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ABSTRACT: Polymer design requires fine control over syntheses and a thorough understanding of their macromolecular structure.
Herein, near-atomic level imaging of polymers is achieved, enabling the precise determination of one of the most important
macromolecular characteristics: molecular weight. By judiciously designing and synthesizing different linear metal(loid)-rich
homopolymers, subnanoscale polymer imaging is achieved through annular dark field-scanning transmission electron microscopy
(ADF-STEM), owing to the incorporation of high Z atoms in the side chain of the monomeric units. The molecular weight of these
polymers can be precisely determined by detecting and counting their metal(loid) atoms upon ADF-STEM imaging, at sample
concentrations as low as 10 μg·mL−1. Notably, a commonly used C, H, and O-containing polymer (i.e., poly(methyl acrylate)) that
was thus far inaccessible at the atomic scale is derivatized to allow for subnano-level imaging, thus expanding the scope of our
approach toward the atomic-level visualization of commodity polymers.

The design of soft matter with predefined properties
necessitates the (sub)nanoscale analysis of polymers,

tailored with precision for significant performance.1,2 A
fundamental characteristic of polymers is their molecular
weight (MW). The leading techniques for MW determination
are size exclusion chromatography (SEC), 1H nuclear magnetic
resonance (1H NMR), and high-resolution mass spectrometry
(HR-MS) (Scheme 1). Although well-established, these
techniques possess significant limitations when complex
systems are targeted, including organometallic3,4 and con-
jugated polymers,5,6 or complex architectures.7,8 For instance,
SEC requires the combination of suitable solvents, columns
and MW standards,9 1H NMR requires distinctive end-groups,
while topologically complex polymers, with high dispersity and
MW, are not suitable for HR-MS.10,11

Acknowledging those challenges, Junkers and colleagues
developed a universal approach to determine polymer MW
through diffusion-ordered NMR spectroscopy (DOSY), over-
coming calibration and solvent implications,12−14 while
Haddleton and Lester developed a facile strategy for MW
online monitoring through DOSY.15,16 However, for polymers
with compositional complexity and aggregation behavior in
most solvents, solid-state MW analysis is necessary. Costantini
and colleagues reported on the MW determination of
conjugated polymers, through scanning tunnelling microscopy
(STM) and vacuum electrospray deposition (ESD),6 while
another powerful example is the work from Matyjaszewski and
Sheiko who achieved in-depth analysis of high MW cylindrical
brushes using atomic force microscopy (AFM).17−19 Although
STM and AFM have provided valuable insights into the
understanding of macromolecular characteristics, they are

limited to the imaging of conjugated polymers or polymers
with very high MW and branching.

Within the scope of visual understanding of polymers,
electron microscopy (EM) techniques including (cryogenic)
transmission electron microscopy, (Cryo-) TEM, and liquid-
cell electron microscopy (LC-EM) have revolutionized the
field of polymer imaging. Exemplary are the studies from
Patterson,1,20−26 Gianneschi,27−33 Sommerdijk,34,35 and de
Jonge,36−40 among others. However, the subnano level imaging
of nonconjugated synthetic polymers has been largely
inaccessible. Apart from their structural complexity, their
elemental composition is mostly limited to C, O, H, and N,
exhibiting similarity with most TEM support grids. Con-
sequently, the low contrast obtained during conventional TEM
does not allow for precise subnano level imaging. Additionally,
their light element composition renders them challenging to
detect through atomic-level EM methods, such as annular dark
field (ADF) scanning transmission electron microscopy
(STEM), where contrast depends on the atomic num-
ber.1,41−44

Our vision was to overcome those challenges and approach
atomic-level analysis of polymers through ADF-STEM, as well
as to visualize their MW (Scheme 1), by strategically designing
the synthesis of metalloid-rich homopolymers bearing one
arsenic (As) atom per monomer unit. For that purpose, free
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radical polymerization (FRP) and reversible deactivation
radical polymerization (i.e., reversible addition−fragmentation
chain transfer polymerization, RAFT) were employed to
generate polymers with various MW and Đ values. To expand
to another polymer family and metal functionality, ferroce-
nylmethyl methacrylate was used to generate an Fe-rich
polymethacrylate. Finally, to render widely used polymers
visible on the atomic level, a poly(methyl acrylate) (PMA) was
derivatized with ferrocenecarboxylic acid, and its MW and Đ
were calculated through imaging.

Initially, an As-acrylamide monomer was synthesized
according to the literature45,46 and used to generate an As-
polyacrylamide (PAsAm) through FRP (PAsAmFRP, Figure S1,
SI). A highly dilute (50 μg·mL−1 in 0.1 M NaOH) solution of
the purified homopolymer was prepared and placed under
vacuum prior to imaging (SI). To gain a first understanding of
the As signal, we employed ADF-STEM through a double
aberration corrected JEOL ARM200F microscope, operated at
200 kV. At 3 million times magnification (×3M), bright
nanoclusters were evident (Figure S2), while at ×8M and
×12M magnification, their structure was elucidated, depicting
the randomly coiled polymer chains consisting of As atoms
(appearing as bright spots, Figure S2). To enhance sample
stability and mitigate contamination, “beam shower” was
applied prior to imaging at high magnifications.47 Although the
organic content is sensitive and prone to beam damage under
the applied conditions,46 the metalloid-rich chains remained
intact throughout imaging. An advantage of this approach is

that any potential damage to the organic components of the
polymers by the electron beam will not affect the results of the
MW analysis, as they depend only on the beam-stable metals.

Having achieved the detection of single chains and their As
atoms, we sought to visualize the MW distribution of the
polymers. Three well-defined PAsAms with targeted DPn = 50,
20, and 10 were synthesized through RAFT polymerization
(SI, Figures S3−S5), while aqueous-SEC and DOSY NMR
were employed to determine the MW of the homopolymers
after purification (Table 1).The ADF-STEM of PAsAm50,

PAsAm20 (Figure 1b), and PAsAm10 at ×8M magnification
revealed polymer chains smaller than in the case of PAsAmFRP
(Figures 1a, 2c−f, and S6−S8). Owing to the different average
chain length of the imaged polymers, the chain diameter
increased with the increase in MW (Figure 1a), while the low
Đ polymers exhibited narrow diameter distribution, compared
to PAsAmFRP. Importantly, when the As-monomer was imaged
under the same EM conditions, only individually scattered
single As atoms were detected (Figure S9).

To determine the polymer MW and Đ, the intensities of
single chains were calculated upon subtraction of their
background, while the intensity of single As atoms was used
as the calibrant, assuming a linear relationship between the
integrated ADF intensity of single atoms and very small
nanoclusters when kinematic diffraction effects dominate the
signals collected by ADF-STEM imaging (Figure S10).48−50

The same process was repeated for each sample individually in
the same session. The integrated As atoms’ intensity allowed

Scheme 1. Schematic Illustration of the Methods
Traditionally Used to Determine the MW of Polymers and
Our Approach through ADF-STEM

Table 1. Molecular Weight and Đ Values from SEC, DOSY, and STEM for the Different Metal(loid)-rich Homopolymers

Polymer Mn,SEC
a DPn,SEC

a Mw,SEC
a ĐSEC

a MWDOSY
b DPn,DOSY

b MWSTEM
c DPn,STEM

c ĐSTEM
c,d

PAsAm10 5,700 21 6,300 1.10 2,500 9 2,300 8 1.30
PAsAm20 7,900 29 8,700 1.10 6,900 25 7,500 28 1.20
PAsAm50 12,100 45 13,900 1.15 9,600 35 11,000 40 1.10
PAsAmFRP 218,000 N/A 509,000 2.30 101,700 375 113,000h 417h 1.60
PFerMMA10 5,900e 21e 8,600e 1.4e,f 3,700g 14g 3,500 13 1.40

7,100f 25f 10,200f

aAqueous-SEC, average molecular weight values expressed as MW equivalents relative to PEG/PEO standards, bin D2O/NaOH using an 80 MHz
benchtop NMR, calculated through MaDDOSY,15 cMWSTEM expressed in g·mol−1, conditions: 200 kV at ×8M magnification (and ×10M for
PAsAm10 and PFerMMA10),

dcalculated based on the literature,51 eCHCl3-SEC, average molecular weight values expressed as MW equivalents to
PS or fPMMA standards, gin CDCl3 using an 80 MHz benchtop NMR, haverage of the broad main distribution from 13,000 to 80,000 g·mol−1

(DPn = 48−295) and chains reaching up to 240,000 g·mol−1 (DPn ∼ 885).

Figure 1. (a) Histograms showing the distribution of chain diameter
for the four polymers and (b) high-resolution ADF-STEM image of
PAsAm20 (scale bar: 5 nm).
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for determination of the DPn for PAsAm50, PAsAm20, and
PAsAm10 through atom counting (Table 1, SI).

In other words, the number of As atoms in each chain
corresponded to DPn, which was used to calculate the
corresponding MWSTEM. The ĐSTEM of the polymers was
estimated according to the literature, based on standard
deviation (σ), and the relation between Đ and σ (SI).51

For the three well-defined polymers, MWSTEM was
comparable with MWSEC, while there was particularly good
agreement between STEM and DOSY for PAsAm10 and
PAsAm20 (Table 1; Figures 2a−b, S4, S5, S7, and S8).
Importantly, in contrast with DOSY, STEM can provide a
distribution of MW, representative of the nonidentical chain
lengths in a synthetic polymer sample. For PAsAm10, Mn,SEC
was significantly higher than MWDOSY because low MWs
necessitate better separation for higher accuracy. The ĐSTEM
results for PAsAm20 and PAsAm50 exhibited proximity to ĐSEC
with both approaches resulting in ĐSTEM ≤ 1.2.

To push the limits of our system, we attempted to calculate
the MWSTEM of PAsAmFRP. As expected, the STEM results
showed a nonsymmetrical distribution of As atoms per chain,
with a predominant broad MWSTEM distribution from 13,000
to ∼80,000 g·mol−1, along with the presence of high MW
species up to ∼240,000 g·mol−1, with average MWSTEM =
113,000 g·mol−1 (Figure 2b, Table 1). The ĐSTEM was 1.60,
and although lower than the corresponding ĐSEC, it illustrated
the broad MW distribution of PAsAmFRP. Samples with such
high DPn heterogeneity are highly challenging to quantitatively
analyze with accuracy from single ADF-STEM images, since
the very high MW chains might exhibit similarities with
aggregated species; thus, careful interpretation of the images is
necessary.44,52 In general, highly pure polymer samples, careful
sample preparation (i.e., suitable support grids),53,54 and
thorough pretreatment (i.e., vacuum drying, beam shower,47,55

SI) are essential requirements, especially when sensitive
samples are used.53

To expand the scope of metal functionality and polymer
type, we synthesized an Fe-rich polymethacrylate (PFerM-
MA10) (Figures 3a and S11, SI). As in the case of PAsAms, the

MWSTEM (Figure 3b,d,e) was comparable to MWDOSY while
lower than Mn,SEC (Table 1, Figure 3b,c). The SEC analysis of
PFerMMA10 exhibited distinct deviations when PMMA and PS
standards were used (Figure 3c), highlighting the limitations of
SEC when samples deviate from the calibrant. The range of
MWSTEM (∼1,000−12,000 g·mol−1) with the existence of a
second smaller population with MW ∼9,500−12,000 g·mol−1,
was depicted in the obtained ĐSTEM = 1.40 (Table 1).
Therefore, the calculation of MWSTEM could be successfully
achieved both for metalloid- and metal-containing acrylamide
and methacrylate homopolymers, while their DPn hetero-
geneity could be estimated through ĐSTEM calculation.

Finally, we were interested in applying our approach to
widely used C-, H-, and O-containing polymers, without using
specially designed monomers. Thus, a PMA20 was synthesized
(Figures 4a and S12, SI) and subsequently amidated using 4-
amino-1-butanol, according to a literature procedure.56 The
amidation of PMA20 to poly(hydroxybutyl acrylamide,
PHBAm) was quantitative, with a full shift of the PMA methyl
protons as verified by 1H NMR (Figure S14d), and full shift of
the 1730 cm−1 peak (C=O, PMA) along with the formation of
the 1635 cm−1 (C=O, amide) and 1543 cm−1 (N−H) PHBAm
peaks, as verified by FT-IR (Figure S13). The shift toward
higher MW was verified by THF-SEC (Figure 4b). The
obtained −OH functional polymer was further functionalized
through DCC/DMAP coupling with ferrocene (Fc) carboxylic
acid (Figure 4a, SI), leading to derivatization of the parent
PMA into an Fe-containing polyacrylamide. THF-SEC showed
a clear shift toward higher MW (Figures 4b and S14); FT-IR
verified the appearance of the C=O band (1700 cm−1)
attributed to the Fc-ester (Figure S13), while 1H NMR
confirmed the incorporation of the Fc moieties in the polymer
(Figure S14d). ADF-STEM (Figure S15) revealed a
predominant MWSTEM distribution at 3,000−4,300 g·mol−1

Figure 2. (a) Aqueous-SEC traces for PAsAm10, PAsAm20, PAsAm50
and PAsAmFRP. (b) MWSTEM distributions for the different polymers
and ADF-STEM images showing segmented individual polymer
chains for (c) PAsAm10, (d) PAsAm20, (e) PAsAm50, and (f)
PAsAmFRP (scale bars: 1 nm, images were smoothed post imaging).

Figure 3. (a) Reaction scheme for the synthesis of PFerMMA10, (b)
MWSTEM histogram for PFerMMA10, (c) SEC traces of PFerMMA10,
and (d and e) ADF-STEM images for PFerMMA10 (scale bar: 3 nm).
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(vs Mn,SEC = 5,000, Figure 4b,c), indicating that on average
∼11 monomer units per chain had been functionalized (vs ∼14
from SEC). Therefore, the achievement of near-atomic level
imaging of a commonly used polymer through derivatization
has critical potential to serve as a promising strategy to
visualize materials that had thus far been unobtainable. To the
best of our knowledge, this is the first example of near-atomic
level imaging of such a widely used polymer. Owing to the
various synthetic tools available, we envisage that the
modification of other commonly used polymers (i.e.,
polystyrene, polyolefins) through different derivatization
approaches (i.e., Diels−Alder, click chemistry)57−64 will expand
the scope of this approach and establish it as a platform for
advanced polymer imaging.

Our work presents the first approach toward atomic level
imaging of synthetic polymers and MW determination through
atom counting. By combining metal(loid)-containing mono-
mers, different polymerization approaches, and atom counting
through ADF-STEM, fundamental polymer characteristics
were determined in the subnano scale. Additionally, the
subnano level imaging of a widely used polymer (i.e., PMA)
was achieved upon derivatization. Our combinatorial approach
sets the ground for atomic level analysis of polymer
fundamentals that could not be imaged with such precision
before and facilitates the profound understanding of their
structure−property relationships.
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