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We present the first data on e+e− pair production accompanied by nuclear breakup in ultra-
peripheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear
breakup requirement selects events at small impact parameters, where higher-order corrections to
the pair production cross section should be enhanced. We compare the pair kinematic distributions
with two calculations: one based on the equivalent photon approximation, and the other using
lowest-order quantum electrodynamics (QED); the latter includes the photon virtuality. The cross
section, pair mass, rapidity and angular distributions are in good agreement with both calculations.
The pair transverse momentum, pT , spectrum agrees with the QED calculation, but not with the
equivalent photon approach. We set limits on higher-order contributions to the cross section. The
e+ and e− pT spectra are similar, with no evidence for interference effects due to higher-order
diagrams.

Electron-positron pairs are copiously produced by pho- ton interactions in the strong electromagnetic fields of
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fully stripped colliding heavy nuclei (cf. Fig. 1); the field
strength at the surface of the ions reaches 1020 V/cm!
At a center of mass energy of

√
sNN = 200 GeV per nu-

cleon pair, the production cross section is expected to be
33,000 b, or 4,400 times the hadronic cross section [1, 2].

The electromagnetic fields are strong enough, with cou-
pling Zα ≈ 0.6, (Z is the nuclear charge and α ≈ 1/137
the fine-structure constant), that conventional perturba-
tive calculations of the process are questionable. Many
groups have studied higher-order calculations of pair pro-
duction. Some early coupled-channel calculations pre-
dicted huge (order-of-magnitude) enhancements in the
cross section [3] compared to the leading-order perturba-
tive calculations.

Ivanov, Schiller and Serbo [4] followed the Bethe-
Maximon approach [5], and found that at RHIC,
Coulomb corrections to account for pair production in
the electromagnetic potential of the ions reduce the cross
section by 25% compared to the lowest-order result. For
high-energy real photons incident on a heavy atom, these
Coulomb corrections are independent of the photon en-
ergy and depend only weakly on the pair mass [5]. How-
ever, for photons with intermediate energies, there is a
pair-mass dependence, and also a difference between the
e+ and e− spectra due to interference between different
order terms [6].

In contrast, initial all-orders calculations based on solv-
ing the Dirac equation exactly in the ultra-relativistic
limit [7] found results that match the lowest-order per-
turbative result [8]. However, improved all-orders calcu-
lations have agreed with the Coulomb corrected calcula-
tion [9]. These all-orders calculations do not predict the
kinematic distributions of the produced pairs.

Any higher-order corrections should be the largest
close to the nuclei, where the photon densities are largest.
These high-density regions have the largest overlap at
small ion-ion impact parameters, b. Small-b collisions can
be selected by choosing events where the nuclei undergo
Coulomb excitation, followed by dissociation. The disso-
ciation also provides a convenient experimental trigger.
Pair production accompanied by mutual Coulomb exci-
tation should occur at smaller b, and have larger higher-
order corrections than for unaccompanied pairs.

Previous measurements of e+e− pair production were
at much lower energies [10, 11]. The cross sections, pair
masses, angular and pT distributions generally agreed
with the leading-order QED perturbative calculations.
These studies did not require that the nuclei break up,
and so covered a wide range of impact parameters.

This letter reports on electromagnetic production of
e+e− pairs accompanied by Coulomb nuclear breakup
in

√
sNN = 200 GeV per nucleon pair Au-Au collisions

[12], as is shown in Fig. 1. An e+e− pair is produced
from two photons, while the nuclei exchange additional,
independent photons, which break up the nuclei. We
require that there be no hadronic interactions, which is

Au

e

Au*

Au

e

+

Au*

−

FIG. 1: Schematic QED lowest-order diagram for e+e− pro-
duction accompanied by mutual Coulomb excitation. The
dashed line shows the factorization into mutual Coulomb ex-
citation and e+e− production.

roughly equivalent to setting the minimum impact pa-
rameter bmin at twice the nuclear radius, RA, i.e. about
13 fm. The Coulomb nuclear breakup requirement selects
moderate impact parameter collisions (2RA < b <≈ 30
fm) [13, 14]. Except for the common impact parameter,
the mutual Coulomb dissociation is independent of the
e+e− production [15, 16]. The cross section is

σ(AuAu → Au∗Au∗e+e−) =

∫
d2bPee(b)P2EXC(b) (1)

where Pee(b) and P2EXC(b) are the probabilities of e+e−

production and mutual excitation, respectively at im-
pact parameter b. The decay of the excited nucleus usu-
ally involves neutron emission. P2EXC(b) is based on
experimental studies of neutron emission in photodisso-
ciation [17]. For small b, a leading-order calculation of
P2EXC(b) may exceed 1. A unitarization procedure is
used to correct P2EXC(b) to account for multiple inter-
actions [14, 17].

The most common excitation is a giant dipole reso-
nance (GDR). GDRs usually decay by single neutron
emission. Other resonances decay to final states with
higher neutron multiplicities. In mutual Coulomb disso-
ciation, each nucleus emits a photon which dissociates the
other nucleus. The neutrons are a distinctive signature
for nuclear breakup.

We consider two different pair production calculations
for Pee(b). The first uses the equivalent photon approach
(EPA) [1], which is commonly used to study photopro-
duction. The photon flux from each nucleus is calculated
using the Weizsäcker-Williams method. The photons are
treated as if they were real [2]. The e+e− pair produc-
tion is then calculated using the lowest-order diagram
[18]. The photon pT spectrum for a photon with energy
k is given by [19, 20]

dN

dpT

≈ F 2(k2/γ2 + p2
T )p2

T

π2(k2/γ2 + p2
T )2

(2)
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where F is the nuclear form factor and γ is the Lorentz
boost of a nucleus in the laboratory frame. This calcula-
tion uses a Woods-Saxon distribution with a gold radius
of 6.38 fm and a 0.535 fm skin thickness [21]. The indi-
vidual photon pT are added in quadrature to give the pair
pT . This is a minor simplification, but should have little
effect on the result. For e+e− pairs visible in STAR, the
typical photon pT ≈ 3 MeV/c, for a pair pT ≈ 5 MeV/c.

The second calculation is a lowest-order quantum elec-
trodynamics (QED) calculation for pair production [22].
The main difference between this calculation and the
EPA approach is that the QED calculation includes pho-
ton virtuality. In the relevant kinematic range, the re-
sults of the calculations differ mainly in the pair pT spec-
trum [23]. In the QED calculation, the pair pT is peaked
at 20 MeV/c, higher than with the EPA.

One unavoidable difficulty in studying this reaction at
an ion collider is that e+e− pairs are dominantly pro-
duced with a forward-backward topology. The angle be-
tween the electron momentum and the two-photon axis
in the two-photon rest frame, θ∗, is usually small. Only a
small fraction of the pairs are visible in a central detector,
limiting the statistics.

This analysis presents data taken in 2001 with the
Solenoidal Tracker at RHIC (STAR) detector at the Rel-
ativistic Heavy Ion Collider (RHIC). Tracks were recon-
structed in a large cylindrical time projection chamber
(TPC) [24] embedded in a solenoidal magnetic field. The
track position and specific energy loss (dE/dx) were mea-
sured at 45 points at radii between 60 and 189 cm from
the collision point. Many of the tracks used in this analy-
sis had low transverse momenta, pT , and curved strongly
in the magnetic field, and therefore had less than 45 re-
constructable points. This analysis used data taken in a
0.25 T magnetic field (half the usual value).

This analysis used about 800,000 events selected by a
minimum bias trigger [25]. This trigger selected events
where both gold nuclei broke up, by detecting events with
one or more neutrons in zero degree calorimeters (ZDCs)
[26] upstream and downstream of the collision point. The
two ZDC hits were required to be within 1 nsec of each
other. With the beam conditions and ZDC resolution,
this selected events along the beam line within ≈ 30 cm
of the detector center.

The signature for e+e− production is two recon-
structed tracks which formed a primary vertex along the
beamline and which had specific energy losses consistent
with those of electrons. This analysis considered events
with less than 5 reconstructed tracks. The tracks were
projected from the TPC toward the beamline. Tracks
that passed within 3.9 cm of the beam interaction region
(in the xy plane) were used to find the primary vertex.
The vertex position was the best-fit intersection of the
tracks. The uncertainties on the vertex position were
dominated by multiple scattering. If any track had a
distance of closest approach (DCA) to the vertex greater

than 4.0 cm, the track with the largest DCA was removed
and the vertex refit. This process continued until all of
the tracks had DCAs less than 4.0 cm. The analysis ac-
cepted events with a vertex containing exactly 2 tracks.
Up to two additional non-vertex tracks were allowed in
the event, to account for random backgrounds.

Tracks were required to have pT > 65 MeV/c and pseu-
dorapidity |η| < 1.15. In this region, the tracking effi-
ciency was above 80%. Tracks were also required to have
momenta p < 130 MeV/c, where dE/dx allowed good
electron/hadron separation. In this region, the identi-
fication efficiency was almost 100%, with minimal con-
tamination. Pairs were required to have masses 140 MeV
< Mee < 265 MeV. The pair mass spectrum falls steeply
with increasing Mee, so few leptons from pairs were ex-
pected with higher momenta. Pairs were required to have
pT < 100 MeV/c and rapidity |Y | < 1.15. The pair cuts
remove a very few background events, but leave the signal
intact. These cuts selected a sample of 52 events.

The data were corrected for efficiency using simulated
events based on the equivalent photon calculation and the
standard STAR detector simulation and reconstruction
programs. The distributions of the number of hits and
track fit quality, the vertex radial positions and track
distance of closest approach matched in the data and
simulations [12].

The resolutions were found to be 0.017 for pair rapid-
ity, 0.01 for track rapidity and 6 MeV for pair mass. The
pair pT resolution varied slightly with pT , but averaged
about 4 MeV/c. After accounting for this pT smearing,
the efficiency was found to be independent of pT .

There are two backgrounds in this analysis. Incoher-
ent (mostly hadronic) backgrounds produce both like-
sign and unlike-sign pairs, at a wide range of pT . Based
on a study of like-sign and of higher pT pairs, we estimate
that this background is 1 event. Coherent backgrounds
are due to photoproduction of mis-identified π+π− pairs
on one of the nuclei. This background is peaked at
higher Mee than real e+e− pairs. From the known ρ0

and direct π+π− cross sections [13, 21], and electron
mis-identification probabilities, the contamination is es-
timated to be less than 0.1 events. Backgrounds from
other electromagnetic processes should be even smaller.
The background from cosmic rays is suppressed to a neg-
ligible level by the ZDC coincidence requirement.

The luminosity was determined by counting hadronic
interactions with at least 8 charged tracks. This criteria
selects 80% of all hadronic gold-gold interactions [12, 27].
After compensating for the different neutron multiplici-
ties in the hadronic and e+e− samples (the ZDC timing
resolution depends on the number of neutrons) and as-
suming a total hadronic cross section of 7.2 barns [13],
we find a total integrated luminosity of 94 ± 9 mb−1.

The major systematic errors were due to uncertainties
in the tracking efficiency (6.4% per track, or 13% total),
vertexing (8.5%) and in the luminosity (10%) [12]. The
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FIG. 2: (a) The pair mass distribution, (b) pair pT , (c) pair rapidity and (d) pair cos(θ′) distributions. The data (points) are
compared with predictions from the EPA (solid histogram) and lowest-order QED (dashed histogram) calculations. The error
bars include both statistical and systematic errors.

uncertainties due to backgrounds and particle identifica-
tion were much smaller and are neglected. These uncer-
tainties were added in quadrature, giving a 18.5% total
systematic uncertainty.

Figure 2a shows the cross section for Au Au→ Au∗Au∗

e+e− as a function of pair mass, within our kinematic
fiducial region: track pT > 65 MeV/c, track pseudora-
pidity |η| < 1.15, pair rapidity |Y | < 1.15 and pair mass
140 MeV < Mee < 265 MeV. The data are compared to
the equivalent photon (solid) and QED (dotted) calcula-
tions. Monte Carlo events were generated using the two
calculations, and then filtered to match the acceptances
used here. Both calculations match the pair mass data.

Figure 2b shows the cross section as a function of pair
pT . The equivalent photon (solid) and QED (dashed)
calculations are very different for pT < 15 MeV/c. The
difference is due to the inclusion of the photon virtuality
in the QED calculation. The data agree with the QED
calculation, but not with the equivalent photon calcula-
tion.

Figure 2c shows the cross section as a function of pair
rapidity. The broad peak around Y = 0 is due to the de-
tector acceptance. Selecting tracks with pseudorapidities
|η| < 1.15 preferentially chooses events with small pair
rapidity. The data agrees with both calculations.

Figure 2d shows the angular distribution cos(θ′) be-
tween the e+ momentum and the beam axis, in the pair
rest frame. There is a small (usually < 5 mrad) differ-
ence between θ′ and θ∗ since the photon pT rotates the
γγ rest frame slightly with respect to the beam axis. The
distribution in Fig. 2d is the convolution of the detector
acceptance (largest at small cos(θ′)) with the production
distribution, which is peaked at large cos(θ′). The agree-
ment between the data and the calculations is good.

Within the kinematic range 140 MeV < Mee < 265
MeV, pair rapidity |Y | < 1.15, track pT > 65 MeV/c
and |η| < 1.15, we find a cross section of σ = 1.6 ±
0.2 (stat)±0.3 (syst) mb. This is in reasonable agreement
with the equivalent photon prediction of 2.1 mb and the
QED calculation of σQED = 1.9 mb. At a 90% confidence
level, higher order corrections to the cross section, ∆σ =
σ − σQED, must be within the range −0.5σQED < ∆σ <
0.2σQED.

At leading-order, the electron and positron momentum
spectra are identical. However, interference with higher
order corrections can create charge-dependent spectral
differences [6]. For some kinematic variables, 30-60%
asymmetries may occur [28]. A study of e+e− production
in sulfur-nucleus collisions at

√
sNN = 20 GeV per nu-

cleon pair found that the positrons had a higher average
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FIG. 3: The pT spectra of the produced electrons and
positrons, along with the comparable EPA and QED calcula-
tions. In both calculations, the electron and positron spectra
are identical. Spectra from the two calculations are similar;
the data agrees with both of them.

energy than the electrons [10]. Figure 3 compares the pT

spectra of the produced electron and positron; the two
spectra are very similar. No asymmetry is seen beyond
the experimental uncertainties.

In addition, we have measured the fraction of events
with a single neutron in each ZDC to be 0.06 ± 0.04 (3
out of 52). This is consistent with the single neutron
fraction observed in similarly tagged ρ photoproduction
[13], supporting the notion of independence assumed in
the factorization, Eq. (1).

In conclusion, we have observed e+e− production ac-
companied by nuclear excitation in gold on gold ion col-
lisions at a center of mass energy of 200 GeV per nucleon
pair. The cross section, pair mass and angular and rapid-
ity distributions are in agreement with two calculations,
one using equivalent photons, and the other a lowest-
order QED calculation. The pair pT spectrum agrees
with the QED calculation, but not the equivalent photon
calculation. We find that lowest-order QED describes
our data and set a limit on higher-order corrections to
the cross section, −0.5σQED < ∆σ < 0.2σQED at a 90%
confidence level. The electron and positron pT spectra
are similar, with no evidence of higher order corrections
due to interference.
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