to install an 
automated braking system in parallel with the brake pedal that would be equivalent in 
response to a rapid manual brake and release, thus preserving all existing backup, safety 
and ABS system designs. 
 
Commercial off-the-shelf (COTS) air brake parts were used exclusively to ensure safety 
and reliability, reduce costs, and speed implementation.  Three- and four-way manifolds 
were installed at various points along the existing brake system to supply air for the 
automated system, to return command line pressure to the existing system, and to add air 
pressure transducers along the braking system.  
 
Pressure transducers were placed on both the front and rear braking systems to measure 
brake pressure at the brake reservoir, the pedal command line, and at each wheel. 
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The locations of transducers along the brake pneumatic path allowed for rapid 
characterization of the existing system response necessary for controller algorithm 
development.  This also provided a benchmark for comparison with automated brake 
system design.  An additional pressure transducer signal was available between the 
electro-pneumatic and the pneumatic volume booster sections of the automated braking 
system.  
 
The automated braking command unit selected is a COTS unit supplied by Proportion-
Air Inc.  These units consist of a QB series proportional valve mated to a PSR volume 
booster.  The following is the supplier’s description of Proportion-Air Inc. QB series 
valves: 
 

The QB series valve uses closed loop technology for pressure control.   It gives an 
output pressure proportional to an electrical command signal input. 

 
The QB1 is a complete closed-loop servo system consisting of valves, manifold, 
housing, and electronic controls.  Pressure is controlled by the use of two 
solenoid valves.  One valve functions as inlet control, the other as exhaust.  The 
pressure output is measured by a pressure transducer internal to the QB1 and 
provides a feedback signal to the electronic controls.  This feedback signal is 
compared with the command signal input.  A difference between the two signals 
causes one of the solenoid valves to open, allowing flow in or out of the system. 
Accurate pressure is maintained by controlling these two valves. 
 

 
Figure 3.2.24 – Air brake PSR volume booster 

 
Figure 3.2.24 is a cut-away view of the PSR volume booster with an explanation of its 
function.  Proportion-Air Inc. has added an input manifold for the pilot signal with a 
minimized volume and optimized flow design to decrease response time. 
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The first units tested had a good brake-apply response, equal to a fast hard manual brake 
application, but were much slower in releasing brake pressure than achieved with manual 
braking.  A faster brake release response is necessary to allow for tight longitudinal 
control of brake application during platooning maneuvers.  Analysis of pressure data 
indicated that the bottleneck in the system was at the PSR volume booster.  A larger flow 
PSR unit was installed and release response was greatly improved. 
 
Initial testing indicated that with loss of power to the QB1 unit the brake command would 
stay fixed at the last commanded pressure.  It was decided to redesign the unit to include 
a vent to atmospheric pressure at power off to increase safety during testing. 
 
A COTS double check valve was installed on both the front and rear existing brake 
command lines to allow both automated brake application pressure and manual brake 
application pressure to be applied to the braking system.  The higher of the two brake 
pressure commands would control the brake system. 
 
The installations of the automated brake units were restricted by space around the brake 
pedal pressure application unit.  Locations were picked to minimize pneumatic hose 
length, and thus minimize air volume in the brake command system.  Care was taken to 
limit flow restrictions when considering unit placement. 
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3.2.9  Engine Control System Interfaces  

 
Engineering design for the engine control of the research busses was divided into two 
tasks.  The C-40 bus CNG engines were controlled through the existing analog demand 
signal and driver gas pedal activation switch.  The switch was interrupted and an analog 
command signal between 0.5 and 4.5 volts was applied to the interface circuit.  An 
isolation diode was placed in series with the command line to separate the manual 
command from the automated command.  The interface circuitry was placed close to the 
pedal under the dashboard. 
 
The diesel engine on the 60’ bus was controlled by way of messages sent on the J1939 
CAN interface.  A dual CAN PC104 card was installed in the control computer and the 
throttle was controlled by means of speed and torque command messages sent from the 
control computer to the standard engine control unit (ECU) already installed on the bus. 
 

 
3.2.10 Driver-Vehicle Interface 
 
The term driver-vehicle interface (DVI) refers not only the physical switches, status 
LEDs, or graphic displays that were added to the vehicles, but refers also to the more 
global concept of information flow between the driver and the vehicle and how 
transitions between vehicle states occur.  Under normal driving circumstances, the driver 
constantly receives information about the vehicle by watching the road, proprioceptively 
sensing the steering wheel angle, listening to the engine and road noise, and sensing 
vehicle accelerations.  Drivers then use that information in a feedback loop comparing it 
to the commands that are being given on the steering wheel, gas pedal, and brake.  Once 
the control of the vehicle becomes automated, the driver still receives the output or visual 
information from the road, but loses any sense of the input side of the equation or what 
the vehicle was commanded to do.  Thus, the display aspect of the driver-vehicle 
interface attempts to replace the missing input in the driver feedback loop by providing 
answers to the following three questions: 
 
1. What is the current status of the vehicle or what does the vehicle think that it is 

doing? 
2. What has the vehicle been commanded to do now or in the near future? 
3. How can the driver effect a change in the system? 
 
 
3.2.10.1  DVI Physical Components 
 

System Overview and Driver Controls 
 
Figure 3.2.25 shows a diagram of the physical components that made up the DVI.  These 
components can be categorized as either driver inputs or vehicle status displays.  There 
were three driver inputs added to the vehicle, a kill switch, a transition switch, and six 
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multifunction buttons along the right side of the graphical display unit.  Three vehicle 
status displays were also added to the vehicle, an array of four LEDs (green, blue, yellow, 
and red) on the instrument panel, a graphical VGA computer display unit, and a speaker 
to provide audio. 
 
The kill switch was a standard IDEC Type AYW401-R push-pull kill switch, typically 
used for automotive and industrial applications.  Although a commercial system would 
not likely provide the driver with a kill switch, safety concerns with the prototype nature 
of the system dictated that the driver have a quick, simple, and reliable way of 
disengaging any automated systems in the event of a problem. 
 
The transition switch was a typical three-position, momentary-action, rocker switch, 
which measured 15 mm wide by 25 mm long.  The center position was neutral.  Pressing 
the switch forward sent a request to the control computer to engage any automated 
system that was ready to be engaged.  When the rocker switch was released, it returned to 
the neutral position.  Pressing the switch backwards or to the rear sent a request to the 
control computer to disengage any automated systems that were currently engaged.  This 
type of switch and method of interaction was selected since it had already been used 
successfully for the automatic steering control system of the Advanced Rotary Plow. 
 

 
 

Figure 3.2.25  Driver-Vehicle Interface Component Diagram. 
 
 
The transition rocker switch and the kill switch were both mounted on a plate in-between 
the left side of the driver’s seat and the control panel to the left of the driver as shown in 
Figure 3.2.26.  This placed both the kill switch and the transition switch within easy reach 
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of the driver’s left hand.  The control size, distinct shapes, and separation also allowed for 
easy activation without glancing down to the control panel. 
 

 
 

Figure 3.2.26  Transition Switch and Kill Switch Location. 
 
Instrument Panel LED Display 
 
The instrument panel LED display, Figure 3.2.27, consisted of four colored LEDs 
mounted on the instrument panel to the right of the steering wheel, below the 
speedometer, and arranged in a diamond pattern to provide easily perceptible coding 
through position as well as color.  The general color meaning is described in Table 3.2.2, 
and the actual LED states are described in Table 3.2.3.  Each LED was an LEDTRONICS 
PF50-T, sunlight-visible, panel mount unit with a lens diameter of 15.8 mm and a 
viewing angle of 12-15 degrees.  The dashboard LED display was connected directly to 
one of the digital I/O boards of the vehicle control computer.  This setup was chosen for 
several reasons.  First, the dashboard LED display was meant to provide a simplistic 
overview of the system state, whereas the graphical display provided more detailed 
information.  Second, the LED display was implemented for redundancy in case of a DVI 
computer failure.  Finally, the LED display provided faster, nearly instantaneous updates, 
of the system state, whereas the architecture for the graphical display contained several 
potential bottlenecks. 
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Figure 3.2.27  Dashboard Four-Color LED Display Located Below the Speedometer. 
 
 

Table 3.2.2  Color Stereotypes, Common Automotive Uses, and DVI LED Use. 
 

Color Common 
Stereotypes 

Common Automotive Uses DVI LED Use 

Green General On/Off 
Go 
OK, Good 

Turn signals, some indicator 
lights, and cruise control 

Ready for the transition to 
automatic control 

Blue General On/Off High-beam headlight and air 
conditioner indicators 

Automation is engaging or 
is in control 

Amber 
Yellow 

General On/Off 
Slow 
Caution 

Check engine, low 
windshield washer fluid, fog 
lights, traction control, rear 
window defroster, and cruise 
control 

Speed fault or speed 
control disabled and end of 
magnets approaching 

Red General On/Off 
Stop 
Warning or 
Failure 

Warning lights and icons for 
seat belts, door ajar, oil 
pressure, temperature, etc. 

System failure or driver 
has overridden the 
automation 

 
Table 3.2.3.  LED Display State Table. 

 

Event Green Blue Yellow Red 
System Start-up Test Test Test Test 
Manual Driving or Automation Not Ready Off Off Off Off 
Transition to Automation 

Automation Ready 
System Failure 
Transfer in Progress 
Transfer Complete (Automation On) 
Transfer Failed - Manual Driving 

 
Solid 
Off 

Solid 
Off 
Off 

 
Off 
Off 

Blinking 
Solid 
Off 

 
Off 
Off 
Off 
Off 
Off 

 
Off 

Solid 
Off 
Off 
Off 

All Automation Modes - Overrides and Faults 
Driver Overrides Steering Initially 
Driver Overrides Steering for 2 seconds 

 
Off 
Off 

 
Solid 
Off 

 
Off 
Off 

 
Blinking 

Off 
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Kill Switch Depressed 
Lateral Control System Failure 

Off 
Off 

Off 
Off 

Off 
Off 

Solid 
Solid 

Precision Docking 
Driver Pressed Brake - Disengages Speed 

 
Off 

 
Solid 

 
Solid 

 
Off 

Automated Driving 
Approaching End of Magnets 
Lidar Target Lost Fault 

 
Off 
Any 

 
Solid 
Any 

 
Blinking 
Blinking 

 
Off 
Off 

 
 
Graphic Multifunction Display Unit 
 
The graphic multifunction display unit was a custom made box containing a 6.4” VGA 
LCD display with a maximum resolution of 800x600 pixels, and it was connected to the 
graphics output of the DVI computer using standard VGA monitor cables.  The display 
produced about 420 Nits of brightness.  For reference, 1000 Nits is considered sunlight 
visible for an LCD and 200 Nits is typical for a bright contemporary laptop display.  
Although the display was situated inside a vehicle and not in direct sunlight, there were 
concerns about glare and indirect sunlight washing out the display given the large 
windows in the front of the bus and the relatively unprotected enclosure.  During the 
daytime testing, the 420 Nit displays provided for an exceptional display and there were 
no issues with glare or lack of brightness.  If the displays were more shielded from the 
sunlight, such as being embedded in the dashboard, or only used at night, then a 200 Nit 
display would have sufficed. 
 
The multifunction display was mounted to the right of the driver and the instrument 
panel, but still within arms reach, as shown in Figure 3.2.28.  The display height was kept 
low enough such that it did not interfere with the driver’s forward view out the 
windshield.  The location also kept the display within about 30 to 35 inches of the 
driver’s eye, which is fairly typical for automotive dashboard viewing distances.  All text 
(character heights) were kept well above the 18 minutes of visual angle which is the 
recommended minimum for in-vehicle applications, making all of the text used on the 
VGA display easily readable. 
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Figure 3.2.28  Graphic Multifunction Display Unit. 
 
The graphic display unit also utilized six, E-Switch Series 320, rectangular pushbuttons 
along the right side of the display.  These buttons were attached to a digital I/O card of 
the DVI computer.  The buttons were approximately 10x20 mm in size with an average 
center to center spacing of 25 mm, well within the recommended size and spacing 
guidelines for automotive switches.  The button functions varied corresponding to the 
menu items shown on the graphic display.  These buttons were used for tasks that did not 
involve transitioning in and out of automatic control such as changing settings, selecting 
the testing scenario, and requesting a lane change. 
 
Auditory Warnings 
 
Auditory warnings (or sounds) provide an extremely powerful means to get the driver’s 
attention, since sound is independent of where the driver’s eyes are currently focused.  
However, this also means that the driver can’t ignore them, and the use of too many 
sounds can quickly become distracting or annoying.  Additionally, the association 
between a warning sound and its meaning is often abstract, and thus, the use of too many 
sounds can become confusing for the driver, especially given that there are already 
multiple warning sounds on buses.  In keeping the number of auditory warnings to a 
minimum, it was determined that only three events required an auditory component as 
described in Table 3.2.4. 
 
Of the three sounds, the automation engaged sound was the least necessary and probably 
would not be used in a real-world implementation; however, the alert was useful during 
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testing as a confirmation that the automated systems had taken over.  The transition ready 
sound was also not always necessary, and in fact, was only required when the system was 
set to automatically transition to automated control once the vehicle detected the 
magnets.  This mode was used in the precision docking scenario due to the short test 
track, which only allowed for about 2.5 seconds of warning before the automated system 
engaged.  In practice, this was a little too short and future implementations should allow 
at least a full 3 seconds of warning for the driver to cancel the transition. 
 

Table 3.2.4  Events With an Associated Sound 
 

Event Dashboard LED Meaning 
Transition Ready Green Signaled that the green LED had illuminated 

and the system was ready to transition to 
automated control.  When the automatic 
transition option was enabled, this sound was 
played three times with a half-second interval 
before the automated systems engaged, 
allowing the driver about 2.5 seconds to cancel 
the impending transition. 

Automation 
Engaged 

Blue Signaled that the blue LED had illuminated 
and that the transition to automatic control was 
successful. 

System Failure 
End of Magnets 

Red Signaled that the driver needed to take over 
vehicle control immediately due to a system 
failure or driving off the magnets.  The sound 
consisted of three short bursts followed by a 
half second pause and repeated continuously 
until the driver shut off the system. 

 
3.2.10.2  Vehicle Modes and Transitions From the Driver’s Perspective 
 
The system as implemented had 3 scenarios from the driver’s perspective, precision 
docking, lane assist, and automated driving.  As shown in Figure 3.2.29, each scenario 
had multiple modes and each mode could have multiple maneuvers.  Deciding what 
exactly constituted a mode or maneuver from the driver’s point of view was an iterative 
process.  The distinction between a mode and maneuver was never clearly defined.  
However, the designation of a mode generally indicated that a transition or fundamental 
shift in how the vehicle behaved had taken place.  A maneuver, on the other hand, 
indicated that the vehicle was operating in a similar manner but some parameter had 
changed.  As an example, a vehicle transitioning from cruise control to active following 
was classified as a mode change, but opening or closing the gap was only considered a 
maneuver since the only change was the vehicle’s desired gap clearance. 
 
Although an attempt was made to describe the modes in generic terms scalable to future 
conceptual systems, Figure 3.2.29 reflects the actual needs of the implemented system in 
the context of the testing that was being performed, which produced a multitude of 
artifacts.  As an example, the first step required by the driver was the selection of a 
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driving mode (docking, lane assist, or automated driving) so that the system would know 
which scenario it should prepare and what actions would be mapped to the rocker 
transition switch.  In a real world implementation, the system would not require this 
action as it would know where the vehicle was and what automated functions would 
currently be available. 
 

 
 

Figure 3.2.29.  Vehicle Modes and Transitions from the Driver’s Point of View. 
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3.2.10.3  Graphical Information Display 
 

 
The graphical information display was composed of 5 different areas as shown in Figure 
3.2.30.  The top of the screen was dedicated to providing the best description of the 
current driving scenario or mode.  The right side of the screen was dedicated to providing 
menus of functions accessible by pressing the corresponding physical button next to the 
menu item.  The bottom of the screen provided three different status displays: one for the 
radar and lidar, one for the wireless communications, and one for the lateral control 
system.  The left side of the screen was dedicated to either a forward collision warning 
display or gap information if the vehicle was in an active following mode.  The center 
panel of the display was used to provide detailed scenario specific information, and thus 
changed depending on the scenario, driving mode, and maneuver. 
 

 
 

Figure 3.2.30  Graphical Information Display Overview. 
 
With this basic layout, the top, bottom, and right sides of the display were kept constant 
in their format regardless of the scenario or driving mode, giving the display a consistent 
and familiar feeling in all modes.  The left side of the display, although it did change 
depending on the driving mode, was always associated with the forward sensors and 
vehicles in front of the driver.  This use of consistency kept screen changes from 
appearing too abrupt, and allowed the driver to quickly find information regardless of the 
current driving mode. 
 
Color use in the graphic display was kept as consistent as possible with the color use on 
the dashboard LED display.  Green was used for the lateral control status information, in 
conjunction with the green LED on the dashboard, to indicate that the system was ready 
for a transition to automated control.  Blue indicated that the automated control systems 
(specifically lateral control) was currently active.  Since the amber LED had multiple 
meanings, the graphic display often provided clarity.  As an example, when the amber 
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LED indicated the end of magnets nearing, the lateral control status display used amber 
colors, whereas when the LED indicated a Lidar fault, the Lidar status icon would turn 
amber.  Red was used sparingly and only to indicate critical warnings or that a fault had 
occurred.  In all cases color was used only as a means of redundant coding since about 
ten percent of the population is color blind. 
 
Precision Docking Scenario 
 
As shown in Figure 3.2.31, the precision docking scenario resulted in six typical 
“screens” as the scenario progressed.  The first screen transition occurred after the vehicle 
detected magnets for a docking maneuver, at which time the center panel informed the 
driver that a station was approaching, and the lateral control status information indicated 
that the system was ready for a transition to automatic control.  Once under automatic 
control (either through an automatic transition or by the driver using the rocker switch to 
request a transition), the lateral status provided a distance countdown in meters to the 
docking station.  Providing any more information than this might result in the potential 
for driver distraction, which would be undesirable given the amount of pedestrian traffic 
at the station and the current inability of any vehicle sensors to reliably detect them.  
Once docked at the station, the display was merely used to provide reminders to the 
driver to set the parking brake and place the vehicle into neutral, or to release the brake, 
select drive, and press the transition switch to depart the station. 
 

 
1.  Manual Driving 2.  Ready for Transition 3.  Automated Docking 

   

 
4.  Docked at the Station 5.  Ready to Depart 6.  Departing Station 

 

Figure 3.2.31  Typical Precision Docking Screens. 
 
In addition to the normal docking modes, there were two additional modes.  First, as 
shown on the left of Figure 3.2.32, the driver could hit the brake while approaching the 
docking station, which disengaged speed control placing the vehicle in a lane assist 
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docking state.  Second, the lateral control system might fail completely, resulting in the 
fault screen shown on the right. 
 

  
 

Figure 3.2.32  Docking Driver Override and Fault Screens. 

Lane Assist Scenario 
 
During the lane assist scenario, the driving mode and lateral control status portions of the 
display functioned exactly the same as they did in the docking scenario as shown in 
Figure 3.2.33.  The center panel provided speed, travel direction, an icon for lane ID, and 
a real-time graph of lane position.  With the exception of the lane ID icon and the lane 
change messages, the majority of the elements displayed on the center panel were 
displayed to help visitors understand the performance capabilities of the control systems, 
rather than being for the benefit of the driver.  The button shown in the upper right corner 
of the screen number 3 in Figure 3.2.33 could be used by the driver to invoke an 
automatic lane change. 
 

 
1.  Manual Driving 2.  Lane Assist Active 3.  Lane Change Available 

   

 
4.  Lane Change in Progress 5.  Lane Change Completed 6.  System Failure 

 

Figure 3.2.33  Typical Lane Assist Screens. 
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Automated Driving Scenario 
 
The automated driving scenario combined the lane assist functionality with automatic 
speed and gap control.  For lane assist, the most important information that needs to be 
provided to the driver dealt with transitions between manual and automatic control.  Once 
a reliable lane assist system is active, there is little information that needs to be given to 
the driver because the vehicle appears to be in a steady state of lane tracking.  However, 
once the speed control functionality is added, there are a host of potential situations 
where the driver would want clarification about what the vehicle is doing.  Events such as 
the speeding up or slowing down or the closing or opening of the gap with a lead vehicle 
become very perceptible to the driver and may require explanation.  Table 3.2.5 lists 
some of the information needs that were considered when designing the driver display for 
the automated driving scenario.  The typical progression of screens for an automated 
driving test is then illustrated in Figure 3.2.34. 
 
 

Table 3.2.5  Information Needs by Function for the Automated Driving Scenario. 
 

Lane Assist Speed Control 
1. Is the lane assist system in manual 

or automatic control? 
2. Is the system ready for transition to 

automated lane keeping? 
3. Which lane is the vehicle in? 
4. What direction is the vehicle 

traveling? 

1. Is speed control manual or 
automatic? 

2. At what speed will the speed 
control automatically engage or 
disengage? 

3. Is the system currently tracking a 
constant speed or a constant gap? 

4. Why is the vehicle speeding up or 
slowing down?  What is the current 
speed vs. the desired or commanded 
speed? 

5. Does the system see that vehicle in 
front of me?  What is the current gap 
vs. the desired gap or commanded gap? 
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1.  System Set-up 2.  Manual Driving 3.  Lateral System Ready 

   

 
4.  Automated Lead Vehicle 5.  Automated Following 

Vehicle 
6.  Automatic Disengage 

 

Figure 3.2.34  Typical Automated Driving Screens. 
 
All of the elements from the lane assist screen, the lane ID icon, the travel direction, a 
graph of the current lane position, and a speedometer were retained.  However, the real-
time lane position graph was downplayed since this was provided mainly as information 
for visitors, and the focus of the display was the speedometer in the center panel and the 
gap information provided on the left side of the screen.   
 
Before the scenario got under way, there was a set-up screen (Figure 3.2.34, Frame 1) 
which allowed several scenario parameters to be set such as the vehicle ID, the passenger 
count, and the travel direction.  The transition to automated speed control occurred once 
the driver exceeded 27 mph, which was indicated both in the text message below the 
speedometer and graphically on the speedometer using a yellow arc (see Figure 3.2.34, 
Frame 2).  Once speed control had engaged, the arc changed color to white (Figure 
3.2.34, Frame 4) and represented the desired or commanded speed providing a direct 
visual comparison between the current and the system-desired speed. 
 
The lateral control system could be activated or deactivated independently of the speed 
control by the driver using the transition switch, and thus, the lateral control status area of 
the screen functioned exactly the same as it did during the docking or lane assist 
scenarios by turning green when a transition was ready (Figure 3.2.34, Frame 3) and blue 
once the lateral control was active. 
 
With speed control active, the vehicle could be in two different sub-modes, either 
tracking a speed or tracking the gap to a lead vehicle.  This mode was indicated using text 
icons located in the center of the speedometer (Figure 3.2.34, Frame 4) and above the gap 
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display (Figure 3.2.34, Frame 5).  For the lead vehicle, forward gap information was only 
given in the form of a forward collision warning display.  However, for the following 
vehicle (Figure 3.2.34, Frame 5), gap information was provided using a bar graph 
corresponding to the actual gap and a pointer to the right of the graph corresponding to 
the system desired gap.  Future versions of this graph should inverse the fill colors on the 
current distance bar graph, so that it fills from the top down, instead of from the bottom 
up.  This optical trick, which was used with the forward collision warning display, would 
provide the effect of a brighter display (more fill area) as the danger or vehicle gets 
closer. 
 
Two maneuvers, gap closing and opening, were performed during the automated driving 
scenario.  As shown in Figure 3.2.35, the closing and opening gap maneuvers were 
graphically represented by the change in the desired gap indicator on the gap display.  
However, since this was a small change graphically, the maneuver was also noted in the 
text display below the speedometer.  A range-rate display, located below the speedometer 
and to the left of the text message, showed the closing rate in m/s, but this display did not 
provide any particularly critical information to the driver since this information was more 
naturally perceived by watching the rate of change of current gap. 
 

  
1.  Closing Gap from 40 to 20 m 2.  Opening Gap from 20 to 40 m 

 

Figure 3.2.35  Opening and Closing Gap Maneuvers. 
 
The relative independence of the lateral control system and the speed control system 
allowed for several systems modes that were an artifact of this architecture.  First, as 
shown in Figure 3.2.36, Frame 1, lateral control could be activated before the transition to 
automated speed control, placing the vehicle into a lane assist mode.  Likewise, the 
automated speed control as shown in Figure 3.2.36, Frame 2, could be activated without 
the lateral control, placing the vehicle in an adaptive cruise control or automated 
following mode.  Finally, a fault in the lateral control system did not deactivate speed 
control, resulting in the display shown in Figure 3.2.36, Frame 3. 
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1.  Lane Assist Only 2.  Speed Control Only 3.  Lateral System Fault 

 

Figure 3.2.36  Additional Automated Driving Scenario Screens. 
 
 
3.2.10.4  System Performance 
 
Overall, the DVI architecture and graphic display functioned adequately for the system 
testing that was performed.  However, the weakest link in the system was the serial 
connection used to transfer data between the control computer and the DVI computer.  
Updated system information was sent every 150 ms over the serial connection which was 
set to 19.2 Kb/s. Given that the update message was only around 70 Bytes, there should 
have been plenty of bandwidth in the serial line for the data transfer, but there were 
frequent and unexplained problems with information becoming backed up in the serial 
line, especially when bi-directional communications were used, such as when the DVI 
computer requested a scenario mode change or a lane change.   
 
The mean display update cycle was around 100 ms which was adequate given that the 
system information was only updated every 150 ms.  However, combining both the delay 
in the information transfer and the delay in the screen update produced a maximum 
potential delay of 250 ms, which could easily be perceived by a driver under certain 
circumstances.  During testing, it was found this delay showed up most prominently 
when rapidly switching between manual driving and lane assist (on the order of several 
times a second).  Several optimizations could be explored in the future to eliminate these 
delays, including event driven, rather than time driven, data transfers and prioritized 
screen updates. 
 
 
3.2.11  Video Display for Visitors (quad splitter and screen)  
 
To allow for Driver Vehicle Interface (DVI) development, Human Factors studies, 
technological demonstrations, and added safety during initial testing stages, a passenger 
video display was designed and installed using commercial off-the-shelf (COTS) 
products.  This system consisted of:  a) three color bullet cameras, b) a composited video 
quad splitter, c) SVGA splitter/NTSC converter, and d) an 18” color LCD SVGA and TV 
monitor combination. 
 
This design setup was switchable between full screen DVI display and a quad split-view 
including three camera views and the DVI display.  Cameras were mounted to view the 
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bus driver and DVI, the lead or following vehicle, and the passenger door to docking 
station alignment.  The display monitor was positioned atop the radio cabinet directly 
behind the driver’s seat for full visibility and viewing by all passengers in the forward 
portion of the bus. 
 
 
3.2.12  GPS Positioning and Bus Stop Display 
 
Bus Stop Display 
 
The bus stop display used GPS information to provided a graphic depiction of where the 
bus was along the I–15 route as shown in Figure 3.2.37.  Additionally, the current bus 
speed (in mph), travel direction, and approximate distance from the bus stop were 
provided. 
 

 
 

Figure 3.2.37  Bus Stop Display. 
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3.3  Modifications to Freightliner Trucks for Automation and Data Acquisition 
 
To the maximum extent possible, the modifications to the Freightliner trucks were 
designed to be similar to those for the buses, but some differences between the vehicles 
and their applications required that things be done differently.  In this section, the focus is 
on the things that were done differently from the way they were on the buses, rather than 
repeating descriptions of things that were done in generally the same way. 
 
Note that the Euro-EBS enhancements to the trucks were already described in Section 2.  
as part of the general description of the truck characteristics, even though these were 
modifications explicitly needed for automation. 
 

 
3.3.1  Distance Sensing: Eaton Vorad Radar, Lidar and Their Data Fusion 
 
The Eaton-Vorad EVT-300 is a Doppler radar, which measures primarily relative speed 
(using the Doppler effect) while relative distance is estimated based on the relative speed 
measurement.  In principle, it can simultaneously track seven targets and provides the 
following information for each target:  target ID, range (relative distance), range rate 
(relative speed), azimuth, magnitude, and target lock.  In theory, information about 
Target ID and target lock can be used for multiple target tracking.  In practice, due to the 
Doppler effect, which causes much range measurement dropping (zero relative distance 
estimation when relative speed is nearly zero), it is difficult to associate a measurement 
with the correct target among the seven.  
 
The Denso lidar can track 8 targets in principle.  It has relatively better distance (both 
longitudinal and azimuth) measurements compared to the Eaton-Vorad radar.  However, 
it is affected severely by weather such as rain, snow, fog and dust.  The characteristics of 
those two types of ranging sensor systems are listed in Table 3.3.1. 
 
 Effective 

range 
Measurement 
principle 

View 
angle 

Azimuth 
resolution 

Latitude 
resolution 

Weather 
effect 

Denso Lidar 150 m Distance 
based 

± 20 
[deg] 

~0.01 0.01 [m] severe 

Eaton-Vorad 
radar EVT-300 

120 m Relative 
speed based 

± 6 
[deg] 

0.1[deg] 
 

Slightly 
distance 
dependent 

weak 

 
Table 3.3.1 – Characteristics of Ranging Sensors 

 
3.3.1.1 Target Association 
 
The main problem for vehicle following using radar is to detect the target in the front. 
Here we do not describe multiple target tracking algorithms.  Instead, we need to track 
the vehicle in front reliably and accurately in distance measurement.  Because we do not 
use relative speed measurements for vehicle following with communication of speed 
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information from the leading vehicle, we will mainly focus on distance filtering.  The 
Doppler radar distance measurement will drop to zero when the relative speed is nearly 
zero.  This characteristic will be used in radar target association.  There is a difference 
between lidar and radar for target association, based on their measurement principle. 
 
Algorithm for radar target association:  
 
Let range[I], rate[I], and az[I], I =,…7 denote radar distance, relative speed and azimuth 
measurement. Track_ID denotes the track number which catches the front vehicle. 
 
Step 1:  To choose initial track: 
 
For i=1:7 
    If range[J] > 2.0 and range[J] < 100.0 and rate[J] ≠ 0.0 
    Then track_ID=J 
 
If more than one track number satisfies these conditions, then use the smallest one. 
 
Step 2: Target association:  
 
For radar, start from the initial track. At each step, let ( _ )rate track ID  and 

( _ )az track ID  represent the detected front vehicle range and azimuth. For sufficiently 
small parameter 1 2, 0ε ε > , if 

{ }
{ }
1

2

( _ ) ( ) min ( _ ) ( )

( _ ) ( ) min ( _ ) ( )

( _ ) ( )

( _ ) ( )

i

i

rate track ID rate J rate track ID rate i

az track ID az J az track ID az i

rate track ID rate J

az track ID az J

ε

ε

− = −

− = −

− ≤

− ≤

 

then ( )range J  , ( )rate J  and ( )az J are considered as  the new measures of the track 
of the front target. 
 
Step 3: Set _track ID J=  and go to the next Step 2. 
If at least one of the last two conditions are violated, then a measurement error will be 
reported, which may indicate that the radar measurement has a problem. 
 
For lidar, the above algorithm still applies except that, (a) the total number of tracks is 8; 
(b) It is distance based, which means “rate” is changed to “longitudinal distance” and 
“az” is changed to “lateral distance”.  The choice of parameters 1 2, 0ε ε >   also depends 
on design requirement. 
 
For both lidar and radar distance measurements, low-pass digital filters [LYN] are used 
for smoothing the measurements.  In particular, the following filters are used: 
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(a) Recursive type: 

1(1 )
0 1

n n nx x xλ λ
λ

−= + −
< <

 

 
(b) Frequency based (Butterworth): 
 

x[0]= 0.4320*x_old[0] - 0.3474*x_old[1] + 0.1210*lidar_rg; 
 x[1]= 0.3474*x_old[0] + 0.9157*x_old[1] + 0.0294*lidar_rg; 
lidar_rg_out = 0.4984*x[0] + 2.7482*x[1] + 0.0421*lidar_rg; 

 
 
 
Figure 3.3.1 shows the raw and filtered radar data after using the above filter, in a 
manually-driven test that deliberately created multiple large variations in separation 
between vehicles.  The left plots show the raw range data (lower) and filtered range data 
(upper), indicating how the multiple drop-outs have been eliminated.  These drop-outs are 
associated in some cases with loss of reflections from the target and in other cases with 
loss of Doppler effect when the speed difference approached zero.  The importance of 
speed difference can be seen in the plots of range rate on the right side of the figure (raw 
data, lower and filtered, upper).  In the case of the range rate, note also that a significant 
zero-offset had to be removed. 
 

 
Figure 3.3.1  Eaton-VORAD EVT300 Radar Data for Range and Range Rate, Raw and 

Filtered 
 
3.3.1.2 Data Fusion 
 
The purpose for radar and lidar data fusion is to achieve more reliable and accurate 
measurements by means of sensor complementarity and redundancy. The following three 
techniques are used in data fusion of radar and lidar. 
 

(a) Using lidar distance measurement to compensate for radar distance measurement 
when relative vehicle speed is zero.  In this case, the radar measurement will drop 
to zero while lidar still has a good measurement if the weather is reasonable.  It is 
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simply to use the average of the previous step’s radar measurement and the 
current lidar measurement to replace the lost radar measurement. 

(b) If one sensor reports error status, the measurement naturally shifts to the other. 
(c) A static Kalman filter is used to fuse the two distance measurements in normal 

cases [8]. 
 
Figure 3.3.2 shows the filtering and fusion of radar and lidar distance measurements. 
 
The following notations are used in the figure: 
vrd_rg:  Eaton Vorad radar rage 
vrd_rt:  Eaton Vorad radar range rate 
lid_rg:  Lidar range 
flt:  filtered 
K-F:  Distance fusion after Kalman filtering 
 

 
Fig. 3.3.2  Fusion of Radar and Lidar data to Obtain Improved Measurement of Range 

 
 
The top plot shows how multiple drop-outs in the radar range measurement have been 
filtered to produce the improved radar outputs, while the second plot shows less of 
difference between the raw and filtered radar range rate data.  The third plot shows both 
raw and filtered lidar range data, indicating very little difference between the two.  The 
lower plot shows the combination of the filtered radar range (green), filtered lidar range 
(magenta) and fused radar and lidar (dark blue). 
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3.3.2  Control System Design 
 
In general, four factors mainly affect control system design and its robust performance: 
model mismatch, measurement noise, time delay and external disturbances.  Smaller 
model mismatch will achieve larger robust stability margin and better performance, 
which can be described in terms of response time and tracking error, etc.  On one hand, 
this requires that the model be complicated enough to capture the intrinsic dynamics of 
the vehicle, which usually leads to a high dimension and highly nonlinear model.  On the 
other hand, it is required that the model be simple enough for control design and 
synthesis, for example, that it be feedback linearizable. External disturbances can be 
expelled by robustness of the controller.  Response to measurement noise depends on 
filtering and data fusion techniques which are to achieve the smallest estimation error, the 
strongest noise rejection property and the least time delay.  
 
It is recognized that the longitudinal control problems here are quite different from those 
encountered in the control design for passenger cars [9–14].   The differences arise 
mainly from vehicle dynamics, which directly affect modeling and control design.  In 
fact, longitudinal control of heavy-duty vehicles for vehicle following is more difficult 
compared to that of passenger cars. The main difficulties are caused by the following 
characteristics of heavy trucks:  
 
(a) Low power/mass ratio: Fuel rate control variable is easy to saturate and the vehicle 
has very limited acceleration capability.  For example, a fully loaded heavy-duty truck 
has maximum acceleration of 20 05[ ]m s. /  on a flat road when vehicle speed is over 
25[ ]mph .  This is the main difficulty in control design.  Control saturation means the loss 
of controllability, and thus the automatic driving stability in longitudinal motion as well 
as the string stability for vehicle following [15-17].  This can be relieved by properly 
reducing performance demands, imposing limited maneuver profiles.  The difficulty is 
how to achieve the best maneuver performance and robust stability, including string 
stability simultaneously. 
  
(b) Large actuator time delays: The delays appear in both engine control and brake 
control. (1) For engine control, it is the delay from pedal deflection to fuel rate.  This 
delay is as large as 200[ ]ms  sometimes. (2) For brake system control, large delays appear 
in both pneumatic brake and transmission retarder. For example, pneumatic brake 
activation delay is about 600[ ]ms  and release delay is about 800[ ]ms .  These delays must 
be dealt with properly.  As reported in [18], using predictor approach for brake control 
design does not bring significant advantages in response.  Here, a different but effective 
approach to compensate for time delay is presented.  
 
(c) Mass dominant: It is due to the appearance of the term sinrMgh θ  in vehicle 
dynamics.  This makes the feedback controller very sensitive to road grade.  A small 
fluctuation in road grade θ θ± ∆  will cause a large fluctuation rMgh θ± ⋅∆  in torque 
demand.  This may destroy closed-loop stability. But too slow a response to road grade 
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changes may lead to a similar result.  Thus road grade knowledge is very important for a 
heavy truck to move up/down a hill.  An obvious suggestion is to use road preview by 
GPS linked to a map database.  
 
The following strategies are used in model simplification for control design:  
 
1. For turbocharged diesel engine, turbocharger dynamics is separated from the engine 
dynamics under the assumption that the booster pressure (manifold pressure between 
turbocharger and the cylinders) is measured.  
 
2. A static nonlinear engine map which gives a functional relationship among engine 
speed, booster pressure, fuel rate and indicated torque is used to replace the engine 
dynamics in closed-loop control.  
 
3. Brake dynamics is separated from drive-line dynamics. 
 
Here the control variables include acceleration pedal deflection, pneumatic brake applied 
pressure, engine brake switching ON/OFF for 2 4 6, ,  cylinders, and transmission retarder 
applied voltage.  The whole control system structure can be divided into two layers: (a) 
Upper level dynamics is composed of the second order linearizable vehicle dynamics. 
Control design in this level is to generate desired torque from the distance tracking error 
and speed tracking error through vehicle dynamics. The global feedback linearizability is 
used for robust closed-loop stability considerations as well as for control synthesis; (b) 
Lower level control has two branches:  Engine control is to generate desired acceleration 
pedal deflection from desired positive torque; Brake control is to generate and properly 
distribute a desired braking torque on the three components:  Jake brake, pneumatic brake 
and transmission retarder. To properly synthesize brake control based on the 
characteristics of the three components is one of the key factors to achieve good 
performance of longitudinal control for heavy trucks.  
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Fig. 3.3.3  Overall Control Systems Structure 

 
 
3.3.2.1 Disturbances to Control 
 
(a) Accessories 
The following components, when activated, produce large engine power (torque) demand 
disturbances, which need compensation: 
 
Engine cooling fan: max 46 2[ ]hp= .   
Generator: max 2 2[ ]hp= .   
Water pump: max 2 6[ ]hp= .   
Compressor: max 2 6[ ]hp= .   
Air conditioner compressor: max 5 2[ ]hp= .   
According to [19], they are approximately proportional to ( )idleω ω−   
 
(b) Positive Feedback by Grade Sensor 
Grade measurement is very important for longitudinal control of heavy trucks because the 
term sinrMgh θ  makes a substantial contribution to the desired torque due to large M . 
In practice, unless road survey information is available and can be matched to the current 
position of the vehicle, one has to estimate θ  using a pitch sensor in real time.  However, 
problems arise in the following two aspects:  
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(a) There is persistent measurement noise;  
(b) Vehicle acceleration causes pitch up and deceleration causes pitch down, which gives 
positive feedback to the closed-loop control, in turn destroying the closed-loop stability. 
To compensate for this, vehicle acceleration measurement can be used to reduce this 
effect as  
 ( ) ( )e m maθ µ θ σ= −  

 
eθ −  estimated pitch angle  

mθ −  measured pitch angle  

( )mµ θ −  a filtered pitch angle  

ma −  a measured acceleration  
( )maσ −  filtered acceleration  

Then eθ  is used to replace θ .  
 
(c) Gear Shifting 
The typical symptom of gear shifting is large vehicle jerking, which is a prominent 
disturbance to string stability. Although the string stability of the controller in the ideal 
case guarantees that the uncertainties would be attenuated downstream along the platoon, 
in practice, there is always a time delay caused by distance measurement and filtering. 
For example, the Eaton-Vorad Doppler radar has an update interval of 65[ ]ms .  Adding 
the time delay caused by filtering, the total practical delay would be about 100[ ]ms .  
Such delay will accumulate downstream along the platoon, destroying the attenuation 
capability of the closed-loop controller and thus the string stability.  
 
The transmission gear shifting point depends on both vehicle speed and acceleration. For 
multiple-vehicle platooning, it is very difficult to synchronize the shifting for all the 
vehicles because there are always differences between speed tracking errors as well as 
distance tracking errors between those vehicles.  
 

3.3.2.2  Upper Level Control Design 
 
The upper level control design uses the sliding mode approach to generate desired torque 
from inter-vehicle distance tracking error and speed tracking error based on vehicle 
dynamics [13,14,20].  
 
To avoid confusion, it is assumed that the starting point of the subject vehicle is the initial 
point, which is set to 0  and the forward direction is positive for distance 
( x − coordinate).  ( )x v a, ,  and ( )pre pre prex v a, ,  represent the moving distance, speed and 
acceleration of current vehicle and preceding vehicle respectively. Then  
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(0) 0 (0) 0

(0) 0 (0) 0

e pre

e pre

e pre

pre pre
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x x x
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With this notation, there hold  
 e e

e e
v ax v

. .
= , =  

 
An error model for upper-layer longitudinal control design is  

 
( )sin

(0)
(0) 0

e
e

d g des d rtd b a r r r r
pre

e

e pre

e

v

r r T r T T F h F h Mgha
I

x L
v

x

v
θ

.

.

=

− + + + +
= −

=
=

 (3.1) 

 
Suppose the desired inter-vehicle distance is L const= .   Then choose the sliding surface 
as  
 ( )1 1 0e es v k x L k= + − , >  

From any sliding reachability condition ( )ss γ
.

= −  [20], the desired torque desT  can be 
solved out as  

 
( )1( ) sine pre d rtd b a r r r r

des
d g d g

I s k v a r T T F h F h Mgh
T

r r r r
γ θ 

 
 

+ + + + + +
= +  

 

3.3.2.3 Lower Level Control Design 
 
Due to the built-in engine controller, it is impossible to directly access the fuel rate 
command. Instead, pedal deflection is used as input. From the upper level controller, 
desired speed and desired torque are calculated as ( )des deesv T, . Using the engine mapping, 
the desired fuel percentage rate desα  is obtained from a lookup table, which is similar to 
the approach in [4]. The rest of this section emphasizes brake control.  
 
(a) Braking System 
The braking system for automatic control is composed of three parts: Jake brake, 
pneumatic brake and transmission retarder. Each part has its own characteristics. To 
understand these characteristics for braking system control strategy is the key factor for 
good performance of the control system and safety. 
  



3.58 

The total braking torque at the wheels is: 
  

 
( ) ( )

( )

800[ ]

800[ ]

w w
b tr jk

total w
b tr
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ω

ω
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Jake Brake 

A variable structure model is used:  
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The following relationships are obviously true:  
 0 2 4 6jk_ jk_ jk_ jk_T T T T< < <  

 
Pneumatic Brake 

The pneumatic (air) brake provides continuous and large braking torque on all wheels.  
Its response is slow.  The pneumatic brake model for control design was proposed as [6]  

 

1 ( ( ))

1 ( ( ))

b b app a
ba

b

b b app r
br

P A P t activation

P A P t release
P

τ
τ

τ
τ

.

 − + − ,
= 

 − + − ,


  

 
To design the controller, one expands the applied brake pressure ( )app aP t τ−  and 

( )app rP t τ−  using Taylor series approach as follows  

 
( ) ( ) ( )

( ) ( ) ( )

app a app a
app

app r app r
app

P t P t t

P t P t t

P
P

τ τ

τ τ

.

.

− ≈ −

− ≈ −
  

which is replaced into (1.2) to obtain  



3.59 

 

1 ( ( ) ( ) )

1 ( ( ) ( ) )

b b app a
appba

b

b b app r
appbr

P A P t t activation

P A P t t release

P
P

P

τ
τ

τ
τ

.

.

.

  − + − ,   = 
   − + − ,  

  

 
To implement it, ( )

app
tP

.
 can be calculated from ( )appP t  in real-time by a difference 

method or an integral filter [21].  
 
Transmission Retarder 

To deal with the time delay part in the model, ( )( )rtd trV tς κ−  is approximated by its first 
order Taylor series  
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Thus  
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which is replaced into (1.7) as  
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for control design.  
 
Braking System Control Strategy 

Suppose the total desired braking torque on all wheels is brk_totalT .  
A variable structure braking system control strategy is proposed as follows.  
If 0brk_total jk_T T≤ , no pneumatic brake nor Jake brake is necessary, but engine fueling is 
relaxed.  
 
If 0 2jk_ brk_total jk_T T T< < ,  
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 ( ) ( )
0

des des
b rtd brk_total jk_T T T T+ = −  

 
If 2 4jk_ brk_total jk_T T T≤ < ,  

 ( ) ( )
2

des des
b rtd brk_total jk_T T T T+ = −  

 
If 4 6jk_ brk_total jk_T T T≤ < ,  

 ( ) ( )
4

des des
b rtd brk_total jk_T T T T+ = −  

 
If 6jk_ brk_totalT T≤ ,  

 ( ) ( )
6

des des
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The distribution of the desired braking torque among the air brake and transmission 
retarder is completely up to the designer.  
Based on the relationship between applied brake pressure and brake torque,  
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the desired brake pressure is calculated as  
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Based on (1.4), the applied brake pressure should drive the error system  
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global asymptotically stable. To achieve this, it is sufficient to choose  
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With such a choice, the error dynamics is  
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which is globally asymptotically stable.  
Or equivalently,  
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These equations can be integrated as  
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which can be implemented in real-time.  
Similarly, one can get ( )rtd tV  from the transmission retarder model (1.8), which is the 
voltage to be applied.  
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3.4  Coordination Layer Control Implementation 
 
The coordination layer control for the automated buses is primarily formed of two 
separate, but interacting, hybrid automata; the Trajectory Planner and the Coordinator.  
The Coordinator interfaces with the supervisory layer to select a complex maneuver for 
the bus to execute.  This supervisory layer represents either the Driver Vehicle Interface 
(DVI) or a scripting mechanism (dubbed the “Fake DVI”).   At the lowest level, the 
Trajectory planner computes a specific desired trajectory for the regulation layer 
controller to track based on the current maneuver.  Each of these components will now be 
discussed in more detail.  
 
3.4.1 Coordinator 
 
The Coordinator’s purpose is to enforce constraints about the physics of the vehicle and 
the safety of logical transitions.  The primary physical constraints to be imposed are 
limiting the maximum commanded acceleration/deceleration to within the capabilities of 
the vehicles.   The safety constraints include checks on the vehicle/system status prior to 
transitioning between control modes, such as verifying that the FLS have acquired a 
target vehicle before switching to distance tracking mode.      
 
The Coordinator hybrid automaton has three operating modes: human, speed 
regulation/tracking, and distance regulation/tracking.  All transitions, regardless of state, 
result in an event being propagated to the Trajectory planner and the regulation layer 
controller to indicate the mode switch, desired tracking profile parameters, etc.  The 
human mode indicates that the operator is driving the vehicle under manual control, and 
is always the initial state of the Coordinator.  The transition from human to speed 
tracking mode can be completed once a set speed has been reached or the operator 
initiates the mode switch via the DVI.  Within the speed tracking mode, the current set 
speed can be changed or control can be returned to the operator at any time.  Distance 
tracking can be engaged only when the sensor processing algorithm and communications 
systems verify that an automated bus is preceding the vehicle.  Within the distance 
tracking mode, transitions to either human or speed tracking can be taken at any time.  
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Figure 3.4.1 Coordinator State Machine 

    
3.4.2  Trajectory Planner 
 
The purpose of the Trajectory Planner component is to generate a smooth speed or 
distance profile for the regulation layer to track when notified of a change in maneuver.  
The profile is calculated on-demand using the current and final desired conditions as well 
as a maximum acceleration capability.   Currently, several different curve fit routines are 
available to provide flexibility in implementation and performance.  This formulation 
allows for smooth transient behavior when the desired speed or distance changes, 
regardless of the current operating condition. 
 
The hybrid automaton for the Trajectory Planner has two states representing the possible 
operating modes of the regulation layer, corresponding to speed tracking and distance 
tracking.  Within each state, two fundamental operations can occur; generation of the 
overall profile and computation of the current desired variable.   Generation of the 
trajectory occurs either at initialization or upon receipt of certain events from a 
Coordinator component.  The Coordinator can force the trajectory to be recomputed 
because of a change in the final desired condition (the chng_* transitions) or when the 
tracking mode changes (the to_*_tracking transitions).  The trajectory is then stored as a 
set of coefficients and an estimate of the overall time, tfinal, required to achieve the final 
set point.  In either state, the default flow is to compute the desired distance, speed, and 
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acceleration at the current time step, which is subsequently passed to the regulation layer 
via the PATH database. 
 

 
Figure 3.4.2 Trajectory Planner State Machine 

 
For the speed tracking state, the trajectory is computed using a different method 
depending on the relative difference between the current and final speeds.  This is due to 
the significant difference in vehicle performance under acceleration compared to 
deceleration (essentially fuel and brake control, respectively).  If the final speed is greater 
than the current speed, a first order system is used to compute the desired speed.  The 
governing equations are: 
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where vf, vi, and amax are the final velocity, initial velocity, and maximum absolute 
acceleration, respectively.  Example plots of a typical acceleration trajectory are shown in 
Figure 3.4.3. 
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Figure 3.4.3  Desired Trajectory for Vehicle Acceleration 

 
If the final speed is less than the current speed, a second-order polynomial fit is used to 
compute the desired speed.  The governing equations are: 
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Example plots of a typical vehicle deceleration trajectory are shown in Figure 3.4.4. 
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Figure 3.4.4 Desired Trajectory for Vehicle Deceleration 

 
For distance tracking, a quintic polynomial distance profile is used in order to guarantee 
smoother transient behavior at the endpoints of the maneuver, while limiting the 
maximum absolute relative acceleration required for the trajectory.  This characteristic of 
the implemented method was attractive because of the strict limitations on the 
acceleration capabilities of the buses due to roadway grades, variable mass, and the 
limitations of the engine performance.  Based on the algebraic method described in 
Nickalls [22], a cubic polynomial for the relative acceleration between the current vehicle 
(denoted with subscript i) and its predecessor in the platoon (denoted with subscript i-1) 
can be determined such that  

• The relative acceleration da=ai-1-ai is bounded by amax.  
• The relative velocity at the beginning and end of the trajectory is zero. 
• The initial and final distances are specified a priori as di and df, respectively. 

 
The mathematical equations describing the time of maneuver, polynomial coefficients 
and relative acceleration are as follows: 
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where td = t – tfinal/2.  Similarly, the governing equations for the relative velocity δv and 
distance δ are; 
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Example plots of a typical distance trajectory for a closing the distance between vehicles 
are shown in Figure 3.4.5. 
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Figure 3.4.5 Desired Trajectory for Closing Gap Maneuver 

 
 
3.4.3  Mixed Initiative: Human-Machine Interactions  
 
Human-machine interactions happen at the supervisory layer through the Driver-Vehicle 
Interface (DVI), which was already described in detail in Section 3.2.10.  The question of 
the role of the driver must be considered carefully when designing automated vehicle 
systems. Transit operators and professional bus drivers tend to favor more limited 
human-machine interactions, and would prefer the system be completely automated. 
However, the realities of day-to-day operations in an imperfect world, in mixed traffic, 
with imperfect sensors, in all weather conditions, make driver intervention an important 
safety tool. 
 
Scripting Mechanism (Fake DVI) 

In case the driver or transit operator chooses for the vehicle to operate automatically, a 
scripting mechanism is provided to allow easy programming of scenarios. Emphasis was 
placed on easy programming and plug-and-play scenarios, as the buses are sometimes 
used by non-expert programmers.  The programming of scripts is meant to resemble 
utilization of the DVI as much as possible.  Transitions in the script language correspond 
to the pressing of buttons on the DVI, except that when running scripts they are triggered 
based on time or vehicle speed rather than on driver input. States in the script correspond 
to modes of operation of the buses (manually driven, speed tracking, and vehicle 
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following, that is, distance tracking, adaptive cruise control and/or platooning).  The basic 
operation of the Fake DVI for both the lead and follower vehicle cases will now be 
described in more detail. 
 
The Fake DVI state machine begins in the idle state to allow the operator to select several 
configuration options through the DVI.  The configuration options include the vehicle’s 
role in the platoon (leader or follower), the direction of travel along I-15 (northbound or 
southbound), and the number of passengers (for feed-forward grade compensation).  
Once the operator finishes selecting the desired configuration, the operator can select the 
initiation of automatic control from a button press on the DVI. 
 

 
Figure 3.4.61 Fake DVI State Machine 

   
The initiation of automatic control forces the Fake DVI to transition into one of four 
scripts based on the vehicle role and direction of travel configuration options.  For the 
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southbound direction, the lead vehicle progresses through six consecutive states: leader, 
wait_for_join, on_hill, cruise, brake, and end.  Each of the transitions occurs based on a 
priori specified time intervals unless otherwise noted.  It should also be noted that this 
method of enabling transitioning could easily be modified to be driven either by 
handshake protocols and sensor information or commands from the operator via the DVI.  
Furthermore, each transition between these Fake DVI states is synchronized with the 
hum2spd, chng_spd, or spd2hum transition of the Coordinator to enforce the correct 
desired trajectory and regulation layer operating mode.      
 
The Fake DVI of the lead vehicle remains in the leader state until one of two events 
occurs; either the vehicle speed increases above an a priori transition speed threshold or 
the operator flips off the manual override switch.  These events transition the Fake DVI 
into the wait_for_join state, where the lead vehicle tracks a constant low speed to allow 
the following vehicle to reach the desired spacing.  The implemented scripts then wait for 
a specified period of time before transitioning to the on_hill state, where the lead vehicle 
tracks a cruise speed of 18 m/s until the top of the hill is reached.  For the southbound 
run, this is the maximum sustainable cruise speed due to the steep incline on the I-15 
track.  For the northbound run, this additional on_hill state is not required to maintain 
stability of the platoon.  After the top of the hill is reached, the Fake DVI transitions to 
the cruise state and tracks a constant speed of 21 m/s until the end of the track is reached.  
At this point the Fake DVI transitions to the brake state, thus forcing the generation of a 
deceleration trajectory.  Once the automatic transition speed is reached, or the manual 
override switch is turned on, the Fake DVI transitions to the end state, where the 
automatic controller is disabled and the operator must resume control of the vehicle.  
Finally, the Fake DVI automatically transitions back to the idle state to prepare for the 
operator to initiate another run. 
 
The follower vehicle progresses through six states as well, regardless of travel direction.  
These six states are follower, looking, follow, close, open, and end.  Similar to the lead 
vehicle, each of the transitions occurs based on a priori specified time intervals unless 
otherwise noted.  Also, each transition between these Fake DVI states is synchronized 
with one of the Coordinator transitions to enforce the correct desired trajectory and 
regulation layer operating mode. 
 
The Fake DVI of the follower vehicle remains in the follower state until one of two 
events occurs; either the vehicle speed increases above an a priori transition speed 
threshold or the operator flips off the manual override switch.  These events transition the 
Fake DVI into the looking state, and the Coordinator into the speed state, where the 
follower vehicle determines if a preceding vehicle is present.  A preceding vehicle is 
determined to be present if the FLS sensor processing process has acquired a target and 
the wireless communication system hears packets from a master node.  If a vehicle is 
present, the implemented scripts transition into the follow state, the Coordinator 
transitions to distance control, and a trajectory is generated to reach to the desired spacing 
using the current range estimate as the initial condition.  To demonstrate the performance 
of the regulation layer at tracking a desired range, the desired distance is decreased and 
subsequently increased by the transitions to the close and open states.  The specific 
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timing of these maneuvers is dependent on the travel direction to ensure that the desired 
distance is not significantly changed while on the steep incline.  Once the automatic 
transition speed is reached, or the manual override switch is turned on, the Fake DVI 
transitions to the end state, where the automatic controller is disabled and the operator 
must resume control of the vehicle.  Finally, the Fake DVI automatically transitions back 
to the idle state to prepare for the operator to initiate another run.  
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Chapter 4.  Performance of Automated Heavy Vehicle Systems 
 
 
In this section, the actual test performance of the automated heavy vehicles is presented.  
The first three subsections address the performance of the buses in precision docking, and 
then lateral and longitudinal control at highway speeds.  The later subsections address the 
performance of the trucks in longitudinal and then lateral control at highway speeds. 
 
 
4.1  Precision Docking of Buses 
 
The most important control function for precision docking is lateral control, but 
longitudinal control of the stopping bus has also been implemented in order to provide a 
fully automated docking capability.  The lateral control results are described first, 
followed by those for longitudinal control. 
 
 
4.1.1 Docking Lateral Control 
 
4.1.1.1 Control System Description 
 
The bus docking system provides a special function within bus lateral control systems. 
The system employs almost identical vehicle components to the general automatic 
steering capabilities. In the control system software, except for certain “docking” control 
algorithm specifics and the “docking” accuracy requirements, those of the precision 
docking system are designed to be identical to the automatic steering control system.  A 
typical bus docking/automatic steering system includes the following basic elements and 
functions: lateral guidance system, steering actuator system, lane-keeping algorithm and 
transition control algorithm, driver vehicle interface control system, fault detection and 
control system, and associated longitudinal control and sensing system (if applicable).  
 
Figure 4.1.1.1 illustrates the system block diagram of the PATH precision docking 
system. It includes hardware, and software with various functions. The hardware consists 
of switches, steering DC motor, vehicle sensors, computer, displays and audible units. 
The software consists of various software drivers and control algorithms. The control 
algorithms include steering actuator algorithm, lateral control algorithm, and DVI 
controls. The steering actuator control algorithm provides functions such as self-
calibration, tight position servo, mode transitions and fault detection. The lateral control 
algorithms include lane-tracking control, transition control, trajectory planning, mode 
switching and failure detection and fault mode control. The DVI control tracks the 
control states and driver reactions, and provides appropriate interfaces for manual, 
automated, and transition controls. It also includes warning and emergency support. 
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Figure 4.1.1.1: PATH Precision Docking/Automatic Steering Control System Block 
Diagram 
 
 
4.1.1.2 Control Performance Requirements 
 
A bus precision docking control system is a subset of an automated lateral control system 
for bus lane-assist application. An automated lateral control system targeted toward a an 
automatic steering application is required to perform all normal steering functions from 
leaving a bus station to arriving at a bus station with extremely high reliability. It should 
be robust against different roadway geometries, unknown vehicle loading, various 
speeds, and changing roadway surface conditions. An ideal element of such am 
automated steering control system is a high-gain robust “vehicle lateral servo” that 
“steers” the vehicle to follow any desired trajectory as long as such trajectory is defined 
within the limitations of the vehicle capabilities. The closed-loop performance 
requirements for a general bus automated lateral control algorithm are defined as follows: 
 

1. 0.2 meter maximum tracking error for highway driving without any prior 
knowledge of the roadway 

 
2. 0.5 meter maximum tracking error for 0.3-g automated steering maneuver without 

any prior knowledge of the roadway 
 

3. 0.02 meter maximum tracking error for vehicle speed less than 5 m/s on straight 
sections of the roadway for docking accuracy 

 
4. No noticeable oscillations at frequencies above 0.3 Hz for passenger comfort, and 

0.4 minimum damping coefficient for any mode at lower frequencies 
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5. 1 m/s2 maximum lateral acceleration deviation between the lateral acceleration 

created by the vehicle and that from the road geometry 
 

6. Consistent performance under various vehicle-operating conditions 
 
Requirements 1, 2 and 6 address scenarios other than precision docking. They are 
included simply because a “precision docking ready” controller should also be 
“automatic steering ready.” They use virtually the same vehicle and infrastructure 
components.  
 
 
4.1.1.3 Lane-Keeping and Docking Controller Design 
 
The results in [11, 12] indicate that a simple “look-ahead” controller combining constant 
feedback gain and constant look-ahead distance may achieve all performance 
requirements described in Section 4.1.1.2 except for the high accuracy in precision 
docking. The low speed precision docking requires much higher gain to satisfy the high 
tracking accuracy requirement. Furthermore, several practical constraints limit the 
feasibility of such a simple implementation. The amplification of the measurement noise 
limits the length of the look-ahead distance to a couple of car lengths; high feedback gain 
with large look-ahead distance can easily excite the non-linearity or unmodeled dynamics 
in the steering actuators or mechanism; large look-ahead distance creates noticeable 
steady-state tracking error during curves. 
 
In order to address both the practical limitations and the specific phase lead requirement 
associated with the constant look-ahead distance depicted in [11], a frequency shaped 
look-ahead controller law as shown in Figure 4.1.1.2 is proposed as 

 )()()()()()( ,,, ssGhssGsGvdssGsV sdssyS r δφδψδ &&& ++= , (4.1.1.1) 

along with a feedback compensator that mainly compensates for the actuator dynamics: 

 )()()( sGvksC cc=  (4.1.1.2) 

where )(, sG
ry δ& , )(, sG δψ&  and )(, sG δφ&  are transfer functions from steering angle to ry& , ψ&  

and φ& , (the derivative of lateral displacement at CG w.r.t. road reference frame, the yaw 
rate, and the roll rate) respectively; and hs is the distance from the sensor to the roll axis. 
Furthermore, Figure 4.1.1.2 depicts a generic block diagram of a steering feedback 
system consisting of five subsystems: actuator dynamics (A(s)), road reference (desired 
lateral acceleration at the sensor location: ρ2vyref =&& ), vehicle dynamics at sensor (VS(s)), 
vehicle kinematics (1/s2) and control law (C(s)). 



4.4 

 v2 

VS(s)A(s) 1 
s2

ρ 

Sy&&

refy&&
+ - ∆yS 

δ

-C(s)
 

Figure 4.1.1.2: Bus Steering Control Block Diagram 

Two speed-independent filters, )(sGds  and )(sGc , are chosen based on the noise 
characteristics as well as the bus roll and yaw dynamics coupling as in Eqs. (4.1.1.3) and 
(4.1.1.4). In order to reduce both the effects of the steady state tracking bias and the 
unwanted excitation of the high frequency unmodeled actuator dynamics, )(sGc  consists 
of a low-frequency integrator and high-frequency roll-off. Similarly, )(sGds  is made of a 
high frequency roll-off portion and a mid-frequency lead-lag filter to limit the look-ahead 
amplification and to provide extra “look-ahead” between 0.1 and 0.6 Hz.  
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Inserting )(sGds  into Vs(s) as in Eq. (4.1.1.1) and appending )(sGc  to all open-loop 
transfer functions immediately after Vs(s) as in the optimization dynamic programming 
described in [11], the corresponding optimal control gain pair ( )(vkc , )(vds ) can be 
computed to satisfy the stability requirements for any given vehicle speed v. The optimal 
control gain pair ( )(vkc , )(vds ) corresponding to the control filters ( )(sGc , )(sGds ) are 
plotted in Figure 4.1.1.3. This optimal gain pair guarantees at least 50 degrees phase 
margin and 6 db gain margin for any vehicle speed. As the result of the additional phase 
lead created by the larger look-ahead distance between 0.1 and 0.6 Hz, the frequency-
shaped look-ahead scheme renders a more desirable optimal gain pair characteristics. 
Generally speaking, the look-ahead distance increases and the feedback gain decreases as 
the vehicle speed increases. More specifically, ( )(vkc , )(vds ) remain almost constant for 
vehicle speeds between 15 and 30 m/s. This indicates that a “constant” controller can 
work almost optimally from medium to highway speeds. The relatively “flat” gains with 
respect to velocity also imply that the controller has high tolerance to velocity errors. 
Furthermore, the small look-ahead and high gains at lower speed also guarantee high 
accuracy for precision docking. 



4.5 

 
Figure 4.1.1.3: Optimal control gain pair ( ck , sd ) based on 3 DOF model with frequency 
shaped look-ahead control (pm=50 deg, gm=2) 
 
The final steering control algorithm implemented in the bus needs to satisfy both tracking 
accuracy and ride comfort requirements for all operational scenarios at various bus 
speeds regardless of the following uncertainties: road adhesion variations, incorrect road 
curvature information, sensor noise, actuator bandwidth, vehicle dynamics changes, soft 
suspension modes, and vehicle parameters. The following final frequency shaped virtual 
look-ahead lane-keeping control algorithm was developed and implemented: 

( )ψδ )()()()()( sGvdysksGvk dssintccc +−=  (4.1.1.5) 

with 

)02.0(
)3.0()(int π

π
+
+

=
s
ssK  (4.1.1.6) 

)12(
12)(

π
π

+
=

s
sGc  (4.1.1.7) 

L
yy bf −

≅ψ  (4.1.1.8) 

where δc is the steering command, kint an additional integrator to keep the steady state 
tracking error small, Gds the virtual sensor look-ahead filter, Gc the compensator at the 
virtual sensor location; yf and yb are the lateral measurements in front and back of the 
vehicle, respectively, and L is the distance between these two sensors. The two gain-
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scheduled coefficients, kc(v) and ds(v), approximate the velocity dependent relationships 
in Figure 4.1.1.3.  

 
4.1.1.4 Precision Docking Test Results 
 
Two test results are shown in this report:  
• Initial docking preparation results at Richmond Field Station 
• Docking test results at the South Control Yard at San Diego 
 
4.1.1.4.1 Precision docking preparation at Richmond Field Station 
 
These were the initial runs when the system was first successfully tested at the Richmond 
Field Station. The bus starts at the beginning of the docking curve driven manually. 
During the straight-line segment, transition to automatic control mode is initiated. The 
transitions were initiated by driver by pushing the “Auto” button. Automatic control 
mode could be lateral (steering) control only or both lateral control and longitudinal 
control depending on driver selection. Once transitioned to the automatic mode, the bus 
will steer itself along the predetermined magnetic track.  If longitudinal automatic mode 
is selected, the bus will accelerate and decelerate to about 10 mph and cruise at this 
speed. Before stopping at the bus station, the bus will make a full lane change (S-curve) 
following the magnetic track. If longitudinal automatic mode is activated, the bus will 
stop at the docking station automatically. Otherwise the driver should control the bus 
longitudinally to stop at the docking station. The short docking station was placed at the 
bus’s front door. 
 
Figures 4.1.1.4a to 4.1.1.4c illustrate 26 consecutive precision docking preparation runs 
for the C2 40-ft bus at the Richmond station docking test track. More than half of the runs 
were conducted without automated longitudinal control. Figure 4.1.1.4a shows the time 
traces of all the runs. By observing the speed variations, it is clear that the driver 
controlled the throttle and brake for most of the runs. In one of the runs, the driver has 
slowed down the bus to almost a stop and go traffic situation.  
 
Figure 4.1.1.4b illustrates the same plots as those in Figure 4.1.1.4a except that the data 
were plotted against marker numbers. Plotting against the marker numbers normalizes the 
data so that they can be compared at every marker location for consistency and easy 
variations. These plots indicate clearly that the tracking repeatability is very high, to 
within a couple of centimeters, once the bus enters the lane-change curve. On the other 
hand, the steering command had variance of more than 50 degrees. This further 
confirmed the design intuition that a high gain controller is essential for precision 
docking applications since a control method based on an “open-loop” type command 
would not produce consistent precision docking as indicated by Figure 4.1.1.4b.  
 
Figure 4.1.1.4c shows the blow-up plot of Figure 4.1.1.4b around the docking station. 
The blow-up plots clearly show that the bus has never touch the station, and the 
maximum error after the bus is approaching the station is basically within 2.5 centimeter 
peak-to-peak.  
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Figure 4.1.1.4a: Precision Docking at RFS (Time based plot) on C2 40’ Bus (26 runs) 

 

−60 −40 −20 0 20 40 60 80
−2

0

2

4
Precision Docking Preparation at RFS (0603,2003)

C2 Bus; Total Data Set = 26

La
t P

os
iti

on
 (

m
) Station

Front
Rear
Target

−60 −40 −20 0 20 40 60 80

−200

0

200

S
te

er
 A

ng
le

 (
de

g)

Docking Station: Left 3.6m S−curve (Lat or Full Control, Manual Transition)

−60 −40 −20 0 20 40 60 80
0

2

4

6

8

S
pe

ed
 (

m
/s

)

Marker # (Marker Spacing = 1m)

 
Figure 4.1.1.4b: Precision Docking at RFS (Marker based) on C2 40’ Bus (26 runs) 
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Figure 4.1.1.4c: Precision Docking at RFS (Marker based) on C2 40’ Bus (26 runs) 

 
 
4.1.1.4.2 Precision docking testing at San Diego 
 
The precision docking demo scenario for San Diego is shown in Figure 4.1.1.5. The bus 
starts at the beginning of the docking curve manually. During the straight-line segment, 
transition to automatic control mode is initiated. The transition could be initiated by the 
driver or by the control system itself. Automatic control mode could be lateral (steering) 
control only or both lateral control and longitudinal control depending on driver 
selection. Once transitioned to the automatic mode, the bus will steer itself along the 
predetermined magnetic track. If the automatic longitudinal mode is also selected, the bus 
will accelerate or decelerate to about 10 mph and cruise at this speed. The bus will first 
dock at the inline docking station. If the automatic longitudinal mode is activated, the bus 
will stop at the inline docking station automatically. Otherwise, the driver should control 
the bus longitudinally to stop at the inline docking station. After passenger unloading and 
boarding, the driver has two options to pull the bus out of the inline docking station. First, 
the driver could steer the bus manually out of the inline docking station. Second, the 
driver could just push the automatic button and the control system will steer the bus out 
of the inline docking station automatically without driver interference. The docking 
stations face both the front and rear doors of the bus. 
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Fig. 4.1.1.5  Docking Scenario in San Diego (Distances shown in meters) 

 
 
Figures (4.1.1.6a) to (4.1.1.6c) show 17 consecutive precision docking test runs for the 
C2 40-ft bus at the South Control Yard test track in San Diego. While Figures (4.1.1.6d) 
to (4.1.1.6f) plot 14 consecutive runs for the C1 40-ft bus at the same test track. The 
controllers employed by these two buses were identical. No verification was done to 
verify whether the two buses were identical in their dynamic characteristics. As described 
before, the test track in the SCY has two docking stations connected by the magnetic 
markers: first an in-line station and then an S-curve station. For most of the runs, fully 
automated control with automatic transition from manual to automatic was conducted. 
The driver drove toward the magnet track, the bus then transitioned to fully automated 
controls, and stopped at the in-line docking station. When all the passengers got in or out 
of the bus, the driver pushed the “auto” button and the bus resumed automated control 
and stopped again automatically at the S-curve docking station. In each set of test runs, 
several runs were conducted differently to demonstrate the capabilities of the system. 
These non-normal runs involved stop and go, switching off speed control by stepping on 
the brake, manually stopping at the station, and manually driving off the station. 
Observing the speed plots in Figures (4.1.1.6a) to (4.1.1.6f) can easily identify these runs. 
 
Figure 4.1.1.6a and 4.1.1.6d illustrate the lateral positions, steering angle, and speeds 
with respect to the marker numbers for Bus C2 and C1, respectively. The two buses 
exhibited similar performance characteristics and accuracy. The two stations were also 
identified on the lateral position plot in figure. It is worthwhile noticing that the buses 
automatically left the bus station and kept away from the platform until the rear of the bus 
cleared away from the in-line bus station for safety. This can also be observed on the 
blow-up plots for the first in-line docking station as in Figures 4.1.1.6b and 4.1.1.6e. 
 
Similarly, Figure 4.1.1.6c and 4.1.1.6f show the blow-up plot of Figure 4.1.1.6a and 
4.1.1.6d around the S-curve docking station. Again, the blow-up plots clearly show that 
the bus has never touched the station, and the maximum error after bus approaching the 
station is basically within 1.5 centimeter peak-to-peak for front and 1 centimeter peak-to-
peak for rear. The docking accuracy is about 1.5 centimeter peak-to-peak for all runs. 
 
Figure 4.1.1.6g exhibits the status of (1) the transitional switch (-1: none, 0: manual, and 
1: auto), (2) the transitional status (0: manual, 1: automated), and (3) the control status (0: 
manual, 1: lateral control only, 2: lateral and longitudinal controls). It can be seen that the 
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docking performance is highly consistent despite the fact that the driver has frequently 
transitioned in and out of the automated control regardless that the speed was either 
controlled by the driver or by the automated system. 
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Figure 4.1.1.6a: Precision Docking at SCY (Marker based plot) C2 40’ bus (17 runs) 
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Figure 4.1.1.6b: Precision Docking at SCY (Station #1) C2 40’ bus (17 runs) 
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Figure 4.1.1.6c: Precision Docking at SCY (Station #2) C2 40’ bus (17 runs) 
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Figure 4.1.1.6d: Precision Docking at SCY (Marker based plot) C1 40’ bus (14 runs) 
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Figure 4.1.1.6e: Precision Docking at SCY (Station #1) C1 40’ bus (14 runs) 
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Figure 4.1.1.6f: Precision Docking at SCY (Station #2) C1 40’ bus (14 runs) 
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Figure 4.1.1.6g: Precision Docking at SCY (Marker based) on C2 40’ Bus (17 runs) 
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4.1.2 Low-Speed Stopping Control of 40-foot CNG Bus 
 

As previously shown in Fig. 4.1.1.5, two different docking scenarios were tested and 
proven in San Diego. A 40 foot CNG bus drives straight about 90 meters and stops at the 
in-line docking station, then the bus starts again, makes a full lane change and stops at the 
S-curve docking station. Two requirements of docking longitudinal control are: 1) 
maintain smooth operation to ensure passenger’s comfort; 2) stop within 10 centimeter of 
desired location. In this chapter, the software structure of docking longitudinal control 
will be introduced in Section 4.1.2.1. Both cruise control and stopping control will be 
presented in Sections 4.1.2.2 and 4.1.2.3 respectively. Experimental data will also be 
presented to verify the effectiveness of longitudinal control development. 
 
 
4.1.2.1  Software structure 
 
From the longitudinal control point of view, both inline docking and S-curve docking 
maneuvers can be divided into three steps naturally. The bus starts from beginning, 
cruises at a predetermined speed, reduces speed gradually and then stops at the desired 
location.  Therefore, the docking longitudinal control software can be treated as a state 
machine switching among its major states: cruise control, stopping control and stop. Fig. 
4.1.2.1 shows the block diagram of longitudinal docking control software. Sensor 
information like engine transmission states and brake pressure is received from the J-Bus 
and brake pressure sensor. Coordination commands such as longitudinal automatic enable 
and stop position (location of docking stations) are sent to the docking longitudinal 
control software by docking coordination (part of docking lateral control program which 
coordinates docking longitudinal and lateral control). Absolute longitudinal position is 
also sent to longitudinal control software by docking coordination.   
 
After receiving the sensor information and control command, the longitudinal control 
state machine will switch the control program to an appropriate state as shown in Fig. 
4.1.2.2. Longitudinal control status is sent back to docking coordination together with 
longitudinal fault status generated by self diagnostics.  
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Fig. 4.1.2.1 Docking Longitudinal Control Block Diagram 
 
 

 

 
 

Fig. 4.1.2.2Longitudinal Control State Machine 
 
 

4.1.2.2  Cruise Control 
 

A. Controller design 
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Fig. 4.1.2.3 Cruise Control Block Diagram 
 
 
During the cruise control period, the bus first accelerates/decelerates to the cruise speed 
and maintains such speed until it is within a certain distance of the desired stopping 
location. The cruise control can be formulated into a speed tracking control problem as 
shown in Fig. 4.1.2.3. A gain scheduled PID controller is designed to track the received 
cruise speed command. The parameters of PID controller are scheduled according to the 
engine/transmission state changes (e.g. gear position and torque converter lockup). One 
thing that needs to be pointed out is that the vehicle speed smoothness is much more 
important than the speed tracking accuracy in our application here. To ensure a smooth 
vehicle speed response, two approaches are implemented. First, the parameters of the PID 
controller are chosen in such a way that bus speed response is always “undershoot”. The 
explanation can be illustrated as follows. Both brake actuator and throttle actuator are 
needed in order to get a fast and accurate speed tracking response in a speed tracking 
controller design. However, the switching of two different actuators may not be smooth 
for passenger comfort if not designed properly. This is true especially under low speed 
operation such as docking. An “undershoot” speed response will avoid unnecessary 
actuator switching and achieve smooth speed response. The speed tracking error can be 
compensated through static gains. Although this may slow system response, bandwidth 
and accuracy are not the most important concern here. Second, a smooth speed command 
profile generation is implemented. It is essentially a second order filter with initial 
conditions matched to the vehicle starting speed and acceleration.  
 

B. Experimental results 
 
To facilitate illustration, data from eight S-curve docking runs with automatic start are 
plotted in Fig. 4.1.2.4. The results are quite consistent with 0.3 m/s speed tracking error. 
Although it is a little bit slow, it is quite smooth according to passengers’ responses.  
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Fig. 4.1.2.4 Speed Tracking Results from San Diego Docking 

 
 
4.1.2.3  Stopping Control 
 

A. Controller design 
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Fig. 4.1.2.5 Retrofitted Brake Actuator 
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Once the bus enters within 12 meters of the desired stopping location, the longitudinal 
control system enters the stopping control mode. The purpose of stopping control is to 
stop the bus at the desired location within 10 centimeters accuracy. This is quite a 
challenging job due to the following reasons. First, the brake actuator is retrofitted on the 
existing pneumatic brake system as shown in Fig. 4.1.2.5. This brings in all the inherent 
nonlinearities of the pneumatic brake system. Fig. 4.1.2.6 shows the stair step response 
and ramp command response from input command to brake chamber pressure. The stair 
step response shows a slow pressure response, especially when the brake is in release. 
Furthermore, the ramp command response shows a 4 psi deadband when the brake is 
releasing. Second, the bus weight could change significantly from empty to full of 
passengers.  The empty 40 ft CNG bus weighs about 29,500 lb. The full capacity of the 
bus seating is 38. Assuming 170 lb per person, this will add 6460 lb, about one fifth of 
the bus’ empty weight. Third, the absolute longitudinal position is computed by 
combining magnet counts and integration of bus speed. However, the magnets are buried 
in the road with 1 meter spacing and the lowest speed which can be sensed by the bus 
speed sensor is 0.65 m/s. This means that the absolute position information will be lost at 
the final stage of stopping, when the speed is below 0.65m/s. This poses significant 
design difficulty in meeting the 10 centimeter stop accuracy requirement.   
 

 
Fig. 4.1.2.6 Nonlinear Response of Brake Actuator 

 
To address the design difficulties mentioned above, control strategies are proposed as 
shown in Fig. 4.1.2.7. The vehicle states in Fig. 4.1.2.7 include position, speed and 
acceleration.  First, an inner brake pressure servo loop is designed to increase the 
bandwidth and reduce nonlinearities of the pneumatic brake system.  The brake servo 
controller regulates the brake chamber pressure to the desired command input.  Second, 
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we assume that brake force generated by the pneumatic brake is approximately 
proportional to the brake chamber pressure.   
 

 
Fig. 4.1.2.7 Block Diagram of Stopping Control 

 
 
Fig. 4.1.2.8 shows the relationship between vehicle deceleration and brake chamber 
pressure from experimental data from the two CNG buses, labeled C1 and C2.  Despite 
the fact that these were essentially identical buses from the same manufacturer, it can be 
seen that the braking performance is noticeably different.  As shown in Fig. 4.1.2.8, the 
brake force (bus deceleration) remains proportional to the brake chamber pressure for 
chamber pressures larger than 7 psi, which is good enough for our application.  

 

 
Fig. 4.1.2.8 Bus Deceleration vs. Brake Chamber Pressure 
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Therefore, the braking force generated by the pneumatic brake system can be expressed 
by:  

)( dPF ab +−= η    
   

where aP is brake chamber pressure, η and d are unknown constants. The bus motion 
equation can be expressed by 

m
dP

m
x

m
bx a −−−=

η
&&&  

where x is bus displacement, b is unknown viscous damping coefficient and m is bus 
mass. This shows that the bus equation of motion can be linearly parameterized by a set 
of unknown constants such as mb / , m/η and md / . Then different online identification 
algorithms such as recursive least squares can be used to identify those unknown 
parameters. Third, the identified parameters will be used for the bus’s “last minute” 
correction when position information is lost. 
 
 

B. Experimental results 
 
Fig. 4.1.2.9 and Fig. 4.1.2.10 show the experimental data from 10 runs of docking in San 
Diego. During the remaining 12 meters of stopping control, the speed trajectories 
converge together gradually as parameter identification picks up for both in-line docking 
and S- curve docking. Although data shows that bus speed becomes zero at about 0.3 
meter before the desired stopping location, this does not mean that the bus stops at 0.3 
meter before desired stopping location. This is just because the bus speed is too low for 
the speed sensor at that time. Measurements after each docking run show that 10 
centimeter accuracy is achieved successfully. 

 
Fig. 4.1.2.9 Speed vs Distance for In-line Docking 
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Fig. 4.1.2.10 Speed vs Distance for S-curve Docking 

 
 

 
4.2  Bus Lateral Control at Highway Speed 
 
4.2.1 Lane tracking  
 
In principle, the bus lane tracking control system is identical to the bus docking system 
described in Section 4.1.1. They employ identical vehicle components and have the same 
control system architecture as shown in Figure 4.1.1.1. The control requirements 
specified in Section 4.1.1.2 were targeted for both lane tracking and precision docking 
operations; among them, requirements 1, 2, 4, 5 and 6 in fact address more the 
performance of lane tracking control. The control design methodology described in 
Section 4.1.1.3 indicates that a simple frequency-shaped “look-ahead” controller 
combining a gain scheduled feedback gain and a gain scheduled look-ahead distance 
scheduled with respect to vehicle speed will achieve all performance requirements in 
Section 4.1.1.2 for both lane tracking and precision docking control as shown in [11]. 
 
4.2.1.1 Lane Tracking Controller 
 
The final lane tracking control algorithm implemented in the bus needs to satisfy both 
tracking accuracy and ride comfort requirements for all operational scenarios at various 
bus speeds from precision docking to highway speeds regardless of the following 
uncertainties: road adhesion variations, incorrect road curvature information, sensor 
noise, actuator bandwidth, vehicle dynamics changes, soft suspension modes, and vehicle 
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parameters. The following modified frequency shaped virtual look-ahead lane-keeping 
control algorithm was developed and implemented for lane tracking control; they are 
basically identical to Eqs. (4.1.1.5) to (4.1.1.8) for the precision docking control in 
Section 4.1.3 with an additional nonlinear term, as in the Eq. (4.2.1): 

( ) ))(),(,()()()()()( ,...1, ttvsGvdysksGvk cniicopdssintccc δδδψδ &
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The added nonlinear control term, ))(),(,( ,...1, ttv cniicop δδδ &
= , deals with the 20 to 22 

degrees backlash in the steering actuator hydraulic assist system. It injected an open loop 
command based on the past steering angle behaviors as well as the bus velocity. The two 
speed dependent gain-scheduled coefficients, kc(v) and ds(v), approximate the velocity 
dependent relationships in Figure 4.1.1.3. Notice that as the vehicle speed is increased, 
the look-ahead distance is also increased, whereas the feedback gain is reduced, and these 
gains move moderately with respect to speed between 15 m/s to 25 m/s. 
 
 
4.2.1.2 San Diego I-15 HOV Lane Test Results 
 
The lane keeping controller was implemented on three buses, two CNG 40-ft buses (C1 
& C2), and one diesel 60-ft articulated bus (D1), and tested on the I-15 HOV lanes under 
general automatic steering scenarios (speed controlled by the drivers) as well as in the 
platoon scenarios (fully automated). 
 
Four different data comparisons are presented in this report to address the effectiveness 
of the lane-keeping steering controller presented in Section 4.2.1: (1) three consecutive 
automatic steering control runs for one CNG bus (C1-40ft) on I-15 HOV north bound 
lane on 08-03-03; (2) two-bus platoon (C1-CNG 40ft & D1-articulated 60ft) under full 
automatic control on I-15 HOV south bound lane on 08-18-03; (3) two different runs on 
two different buses (C1-CNG 40ft & C2-CNG 40ft) under fully automatic platoon control 
on I-15 HOV north bound lane on 08-18-03 and 08-19-03; and (4) two different runs on 
the articulated bus (D1-60ft) under fully automatic platoon control on I-15 south bound 
HOV lane on 08-19-03. 
 

Figure 4.2.1a shows the lateral deviations and bus speeds for three consecutive lane-
keeping control runs for one CNG bus (C1-40ft). The driver manually controlled the 
speeds in all three cases, where the maximum speeds for the Runs 1, 2, and 3 were 60 
mph, 46 mph, and 52 mph, respectively. The driver started with manual steering and 
switched to automatic steering control while the bus started moving. The driver 
intentionally varied the speeds continuously during each run to demonstrate the 
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robustness of the controller; notice that there were harsh braking for all three runs close 
to the end of the track. The standard deviations of the tracking errors under automatic 
steering control for this CNG bus in Run 1, 2 and 3 are 5.3, 4.5 and 5.1 centimeters, 
respectively. In all three runs, 99% of the time, the tracking errors are within 15 
centimeters. Figure 4.2.1b shows the corresponding steering angles and lateral 
accelerations during these three runs. The standard deviations of the steering angles 
commanded by the controller in Run 1, 2 and 3 are 10.2, 10.0 and 10.1 hand-wheel 
degrees, respectively. It is worthwhile comparing these standard deviations to the roughly 
22 degrees of steering wheel backlash. It shows a very tight control under such large 
nonlinearity. The standard deviations of the lateral accelerations resulted from the 
automated steering control in Run 1, 2 and 3 are 0.19, 0.13 and 0.19 m/s2, respectively. 
The maximum lateral acceleration is under 0.1 g, including those from the road curvature 
changes. Figure 4.2.1c repeats Figure 4.2.1.a, but with the Y-axis changing to the 
milepost where 0-milepost represents the south end of the instrumented HOV lanes. This 
figure shows that the tracking performances among these three runs are almost identical 
at every location with different speeds, which also demonstrates the consistency of the 
automated steering control algorithm. 

 

 
Figure 4.2.1a: CNG Bus (C1-40ft) 3 Consecutive Automatic Steering Control Runs  

on I-15 HOV lane on 08-03-03 (lateral tracking error & speed w.r.t. time) 
 



4.24 

 
Figure 4.2.1b: CNG Bus (C1-40ft) 3 Consecutive Automatic Steering Control Runs  

on I-15 HOV lane on 08-03-03 (steering angle & lateral acceleration w.r.t. time) 
 

 
Figure 4.2.1c: CNG Bus (C1-40ft) 3 Consecutive Automatic Steering Control Runs on I-
15 HOV lane on 08-03-03 (lateral tracking error & speed w.r.t. milepost (south end=0) 
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Figure 4.2.2 shows the lateral tracking errors and the speeds resulting from the lane 
keeping control under the fully automated platoon scenario on two different kinds of 
buses. The lead bus was a different 40-ft CNG bus (C2) compared to C1 in Figure 4.2.1; 
the following bus was a diesel 60-ft articulated bus (D1). The distance between the two 
buses was maintained at 40 meters; the driver switched on automated steering control 
after the bus reached around 30 mph and switched off at around 40 mph before reaching 
the south end of the HOV lanes. The standard deviations of the tracking error under 
automatic steering control for the CNG bus and the articulated bus are 4.6 and 6.8 
centimeters, respectively. In all three runs, 99% of the time, the tracking errors are within 
15 and 20 centimeters for C2 and D1 bus, respectively. 
 
Figure 4.2.3 shows the lateral deviations and speeds of two different CNG 40-ft buses 
under fully automated platoon control scenarios from two different platoon runs on I-15 
HOV northbound lane. In these two different runs, C1 was the following bus for run 2 (a 
shorter run), and C2 was the lead bus on run 1. Identical steering control parameters were 
implemented on both buses. The standard deviations of the tracking error under 
automatic steering control for the C1 and C2 CNG buses are 5.8 and 4.2 centimeters, 
respectively. These standard deviations are consistent with the corresponding ones in 
Figure 4.2.1 and Figure 4.2.2. Figure 4.2.3 also shows that the tracking performance 
among these two buses on two different runs is almost identical at every location with 
different speeds, which again demonstrates the consistency of the automated steering 
control algorithm. 
 
Figure 4.2.4 shows the lateral deviations and speeds of the same Diesel articulated 60-ft 
bus (D1) under fully automated platoon control from two different runs on I-15 HOV 
southbound lane. In these two different runs, D1 was always the following bus. The 
distance between the lead bus and D1 changed from 40 m to 20 m and back to 40 m on  
Run 1, whereas the distance in Run 2 remained 40 m. The standard deviations of the 
tracking error under automatic steering control for the D1 articulated bus are 5.3 and 6.1 
centimeters for Run 1 and Run 2, respectively. In both runs, the maximum tracking error 
was under 20 centimeters 95% of the time, and the tracking errors are within 15 
centimeters. 
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Figure 4.2.2: 2-Bus Platoon (C1-CNG 40ft & D1-articulated 60ft) under Full Automatic 

Control on I-15 HOV lane on 08-18-03 (lateral tracking error & speed w.r.t. time) 
 

 
Figure 4.2.3: 2 Buses (C1-CNG 40ft & C2-CNG 40ft) under Automatic Platoon from 2 

different runs on I-15 HOV lane (lateral tracking error & speed w.r.t. milepost) 
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Figure 4.2.4: Articulated Bus (D1-60ft) under Automatic Platoon from 2 different runs on 

I-15 HOV lane (lateral tracking error & speed w.r.t. time) 
 

 
4.2.2 Lane changing  
 
The fundamental difference between using look-down or look-ahead sensors for 
automated lane change maneuver is a result of the difference in the range of the lateral 
sensors. The look-ahead sensor typically has a larger sensor range. Lane-change and lane-
keeping maneuvers become virtually identical to a trajectory-following problem when the 
lateral sensor sees both lanes simultaneously. The control problem becomes more 
complicated when the lateral sensor cannot acquire information about either lane and the 
vehicle must travel a certain distance without sensing any markers during a lane-change. 
An automated lane-change maneuver therefore involves changing between various 
control states based on the availability of the lateral sensing measurement. The most 
uncertain, and thus the most difficult phase of this maneuver usually occurs during the 
attempt to sense the new marker line in the target lane.  
 
Three basic methods can be devised for conducting automated lane-change maneuvers 
using range-limited lateral sensors: open-loop lane-change, infrastructure-guided lane-
change, and free lane-change using inertial sensors. The difference between these 
methods lies in the different choices of guiding technique used during the period when no 
direct road measurement is available between lanes. The open-loop method uses a 
prescribed steering command; the infrastructure-guided method uses additional pre-
installed road markers between lanes at predetermined locations; and the free lane-change 
method employs dead reckoning with inertial sensors that estimate the vehicle’s lateral 
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states. Except when the “gap” between two lanes is very small, the open-loop lane-
change method has proved to be the least robust method because of its extreme sensitivity 
to vehicle and road uncertainties. Therefore the two approaches that satisfy the above 
lane-change requirements are infrastructure-guided lane-change and free lane-change 
using inertial sensors. The free lane-change control is chosen to be the primary lane 
change method for the bus transit system simply because it provides flexibility to allow 
an automated bus to conduct lane changes without prior infrastructure development and 
support. 
 
 
4.2.2.1 Lane Change Controller Design 
 
An automated vehicle should be able to conduct free lane-changes at any location that is 
designated for lane-changing even without detailed road information. The major 
difficulty in performing automated free lane-changes in practice is the high performance 
sensitivity with respect to sensor noise, vehicle/road parameter variations and any 
environmental disturbances. Although several methods have been proposed for free lane-
change steering control when the lateral sensor senses neither lane during part of the lane-
change period, most do not explicitly address concerns about robustness and reliability 
over the wide range, high noise and large variability of the vehicle operating conditions. 
Most methods require knowledge of vehicle parameters or exact geometric road 
information and clean sensor signals for a successful maneuver.  
 
To improve the reliability of the automated free lane-change maneuver, a free lane-
change control algorithm was developed and successfully tested in [13] by PATH. It 
consists of the following four cooperative control schemes:  
(1)  a lateral displacement observer/estimator using a yaw-rate sensor (and/or 

accelerometer) that results in bounded estimation error;  
(2)  an adaptive lane-change and lane-catching trajectory-planning scheme that guarantees 

a smooth final arrival at the target marker line;  
(3)  a robust and high damping lane-keeping control algorithm that is capable of tracking 

the desired trajectory under the worst case scenario; and  
(4)  a state machine that quickly coordinates the above schemes and determines the proper 

vehicle operational-state based on sensor signals, available road information and 
maneuver demands.  

 
Because a lateral accelerometer is usually noisier and more sensitive to the sensor 
location, a yaw-rate sensor was chosen to provide the input to the lateral displacement 
estimator. The purpose of such an estimator is to determine the lateral displacement using 
the yaw-rate measurement when the lateral sensors detect no markers between lanes. To 
reduce the sensitivity to dynamic vehicle variations, a more reliable kinematic 
relationship between lateral displacement and yaw rate is used for the design. The basic 
estimator is developed in [13] which accounts for three major sources of bias: (1) the 
yaw-rate sensor bias or drifting; (2) the yaw-rate contribution from the road’s curvature 
and from the road’s super-elevation; and (3) a slight variation in the estimate of the initial 
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conditions as the vehicle leaves the marker line. The estimator consists of the following 
equations and is described as follows:  

∫∫+++= tVtVtVyy d ˆ
2
1ˆˆˆ 2

000 ωωθ  (4.2.2) 

Equation (4.2.2) describes a “kinematic” estimate of $y  (the lateral displacement) that 
includes the contributions from bias and the initial conditions, where y0, θ0 and ω0 are the 
initial conditions or biases in lateral displacement, vehicle-angle and yaw-rate, 
respectively. In order to use Eq. (4.2.2) as the displacement estimator during the short 
“gap” period, the initial conditions (y0, θ0 and ω0) should be identified. Among them, ω0 
contributes the most toward the estimation error. The vehicle traveling at angle θV can be 
described as: 

RVV ωωθ −=&   (4.2.3) 

where ωV is the true vehicle yaw-rate, and ωR is the yaw rate corresponding to the road 
geometry and vehicle speed. The vehicle angle estimator Vθ̂  can be written as: 

)ˆ(ˆ
VVeMV K θθωθ −+=& , with  (4.2.4) 

NVM ωωω += , and  nVV θθθ += , 

where ω N  is the measurement noise (white noise) combined with the bias (slow varying) 
of the yaw-rate sensor, Vθ  is the computed value of θV (e.g., based on displacement 
measurements), θn is the computational error, and eK  is the observer feedback gain. The 
estimate of ω0 can be constructed from the following equation by combining Eqs. (4.2.3) 
and (4.2.4): 
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The right hand side of Eq. (4.2.5) consists of a first-order low-pass filtered ( NR ωω + ) 
and a first-order high-pass filtered θn. Both filters possess the same corner frequency 
at eK . Since )( NR ωω +  is exactly the yaw-rate “bias” (road contribution and sensor bias) 
that is used in Eq. (4.2.2) after the vehicle leaves the lateral sensor’s range, a low-pass 
filtered Ke V V( $ )θ θ−  as in Eq. (4.2.6) would provide a good estimate for the yaw-rate bias 
as long as the high frequency portion of the computational noise (from θn) is removed.  

)ˆ()(ˆ 0 VVelp KsG θθω −−= .  (4.2.6) 

To effectively reduce the impact from θn, the bandwidth of the additional low-pass filter 
( )(sGlp ) is chosen to be between Ke/5 and Ke/10. The delay from this low-pass filter 
creates the only restriction of such automated lane-change: the lane change should not be 
initiated right after a change in the road’s curvature until a time span corresponding to the 
time constant of this low-pass filter is passed. The same technique can also be applied to 
the kinematic relationship between y and θV to obtain the estimate 0θ̂  when the direct 
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calculation of vehicle angle is not accurate enough. The estimate 0ŷ  is usually obtained 
using the last available displacement measurement. In order to further increase the 
robustness in practice, additional filters may be added to provide bounds for estimates or 
to remove specific noises (such as spikes) in the measurements. 
 
Two controller states are needed for the free lane-change scenario: lane-change and lane-
catching, as shown in Figure 4.2.5. Although the lane-change state can be subdivided into 
lane-splitting (using the lateral measurement) and yaw-rate supported lane-change (using 
the lateral estimate), the trajectory-planning is identical. The difference lies in which 
lateral displacement (measurement or estimate) is selected for the trajectory tracking 
control.  
 

Lw 

keeping 

(splitting) 

Lane changing catchin
keeping 

marker 

yR yS

(sensor range) vehicle 
l

(Estimator supported)

 

 
Figure 4.2.5: Controller States for Automated Free Lane-Change 

 
Trajectory-planning is a crucial component in completing the automated free lane-change 
maneuver. Two trajectories need to be designed:  
(1)  Lane-change trajectory: the trajectory that the vehicle follows to leave the traveling 

lane (based on marker measurement offset) and perform the lane-change maneuver 
(based on lateral displacement estimate) until the lateral sensor receives the first 
marker signal from the target lane;  

(2)  Lane-catching trajectory: the trajectory that smoothly leads the vehicle to align itself 
to the new marker line once it senses the first marker.  

 
Although fifth-order polynomials provide a smoother trajectory, third-order polynomials 
were chosen for field-testing because of their simpler real-time computation and faster 
initial correction during lane-catching. Since the guided lane-change maneuvers are 
performed based on marker locations, the trajectories are defined as functions of the 
longitudinal positions as shown in Equation (4.2.7). The bus tracks the desired trajectory 
( )(xyy d= ) instead of the road center ( 0=y ). The desired trajectory is described as: 

01
2

2
3

3)( axaxaxaxyd +++= , with  (4.2.7) 
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Table 4.2.1 shows the coefficients of a typical application of Equation (4.2.7) to lane-
change, and lane-catching scenarios, with Lw the lane width and ψ the designated final 
approaching angle. The length of the trajectory planning, xf, is usually adaptive to vehicle 
speed so that the time of dead reckoning is limited to 3-5 seconds. However for 
simplicity, a fixed number between 150 to 200 m for lane-changes and 20 to 40 m for 
lane-catching is also applicable. Furthermore, the lane-change trajectory modifies itself if 
the vehicle does not reach the target lane after a prescribed time interval. 
 

 yd ( )0 & ( )yd 0 y xd f( ) & ( )y xd f

lane-change 0 0 ±Lw ±ψ 

lane-catching y(ta) θa 0 0 

Table 4.2.1 Trajectory-planning for free lane-change 
 
The lane-keeping controller is essential for the robustness of the lane change maneuver. 
Not only it is the final safeguard of this automated maneuver, but the strength of the lane-
keeping controller also determines the allowable maximum estimator errors. The 
controller has to bring the vehicle back to the lane-keeping function even at the largest 
possible arrival angle created by the estimator errors. 
 
 
4.2.2.2 San Diego I-15 HOV Lane Test Results 
 
The lane change controller were implemented on all buses: two CNG 40-ft buses (C1 & 
C2), and one diesel 60-ft articulated bus (D1), and tested on the I-15 HOV lane under the  
general automatic steering scenarios where the bus speed was controlled by the drivers. 
The lane change controller is designed to function at any speeds, as well as under severe 
braking conditions. 
 
Figure 4.2.6a – 4.2.6c illustrate a nine-minute test run for one CNG 40-ft bus (C1) under 
automatic steering control with driver controlling the throttle and brake on I-15 HOV 
southbound lane on 08-20-03. This test run demonstrates the following lateral control 
functions: Manual/Auto Transition, Automated Lane Change, and Automated Lane 
Keeping, under various speed variations including Hard Braking. 
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Figure 4.2.6a illustrates the field test results of automated free lane-change maneuvers on 
the I-15 test track. The bus started from the right lane on the southbound travel lanes. 
Twelve consecutive free lane-changes were recorded as the driver pushed a sequence of 
lane-change requests using the driver DVI button after an automated lane change was 
completed and as he desired. After a request was made, an automated lane change would 
be commanded at the next “Lane Change Permit” area. As an example, the first 
automated lane change was a left lane change at 45 mph (at 109 second). The bus first 
followed a desired lane-change trajectory (third-order polynomials as in Eq. 4.2.7) guided 
by the magnetic measurements until it left the sensor range at 1.12 m (right side of the 
bus). The bus continued to track the same desired trajectory using the estimated 
displacement instead of the measurement until the sensor saw the first magnet on the 
target lane (right lane) at -1.19 m (left side of the bus) away from the new lane center. At 
this time, the estimator reading was 2.23 m. The error of the estimate was 0.18 m since 
the correct estimation (at the first marker reading) should be about ±2.45 m (the lane 
width, 3.6 m, minus the sensor range, ~1.15 m). The bus then switched to the lane 
catching function with a new desired trajectory calculated by third-order polynomials 
whose coefficients are determined by the initial catching condition as in Table 4.2.1. 
Finally, the vehicle resumed the lane-keeping function after finishing lane-catching. 
According to Figure 4.2.6a, the resulting estimator errors for the twelve consecutive lane 
changes were: 0.18, 0.14, 0.39, 0.14, 0.25, 0.10, 0.20, 0.30, 0.15, 0.24, 0.31, and 0.39 
meters. The controller needs to be robust enough to recover from these estimation errors. 
Furthermore, these lane changes were performed with speeds ranging from 40 mph to 53 
mph. Notice also that #3, #11 and #12 lane changes were conducted under emergency 
braking; #4 and #6 were under full throttle; and #2 were done while the driver changed 
from braking to throttling. 

Figure 4.2.6b shows the corresponding steering angles and the control states for the same 
test run. The steering angles have a standard deviation of 11.7 degrees which is somewhat 
larger than the roughly 10 degrees of the three cases in Figure 4.2.1b. The 1.7 degree 
increase is likely due to the fact that (1) there were 56 automatic/manual transitions and 
(2) there were also 12 lane changes. 
 
Figure 4.2.6c illustrates the blowout plots for the lateral tracking error, steering angle, 
control state, and driver transition switch status for the same test run. The figures in 
Figure 4.2.6c show clearly the responsiveness of the control state with respect to the 
driver demand. The controller exhibits its “on-demand” property by changing the state as 
soon as the driver pushes the switch on or switch off buttons. The “controller” also 
responds to the control state immediately and smoothly. The smoothness can be easily 
observed in the smoothness in both the steering angles and the lateral deviations in 
between different control states. In addition, the lane-keeping controller always brought 
the lateral displacement toward zero (smoothly) whenever the driver transitions to 
automatic control. 
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Figure 4.2.6a: CNG Bus (C1 40ft) under Automatic Steering Control with Manual/Auto 

Transition, Automated Lane Change, with Hard Braking on I-15 HOV lane on 08-20-03 (lateral 
tracking error & speed w.r.t. time) 

 

  
Figure 4.2.6b: CNG Bus (C1 40ft) under Automatic Steering Control with Manual/Auto 

Transition, Automated Lane Change, with Hard Braking on I-15 HOV lane on 08-20-03 (steering 
angle, control state, and driver transition switch w.r.t. time) 
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Figure 4.2.6c: CNG Bus (C1 40ft) under Automatic Steering Control with Manual/Auto 

Transition, Automated Lane Change, with Hard Braking on I-15 HOV lane on 08-20-03 (lateral 
tracking error, steering angle, control state & driver transition switch w.r.t. time) 



4.35 

 
4.3  Bus Longitudinal Control  
 
The objective of the longitudinal controller is to follow either a given desired velocity or 
distance profile using the three control inputs, namely the engine torque, transmission 
retarder braking torque, and pneumatic braking torque.  Based on the vehicle model 
defined in Section 2.1.3.1, the longitudinal controller is designed to achieve desired 
control objectives. 
 
4.3.1  Tracking a speed profile  
 
In this section, the control laws for determining the desired engine and brake torque will 
be designed using dynamic sliding control (DSC). Due to the successful implementation 
of DSC previously on the PATH passenger vehicles [1,2], and its extensibility to the 
transit bus models, the speed control law will be derived briefly without detailed 
descriptions. 
  
① Preliminary design of speed controller 

 
Using the terminology of sliding mode control, the sliding error surface representing the 
velocity tracking error is defined as dese vvS −=:1 . Then, after differentiating S1e and using 
equation (2.1.1), we can write the forcing term eT  and filter dynamics as follows: 
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)0()0(,2 eedeseedesedese TTTTT ==+&τ    (4.3.1b) 
where Tb is zero for engine control and λ1e is the control gain of the first sliding surface.  
Subsequently, after differentiating edesee TTS −=:2  and using equation (2.1.3), the 
subsequent surface error dynamics and desired engine torque command are: 
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)~( 22 eeedeseectrl STTT λτ −+= &     (4.3.1d) 

where edesmeasee TTS −= ,2 :~ , i.e., the engine torque value defined in equation (2.1.2) is used 

to calculate eS2
~ , which might be slightly different from S2e, and λ2e is the control gain of 

the second sliding surface. Finally, desired commands for engine control are following: 





=
=

engineCNG  afor ),(
engine diesel afor 

ctrlee

ctrlcmd

Tqu
TT

ωα
   (4.3.1e) 

where qe is an inverse map of ),( αω uT emap  in equation (2.1.3). It is noted that the desired 
engine torque command (Tctrl) is used as TCC for the diesel engine and is fed into the 
inverse engine map to calculate the pedal position command for the CNG engine. 
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A control law for the brake system can be derived similarly by defining S1b := S1e. After 
following the similar procedure, the corresponding equations for the brake system are: 

( )[ ]bbdeseqaccect
g

b SvfJTT
R

T 111
1 λ−+−−= &    (4.3.2a) 

bbbdesbbbdesbdesb KTPKTPP /)0()0(,/2 ==+&τ   (4.3.2b) 
)()()( 22 bvbbbbdesbbbv PquSPPuP =⇒−+= ββ λτ &   (4.3.2c) 

where Tect is the minimum or closed throttle torque, S2b:= Pb - Pbdes, and qb is the inverse 
function of Pbv. Once the preliminary design of the longitudinal controller is completed, 
the appropriate choice of the controller gains, {λ1i, λ2i, τ2i} for i = e, b, will be discussed 
next. 

 
 

② Analysis and design of speed controller 
 

Consider the closed-loop error dynamics with DSC law for engine control.  After 
subtracting and adding Tedes and eT  in equation (2.3.1) and using the definition of eT  and 
Tedes shown in equations (4.3.1a) and (4.3.1d), the closed-loop system equations are 
written as 
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where eedese TT −=2ξ  is the low-pass filter error of the DSC. Then, using the definition of 
S1e, S2e, and Tctrl shown in Eq. (6), the augmented error dynamics shown above can be 
rewritten in terms of the surface and filter errors as follows: 
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where the parameter c1e = Jeq. Similarly, when the brake pressure is greater than the push-
out pressure (Po), the longitudinal equation for brake control is presented as follows 
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where bbdesb PP −=2ξ . Then, using the definition of S1b, S2b, and uβ shown in equation 
(4.3.2c), the error dynamics for the case of the braking control are 
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where 
gb

eq
b RK

J
c

⋅
−=3 . Finally, combining the equations (4.3.4) with (4.3.6), we can write 

the switched error dynamics as follows: for i = e, b, 
rBwBzAzrBwBzAzT iriiwiiiiriiwiiii ,,,, ++=⇒++= &&    (4.3.7)  
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and the system matrices are following:   
 

















Λ−
=

10
010
001

11 ii

i

c
T , 

















−
Λ−

Λ−
=

i

i

iii

i

cc
A

2

2

111

/100
00
/1/1

τ
, 

















−
=

i

iw

c
B

1

,

00
010
001

 and 

















−
=

)0(
0
0

00
000
000

11

,

desii

ir

vcc
B

&&

 

In consequence, it is said that the augmented error dynamics with DSC can be described 
as linear error dynamics subject to perturbation terms, wi. In the case of robust tracking 
for the uncertain nonlinear system, the DSC does not drive the error to zero, but the error 
will be quadratically bounded within a small region around the desired trajectory [3].    
 
The quadratic boundedness for a tracking problem of a nonlinear system via DSC was 
proposed in [4].  Moreover, based on simultaneous stability in linear control theory [5], 
the results in [4] can be extended to consider a switched nonlinear system, e.g., engine 
and brake control for automated transit bus systems here.  Furthermore, these were 
applied for a set of nonlinear systems to consider possible faults [6]. Since all 
mathematical details can be referred to [6], the algorithm to obtain appropriate control 
gains (λi and τi) is written without descriptions as follows:   
 
Algorithm: 

i. Choose a set of surface gains (λi) and filter time constants (τi) which makes at 
least Ai shown in equation (4.3.7) be Hurwitz and satisfies design constraints, e.g., 
all τ should be greater than a minimum value. 

ii. Choose the matrices Cz,i and Dr,i such that |wi| ≤ |Cz,i z + Dr,i r| for all z ∈ D. 
iii. Find the smallest εP by solving the following problem for a fixed κ: 
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 where the reference input has bounded peaks, i.e. 0rrr T ≤  where 0r  is the bound 
 on the peak, rr BrB 0= , and rr DrD 0= . 
In order to provide an effective controller performance analysis, the above problem 
(4.3.8) in step (iii) is to find the ellipsoidal error bound for the DSC.  However, the 
ellipse should also be “small” in some sense, so that the tracking performance will be 
estimated.  The measure of size used in this paper is the largest semi-axis length of the 
ellipse [19].  Using this measure, the minimization of the largest semi-axis length can be 
posed as the semi-definite programming problem shown in (4.3.8). Repeating procedure 
of step (i) through (iii) provides analysis and design method for choosing surface gains 
and time constants of DSC. 
  
  
③ Switching criterion 
 
The specific control mode of the vehicle is determined by switching logic based on the 
desired and residual acceleration computed by the engine control law. The residual 
acceleration is defined as  

1fJ
TTa

eq

accect
resid −

−
=  

and represents the acceleration of the vehicle as a result of closed-throttle-torque, rolling 
resistance, and aerodynamic drag. For example, if the engine controller computes 

residsyn aa ≥  where eedessyn Sva 11: λ−= & , then engine control is used. However, if asyn < 
aresid, then brake control is used [7, 2]. Once the brake control is activated, it should be 
decided whether the transmission retarder braking torque is enough or additionally a 
pneumatic braking torque is necessary.  One of the simplest methods is to use the 
maximum torque of the transmission retarder (Tmax) as follows: 

 maxif
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TT
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It is remarked that small hysteresis for the switching criterion was used to prevent the 
potential chatter due to sensor noise, finite sampling rate, and model uncertainties [7]. 
 
④ Experimental validation and performance 
 
As the model validation was performed in the flat open space mentioned in Section 
2.1.3.1, high speed tests using two transit buses were conducted at Crows Landing in 
California. As shown in Figure 4.3.1, the desired velocity is given ranging from 0 to 23 
(m/s) with the maximum acceleration, 0.3 (m/s2). When the controller gains are assigned 
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as { } { }02.0,25,2.1,, 221 =eee τλλ  and { } { }02.0,20,0.1,, 221 =bbb τλλ for the longitudinal 
control of a 40-ft transit bus, the velocity tracking performance is shown in the bottom 
plot of Figure 4.3.1. Moreover, to validate robustness of the proposed longitudinal 
controller, a lane-change maneuver was conducted several times and an air conditioner 
was switched on and off during the experimental test. Once the torque converter is locked 
(after 23 seconds in Figure 4.3.1), the tracking error remains within 0.6 (m/s) even under 
system parameter disturbances, and it is on the order of the wheel speed sensor 
resolution, ±0.28 (m/s). 

0 20 40 60 80 100 120 140
0

5

10

15

20

25

S
pe

ed
 (m

/s
)

0 20 40 60 80 100 120 140
-1

-0.5

0

0.5

1

1.5

S
pe

ed
 E

rro
r (

m
/s

)

Time (second)

Vdes
V
T/C

 
Figure 4.3.1 Time Responses of Speed and Speed Tracking Error at Crows 

Landing: a 40-ft CNG Transit Bus 
 

Similarly, when the controller gains are assigned as { } { }02.0,25,2.1,, 221 =eee τλλ  and 
{ } { }02.0,20,0.1,, 221 =bbb τλλ for a 60-ft articulated bus, the velocity tracking performance 
is shown in the bottom plot of Figure 4.3.2, and its tracking error remains within 0.7 
(m/s). There are two interesting remarks from the experimental results. One is that the 
controller gains used above were obtained from the algorithm proposed in the previous 
section and their small variation was applied to improve the performance.  The other is 
that the unified speed tracking controller was working well for the two different types of 
transit buses using the same gains.  
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Figure 4.3.2 Time Responses of Speed and Speed Tracking Error at Crows 

Landing: a 60-ft Diesel Articulated Bus 
 
 
While the longitudinal controller was tested on the flat test road mentioned above, its 
performance and robustness with respect to road grade should be considered from the 
viewpoint of real implementation. For instance, Figure 4.3.3 shows road elevation and 
grade of a highway section on I-15 in San Diego, California, which was used for the 
demonstration in August of 2003. Figure 4.3.4 shows time responses of a 40-foot CNG 
transit bus in terms of velocity and accelerator pedal position on I-15. The results shown 
in Figure 4.3.4 demonstrate how well the longitudinal control algorithm makes the bus 
track a desired speed profile even in the presence of road grade.  From these, it is 
concluded experimentally that the proposed longitudinal controller is robust enough to 
track the desired speed without considering road grade. More specifically, once the 
torque converter is locked, the tracking error remains less than 0.5 (m/s), although a 
magnitude of speed error reflects the road grade (also compare Figure 4.3.3(b) with 
Figure 4.3.4(b)). 
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Figure 4.3.3 Road Elevation and Grade on I-15 at San Diego 
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Figure 4.3.4 Speed Tracking on I-15 at San Diego: a 40-ft Transit Bus, Driving 

Northbound 
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4.3.2  Vehicle-Following in Platoon, with Both Constant and Varying Spacings  
  
① Distance controller 
 
The distance following control law can be derived similarly by extending the definition 
of S1. That is, if there are two vehicles, i.e., the leading and following vehicle, the first 
sliding surface can be defined as 

1111 εε qS += &  
where 11 RRdes −=ε , Rdes is the desired spacing, and R1 is the distance between the lead 
and following vehicle. As derived in equation (4.3.1) and (4.3.2), both engine and brake 
control laws can be obtained similarly.  Furthermore, it is interesting to remark that both 
R1 and 1R&  are obtained through the range and range rate measurement sensors.  The range 
and range rate data are obtained from a millimeter-wave radar, a laser radar (lidar), and a 
wireless communication system.  The detailed discussion of the sensor processing and 
fusion algorithm can be found in [8]. 
 
If there are more than two vehicles to consider, the first sliding surface can be extended 
for guaranteeing the string stability [11] as follows: for i = 2, …, 

( ) 









−−+−+⋅+= ∑

=
++

i

j
jleadileadiii LxxqxxqqS

1
131211 &&& εε  

where εi = Rdes - Ri, Ri is the range of (i+1)th vehicle, xi is the position of ith vehicle, and 
xlead is the position of the first vehicle, and Lj is the length of jth vehicle. 
 
② Experimental validation and performance 
 
As done above for the experimental validation of the proposed speed controller, high 
speed tests for distance following were conducted using two transit buses at Crows 
Landing in California. Figure 4.3.5 shows the desired velocity ranging from 0 to 22 (m/s) 
with the maximum acceleration, 0.25 (m/s2). When the controller gains are assigned as 
{ } { }7.0,02.0,25,2.1,,, 1221 =qeee τλλ  and { } { }7.0,02.0,20,0.1,,, 1221 =qbbb τλλ for the 
longitudinal control of a 40-ft transit bus, the distance tracking performance is shown in 
the bottom plot of Figure 4.3.5. Once the torque converter is locked (after 29 second in 
Figure 4.3.5), the tracking error remains within 1.5 (m) when the desired constant 
distance is 15 (m). Similarly, Figure 4.3.6 shows the distance tracking performance for a 
60-ft articulated bus. Its tracking error of the distance following controller is less than 1 
(m) under a flat road condition.  
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Figure 4.3.5 Time Responses of Speed, Speed Error, and Range at Crows Landing: 

a 40-ft Transit Bus 
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Figure 4.3.6 Time Responses of Speed and Range at Crows Landing: a 60-ft 

Articulated Bus 
 
 
While a virtual leading vehicle was used above to validate the distance following control 
law, the two-vehicle following scenario on I-15 was considered next. That is, the 40-foot 
CNG bus was driven automatically as a leading vehicle, and the automated 60-foot 
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articulated bus followed with a given desired spacing. Figure 4.3.7(a) shows speed 
responses of the two transit buses as well as a given desired speed profile with respect to 
time.  More specifically speaking, the operation of both vehicles was switched to 
automatic control initially about the speed of 13 (m/s) by a driver through DVI (after 
about 40 second in the figure), and the following distance was closing from the current 
distance to 15 (m), which is set to be a desired distance. This is why there is a 
discrepancy in the term of speed between 40 and 90 second in Figure 4.3.7(a). For the 
given scenario, Figure 4.3.7 (b) and (c) show range and distance tracking error between 
two automated transit buses. It is noted that there is a fairly steep hill during the period 
from 90 to 220 seconds (also refer to Figure 4.3.3), and it results in larger distance 
tracking error up to 2 (m). Except this period, the distance tracking error remains within 
0.5 (m) during the constant distance following. It is suggested that it may be good to have 
a road grade estimation algorithm and the corresponding hardware and/or software (GPS, 
map database) to improve the distance following performance in the presence of a steep 
hill on a highway. 
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Figure 4.3.7  Switching Manual to Automatic Driving and Distance Tracking: 

Driving Southbound on I-15 
 
Next, the closing and opening gap scenario was added, i.e., the following distance was 
closing from 40 (m) to 20 (m) after about 210 second and opening to 40 (m) after about 
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360 second. Figure 4.3.8(b) shows that the velocity tracking error of the lead vehicle 
stays less than 0.5 (m/s), while the distance tracking error of the following vehicle is 
within 2 (m) as shown in Figure 4.3.7(c). 
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Figure 4.3.8   Closing and Opening Gap Maneuver: Driving Southbound on I-15 

 
 
Finally, a platoon maneuver of three automated transit buses was conducted by placing 
another 40-ft CNG transit bus as a third vehicle. After about 45 seconds, all three 
vehicles were switched to automatic driving (by driver use of the DVI) as shown in 
Figure 4.3.9.  Then, they were closing a gap to 40 (m) and maintained the desired 
distance. Figure 4.3.9(b) shows that distance error does not propagate backward.  That is, 
even when the distance error of the second bus reaches up to 2 (m), the error of the third 
bus still remains within 2 (m).  This validated that the overall system with the distance 
following controller is string stable [2].  Furthermore, it shows experimentally the 
potential feasibility of a platoon maneuver of more than three transit buses.  
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Figure 4.3.9  Platoon Maneuver of Three Automated Transit Buses on I-15: Driving 

Southbound 
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4.4  Truck Longitudinal Control 
 
The primary focus of the automation development work on the trucks has been for 
longitudinal control, because this is what provides the largest potential benefits in terms 
of increasing capacity of a truck lane and reducing fuel consumptions and emissions.  
The development sequence began with causing each truck to follow a commanded speed 
profile, addressing the lower-level vehicle dynamics issues, and then proceeded to 
vehicle-following of trucks within a platoon, which involves the integration of forward 
sensing and communication systems. 
 
 
4.4.1  Tracking a speed profile  
 
The commanded speed profiles for testing combinations of tractor and empty trailer and 
with fully loaded trailer at the Crows Landing track are depicted in Fig. 4.4.1 below.  
These profiles are governed by the desire be able to test up to 55 mph within the limited 
length of that track (approximately 2.4 km) and the limited power of the truck engines.  
Smooth acceleration commands are generated within these constraints to obtain the 
illustrated profiles.  The fully loaded truck is particularly limited in its acceleration 
capability at the higher speeds (engine torque declines above 1800 rpm and drag 
increases), so its profile differs noticeably from that of the empty truck. 
 

 
Fig. 4.4.1  Speed Command Profiles for Testing Empty and Full Trucks at Crows 

Landing 
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Test Conditions for Single-Vehicle Speed Tracking 
 

• Vehicle combined weight tested 
• Empty flat trailer (M=14061[kg]) 
• Half loaded (M=22226[kg]) 
• Fully loaded (M=31795[kg]) 

 
• Speed range tested: 10 ~ 55[mph] 

 
• Flat test track with total length ~ 2100[m] 

 
• Combined braking system tested 

• Air brake (EBS) + Jake brake + Transmission retarder 
• Air brake (EBS) + Jake brake  
• Air brake (EBS) + Transmission retarder 
• Air (EBS) brake only 

 
Hardware: 
Cummins N14+ 435[hp] Turbo diesel engine 
With Jake (compression) brake capability 
400[N.m] ~ 2 cylinder 
800[N.m] ~ 4 cylinder 
1200[N.m] ~ 6 cylinder 
Transmission retarder 
Euro-EBS/ABS 
Most data reading and commanding are through J1939 Bus 
 
Acceleration and deceleration test: 
Vehicle speed to follow a predefined profile (following a virtual vehicle) 
 
Maximum acceleration tested for different loads 
a=0.55 [m/(s^2)]   when   v=2.0 [m/s] 
a=0.24 [m/(s^2)]   when   v=14.0 [m/s] 
a=0.06 [m/(s^2)]   when   v=25.0 [m/s] 
 
Maximum deceleration range tested 
0.4 ~ 1.0 [m/(s^2)] 
 
Notations in figures 
Each  run has 3 figures. 
 
Units & terminologies used in the following figures: 
spd: Speed [mph] 
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dist: distance 
dist_err: distance error [m] 
spd_err: speed error [m/s] 
max_acc: Maximum acceleration [m/s^2] 
max_dec: Maximum deceleration [m/s^2] 
acceleration [m/s^2] 
deceleration [m/s^2] 
EBS: Euro-EBS/ABS 
Jake:  Jake (compression) brake 
trtd: Transmission retarder 
 
 
A comprehensive collection of test data from these experiments can be seen in Appendix 
B.  A few representative examples are described here to show the key performance 
issues. 
 
The first case, shown in the three figures following, is for the empty trailer loading, with 
a maximum speed of 55 mph, maximum commanded deceleration rate of 1.2 m/s2 and all 
three braking systems in action.  Figure 4.4.2 shows the commanded and actual speed 
profiles to be virtually indistinguishable from each other.  The transmission gear shifts 
and distance and speed tracking errors are shown on the other two traces of this figure.  
They show distance errors remaining within about +/- 1 m and very small speed errors 
except for the very start and conclusion of the maneuver. 
 
 

 
 Fig. 4.4.2 – Speed Profile Tracking by Single Empty Truck (1 of 3) 

 



4.50 

 
Fig. 4.4.3 – Speed Profile Tracking by Single Empty Truck (2 of 3) 

 

 
 

Fig. 4.4.4 – Speed Profile Tracking by Single Empty Truck (3 of 3) 
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The remaining two figures provide more of the internal performance measures needed to 
identify how the longitudinal controller is working, such as the engine torque command 
profile, engine speed, fueling rate and manifold pressure, followed by the operation of the 
three braking systems.  The transmission shifting effects can be seen clearly in the jumps 
in the engine speed profile.  The complementary actions of the three braking systems can 
be seen in the final plot, with the compression brake acting noticeably earlier than the 
other two braking systems. 
 
The fully loaded truck has more than twice the mass of the empty truck, so it is important 
to verify how robust the control system is with respect to mass variations.  The results for 
a similar test up to 55 mph of the fully loaded truck are shown in the following Figures 
4.4.5 – 4.4.7.  In this particular run, the retarder was not used and the maximum 
commanded deceleration rate was 1 m/s2.  Note that the distance error is still very small 
until well into the braking maneuver, when it oscillates around approximately 1 m of 
error, and this is accompanied by some oscillations of the speed error as well (but those 
are contained within less than 0.5 m/s).  These oscillations can be traced to the dynamics 
of the EBS and compression brakes, which can be seen to switch on and off periodically 
in Figure 4.4.7.   
 
 

 
Fig. 4.4.5 – Speed Profile Tracking by Single Fully Loaded Truck (1 of 3) 
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Fig. 4.4.6 – Speed Profile Tracking by Single Fully Loaded Truck (2 of 3)  

 

 
Fig. 4.4.7 – Speed Profile Tracking by Single Fully Loaded Truck (3 of 3) 
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A fortuitous error in the experimental procedures made it possible to assess the 
robustness of the control system to unknown loading deviations, when some of the tests 
were run for the fully-loaded truck when the controller parameters were defined based on 
the assumption that the truck was empty.  Results of one of these tests are shown in 
Figures 4.4.8 – 4.4.10 below. 
 
In these runs, only the EBS braking system was active, which limited both the level and 
speed of the braking action that were available.  The distance errors were still confined 
within the range below 1 m, and the speed errors less than 0.5 m/s, but this test case was 
for a commanded deceleration rate of only 0.5 m/s, which is lower than in the previously 
reported test cases.  The oscillations in action of the EBS can be seen clearly, since this 
test was performed before the EBS controller was modified. 
 

 

 
Fig. 4.4.8 – Speed Profile Tracking by Single Fully-Loaded Truck Using Controller 

Parameters for Empty Truck (1 of 3)
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Fig. 4.4.9 – Speed Profile Tracking by Single Fully-Loaded Truck Using Controller 

Parameters for Empty Truck (2 of 3) 
 

 
Fig. 4.4.10 – Speed Profile Tracking by Single Fully-Loaded Truck Using Controller 

Parameters for Empty Truck (3 of 3) 
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4.4.2  Vehicle-Following in Platoon  
 
Control design for vehicle following to ensure string stability is reported in [9]. 
Preliminary experimental work for heavy-duty-truck following has been reported by the 
CHAUFFEUR project in [10].  However, the trucks they used are not as heavy as those 
used by PATH.  Besides, the following distance they used was between 8~10[m].  With 
our developed longitudinal controller, we have tested following distance for different 
truck loads from empty trailer to fully loaded with following distances between 3~10[m]. 
Qualitative results about fuel consumption are also indicated. 
 
Test Scenarios: 
 

• Vehicle following 
• 1st   Truck: Fully loaded (M=31795[kg]) 
• 2nd  Truck: Half loaded (M=22226[kg]) 

 
• Speed range tested: 45 ~ 55[mph] 

 
• Inter-vehicle distance:  4~10[m] 

 
• Flat test track with total length ~ 2250[m] 

 
• Combined braking system tested 

• Air brake (EBS) + Jake brake + Transmission retarder 
• 2nd   has modified EBS  Box with  0  initial value 
• 1st has default initial value for deceleration of 0.25[m/s^2] 

  
Maneuvers Tested: 
 
1st vehicle speed to follow a predefined profile (following a virtual vehicle) 
 
2nd vehicle to follow the 1st to keep constant inter-vehicle distance 
 
Maximum acceleration tested 
a=0.55 [m/(s^2)]   when   v=2.0 [m/s] 
a=0.24 [m/(s^2)]   when   v=14.0 [m/s] 
a=0.06 [m/(s^2)]   when   v=25.0 [m/s] 
 
Maximum deceleration range tested 
0.9 [m/(s^2)] 
 
Each run has 3 figures. 
Units & notations used in the following figures are: 
spd: Speed [mph] 
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dist: distance 
dist_err: distance error [m] 
spd_err: speed error [m/s] 
 
Color used in plotting:  
          red  -     1st vehicle 
          green – 2nd vehicle 
The x-coordinate is time in second. 
  
 
A substantial collection of test data from these runs is shown in Appendix C.  A 
representative example is described here to show the key performance characteristics for 
one of the most demanding conditions, with the maximum speed of 55 mph and the 
trucks operating at a separation of only 4 m.  The summary of top-level performance 
attributes in Figure 4.4.11 shows the virtually indistinguishable speed profiles of the two 
trucks, and their speed errors in the second-row plot confirm how small and very similar 
these errors are.  The transmission shifts are seen to occur nearly simultaneously for the 
two trucks in the next plot, and their distance errors are similarly small, with the 
exception of some growth in the distance error of the following truck during the final 
stage of the braking maneuver. 
 

 
Fig. 4.4.11 – Two-Truck Platoon Operating at 4 m Separation (1 of 3) 
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Fig. 4.4.12 – Two-Truck Platoon Operating at 4 m Separation (2 of 3) 

 
 

 
Fig. 4.4.13 – Two-Truck Platoon Operating at 4 m Separation (3 of 3) 
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Figure 4.4.12 shows the ranging sensor data used for controlling the separation between 
the trucks, with the relatively noisy traces from the individual radar and lidar sensors 
being fused into a much smoother combined range estimate.  The torque command and 
brake pressure measurements from the two trucks are seen to be fairly similar to each 
other, and where there are differences, the following truck shows less oscillatory 
measurements than the leading truck, which is an important stability consideration. 
 
Finally, Figure 4.4.13 shows the engine speed, fueling rate and total fuel consumption of 
both trucks through the test maneuver.  The similarities in engine speed and in the general 
shape of the fueling rate plot are quite evident.  The overall fuel consumption is clearly 
higher for the first truck than for the second, but this truck was also more heavily loaded 
in this test run, so conclusions about fuel economy effects cannot be drawn from this 
particular test case. 
 
Later experiments were conducted under more carefully controlled conditions, and with 
identically loaded trucks, in order to compare fuel consumption of the first and second 
trucks in the platoon, as well as comparing with an individual truck following the same 
speed profile. 
 
 
4.4.3  Testing for Changes in Fuel Consumption and Emissions 
 
After the two-truck platoon longitudinal control was working satisfactorily, it was used 
for two series of controlled experiments at Crows Landing to make direct measurements 
of the potential savings in fuel consumption and emissions, based on the aerodynamic 
drag reductions from close-formation platoon driving.  These tests were performed in 
cooperation with Prof. Frederick Browand from USC (for drag and fuel consumption) 
and Prof. Matthew Barth from UCR (for emissions). 
 
The Crows Landing tests had to be performed under several challenging practical 
constraints, which limited the opportunities for obtaining the most comprehensive and 
authoritative data.  The first was the limited length of the runway there (7500 feet), which 
made it impossible to accelerate the trucks to speeds above 55 mph, and only provided 
limited cruising time at that speed before it was necessary to decelerate.  The second 
important constraint was the lack of lateral control on the trucks, because no magnetic 
reference markers were available on the longest runway at Crows Landing.  This meant 
that the drivers had to work hard to steer their trucks accurately to follow a line along the 
edge of the runway, but they were still subject to lateral deviations of as much as 30 cm, 
reducing the effectiveness of the aerodynamic “drafting”. 
 
The first series of tests, in October 2003, included use of the UCR Modal Emissions 
Research Laboratory (MERL) trailer, to provide direct measurements of the emissions of 
one truck tractor at a time.  Tests were performed for an individual truck following a 
commanded speed profile, and then with the MERL trailer attached to the leading and 
following trucks of two-truck platoons following the same speed profile, to provide data 
for comparable driving conditions.  The MERL trailer includes a heavy-duty diesel 
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engine to generate power for its onboard instrumentation, which requires that the back 
end of the trailer remain open during the tests for ventilation.  The weight of this trailer 
limited the maximum speed that could be reached within the available runway length, and 
the open back end changed the aerodynamics of this trailer compared to “standard” box 
trailers of similar dimension, introducing some distortion into the test results. 
 
The detailed results of the emissions testing are being reported by Prof. Barth under the 
MOU that funded his participation in these tests.  The top-level summary of these results 
for NOx emissions is shown in Table 4.4.1 and for CO2 in Table 4.4.2.  The results were 
not consistent for intermediate spacing values where they were better for the rear truck 
and worse for the front truck, so it is difficult to draw meaningful conclusions on the 
basis of these tests, beyond noting that the savings are quite small, but somewhat more 
significant for the front truck than for the rear truck.  The CO2 reductions, which should 
be directly related to fuel consumption savings, are larger, and clearly more significant 
for the rear truck than for the front truck.  However, these results did not follow smooth 
trends at the intermediate spacings. 
 
Table 4.4.1 – Savings in NOx emissions from truck operations in close-formation 
platoons 
 
Spacing Front Truck Rear Truck
10 m 5.6 % 1.4 % 

4 m 4.4 % 1.1% 
 
Table 4.4.2 – Savings in CO2 emissions from truck operations in close-formation 
platoons 
 
Spacing Front Truck Rear Truck
10 m 8.1 % 15.5% 

4 m 11.3 % 17.7% 
 
 
The tests for fuel consumption were repeated in December 2003, without use of the 
MERL trailer, but with two identical leased trailers on the two trucks, and under 
somewhat more carefully controlled test conditions, based on the lessons learned from 
the October testing.  Prof. Browand compared the results with his prior results from 
wind-tunnel testing of scale model trucks. 
 
The Crows Landing tests involved direct comparisons of the real-time measurements of 
fuel being consumed by the engines of both trucks in tandem, compared with the same 
trucks driving individually.  In order to minimize variability in the experimental 
conditions, data were only analyzed for the periods when the trucks were cruising at 
constant speed, not during their acceleration or deceleration maneuvers, and data were 
only recorded when the ambient winds were modest.  Multiple runs were performed for 
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each test condition, and the runs were balanced between the two directions of travel on 
the runway in order to compensate for ambient winds and for a slight grade along the 
runway (about 0.4%).  The results are summarized in Figure 4.4.14 below. 
 

 
 
Figure 4.4.14  Comparison of Fuel Consumption of Trucks Operating in Tandem in 
Platoon, Versus Operating in Isolation 
 
 
As the uncertainty bands on this figure show, there is still considerable variability in the 
data, but it is clear that the trailing truck saves somewhat more than the leading truck.  
However, the trend with respect to truck separation is not as strong as was expected based 
on the earlier wind tunnel results.  The data are plotted together in Figure 4.4.15 to 
illustrate this contrast.  In particular, the trailing truck does not save as much as expected 
at the shorter gaps.  The most likely explanation for this discrepancy is that the wind-
tunnel model had a blunt front end comparable to a cab-over-engine tractor design, while 
the trucks used for the field tests had an engine-forward design, which meant that even 
when the separation between the front of the second truck and the rear of the leading 
truck’s trailer was small, the separation to the large cross section of the second truck’s 
trailer was considerably larger.  Thus, with the typical engine-forward tractor design, it is 
not physically possible to get down to a really small gap between the successive trailers 
to enable the substantial drag savings.  The cab-over design is likely to be much more 
amenable to fuel savings from close-formation platoon driving. 
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Figure 4.4.15  Comparison of Direct Field Test Measurements with Scale-Model Wind 
Tunnel Estimates of Fuel Savings from Close-Following Platoon Operations 
 
 
4.5  Truck Lateral Control at Highway Speed 

 
Limited resources were available for designing and testing the lateral controller for trucks 
when the hardware components and software drivers were ready, since the development 
focuses had shifted to the transit buses at that time. However, the development team did 
use the only trip for initial lateral dynamics and sensor testing at Crows Landing to test 
out some interesting truck lateral control hypotheses.  
 
As pointed out by several papers, conventional wisdom suggests that steering a tractor 
semi-trailer is more difficult than steering a passenger vehicle; the challenges in 
controlling heavy vehicle lateral dynamics result from: 
• Large inertia, which causes slower response to steering. 
• Inherent non-linearity in the vehicle model such as longitudinal velocity and tire lateral 

force saturation. 
• Unusually large uncertainties in vehicle parameters and environmental disturbances. 
However, many truck drivers will argue that the tractor semi-trailer is generally easier to 
steer (in the stability sense) under normal highway driving conditions. The major 
challenges in steering control of such vehicles arise when: 
• Controlling tractor semi-trailer under severe braking scenario (jack-knifing). 
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• Backing up or parallel parking tractor semi-trailer into a restricted location. 
Both challenges result from the inherent poor stability conditions of these two vehicle 
configurations, similar to buckling or inverse pendulum.  

We then set up to substantiate the above engineering intuition by comparing the model of 
tractor semi-trailers with that of the passenger car under forward driving condition. The 
comparison reveals that an appropriately designed robust steering controller for passenger 
car could be a good candidate for controlling the tractor semi-trailer. A “look-ahead” 
steering controller [12] that specifically aims at desensitizing vehicle dynamics by 
projecting forward is one such candidate. The resultant steering performance during 
normal forward driving conditions is superior to other controllers that have been tested to 
date in the same tractor semi-trailer.  
 
 
4.5.1 Vehicle and Truck Model Comparison 
 
Figure 4.5.1 shows the comparison of transfer functions from steering angle to lateral 
acceleration at tractor CG for tractor semi-trailer, tractor only, and passenger car. 
According to Figure 4.5.1, passenger vehicle may not be easier to steer than tractor semi-
trailers (as long as the tractor semi-trailer is properly loaded and maintained). Figure 
4.5.2 shows the lateral acceleration transfer functions at 1-tractor or 1-car length ahead of 
vehicle for the corresponding tractor semi-trailer, tractor only, and passenger car. One 
can observe that a merely 1-tractor/car length looking-ahead appears to be enough to 
create similar steering dynamics for all the above vehicle configurations. This 
observation helps explaining the fact that many truck drivers describe that, except for the 
technique of properly positioning the trail end of the trailer during turning, steering a 
tractor semi-trailer is generally more stable than a passenger car under relatively constant 
speed forward driving conditions. 
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Figure 4.5.1: Transfer function comparison from steering angle to lateral acceleration at 

tractor or car CG for tractor semi-trailer, tractor only, and passenger car 
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Figure 4.5.2: Transfer function comparison from steering angle to lateral acceleration at 
1-tractor/car length ahead of vehicle for tractor semi-trailer, tractor only, passenger car  

 
 
4.5.2 Controller Design 
 
Based on the discussions in Section 4.5.1 and 2.2.2.2, one would suspect that a well 
designed “look-ahead” steering controller for a passenger car may be a good candidate 
for the steering control of both configurations: tractor only and tractor semi-trailer. This 
engineering intuition was investigated and verified in [14]. A simple linear “look-ahead” 
controller that was designed for the Buick LeSabre lane-keeping demonstration [12] was 
implemented on the tractor semi-trailer as well as on the tractor only configurations.  The 
lateral dynamics of these three configurations were generally considered to be so far apart 
that they warrant different steering controllers. The linear lane-keeping controller for the 
steering command δc has a very similar structure as the one for the transit bus lane-
keeping controller (as in Eq. 4.1.1.5): 

( )( )rextefexteccc ykkykkkGk −+−= intδ   (4.5.1) 

where kint is the integrator at front sensor location, kext the virtual sensor extension filter, 
Gc the compensator at the virtual sensor location, ke and kc constants that can be tuned, yf 
and yr the lateral measurements at front and rear sensors respectively. The three filters 
and their primary functions are described as follows: (a) An integral control, kint(s), that 
keeps the steady state tracking error at the front sensor to zero. (b) A frequency shaped 
look-ahead distance, Gds(s), that provides more look-ahead distance around the vehicle 
lateral modes and roll-off of the look-ahead distance at higher frequencies. (c) A servo 
controller, Gc(s), that uses the frequency shaped virtual displacement as input and 
compensates it for the actuator and noises. 
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Figure 4.5.3: Filter frequency responses (Left: kint(s), Center: Gds(s), Right: Gc(s)) 

 
 
4.5.3: Truck Experimental Results at Crows Landing 
 
Without modifying any coefficients in the LeSabre controller, the identical controller 
with identical controller parameters was implemented on the Freightliner Century tractor, 
and an older Freightliner FLD 120 tractor, with different trailer combinations, and tested 
at the Crows Landing test track (shown in Figure 4.5.4). Table 4.5.1 lists all the possible 
tractor and trailer combinations for the tests. The tractor was manually sped up from rest 
to about 73 mph. Hard braking was applied in order to stop the vehicle before the end of 
the track. The following are the equivalent curve transitions based on the longitudinal 
position along the track: tangent to +800 m radius transition at 740 m; -800 m radius 
transition at 974 m; +800 m radius transition at 1442 m; and transition to tangent at 1676 
m. 

 
Figure 4.5.4: Crows Landing Test Track 

740 m 626 m
234 m 234 m

468 mR=800 m R=800 m

R=800 m
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Tractor Trailer Controller  

Test 
Configuration 

Weight 
(kg) 

Wheel 
base 
(m) 

Type Weight 
(kg) 

Load 
(kg) 

Type Parameters

FLD120 
Tractor w/o 

trailer 

7727 5.35  Look-
ahead 
(LSB) 

Same as 
LeSabre 

FLD120 
Tractor w 

trailer 

7727 5.35 Box 5455 5000 Look-
ahead 
(LSB) 

Same as 
LeSabre 

2001 Century 
Tractor w/o 

trailer 

8400 5.82  Look-
ahead 
(LSB) 

Same as 
LeSabre 

2001 Century 
Tractor w 

empty trailer 

8400 5.82 Lowboy 6465  Look-
ahead 
(LSB) 

Same as 
LeSabre 

2001 Century 
Tractor w 

loaded trailer 

8400 5.82 Lowboy 6465 8200 Look-
ahead 
(LSB) 

Same as 
LeSabre 

LeSabre 
Passenger car 

1740 2.81  Look-
ahead 
(LSB) 

Based on 
LeSabre 

Table 4.5.1: Tractor and Semi-trailer Combination Controller Test Configurations 
 
Figures 4.5.5 and 4.5.6 show the results of a typical closed-loop test using the LeSabre 
“look-ahead” linear controller (with constant coefficients) for the Freightliner FLD120 
Class 8 tractor with the Great Dane semi-trailer (with 5000 kg load at trailer center) as 
well as for the tractor only configuration. Similarly, Figures 4.5.7 shows the results 
(lateral displacement, steering angle, and speed) for the same tests for the following three 
configurations: the 2001 Freightliner Century tractor only, Century tractor with empty 
lowboy trailer, and Century tractor with a lowboy trailer loaded with an 8200 kg tractor. 
Figure 4.5.8 plots the blowup lateral displacements and steering angles starting from the 
longitudinal position at 980 m to 1600 m. Figure 4.5.9 compares the tracking error for all 
tractor semi-trailer (top) and passenger car (bottom) configurations in Table 4.5.1. 
 
The following are several interesting observations: 
• The tracking errors exhibit extremely similar characteristics, regardless of which tractor 

and semi trailer combinations, or trailer loading conditions, or with or without trailers 
were used for testing, at the same longitudinal locations along the test track. It appears 
that a robust “rail-like” characteristic was obtained based on this simple control 
algorithm.  

• The tracking error is generally less than 5 cm at the equilibrium conditions (on the 
straight and on the curves); and the maximum transition error is less than 25 cm at 
speeds over 70 mph with 400 m radius transitions. This is the best performance to date 
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that has been achieved on this particular tractor semi-trailer. And it was achieved 
without any parameter tuning process. 

• The steering angle characteristics are also similar with different tractors and trailer 
combinations, or with and without trailer, which reinforces the analysis that steering 
dynamics are similar under a proper “look-ahead” controller. Furthermore, the steering 
angle for the tractor semi-trailer is more biased toward the right (positive angle) than 
for the tractor only configuration. This is explained by the fact that the test track is 
tilted toward the left (positive error) and thus a tractor with trailer will need to steer 
more to the right to compensate for the additional lateral force of dragging the trailer 
along. 

• The passenger vehicle exhibits very similar steering and tracking characteristics to 
those from the tractor or tractor trailer combinations except that its tracking errors and 
steering angles are smaller in magnitude. The higher bandwidth (smaller mass with 
faster actuator) of the passenger vehicle generates faster lateral response and thus 
results in smaller tracking error. 
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Figure 4.5.5: Tracking error for tractor semi-trailer (with 5000 kg load) and FDL120 

tractor only (with respect to longitudinal position along the track) 
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Figure 4.5.6: Speed and steering angle for tractor semi-trailer (with 5000 kg load) and 

FDL120 tractor only configuration (along longitudinal position at the track) 
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Figure 4.5.7: Tracking errors, steering angles, and speeds for Century tractor with and 

without empty or loaded lowboy semi-trailer (with 8200 kg load) configurations 
(along longitudinal position at the track) 

 
 
 

 

 
Figure 4.5.8: Tracking errors and steering angles for Century tractor with and without 

empty or loaded lowboy semi-trailer (with 8200 kg load) configurations (along 
longitudinal position from 980m to 1600 m at the track) 
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Figure 4.5.9: Tracking error for all tractor semi-trailer (top) and passenger car (bottom) 

configurations in Table 4.5.1 
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A.1 

Appendix A 
 

In-Vehicle PC/104 Computer Systems for Trucks and Transit 
Buses 

 
 

I. HARDWARE OVERVIEW 
 
 Currently, UC PATH has adopted the PC/104 computer standard for control of  heavy 
vehicles which includes three Freightliner trucks and three New Flyer transit buses. The 
PC/104 was chosen since it is rapidly becoming a standard for computers often found in 
factories, laboratories, and machines to provide programmable control of complex 
systems. PC/104 is a standard for PC-compatible modules (circuit boards) that can be 
stacked together to create a complete computer system. These types of systems are often 
found in factories, laboratories, and machinery to provide programmable control of a 
complex system. PC/104 systems are very similar to standard desktop PCs but with a 
different form factor. The name "PC/104" is derived from this likeness and the special 
stackable bus connector having 104 pins (Figures 1 and 2). 
 

 

Figure 1. Typical PC/104 Stack. 

 These systems can be programmed with the same development tools used with full-
size PCs which reduces the need and cost of custom development efforts. Although only 
about 100 cm x 100 cm, PC/104 boards are very powerful for their size. PC/104 products 
are designed for minimal power consumption, small foot print, modularity, expandability, 
and ruggedness. 

 The computer system display configuration used during the 2003 demo on the transit 
buses is shown in figure 2 and consists of four major components: 

 



   
                                                                                                            

A.2 

 

Figure 2. Computer system Configuration 

 

1. The Control Computer. Used to read all sensors, issue speed and steering commands, 
and communicate state information to the other buses. 

2-3. The DVI (Driver Vehicle Interface) Computer/DVI Control Box. This system is 
designed to generate a graphical interface of the system state to the driver. The state 
information is transferred to the DVI computer from the control computer using a bi-
directional serial line. The DVI not only shows vehicle information, but also allows 
control mode/menu switching using a push button pad next to the display. 

4. In Bus Display. A 19” computer monitor was installed viewable to the passengers 
showing the display from the DVI control box.  This was used since the control box 
display is small and  viewable only to the driver. 

 The vehicle control computers used in the PATH heavy vehicles consist of 10 stacked 
boards shown in Figure 3, and the DVI computer stack is shown in Figure 4. 
 
 

DVI

 CONTROL  
COMPUTER

       DVI  
COMPUTER

BI-DIRECTIONAL
SERIAL LINE 

VIDEO OUT
VIDEO SPLITTER

DIGITAL I/O LINE

IN BUS DISPLAY

VEHICLE-TO-VEHICLE
   COMMUNICATIONS

SIGNALS TO/FROM IN-VEHICLE
                 SENSORS 
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Figure 3. PC/104 Stack for the Control Computer. 
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Figure 4. PC/104 Stack for the DVI Computer. 
 
 
 A photograph of the control computer as installed in the New Flyer transit bus is 
shown in Figure 5.  
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Figure 5. PC/104 Control Computer Installed in New Flyer Transit Bus. 
 
The control computer is located in a compartment above the front window and behind the 
destination sign. The computer and associated cables/terminal blocks are mounted to a 
shelf that can be moved in and out of the compartment for ease of maintenance.  
 
 
 
 
 
II. INDIVIDUAL BOARD BOARD DESCRIPTIONS AND FUNCTIONALITY 
 
 A brief description of each board and function is given below: 
 
1. CPU: Intel 400 MHz P3Celeron MSM-P3SEV. The board includes VGA, 

100/10Base-T LAN ethernet, E-IDE hard disk interface, 3.5” micro Floppy disk 
interface, and COM1, COM2 serial ports. Vendor: Advanced Digital Logic [1]. 

 

 
MSM-P3SEV 
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2. PCMCIA: 2-slot PCMCIA board MSMJ104D. Used for holding an Orinoco 

802.11b vehicle-to-vehicle communications card. Vendor: Advanced Digital 
Logic. 

 

 
MSMJ104D 

 
 

3. Serial ports: 8-port RS-232 serial port board EMERALD-8232-XT. Includes 8 
programmable digital I/O lines. The ports are used for reading the radar, lidar, rate 
gyroscope, J1587 bus, and GPS. It also communicates information to and from the 
DVI computer. Vendor: Diamond Systems [2]. 

 
 

 
EMERALD-8232-XT 

 
 

4. 32-channel 16-bit 200KHz analog to digital board DIAMOND-MM-32-AT. Includes 
4 12-bit analog output channels, 24 programmable digital I/O lines, and 1 32-bit 
counter/timer. This board reads the analog signals from the magnetometers, 
accelerometer, steering potentiometer. Vendor: Diamond Systems. 
 

 
DIAMOND-MM-32-AT 

 
 

5. Dual CAN field bus interface board: CAN2104-30-20. Includes 32 32-bit  digital I/O 
lines. The J1939 data bus is read with this board. Vendor: SSV Embedded Systems 
[3]. 
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CAN2104-30-20 

 
6. 3-channel quadrature decoder/counter board MSI-P400-3CH. The steering wheel 

angular position is read by this card .Vendor: MicroComputer Systems [4]. 
 

 
MSI-P400-3CH 

 
 
 

7. 16-channel 12-bit digital to analog output board RUBY-MM-1612-XT. Includes 
24 digital I/O lines. The analog outputs are used for the steering torque, 
accelerator pedal, and brake valve commmads, while the digital I/O lines monitor 
the magnetometer health states, and send control transitions. Vendor: Diamond 
Systems. 

 
 

 
RUBY-MM-1612-XT 

 
 

8. 50 watt DC/DC power supply board: HE104-512-V512. Vendor: Diamond Systems. 
 

 
HE104-512-V512 
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The following are PC/104 boards are used in the DVI computer: 
 
9. SoundBlaster Pro compatible full-duplex, high-power 16-Bit stereo audio board 

CRYSTAL-MM-HP-EX. Vendor: Diamond Systems 
 

 
CRYSTAL-MM-HP-EX 

 
 
10. 48-line high current digital I/O: GARNET-MM-48. The push button pad inputs are 
read with this board. Vendor: Diamond Systems 
 

 
GARNET-MM-48 

 
All computers are enclosed in a PC/104 mounting enclosure, Can-Tainer. Vendor: Tri-M 
Engineering [5]. 
 

 
 
 

Can-Tainer 
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III. COMPUTER BOARD CONFIGURATION DOCUMENTATION FORMATS  
 
 The remainder of this document provides a detailed configuration description of each 
PC/104 board. This includes to scale diagram of the board showing the location of each 
jumper for setting the base address, interrupt, etc. All pertinent I/O headers and bus 
connectors are clearly labeled. An installed jumper is denoted by the following symbol 

, and an uninstalled jumper by the symbol . It was decided to use a graphic 
description of the jumper placements since it is much easier to configure a board by 
simply viewing a diagram as opposed to using a purely text based representation. This 
greatly reduces the risk of mistakes and is much more efficient.  
 
 The second part of each board description includes a table describing the function of 
each I/O header pin. Each table usually includes the pin number, board function, and 
wiring color if applicable. Special implementation notes are also included for certain 
boards. 
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III. TRANSIT BUS PC-104 BOARD CONFIGURATION 
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MSMP3SEV (CPU) CONFIGURATION Bus  
 
 
 

MSMP3SEV (CPU)

1

COM1

COM2

LPT1

MS, KB

VGA

Floppy

ID
E

LAN

1

LC
D

POWER

NETWORK 
TRAFFIC

1
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CAN2-PC/104 CONFIGURATION Bus 
 
 

CAN2-PC/104

Base Addr. 0x210

IRQ = 3

IRQ = 10

J6 CAN2A

J7 CAN2B

J8 CAN2PIO

J3 CAN1A

J4 CAN1B

CAN1 CAN2

C
AN

1
C

AN
2

 
 
 

J3 CAN1A - Channel 1 Serial bus I/O 
J4 CAN1B - Channel 1 Serial bus I/O 
J6 CAN2A - Channel 2 Serial bus I/O 
J7 CAN2B - Channel 2 Serial bus I/O 

Pin Name Function Direction 
1 N/C --- --- 
2 GND Signal Ground --- 
3 CAN-L Signal LOW --- 
4 CAN-H Signal HIGH --- 
5 GND Signal Ground --- 
6 N/C --- --- 
7 N/C --- --- 
8 N/C --- --- 
9 N/C --- --- 
10 N/C --- --- 

 
 

J5 CAN1PIO - Channel 1 Parallel I/O  J8 CAN2PIO - Channel 2 Parallel I/O 
Pin Name Function Direction Description  Pin Name Function Direction Description 
1 P1.0 Port 1 Bit 0 I/O   1 P1.0 Port 1 Bit 0 I/O  
2 P2.0 Port 2 Bit 0 I/O   2 P2.0 Port 2 Bit 0 I/O  
3 P1.1 Port 1 Bit 1 I/O   3 P1.1 Port 1 Bit 1 I/O  
4 P2.1 Port 2 Bit 1 I/O   4 P2.1 Port 2 Bit 1 I/O  
5 P1.2 Port 1 Bit 2 I/O   5 P1.2 Port 1 Bit 2 I/O  
6 P2.2 Port 2 Bit 2 I/O   6 P2.2 Port 2 Bit 2 I/O  
7 P1.3 Port 1 Bit 3 I/O   7 P1.3 Port 1 Bit 3 I/O  
8 P2.3 Port 2 Bit 3 I/O   8 P2.3 Port 2 Bit 3 I/O  
9 P1.4 Port 1 Bit 4 I/O   9 P1.4 Port 1 Bit 4 I/O  

10 P2.4 Port 2 Bit 4 I/O   10 P2.4 Port 2 Bit 4 I/O  
11 P1.5 Port 1 Bit 5 I/O   11 P1.5 Port 1 Bit 5 I/O  
12 P2.5 Port 2 Bit 5 I/O   12 P2.5 Port 2 Bit 5 I/O  
13 P1.6 Port 1 Bit 6 I/O   13 P1.6 Port 1 Bit 6 I/O  
14 P2.6 Port 2 Bit 6 I/O   14 P2.6 Port 2 Bit 6 I/O  
15 P1.7 Port 1 Bit 7 I/O   15 P1.7 Port 1 Bit 7 I/O  
16 P2.7 Port 2 Bit 7 I/O   16 P2.7 Port 2 Bit 7 I/O  
17 GND Sig. Ground ---   17 GND Sig. Ground ---  
18 Vcc +5 VDC ---   18 Vcc +5 VDC ---  
19 GND Sig. Ground ---   19 GND Sig. Ground ---  
20 Vcc +5 VDC ---   20 Vcc +5 VDC ---  
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EMERALD-MM (Serial Ports) CONFIGURATION 
 
 

EMERALD-MM 
 (Serial Ports)

Base Addr. 0x240, IRQ = 15

J3J4

 
 

 J3        J4  
Description  PIN PIN  Description  PIN PIN  

Port 1 DCD 1 1 2 DSR 1 Port 5 DCD 5 1 2 DSR 5 
/dev/ser2  RXD 1 3 4 RTS 1 /dev/ser6 RXD 5 3 4 RTS 5 

Eaton Vorad Radar TXD 1 5 6 CTS 1 J1587 Bus TXD 5 5 6 CTS 5 
(19200 Baud) DTR 1 7 8 RI 1 (9600 Baud) DTR 5 7 8 RI 5 

0x248 Grnd 9 10 DIO A 0x268 Grnd 9 10 DIO E 
          

Port 2 DCD 2 11 12 DSR 2 Port 6 DCD 6 11 12 DSR 6 
/dev/ser3 RXD 2 13 14 RTS 2 /dev/ser7 RXD 6 13 14 RTS 6 

Denso Lidar TXD 2 15 16 CTS 2 DVI Comms TXD 6 15 16 CTS 6 
(19200 Baud) DTR 2 17 18 RI 2 (115200 Baud) DTR 6 17 18 RI 6 

0x250 Grnd 19 20 DIO B 0x270 Grnd 19 20 DIO F 
          

Port 3 DCD 3 21 22 DSR 3 Port 7 DCD 7 21 22 DSR 7 
/dev/ser4 RXD 3 23 24 RTS 3 /dev/ser8 RXD 7 23 24 RTS 7 

KVH E-Core 2000 Gyro TXD 3 25 26 CTS 3  TXD 7 25 26 CTS 7 
(9600 Baud) DTR 3 27 28 RI 3  DTR 7 27 28 RI 7 

0x258 Grnd 29 30 DIO C 0x278 Grnd 29 30 DIO G 
          

Port 4 DCD 4 31 32 DSR 4 Port 8 DCD 8 31 32 DSR 8 
/dev/ser5 RXD 4 33 34 RTS 4 /dev/ser9 RXD 8 33 34 RTS 8 

AshTech G-12 GPS TXD 4 35 36 CTS 4  TXD 8 35 36 CTS 8 
(9600 Baud) DTR 4 37 38 RI 4  DTR 8 37 38 RI 8 

0x260 Grnd 39 40 DIO D 0x280 Grnd 39 40 DIO H 
 

DIO CHANNEL Description DB15 Connector Pin 
DIO A Red LED       (Output) (1=ON, 0 = OFF) 1 
DIO B Green LED    (Output) (1=ON, 0 = OFF) 2 
DIO C Blue LED       (Output) (1=ON, 0 = OFF) 3 
DIO D Amber LED   (Output) (1=ON, 0 = OFF) 4 
DIO E Heart Beat (Output) (Toggles)   5 
DIO F  6 
DIO G  7 
DIO H  8 

  NOTE: Pins 9-15 on DB15  are Grounds. 
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HE104 (POWER SUPPLY) CONFIGURATION Bus 
 
 
 
 
 

HE104 (Power Sup.)

Common

6-40VDC Input

-5V Output

-12V Output

+12V Output

Common

+5V Output
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MSI-P400 (DECODER/COUNTER) CONFIGURATION Bus 
 
 

       MSI-P400
(Decoder/Counter)

Base Addr. 0x340

Ch 1 Ch 2 Ch 3

P1

 
 

NOTE: The First Color of Each TP Corresponds to the Sensor  
      Signal and Underlined Colors are the Return Lines. 

 
 

Header P1 
Color Description  PIN PIN  Description Color 

Wh/Blk Steering Position Signal (A 
Ch Output) FREQ1 1 2 REF1 Steering Position Signal (B 

Ch Output) 
Grn/Blk 

  FREQ2 3 4 REF2   
  FREQ3 5 6 REF3   
  N/C 7 8 N/C   
  Gnd 9 10 N/C   
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DIAMOND-MM-32-AT (A/D) (CARD 1) CONFIGURATION 

 

DIAMOND-MM-32-AT (A/D)
            (CARD 1)

Base Addr. = 0x180, Int = 7
1KOhm Pull-Down Installed

J4

J3

1

1

 
 NOTE: Wire Sensor y-axis to Vertical Channel, Sensor x-axis to Lateral   
                                                                             Channel 
 
NOTE: The First Color of Each TP Corresponds to the Sensor Signal and Underlined Colors are the Return Lines. 

P1 
Color Description Func Pin Pin Func Description Color 

  Agnd 1 2 Agnd   
Brn/Blu Frt-Left-Left Mag, Lat. Axis Vin 0 3 4 Vin 16 Rear-Left Mag, Lat Axis Blu/Org 
Yel/Blu Frt-Left-Left Mag, Vert. Axis Vin 1 5 6 Vin 17 Rear-Left Mag, Vert Axis Blk/Org 
Blu/Org Frt-Left Mag, Lat Axis Vin 2 7 8 Vin 18 Rear-Cent-Left Mag, Lat. Axis Yel/Brn 
Blk/Org Frt-Left Mag, Vert Axis Vin 3 9 10 Vin 19 Rear-Cent-Left Mag, Vert. Axis Org/Brn
Yel/Brn Frt-Cent-Left Mag, Lat. Axis Vin 4 11 12 Vin 20 Rear-Cent Mag, Lateral Axis Wh/Grn 
Org/Brn Frt-Cent-Left Mag, Vert. Axis Vin 5 13 14 Vin 21 Rear-Cent Mag, Vertical Axis Org/Grn
Wh/Grn Frt-Cent Mag, Lat Axis Vin 6 15 16 Vin 22 Rear-Cent-Right Mag, Lat. 

Axis 
Wh/Blk 

Org/Grn Frt-Cent Mag, Vert Axis Vin 7 17 18 Vin 23 Rear-Cent-Right Mag, Vert. 
Axis 

Brn/Blk 

Wh/Blk Frt-Cent-Right Mag, Lat. Axis Vin 8 19 20 Vin 24 Rear-Right Mag, Lat. Axis Brn/Grn
Brn/Blk Frt-Cent-Right Mag, Vert. Axis Vin 9 21 22 Vin 25 Rear-Right Mag, Vert. Axis Blk/Grn 
Brn/Grn Frt-Right Mag, Lat Axis Vin 10 23 24 Vin 26 Rear-Right-Right Mag, Lat. 

Axis 
Red/Brn

Blk/Grn Frt-Right Mag, Vert Axis Vin 11 25 26 Vin 27 Rear-Right-Right Mag, Vert. 
Axis 

Red/Yel 

Red/Brn Frt-Right-Right Mag, Lat. Axis Vin 12 27 28 Vin 28 Potentiometer Connected to 
Steering 

 

Red/Yel Frt-Right-Right Mag, Vert. 
Axis 

Vin 13 29 30 Vin 29 Steering Motor Condition (<2V 
= ERROR) 

 

Brn/Blu Rr-Left-Left Mag, Lat Axis Vin 14 31 32 Vin 30 Accel. 1-axis (Longitudinal)  
Yel/Blu Rr-Left-Left Mag, Vert Axis Vin 15 33 34 Vin 31 Accel. 2-axis (-Lateral)  
  Vout 3 35 36 Vout 2   
  Vout 1 37 38 Vout 0  

 
 

  Vref Out 39 40 Agnd   
  A/D 

Convert 
41 42 Ctr 2 

Out/Dout 2
  

  Dout 1 43 44 Ctr 0 
Out/Dout 0

  

  Extclk/Din 
3 

45 46 Extgate/Din 
2 

  

  Gate 
0/Din 1 

47 48 Clk 0/Din 0   

  +5V 49 50 Dgnd   

 

x

z

y

FORWARD

Sensor Axis

y

x

z
Body-Fixed Axis 

F.  10 µ

Ω 1200

+ -
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DIAMOND-MM-32-AT (A/D) (CARD 2) CONFIGURATION 
 
 

J3
DIAMOND-MM-32-AT (A/D)
            (CARD 2)

Base Addr. = 0x380, Int = 3

J4

1

1

 
 

  
 

P1 
Color Description Func Pin Pin Func Description Color 

  Agnd 1 2 Agnd   
 Rear Brake Axle Press Vin 0 3 4 Vin 16   
 MIddle Brake Axle Press (60’) Vin 1 5 6 Vin 17   
 Front Brake Axle Press Vin 2 7 8 Vin 18   
 Rear Brake Monitor Press Vin 3 9 10 Vin 19   
 Front Brake Monitor Press Vin 4 11 12 Vin 20   
 Rear Brake Applied Press Vin 5 13 14 Vin 21   
 Front Brake Applied Press Vin 6 15 16 Vin 22   
 Accelerator Pedal Position Vin 7 17 18 Vin 23   
 Accelerometer Temp. Vin 8 19 20 Vin 24   
  Vin 9 21 22 Vin 25   
  Vin 10 23 24 Vin 26   
  Vin 11 25 26 Vin 27   
  Vin 12 27 28 Vin 28   
  Vin 13 29 30 Vin 29   
  Vin 14 31 32 Vin 30   
  Vin 15 33 34 Vin 31   
  Vout 3 35 36 Vout 2   
  Vout 1 37 38 Vout 0  

 
 

  Vref Out 39 40 Agnd   
  A/D 

Convert 
41 42 Ctr 2 

Out/Dout 2
  

  Dout 1 43 44 Ctr 0 
Out/Dout 0

  

  Extclk/Din 
3 

45 46 Extgate/Din 
2 

  

  Gate 
0/Din 1 

47 48 Clk 0/Din 0   

  +5V 49 50 Dgnd   
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MSMJ1040D (DUAL PCMCIA) CONFIGURATION Bus 
 
 
 
 
 
 
 
 

    MSMJ104D 
(DUAL PCMCIA)
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RUBY-MM-1612 (D/A) CONFIGURATION Bus 
 

RUBY-MM-1612 (D/A)

Base Addr. 0x2E0

Chan 0-7 -> 0 - 10V
Chan 8-15 -> 0 - 10V J3

5 F ABU F A UB

 
 

 
Header J3 

Color Description  Pin Pin  Description Color 
  Agnd 1 2 Vout 0 Steering Clutch (0=OFF, >9V=ON  
  Agnd 3 4 Vout 1 Steering Torque Command  
  Agnd 5 6 Vout 2 Accelerator Pedal Command  
  Agnd 7 8 Vout 3 Front Brake Valve Command  
  Agnd 9 10 Vout 4 Rear Brake Valve Command  
  Agnd 11 12 Vout 5   
  Agnd 13 14 Vout 6   
  Agnd 15 16 Vout 7   
  Vout 8 17 18 Vout 9   
  Vout 10 19 20 Vout 11   
  Vout 12 21 22 Vout 13   
  Vout 14 23 24 Vout 15   

Yel/Wh Rear-Left-Left Magnetometer Health 
Signal (Input) 

DIO A7 25 26 DIO A6 Front-Right-Right Magnetometer 
Health Signal (Input) 

Wh/Brn 

Blu/Blk Front-Right Magnetometer Health 
Signal (Input) 

DIO A5 27 28 DIO A4 Front-Center-Right Magnetometer 
Health Signal (Input) 

Org/Wh 

Yel/Grn Front-Center Magnetometer Health 
Signal (Input) 

DIO A3 29 30 DIO A2 Front-Center-Left Magnetometer 
Health Signal (Input) 

Blu/Grn 

Yel/Blk Front-Left Magnetometer Health 
Signal (Input) 

DIO A1 31 32 DIO A0 Front-Left-Left Magnetometer Health 
Signal (Input) 

Yel/Wh 

 Auto Steering ON, (Relay State) 
(Input) 

DIO B7 33 34 DIO B6 Steering Actuator Status, 1=ON,  
0 = OFF, (Input) 

 

 

Wh/Brn Rear-Right-Right Magnetometer 
Health Signal (Input) 

DIO B5 35 36 DIO B4 Rear-Right Magnetometer Health 
Signal (Input) 

Blu/Blk 

Org/Wh Rear-Center-Right Magnetometer 
Health Signal (Input) 

DIO B3 37 38 DIO B2 Rear-Center Magnetometer Health 
Signal (Input) 

Yel/Grn 

Blu/Grn Rear-Center-Left Magnetometer 
Health Signal (Input) 

DIO B1 39 40 DIO B0 Rear-Left Magnetometer Health 
Signal (Input) 

Yel/Blk 

  DIO C7 41 42 DIO C6   
  DIO C5 43 44 DIO C4   
 AutoTransition Request (1=ON) DIO C3 45 46 DIO C2 Manual Transition Request (1=ON)  
 Auto Throttle ON, (Relay State) 

(Input) 
DIO C1 47 48 DIO C0 / 

Ext Trig 
Auto Brake ON, (Relay State) 
(Input) 

 

  + 5V 49 50 DIO 
Dgnd 

  

NOTE: For Magnetometer Health Signals 1 = OK, 0 = Fault 
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IV. TRUCK PC-104 BOARD CONFIGURATION 
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MSMP3SEV (CPU) CONFIGURATION Truck 
 

 

MSMP3SEV (CPU)

1

COM1

COM2

LPT1

MS, KB

VGA

Floppy

ID
E

LAN

1
LC

D

POWER

NETWORK 
TRAFFIC

1
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CAN2-PC/104 CONFIGURATION Truck 
 
 

CAN2-PC/104

Base Addr. 0x210

IRQ = 3

IRQ = 10

J6 CAN2A

J7 CAN2B

J8 CAN2PIO

J3 CAN1A

J4 CAN1B

J5 CAN1PIO

CAN1 CAN2

C
AN

1
C

AN
2

 
 
 

J3 CAN1A - Channel 1 Serial bus I/O 
J4 CAN1B - Channel 1 Serial bus I/O 
J6 CAN2A - Channel 2 Serial bus I/O 
J7 CAN2B - Channel 2 Serial bus I/O 

Pin Name Function Direction 
1 N/C --- --- 
2 GND Signal Ground --- 
3 CAN-L Signal LOW --- 
4 CAN-H Signal HIGH --- 
5 GND Signal Ground --- 
6 N/C --- --- 
7 N/C --- --- 
8 N/C --- --- 
9 N/C --- --- 
10 N/C --- --- 

 
J5 CAN1PIO - Channel 1 Parallel I/O  J8 CAN2PIO - Channel 2 Parallel I/O 

Pin Name Function Direction Description  Pin Name Function Direction Description 
1 P1.0 Port 1 Bit 0 I/O   1 P1.0 Port 1 Bit 0 I/O  
2 P2.0 Port 2 Bit 0 I/O   2 P2.0 Port 2 Bit 0 I/O  
3 P1.1 Port 1 Bit 1 I/O   3 P1.1 Port 1 Bit 1 I/O  
4 P2.1 Port 2 Bit 1 I/O   4 P2.1 Port 2 Bit 1 I/O  
5 P1.2 Port 1 Bit 2 I/O   5 P1.2 Port 1 Bit 2 I/O  
6 P2.2 Port 2 Bit 2 I/O   6 P2.2 Port 2 Bit 2 I/O  
7 P1.3 Port 1 Bit 3 I/O   7 P1.3 Port 1 Bit 3 I/O  
8 P2.3 Port 2 Bit 3 I/O   8 P2.3 Port 2 Bit 3 I/O  
9 P1.4 Port 1 Bit 4 I/O   9 P1.4 Port 1 Bit 4 I/O  

10 P2.4 Port 2 Bit 4 I/O   10 P2.4 Port 2 Bit 4 I/O  
11 P1.5 Port 1 Bit 5 I/O   11 P1.5 Port 1 Bit 5 I/O  
12 P2.5 Port 2 Bit 5 I/O   12 P2.5 Port 2 Bit 5 I/O  
13 P1.6 Port 1 Bit 6 I/O   13 P1.6 Port 1 Bit 6 I/O  
14 P2.6 Port 2 Bit 6 I/O   14 P2.6 Port 2 Bit 6 I/O  
15 P1.7 Port 1 Bit 7 I/O   15 P1.7 Port 1 Bit 7 I/O  
16 P2.7 Port 2 Bit 7 I/O   16 P2.7 Port 2 Bit 7 I/O  
17 GND Sig. Ground ---   17 GND Sig. Ground ---  
18 Vcc +5 VDC ---   18 Vcc +5 VDC ---  
19 GND Sig. Ground ---   19 GND Sig. Ground ---  
20 Vcc +5 VDC ---   20 Vcc +5 VDC ---  
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EMERALD-MM (SERIAL PORTS) CONFIGURATION Truck 
 
 

EMERALD-MM 
 (Serial Ports)

Base Addr. 0x100, IRQ = 15

J3J4

 
 

Header J3       Header J4  
Description  PIN PIN  Description  PIN PIN  

Port 1 DCD 1 1 2 DSR 1 Port 5 DCD 5 1 2 DSR 5 
/dev/ser2  RXD 1 3 4 RTS 1 /dev/ser6 RXD 5 3 4 RTS 5 

Eaton Vorad Radar TXD 1 5 6 CTS 1 J1587 Bus TXD 5 5 6 CTS 5 
(19200 Baud) DTR 1 7 8 RI 1 (9600 Baud) DTR 5 7 8 RI 5 

 Grnd 9 10 DIO A  Grnd 9 10 DIO E 
          

Port 2 DCD 2 11 12 DSR 2 Port 6 DCD 6 11 12 DSR 6 
/dev/ser3 RXD 2 13 14 RTS 2 /dev/ser7 RXD 6 13 14 RTS 6 

Denso Lidar TXD 2 15 16 CTS 2  TXD 6 15 16 CTS 6 
(19200 Baud) DTR 2 17 18 RI 2  DTR 6 17 18 RI 6 

 Grnd 19 20 DIO B  Grnd 19 20 DIO F 
          

Port 3 DCD 3 21 22 DSR 3 Port 7 DCD 7 21 22 DSR 7 
/dev/ser4 RXD 3 23 24 RTS 3 /dev/ser8 RXD 7 23 24 RTS 7 

KVH E-Core 2000 Gyro TXD 3 25 26 CTS 3  TXD 7 25 26 CTS 7 
(9600 Baud) DTR 3 27 28 RI 3  DTR 7 27 28 RI 7 

 Grnd 29 30 DIO C  Grnd 29 30 DIO G 
          

Port 4 DCD 4 31 32 DSR 4 Port 8 DCD 8 31 32 DSR 8 
/dev/ser5 RXD 4 33 34 RTS 4 /dev/ser9 RXD 8 33 34 RTS 8 

AshTech G-12 GPS TXD 4 35 36 CTS 4  TXD 8 35 36 CTS 8 
(9600 Baud) DTR 4 37 38 RI 4  DTR 8 37 38 RI 8 

 Grnd 39 40 DIO D  Grnd 39 40 DIO H 

 
DIO CHANNEL Description DB15 Connector Pin 

DIO A Engine Fan Override (Output) (1=Override; 0=NOT) 1 
DIO B Engine Fan ON/OFF (Output) (1=ON; 0=OFF) 2 
DIO C   3 
DIO D  4 
DIO E  5 
DIO F  6 
DIO G  7 
DIO H  8 

  NOTE: Pins 9-15 on DB15  are Grounds



                                                                                       
 

A.23 

HE104 (POWER SUPPLY) CONFIGURATION Truck 
 
 

HE104 (Power Sup.)

Common

6-40VDC Input

-5V Output

-12V Output

+12V Output

Common

+5V Output

 



                                                                                       
 

A.24 

MSI-P400 (DECODER/COUNTER) CONFIGURATION Truck 
 
 

       MSI-P400
(Decoder/Counter)

Base Addr. 0x340

Ch 1 Ch 2 Ch 3

P1

 
 
 

Header P1 
Description  PI

N 
PI
N 

 Description 

Steering Position Signal  
(A Ch Output) FREQ1 1 2 REF1 Steering Position Signal  

(B Ch Output) 
 FREQ2 3 4 REF2  
 FREQ3 5 6 REF3  
 N/C 7 8 N/C  
 Gnd 9 10 N/C  

 



                                                                                       

A.25 

DIAMOND-MM-32-AT (A/D) CONFIGURATION Truck 
 
 

DIAMOND-MM-32-AT (A/D)
            

Base Addr. = 0x180, Int = 7
1KOhm Pull-Down Installed

J4

J3

1

1

 
   NOTE: Wire Sensor y-axis to Vertical Channel, Sensor x-axis to Lateral   
                                                                         Channel 
NOTE: The First Color of Each TP Corresponds to the Sensor Signal and Underlined Colors are the Return Lines. 

P1 
Color Description Func Pin Pin Func Description Color 

  Agnd 1 2 Agnd   
 Front-Left Mag, Lat. Axis Vin 0 3 4 Vin 16 Rear-Center-Right Mag, Lat. 

Axis 
 

 Front-Left Mag, Vert. Axis Vin 1 5 6 Vin 17 Rear-Center-Right Mag, Vert. 
Axis 

 

 Front-Center-Left Mag, Lat. 
Axis 

Vin 2 7 8 Vin 18 Rear-Right Mag, Lat. Axis  

 Front-Center-Left Mag, Vert. 
Axis 

Vin 3 9 10 Vin 19 Rear-Right Mag, Vert. Axis  

 Front-Center Mag, Lat. Axis Vin 4 11 12 Vin 20 Accel. 1-axis (Longitudinal)  
 Front-Center Mag, Vert. Axis Vin 5 13 14 Vin 21 Accel. 2-axis (-Lateral)  
 Front-Center-Right Mag, Lat 

Axis 
Vin 6 15 16 Vin 22 Throttle Pedal Position  

 Front-Center-Right Mag, Vert 
Axis 

Vin 7 17 18 Vin 23 Front Brake Axle Pressure  

 Front-Right Mag, Lat. Axis Vin 8 19 20 Vin 24 Middle Brake Axle Pressure  
 Front-Right Mag, Vert. Axis Vin 9 21 22 Vin 25 Rear Brake Axle Pressure  
 Rear-Left Mag, Lat. Axis Vin 10 23 24 Vin 26 Transmission Retarder  
 Rear-Left Mag, Vert. Axis Vin 11 25 26 Vin 27   
 Rear-Center-Left Mag, Lat. 

Axis 
Vin 12 27 28 Vin 28   

 Rear-Center-Left Mag, Vert.  Vin 13 29 30 Vin 29   
 Rear-Center Mag, Lat. Axis Vin 14 31 32 Vin 30 Potentiometer Connected to 

Steering 
 

 Rear-Center Mag, Vert. Axis Vin 15 33 34 Vin 31 Steering Motor Condition (<2V 
= ERROR) 

 

  Vout 3 35 36 Vout 2   
  Vout 1 37 38 Vout 0  

 
 

  Vref Out 39 40 Agnd   
  A/D 

Convert 
41 42 Ctr 2 

Out/Dout 2
  

  Dout 1 43 44 Ctr 0 
Out/Dout 0

  

  Extclk/Din 
3 

45 46 Extgate/Din 
2 

  

  Gate 
0/Din 1 

47 48 Clk 0/Din 0   

  +5V 49 50 Dgnd   

x

z

y

FORWARD

Sensor Axis

y

x

z
Body-Fixed Axis 

F.  10 µ

Ω 1200

+ -



                                                                                       

A.26 

MSMJ1040D (DUAL PCMCIA) CONFIGURATION Truck 
 
 

    MSMJ104D 
(DUAL PCMCIA)

 



   
 

A.27 

 
RUBY-MM-1612 (D/A) CONFIGURATION Truck 

 

RUBY-MM-1612 (D/A)

Base Addr. 0x2E0

Chan 0-7 -> 0 - 10V
Chan 8-15 -> 0 - 10V J3

5 F ABU F A UB

 
 

Header J3 
Description  Pin Pin  Description 

 Agnd 1 2 Vout 0 Steering Clutch (0=OFF, >9V=ON 
 Agnd 3 4 Vout 1 Steering Torque Command 
 Agnd 5 6 Vout 2 Transmission Retarder 
 Agnd 7 8 Vout 3  
 Agnd 9 10 Vout 4  
 Agnd 11 12 Vout 5  
 Agnd 13 14 Vout 6  
 Agnd 15 16 Vout 7  
 Vout 8 17 18 Vout 9  
 Vout 10 19 20 Vout 11  
 Vout 12 21 22 Vout 13  
 Vout 14 23 24 Vout 15  

Rear Center Magnetometer Health Signal 
(Input) 

DIO A7 25 26 DIO A6 Rear Center Left Magnetometer Health 
Signal (Input) 

Rear Left Magnetometer Health Signal 
(Input) 

DIO A5 27 28 DIO A4 Front Right Magnetometer Health Signal 
(Input) 

Front Center Right Magnetometer Health 
Signal (Input) 

DIO A3 29 30 DIO A2 Front Center Magnetometer Health Signal 
(Input) 

Front Center Left Magnetometer Health 
Signal (Input) 

DIO A1 31 32 DIO A0 Front Left Magnetometer Health Signal 
(Input) 

Steering Actuator Status (0 = OFF, 1 = ON) 
(Input) 

DIO B7 33 34 DIO B6 Trailer Right Magnetometer Health Signal 
(Input) 

Trailer Center Right Magnetometer Health 
Signal (Input) 

DIO B5 35 36 DIO B4 Trailer Center Magnetometer Health Signal 
(Input) 

Trailer Center Left Magnetometer Health 
Signal (Input) 

DIO B3 37 38 DIO B2 Trailer Left Magnetometer Health Signal 
(Input) 

Rear Right Magnetometer Health Signal 
(Input) 

DIO B1 39 40 DIO B0 Rear Center Right Magnetometer Health 
Signal (Input) 

 DIO C7 41 42 DIO C6  
 DIO C5 43 44 DIO C4  

Auto Transition Request (1=ON) 
(Input) 

DIO C3 45 46 DIO C2 Manual Transition Request (1=ON) 
(Input) 

      
Auto Steering ON (Relay State) 
(Input) (1=ON) 

DIO C1 47 48 DIO C0 / 
Ext Trig 

Engine Desired Fan State 
(Input) (1=ON; 0=OFF) 

 + 5V 49 50 DIO 
Dgnd 

 

NOTE: For Magnetometer Health Signals 1 = OK, 0 = Fault 



   
                                                                                                            

A.28 

 
BUS PC-104 DVI BOARD CONFIGURATION 

 
 

HE
10

4 
(P

ow
er

 S
up

.)

M
SM

P3
SE

V 
   

 (C
PU

)

G
AR

NE
T-

M
M

-4
8 

(D
IO

)

CR
YS

TA
L-

M
M

-H
P-

EX
 (A

UD
IO

)

HI
TA

CH
I D

K2
39

A-
65

 (H
D)

6-40 VDC

DIO 1

DIO 2

DIO 3

DIO 4

N/C

www.tri-m.com

CT-EC01

ETHERNET

VG
A

CO
M

2
CO

M
1

+5
 V

DC

M
O

USE

KBD

CDROM

J4 HEADER

 

 



   
                                                                                                            

A.29 

 
MSMP3SEV (CPU) CONFIGURATION DVI 

 
 

MSMP3SEV (CPU)

1

COM1

COM2

LPT1

MS, KB

VGA

Floppy

ID
E

LAN

1

LC
D

POWER

NETWORK 
TRAFFIC

1

 
 
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
                                                                                                            

A.30 

GARNET-MM-48 (Digital I/O) DVI 
 

GARNET-MM-48 (DIO)

Base Addr. = 0x340

J3
1

J4

1

R 2 3 4  5 6 7 c0 c3

No IRQ

Mode 0

Mode 0

  
 

                                           J3         J4 
DB25 Connector 1 (DIO 1) DB25 Connector 3 (DIO 3) 

Description  Pin Pin  Description  Pin Pin  
Number Pad – 8 A7 1/1 2/14 Gnd  A7 1/1 2/14 Gnd 
Number Pad – 7 A6 3/2 4/15 Gnd  A6 3/2 4/15 Gnd
Number Pad – 6 A5 5/3 6/16 Gnd  A5 5/3 6/16 Gnd
Number Pad – 5 A4 7/4 8/17 Gnd  A4 7/4 8/17 Gnd
Number Pad – 4 A3 9/5 10/18 Gnd  A3 9/5 10/18 Gnd
Number Pad – 3 A2 11/6 12/19 Gnd  A2 11/6 12/19 Gnd
Number Pad – 2 A1 13/7 14/20 Gnd  A1 13/7 14/20 Gnd
Number Pad – 1 A0 15/8 16/21 Gnd  A0 15/8 16/21 Gnd
Select – Yellow C7 17/9 18/22 Gnd  C7 17/9 18/22 Gnd
Select – Green C6 19/10 20/23 Gnd  C6 19/10 20/23 Gnd
Scrn Sel – 6 (Top) C5 21/11 22/24 Gnd  C5 21/11 22/24 Gnd
Scrn Sel – 5 C4 23/12 24/25 Gnd  C4 23/12 24/25 Gnd

DB25 Connector 2 (DIO 2) DB25 Connector 4 (DIO 4) 
Description  Pin Pin  Description  Pin Pin  

Scrn Sel – 4 C3 25/1 26/14 Gnd  C3 25/1 26/14 Gnd
Scrn Sel – 3 C2 27/2 28/15 Gnd  C2 27/2 28/15 Gnd
Scrn Sel – 2 C1 29/3 30/16 Gnd  C1 29/3 30/16 Gnd
Scrn Sel – 1 (Bottom) C0 31/4 32/17 Gnd  C0 31/4 32/17 Gnd
Direction Pad – Up B7 33/5 34/18 Gnd  B7 33/5 34/18 Gnd
Direction Pad – Left B6 35/6 36/19 Gnd  B6 35/6 36/19 Gnd
Direction Pad – Right B5 37/7 38/20 Gnd  B5 37/7 38/20 Gnd
Direction Pad - Down B4 39/8 40/21 Gnd  B4 39/8 40/21 Gnd
Number Pad – # B3 41/9 42/22 Gnd  B3 41/9 42/22 Gnd
Number Pad – 0 B2 43/10 44/23 Gnd  B2 43/10 44/23 Gnd
Number Pad – * B1 45/11 46/24 Gnd  B1 45/11 46/24 Gnd
Number Pad – 9 B0 47/12 48/25 Gnd  B0 47/12 48/25 Gnd
 +5 49 50 Gnd  +5 49 50 Gnd

 
 
 
 
 
 
 
 



   
                                                                                                            

A.31 

HE104 (Power Supply) CONFIGURATION DVI 
 
 
 
 
 

HE104 (Power Sup.)

Common

6-40VDC Input

-5V Output

-12V Output

+12V Output

Common

+5V Output
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B.1 

Appendix B 
 

Example Truck Speed Tracking Test Data 
 
 

This Appendix includes plots of example data sets from multiple test runs of a single 
Freightliner Century truck automatically following prescribed speed profiles on the 
Crows Landing test track.  These cases cover a variety of truck loading conditions 
(empty, half loaded and fully loaded), maximum commanded speed (55, 30, 25 and 10 
mph), maximum deceleration rate (1.2, 1.0, 0.9, 0.8, 0.7, and 0.5 m/s2) and braking 
system activations (EBS, compression brake and transmission retarder in various 
combinations). 
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B.21 

The next two runs show the robustness of the controller performance to imperfect 
knowledge of vehicle mass.  During these tests, the control system parameters were 
defined based on an assumed empty truck, but in fact the truck was fully loaded. 
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C.1 

Appendix C 
 

Example Experimental Results of Two-Truck Platoon Tests 
 

This appendix includes a collection of representative test data from the tests that were 
performed for two-truck platoon following at Crows Landing.  These tests included 
variations in maximum speed (55, 50 and 45 mph) and in the nominal separation between 
the trucks (10, 8, 6, 4, and 3 m). 
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In the following run for 3m following distance, the two trucks are with empty trailers. 
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Appendix D 
 

In-Vehicle Network Use on AVCSS 
Demo Heavy-Duty Vehicles 
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AU1 ($)*+ K5424 94= 3,7 .1T1=4K 1. 744- ,?215 ($+L* 24 7<2 4- 24K 4? <2 3 <2U
72,-.,5.<X1. .1�-<2<4-7 ?45 <-?45: ,2<4- 7U,5<-G ,-. .<,G-472<9 ?;-92<4-7 #

8



� 5<G<-,==I <-21-.1. ?45 U1,TIS.;2I 25;967 � ($+L*�($)*+ 3,7 ,.,K21. ?45 W;7
;71 <- $//0 �$8� # ( $+L* 51715T17 F E7 G51,215 2U,- $0+ ?45 ($)*+ # V45 ($)*+ �
F E7 51K5171-2 2U1 74;591 'DF 4? 2U1 :177,G1 � ,-. 72,-.,5. @,5,:1215 .7
�@ E7� ,51 ;71. 3 <2U<- , :177,G1 24 <-.<9,21 2U,2 2U1 ?4==43 <-G .,2, <7 4? 2U1
7K 19<�1. 2IK 1 # >-<27 4- 2U1 -123456 ,51 1-94;5,G1. 24 71-. : 177,G17 3 <2U
:;=2<K =1 @ E7 K15 : 177,G1 24 ,T4<. :177,G1 4T15U1,. #

($/00 3,7 .1T1=4K 1. ,7 ,- <-215<: 72,-.,5. � ;-2<= ( $/"/ <7 3 <.1=I ,T,<=S
,W=1 � ?45 K4315 25,<- <-?45: ,2<4- # F E7 8/S*8 ,51 51715T1. WI 2U1 ($+L*
72,-.,5. ?45 ($/00 ;7,G1 � ,-. U,T1 .1�-1. ?45: ,27 � 3 <2U , :177,G1 =1-G2U
,-. �
 1. �1=. 2IK 17 945517K4-.<-G 24 1,9U F E # ($)*+ <7 .17<G-1. 24 94-S
2<-;1 ,7 , =43S9472 ,=215-,2<T1 24 ($/"/ ?45 1=19254-<9 .,2, <-2159U,-G1 4? =177
95;9<,= <-?45: ,2<4- #

� �� �� � 	 �� � � ������ �� � �� � �  � � �� �� �� �
� � �� � ��

AU1 %&' ($/"/ 72,-.,5. �$"� <7 , U<GU15S=1T1= K5424 94= .17<G-1. ?45 ;71 <-
BEC7 3 <2U , D4-254==15 & 51, � 123456 �D&� � # D&� <7 , 715<,= W;7 K5424 94=
?45 -4-S.1725;92<T1 94==<7<4-7 45<G<-,==I .1T1=4K 1. ?45 ;71 <- ,;24:4W<=17 WI
, 	 15: ,- 94:K,-I� H479U 	:WB � <- 2U1 $/*L7 # ( $/"/ -123456 U,T1 W,-.S
3 <.2U7 4? ;K 24 $F W<2�7194-. # ,-. 9,- U,T1 ;K 24 "L -4.17 # [<61 ($+L*
-1234567 � 2U1I ,51 =<: <21. 24 ,W4;2 JL ?112 ?45 , 7<-G=1 -123456 # %2,-.,5.7
?45 W5<.G<-G :;=2<K =1 ($/"/ -1234567 U,T1 W 11- .1�-1. # D&� <7 -43 ,- <-S
215-,2<4-,= 72,-.,5. �%� $$*/*� � ,-. <- BEC7 2U1 D&� SW,71. %&' ($/"/
T1U<9=1 -123456 <7 51K=,9<-G 2U1 7=4315 %&' ($)*+ ,-. ($/00 K542494=7 ?45
W42U .<,G-472<9 ,-. 94:K4-1-2 94-254= ,KK=<9,2<4-7 �7;9U ,7 ,-2<S=4 96 H�&6S
<-G 7I721: 7 ,-. 95;<71 94-254=� # D&� 3,7 .17<G-1. 24 <:K=1: 1-2 51,=S2<: 1 �
.<725<W;21. 94-254= 7I721: 7 �$*� � ,-. 2U1 %� $$*/* 72,-.,5. <7 9;551-2=I
;-.15 .1T1=4K: 1-2 24 <:K54T1 <27 K 15?45: ,-91 <- 7,?12IS95<2<9,= ,KK=<9,2<4-7
�0 � J � #

+



� �� � �� � � 	 �
 � �  � � 	 �� � � � � ���� ���� �
��� �

AU1 <-ST1U<9=1 -123456 94--192<4-7 ,-. ?;-92<4-7 2U1I 94-254= ,51 .1795<W 1.
<- 2U1 ?4==43 <-G ?45 1,9U 2IK1 4? 'DF <- 4;5 T1U<9=17 # AU1 @&AB &CD%%
G54;K U,7 ,99177 24 K54K5<12,5I <-?45: ,2<4- ,W4;2 : 177,G17 W54,.9,72 ,-.
<-215K5121. WI 2U171 'DF7 3U<9U 3 <== -42 W 1 .12,<=1. U151 #

� 	� 	
 ����� ������ ��� �
&== 4? 4;5 T1U<9=17 ;71 & ==<74- ,;24: ,2<9 25,-7: <77<4-7 3 <2U �A'DS  '=19S
254-<9 D4-254=7 �$� # AU1 & ==<74- 25,-7: <77<4- 'DF U,7 W 42U ($)*+ ,-. ($/"/
K4527 � ,-. ,;24.121927 3U<9U 4? 2U171 9,- W1 ;71. 24 4W2,<- 2U5422=1 <-?45: ,S
2<4- ;71. WI 2U1 25,-7: <77<4- # �- 4;5 25;967 � 2U1 25,-7: <77<4- ($/"/ K452 <7
-42 94--1921. 24 2U1 1-G<-1 ($/"/ K452 � ,-. 2U5422=1 <-?45: ,2<4- <7 4W2,<-1.
;7<-G 2U1 ($)*+ -123456 # �- 4;5 W;717 � 2U1 25,-7: <77<4- ,-. 1-G<-1 ,51
94--1921. ;7<-G ($/"/ #

�- ,== 4;5 T1U<9=17 � , 25,-7: <77<4- 512,5.15 <7 K5171-2 � ,-. U,7 W 11- 94-S
�G;51. 24 517K 4-. 24 A45�;1�%K11. D4-254= 94::,-.7 71-2 24 2U1 25,-7: <7S
7<4- 'DF 4- 2U1 ($/"/ -123456 # AU1 @&AB 94-254= 94:K;215 <7 94--1921.
24 2U1 25,-7: <77<4- ($/"/ -123456 4- ,== T1U<9=17 � <- 45.15 24 51,. .,2, �<-S
9=;.<-G 9;551-2 G1,5 � <-K;2 7U,?2 7K 11. ,-. 4;2K;2 7U,?2 7K 11. � W54,.9,72
WI 2U1 25,-7: <77<4- ,-. 94-254= 2U1 25,-7: <77<4- 512,5.15 #

� 	� 	� ������ ��� �
�;5 2U511 V51<GU2=<-15 25;967 3151 W;<=2 3 <2U <.1-2<9,= D;:: <-7 D1=192@=;7
1=19254-<9 7;W7I721: 7 � 2U1 1-G<-1 'DF7 U,T1 94--192<4-7 ?45 ,== 2U511 2IK 17
4? <-ST1U<9=1 -123456 # ( $)*+ K54T<.17 <-?45: ,2<4- ;71. WI .,7UW4,5. 1=19S
254-<97 24 K54T <.1 W=<-6 94.17 ?45 ?,;=2 94-.<2<4-7 ,-. ,=74 <7 ;71. ?45 94:S
:;-<9,2<4- 3 <2U 2U1 '=19254-<9 H5,6<-G %I721: �'H%� ,-. 2U1 25,-7: <77<4- #
� U<=1 74: 1 :177,G17 ,51 W54,.9,72 4- 2U1 ($/00 � 2U1 <-?45: ,2<4- <7 51.;-S
.,-2 3 <2U 2U,2 4- 2U1 ($/"/ � ,-. <- 4;5 25;967 -4 42U15 .1T<917 ,51 94--1921.
24 ($/00 #

AU1 1-G<-1 ($/"/ -123456 4- 4;5 25;967 <7 94--1921. 24 2U1 'H% 'DF �
W;2 -42 24 2U1 25,-7: <77<4- 'DF # AU1 @&AB 94-254= 94:K;215 <7 71K,5,21=I
94--1921. 24 1,9U 4? 2U1 1-G<-1 ,-. 25,-7: <77<4- ($/"/ -1234567 # AU1 'DF7

*



4- 4;5 25;967 ,51 9,=<W5,21. 24 517K4-. 24 2U1 ($/"/ A45�;1�%K 11. D4-254=
: 177,G1 � 3U1- <2 <7 71-2 ?54: ,- ,KK54T1. ,..5177 # H42U 245�;1 ,-. 7K 11.
94-254= 94::,-.7 9,- W1 71-2 #

&- 1-G<-1 512,5.15 <7 K5171-2 4- ,== 4;5 25;967 # 2 9,- W1 94-254==1.
.;5<-G :,-;,= .5<T <-G WI 7122<-G , 73 <29U 4- 2U1 .,7UW4,5. 24 U<GU 45 =43 #
& : 177,G1 71-2 24 2U1 ($/"/ ,..5177 ?45 1-G<-1 512,5.157 <7 5191<T1. ,-.
517K4-.1. 24 WI 2U1 1-G<-1 'DF ,7 , 51�;172 2U,2 , K 1591-2,G1 4? : ,
 <:;:
512,5.,2<4- 245�;1 W1 ,KK=<1. WI 2U1 1-G<-1 512,5.15 #

�;5 JLS?4 42 D�	 W;717 U,T1 , D;:: <-7 D* #"8� DF))8 1=19254-<9 94-S
254= 7I721: � 3U<9U ?1,2;517 4-=I 2U1 ($)*+ ,-. ($/"/ 715<,= -1234567 # &
74: 13U,2 .<� 151-2 712 4? W54,.9,72 : 177,G17 4- 2U171 -1234567 <7 7;KK4521.
2U,- 3 <2U 2U1 D1=192@=;7 4- 2U1 25;967 # AU1 25,-7: <77<4- � 1-G<-1 ,-. W5,6S
<-G 7I721: 'DF7 ,51 ,== 94--1921. 24G12U15 WI W42U 2U1 ($/"/ ,-. 2U1 ($)*+
715<,= -1234567 � 2U1 @&AB 94-254= 94:K;215 <7 ,=74 94--1921. 24 2U<7 -12S
3456 # �- 2U1 D�	 W;717 � 2U1 1-G<-1 'DF <7 -42 9,=<W5,21. 24 517K 4-. 24 2U1
($/"/ A45�;1�%K 11. D4-254= : 177,G1 � ,-. -4 1-G<-1 512,5.15 <7 ,T,<=,W=1 #

�;5 8LS?442 W;7 U,7 , E1254<2 E <171= 1-G<-1 3 <2U ,- 'DF 2U,2 W54,.S
9,727 4- W42U ($)*+ ,-. ($/"/ -1234567 � ,-. ,=74 517K4-.7 24 ($/"/ A45�;1�
%K11. D4-254= 94::,-. 51�;1727 ?45 1-G<-1 245�;1 ,-. 1-G<-1 7K 11. # �4
1-G<-1 512,5.15 <7 94-�G;51. <- 4;5 1-G<-1 :4.1= � ,-. 1-G<-1 512,5.15 : 17S
7,G17 71-2 24 2U1 1-G<-1 'DF ,51 <G-451. # A5,-7: <77<4- � 1-G<-1 ,-. W5,6<-G
7I721: 7 ,51 ,== 94--1921. WI W42U ($)*+ ,-. ($/"/ #

� 	� 	� � �� ��� ������ ���
�;5 V51<GU2=<-15 25;967 � 45<G<-,==I 94-�G;51. 3 <2U , 72,-.,5. �&HD� '=19S
254-<9 H5,6<-G %I721: �'H%� � U,T1 W 11- 4;2�221. 3 <2U , ���� ������ ��� 'H%
2U,2 3,7 7<G-,= 94:K,2<W=1 3 <2U 2U1 45<G<-,= 'H% # AU1 -13 'H% ,==43 7
�&HD� SK54K5<12,5I W5,6<-G 94::,-.7 24 W 1 71-2 4T15 2U1 ($/"/ -123456 #
AU<7 'H% 3,7 <-21-.1. ?45 2U1 ';54K 1,- : ,5612 � ,-. <7 -42 725112S=1G,= <-
2U1 >-<21. %2,217 #

AU1 W5,6<-G 7I721: 7 4- 4;5 W;717 ,51 &-2<S[496 H5,6<-G %I721: 7 �&H%�
3 <2U4;2 2U1 91-25,=<X1. 1=19254-<9 94-254= 4? ,- 'H% �0L� # -721,. 4? 51S.4<-G
2U1 W5,6<-G 7I721: 7 4- 2U1 T1U<9=1 ?45 'H% <- 45.15 24 ;71 W5,61SWIS3 <51 � 31
U,T1 :4.<�1. 2U1 K-1;:,2<9 94-254= 7I721: 24 ,991K2 , K54K452<4-,= T4=2,G1
94-254= 712 WI 2U1 94:K;215 # AU1 <-ST1U<9=1 -1234567 ,51 -42 <-T4=T1. <-
W5,6<-G 7I721: 94-254= 4- 2U171 7I721: 7 1
91K2 ?45 74: 1 51K4527 4? W5,61
,-. &H% 72,2;7 #

/



� �� 	 �� � � � � �� � �� ������
�- ,== 4;5 T1U<9=17 � 2U1 ($/"/ .,2, =<-6 <7 94-�G;51. ,2 0)L �W<2�7194-. �
G<T <-G , : ,
 <:;: W,-.3 <.2U 4? ,KK54
 <: ,21=I $S0 ($/"/ :177,G17 K 15 : <=S
=<7194-. �+�� # �- 2U1 V51<GU2=<-15 25;967 � ($/"/ W;7 =4,.<-G .;1 24 72,-.,5.
W54,.9,72 : 177,G17 ?54: 2U1 D;:: <-7 1-G<-1 'DF ,7 7U43- WI D,-,=IX15
74?23,51 �$/� U,7 W 11- : 1,7;51. ,2 ,W4;2 8 K1591-2 # AU151 <7 1
9177 9,K,9S
<2I 2U,2 2U1 @&AB 94-254= 94:K;215 9,- ;71 24 71-. A45�;1�%K 11. D4-254=
: 177,G17 24 2U1 1-G<-1 ,-. 2U1 512,5.15 � ,2 2U1 ($/"/ 72,-.,5. ;K.,21 5,217
4? $L ,-. )L : 7 � 517K 192<T1=I� ,7 31== ,7 24 71-. , K54K5<12,5I W5,61 .1: ,-.
:177,G1 24 2U1 �&HD� 'H% #

$L
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����	������� � � ���� 	�����	� ��
������� ����� ���� �

AU1 � 572 7;W7192<4- W1=43 .1795<W 17 2U1 .12,<=7 4? 94--192<4-7 2U,2 U,T1
W 11- :,.1 ?54: 2U1 @&AB 94-254= 94:K;215 24 2U1 <-ST1U<9=1 -1234567 4-
.<� 151-2 7I721: 7 # AU1 7194-. 7;W7192<4- .1795<W 17 2U1 74?23,51 ,59U<2192;51
?45 <-ST1U<9=1 -123456 94-254= #

� �� �� � � ��� �� � � � � ���� ������ � � �� ���
��	 ���� � � �� � �� �


 	
	
 ������� ���� ����� ������� ���� �� ������ ��� ����
�����

AU1 ($)*+ 715<,= -123456 7<G-,= <7 2,61- ?54: 2U1 E <,G-472<9 D4--19245
�V51<GU2=<-15 @,52 �4 # E>VBE $L 8 $0@ � =4 9,21. ,2 2U1 ?453,5. ?442 4?
2U1 =1?2 U,-. �.5<T15  7 7<.1� K<==,5 # AU1 7<G-,=7 ,51 .15<T1. ?54: T,:K<51
2,K7 3 <2U 2U1 G511- 3 <51 945517K 4-.<-G 24 D&� B<GU ,-. 2U1 45,-G1 3 <51
945517K4-.<-G 24 D&� [43 #

AU1 1-G<-1 ($/"/ 715<,= -123456 7<G-,= <7 2,61- ?54: D;:: <-7  %15T<91
A44= D4--192<4- 3U<9U <7 =4 9,21. 4- 2U1 .5<T15  7 7<.1 4? 2U1 1-G<-1 ,-. <7
K,52 4? 2U1 � $J @=;7 '-G<-1 B,5-177 # 2 <7 , 2U511 K<- 94--19245 3 <2U @<- &

$$



945517K4-.<-G 24 D&� B<GU � @<- H 945517K4-.<-G 24 D&� [43 � ,-. @<- D
<7 2U1 7U<1=. #

AU1 & ==<74- 25,-7: <77<4- ($/"/ 715<,= -123456 7<G-,= <7 2,61- ?54: K<-7 4-
2U1 A5,-7: <77<4- 'DF # @<- $" 945517K4-.7 24 D&� B<GU � @<- 0/ 945517K4-.7
24 D&� [43 � ,-. @<- $0 <7 2U1 7U<1=. # 2 7U4;=. W 1 -421. 2U,2 3 <2U4;2
:4.<�9,2<4- 2U<7 <7 , [<21 D&� 3U<9U 9,--42 W 1 94--1921. 24 2U1 : ,<- ($/"/
C1U<9=1 H;7 � 94-71�;1-2<,==I� 4;5 94:K;215 ;717 , 71K,5,21 D&� 94--192<4-
?45 2U<7 7<G-,= #

AU1 �&HD� 'H% ($/"/ 715<,= -123456 7<G-,= <7 2,61- ?54: 94--19245
'D $ 4- 2U1 D1-25,= F4.;=1 =4 9,21. <- 2U1 =1?2 K <==,5 # @ <- " 945517K 4-.7 24
D&� B<GU ,-. @<- $ 945517K4-.7 24 D&� [43 � 51K=,9<-G 2U1 ($/00 715<,=
-123456 94--192<4-7 4- 2U1 45<G<-,= �&HD� 7I721: # AU<7 7<G-,= <7 54;21.
2U54;GU , 73 <29U 74 2U,2 2U1 'H% 9,- W1 .<794--1921. ?54: 2U1 1-G<-1 ($/"/
-123456 # AU<7 : ,I W 1 -19177,5I W 19,;71 4? , 51�;<51: 1-2 ?45 94-2<-;4;7
94::;-<9,2<4- 24 2U1 'H% 2U,2 2U1 1-G<-1 'DF .417 -42 7,2<7?I 3 <2U4;2
,77<72,-91 ?54: 2U1 @&AB 94-254= 94:K;215 #


 	
	� ��� ������� ���� �� ������ ��� ��������
�- 2U1 W;717 � 2U1 ($)*+ ,-. ($/"/ 94--192<4-7 W 12311- 2U1 1-G<-1 � 25,-7S
: <77<4- ,-. W5,6<-G 'DF7 3151 : ,.1 ,7 K,52 4? 2U1 �'F 3<5<-G # �- 2U1
D�	 W;717 � 31 2,K <-24 2U1 $*SK<- 94--19245 ?45 'D>SJ%�JF =49,21. ,W4T1
2U1 : ,<- .445 ,2 K<- $" �.,56 W=;1 3 <51� ?45 ($)*+H �S� ,-. K<- $J �I1==43
3 <51� ?45 ($)*+& �� � � ,-. ,2 K<- $ �:<-2 G511- 3 <51� ($/"/H D&� [ � K<-0
�W=,96 3 <51� ($/"/ %B[E ,-. K<- " �=<: 1 G511- 3 <51� ($/"/& D&� B # �-
2U1 8LS?4 42 W;7 � 31 2,K <-24 2U1 $*SK<- 94--19245 ?45 'D>S8%�8F =49,21.
,W4T1 2U1 : ,<- .445 ,2 K<- $" �.,56 W=;1 3 <51� ?45 ($)*+H �S� ,-. K<- $J
�I1==43 3 <51� ?45 ($)*+& �� � � ,-. ,2 K<- $ �G511- 3 <51� ($/"/H D&� [ � K<-0
�3U<21 3 <51� ($/"/ %B[E ,-. K<- " �I1==43 3 <51� ($/"/& D&� B # V45 W42U
W;717 � 4- 2U1 9,W=1 24 2U1 94:K;215 � 3 <51 94=457 ,51 
 51. ($/"/ D&� B � W=,96
($/"/ D&� [ � 3U<21 ($)*+& �� � � G511- ($)*+H �S� #

� �� �� ���  ��  ��	 �������� �� � 	 �� � � ��� � �� �
%4?23,51 .1T1=4K: 1-2 U,7 W 11- W,71. 4- @&AB  7 K51T<4;7 K,771-G15 9,5
,;24: ,2<4- 3456 ;7<-G 2U1 ��� J � 1,=S2<: 1 �K 15,2<-G %I721: �$$� # &
<-S: 1:45I � ������ ����� ����� .,2,W,71 <7 ;71. ?45 94::;-<9,2<4- W12311-

$0
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A,W=1 J #$ 
 @54917745 ;2<=<X,2<4- 4? 94-254= K54917717 #

71-745 � ,92;,245 ,-. 94-254= K54 917717 �$+� # � U<=1 2U1 K,771-G15 9,57 3151
<-725;:1-21. 3 <2U 72,-.,5. %&SW;7 @D7 � , @D $LJ 72,96 <7 W 1<-G ;71. <- 4;5
BEC7 # & K,96,G1 4? ,W4;2 / �LLL =<-17 4? D 94.1 U,7 W 11- 3 5<221- 24 7;KK452
51,.<-G ,-. 71-.<-G ($/"/ 94::,-.7 3U<=1 <-215?,9<-G 3 <2U 2U1 .,2,W,71 #
E12,<=7 ,W 4;2 2U1 ?;-92<4-7 ,-. .,2, 725;92;517 ,51 .4 9;: 1-21. <- 2U1 ���
�� ! �� ��"# $ ���� ��� � ����� � % �� ���� �� & ���� �� 3U<9U <7 <-9=;.1. ,7
K,52 4? 2U<7 51K 452 #

AU1 ($/"/ 7;KK452 54;2<-17 ,51 .17<G-1. 24 <-215?,91 3 <2U .<� 151-2 =43S
=1T1= D&� 71-. ,-. 5191<T1 54;2<-17 � .1K1-.<-G 4- 2U1 U,5.3,51 <-215?,91
24 2U1 715<,= -123456 # AU1 ��� J D&� .5<T15 ;71. 4- 4;5 @&AB 94-254=
94:K;2157 3,7 3 5<221- ?45 ;7 WI 2U1 >-.153,215 %I721: 7 ,-. A19U-4=4GI
[,W � -72<2;21 4? %I721: 7 ,-. �4W42<97 � V'>@# E12,<=7 ,W 4;2 2U<7 .5<T15 ,51
.49;: 1-21. <- 2U1 '()* ��� + ��,�� % �� ���� �� & ���� � ,=74 <-9=;.1. ,7
K,52 4? 2U<7 51K 452 #

AU1 D&� 7;KK452 K54T<.1. <7 7<: K=1 ,-. .417 -42 ;71 ,-I 4? 2U1 7K 19<,=
?1,2;517 ?45 5191<T <-G <-24 :;=2<K =1 : 177,G1 4W� 1927 ,-. � =215<-G : 177,G17
<- U,5.3,51 2U,2 2U1 D&� K542494= K54T<.17 # D;551-2=I 1T15I ($/"/ : 17S
7,G1 K5171-2 4- 2U1 T1U<9=1 -123456 <7 5191<T1. WI 2U1 94-254= 94:K;215 ,-.
3 5<221- 24 2U1 .,2,W,71 # ? 2U <7 <7 244 1
K1-7<T1 2U1 74?23,51 9,- W1 1,7<=I
:4.<�1. 24 79511- 4;2 ;-<-215172<-G : 177,G17 #

AU1 @&AB ($/"/ 74?23,51 <7 T15I K452,W=1 ?54: T1U<9=1 24 T1U<9=1 # AU1
7,: 1 54;2<-17 2U,2 ,51 ;71. 24 94::,-. 1-G<-1 245�;1 <- 2U1 D;:: <-7
'-G<-1 <- 4;5 V51<GU2=<-15 25;967 ,51 ,=74 ;71. ?45 2U1 E1254<2 E <171= '-G<-1
<- 4;5 8LS?4 42 W;7 # AU1 7,: 1 94.1 94-254=7 25,-7: <77<4- 512,5.15 ,92;,2<4-
4- ,== 4;5 BEC7 #

$"



Deceleration

Proportional control

Step increase

Acceleration

Cruise

Jake Brake desired torque

J1939 Bus

EBS deceleration

Trans. Retarder desired torque

Torque control command

V<G;51 J #$ 
 ($/"/ 94::,-.7 <77;1. <- W5,6<-G 21727

� �� � �� �� ��� �  � � ��� �� ���� � �� �
AU1 94-254= � 71-745 ,-. ,92;,2<4- 74?23,51 5;-7 4- , @D $LJ )LL FBX -21=
K54 917745 7I721: # AU1 K54917745 ;2<=<X,2<4- ?45 1,9U K549177 � :1,7;51. ,7
K54 9177 2<: 1 .<T<.1. WI 51,= 2<: 1 ?45 1
19;2<4- � <7 7U43- <- A,W=1 J #$#

AU1 K54 917717 .1795<W 1. <- A,W=1 J #$ ,51 .W7=T � ,- <- : 1:45I .,2,W,71
715T15 K549177 2U,2 <7 ,=74 U,-.=<-G <-?45: ,2<4- ?54: 5,.,5 � 	@% � ,991=154:S
1215 ,-. GI54 K54917717 � �W;771-. � 3U<9U <77;17 ($/"/ 94::,-. :177,G17 24
2U1 D&� .5<T15 � =4-G92= � 2U1 ,92;,2<4- 21727 =4-G<2;.<-,= 94-254==15 � 5.� $)*+ �
3U<9U 51,.7 : 177,G17 ?54: ($)*+ -123456 ,-. 3 5<217 <-215172<-G : 177,G17 24
2U1 .,2,W,71 � ,-. 5.� $/"/ � 3U<9U .4 17 2U1 7,: 1 ?45 2U1 ($/"/ -123456 # 2
<7 <:K452,-2 2U,2 K54 917745 ;2<=<X,2<4- ?45 2U171 =43S=1T1= K54 917717 W 1 7: ,==
W 19,;71 2U1 4T15S,== 7I721: ,59U<2192;51 <-9=;.17 K54917745S<-21-7<T1 =,215,=
94-254= ,7 31== ,7 <-215ST1U<9=1 94::;-<9,2<4- K54 917717 2U,2 :;72 ,== 5;- <-
51,=S2<: 1 #

[4,.<-G 4? 2U1 1-G<-1 ($/"/ -123456 <-951,71. 7<G-<�9,-2=I 3 <2U 2U1 ,.S

$J



.<2<4- 4? W54,.9,72 : 177,G17 ?54: 2U1 'H% 7I721: ,-. 2U1 71-.<-G 4? 94:S
:,-.7 ?54: 2U1 @&AB 94-254= 94:K;215 # AU1 W;7 =4,. 4? ,W4;2 8 K 1591-2
.;1 24 2U1 1-G<-1  7 W54,.9,72 : 177,G17 <-951,71. 24 ,W4;2 $LS $$ K1591-2 ,T15S
,G1 � 3 <2U , : ,
 <:;: 4? $8S $* K1591-2 ,7 : 1,7;51. ;7<-G D,-,=IX15 74?23,51 #
&W4;2 U,=? 4? 2U<7 <-951,71 <7 .;1 24 ($/"/ 94::,-.7 ?54: 2U1 @&AB 94-254=
94:K;215 � 2U1 42U15 U,=? <7 .;1 24 W54,.9,72 : 177,G17 ?54: 2U1 'H% 7I721: #
AU1 25,� 9 <-951,71 517;=21. <- ,- <-951,71 4? D&� W;7 15545 ?5,: 17 ?54:
,W4;2 234 K 1591-2 24 ,W 4;2 $L K 1591-2 #

$)
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%1-745 <-?45: ,2<4- ?54: 2U1 <-ST1U<9=1 -1234567 <7 W 1<-G ;71. <-721,. 4? ,..S
4- 71-7457 ?45 =,215,= 94-254= ,-. ?,;=2 .12192<4- ,7 31== ,7 ?45 =4-G<2;.<-,=
94-254= # B431T15 � 2U1 W<GG172 54=1 4? 2U1 <-ST1U<9=1 ($/"/ -123456 <- 4;5
4T15,== 7I721: ,59U<2192;51 <7 ?45 =4-G<2;.<-,= 94-254= ,92;,2<4- � ,-. 2U,2 <7
.<79;771. W1=43 #


 �� �� �� ���� ��  � �� �� �� � � � ��� �
[4-G<2;.<-,= 94-254= 4? ?; ==I ,;24: ,21. 54,. T1U<9=17 9,- W 1 .<T <.1. <-24
234 =,I157 
 AU1 ;KK 15 =,I15 <7 94:K471. 4? 2U1 T1U<9=1 .I-,: <97 ,-. ?11.S
W,96 94-254= =44K # AU1 =4315 =,I15 <7 94-254= ,92;,2<4- <-9=;.<-G 2U5422=1
,-. W5,6<-G 7I721: 7 # EI-,: <9 : 4.1=7 4? 2U471 7I721: 7 ,-. 2U1 945517K4-.S
<-G 94-254= .17<G-7 ,51 94-7<.151. <- �/ � $L� # AU<7 K,K 15 94-91-25,217 4-
94-254= ,92;,2<4- ;7<-G 2U1 %&' ($/"/ T1U<9=1 -123456 3 <.1=I ,T,<=,W=1 <-
94::159<,= BEC7 # AU<7 =4-G<2;.<-,= 94-254= ,92;,2<4- 4? BEC <7 .<� 151-2
?54: 2U,2 ?45 ?; ==I ,;24: ,21. K,771-G15 9,57 .1T1=4K 1. ,2 @&AB �) � * � $0�
<- 2U1 ?4==43 <-G ,7K 1927 # V45 K,771-G15 9,57 

� H42U 2U5422=1 ,-. W5,61 94-254= ,92;,2457 3151 .1T1=4K 1. WI @&AB #
� AU151 <7 -4 94:K=<9,21. 94-254= ?11.W,96 =4 4K W12311- 2U1 1-G<-1 94-S

$8



254= 7I721: ,-. 2U1 2U5422=1 ,92;,245 � 3U<9U :1,-7 2U,2 4-1 9,- .<5192=I
,99177 2U1 ?;1= 5,21 94-254= #

� F1,7;51: 1-2 4? 7<G-,=7 ,51 .<5192=I ?54: 71-7457 <-72,==1. WI @&AB #
� H5,6<-G 7I721: ;717 UI.5,;=<9 W5,617 4-=I� ,-. 3,7 51.17<G-1. WI 	F

� 171,59U ?45 @&AB �)� #
V45 BEC D1-2;5I V51<GU2=<-15 

� � <2U 2U1 V51<GU2=<-15  7 D;:: <-7 � SJ") 2;5W 4S.<171= 1-G<-1 �"� � 2U1
W;<=2S<- '=19254-<9 D4-254= F4.;=1 �'DF � 94-254=7 ?;1= 5,21 ,92;,2<4- �
;7<-G 94:K=<9,21. ,=G45<2U: 7 ,-. <-?45: ,2<4- ?54: 2U1 T1U<9=1 -12S
3456 # AU<7 : 1,-7 2U,2 <2 <7 T15I .<� 9;=2 24 .<5192=I ,99177 ?;1= 5,21
,92;,2<4- # -721,. � 2U1 1-G<-1 <7 94-254==1. WI 4T155<. <-G 2U1 94::,-.
?54: 2U1 ,991=15,245 K 1.,= 3 <2U , 94::,-. 71-2 24 2U1 1-G<-1 'DF
;7<-G 2U1 ($/"/ -123456 # AU1 1-G<-1 'DF =<721-7 24 2U1 %&' ($/"/
A45�;1�%K11. D4-254= 94::,-. �$"� ,-. ;717 2U,2 <-721,. 4? 2U1 ,9S
91=15,245 K 1.,= 7<G-,= 24 .1215: <-1 ?;1= 5,21 ,92;,2<4- #

� F1,7;51: 1-27 4? : ,-I 7<G-,=7 ;71. ?45 =4-G<2;.<-,= 94-254= ,51 ?54:
W;<=2S<- 71-7457 ,T,<=,W=1 24 2U1 1-G<-1 � 25,-7: <77<4- 45 W5,6<-G 7I7S
21: 7 # AU171 : 1,7;51: 1-27 ,51 W54,.9,72 4- 2U1 ($/"/ -123456 WI 2U1
1-G<-1 � 25,-7: <77<4- 45 W5,6<-G 'DF ,2 9152,<- 72,-.,5. ?51�;1-9<17 #

� AU1 W5,6<-G 7I721: 94-2,<-7 ,- '-G<-1 � 12,5.15 �,=74 9,==1. (,61
H5,61 �8�� ,-. , A5,-7: <77<4- � 12,5.15 ,7 31== ,7 & <5 H5,617 94-254==1.
WI , �&HD� '=19254-<9 H5,6<-G %I721: �'H%� �0L� # AU1 4K 15,2<4-
4? 1,9U 4? 2U171 W5,6<-G 7I721: 7 9,- W1 .<51921. WI 94::,-.7 71-2 24
2U1 1-G<-1 � 25,-7: <77<4- 45 'H% 'DF7 4T15 2U1 ($/"/ -123456 #

AU1 <-951,7<-G 74KU<72<9,2<4- 4? 2U1 1=19254-<9 94-254= 7I721: 7 <- BEC7 ,-.
2U1<5 <-21G5,2<4- 3 <2U 2U1 ($/"/ T1U<9=1 -123456 ,==43 7 ;7 24 <:K=1: 1-2 ?;==I
,;24: ,21. =4-G<2;.<-,= 94-254= 3 <2U ?1315 U,5.3,51 : 4.<�9,2<4-7 2U,- <-
1,5=<15 T1U<9=17 # B431T15 � 2U1 <-.1K 1-.1-2 4K15,2<4- 4? 'DF7 ?45 1,9U 4?
2U1 .<� 151-2 T1U<9=1 94:K4-1-27 �1-G<-1 � 25,-7: <77<4- ,-. 'H%� <-951,717
2U1 4T15,== 94:K=1
 <2I 4? 2U1 94-254= K54W=1: #

$+




 �� �� �� ���� ��  � �� �� �� � ��� � �� � � ��	 	 �� � �
V<G;51 ) #$ 7U43 7 , 7I721: :4.1= 4? =4-G<2;.<-,= 94-254= ,92<T,2<4- ?45 @&AB  7
2U511 V51<GU2=<-15 25;967 # ',9U 25;96 <7 W 1<-G <-725;: 1-21. 3 <2U ,..<2<4-,=
71-7457 �<-9=;.<-G 5,.,5 � =<.,5 � :,G-124:1215 � 	@% � ,-. 3 <51=177 T1U<9=1S24S
T1U<9=1 94::;-<9,2<4- ?45 K=,244-<-G � ,7 31== ,7 2U1 <-?45: ,2<4- W54,.9,72
4- 2U1 ($/"/ -123456 WI 2U1 1-G<-1 � 25,-7: <77<4- ,-. 'H% 'DF7 # C1U<9=1
.I-,: <97 : 4.1=<-G ;717 ,== 2U <7 <-?45: ,2<4- 24 .1215: <-1 T1U<9=1 T1=4 9<2I ,-.
,991=15,2<4- # [4315S=1T1= 94-254= ;717 2U<7 ,-. 2U1 .17<51. 7K 11. 7K 19<�1. WI
U<GU15S=1T1= 94-254= 24 .19<.1 3U,2 94::,-.7 24 <77;1 #

Proportional control

J1939 Control Commands

J1939 Bus

Transmission Retarder

Jake Brake

EBS Air Brake

Vehicle
Dynamics

Data from sensors

Desired Speed

v, a

������ � ��	 
������ �� �������� ��� ����������� ������� ����� ����� 
����
�������

�������� ������� ��� ��� ������ � � ��  ��� � ����� ������ �������
�� !"
 �� �� ������ �� ��� ����� ������� ����  ������ #������ � $���
#�� ���� �� ��������� ����% � � � � ������ � ��&� ����% �� �� #������ �� ���
��� ������� �� ����� �� ��������� ��  � ������ � �� � �����  ������
�� ��� ������ �� ��'����� � ( ������ �� ��� ��)����� !*(� �� ���� ��������
�� ��� ���% �� ��  � ������ � ��� ��'����� ���'������� � ������ ������ �#
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?45 1-G<-1 245�;1�7K 11. 94-254= ,-. ?45 2U1 25,-7: <77<4- 512,5.15 � W;2 2U151 <7
-4 1-G<-1 512,5.15 ,T,<=,W=1 ,-. 2U151 <7 -4 ($/"/ 94-254= 4? 2U1 ,<5 W5,617 #
�- 2U1 JLS?442 W;717 � 4-=I 2U1 25,-7: <77<4- 512,5.15 9,- W 1 94-254==1. WI
($/"/ � 74 2U1 <-ST1U<9=1 -1234567 K=,I , 54=1 4-=I <- K54T<.<-G ?11.W,96 ?54:
71-7457 51,. WI 7;W7I721: 'DF #

E12,<=7 ,W4;2 2U1 94::4- 74?23,51 ;71. 24 <-215?,91 3 <2U 2U1 ($/"/ 7;KS
K452 K,96,G1 ,-. 3 <2U 42U15 ,92;,2457 9,- W1 ?4;-. <- 2U1 ���� ������ �
����� ��������� ��� % �� ���� �� & ���� � <-9=;.1. ,7 K,52 4? 2U<7 51K452 #

$/
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%2,-.,=4-1 2172 94.1 3,7 .1T1=4K 1. 24 :4-<245 <-ST1U<9=1 -123456 :177,G17 #
AU<7 94.1 3,7 ;71. .;5<-G :,-;,= .5<T <-G 24 1
K=451 2U1 9U,5,9215<72<97 4?
.<� 151-2 : 177,G17 K5171-2 4- 2U1 <-ST1U<9=1 -1234567 4- 4;5 T1U<9=17 � ,-.
24 .1215: <-1 2U1 94551=,2<4- 4? .<�151-2 K,5,:12157 24 T1U<9=1 4K 15,2<4- ,-.
94-.<2<4-7 # AU171 K54G5,: 7 U,T1 W11- T,=<.,21. ,-. 9,- -43 ,=74 W 1 ;71.
?45 U,5.3,51 94--192<4- 21727 ,-. ?45 9U1967 4- 9455192 4K 15,2<4- 4? 2U1
<-ST1U<9=1 -1234567 #

-S: 1:45I 25,917 3151 ,=74 2,61- 4? K,5,:12157 51,. ?54: 2U1 <-ST1U<9=1
-1234567 3U<=1 5;--<-G K54� =<-G ,-. K54242IK 1 94-254= ,KK=<9,2<4-7 ;-.15
94:K;215 94-254= # AU171 25,917 ,51 7,T1. 24 .<76 ,2 2U1 1-. 4? , 5;- � 74 2U,2
.<76 ,99177 .4 17 -42 <-215?151 3 <2U 2U1 94-254= ,KK=<9,2<4-7 # AU<7 .,2, 3,7
;71. 24 .1T1=4K :4.1=7 4? T1U<9=1 W 1U,T<45 # V;52U15 21727 ,-. .,2, G,2U15<-G
3151 ;71. 24 T,=<.,21 2U1 : 4.1=7 � 2U1 :4.1=7 ,51 2U1- ;71. 24 K54T<.1 9U1967
4? 9455192 <-ST1U<9=1 -123456 4K15,2<4- #

0L
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%1=?S2172<-G ?1,2;517 4? <-ST1U<9=1 -1234567 9;551-2=I <- K=,91 <-9=;.1 

� E,7UW4,5. .<7K=,I 4? ($)*+ ?,;=2 94.17 � <-9=;.<-G ?,;=2 94;-27 ,-.
W=<-6 94.17 #

� D4-254= 74?23,51 ?,<=7 24 K54911. 24 ,;24:,21. 94-254= <? 51�;<51. : 17S
7,G17 ?54: <-ST1U<9=1 -1234567 U,T1 -42 W 11- 51,. .;5<-G <-<2<,=<X,2<4- #

& 7 2U1 94-254= 74?23,51 : ,2;517 � 31 K=,- 24 ,.. 2U1 ?4==43 <-G ?1,2;517
2U,2 .1K 1-. 4- <-?45: ,2<4- ?54: 2U1 <-ST1U<9=1 -1234567 

� %4?23,51 ,99177 24 ?,;=2 : 177,G17 #
� A<: 14;27 24 .12192 W;7S4� 94-.<2<4- �,W71-91 4? : 177,G17� #
� C,=<.,2<4- 4? 9455192 94-254= ,92;,2<4- W,71. 4- T,=;17 51K 4521. WI
W54,.9,72 : 177,G17 4- 2U1 <-ST1U<9=1 -123456 #

AU1 K54K 47,= ?45 ?;52U15 5171,59U <-24 2U<7 ,51, ����� ��� ��� ���������� WI
E5 # &.,: B431== U,7 W 11- <-9=;.1. ,7 K,52 4? 2U<7 51K 452 #

0 $
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1 Real Time Token Ring (RTTR) for QNX

This document is a detailed manual of the Real Time Token Ring protocol (RTTR) im-
plementation for the Orinoco 802.11b wireless PCMCIA card under the QNX realtime
operating system. The Linuxorinoco_cs driver was used as a basis for the device-
level support of the Orinoco PCMCIA 802.11b wireless card. Minimal changes were
made to the device-level driver source, in order to be able to track future changes in
the GNU Public Licenseorinoco_cs driver. For more information about the orinoco
driver, see the QNX 4 Driver for Orinoco Wireless Card reference manual appended
to the end of this document and the documentation for the Linuxorinoco_cs driver
[Tourrilhes, 2003].

1.1 Overview

The RTTR protocol has been implemented as a single process under QNX that provides
a bidirectional flow of information between a device driver process for the Orinoco
wireless card and user-defined application code. Figures??, ??, and ?? illustrate the
implementation of the three main tasks of the RTTR protocol: configuration, trans-
mission, and reception. The RTTR protocol and device driver processes interact with
each other via interprocess (I-P) messaging. The I-P messaging support under QNX
is extremely efficient and fast, so there is only minor additional overhead in both the
source and executable code. This division of protocol and device driver into separate
processes has its own advantages and disadvantages, however the main reasons for
this setup are to allow for easier debugging, development, and future porting to other
operating systems.

For the current PATH application of automated vehicle control, the application code ef-
fectively provides an interface to several variables within the PATH publish-subscribe
database. The simplicity of this code did not require separation into another process,
so the application code has been embedded in therttr process in the current version.
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1.2 RTTR and Orinoco driver Inter-Process Communication 2

Figure 1: Schematic of RTTR Configuration task

However, the interface between the protocol and application is well defined to allow
for future modifications towards seperate protocol and application processes. The re-
mainder of this section will cover the following topics in more detail: the interface
between the RTTR and Orinoco driver processes, the interface between the RTTR and
application code, and finally the PATH automated vehicle control application code. For
brevity throughout this document, the RTTR and Orinoco processes will be termedrttr
andori, respectively.

1.2 RTTR and Orinoco driver Inter-Process Communication

Although there are several methods of providing I-P messaging in QNX, the chosen
method was through the use of the file descriptor/dev/or0 due to its standardized
behavior across Unix-based systems. The specific types of I-P communication between
rttr and ori are limited to three essentially atomic operations: configuration, packet
reception, and packet transmission. The configuration operation runs once both of the
processes have been started to share information required for both I-P and Wireless
communication. First, the ori process is started, attaches to the/dev/or0 file descriptor
through QNX system calls, and receive-blocks waiting for a RTTR_CONFIG message
from rttr. Once therttr process is started, it gets the/dev/or0 file descriptor using the
open() system call, and transmits an RTTR_CONFIG message to ori through/dev/or0.
This message contains two proxy IDs that will be used for flow control in the other
atomic operations.

These two proxies are called data rx proxy and ok tx proxy, and their specific
roles will be described later. Therttr process will then receive-block waiting for a
RTTR_CONFIG_REPLY message from ori. Once ori processes the RTTR_CONFIG
message, it replies with a RTTR_CONFIG_REPLY message containing the MAC ad-
dress of the orinoco card. This address is needed by the RTTR protocol to generate
appropriate packet headers.

Once the configuration operation is complete, therttr process is receive-blocked with
respect to theori process until one of two events occur: a packet is received by the
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1.2 RTTR and Orinoco driver Inter-Process Communication 3

Figure 2: Schematic of RTTR Transmission task

Figure 3: Schematic of RTTR Reception task

Orinoco card or the watchdog timer times out. The reception event is interrupt driven
within the ori process, while the time out is an OS timer, however both are indicated to
therttr process through proxies; thedata_rx proxy mentioned above in the configura-
tion operation for packet reception, and awdog proxy for the timeout. Currently, the
RTTR protocol does not use theok_tx proxy, although it has been included for future
implementation of error detection and flow control. Each of these cases will now be
described in more detail.

When a packet has been received by the Orinoco card, theori process notifies the
rttr process by activating thedata_rx proxy. Once thedata_rx proxy is received by
the rttr process, it immediately requests the received packet by sending a RTTR_RX
message to theori process. Theori process in turn replies with either a RTTR_RX_OK
message containing the received packet, or a RTTR_RX_FAIL message if there was
a problem. The received packet is then processed by the RTTR protocol through the
functionreceive_packet().

The transmission of packets occurs when a mode-dependent event occurs. If the node
is a MASTER, then a new packet is transmitted upon receipt of thewdog proxy. For
SLAVE nodes, a new packet is transmitted after successful reception of a packet from
the preceding node in the ring. In either case, therttr_tx() function is called to pass the
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1.3 RTTR and Application Interface 4

raw packet to theori process via an RTTR_TX I-P message. Theori process in turn
replies with either an RTTR_TX_OK message if the packet was transmitted success-
fully, or an RTTR_TX_FAIL message if there was a problem.

1.3 RTTR and Application Interface

The interface between the RTTR protocol and the application specific code is defined
by a two functions,send_packet() and receive_packet(), that deal with the trans-
mission and reception of packets, respectively. The functionsend_packet() is used to
transmit data using the RTTR protocol. This function encapsulates the raw data with
802.2 ethernet and RTTR headers, then sends the packet on to theori driver for trans-
mission using the functionrttr_tx(). The receive_packet() function hook is called
when a data packet has been received. This function should be written by the user,
with the input toreceive_packet() being the raw data. Since there are no headers on
the input data, this function should at least make the raw data available to the applica-
tion code in some form.

1.4 PATH Vehicle-to-Vehicle Communication Application

An integral part of the PATH automated vehicle control system is the use of intervehicle
wireless communication to pass vehicle state information throughout a platoon. The
vehicle state information consists primarily of vehicle distance, velocity, and acceler-
ation measurements along with platoon coordination information, such as fault status
and operating mode. The requirements for this wireless communication are strict; real-
time operation with transmission of the state information for all vehicles within the
platoon in a period of 20 milliseconds. The periodic transmission functionality was
implemented by creating a periodic QNX timer that activates a proxy called wdog.
When the wdog proxy is received, thesend_packet() function hook is called by the
rttr process. Currently, thesend_packet() function reads the required state informa-
tion from the PATH database directly, and sends a transmission request to the driver
through therttr_tx(). In parallel to this transmission path, the reception of data packets
is passed throughprocess_message() which in turn callsreceive_packet(). There-
ceive_packet() function parses the incoming data packet, and directly writes the other
vehicles state information to the PATH database. Validation of the overall vehicle-to-
vehicle communications implementation on the in-vehicle PC/104 computing platform
has been conducted and detailed in [Demo Report, 2003].

References

[Tourrilhes, 2003] The Linux Wavelan Drivers,http://www.hpl.hp.com/
personal/Jean_Tourrilhes/Linux/Wavelan.html .

[Demo Report, 2003]Development and Demonstration of Automated Bus Rapid Tran-
sit and Automated Truck Operations, California PATH Technical Report, 2003.
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2 Real Time Token Ring (RTTR) for QNX 4 Data Structure Index 5

2 Real Time Token Ring (RTTR) for QNX 4 Data
Structure Index

2.1 Real Time Token Ring (RTTR) for QNX 4 Data Structures

Here are the data structures with brief descriptions:

buffer_item (Circular buffer item structure ) 6

message_t(IP messages Inter-process (I-P) messages between the orinoco
and rttr processes are a union of the various supported message types )7

packet (RTTR raw packet I-P message ) 8

packet_t (PATH communications packet definition Standard definition of
data included in a wireless communication packet ) 8

rttr_config (RTTR configuration I-P message ) 10

rttr_config_reply (RTTR configuration reply I-P message ) 11

station_t (Tokenring station structure ) 11

3 Real Time Token Ring (RTTR) for QNX 4 File Index

3.1 Real Time Token Ring (RTTR) for QNX 4 File List

Here is a list of all documented files with brief descriptions:

lib.h ??

long_comm.h ??

ori_inc.h ??

rttr.c (Main QNX code for the rttr process ) 14

rttr.h ??
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4 Real Time Token Ring (RTTR) for QNX 4 Data Structure Documentation 6

4 Real Time Token Ring (RTTR) for QNX 4 Data
Structure Documentation

4.1 buffer_item Struct Reference

Circular buffer item structure.

#include <rttr.h >

Data Fields

• chartype[10]

Packet type: tx: or rx:.

• charhour

hour of packet timestamp

• charminute

minute of packet timestamp

• charsecond

second of packet timestamp

• doublertrip

for MASTER node, the roundtrip time of the packet

• unsigned shortmillisec

millisecond of packet timestamp

• int strength

current signal strength

• packet_tpacket

Raw packet.

4.1.1 Detailed Description

Definition of structure used to store process information in the circular buffer.

The documentation for this struct was generated from the following file:

• rttr.h
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4.2 message_t Union Reference 7

4.2 message_t Union Reference

IP messages Inter-process (I-P) messages between the orinoco and rttr processes are a
union of the various supported message types.

#include <ori_inc.h >

Data Fields

• unsigned shorttype

Type of message.

• packetpack

Data packet message.

• _io_openopen

Open message to ori.

• _io_open_replyropen

Reply to open message from ori.

• _io_closeclose

Close message to ori.

• _io_close_replyrclose

Reply to close message from ori.

• rttr_configconfig

Inter-process communication configuration message.

• rttr_config_replyrconfig

Reply to inter-process communication configuration from ori.

4.2.1 Detailed Description

Note that the standard open, ropen, close, rclose message types provide support for
accessing the orinoco card through the file handle /dev/or0.

The documentation for this union was generated from the following file:

• ori_inc.h
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4.3 packet Struct Reference

RTTR raw packet I-P message.

#include <ori_inc.h >

Data Fields

• msg_ttype

Message type (RTTR_TX or RTTR_RX).

• unsigned intlen

Length of data array.

• unsigned chardata[MAX_PACKET_LEN]

Raw packet data.

4.3.1 Detailed Description

Inter-process message that contains a raw RTTR packet. The packet includes the data
plus encapsulating ethernet and RTTR headers. Note that the ethernet header is re-
quired for correct address resolution via the 802.11 wireless protocol.

The documentation for this struct was generated from the following file:

• ori_inc.h

4.4 packet_t Struct Reference

PATH communications packet definition Standard definition of data included in a wire-
less communication packet.

#include <long_comm.h >

Data Fields

• int node

Node number of packet transmitter.

• charhour

hour of tx timestamp
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4.4 packet_t Struct Reference 9

• charminute

minute of tx timestamp

• charsecond

second of tx timestamp

• unsigned shortmillisec

millisecond of tx timestamp

• unsigned longid

absolute packet ID number

• floatglobal_time

platoon global time

• floatacc_traj

Desired acceleration from profile (m/s∧2).

• float vel_traj

Desired velocity from profile (m/s).

• float velocity

Current velocity (m/s).

• floataccel

Current acceleration (m/s∧2).

• float range

Range from∗dar fusion (m).

• float rate

Relative velocity from∗dar fusion (m/s).

• float latitude

Latitude from GPS (if available).

• float longitude

Longitude from GPS (if available).

• floataltitude

Altitude from GPS (if available).
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4.5 rttr_config Struct Reference 10

• int marker_number

Last marker number passed.

• int marker_counter

Current marker count.

• unsigned shortmy_id

Current vehicle ID.

• unsigned shortmaneuver_id

Current vehicle maneuver ID.

• unsigned shortfault_mode

Current fault mode ID.

• unsigned shortmaneuver_des_1

Desired maneuver of lead vehicle.

• unsigned shortmaneuver_des_2

Desired maneuver of preceeding vehicle.

The documentation for this struct was generated from the following file:

• long_comm.h

4.5 rttr_config Struct Reference

RTTR configuration I-P message.

#include <ori_inc.h >

Data Fields

• msg_ttype

Message type (RTTR_CONFIG).

• pid_t tx_proxy

Proxy called by ori to indicate ready to transmit.

• pid_t rx_proxy

Proxy called by ori to indicate packet recieved.
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4.6 rttr_config_reply Struct Reference 11

4.5.1 Detailed Description

Inter-process message that contains I-P messaging configuration information that will
be sent to orinoco driver process.

The documentation for this struct was generated from the following file:

• ori_inc.h

4.6 rttr_config_reply Struct Reference

RTTR configuration reply I-P message.

#include <ori_inc.h >

Data Fields

• msg_ttype

Message type (RTTR_CONFIG_REPLY).

• unsigned charmac_addr[ETH_ALEN]

MAC address of orinoco card.

4.6.1 Detailed Description

Inter-process message that contains I-P communication configuration information sent
back from the orinoco driver process.

The documentation for this struct was generated from the following file:

• ori_inc.h

4.7 station_t Struct Reference

Tokenring station structure.

#include <rttr.h >

Data Fields

• int fd

File descriptor for access to orinoco driver.
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4.7 station_t Struct Reference 12

• pid_tok_tx_pid

Transmit done interrupt from ori.

• pid_tdata_rx_pid

Receive packet interrupt from ori.

• timer_ttid
• pid_twdog_pid

Watchdog timer proxy id.

• unsigned charmac_address[ETH_ALEN]

MAC address of card.

• int mode

Station mode = MASTER, SLAVE.

• int node_id

logical position in ring

• int num_node

number of nodes in ring

• int status

status of comm

• int strength

signal strength for the node

• long rotation_time

rotation time (msec)

• int fault

fault status: -1 emergency, 0 none, 1 silent

• db_clt_typ∗ pclt

rotation time (msec)

• data_bufferdbuff

rotation time (msec)

• unsigned longtx_id
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4.7 station_t Struct Reference 13

packet id of last transmitted packet

• unsigned longrx_id

packet id of last received packet

• unsigned longdropouts

no

• unsigned longoorders

no

• unsigned longtx_errors

no

• unsigned longrx_errors

no

• float rtrip_time

roundtrip time (sec)

• unsigned char∗ data

transmission data buffer

• unsigned intdata_size

size of transmitted data buffer

• timeblast_tx

time of last transmission

• packet_trx

last received packet

4.7.1 Detailed Description

Main data structure that contains rttr node and ring information.

4.7.2 Field Documentation

4.7.2.1 unsigned longstation_t::dropouts

of dropped packets

Generated on Tue Dec 16 10:13:04 2003 for Real Time Token Ring (RTTR) for QNX 4 by Doxygen

E-13



5 Real Time Token Ring (RTTR) for QNX 4 File Documentation 14

4.7.2.2 unsigned longstation_t::oorders

of packets out of order

4.7.2.3 unsigned longstation_t::rx_errors

of reception errors (hardware)

4.7.2.4 intstation_t::status

link = LINK_UP,LINK_DOWN

4.7.2.5 unsigned longstation_t::tx_errors

of transmission errors (hardware)

The documentation for this struct was generated from the following file:

• rttr.h

5 Real Time Token Ring (RTTR) for QNX 4 File Docu-
mentation

5.1 rttr.c File Reference

Main QNX code for the rttr process.

#include <stdio.h >

#include <stdlib.h >

#include <errno.h >

#include <fcntl.h >

#include <unistd.h >

#include <sys/proxy.h >

#include <sys/types.h >

#include <sys/kernel.h >

#include <sys/io_msg.h >

#include <signal.h >

#include <setjmp.h >

#include <time.h >
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5.1 rttr.c File Reference 15

#include <sys/timeb.h >

#include <linux_compat.h >

#include <linux/netdevice.h >

#include <linux/if_ether.h >

#include <local.h >

#include "lib.h"

#include "rttr.h"

Packet transmission functions

• int rttr_tx (station_t∗pst, unsigned char∗data, unsigned long data_len)

Send transmitted packet to orinoco driver.

Application specific functions

• void send_packet(station_t∗pst)

Send rttr packet over wireless link.

Protocol setup/cleanup functions

• int rttr_register(station_t∗pst)

Setup interprocess communication between orinoco and rttr processes.

• int rttr_unregister(station_t∗pst)

Cleanup RTTR process resources.

• void general_setup(station_t∗pst)

RTTR general process setup.

• void watchdog_setup(station_t∗pst)

Setup watchdog timer for RTTR process.

Functions

• void receive_packet(station_t∗pst, unsigned char∗data, unsigned int data_-
size)
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5.1 rttr.c File Reference 16

Process received rttr packets.

• void process_message(station_t∗pst, pid_t sender_id)

Inter-process message handling.

• int main(int argc, char∗argv[ ])

Main loop of the rttr process.

Variables

• int verbose= 0

5.1.1 Detailed Description

This file contains the main QNX code for the rttr process. Primarily, the functions
within provide inter-process communication support between the orinoco driver (ori)
and the real tokenring protocol code (rttr).

Author:
A. Howell

5.1.2 Function Documentation

5.1.2.1 void general_setup (station_t ∗ pst)

This function provides general setup routines for the rttr process. This includes:

• proxies for handling inter-process communication.

• logging into the PATH database and initialization of database variables.

• creation of a circular buffer for logging.

Parameters:
pst Pointer to tokenring station.

5.1.2.2 int main (int argc, char ∗ argv[ ])

This function implements the main loop of the rttr process. The process runs the initial-
ization functions, then waits in a Receive-blocked state until an inter-process message
is received.
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5.1 rttr.c File Reference 17

See also:
general_setup
rttr_register
master_setup
watchdog_setup
process_message
rttr_unregister

Returns:
EXIT_SUCCESS on successful termination, EXIT_FAILURE otherwise

5.1.2.3 void process_message (station_t ∗ pst, pid_t sender_id)

This function is the main handler for received inter-process messages. Essentially,
it handles two types of messages, watchdog timer proxies and proxies called by the
orinoco driver process.

When a watchdog timer proxy is recieved, the action taken depends on whether the
node is a MASTER or SLAVE. If the station is a MASTER node, it is used to create
the token at a fixed time interval. For a SLAVE node, it is used to detect dropped
packets, provide QoS data through signal strength, and warn the driver through the
DVI when too many packets are dropped (see FAULT_EMER and FAULT_SILENT
macros).

The inter-process proxies initiated by the orinoco driver process are used to control the
flow of transmitted/received packets between the rttr and orinoco processes. An ok_tx
proxy is received once the orinoco card is available for accepting packets to transmit,
but is currently unused by the procotol because of the small packet sizes transmitted.
The data_rx proxy is recieved to notify rttr that a packet has been received by the card,
and is available for processing. In response, the rttr process sends an inter-process
message to request the packet from the driver, and the recieved packet is returned in
the inter-process reply message.

Parameters:
pst Pointer to tokenring station.

sender_idPID of sending process.

See also:
send_packet
receive_packet

5.1.2.4 void receive_packet (station_t ∗ pst, unsigned char∗ data, unsigned int
data_size)

This function accepts the raw data transmitted over the wireless link, and updates the
appropriate PATH database variables.
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5.1 rttr.c File Reference 18

Parameters:
pst Pointer to tokenring station.

data Pointer to raw data from application code.

data_len Length of data array.

5.1.2.5 int rttr_register (station_t ∗ pst)

This function performs several initialization tasks once the rttr process is started. These
tasks include:

• opening file descriptor connection to orinoco through /dev/or0.

• initialize inter-process communication between ori and rttr processes.

Parameters:
pst Pointer to tokenring station.

Returns:
EXIT_SUCCESS on successful termination, EXIT_FAILURE otherwise

5.1.2.6 int rttr_tx ( station_t ∗ pst, unsigned char∗ data, unsigned longdata_len)

This function accepts the raw data to be transmitted from the application specific code,
encapsulates it with a 802.2 header, then passes the packet to the orinoco driver process
using QNX interprocess messaging.

Parameters:
pst Pointer to tokenring station.

data Pointer to raw data from application code.

data_len Length of data array.

Returns:
EXIT_SUCCESS on successful transmission, EXIT_FAILURE otherwise

5.1.2.7 int rttr_unregister (station_t ∗ pst)

This function cleans up the RTTR processes allocated resources. This includes writing
logging information to file and logging out of the database.

Parameters:
pst Pointer to tokenring station.

Returns:
EXIT_SUCCESS on successful termination, EXIT_FAILURE otherwise
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5.1 rttr.c File Reference 19

5.1.2.8 void send_packet (station_t ∗ pst)

This application specific function reads the packet data from the PATH database, and
sends it over the wireless link by callingrttr_tx().

Parameters:
pst Pointer to tokenring station.

See also:
rttr_tx

5.1.2.9 void watchdog_setup (station_t ∗ pst)

This function creates a watchdog timer for the rttr process.

Parameters:
pst Pointer to tokenring station.
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1 Wireless Token Ring Protocol (WTRP) for QNX

This document is a detailed manual of the Wireless Token Ring protocol (WTRP) im-
plementation for the Orinoco 802.11b wireless PCMCIA card under the QNX realtime
operating system. Only the specifics of the WTRP implementation will be covered
within this document, however the reader interested in more details about the protocol
itself is referred to the references [Berkeley WOW, 2003, Lee et. al., 2001].

The Linux orinoco cs driver was used as a basis for the device-level support of the
Orinoco PCMCIA 802.11b wireless card. Minimal changes were made to the device-
level driver source, in order to be able to track future changes in the GNU Public
License orinoco cs driver. For more information about the orinoco driver, see the QNX
4 Driver for Orinoco Wireless reference manual appended to the end of this document
and the documentation for the Linux orinoco cs driver [Tourrilhes, 2003].

1.1 Overview

The WTRP protocol has been implemented as a single process under QNX that pro-
vides a bidirectional flow of information between a device driver process for the
Orinoco wireless card and user-defined application code. Figures 1, 2, and 3 illus-
trate the implementation of the three main tasks of the WTRP protocol: configuration,
transmission, and reception.

The WTRP protocol and device driver processes interact with each other via inter-
process (I-P) messaging. The I-P messaging support under QNX is extremely efficient
and fast, so there is only minor additional overhead in both the source and executable
code. This division of protocol and device driver into separate processes has its own
advantages and disadvantages, however the main reasons for this setup are to allow for
easier debugging, development, and future porting to other operating systems.
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1.2 WTRP and Orinoco driver Inter-Process Communication 2

Figure 1: Schematic of WTRP Configuration task

For the current PATH application of automated vehicle control, the application code
effectively provides an interface to several variables within the PATH publish-subscribe
database. The simplicity of this code did not require separation into another process,
so the application code has been embedded in the wtrp process in the current version.
However, the interface between the protocol and application is well defined to allow
for future modifications towards seperate protocol and application processes.

The remainder of this section will cover the following topics in more detail: the in-
terface between the WTRP and Orinoco driver processes, the interface between the
WTRP and application code, and finally the PATH automated vehicle control applica-
tion code. For brevity throughout this document, the WTRP and Orinoco processes
will be termed wtrp and ori, respectively.

1.2 WTRP and Orinoco driver Inter-Process Communication

Although there are several methods of providing I-P messaging in QNX, the chosen
method was through the use of the file descriptor /dev/or0 due to its standardized
behavior across Unix-based systems. The specific types of I-P communication between
wtrp and ori are limited to three essentially atomic operations: configuration, packet
reception, and packet transmission.

The configuration operation runs once both of the processes have been started to share
information required for both I-P and Wireless communication. First, the ori process
is started, attaches to the /dev/or0 file descriptor through QNX system calls, and
receive-blocks waiting for a WTRP CONFIG message from wtrp. Once the wtrp pro-
cess is started, it gets the /dev/or0 file descriptor using the open() system call, and
transmits a WTRP CONFIG message to ori through /dev/or0. This message con-
tains two proxy ID’s that will be used for flow control in the other atomic operations.
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1.3 WTRP and Application Interface 5

These two proxies are called data rx proxy and ok tx proxy, and their specific
roles will be described later. The wtrp process will then receive-block waiting for a
WTRP CONFIG REPLY message from ori. Once ori processes the WTRP CONFIG
message, it replies with a WTRP CONFIG REPLY message containing the MAC ad-
dress of the orinoco card. This address is needed by the WTRP protocol to generate
appropriate packet headers.

Once the configuration operation is complete, the wtrp process is receive-blocked with
respect to the ori process until one of two events occur: a packet is received by the
Orinoco card or the Orinoco card has completed transmission of a packet over the
wireless medium. Both of these events are interrupt driven within the ori process, and
they are also communicated to the wtrp process through the two proxies mentioned
above in the configuration operation. Each of these cases will now be described in
more detail.

When a packet has been received by the Orinoco card, the ori process notifies the wtrp
process by activating the data rx proxy. Once the data rx proxy is received by
the wtrp process, it immediately requests the received packet by sending a WTRP RX
message to the ori process. The ori process in turn replies with either a WTRP RX OK
message containing the received packet, or a WTRP RX FAIL message if there was a
problem. The received packet is then processed by the WTRP through the function
process packet().

Once the Orinoco card has completed a transmission, the ori process notifies the wtrp
process that it is ready for more packets to transmit by activating the ok tx proxy.
Once the ok tx proxy is received by the wtrp process, it checks if it currently has the
token. If so, the wtrp process sends the next packet in the transmission queue within
a WTRP TX message to the ori process. If the wtrp process does not have the token
or there are no queued packets, no message is sent. The ori process in turn replies
with either a WTRP TX OK message if the packet was transmitted successfully, or a
WTRP RX FAIL message if there was a problem.

1.3 WTRP and Application Interface

The interface between WTRP and the application specific code is defined by a two
functions, app tx() and app rx(), that are deal with the transmission and recep-
tion of packets, respectively.

The function app tx() is used to transmit data using the WTRP protocol. This
function encapsulates the raw data with 802.2 ethernet and WTRP headers, then
sends the packet on to the tokenring code for transmission using the function
tok tx handler(). The tokenring code then attempts to send the packet to the
ori process. If the packet cannot be transmitted, or the WTRP node does not have the
token, then the packet is placed on a transmission queue for later transmission.

The app rx() function hook is called when a data packet has been received and
processed by the tokenring code. This function should be written by the user, with the
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1.4 PATH Vehicle-to-Vehicle Communication Application 6

input to app rx() being the raw data. Since there are no headers on the input data,
this function should at least make the raw data available to the application code in some
form.

1.4 PATH Vehicle-to-Vehicle Communication Application

An integral part of the PATH automated vehicle control system is the use of inter-
vehicle wireless communication to pass vehicle state information throughout a pla-
toon. The vehicle state information consists primarily of vehicle distance, velocity,
and acceleration measurements along with platoon coordination information, such as
fault status and operating mode. The requirements for this wireless communication are
strict; real-time operation with transmission of the state information for all vehicles
within the platoon in a period of 20 milliseconds.

The periodic transmission functionality was implemented by creating a periodic QNX
timer that activates a proxy called app proxy. When the proxy is received, the
app msg() function hook is called by the wtrp process. Currently, the app msg()
function reads the required state information from the PATH database directly, and
sends a transmission request to the tokenring code through tok tx handler(). If
the node has the token, the packet is sent to the driver through the transmit() func-
tion, otherwise it is placed on the transmission queue.

In parallel to this transmission path, the reception of data packets is passed through
the tokenring function process packet() which in turn calls app rx(). The
app rx() function parses the incoming data packet, and directly writes the other
vehicles’ state information to the PATH database.

Validation of the overall vehicle-to-vehicle communications implementation is cur-
rently ongoing. The first stage of validation involves testing WTRP on a set of laptops
to mimic a static platoon. This stage is used to determine proper timing parameters
for WTRP, and to verify the stability of the developed code over a longer “burn-in”
period. The second stage of validation will involve installation of the communications
system in the on-vehicle PC/104 computing platform. This stage will focus on perfor-
mance tests of the communications system under realistic operating conditions, and on
determining the systems robustness to multipath and other environmental interference.
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[Tourrilhes, 2003] Jean Tourrilhes, “MPL/GPL drivers
for the Wavelan IEEE/Orinoco, and others,”
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html
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2 WTRP for QNX Data Structure Index

2.1 WTRP for QNX Data Structures

Here are the data structures with brief descriptions:

ctrl packet (PATH control packet) 8

message t (IP messages Inter-process (I-P) messages between the orinoco
and wtrp processes are a union of the various supported message types) 8

packet (WTRP raw packet I-P message) 9

private (Application specific data) 10

qos struct (QOS structure) 10

station struct (Tokenring station structure) 12

wtrp config (WTRP configuration I-P message) 16

wtrp config reply (WTRP configuration reply I-P message) 17

3 WTRP for QNX File Index

3.1 WTRP for QNX File List

Here is a list of all documented files with brief descriptions:

app.c (PATH WTRP application program) 17

ctable.c (Connectivity table functions) 20

lib.c (Library of general utility functions) 22

params.c (Parameter support functions) 23

tokenring.c (Tokenring protocol implementation) 25
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4 WTRP for QNX Data Structure Documentation 8

wtrp.c (Main QNX code for the wtrp process) 35

4 WTRP for QNX Data Structure Documentation

4.1 ctrl packet Struct Reference

4.1.1 Detailed Description

Packet structure for periodic automated control message between vehicles.

Data Fields

� float timestamp

Time of packet formation.

� float dummy float [14]

Dummy floats used to match size of packet.

� int dummy int [5]

Dummy integers used to match size of packet.

� unsigned short dummy short [5]

Dummy shorts used to match size of packet.

4.2 message t Union Reference

4.2.1 Detailed Description

Note that the standard open, ropen, close, rclose message types provide support for
accessing the orinoco card through the file handle /dev/or0.

Data Fields

� unsigned short type

Type of message.
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4.3 packet Struct Reference 9

� packet pack

Data packet message.

� io open open

Open message to ori.

� io open reply ropen

Reply to open message from ori.

� io close close

Close message to ori.

� io close reply rclose

Reply to close message from ori.

� wtrp config config

Inter-process communication configuration message.

� wtrp config reply rconfig

Reply to inter-process communication configuration from ori.

4.3 packet Struct Reference

4.3.1 Detailed Description

Inter-process message that contains a raw WTRP packet. The packet includes the data
plus encapsulating ethernet and WTRP headers. Note that the ethernet header is re-
quired for correct address resolution via the 802.11 wireless protocol.

Data Fields

� msg t type

Message type (WTRP TX or WTRP RX).

� unsigned int len

Length of data array.

� unsigned char data [MAX PACKET LEN]
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Raw packet data.

4.4 private Struct Reference

4.4.1 Detailed Description

Structure to contain local data used in the application-specific code.

Data Fields

� station struct � station

WTRP station data.

� pid t tx proxy

Proxy called to initiate transmission of data packet.

� timer t tid

Timer to force periodic transmissions.

� ctrl pkt t txpacket

Local copy of pending transmission packet.

� ctrl pkt t rxpacket

Local copy of recieved packet.

� db clt typ � clt

PATH database pointer.

4.5 qos struct Struct Reference

4.5.1 Detailed Description

WTRP application-specific quality of service (QOS) (not implemented)
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4.5 qos struct Struct Reference 11

Data Fields

� unsigned long max token rotation time

Desired max.

� unsigned long max token holding time

Desired max.

� unsigned long solicit successor prob

Desired solicit successor probability.

� unsigned long max num token pass try

Desired max.

� qos struct � next

Linked list pointer to next qos struct.

� unsigned short user max num node

User defined max.

4.5.2 Field Documentation

4.5.2.1 unsigned long max num token pass try

number of token attempts to pass

4.5.2.2 unsigned long max token holding time

token holding time

4.5.2.3 unsigned long max token rotation time

token rotation time

4.5.2.4 unsigned short user max num node

number of nodes in ring
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4.6 station struct Struct Reference

4.6.1 Detailed Description

Main data structure that contains WTRP node and ring information.

Data Fields

� comm timing t comm tmg

Protocol timing structure.

� unsigned short state

Current state.

� unsigned short last state

Previous state.

� unsigned short last last state

Previous previous state :(.

� int is selfring

Flag for checking if currently in single node ring.

� int was selfring

Flag for checking if previously in single node ring.

� int was was selfring

Flag for checking if previously in single node ring.

� unsigned char TS [TOKEN ALEN]

MAC address of this node.

� unsigned char PS [TOKEN ALEN]

MAC address of the previous node.

� unsigned char NS [TOKEN ALEN]

MAC address of the next node.

� unsigned char RA [TOKEN ALEN]

Ring address of this node(MAC address of the ring owner).

� unsigned long num token pass try
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4.6 station struct Struct Reference 13

No.

� token type last tx forward token

For retransmission in case no implicit acknowledgement.

� unsigned long ul parms [NUM UL PARMS]

Protocol parameters to be read from the process command line or computed.

� int freeze my ctable

Flag used to preserve a topology information when it was stable.

QNX specific members

� int fd

File descriptor for access to orinoco driver.

� pid t ok tx pid

Transmit done interrupt from ori.

� pid t data rx pid

Receive packet interrupt from ori.

� pid t app pid

Application proxy id.

Sequence numbers.

The generation sequence number is the generation sequence number of the last
token accepted.

A station may increment genseq number when transmitting the token, but without
modification of station’s own genseq number. The same applies to sequence number

� unsigned long seq

Sequence Number of this node.

� unsigned long genseq

Generation Sequence Number of this node.

Protocol timers

� timer list solicit wait timer

Wait for solicitor timer.
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� timer list contention timer

Contention timer.

� timer list claim token timer

Claim token timer.

� timer list solicit successor timer

Solicit successor timer.

� timer list idle timer

Idle timer.

� timer list offline timer

Offline timer.

� timer list inring timer

Inring timer.

� timer list token pass timer

Token pass timer.

� timer list token holding timer

Token holding timer.

Connectivity table variables

� unsigned char my ctable [NUM TABLE HISTORY][MAX NUM -
NODE][TOKEN ALEN]

Connectivity table for this node.

� unsigned short table index

points to the table that is being built

� unsigned short my node index

index of current nodes address in connectivity table

� unsigned char other ctable [NUM MONITOR NODE][TOKEN ALEN]
Connectivity table for another ring.

� unsigned short other node index

Index of another nodes address in connectivity table (used for joining/leaving
ring).
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Ring statistics

� unsigned short num node
No.

� unsigned long last accepted
For calculation of token rotation time.

Joining variables

� int wants to join
Flag for station wanting to join ring.

� unsigned char soliciting station [TOKEN ALEN]
MAC address of soliciting station.

� unsigned char soliciting station successor [TOKEN ALEN]
MAC address of soliciting stations successor.

Transmission variables

� sk buff head out buffered queue
Data packets that are buffered for later transmission.

� sk buff head out tx queue
Packets that are ready to be transmitted, but blocked off due to hardware being
busy.

� spinlock t out queue lock
Spinlock for output transmission queue.

� sk buff � pending skb to transmit
Pointer to socket buffer that is next in line for transmission.

Timing variables

� timespec begin rotation time
Beginning of last token rotation time measurement.

� timespec begin processing time
Beginning of last processing time measurement.

� timespec begin join time
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Beginning of last join time measurement.

� timespec begin db read

Beginning of last database read time measurement.

� timespec begin db write

Beginning of last database write time measurement.

4.6.2 Field Documentation

4.6.2.1 unsigned char my ctable[NUM TABLE HISTORY][MAX NUM -
NODE][TOKEN ALEN]

This array holds information about the transmission order of the own ring, the first
entry of the my ctable is the successor of this node

4.6.2.2 unsigned short num node

of nodes in this ring

4.6.2.3 unsigned long num token pass try

of times a station tries before giving up passing token and exiting

4.6.2.4 unsigned char other ctable[NUM MONITOR NODE][TOKEN ALEN]

This array holds information about transmissions from nodes not in the stations current
ring, it is a circular buffer holding transmission records.

4.6.2.5 struct sk buff head out tx queue

(i.e. due to carrier sensing)

4.7 wtrp config Struct Reference

4.7.1 Detailed Description

Inter-process message that contains I-P messaging configuration information that will
be sent to orinoco driver process.
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Data Fields

� msg t type

Message type (WTRP CONFIG).

� pid t tx proxy

Proxy called by ori to indicate ready to transmit.

� pid t rx proxy

Proxy called by ori to indicate packet recieved.

4.8 wtrp config reply Struct Reference

4.8.1 Detailed Description

Inter-process message that contains I-P communication configuration information sent
back from the orinoco driver process.

Data Fields

� msg t type

Message type (WTRP CONFIG REPLY).

� unsigned char mac addr [ETH ALEN]

MAC address of orinoco card.

5 WTRP for QNX File Documentation

5.1 app.c File Reference

5.1.1 Detailed Description

The application program is the interface between the orinoco/wtrp communication pro-
cesses and the OS/system processes. In the case of the PATH automated control code,
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5.1 app.c File Reference 18

this application has two main tasks. The first task is to parse any recieved packet, and
to place the control packet information into the proper database variables. The second
task is to periodically (at a specified sample rate) read a set of vehicle information from
the database, form a control packet, and initiate the packets transmission through the
orinoco/wtrp processes.

While the current application code has been written for this sole purpose, it can easily
be modified to provide other functionality (such as interfacing with the standard TCP/IP
stack) through a set of function hooks. To add other functionality, the following four
functions should be overwritten:

� int app rx( unsigned char � , unsigned int): called when a WTRP data packet has
been received.

� int app msg( pid t sender id ): called when an application specific proxy re-
ceived.

� pid t app setup( struct station struct � ): setup any application specific struc-
tures/code/etc.

� int app cleanup( struct station struct � ): cleanup any application specific struc-
tures/code/etc.

To send a data packet through the orinoco/wtrp processes, use the function call app -
tx(station, data, data len) where:

� station(struct station struct � ): pointer to station structure
� data(unsigned char � ): pointer to data array to put in packet
� data len(unsigned int): length of data array

Author:
A. Howell

Defines

� #define MSEC 1E+06

Conversion from nanosec to millisec.

Functions

� int app rx (unsigned char � inpacket, unsigned long inpacket len)

WTRP reception hook.

� pid t app setup (struct station struct � pst)

Application specific initialization hook.

Generated on Thu Apr 10 08:25:42 2003 for WTRP for QNX by Doxygen

F-18



5.1 app.c File Reference 19

� int app msg (pid t sender pid)

Application-specific message processing hook.

� int app cleanup (struct station struct � pst)

Application specific clean up hook.

Variables

� private t ctrl comm

Instantiation of private structure for application specific code.

5.1.2 Function Documentation

5.1.2.1 int app cleanup (struct station struct � pst)

Clean up any application specific resources. This currently entails logging out of the
PATH database only.

Parameters:
pst pointer to WTRP station

5.1.2.2 int app msg (pid t sender pid)

Once a message has been received, this function is called to process it based on the
PID of the sender. Currently, only transmission based on receiving a proxy is imple-
mented.

Parameters:
sender pid PID of process that sent message (not used currently)

5.1.2.3 int app rx (unsigned char � inpacket, unsigned long inpacket len)

Called when a WTRP data packet has been received.

Parameters:
inpacket pointer to received packet data array
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inpacket len length of the received packet

5.1.2.4 pid t app setup (struct station struct � pst)

Runs any necessary initialization routines for the application specific code. This in-
cludes the following tasks:

� Creation of a timer/proxy pair to send control packets every 100 msec (for now).
� Logging in to the PATH database and creating database variables (if not already

there).

Parameters:
pst pointer to WTRP station

Returns:
PID of process for messages to be processed using app msg()

5.2 ctable.c File Reference

5.2.1 Detailed Description

This file provides a set of functions to support the connectivity tables (ctables) for the
WTRP protocol.

Author:
A. Howell , Jeff Ko , Duke Lee

Functions

� int search other ctable (struct station struct � station, unsigned char � address)

Search the stations other ctable for the given address.

� void update other ctable (struct station struct � station, unsigned char � packet)

Copy the source address of the given packet into the stations other ctable.

� int update my ctable (struct station struct � station, unsigned char FC, unsigned
char � RA, unsigned char � DA, unsigned char � SA, unsigned long genseq, un-
signed long seq, int forward moving, int retransmission)

Updates this nodes ctable based on the given token information.
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� void print my ctable (struct station struct � station)

Print my ctable to kernel log.

� unsigned char � next my ctable (struct station struct � station, unsigned char
� address)

Get the next address in node ctable.

� int index from my ctable (struct station struct � station, unsigned char
� address)

Get the index of the given address from the nodes ctable.

5.2.2 Function Documentation

5.2.2.1 int index from my ctable (struct station struct � station, unsigned char �

address)

Returns:
The index of the element with the address from my ctable if it exists, otherwise
return ERROR

5.2.2.2 unsigned char � next my ctable (struct station struct � station, unsigned
char � address)

Returns:
If the given address is at the end of the table or the connectivity table is unini-
tialized return this station’s address, if the given address is not in the table return
NULL, otherwise return the next address.

5.2.2.3 int search other ctable (struct station struct � station, unsigned char �

address)

Returns:
TRUE if the address is in the other ctable, FALSE otherwise
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5.2.2.4 int update my ctable (struct station struct � station, unsigned char FC,
unsigned char � RA, unsigned char � DA, unsigned char � SA, unsigned long
genseq, unsigned long seq, int forward moving, int retransmission)

Returns:
ERROR if loop in ctable detected, RESET if token is not forward moving and a
claim token message is received, and SUCCESS otherwise.

5.3 lib.c File Reference

5.3.1 Detailed Description

This file contains a set of general utility functions used by the protocol code.

Author:
Duke Lee , Mustafa Ergen , Jeff Ko

Integer encoding/decoding functions

� void encode ushort (unsigned char � bytes, unsigned short n)
� void encode ulong (unsigned char � bytes, unsigned long n)
� unsigned short decode ushort (const unsigned char � bytes)
� unsigned long decode ulong (const unsigned char � bytes)

Randomization functions

� unsigned long net random (void)
� void net srandom (unsigned long entropy)
� unsigned long tok random (unsigned char � addr)
� int flip biased coin (int bias, unsigned long random)

Address related functions

� int is broadcast addr (unsigned char � addr)
� void printaddr (unsigned char � addr)
� void printaddr (unsigned char � addr)
� void copyaddr (unsigned char � dest, unsigned char � src)
� void makenulladdr (unsigned char � addr)
� void initaddr (unsigned char � addr)
� int is null addr (unsigned char � addr)
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� void sprintaddr (unsigned char � buffer, unsigned char � addr)
� int prioaddr (unsigned char � first, unsigned char � second)
� void make broadcast (unsigned char � addr)

Math functions

� unsigned long diff (unsigned long a, unsigned long b)
� int is lessseq (unsigned long a, unsigned long b)
� int is leqseq (unsigned long a, unsigned long b)
� unsigned long next seq (unsigned long seq)

WTRP header printing/debugging functions

� void get header info (struct station struct � station, unsigned char � inpacket,
unsigned char � FC, unsigned char � � pRA, unsigned char � � pDA, unsigned
char � � pSA, unsigned char � � pNS, unsigned short � pnum node, unsigned long

� pseq, unsigned long � pgenseq, unsigned short � pnetwork proto, unsigned char
� pusing checksum, unsigned int � pchecksum)

Print WTRP header information for both control and data packets given a packet with
only WTRP encapsulation.

� void validate eth header (struct station struct � station, unsigned char � eth)

Verify correctness of 802.2 ethernet header.

� void DEBUG HEADER (struct net device � dev, unsigned char � outpacket, int
size)

Print WTRP header information given a raw packet (ETH+WTRP headers).

Functions

� int is ownpacket (struct station struct � station, struct sk buff � skb)
� void printstate (struct station struct � station)

5.4 params.c File Reference

5.4.1 Detailed Description

This file provides a number of support functions that automatically compute protocol
parameters based on a user-definable subset.
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Author:
A. Howell , Duke Lee , Mustafa Ergen , Ruchira Datta

Parameter randomization functions

All randomization functions use the station address combined with the current clock
time as the seed.

� unsigned long randomize token pass timer (struct station struct � station)
� unsigned long randomize claim token timer (struct station struct � station)
� unsigned long randomize solicit successor timer (struct station struct

� station)
� unsigned long randomize idle timer (struct station struct � station)
� unsigned long randomize inring timer (struct station struct � station)
� unsigned long randomize offline timer (struct station struct � station)

Parameter bounding functions

� unsigned long upper claim token tx time (struct station struct � station)
� unsigned long upper proc time (struct station struct � station, unsigned char

� addr)
� unsigned long upper token holding time (struct station struct � station, un-

signed char � addr)
� unsigned long upper total token holding time (struct station struct � station)
� unsigned long upper total management time (struct station struct � station)
� unsigned long max token pass time (struct station struct � station)
� unsigned long min token pass time (struct station struct � station)
� unsigned long MTRT (struct station struct � station)
� unsigned long max idle time (struct station struct � station)
� unsigned long max solicit successor time (struct station struct � station)
� unsigned long upper bw (struct station struct � station)
� unsigned long lower bw (struct station struct � station)

Parameter calculation functions

� unsigned long TRT (struct station struct � station)
� unsigned long inring time (struct station struct � station)
� unsigned long offline time (struct station struct � station)
� unsigned long contention time (struct station struct � station)
� unsigned long claim token time (struct station struct � station)
� unsigned long solicit interval (struct station struct � station)
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Defines

� #define MAX NUM ERRORS 2

Functions

� unsigned long round ul parm value (unsigned long value, int i)

Round parameters to the jiffy.

� int wtrp is ul parm set by user (int i)

Determine if the parameter the parameter is user-definable.

� void calculate params (struct station struct � station)

Compute all non-configurable parameters based on all current parameter values.

� void get params (struct station struct � station)

Compute, print, and check all parameters.

� void check params (struct station struct � station)
� void print params (struct station struct � station)

Print all parameters to kernel log.

5.4.2 Function Documentation

5.4.2.1 int wtrp is ul parm set by user (int i)

Parameters:
i Parameter index in wtrp ul.

Returns:
TRUE if the parameter can be set by the user, FALSE otherwise.

5.5 tokenring.c File Reference

5.5.1 Detailed Description

This file is the actual tokenring protocol implementation. The code is a modified ver-
sion of a hybrid system model developed using Teja software tool.
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Some notes about the protocol:

� Genseq and seq are initialized to be 0, and 0 is reserved to be the initial state.
� Token generation is equivalent to the station receiving a token.
� The genseq and seq numbers pertain to the last token accepted, NOT the genseq

and seq number of the last token transmitted.
� Implicit acknowledgements are any transmission that has the ring address of the

current node, or ring address of any node in connectivity table.

Author:
A. Howell , Duke Lee , Ruchira Datta

Station transmission queue functions

� void clean tx queue (struct station struct � station)

Remove all tokens from the tx queue.

� void station tx enqueue (struct station struct � station, struct sk buff � skb)

Append skb to end of tx queue.

� sk buff � station tx dequeue (struct station struct � station)

Pull first skb from tx queue.

� void station buffered enqueue (struct station struct � station, struct sk buff � skb,
int len)

Append skb to end of buffered tx queue.

� sk buff � station buffered dequeue (struct station struct � station)

Pull first skb from buffered tx queue.

� void transmit tx queue (struct station struct � station)

Transmit packet in tx queue.

� void transmit buffered queue (struct station struct � station)

Transmit packet in buffered tx queue.

Timer functions

All state-specific timer functions assume that the station is in the appropriate state (i.e.

in idle state to call reset idle timers).
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� void reset idle timers (struct station struct � station, unsigned char � RA, un-
signed char � SA, unsigned char � DA, int addressed to me)

Reset all timers associated with idle state.

� void delete idle timers (struct station struct � station)

Delete all timers for the idle state.

� void delete have token timers (struct station struct � station)

Delete all timers for have token state.

� void delete floating timers (struct station struct � station)

Delete all timers for floating state.

� void delete offline timers (struct station struct � station)

Delete all timers for offline state.

� void delete solicit timers (struct station struct � station)

Delete all timers for soliciting state.

� void delete monitoring timers (struct station struct � station)

Delete all timers for monitoring state.

� void delete joining timers (struct station struct � station)

Delete all timers for joining state.

� void delete state timer (struct station struct � station)

Delete all timers for current state.

State transition functions

All is � functions return true if the station is in the specified state, while all was �

functions return true if the station was just in the specified state.

For all go � functions the procedure is to update station parameters, attach the new
state timers, and transition to the new state. Furthermore, it is assumed that all station
state-timers are detached before being called.

� int is floating (struct station struct � station)

Determine if the station is in the floating state.

� int is monitoring (struct station struct � station)

Determine if the station is in the monitoring state.
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� int is idle (struct station struct � station)

Determine if the station is in the idle state.

� int is soliciting (struct station struct � station)

Determine if the station is in the soliciting state.

� int was soliciting (struct station struct � station)

Determine if the station was just in the soliciting state.

� int was selfring (struct station struct � station)

Determine if the station was just in a self ring.

� int is joining (struct station struct � station)

Determine if the station is in the joining state.

� int was joining (struct station struct � station)

Determine if the station was just in the joining state.

� int is offline (struct station struct � station)

Determine if the station is in the offline state.

� void record states (struct station struct � station)

Record all prior state information.

� void go floating (struct station struct � station)

Transition to floating state.

� void go idle (struct station struct � station)

Transition to idle state.

� void go soliciting (struct station struct � station)

Transition to soliciting state.

� void go monitoring (struct station struct � station)

Transition to monitoring state.

� void go have token (struct station struct � station)

Transition to have token state.

� void go joining (struct station struct � station)

Transition to joining state.
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� void go offline (struct station struct � station)

Transition to offline state.

Transmission utilities.

� int tx normal token (struct station struct � station, unsigned char � RA, unsigned
char � DA, unsigned char � SA, unsigned short num node, unsigned long genseq,
unsigned long seq)

Transmit normal token control packet.

� int tx token deleted (struct station struct � station, unsigned char � RA, unsigned
char � SA, unsigned char � DA)

Transmit token deleted packet.

� int tx set successor (struct station struct � station, unsigned char � RA, unsigned
char � DA, unsigned char � SA, unsigned char � NS)

Transmit set successor packet.

� int tx set predecessor (struct station struct � station, unsigned char � RA, un-
signed char � DA, unsigned char � SA, unsigned short num node, long genseq,
long seq)

Transmit set predecessor packet.

� int tx solicit successor (struct station struct � station, unsigned char � RA, un-
signed char � SA, unsigned char num node, unsigned char � NS)

Transmit solicit successor packet.

� int tx claim token (struct station struct � station, unsigned char � RA, unsigned
char � SA)

Transmit claim token packet.

Handler functions

� void offline timer handler (struct station struct � station)

Handle offline timer expiration.

� void claim token handler (struct station struct � station)

Handle claim token timer expiration.

� void solicit successor handler (struct station struct � station)
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Handle solicit successor timer expiration.

� void solicit wait handler (struct station struct � station)

Handle solicit wait timer expiration.

� void token holding timer handler (struct station struct � station)

Handle token holding timer expiration.

� void idle timer handler (struct station struct � station)

Handle idle timer expiration.

� void inring timer handler (struct station struct � station)

Handle inring timer expiration.

� int tok tx handler (struct station struct � station, struct sk buff � skb)

Handle request from wtrp process code to transmit data.

� void token pass timer handler (struct station struct � station)

Handle token pass timer expiration.

� void contention timer handler (struct station struct � station)

Handle contention timer expiration.

� void tx done handler (struct station struct � station)

Handle completion of packet transmission to the driver process.

Defines

� #define NO VERSION
� #define TOKENRING C
� #define jiffies 0

Functions

� void set ethernet header (unsigned char � SA, unsigned char � � dptrptr)

Fill the ethernet header correctly for the WTRP protocol (correct addresses, etc.).

� void enforce no timer pending (struct station struct � station)

ASSERT that no timers of this station is pending.

� void check skb (struct sk buff � skb)
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Checks conditions on skb to detect any errors.

� void check station conditions (struct station struct � station)

Checks conditions on station structure to detect any errors.

� int is have token (struct station struct � station)

Determine if the node has the token.

� int is selfring (struct station struct � station)

Determine if the node is a self ring.

� void set station offline (struct station struct � station)

Set station settings for offline state.

� unsigned long next genseq (struct station struct � station)

Return the generation sequence number of the transmitted token.

� unsigned long updated num node (struct station struct � station, unsigned long
num node, unsigned long seq)

Return the estimated number of nodes.

� int is implicitack (struct station struct � station, unsigned char � RA)

Determine if received token is implicit acknowledgement.

� void make selfring (struct station struct � station)

Create a one node ring.

� int decide to solicit successor (struct station struct � station)

Make a decision to solicit successors based on token rotation time.

� void process packet (struct station struct � station, unsigned char � inpacket,
unsigned int inpacket len)

Process a packet received by the wtrp process.

� void init station (struct station struct � station, unsigned char � addr)

Initialize the station structure.

5.5.2 Function Documentation
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5.5.2.1 void check skb (struct sk buff � skb)

Checks conditions on skb to detect any errors.

5.5.2.2 void check station conditions (struct station struct � station)

Checks conditions on station structure to detect any errors.

5.5.2.3 void claim token handler (struct station struct � station)

Indicates there is no station found on the medium. The token is claimed, and the station
transitions to the idle state.

5.5.2.4 void clean tx queue (struct station struct � station)

Remove all tokens from the transmission queue.

5.5.2.5 void contention timer handler (struct station struct � station)

Indicates that the node did not receive a set predecessor packet from the soliciting
node during the contention period. It is assumed that the node has lost the contention
process, so transition to the floating state.

5.5.2.6 void idle timer handler (struct station struct � station)

Indicates there is no activity on the medium (token must be lost), so claim a token by
creating a new normal token and become a new ring owner.

5.5.2.7 void inring timer handler (struct station struct � station)

Indicates that there is activity in the ring (idle timer did not expires), but the node has
not received a token for a while. In this case, kick out of the ring and transition to the
floating state.

5.5.2.8 int is have token (struct station struct � station)

Returns:
One if the station has the token, zero otherwise.

5.5.2.9 int is implicitack (struct station struct � station, unsigned char � RA)
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Returns:
TRUE if RA field of received token corresponds to implicit acknowledgement for
the station.

5.5.2.10 int is selfring (struct station struct � station)

Returns:
One if the station is a self ring, zero otherwise.

5.5.2.11 unsigned long next genseq (struct station struct � station)

Returns:
If owner of the token, 1 + genseq of station is returned. Otherwise, the returned
genseq number is the same as the station.

5.5.2.12 void offline timer handler (struct station struct � station)

Indicates the node is able to join a ring again.

5.5.2.13 void set station offline (struct station struct � station)

Set station settings for offline state by initializing connectivity tables and zeroing ring
statistics.

5.5.2.14 void solicit successor handler (struct station struct � station)

Indicates that the station has the token and is willing to invite other nodes to join its ring.
It is also called directly to solicit successors. A solicit successor packet is transmitted
and the station transitions to the soliciting state.

5.5.2.15 void solicit wait handler (struct station struct � station)

Indicates the station was not successful in soliciting, If the station is not a self ring,
then pass the token to the successor and transition to the monitoring state. If the node
is a self ring, transition to the idle state.
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5.5.2.16 struct sk buff � station buffered dequeue (struct station struct � station)

Pull the first socket buffer from the buffered transmission queue.

Returns:
Pointer to the pulled skb.

5.5.2.17 void station buffered enqueue (struct station struct � station, struct sk -
buff � skb, int len)

Append socket buffer to the end of the buffered transmission queue.

5.5.2.18 struct sk buff � station tx dequeue (struct station struct � station)

Pull the first socket buffer from the transmission queue.

Returns:
Pointer to the pulled skb.

5.5.2.19 void station tx enqueue (struct station struct � station, struct sk buff �

skb)

Append the socket buffer to the end of the transmission queue.

5.5.2.20 int tok tx handler (struct station struct � station, struct sk buff � skb)

If the node has the token, any queued packets are sent first, followed by the input skb.
If the node does not have the token, the input skb is put on the buffered transmission
queue.

5.5.2.21 void token holding timer handler (struct station struct � station)

Indicates the allotted token transmission time has passed before being able to transmit
all the data, so pass the token and transition to the idle state.

5.5.2.22 void token pass timer handler (struct station struct � station)

Indicates that no implicit acknowledgement was received after sending forward moving
token. It is assumed that the token is lost, and the last token is retransmitted. If the
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successor is unresponsive for two consecutive retransmissions, then transmit the token
to the next nodes in the ring. Finally, if the node is unsuccessful in passing the token
for num token pass try times, give up on passing token and go offline.

5.5.2.23 void transmit buffered queue (struct station struct � station)

Send latest packet in transmission queue to driver using the wtrp process transmit hook.
Assumes that out buffered queue is not empty, and out tx queue is empty.

5.5.2.24 void transmit tx queue (struct station struct � station)

Send latest packet in transmission queue to driver using the wtrp process transmit hook.
Assumes that out tx queue is not empty.

5.5.2.25 void tx done handler (struct station struct � station)

If the node has the token, continue to transmit if there are more to be transmitted in
out tx queue.

5.5.2.26 unsigned long updated num node (struct station struct � station, un-
signed long num node, unsigned long seq)

Returns:
If owner of the ring, recalculate the number of nodes by substracting the sequence
number of this rotation and last accepted token, otherwise return the num node
reported by the previous node.

5.6 wtrp.c File Reference

5.6.1 Detailed Description

This file contains the main QNX code for the wtrp process. Primarily, the functions
within provide inter-process communication support between the orinoco driver (ori)
and the real tokenring protocol code (in tokenring.c).

Author:
A. Howell

Timing analysis functions

� void begin timing record (struct timespec � begin)
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Begin a timing record.

� void end timing record (struct timespec � begin, stats t � pstat)

End a timing record, and update timing stats.

Packet transmission functions

� int app tx (struct station struct � station, unsigned char � data, unsigned long
data len)

Transmission request from application code.

� int transmit (struct station struct � pst, struct sk buff � skb)

Send transmitted packet to orinoco driver.

Protocol setup/cleanup functions

� int wtrp register (station t � pst)

Setup WTRP process upon creation.

� int wtrp unregister (station t � pst)

Cleanup WTRP process resources.

� void proxy setup (station t � pst)

Setup proxies associated with WTRP process.

User-definable protocol parameters

Default user definable protocol parameters

� long processing time = 22
� long max num token pass try = 3
� long solicit successor prob = 1
� long max token holding time = 28
� long transmission rate = 70190
� long max token rotation time = 307
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Functions

� int wtrp set ul parm (struct station struct � station, int i, unsigned long parm)

Set a user-definable WTRP parameter.

� int is destined for me (int addressed to me, unsigned char � DA)

Checks if packet destination is addressed to this node.

� void notify mac busy (struct station struct � station)

Not used.

� void notify mac available (struct station struct � station)

Not used.

� void process message (station t � pst, pid t sender id)

Inter-process message handling.

� int main (int argc, char � argv[ ])

Main loop of the WTRP process.

5.6.2 Function Documentation

5.6.2.1 int app tx (struct station struct � station, unsigned char � data, unsigned
long data len)

This function accepts the raw data to be transmitted from the application specific code,
encapsulates it with 802.2 and WTRP DATA headers, then passes the resulting socket
buffer to the tokenring transmission handler.

Parameters:
station Pointer to tokenring station.

data Pointer to raw data from application code.

data len Length of data array.

Returns:
Return value of tok tx handler.
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5.6.2.2 void begin timing record (struct timespec � begin)

This function records the beginning of a timing record is received

5.6.2.3 void end timing record (struct timespec � begin, stats t � pstat)

This function records the end of a timing record, and update the appropriate stats using
update stats()

Parameters:
pstat Pointer to comm tmg stat to update

begin Output of begin timing record

5.6.2.4 int is destined for me (int addressed to me, unsigned char � DA)

This function determines if a packet is addressed for the current station (seems uneces-
sary).

Returns:
One if true

5.6.2.5 int main (int argc, char � argv[ ])

This function implements the main loop of the WTRP process. The process runs the
initialization functions, then waits in a Receive-blocked state until an inter-process
message is received.

See also:
proxy setup , wtrp register , app setup , process message , wtrp unregister

5.6.2.6 void notify mac available (struct station struct � station)

Tell the physical layer that the datalink layer is ready (not used)

5.6.2.7 void notify mac busy (struct station struct � station)

Tell the physical layer that the datalink layer is busy (not used)

Generated on Thu Apr 10 08:25:42 2003 for WTRP for QNX by Doxygen

F-38



5.6 wtrp.c File Reference 39

5.6.2.8 void process message (station t � pst, pid t sender id)

This function is the main handler for recieved inter-process messages. Essentially, it
handles two types of messages, timer proxies, application specific proxies, and proxies
called by the orinoco driver process.

When a timer proxy is recieved, the timers associated function handler is called.

When an application specific proxy is recieved, the hook app msg() is called to handle
the event.

Finally, the proxies from the driver process are used to control the flow of transmit-
ted/received packets between wtrp and the orinoco driver. An ok tx proxy is received
once the orinoco card is available for accepting packets to transmit. The tx done -
handler is called to notify wtrp of this event. The data rx proxy is recieved to notify
wtrp that a packet has been received by the card, and is available for processing. In
response, the wtrp process sends an inter-process message to request the packet from
the driver, and the recieved packet is passed to the wtrp process, and subsequently the
tokenring processing, in the inter-process reply message.

Parameters:
pst Pointer to tokenring station.

sender id PID of sending process.

See also:
process packet , tx done handler

5.6.2.9 void proxy setup (station t � pst)

This function attaches a set of proxies used by the WTRP process. This includes a set
of proxies attached to protocol-related timers and proxies for handling inter-process
communication.

Parameters:
pst Pointer to tokenring station.

5.6.2.10 int transmit (struct station struct � pst, struct sk buff � skb)

This function passes transmitted packet to the orinoco driver process using QNX inter-
process messaging. Processing time is also estimated.

Parameters:
pst Pointer to tokenring station.
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skb Pointer to socket buffer to be transmitted.

Returns:
Returns one on failure to transmit for any reason, and zero for success.

5.6.2.11 int wtrp register (station t � pst)

This function performs several initialization tasks once the wtrp process is started.
These tasks include:

� Set user-definable parameters.
� Initialize inter-process communication between ori and wtrp processes.
� Initialize tokenring station structure.

Parameters:
pst Pointer to tokenring station.

See also:
wtrp set ul parm , init station

5.6.2.12 int wtrp set ul parm (struct station struct � station, int i, unsigned long
parm)

This function sets a user-definable WTRP protocol parameter in the given station
struct.

Parameters:
station Pointer to tokenring station.

i Index of parameter in ul parms array.

parm Desired value of the parameter.

See also:
wtrp ul , station struct

5.6.2.13 int wtrp unregister (station t � pst)

This function cleans up the WTRP processes allocated resources. This includes writing
timing information to file and removing allocated timers.

Parameters:
pst Pointer to tokenring station.
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5.6.3 Variable Documentation

5.6.3.1 long max num token pass try = 3

Max. number of tries to pass token.

5.6.3.2 long max token holding time = 28

Max. token holding time (jiffies).

5.6.3.3 long max token rotation time = 307

Max. token rotation time (jiffies).

5.6.3.4 long processing time = 22

Processing time (jiffies).

5.6.3.5 long solicit successor prob = 1

Probability of soliciting a successor.

5.6.3.6 long transmission rate = 70190

Transmission rate (bytes/jiffy).
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decide to solicit successor

tokenring.c, 31
decode ulong

lib.c, 22
decode ushort

lib.c, 22
delete floating timers

tokenring.c, 26
delete have token timers

tokenring.c, 26
delete idle timers

tokenring.c, 26
delete joining timers

tokenring.c, 27
delete monitoring timers

tokenring.c, 27
delete offline timers

tokenring.c, 27
delete solicit timers

tokenring.c, 27
delete state timer

tokenring.c, 27
diff

lib.c, 22
dummy float

ctrl packet, 8
dummy int

ctrl packet, 8
dummy short

ctrl packet, 8

encode ulong
lib.c, 22

encode ushort
lib.c, 22

end timing record
wtrp.c, 37

enforce no timer pending
tokenring.c, 30

fd

station struct, 12
flip biased coin

lib.c, 22
freeze my ctable

station struct, 12

genseq
station struct, 13

get header info
lib.c, 22

get params
params.c, 24

go floating
tokenring.c, 28

go have token
tokenring.c, 28

go idle
tokenring.c, 28

go joining
tokenring.c, 28

go monitoring
tokenring.c, 28

go offline
tokenring.c, 28

go soliciting
tokenring.c, 28

idle timer
station struct, 13

idle timer handler
tokenring.c, 32

index from my ctable
ctable.c, 20

init station
tokenring.c, 31

initaddr
lib.c, 22

inring time
params.c, 24

inring timer
station struct, 14

inring timer handler
tokenring.c, 32

is broadcast addr
lib.c, 22

is destined for me
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wtrp.c, 37
is floating

tokenring.c, 27
is have token

tokenring.c, 32
is idle

tokenring.c, 27
is implicitack

tokenring.c, 32
is joining

tokenring.c, 28
is leqseq

lib.c, 22
is lessseq

lib.c, 22
is monitoring

tokenring.c, 27
is null addr

lib.c, 22
is offline

tokenring.c, 28
is ownpacket

lib.c, 23
is selfring

station struct, 12
tokenring.c, 32

is soliciting
tokenring.c, 27

jiffies
tokenring.c, 30

last accepted
station struct, 14

last last state
station struct, 12

last state
station struct, 12

last tx forward token
station struct, 12

len
packet, 9

lib.c, 21
printaddr, 22

copyaddr, 22
DEBUG HEADER, 23

decode ulong, 22
decode ushort, 22
diff, 22
encode ulong, 22
encode ushort, 22
flip biased coin, 22
get header info, 22
initaddr, 22
is broadcast addr, 22
is leqseq, 22
is lessseq, 22
is null addr, 22
is ownpacket, 23
make broadcast, 22
makenulladdr, 22
net random, 22
net srandom, 22
next seq, 22
printaddr, 22
printstate, 23
prioaddr, 22
sprintaddr, 22
tok random, 22
validate eth header, 23

lower bw
params.c, 24

mac addr
wtrp config reply, 17

main
wtrp.c, 37

make broadcast
lib.c, 22

make selfring
tokenring.c, 31

makenulladdr
lib.c, 22

max idle time
params.c, 24

MAX NUM ERRORS
params.c, 24

max num token pass try
qos struct, 11
wtrp.c, 40

max solicit successor time
params.c, 24
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max token holding time
qos struct, 11
wtrp.c, 40

max token pass time
params.c, 24

max token rotation time
qos struct, 11
wtrp.c, 40

message t, 8
close, 8
config, 9
open, 8
pack, 8
rclose, 8
rconfig, 9
ropen, 8
type, 8

min token pass time
params.c, 24

MSEC
app.c, 18

MTRT
params.c, 24

my ctable
station struct, 15

my node index
station struct, 14

net random
lib.c, 22

net srandom
lib.c, 22

next
qos struct, 11

next genseq
tokenring.c, 32

next my ctable
ctable.c, 21

next seq
lib.c, 22

notify mac available
wtrp.c, 38

notify mac busy
wtrp.c, 38

NS
station struct, 12

num node
station struct, 15

num token pass try
station struct, 16

offline time
params.c, 24

offline timer
station struct, 13

offline timer handler
tokenring.c, 33

ok tx pid
station struct, 13

open
message t, 8

other ctable
station struct, 16

other node index
station struct, 14

out buffered queue
station struct, 15

out queue lock
station struct, 15

out tx queue
station struct, 16

pack
message t, 8

packet, 9
data, 9
len, 9
type, 9

params.c, 23
calculate params, 24
check params, 25
claim token time, 24
contention time, 24
get params, 24
inring time, 24
lower bw, 24
max idle time, 24
MAX NUM ERRORS, 24
max solicit successor time, 24
max token pass time, 24
min token pass time, 24
MTRT, 24
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offline time, 24
print params, 25
randomize claim token timer, 23
randomize idle timer, 23
randomize inring timer, 23
randomize offline timer, 23
randomize solicit successor -

timer, 23
randomize token pass timer, 23
round ul parm value, 24
solicit interval, 24
TRT, 24
upper bw, 24
upper claim token tx time, 24
upper proc time, 24
upper token holding time, 24
upper total management time,

24
upper total token holding time,

24
wtrp is ul parm set by user, 25

pending skb to transmit
station struct, 15

print my ctable
ctable.c, 20

print params
params.c, 25

printaddr
lib.c, 22

printstate
lib.c, 23

prioaddr
lib.c, 22

private, 9
clt, 10
rxpacket, 10
station, 10
tid, 10
tx proxy, 10
txpacket, 10

process message
wtrp.c, 38

process packet
tokenring.c, 31

processing time
wtrp.c, 40

proxy setup
wtrp.c, 38

PS
station struct, 12

qos struct, 10
max num token pass try, 11
max token holding time, 11
max token rotation time, 11
next, 11
solicit successor prob, 10
user max num node, 11

RA
station struct, 12

randomize claim token timer
params.c, 23

randomize idle timer
params.c, 23

randomize inring timer
params.c, 23

randomize offline timer
params.c, 23

randomize solicit successor timer
params.c, 23

randomize token pass timer
params.c, 23

rclose
message t, 8

rconfig
message t, 9

record states
tokenring.c, 28

reset idle timers
tokenring.c, 26

ropen
message t, 8

round ul parm value
params.c, 24

rx proxy
wtrp config, 16

rxpacket
private, 10

search other ctable
ctable.c, 21
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seq
station struct, 13

set ethernet header
tokenring.c, 30

set station offline
tokenring.c, 33

solicit interval
params.c, 24

solicit successor handler
tokenring.c, 33

solicit successor prob
qos struct, 10
wtrp.c, 40

solicit successor timer
station struct, 13

solicit wait handler
tokenring.c, 33

solicit wait timer
station struct, 13

soliciting station
station struct, 14

soliciting station successor
station struct, 15

sprintaddr
lib.c, 22

state
station struct, 11

station
private, 10

station buffered dequeue
tokenring.c, 33

station buffered enqueue
tokenring.c, 33

station struct, 11
app pid, 13
begin db read, 15
begin db write, 15
begin join time, 15
begin processing time, 15
begin rotation time, 15
claim token timer, 13
comm tmg, 11
contention timer, 13
data rx pid, 13
fd, 12
freeze my ctable, 12

genseq, 13
idle timer, 13
inring timer, 14
is selfring, 12
last accepted, 14
last last state, 12
last state, 12
last tx forward token, 12
my ctable, 15
my node index, 14
NS, 12
num node, 15
num token pass try, 16
offline timer, 13
ok tx pid, 13
other ctable, 16
other node index, 14
out buffered queue, 15
out queue lock, 15
out tx queue, 16
pending skb to transmit, 15
PS, 12
RA, 12
seq, 13
solicit successor timer, 13
solicit wait timer, 13
soliciting station, 14
soliciting station successor, 15
state, 11
table index, 14
token holding timer, 14
token pass timer, 14
TS, 12
ul parms, 12
wants to join, 14
was selfring, 12
was was selfring, 12

station tx dequeue
tokenring.c, 33

station tx enqueue
tokenring.c, 34

table index
station struct, 14

tid
private, 10
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timestamp
ctrl packet, 8

tok random
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tok tx handler
tokenring.c, 34

token holding timer
station struct, 14

token holding timer handler
tokenring.c, 34

token pass timer
station struct, 14

token pass timer handler
tokenring.c, 34

tokenring.c, 25
NO VERSION , 30

check skb, 31
check station conditions, 31
claim token handler, 31
clean tx queue, 31
contention timer handler, 32
decide to solicit successor, 31
delete floating timers, 26
delete have token timers, 26
delete idle timers, 26
delete joining timers, 27
delete monitoring timers, 27
delete offline timers, 27
delete solicit timers, 27
delete state timer, 27
enforce no timer pending, 30
go floating, 28
go have token, 28
go idle, 28
go joining, 28
go monitoring, 28
go offline, 28
go soliciting, 28
idle timer handler, 32
init station, 31
inring timer handler, 32
is floating, 27
is have token, 32
is idle, 27
is implicitack, 32
is joining, 28

is monitoring, 27
is offline, 28
is selfring, 32
is soliciting, 27
jiffies, 30
make selfring, 31
next genseq, 32
offline timer handler, 33
process packet, 31
record states, 28
reset idle timers, 26
set ethernet header, 30
set station offline, 33
solicit successor handler, 33
solicit wait handler, 33
station buffered dequeue, 33
station buffered enqueue, 33
station tx dequeue, 33
station tx enqueue, 34
tok tx handler, 34
token holding timer handler, 34
token pass timer handler, 34
TOKENRING C, 30
transmit buffered queue, 34
transmit tx queue, 34
tx claim token, 29
tx done handler, 34
tx normal token, 28
tx set predecessor, 29
tx set successor, 29
tx solicit successor, 29
tx token deleted, 29
updated num node, 35
was joining, 28
was selfring, 27
was soliciting, 27

TOKENRING C
tokenring.c, 30

transmission rate
wtrp.c, 41

transmit
wtrp.c, 39

transmit buffered queue
tokenring.c, 34

transmit tx queue
tokenring.c, 34
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TRT
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tx done handler
tokenring.c, 34
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tx solicit successor
tokenring.c, 29
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tokenring.c, 29
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private, 10
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message t, 8
packet, 9
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ctable.c, 21

update other ctable
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updated num node
tokenring.c, 35

upper bw
params.c, 24

upper claim token tx time
params.c, 24

upper proc time
params.c, 24

upper token holding time
params.c, 24

upper total management time

params.c, 24
upper total token holding time
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user max num node

qos struct, 11

validate eth header
lib.c, 23

wants to join
station struct, 14

was joining
tokenring.c, 28

was selfring
station struct, 12
tokenring.c, 27

was soliciting
tokenring.c, 27

was was selfring
station struct, 12

wtrp.c, 35
app tx, 37
begin timing record, 37
end timing record, 37
is destined for me, 37
main, 37
max num token pass try, 40
max token holding time, 40
max token rotation time, 40
notify mac available, 38
notify mac busy, 38
process message, 38
processing time, 40
proxy setup, 38
solicit successor prob, 40
transmission rate, 41
transmit, 39
wtrp register, 39
wtrp set ul parm, 39
wtrp unregister, 40

wtrp config, 16
rx proxy, 16
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CONTENTS 1

Contents

1 QNX4 driver for Orinoco wireless Data Structure Index 1

2 QNX4 driver for Orinoco wireless File Index 1

3 QNX4 driver for Orinoco wireless Data Structure Documentation 3

4 QNX4 driver for Orinoco wireless File Documentation 5

1 QNX4 driver for Orinoco wireless Data Structure In-
dex

1.1 QNX4 driver for Orinoco wireless Data Structures

Here are the data structures with brief descriptions:

orinoco private (Linux orinoco private structure was used with the addi-
tion of a few QNX specific fields for inter-process communication) 3

2 QNX4 driver for Orinoco wireless File Index

2.1 QNX4 driver for Orinoco wireless File List

Here is a list of all documented files with brief descriptions:

etherdevice.h ??

hermes.c(Linux Hermes driver core modified for QNX4) 5

hermes.h(Header file for Hermes driver core) 7

hermesqnx.c (Replacements for in-line functions in original Linux code) 12

hermes rid.h (Defines for Hermes Record IDs) 12

ieee80211.h(IEEE 802.11 frame constants) 16

if.h ??

if arp.h ??
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2.1 QNX4 driver for Orinoco wireless File List 2

if ether.h ??

if packet.h ??

linux compat.c (System functions available on Linux, not available on
QNX) 18

linux compat.h (This header file defines a set of macros which allow for
some linux-specific functions,types,etc) 19

net init.c (Net init.c: Initialization for network devices, This version i s
slightly modifed to compile on QNX4 by Sue Dickey) 22

netdev.c(Routines from Linux netdevice.h and net/core/dev.c needed by
the orinoco and wtrp drivers) 24

netdevice.h ??

ori.c (QNX 4 driver for Orinoco card) 25

ori.h (Ori.h – Header file for ori.c, Orinoco device driver for QNX 4) 28

orinoco.c(Linux orinoco.c source modified for QNX4/WTRP) 30

orinoco.h (Linux file ported to QNX4 orinoco.h) 33

show hermes.c(Standalone program to print Orinoco registers) 35

skbuff.c (Simplified version of Linux skbuff routines for QNX 4) 35

skbuff.h ??

socket.h ??

timer.c (Replacement version of linux timer.c using QNX timers) 43

timer.h ??

trace init.c (Standalone program to do card reset and print firmware set-
tings) 43

tracehermes.c(Trace routines for Hermes Records ID (RID) tables, calls
to the routines can be added as needed during debugging to hermes.c) 44

wireless.h ??
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3 QNX4 driver for Orinoco wireless Data Structure
Documentation

3.1 orinoco private Struct Reference

Linux orinocoprivate structure was used with the addition of a few QNX specific fields
for inter-process communication.

#include
�
orinoco.h�

Data Fields

� void � card
� int(� hard reset)(struct orinocoprivate�)
� spinlock t lock
� longstate
� net device� ndev
� net devicestatsstats
� iw statisticswstats
� hermest hw
� u16txfid
� int firmware type
� int has ibss
� int has port3
� int has ibss any
� int ibss port
� int has wep
� int has big wep
� int has mwo
� int has pm
� int has preamble
� int has sensitivity
� int nicbuf size
� int broken cor reset
� u16channel mask
� u32iw mode
� int prefer port3
� u16wep on
� u16wep restrict
� u16tx key
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� orinocokeys t keys
� int bitratemode
� charnick [IW ESSID MAX SIZE+1]
� chardesired essid[IW ESSID MAX SIZE+1]
� u16frag thresh
� u16mwo robust
� u16channel
� u16ap density
� u16rts thresh
� u16pm on
� u16pm mcast
� u16pm period
� u16pm timeout
� u16preamble
� int spy number
� u charspy address[IW MAX SPY][ETH ALEN]
� iw qualityspy stat [IW MAX SPY]
� int port type
� int allow ibss
� int promiscuous
� int mc count
� proc dir entry� dir dev
� pid t tx proxy
� pid t rx proxy
� sk buff head� rx queue
� charhost string[IW ESSIDMAX SIZE+1]

3.1.1 Detailed Description

Linux orinocoprivate structure was used with the addition of a few QNX specific fields
for inter-process communication.

3.1.2 Field Documentation

3.1.2.1 char orinocoprivate::host string[IW ESSID MAX SIZE+1]

set a name for nick, since may not have higher-level networking.
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3.1.2.2 pidt orinoco private::rx proxy

QNX: receive proxy.

3.1.2.3 struct skbuff head� orinoco private::rx queue

QNX queue to hold received messages.

3.1.2.4 pidt orinoco private::tx proxy

QNX: transmit proxy.

The documentation for this struct was generated from the following file:

� orinoco.h

4 QNX4 driver for Orinoco wireless File Documenta-
tion

4.1 hermes.c File Reference

Linux Hermes driver core modified for QNX4.

#include
�
linux compat.h�

#include
�
errno.h�

#include "hermes.h"

Defines

� #defineCMD BUSY TIMEOUT (100)
� #defineCMD INIT TIMEOUT (50000)
� #defineCMD COMPL TIMEOUT (20000)
� #defineALLOC COMPL TIMEOUT (1000)
� #defineDEBUG(lvl, fmt, var)
� #defineIO TYPE(hw) ((hw)� io space ? ”IO ” : ”MEM ”)
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Functions

� void hermesstruct init (hermest �hw, ulong address, int iospace, int reg-
spacing)

� int hermes reset(hermest �hw)
� void hermesdocmd trace (int cmd, int err)
� int hermesdocmd wait (hermest �hw, u16 cmd, u16 parm0, hermes-

responset �resp)
� int hermesallocate(hermest �hw, u16 size, u16�fid)
� int hermesbap pread (hermest �hw, int bap, void�buf, int len, u16 id, u16

offset)
� int hermesbap pwrite (hermest �hw, int bap, const void�buf, int len, u16 id,

u16 offset)
� int hermes read ltv (hermest �hw, int bap, u16 rid, int bufsize, u16�length,

void �buf)
� int hermeswrite ltv (hermest �hw, int bap, u16 rid, u16 length, const void
�value)

4.1.1 Detailed Description

Linux Hermes driver core modified for QNX4.

Driver core for the ”Hermes” wireless MAC controller, as used in the Lucent Orinoco
and Cabletron RoamAbout cards. It should also work on the hfa3841 and hfa3842
MAC controller chips used in the Prism II chipsets.

This is not a complete driver, just low-level access routines for the MAC controller
itself.

Based on the prism2 driver from Absolute Value Systems’ linux-wlan project, the
Linux wvlan cs driver, Lucent’s HCF-Light (wvlanhcf.c) library, and the NetBSD
wireless driver (in no particular order).

Copyright (C) 2000, David Gibson, Linuxcare Australia
�
hermes@gibson.dropbear.id.au� Copyright (C) 2001, David Gibson,

IBM �
hermes@gibson.dropbear.id.au�

The contents of this file are subject to the Mozilla Public License Version 1.1 (the
”License”); you may not use this file except in compliance with the License. You may
obtain a copy of the License athttp://www.mozilla.org/MPL/

Software distributed under the License is distributed on an”AS IS” basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.

Alternatively, the contents of this file may be used under theterms of the GNU General
Public License version 2 (the ”GPL”), in which case the provisions of the GPL are
applicable instead of the above. If you wish to allow the use of your version of this file
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4.2 hermes.h File Reference 7

only under the terms of the GPL and not to allow others to use your version of this file
under the MPL, indicate your decision by deleting the provisions above and replace
them with the notice and other provisions required by the GPL. If you do not delete the
provisions above, a recipient may use your version of this file under either the MPL or
the GPL.

4.2 hermes.h File Reference

Header file for Hermes driver core.

#include
�
linux compat.h�

Data Structures

� structhermes
� structhermesdebug entry
� structhermes response
� structhermes rx descriptor
� structhermesscanapinfo
� structhermesscan frame
� structhermes tallies frame
� structhermes tx descriptor

Defines

� #defineHERMES ALLOC LEN MIN (4)
� #defineHERMES ALLOC LEN MAX (2400)
� #defineHERMES LTV LEN MAX (34)
� #defineHERMES BAP DATALEN MAX (4096)
� #defineHERMES BAP OFFSET MAX (4096)
� #defineHERMES PORTID MAX (7)
� #defineHERMES NUMPORTS MAX (HERMESPORTID MAX+1)
� #defineHERMES PDR LEN MAX (260)
� #defineHERMES PDA RECS MAX (200)
� #defineHERMES PDA LEN MAX (1024)
� #defineHERMES SCANRESULT MAX (35)
� #defineHERMES CHINFORESULT MAX (8)
� #defineHERMES MAX MULTICAST (16)
� #defineHERMES MAGIC (0x7d1f)
� #defineHERMES CMD (0x00)
� #defineHERMES PARAM0 (0x02)
� #defineHERMES PARAM1 (0x04)
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� #defineHERMES PARAM2 (0x06)
� #defineHERMES STATUS (0x08)
� #defineHERMES RESP0(0x0A)
� #defineHERMES RESP1(0x0C)
� #defineHERMES RESP2(0x0E)
� #defineHERMES INFOFID (0x10)
� #defineHERMES RXFID (0x20)
� #defineHERMES ALLOCFID (0x22)
� #defineHERMES TXCOMPLFID (0x24)
� #defineHERMES SELECT0 (0x18)
� #defineHERMES OFFSET0 (0x1C)
� #defineHERMES DATA0 (0x36)
� #defineHERMES SELECT1 (0x1A)
� #defineHERMES OFFSET1 (0x1E)
� #defineHERMES DATA1 (0x38)
� #defineHERMES EVSTAT (0x30)
� #defineHERMES INTEN (0x32)
� #defineHERMES EVACK (0x34)
� #defineHERMES CONTROL (0x14)
� #defineHERMES SWSUPPORT0(0x28)
� #defineHERMES SWSUPPORT1(0x2A)
� #defineHERMES SWSUPPORT2(0x2C)
� #defineHERMES AUXPAGE (0x3A)
� #defineHERMES AUXOFFSET (0x3C)
� #defineHERMES AUXDATA (0x3E)
� #defineHERMES CMD BUSY (0x8000)
� #defineHERMES CMD AINFO (0x7f00)
� #defineHERMES CMD MACPORT (0x0700)
� #defineHERMES CMD RECL (0x0100)
� #defineHERMES CMD WRITE (0x0100)
� #defineHERMES CMD PROGMODE (0x0300)
� #defineHERMES CMD CMDCODE (0x003f)
� #defineHERMES STATUS RESULT (0x7f00)
� #defineHERMES STATUS CMDCODE (0x003f)
� #defineHERMES OFFSET BUSY (0x8000)
� #defineHERMES OFFSET ERR (0x4000)
� #defineHERMES OFFSET DATAOFF (0x0ffe)
� #defineHERMES EV TICK (0x8000)
� #defineHERMES EV WTERR (0x4000)
� #defineHERMES EV INFDROP (0x2000)
� #defineHERMES EV INFO (0x0080)
� #defineHERMES EV DTIM (0x0020)
� #defineHERMES EV CMD (0x0010)

Generated on Thu Apr 10 10:44:42 2003 for QNX4 driver for Orinoco wireless by Doxygen

G-8



4.2 hermes.h File Reference 9

� #defineHERMES EV ALLOC (0x0008)
� #defineHERMES EV TXEXC (0x0004)
� #defineHERMES EV TX (0x0002)
� #defineHERMES EV RX (0x0001)
� #defineHERMES CMD INIT (0x0000)
� #defineHERMES CMD ENABLE (0x0001)
� #defineHERMES CMD DISABLE (0x0002)
� #defineHERMES CMD DIAG (0x0003)
� #defineHERMES CMD ALLOC (0x000A)
� #defineHERMES CMD TX (0x000B)
� #defineHERMES CMD CLRPRST (0x0012)
� #defineHERMES CMD NOTIFY (0x0010)
� #defineHERMES CMD INQUIRE (0x0011)
� #defineHERMES CMD ACCESS(0x0021)
� #defineHERMES CMD DOWNLD (0x0022)
� #defineHERMES CMD MONITOR (0x0038)
� #defineHERMES MONITOR ENABLE (0x000b)
� #defineHERMES MONITOR DISABLE (0x000f)
� #defineHERMES DESCRIPTOR OFFSET 0
� #defineHERMES 802 11 OFFSET (14)
� #defineHERMES 802 3 OFFSET (14+32)
� #defineHERMES 802 2 OFFSET (14+32+14)
� #defineHERMES RXSTAT ERR (0x0003)
� #defineHERMES RXSTAT BADCRC (0x0001)
� #defineHERMES RXSTAT UNDECRYPTABLE (0x0002)
� #defineHERMES RXSTAT MACPORT (0x0700)
� #defineHERMES RXSTAT MSGTYPE (0xE000)
� #defineHERMES RXSTAT 1042(0x2000)
� #defineHERMES RXSTAT TUNNEL (0x4000)
� #defineHERMES RXSTAT WMP (0x6000)
� #defineHERMES TXSTAT RETRYERR (0x0001)
� #defineHERMES TXSTAT AGEDERR (0x0002)
� #defineHERMES TXSTAT DISCON (0x0004)
� #defineHERMES TXSTAT FORMERR (0x0008)
� #defineHERMES TXCTRL TX OK (0x0002)
� #defineHERMES TXCTRL TX EX (0x0004)
� #defineHERMES TXCTRL 802 11 (0x0008)
� #defineHERMES TXCTRL ALT RTRY (0x0020)
� #defineHERMES INQ TALLIES (0xF100)
� #defineHERMES INQ SCAN (0xF101)
� #defineHERMES INQ LINKSTATUS (0xF200)
� #defineHERMES DEBUG BUFSIZE 4096
� #defineHERMES BAP BUSY TIMEOUT (500)
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� #defineHERMES IO 1
� #defineHERMES MEM 0
� #defineHERMES 16BIT REGSPACING 0
� #defineHERMES 32BIT REGSPACING 1
� #definehermes read reg(hw, off) (inpw((hw)� iobase + ( (off)�� (hw)�

reg spacing )))
� #definehermeswrite reg(hw, off, val) (outpw((hw)� iobase + ( (off)��

(hw)� reg spacing ), (val)))
� #definehermes read regn(hw, name) (hermesreadreg((hw), HERMES-

##name))
� #definehermeswrite regn(hw, name, val) (hermeswrite reg((hw), HER-

MES ##name, (val)))
� #definehermespresent(hw) (hermesreadregn((hw), SWSUPPORT0) ==

HERMESMAGIC)
� #definehermesenableport (hw, port) (hermesdocmdwait((hw), HERMES-

CMD ENABLE
�
((port)�� 8), 0, NULL))

� #define hermesdisable port (hw, port) (hermesdocmdwait((hw), HER-
MES CMD DISABLE

�
(port�� 8), 0, NULL))

� #define hermes inquire (hw, rid) (hermesdocmdwait((hw), HERMES-
CMD INQUIRE, (rid), NULL))

� #defineHERMES BYTES TO RECLEN (n) ( ((n) % 2) ? (((n)+1)/2)+1 :
((n)/2)+1 )

� #defineHERMES RECLEN TO BYTES(n) ( ((n)-1)� 2 )
� #define HERMES READ RECORD(hw, bap, rid, buf) (hermesread-

ltv((hw),(bap),(rid), sizeof(�buf), NULL, (buf)))
� #defineHERMES WRITE RECORD(hw, bap, rid, buf) (hermeswrite -

ltv((hw),(bap),(rid),HERMESBYTES TO RECLEN(sizeof(�buf)),(buf)))
� #defineDO TRACE HERMES

Typedefs

� typedef hermeshermes t
� typedef hermesresponsehermes responset

Functions

� void hermesstruct init (hermest �hw, ulong address, int iospace, int reg-
spacing)

� int hermes reset(hermest �hw)
� int hermesdocmd wait (hermest �hw, u16 cmd, u16 parm0, hermes-

responset �resp)
� int hermesallocate(hermest �hw, u16 size, u16�fid)
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� int hermesbap pread (hermest �hw, int bap, void�buf, int len, u16 id, u16
offset)

� int hermesbap pwrite (hermest �hw, int bap, const void�buf, int len, u16 id,
u16 offset)

� int hermes read ltv (hermest �hw, int bap, u16 rid, int buflen, u16�length,
void �buf)

� int hermeswrite ltv (hermest �hw, int bap, u16 rid, u16 length, const void
�value)

� void hermesenable interrupt (hermest �hw, u16 events)
� void hermesset irqmask (hermest �hw, u16 events)
� void hermes read words (hermest �hw, int off, void �buf, int count)
� void hermeswrite words (hermest �hw, int off, const void�buf, int count)
� int hermes read wordrec (hermest �hw, int bap, u16 rid, u16�word)
� int hermeswrite wordrec (hermest �hw, int bap, u16 rid, u16 word)
� void hermes trace static cfg (hermest �hw)
� void hermes trace dynamic cfg (hermest �hw)
� void hermes trace nic info (hermest �hw)
� void hermes trace mac info (hermest �hw)
� void hermes trace modem info (hermest �hw)

Variables

� hermesrx descriptorpacked

4.2.1 Detailed Description

Header file for Hermes driver core.

Driver core for the ”Hermes” wireless MAC controller, as used in the Lucent Orinoco
and Cabletron RoamAbout cards. It should also work on the hfa3841 and hfa3842
MAC controller chips used in the Prism I & II chipsets.

This is not a complete driver, just low-level access routines for the MAC controller
itself.

Based on the prism2 driver from Absolute Value Systems’ linux-wlan project, the
Linux wvlan cs driver, Lucent’s HCF-Light (wvlanhcf.c) library, and the NetBSD
wireless driver.

Copyright (C) 2000, David Gibson, Linuxcare Australia
�
hermes@gibson.dropbear.id.au�

Portions taken from hfa384x.h, Copyright (C) 1999 AbsoluteValue Systems, Inc. All
Rights Reserved.

This file distributed under the GPL, version 2.
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4.3 hermesqnx.c File Reference

Replacements for in-line functions in original Linux code.

#include
�
stdio.h�

#include
�
hermes.h�

Functions

� void hermesenable interrupt (hermest �hw, u16 events)
� void hermesset irqmask (hermest �hw, u16 events)
� void hermesreadwords(struct hermes�hw, int off, void �buf, int count)
� void hermeswrite words (struct hermes�hw, int off, const void�buf, int

count)
� int hermes read wordrec (hermest �hw, int bap, u16 rid, u16�word)
� int hermeswrite wordrec (hermest �hw, int bap, u16 rid, u16 word)

4.3.1 Detailed Description

Replacements for in-line functions in original Linux code.

4.3.2 Function Documentation

4.3.2.1 void hermesread words (struct hermes � hw, int off, void � buf, int
count)

Note that for hermesreadwords and hermeswrite words, the count is in 16-bit words,
not bytes.

4.4 hermesrid.h File Reference

Defines for Hermes Record IDs.

Data Structures

� structhermes idstring
� structhermesmulticast
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Defines

� #defineHERMES RID CNFPORTTYPE 0xFC00
� #defineHERMES RID CNFOWNMACADDR 0xFC01
� #defineHERMES RID CNFDESIREDSSID 0xFC02
� #defineHERMES RID CNFOWNCHANNEL 0xFC03
� #defineHERMES RID CNFOWNSSID 0xFC04
� #defineHERMES RID CNFOWNATIMWINDOW 0xFC05
� #defineHERMES RID CNFSYSTEMSCALE 0xFC06
� #defineHERMES RID CNFMAXDATALEN 0xFC07
� #defineHERMES RID CNFWDSADDRESS0xFC08
� #defineHERMES RID CNFPMENABLED 0xFC09
� #defineHERMES RID CNFPMEPS 0xFC0A
� #defineHERMES RID CNFMULTICASTRECEIVE 0xFC0B
� #defineHERMES RID CNFMAXSLEEPDURATION 0xFC0C
� #defineHERMES RID CNFPMHOLDOVERDURATION 0xFC0D
� #defineHERMES RID CNFOWNNAME 0xFC0E
� #defineHERMES RID CNFOWNDTIMPERIOD 0xFC10
� #defineHERMES RID CNFWDSADDRESS10xFC11
� #defineHERMES RID CNFWDSADDRESS20xFC12
� #defineHERMES RID CNFWDSADDRESS30xFC13
� #defineHERMES RID CNFWDSADDRESS40xFC14
� #defineHERMES RID CNFWDSADDRESS50xFC15
� #defineHERMES RID CNFWDSADDRESS60xFC16
� #defineHERMES RID CNFMULTICASTPMBUFFERING 0xFC17
� #defineHERMES RID CNFWEPENABLED AGERE 0xFC20
� #defineHERMES RID CNFMANDATORYBSSID SYMBOL 0xFC21
� #defineHERMES RID CNFWEPDEFAULTKEYID 0xFC23
� #defineHERMES RID CNFDEFAULTKEY0 0xFC24
� #defineHERMES RID CNFDEFAULTKEY1 0xFC25
� #defineHERMES RID CNFMWOROBUST AGERE 0xFC25
� #defineHERMES RID CNFDEFAULTKEY2 0xFC26
� #defineHERMES RID CNFDEFAULTKEY3 0xFC27
� #defineHERMES RID CNFWEPFLAGS INTERSIL 0xFC28
� #defineHERMES RID CNFWEPKEYMAPPINGTABLE 0xFC29
� #defineHERMES RID CNFAUTHENTICATION 0xFC2A
� #defineHERMES RID CNFMAXASSOCSTA 0xFC2B
� #defineHERMES RID CNFKEYLENGTH SYMBOL 0xFC2B
� #defineHERMES RID CNFTXCONTROL 0xFC2C
� #defineHERMES RID CNFROAMINGMODE 0xFC2D
� #defineHERMES RID CNFHOSTAUTHENTICATION 0xFC2E
� #defineHERMES RID CNFRCVCRCERROR 0xFC30
� #defineHERMES RID CNFMMLIFE 0xFC31
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� #defineHERMES RID CNFALTRETRYCOUNT 0xFC32
� #defineHERMES RID CNFBEACONINT 0xFC33
� #defineHERMES RID CNFAPPCFINFO 0xFC34
� #defineHERMES RID CNFSTAPCFINFO 0xFC35
� #defineHERMES RID CNFPRIORITYQUSAGE 0xFC37
� #defineHERMES RID CNFTIMCTRL 0xFC40
� #defineHERMES RID CNFTHIRTY2TALLY 0xFC42
� #defineHERMES RID CNFENHSECURITY 0xFC43
� #defineHERMES RID CNFGROUPADDRESSES0xFC80
� #defineHERMES RID CNFCREATEIBSS 0xFC81
� #defineHERMES RID CNFFRAGMENTATIONTHRESHOLD 0xFC82
� #defineHERMES RID CNFRTSTHRESHOLD 0xFC83
� #defineHERMES RID CNFTXRATECONTROL 0xFC84
� #defineHERMES RID CNFPROMISCUOUSMODE 0xFC85
� #defineHERMES RID CNFBASICRATES SYMBOL 0xFC8A
� #defineHERMES RID CNFPREAMBLE SYMBOL 0xFC8C
� #defineHERMES RID CNFFRAGMENTATIONTHRESHOLD0 0xFC90
� #defineHERMES RID CNFFRAGMENTATIONTHRESHOLD1 0xFC91
� #defineHERMES RID CNFFRAGMENTATIONTHRESHOLD2 0xFC92
� #defineHERMES RID CNFFRAGMENTATIONTHRESHOLD3 0xFC93
� #defineHERMES RID CNFFRAGMENTATIONTHRESHOLD4 0xFC94
� #defineHERMES RID CNFFRAGMENTATIONTHRESHOLD5 0xFC95
� #defineHERMES RID CNFFRAGMENTATIONTHRESHOLD6 0xFC96
� #defineHERMES RID CNFRTSTHRESHOLD0 0xFC97
� #defineHERMES RID CNFRTSTHRESHOLD1 0xFC98
� #defineHERMES RID CNFRTSTHRESHOLD2 0xFC99
� #defineHERMES RID CNFRTSTHRESHOLD3 0xFC9A
� #defineHERMES RID CNFRTSTHRESHOLD4 0xFC9B
� #defineHERMES RID CNFRTSTHRESHOLD5 0xFC9C
� #defineHERMES RID CNFRTSTHRESHOLD6 0xFC9D
� #defineHERMES RID CNFSHORTPREAMBLE 0xFCB0
� #defineHERMES RID CNFWEPKEYS AGERE 0xFCB0
� #defineHERMES RID CNFEXCLUDELONGPREAMBLE 0xFCB1
� #defineHERMES RID CNFTXKEY AGERE 0xFCB1
� #defineHERMES RID CNFAUTHENTICATIONRSPTO 0xFCB2
� #defineHERMES RID CNFBASICRATES 0xFCB3
� #defineHERMES RID CNFSUPPORTEDRATES0xFCB4
� #defineHERMES RID CNFTICKTIME 0xFCE0
� #defineHERMES RID CNFSCANREQUEST0xFCE1
� #defineHERMES RID CNFJOINREQUEST 0xFCE2
� #defineHERMES RID CNFAUTHENTICATESTATION 0xFCE3
� #defineHERMES RID CNFCHANNELINFOREQUEST 0xFCE4
� #defineHERMES RID MAXLOADTIME 0xFD00
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� #defineHERMES RID DOWNLOADBUFFER 0xFD01
� #defineHERMES RID PRIID 0xFD02
� #defineHERMES RID PRISUPRANGE 0xFD03
� #defineHERMES RID CFIACTRANGES 0xFD04
� #defineHERMES RID NICSERNUM 0xFD0A
� #defineHERMES RID NICID 0xFD0B
� #defineHERMES RID MFISUPRANGE 0xFD0C
� #defineHERMES RID CFISUPRANGE 0xFD0D
� #defineHERMES RID CHANNELLIST 0xFD10
� #defineHERMES RID REGULATORYDOMAINS 0xFD11
� #defineHERMES RID TEMPTYPE 0xFD12
� #defineHERMES RID CIS 0xFD13
� #defineHERMES RID STAID 0xFD20
� #defineHERMES RID STASUPRANGE0xFD21
� #defineHERMES RID MFIACTRANGES 0xFD22
� #defineHERMES RID CFIACTRANGES2 0xFD23
� #defineHERMES RID SECONDARYVERSION SYMBOL 0xFD24
� #defineHERMES RID PORTSTATUS 0xFD40
� #defineHERMES RID CURRENTSSID 0xFD41
� #defineHERMES RID CURRENTBSSID 0xFD42
� #defineHERMES RID COMMSQUALITY 0xFD43
� #defineHERMES RID CURRENTTXRATE 0xFD44
� #defineHERMES RID CURRENTBEACONINTERVAL 0xFD45
� #defineHERMES RID CURRENTSCALETHRESHOLDS 0xFD46
� #defineHERMES RID PROTOCOLRSPTIME 0xFD47
� #defineHERMES RID SHORTRETRYLIMIT 0xFD48
� #defineHERMES RID LONGRETRYLIMIT 0xFD49
� #defineHERMES RID MAXTRANSMITLIFETIME 0xFD4A
� #defineHERMES RID MAXRECEIVELIFETIME 0xFD4B
� #defineHERMES RID CFPOLLABLE 0xFD4C
� #defineHERMES RID AUTHENTICATIONALGORITHMS 0xFD4D
� #defineHERMES RID PRIVACYOPTIONIMPLEMENTED 0xFD4F
� #defineHERMES RID CURRENTTXRATE1 0xFD80
� #defineHERMES RID CURRENTTXRATE2 0xFD81
� #defineHERMES RID CURRENTTXRATE3 0xFD82
� #defineHERMES RID CURRENTTXRATE4 0xFD83
� #defineHERMES RID CURRENTTXRATE5 0xFD84
� #defineHERMES RID CURRENTTXRATE6 0xFD85
� #defineHERMES RID OWNMACADDR 0xFD86
� #defineHERMES RID SCANRESULTSTABLE 0xFD88
� #defineHERMES RID PHYTYPE 0xFDC0
� #defineHERMES RID CURRENTCHANNEL 0xFDC1
� #defineHERMES RID CURRENTPOWERSTATE 0xFDC2
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� #defineHERMES RID CCAMODE 0xFDC3
� #defineHERMES RID SUPPORTEDDATARATES 0xFDC6
� #defineHERMES RID BUILDSEQ 0xFFFE
� #defineHERMES RID FWID 0xFFFF

Typedefs

� typedef hermesmulticasthermesmulticast t

Variables

� hermesidstringpacked

4.4.1 Detailed Description

Defines for Hermes Record IDs.

4.5 ieee80211.h File Reference

IEEE 802.11 frame constants.

Data Structures

� structieee80211 hdr

Defines

� #defineIEEE802 11 DATA LEN 2304
� #defineIEEE802 11 HLEN 30
� #defineIEEE802 11 FRAME LEN (IEEE80211 DATA LEN + IEEE802-

11 HLEN)
� #defineIEEE802 11 FCTL VERS 0x0002
� #defineIEEE802 11 FCTL FTYPE 0x000c
� #defineIEEE802 11 FCTL STYPE 0x00f0
� #defineIEEE802 11 FCTL TODS 0x0100
� #defineIEEE802 11 FCTL FROMDS 0x0200
� #defineIEEE802 11 FCTL MOREFRAGS 0x0400
� #defineIEEE802 11 FCTL RETRY 0x0800
� #defineIEEE802 11 FCTL PM 0x1000

Generated on Thu Apr 10 10:44:42 2003 for QNX4 driver for Orinoco wireless by Doxygen

G-16



4.5 ieee80211.h File Reference 17

� #defineIEEE802 11 FCTL MOREDATA 0x2000
� #defineIEEE802 11 FCTL WEP 0x4000
� #defineIEEE802 11 FCTL ORDER 0x8000
� #defineIEEE802 11 FTYPE MGMT 0x0000
� #defineIEEE802 11 FTYPE CTL 0x0004
� #defineIEEE802 11 FTYPE DATA 0x0008
� #defineIEEE802 11 STYPE ASSOC REQ 0x0000
� #defineIEEE802 11 STYPE ASSOC RESP0x0010
� #defineIEEE802 11 STYPE REASSOC REQ 0x0020
� #defineIEEE802 11 STYPE REASSOC RESP0x0030
� #defineIEEE802 11 STYPE PROBE REQ 0x0040
� #defineIEEE802 11 STYPE PROBE RESP0x0050
� #defineIEEE802 11 STYPE BEACON 0x0080
� #defineIEEE802 11 STYPE ATIM 0x0090
� #defineIEEE802 11 STYPE DISASSOC0x00A0
� #defineIEEE802 11 STYPE AUTH 0x00B0
� #defineIEEE802 11 STYPE DEAUTH 0x00C0
� #defineIEEE802 11 STYPE PSPOLL 0x00A0
� #defineIEEE802 11 STYPE RTS 0x00B0
� #defineIEEE802 11 STYPE CTS 0x00C0
� #defineIEEE802 11 STYPE ACK 0x00D0
� #defineIEEE802 11 STYPE CFEND 0x00E0
� #defineIEEE802 11 STYPE CFENDACK 0x00F0
� #defineIEEE802 11 STYPE DATA 0x0000
� #defineIEEE802 11 STYPE DATA CFACK 0x0010
� #defineIEEE802 11 STYPE DATA CFPOLL 0x0020
� #defineIEEE802 11 STYPE DATA CFACKPOLL 0x0030
� #defineIEEE802 11 STYPE NULLFUNC 0x0040
� #defineIEEE802 11 STYPE CFACK 0x0050
� #defineIEEE802 11 STYPE CFPOLL 0x0060
� #defineIEEE802 11 STYPE CFACKPOLL 0x0070
� #defineIEEE802 11 SCTL FRAG 0x000F
� #defineIEEE802 11 SCTL SEQ 0xFFF0

Variables

� ieee80211 hdrpacked

4.5.1 Detailed Description

IEEE 802.11 frame constants.
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4.6 linux compat.c File Reference

System functions available on Linux, not available on QNX.

#include
�
conio.h�

#include
�
i86.h�

#include
�
sys/time.h�

#include
�
sys/inline.h�

#include
�
sys/types.h�

#include
�
errno.h�

#include
�
linux compat.h�

#include
�
linux/socket.h�

#include
�
linux/if.h�

#include
�
linux/skbuff.h�

#include
�
linux/netdevice.h�

#include
�
linux/if arp.h�

#include
�
linux/etherdevice.h�

#include
�
linux/wireless.h�

Functions

� unsigned longsimulatejiffies ()
� void udelay(int interval)
� int setbit (int nr, volatile void�ptr)
� int clear bit (int nr, volatile void�ptr)
� int test bit (int nr, volatile void�ptr)
� void do gettimeofday(struct timeval�tv)

4.6.1 Detailed Description

System functions available on Linux, not available on QNX.

4.6.2 Function Documentation
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4.6.2.1 void dogettimeofday (struct timeval � tv)

do gettimeofday –use clockgettime to implement

4.6.2.2 int setbit (int nr, volatile void � ptr)

routines from Linux asm-generic/bitops.h; long is assumedto be 32-bits; later should
change these to use assembly code or whatever for atomicity instead of disabling inter-
rupts

4.6.2.3 unsigned long simulatejiffies ()

Returns Unix time in milliseconds; Linux jiffies is clock ticks since system boot.

Later may want to do something different with QNX time functions for this.

4.6.2.4 void udelay (intinterval)

microsecond delay

4.7 linux compat.h File Reference

This header file defines a set of macros which allow for some linux-specific func-
tions,types,etc.

#include
�
conio.h�

#include
�
i86.h�

#include
�
sys/time.h�

Defines

� #defineETH ALEN 6
� #defineinline
� #defineinw(addr) inpw(addr)
� #defineoutw p(val, addr) outpw(addr, val)
� #definecpu to le16(x) (x)
� #definele16 to cpu(x) (x)
� #definele16 to cpus(x) do �� while (0)
� #definentohs(x) ((((x) & 0xff) �� 8)

�
(((x) & 0xff00) �� 8))
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� #definehtons(x) ((((x) & 0xff) �� 8)
�
(((x) & 0xff00) �� 8))

� #define attribute (x)
� #define cachelinealigned
� #define init
� #define setup(a, b)
� #defineNR CPUS1
� #definesmp processorid() 0
� #defineprintk printf
� #definekmalloc(size, code) ((void�) malloc(size))
� #definekfree(ptr) free(ptr)
� #defineKERN ERR
� #defineKERN DEBUG
� #defineKERN WARNING
� #defineKERN NOTICE
� #defineKERN INFO
� #defineKERN CRIT
� #defineout of line bug() printf(”Out of line bug�n”)
� #definecopy to user(a, b, c) (!memcpy(a, b, c))
� #definecopy from user(a, b, c) (!memcpy(a, b, c))
� #definemax t(typ, a, b) max((a),(b))
� #defineBUG() printf(”Unexpected error�n”)
� #defineaccessok(a, b, c) 1
� #defineverify area(a, b, c) 0
� #definecapable(x) 1
� #definecreate proc entry(a, b, c) 0
� #definecreate proc read entry(a, b, c, d, e) 0
� #defineremove proc entry(a, b)
� #defineEXPORT SYMBOL (x)
� #defineHZ 1000
� #definespin lock bh(x) disable()
� #definespin unlock bh(x) enable()
� #definespin lock init (x) do �� while (0)
� #definespin lock irqsave(x, flags) do�� while (0)
� #definespin unlock irqrestore(x, flags) do�� while (0)
� #definecli() disable()
� #definesti() enable()
� #define cli() disable()
� #define sti() enable()
� #definebr write lock bh(x)
� #definebr write unlock bh(x)
� #definertnl lock(x) disable()
� #definertnl unlock(x) enable()
� #defineatomic inc(ptr) ((�(ptr))++)
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� #defineatomic read(ptr) (�(ptr))
� #defineatomic dec and test(ptr) (((�(ptr))–) == 0)
� #defineGFP ATOMIC 0
� #defineKM SKB DATA SOFTIRQ
� #definelocal irq save(x) do � � while (0)
� #definelocal irq restore(x) do � � while (0)
� #definetest and set bit (nr, addr) (setbit((nr),(addr))?1:0)
� #definetest and clear bit (nr, addr) (clearbit((nr),(addr))?1:0)
� #definejiffies simulatejiffies()

Typedefs

� typedef unsigned charu8
� typedef unsigned shortu16
� typedef unsigned longu32
� typedef longs32
� typedef unsigned charu8
� typedef unsigned shortu16
� typedef unsigned longu32
� typedef long s32
� typedef unsigned longulong
� typedef volatile intatomic t
� typedef intrwlock t
� typedef sizet kernel size t
� typedef intspinlock t

Functions

� unsigned longsimulatejiffies ()
� void udelay(int interval)
� int set bit (int nr, void �addr)
� int clear bit (int nr, void �addr)
� int test bit (int nr, void �addr)

4.7.1 Detailed Description

This header file defines a set of macros which allow for some linux-specific func-
tions,types,etc.

to be used on a QNX 4.25 system 9/3/02 -ASH changed #defines forinw and outwp
to macro #defines 10/25/02 -SRD

Generated on Thu Apr 10 10:44:42 2003 for QNX4 driver for Orinoco wireless by Doxygen

G-21



4.8 net init.c File Reference 22

4.7.2 Function Documentation

4.7.2.1 unsigned long simulatejiffies ()

Returns Unix time in milliseconds; Linux jiffies is clock ticks since system boot.

Later may want to do something different with QNX time functions for this.

4.7.2.2 void udelay (intinterval)

microsecond delay

4.8 net init.c File Reference

net init.c: Initialization for network devices, This version is slightly modifed to com-
pile on QNX4 by Sue Dickey.

#include
�
sys/inline.h�

#include
�
sys/types.h�

#include
�
errno.h�

#include
�
linux compat.h�

#include
�
linux/socket.h�

#include
�
linux/if.h�

#include
�
linux/skbuff.h�

#include
�
linux/netdevice.h�

#include
�
linux/if arp.h�

#include
�
linux/etherdevice.h�

#include
�
linux/wireless.h�

Functions

� net device� alloc etherdev(int sizeof priv)
� EXPORT SYMBOL (init etherdev)
� EXPORT SYMBOL (alloc etherdev)
� void ether setup(struct netdevice�dev)
� EXPORT SYMBOL (ethersetup)
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� EXPORT SYMBOL (registernetdev)
� EXPORT SYMBOL (unregisternetdev)

4.8.1 Detailed Description

net init.c: Initialization for network devices, This version is slightly modifed to com-
pile on QNX4 by Sue Dickey.

Written 1993,1994,1995 by Donald Becker.

The author may be reached asbecker@scyld.com, or C/O Scyld Computing Cor-
poration 410 Severn Ave., Suite 210 Annapolis MD 21403

This file contains the initialization for the ”pl14+” style ethernet drivers. It should
eventually replace most of drivers/net/Space.c. It’s primary advantage is that it’s able
to allocate low-memory buffers. A secondary advantage is that the dangerous NE�000
netcards can reserve their I/O port region before the SCSI probes start.

Modifications/additions by Bjorn Ekwall �bj0rn@blox.se�: ethdev-
index[MAX ETH CARDS] registernetdev()/ unregisternetdev()

Modifications by Wolfgang Walter Use devclose cleanly so we always shut things
down tidily.

Changed 29/10/95, Alan Cox to pass sockaddr’s around for macaddresses.

14/06/96 - Paul Gortmaker: Add genericeth changemtu() function. 24/09/96 - Paul
Norton: Add token-ring variants of the netdev functions.

08/11/99 - Alan Cox: Got fed up of the mess in this file and cleaned it up. We now
share common code and have regularised name allocation setups. Abolished the 16
card limits. 03/19/2000 - jgarzik and Urban Widmark: initetherdev 32-byte align
03/21/2001 - jgarzik: allocetherdev and friends

4.8.2 Function Documentation

4.8.2.1 struct netdevice� alloc etherdev (int sizeofpriv)

alloc etherdev - Allocates and sets up an ethernet device : Size of additional driver-
private structure to be allocated for this ethernet device

Fill in the fields of the device structure with ethernet-generic values. Basically does
everything except registering the device.

Constructs a new net device, complete with a private data area of size . A 32-byte (not
bit) alignment is enforced for this private data area.
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4.9 netdev.c File Reference

Routines from Linux netdevice.h and net/core/dev.c neededby the orinoco and wtrp
drivers.

#include
�
stdio.h�

#include
�
sys/types.h�

#include
�
errno.h�

#include
�
malloc.h�

#include
�
string.h�

#include
�
linux compat.h�

#include
�
linux/netdevice.h�

#include
�
linux/skbuff.h�

Functions

� int netif devicepresent(struct netdevice�dev)
� void netif deviceattach (struct netdevice�dev)
� void netif devicedetach(struct netdevice�dev)
� void netif start queue(struct netdevice�dev)
� int netif wake queue(struct netdevice�dev)
� void netif stop queue(struct netdevice�dev)
� int netif queuestopped(struct netdevice�dev)
� void netif qnx open(struct netdevice�dev)
� void netif qnx close(struct netdevice�dev)
� int netif running (struct netdevice�dev)
� int dev alloc name(struct netdevice�dev, const char�name)
� net device� dev alloc (const char�name, int�err)
� int netif rx (struct skbuff �skb)

Variables

� softnetdata softnetdata[NRCPUS] cachelinealigned
� int netdev max backlog= 300
� int weight p = 64
� int no cong thresh = 10
� int no cong= 20
� int lo cong= 100
� int mod cong= 290
� netif rx statsnetdev rx stat [NR CPUS]
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4.9.1 Detailed Description

Routines from Linux netdevice.h and net/core/dev.c neededby the orinoco and wtrp
drivers.

Rewritten for QNX 4 by Sue Dickey, Jan 2003.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any laterversion.

4.9.2 Function Documentation

4.9.2.1 struct netdevice� dev alloc (const char� name, int � err)

dev alloc – allocate a net device structure with a given name

4.9.2.2 int devalloc name (struct net device� dev, const char� name)

dev alloc name - allocate a name for a device : device : name format string

Calls qnxprefix attach to name our device.

4.9.2.3 int netif rx (struct sk buff � skb)

netif rx - post buffer to the network code : buffer to post

This function receives a packet from a device driver and queues it for the upper (proto-
col) levels to process. It always succeeds. The buffer may bedropped during process-
ing for congestion control or by the protocol layers.

return values: NETRX SUCCESS (no congestion) NETRX CN LOW (low conges-
tion) NET RX CN MOD (moderate congestion) NETRX CN HIGH (high conges-
tion) NET RX DROP (packet was dropped)

4.10 ori.c File Reference

QNX 4 driver for Orinoco card.

#include "ori.h"

Functions
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� pid t far handler ()
� int wtrp setup(struct netdevice�dev, char�dev name)
� net device � install orinocodev (int oribase, int irq, char�dev name, char
�hostname, struct skbuff head�rx queue)

� void config option reset(int configbase)
� int attachorinocodev(struct netdevice�netdev, int configbase)
� void processwtrp tx (messaget �msg, struct netdevice�netdev)
� void processwtrp rx (messaget �msg, struct netdevice�netdev)
� void processwtrp config(messaget �msg, struct netdevice�netdev, int config-

base)
� void processori open(messaget �msg, struct netdevice�netdev, pidt pid)
� void processori close(messaget �msg, struct netdevice�netdev)
� int main (int argc, char��argv)

Variables

� pid t intr proxy
� int devno
� int interrupt id
� jmp buf env

4.10.1 Detailed Description

QNX 4 driver for Orinoco card.

Based on Linux GPL orinococs driver.

This driver is not designed to work with the QNX4 networking stack. Instead, it uses
support routines ported from the Linux networking code for basic transmit and receive
operation; these can be found in the linuxcompat directory. It interacts only with the
Wireless Token Ring Protocol code, found in the wtrp directory.

Mode of operation: when the ori process is started, a QNX device is created and the
Orinoco card is initialized, using the I/O base, IRQ and device name values on the
command line. An IOOPEN message received from the wtrp process causes the device
structure to be set-up with the values needed for Independent Basic Service Set (IBSS)
operation. Then a WTRPCONFIG message causes a chip reset, so that the new values
take effect, and the values of transmit and receive proxies are returned to the WTRP
process in the reply to the WTRPCONFIG message.

When the wtrp process wants to transmit a message, it sends a WTRP TX message to
the ori process; the reply to this message will be either OK orFAIL (wtrp will need to
queue packets for possible retransmission). When the chip has allocated a transmission,
the ori process will send the transmit proxy to the wtrp process, to signal that it is OK
to send another WTRPTX. A transmit proxy will also be sent in case of transmission
timeout and reset.
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When the ori process gets a message reception interrupt fromthe Orinoco card, it sends
the receive proxy to the wtrp process and queues the message.The wtrp process re-
sponds with a WTRPRX message, and the queued data is returned to the wtrp process
in the reply.

Written by Adam Howell and Susan Dickey, Feb 2003

4.10.2 Function Documentation

4.10.2.1 int attachorinoco dev (struct net device� netdev, int configbase)

attachorinocodev - in response to WTRPCONFIG messages, does device-level open

4.10.2.2 void configoption reset (int configbase)

Configuration Option Register reset is done using CardServices in Linux orinoco
driver, but testing showed that if the code that does it is commented out it doesn’t
seem to make any difference with the Orinoco Silver cards, sowe are not currently
using this routine.

When used, the configbase is set on the command line from the Configbase value shown
in the pin cis output..

4.10.2.3 struct netdevice� install orinoco dev (int oribase, int irq, char � dev-
name, char � host name, struct sk buff head� rx queue)

install orinocodev - initializes the Orinoco card at I/O port oribase, IRQ irq, to be
device with path devname.

Attaches interrupt handler to proxy, and sets up orinocodev structure.

Have received messages queue in priority order.

DON’T Adjust priority to match that of received message

4.10.2.4 void processori close (messaget � msg, struct net device� netdev)

Process close request.

4.10.2.5 void processori open (messaget � msg, struct net device� netdev, pid t
pid)
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Process open request (only one allowed); don’t start queueing received messages until
configuration message with proxy arrives.

4.10.2.6 void processwtrp config (messaget � msg, struct net device � netdev,
int configbase)

Process configuration message from WTRP process; later worry about any problems
with received this more than once.

4.10.2.7 void processwtrp rx (messaget � msg, struct net device� netdev)

Process request to receive message.

4.10.2.8 void processwtrp tx (messaget � msg, struct net device� netdev)

Process request to transmit message.

4.10.2.9 int wtrp setup (struct net device� dev, char � devname)

Performs the initial device setup for a specific device to useWTRP MAC and tokenring
datalink layer (may do something speical later?).

4.11 ori.h File Reference

ori.h – Header file for ori.c, Orinoco device driver for QNX 4

#include
�
stdio.h�

#include
�
stdlib.h�

#include
�
string.h�

#include
�
ctype.h�

#include
�
conio.h�

#include
�
unistd.h�

#include
�
setjmp.h�

#include
�
signal.h�
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#include
�
errno.h�

#include
�
time.h�

#include
�
sys/timeb.h�

#include
�
sys/irqinfo.h�

#include
�
sys/proxy.h�

#include
�
sys/kernel.h�

#include
�
sys/name.h�

#include
�
sys/sched.h�

#include
�
sys/psinfo.h�

#include
�
sys/prfx.h�

#include
�
sys/fd.h�

#include
�
sys/io msg.h�

#include
�
sys/sys msg.h�

#include
�
sys/stat.h�

#include
�
sys/sendmx.h�

#include
�
sys/inline.h�

#include
�
sys/types.h�

#include
�
linux compat.h�

#include
�
linux/timer.h�

#include
�
linux/socket.h�

#include
�
linux/if.h�

#include
�
linux/skbuff.h�

#include
�
linux/netdevice.h�

#include
�
linux/if arp.h�

#include
�
linux/etherdevice.h�

#include
�
linux/wireless.h�

#include "hermes.h"

#include "orinoco.h"

#include "packet.h"

#include "params.h"

#include "wtrp.h"
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Defines

� #defineMAX DEV NAME LENGTH 80

4.11.1 Detailed Description

ori.h – Header file for ori.c, Orinoco device driver for QNX 4

4.12 orinoco.c File Reference

Linux orinoco.c source modified for QNX4/WTRP.

#include
�
stdio.h�

#include
�
sys/types.h�

#include
�
sys/kernel.h�

#include
�
errno.h�

#include
�
linux compat.h�

#include
�
linux/socket.h�

#include
�
linux/if.h�

#include
�
linux/skbuff.h�

#include
�
linux/netdevice.h�

#include
�
linux/if arp.h�

#include
�
linux/etherdevice.h�

#include
�
linux/wireless.h�

#include "hermes.h"

#include "hermes rid.h"

#include "orinoco.h"

#include "ieee802 11.h"

#include "data tx.h"

#include "params.h"

#include "lib.h"

#include "packet.h"

#include "tokenring.h"
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#include "wtrp.h"

Data Structures

� structheader struct
� structsta id

Defines

� #defineSIOCIWFIRSTPRIV SIOCDEVPRIVATE
� #defineSPY NUMBER (priv) (priv � spy number)
� #defineORINOCO MIN MTU 256
� #define ORINOCO MAX MTU (IEEE80211 DATA LEN - ENCAPS-

OVERHEAD)
� #defineSYMBOL MAX VER LEN (14)
� #defineUSER BAP 0
� #defineIRQ BAP 1
� #defineMAX IRQLOOPS PER IRQ 10
� #defineMAX IRQLOOPS PER JIFFY (20000/HZ)
� #defineSMALL KEY SIZE 5
� #defineLARGE KEY SIZE 13
� #defineTX NICBUF SIZE BUG 1585
� #defineDUMMY FID 0xFFFF
� #defineMAX MULTICAST (priv) (HERMESMAX MULTICAST)
� #defineNUM CHANNELS ( sizeof(channelfrequency) / sizeof(channel-

frequency[0]) )
� #define BITRATE TABLE SIZE (sizeof(bitratetable) / sizeof(bitrate-

table[0]))
� #defineENCAPS OVERHEAD (sizeof(encapshdr) + 2)
� #definePROC LTV SIZE 128
� #definePROC BUFFER SIZE 4096
� #definePROC SAFE SIZE 3072
� #defineDISPLAY WORDS 0
� #defineDISPLAY BYTES 1
� #defineDISPLAY STRING 2
� #defineDISPLAY XSTRING 3
� #definePROC REC(name, type)� HERMESRID ##name, #name, DIS-

PLAY ##type�
� #defineNUM RIDS ( sizeof(recordtable) / sizeof(recordtable[0]) )
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Functions

� void orinoco shutdown (structorinocoprivate�priv)
� int orinoco reset(structorinocoprivate�priv)
� void orinoco interrupt (int irq, void �dev id, struct ptregs�regs)
� int orinoco proc dev init (structorinocoprivate�priv)
� void orinoco proc dev cleanup(structorinocoprivate�priv)
� net device� alloc orinocodev(int sizeofcard)
� int orinoco standaloneioctls (struct netdevice�netdev)
� void orinoco standalonemulticast (struct netdevice�netdev)

Variables

� const longchannel frequency [ ]
� struct�

int bitrate
int automatic
u16ageretxratectrl
u16 intersil txratectrl

� bitrate table [ ]
� headerstructpacked
� u8encapshdr [ ] = �0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00�
� struct�

u16rid
char� name
int displaytype

� record table [ ]

4.12.1 Detailed Description

Linux orinoco.c source modified for QNX4/WTRP.

orinoco.c 0.11b - (formerly known as dldwdcs.c and orinococs.c)

A driver for Hermes or Prism 2 chipset based PCMCIA wireless adaptors, with Lu-
cent/Agere, Intersil or Symbol firmware.

Copyright (C) 2000 David Gibson, Linuxcare Australia
�
hermes@gibson.dropbear.id.au� With some help from : Copyright

(C) 2001 Jean Tourrilhes, HP Labs�jt@hpl.hp.com� Copyright (C) 2001
Benjamin Herrenschmidt�benh@kernel.crashing.org�

Based on dummycs.c 1.27 2000/06/12 21:27:25

Portions based on wvlancs.c 1.0.6, Copyright An-
dreas Neuhaus �

andy@fasta.fh-dortmund.de�
http://www.fasta.fh-dortmund.de/users/andy/wvlan/
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The contents of this file are subject to the Mozilla Public License Version 1.1 (the
”License”); you may not use this file except in compliance with the License. You may
obtain a copy of the License athttp://www.mozilla.org/MPL/

Software distributed under the License is distributed on an”AS IS” basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.

The initial developer of the original code is David A. Hinds
�
dahinds@users.sourceforge.net�. Portions created by David A.

Hinds are Copyright (C) 1999 David A. Hinds. All Rights Reserved.

Alternatively, the contents of this file may be used under theterms of the GNU General
Public License version 2 (the ”GPL”), in which case the provisions of the GPL are
applicable instead of the above. If you wish to allow the use of your version of this file
only under the terms of the GPL and not to allow others to use your version of this file
under the MPL, indicate your decision by deleting the provisions above and replace
them with the notice and other provisions required by the GPL. If you do not delete the
provisions above, a recipient may use your version of this file under either the MPL or
the GPL.

4.12.2 Variable Documentation

4.12.2.1 const long channelfrequency[ ]

Initial value:

{
2412, 2417, 2422, 2427, 2432, 2437, 2442,
2447, 2452, 2457, 2462, 2467, 2472, 2484

}

4.13 orinoco.h File Reference

Linux file ported to QNX4 orinoco.h.

Data Structures

� structorinoco key
� structorinocoprivate
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Linux orinocoprivate structure was used with the addition of a few QNX specific
fields for inter-process communication.

Defines

� #defineWIRELESS SPY
� #defineORINOCO MAX KEY SIZE 14
� #defineORINOCO MAX KEYS 4
� #defineORINOCO STATE INIRQ 0
� #defineORINOCO STATE DOIRQ 1
� #defineFIRMWARE TYPE AGERE 1
� #defineFIRMWARE TYPE INTERSIL 2
� #defineFIRMWARE TYPE SYMBOL 3
� #defineDEBUG(lvl, fmt, var) do � � while (0)
� #defineTRACE ENTER(devname) DEBUG(2, ”enter %s�n”, devname);
� #defineTRACE EXIT (devname) DEBUG(2, ”exit %s�n”, devname);
� #defineRUP EVEN(a) ( (a) % 2 ? (a) + 1 : (a) )

Typedefs

� typedef orinocokeyorinoco key t
� typedef orinocokey t orinoco keys t [ORINOCO MAX KEYS]

Functions

� net device� alloc orinocodev(int sizeofcard)
� void orinoco shutdown (structorinocoprivate�dev)
� int orinoco reset(structorinocoprivate�dev)
� int orinoco proc dev init (structorinocoprivate�dev)
� void orinoco proc dev cleanup(structorinocoprivate�priv)
� void orinoco interrupt (int irq, void �dev id, struct ptregs�regs)
� int orinoco standaloneioctls (struct netdevice�netdev)

Variables

� list headorinoco instances

4.13.1 Detailed Description

Linux file ported to QNX4 orinoco.h.

Common definitions to all pieces of the various orinoco drivers
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4.14 showhermes.c File Reference

Standalone program to print Orinoco registers.

#include
�
unistd.h�

#include
�
stdio.h�

#include
�
stdlib.h�

#include "hermes.h"

#include "hermes rid.h"

Defines

� #defineUSER BAP 0
� #defineDREG(name) fprintf(stdout,”%-16s: %04x�n”, #name, inpw(base +

(HERMES##name)))

Functions

� int main (int argc, char�argv[ ], char�envp[ ])

4.14.1 Detailed Description

Standalone program to print Orinoco registers.

4.15 skbuff.c File Reference

Simplified version of Linux skbuff routines for QNX 4.

#include
�
linux compat.h�

#include
�
sys/types.h�

#include
�
linux/netdevice.h�

#include
�
malloc.h�

#include
�
string.h�

#include
�
linux/skbuff.h�

#include
�
stdio.h�
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Functions

� void show net buffers (void)
� sk buff � alloc skb(unsigned int size, int priority)
� void kfree skbmem(struct skbuff �skb)
� void kfree skbmem(struct skbuff �skb)
� int skb queueempty(struct skbuff head�list)
� sk buff � skb get(struct skbuff �skb)
� void kfree skb (struct skbuff �skb)
� void kfree skb(struct skbuff �skb)
� int skb cloned(struct skbuff �skb)
� int skb shared(struct skbuff �skb)
� sk buff � skb peek(struct skbuff head�list )
� sk buff � skb peektail (struct skbuff head�list )
� u32skb queuelen (struct skbuff head�list )
� void skb queuehead init (struct skbuff head�list)
� void skb queuehead(struct skbuff head�list, struct skbuff �newsk)
� void skb queuehead(struct skbuff head�list, struct skbuff �newsk)
� void skb queuetail (struct skbuff head�list, struct skbuff �newsk)
� void skb queuetail (struct skbuff head�list, struct skbuff �newsk)
� sk buff � skb dequeue(struct skbuff head�list)
� sk buff � skb dequeue(struct skbuff head�list)
� void skb insert (struct skbuff �newsk, struct skbuff �prev, struct skbuff
�next, struct skbuff head�list)

� void skb insert(struct skbuff �old, struct skbuff �newsk)
� void skb append(struct skbuff �old, struct skbuff �newsk)
� void skb append(struct skbuff �old, struct skbuff �newsk)
� void skb unlink (struct skbuff �skb, struct skbuff head�list)
� void skb unlink (struct skbuff �skb)
� sk buff � skb dequeuetail (struct skbuff head�list)
� sk buff � skb dequeuetail (struct skbuff head�list)
� int skb is nonlinear (const struct skbuff �skb)
� int skb headlen(const struct skbuff �skb)
� unsigned char� skb put (struct skbuff �skb, unsigned int len)
� unsigned char� skb put (struct skbuff �skb, unsigned int len)
� unsigned char� skb push (struct skbuff �skb, unsigned int len)
� unsigned char� skb push(struct skbuff �skb, unsigned int len)
� char� skb pull (struct skbuff �skb, unsigned int len)
� unsigned char� skb pull (struct skbuff �skb, unsigned int len)
� int skb headroom(const struct skbuff �skb)
� int skb tailroom(const struct skbuff �skb)
� void skb reserve(struct skbuff �skb, unsigned int len)
� void skb trim (struct skbuff �skb, unsigned int len)
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� void skb trim (struct skbuff �skb, unsigned int len)
� void skb orphan(struct skbuff �skb)
� void skb queuepurge(struct skbuff head�list)
� void skb queuepurge(struct skbuff head�list)
� sk buff � dev alloc skb(unsigned int length, int gfpmask)
� sk buff � dev alloc skb(unsigned int length)
� sk buff � skb clone(struct skbuff �skb, int priority)
� sk buff � skb copy(struct skbuff �skb, int priority)

Variables

� atomic t net skbcount = 0
� atomic t net locked= 0
� atomic t net allocs= 0
� atomic t net fails = 0
� atomic t net free locked= 0
� atomic t ip frag mem

4.15.1 Detailed Description

Simplified version of Linux skbuff routines for QNX 4.

Derived by Sue Dickey, from the routines in the Linux net/core source by Alan Cox and
Florian La Roche. Simplified to compile under WATCOM and remove Linux kernel
specific memory handling.

4.15.2 Function Documentation

4.15.2.1 struct skbuff � dev alloc skb (unsigned int length, int gfp mask)

dev alloc skb - allocate an skbuff for sending : length to allocate : getfree pages
mask, passed to allocskb

Allocate a new &skbuff and assign it a usage count of one. The buffer has unspecified
headroom built in. Users should allocate the headroom they think they need without
accounting for the built in space. The built in space is used for optimisations.

NULL is returned in there is no free memory.

4.15.2.2 void kfree skbmem (struct sk buff � skb)

Free an skbuff by memory.
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4.15.2.3 struct skbuff � skb dequeue (struct skbuff head� list)

skb dequeue - remove from the head of the queue : list to dequeue from

Remove the head of the list. This function does not take any locks so must be used with
appropriate locks held only. The head item is returned or NULL if the list is empty.

4.15.2.4 struct skbuff � skb dequeuetail (struct sk buff head� list)

skb dequeuetail - remove from the tail of the queue : list to dequeue from

Remove the tail of the list. This function does not take any locks so must be used with
appropriate locks held only. The tail item is returned or NULL if the list is empty.

4.15.2.5 void skb queue head (struct sk buff head � list, struct sk buff �
newsk)

skb queuehead - queue a buffer at the list head : list to use : buffer to queue

Queue a buffer at the start of a list. This function takes no locks and you must therefore
hold required locks before calling it.

A buffer cannot be placed on two lists at the same time.

4.15.2.6 void skb queuepurge (struct sk buff head� list)

skb purge - empty a list : list to empty

Delete all buffers on an &skbuff list. Each buffer is removed from the list and one
reference dropped. This function does not take the list lockand the caller must hold
the relevant locks to use it.

4.15.2.7 void skb queue tail (struct sk buff head � list, struct sk buff � newsk)

skb queuetail - queue a buffer at the list tail : list to use : buffer to queue

Queue a buffer at the end of a list. This function takes no locks and you must therefore
hold required locks before calling it.

A buffer cannot be placed on two lists at the same time.

4.15.2.8 struct skbuff � alloc skb (unsigned intsize, int priority)

Allocate a new skbuff.

We do this ourselves so we can fill in a few ’private’ fields and also do memory statistics
to find all the [BEEP] leaks.
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QNX 4: removed Linux-dependent interrupt stacking check, fields not in current ver-
sion of skbuff.h

4.15.2.9 struct skbuff � dev alloc skb (unsigned int length)

dev alloc skb - allocate an skbuff for sending : length to allocate

Allocate a new &skbuff and assign it a usage count of one. The buffer has unspecified
headroom built in. Users should allocate the headroom they think they need without
accounting for the built in space. The built in space is used for optimisations.

NULL is returned in there is no free memory. Although this function allocates memory
it can be called from an interrupt.

4.15.2.10 void kfreeskb (struct sk buff � skb)

kfree skb - free an skbuff : buffer to free

Drop a reference to the buffer and free it if the usage count has hit zero.

4.15.2.11 void skbappend (struct sk buff � old, struct sk buff � newsk)

skb append - append a buffer : buffer to insert after : buffer to insert

Place a packet after a given packet in a list. The list locks are taken and this function is
atomic with respect to other list locked calls. A buffer cannot be placed on two lists at
the same time.

4.15.2.12 int skbcloned (struct sk buff � skb)

skb cloned - is the buffer a clone : buffer to check

Returns true if the buffer was generated withskb clone()and is one of multiple shared
copies of the buffer. Cloned buffers are shared data so must not be written to under
normal circumstances.

4.15.2.13 struct skbuff � skb copy (struct sk buff � skb, int priority)

This is slower, and copies the whole data area.

4.15.2.14 struct skbuff � skb dequeue (struct skbuff head � list)

skb dequeue - remove from the head of the queue : list to dequeue from

Remove the head of the list. The list lock is taken so the function may be used safely
with other locking list functions. The head item is returnedor NULL if the list is empty.
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4.15.2.15 struct skbuff � skb dequeuetail (struct sk buff head� list)

skb dequeue - remove from the head of the queue : list to dequeue from

Remove the head of the list. The list lock is taken so the function may be used safely
with other locking list functions. The tail item is returnedor NULL if the list is empty.

4.15.2.16 struct skbuff � skb get (struct sk buff � skb)

skb get - reference buffer : buffer to reference

Makes another reference to a socket buffer and returns a pointer to the buffer.

4.15.2.17 int skbheadroom (const struct skbuff � skb)

skb headroom - bytes at buffer head : buffer to check

Return the number of bytes of free space at the head of an &skbuff.

4.15.2.18 void skbinsert (struct sk buff � old, struct sk buff � newsk)

skb insert - insert a buffer : buffer to insert before : buffer to insert

Place a packet before a given packet in a list. The list locks are taken and this function
is atomic with respect to other list locked calls A buffer cannot be placed on two lists
at the same time.

4.15.2.19 void skborphan (struct sk buff � skb)

skb orphan - orphan a buffer : buffer to orphan

If a buffer currently has an owner then we call the owner’s destructor function and
make the unowned. The buffer continues to exist but is no longer charged to its former
owner.

4.15.2.20 struct skbuff � skb peek (struct sk buff head � list )

skb peek : list to peek at

Peek an &skbuff. Unlike most other operations youMUST be careful with this one.
A peek leaves the buffer on the list and someone else may run off with it. You must
hold the appropriate locks or have a private queue to do this.

Returns NULL for an empty list or a pointer to the head element. The reference count
is not incremented and the reference is therefore volatile.Use with caution.

4.15.2.21 struct skbuff � skb peek tail (struct sk buff head � list )
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skb peektail : list to peek at

Peek an &skbuff. Unlike most other operations youMUST be careful with this one.
A peek leaves the buffer on the list and someone else may run off with it. You must
hold the appropriate locks or have a private queue to do this.

Returns NULL for an empty list or a pointer to the tail element. The reference count is
not incremented and the reference is therefore volatile. Use with caution.

4.15.2.22 unsigned char� skb pull (struct sk buff � skb, unsigned int len)

skb pull - remove data from the start of a buffer : buffer to use : amount of data to
remove

This function removes data from the start of a buffer, returning the memory to the
headroom. A pointer to the next data in the buffer is returned. Once the data has been
pulled future pushes will overwrite the old data.

4.15.2.23 unsigned char� skb push (struct sk buff � skb, unsigned int len)

skb push - add data to the start of a buffer : buffer to use : amount of data to add

This function extends the used data area of the buffer at the buffer start. If this would
exceed the total buffer headroom the kernel will panic. A pointer to the first byte of the
extra data is returned.

4.15.2.24 unsigned char� skb put (struct sk buff � skb, unsigned int len)

skb put - add data to a buffer : buffer to use : amount of data to add

This function extends the used data area of the buffer. If this would exceed the total
buffer size the kernel will panic. A pointer to the first byte of the extra data is returned.

4.15.2.25 int skbqueueempty (struct sk buff head � list)

skb queueempty - check if a queue is empty : queue head

Returns true if the queue is empty, false otherwise.

4.15.2.26 void skbqueuehead (struct sk buff head� list, struct sk buff � newsk)

skb queuehead - queue a buffer at the list head : list to use : buffer to queue

Queue a buffer at the start of the list. This function takes the list lock and can be used
safely with other locking &skbuff functions safely.

A buffer cannot be placed on two lists at the same time.
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4.15.2.27 u32 skb queue len (struct sk buff head � list )

skb queuelen - get queue length : list to measure

Return the length of an &skbuff queue.

4.15.2.28 void skbqueuepurge (struct sk buff head � list)

skb purge - empty a list : list to empty

Delete all buffers on an &skbuff list. Each buffer is removed from the list and one
reference dropped. This function takes the list lock and is atomic with respect to other
list locking functions.

4.15.2.29 void skbqueue tail (struct sk buff head � list, struct sk buff � newsk)

skb queuetail - queue a buffer at the list tail : list to use : buffer to queue

Queue a buffer at the tail of the list. This function takes thelist lock and can be used
safely with other locking &skbuff functions safely.

A buffer cannot be placed on two lists at the same time.

4.15.2.30 void skbreserve (struct sk buff � skb, unsigned int len)

skb reserve - adjust headroom : buffer to alter : bytes to move

Increase the headroom of an empty &skbuff by reducing the tail room. This is only
allowed for an empty buffer.

4.15.2.31 int skbshared (struct sk buff � skb)

skb shared - is the buffer shared : buffer to check

Returns true if more than one person has a reference to this buffer.

4.15.2.32 int skbtailroom (const struct sk buff � skb)

skb tailroom - bytes at buffer end : buffer to check

Return the number of bytes of free space at the tail of an skbuff

4.15.2.33 void skbtrim (struct sk buff � skb, unsigned int len)

skb trim - remove end from a buffer : buffer to alter : new length

Cut the length of a buffer down by removing data from the tail.If the buffer is already
under the length specified it is not modified.
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4.15.2.34 void skbunlink (struct sk buff � skb)

skb unlink - remove a buffer from a list : buffer to remove

Place a packet after a given packet in a list. The list locks are taken and this function is
atomic with respect to other list locked calls

Works even without knowing the list it is sitting on, which can be handy at times. It
also means that THE LIST MUST EXIST when you unlink. Thus a list must have its
contents unlinked before it is destroyed.

4.16 timer.c File Reference

Replacement version of linux timer.c using QNX timers.

#include
�
stdio.h�

#include
�
stdlib.h�

#include
�
errno.h�

#include
�
signal.h�

#include
�
time.h�

#include
�
linux compat.h�

#include
�
linux/timer.h�

Functions

� void init timer (timer list t �timer)
� void add timer (timer list t �timer)
� void del timer (timer list t �timer)
� int mod timer (timer list t �timer, unsigned long expires)

4.16.1 Detailed Description

Replacement version of linux timer.c using QNX timers.

4.17 traceinit.c File Reference

Standalone program to do card reset and print firmware settings.

#include
�
unistd.h�

#include
�
stdio.h�
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#include
�
stdlib.h�

#include
�
sys/inline.h�

#include
�
sys/types.h�

#include
�
errno.h�

#include
�
linux compat.h�

#include
�
linux/socket.h�

#include
�
linux/if.h�

#include
�
linux/skbuff.h�

#include
�
linux/netdevice.h�

#include
�
linux/if arp.h�

#include
�
linux/etherdevice.h�

#include
�
linux/wireless.h�

#include "hermes.h"

#include "hermes rid.h"

#include "orinoco.h"

Defines

� #defineUSER BAP 0
� #defineDREG(name) fprintf(stdout,”%-16s: %04x�n”, #name, inpw(base +

(HERMES##name)))

Functions

� int main (int argc, char�argv[ ], char�envp[ ])

4.17.1 Detailed Description

Standalone program to do card reset and print firmware settings.

4.18 tracehermes.c File Reference

Trace routines for Hermes Records ID (RID) tables, calls to the routines can be added
as needed during debugging to hermes.c.
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#include
�
linux compat.h�

#include
�
errno.h�

#include "hermes.h"

#include "hermes rid.h"

Data Structures

� structrecord info

Defines

� #defineNUM STATIC RIDS (sizeof(staticcfg rid table) / sizeof(record-
info t))

� #define NUM DYNAMIC RIDS (sizeof(dynamiccfg rid table) /
sizeof(recordinfo t))

� #defineNUM NIC INFO RIDS (sizeof(nicinfo rid table) / sizeof(record-
info t))

� #defineNUM MAC INFO RIDS (sizeof(macinfo rid table) / sizeof(record-
info t))

� #define NUM MODEM INFO RIDS (sizeof(modeminfo rid table) /
sizeof(recordinfo t))

� #defineHERMES TRACE MAX FIELD SIZE 34

Typedefs

� typedef recordinfo record info t

Functions

� void hermes trace show rid table (hermest �hw, recordinfo t �rid table, int
num rids)

� void hermes trace static cfg (hermest �hw)
� void hermes trace dynamic cfg (hermest �hw)
� void hermes trace nic info (hermest �hw)
� void hermes trace mac info (hermest �hw)
� void hermes trace modem info (hermest �hw)
� EXPORT SYMBOL (hermestracestatic cfg)
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Variables

� recordinfo t static cfg rid table [ ]
� recordinfo t dynamic cfg rid table [ ]
� recordinfo t nic info rid table [ ]
� recordinfo t mac info rid table [ ]
� recordinfo t modem info rid table [ ]

4.18.1 Detailed Description

Trace routines for Hermes Records ID (RID) tables, calls to the routines can be added
as needed during debugging to hermes.c.

4.18.2 Variable Documentation

4.18.2.1 recordinfo t dynamic cfg rid table[ ]

Initial value:

{
{HERMES_RID_CNFGROUPADDRESSES, 0, "CNFGROUPADDRESSES"},
{HERMES_RID_CNFCREATEIBSS, 0, "CNFCREATEIBSS"},
{HERMES_RID_CNFFRAGMENTATIONTHRESHOLD, 0, "CNFFRAGMENTATIONTHRESHOLD"},
{HERMES_RID_CNFRTSTHRESHOLD, 0, "CNFRTSTHRESHOLD"},
{HERMES_RID_CNFTXRATECONTROL, 0, "CNFTXRATECONTROL"},
{HERMES_RID_CNFPROMISCUOUSMODE, 0, "CNFPROMISCUOUSMODE"},
{HERMES_RID_CNFBASICRATES_SYMBOL, 0, "CNFBASICRATES_SYMBOL"},
{HERMES_RID_CNFPREAMBLE_SYMBOL, 0, "CNFPREAMBLE_SYMBOL"},
{HERMES_RID_CNFFRAGMENTATIONTHRESHOLD0, 0, "CNFFRAGTHRESHOLD0"},
{HERMES_RID_CNFRTSTHRESHOLD0, 0, "CNFRTSTHRESHOLD0"},
{HERMES_RID_CNFSHORTPREAMBLE, 0, "CNFSHORTPREAMBLE"},
{HERMES_RID_CNFWEPKEYS_AGERE, 0, "CNFWEPKEYS_AGERE"},
{HERMES_RID_CNFEXCLUDELONGPREAMBLE, 0, "CNFEXCLUDELONGPREAMBLE"},
{HERMES_RID_CNFTXKEY_AGERE, 0, "CNFTXKEY_AGERE"},
{HERMES_RID_CNFAUTHENTICATIONRSPTO, 0, "CNFAUTHENTICATIONRSPTO"},
{HERMES_RID_CNFBASICRATES, 0, "CNFBASICRATES"},
{HERMES_RID_CNFSUPPORTEDRATES, 0, "CNFSUPPORTEDRATES"},
{HERMES_RID_CNFTICKTIME, 0, "CNFTICKTIME"},
{HERMES_RID_CNFSCANREQUEST, 0, "CNFSCANREQUEST"},
{HERMES_RID_CNFJOINREQUEST, 0, "CNFJOINREQUEST"},
{HERMES_RID_CNFAUTHENTICATESTATION, 0, "CNFAUTHENTICATESTATION"},
{HERMES_RID_CNFCHANNELINFOREQUEST, 0, "CNFCHANNELINFOREQUEST"},
{HERMES_RID_MAXLOADTIME, 0, "MAXLOADTIME"},
{HERMES_RID_DOWNLOADBUFFER, 0, "DOWNLOADBUFFER"},

}
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4.18.2.2 recordinfo t mac info rid table[ ]

Initial value:

{
{HERMES_RID_PORTSTATUS, 0, "PORTSTATUS"},
{HERMES_RID_CURRENTSSID, 0, "CURRENTSSID"},
{HERMES_RID_CURRENTBSSID, 0, "CURRENTBSSID"},
{HERMES_RID_COMMSQUALITY, 0, "COMMSQUALITY"},
{HERMES_RID_CURRENTTXRATE, 0, "CURRENTTXRATE"},
{HERMES_RID_CURRENTBEACONINTERVAL, 0, "CURRENTBEACONINTERVAL"},
{HERMES_RID_CURRENTSCALETHRESHOLDS, 0, "CURRENTSCALETHRESHOLDS"},
{HERMES_RID_PROTOCOLRSPTIME, 0, "PROTOCOLRSPTIME"},
{HERMES_RID_SHORTRETRYLIMIT, 0, "SHORTRETRYLIMIT"},
{HERMES_RID_LONGRETRYLIMIT, 0, "LONGRETRYLIMIT"},
{HERMES_RID_MAXTRANSMITLIFETIME, 0, "MAXTRANSMITLIFETIME"},
{HERMES_RID_MAXRECEIVELIFETIME, 0, "MAXRECEIVELIFETIME"},
{HERMES_RID_CFPOLLABLE, 0, "CFPOLLABLE"},
{HERMES_RID_AUTHENTICATIONALGORITHMS, 0, "AUTHENTICATIONALGORITHMS"},
{HERMES_RID_PRIVACYOPTIONIMPLEMENTED, 0, "PRIVACYOPTIONIMPLEMENTED"},
{HERMES_RID_CURRENTTXRATE6, 0, "CURRENTTXRATE6"},
{HERMES_RID_OWNMACADDR, 0, "OWNMACADDR"},
{HERMES_RID_SCANRESULTSTABLE, 0, "SCANRESULTSTABLE"},

}

4.18.2.3 recordinfo t modem info rid table[ ]

Initial value:

{
{HERMES_RID_PHYTYPE, 0, "PHYTYPE"},
{HERMES_RID_CURRENTCHANNEL, 0, "CURRENTCHANNEL"},
{HERMES_RID_CURRENTPOWERSTATE, 0, "CURRENTPOWERSTATE"},
{HERMES_RID_CCAMODE, 0, "CCAMODE"},
{HERMES_RID_SUPPORTEDDATARATES, 0, "SUPPORTEDDATARATES"},
{HERMES_RID_BUILDSEQ, 0, "BUILDSEQ"},
{HERMES_RID_FWID, 0, "FWID"},

}

4.18.2.4 recordinfo t nic info rid table[ ]

Initial value:

{
{HERMES_RID_PRIID, 0, "PRIID"},
{HERMES_RID_PRISUPRANGE, 0, "PRISUPRANGE"},
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{HERMES_RID_CFIACTRANGES, 0, "CFIACTRANGES"},
{HERMES_RID_NICSERNUM, 0, "NICSERNUM"},
{HERMES_RID_NICID, 0, "NICID"},
{HERMES_RID_MFISUPRANGE, 0, "MFISUPRANGE"},
{HERMES_RID_CFISUPRANGE, 0, "CFISUPRANGE"},
{HERMES_RID_CHANNELLIST, 0, "CHANNELLIST"},
{HERMES_RID_REGULATORYDOMAINS, 0, "REGULATORYDOMAINS"},
{HERMES_RID_TEMPTYPE, 0, "TEMPTYPE"},
{HERMES_RID_CIS, 0, "CIS"},
{HERMES_RID_STAID, 0, "STAID"},
{HERMES_RID_STASUPRANGE, 0, "STASUPRANGE"},
{HERMES_RID_MFIACTRANGES, 0, "MFIACTRANGES"},
{HERMES_RID_CFIACTRANGES2, 0, "CFIACTRANGES2"},
{HERMES_RID_SECONDARYVERSION_SYMBOL, 0, "SECONDARYVERSION_SYMBOL"},

}
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