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The staircase method has been widely used in measuring
perceptual learning. Recently, Zhao, Lesmes, and Lu
(2017, 2019) developed the quick Change Detection
(qCD) method and applied it to measure the trial-by-trial
time course of dark adaptation. In the current study, we
conducted two simulations to evaluate the performance
of the 3-down/1-up staircase and qCD methods in
measuring perceptual learning in a two-alternative
forced-choice task. In Study 1, three observers with
different time constants (40, 80, and 160 trials) of an
exponential learning curve were simulated. Each
simulated observer completed staircases with six step
sizes (1%, 5%, 10%, 20%, 30%, and 60%) and a qCD
procedure, each starting at five levels (þ50%,þ25%, 0,
�25%, and�50% different from the true threshold in the
first trial). We found the following results: Staircases
with 1% and 5% step sizes failed to generate more than
five reversals half of the time; and the bias and standard
deviations of thresholds estimated from the post hoc
segment-by-segment qCD analysis were much smaller
than those from the staircase method with the other
four step sizes. In Study 2, we simulated thresholds in
the transfer phases with the same time constants and
50% transfer for each observer in Study 1. We found that
the estimated transfer indexes from qCD showed smaller
biases and standard deviations than those from the
staircase method. In addition, rescoring the simulated
data from the staircase method using the Bayesian
estimation component of the qCD method resulted in
much-improved estimates. We conclude that the qCD

method characterizes the time course of perceptual
learning and transfer more accurately, precisely, and
efficiently than the staircase method, even with the
optimal 10% step size.

Introduction

Perceptual learning refers to the improvement in an
observer’s performance in a perceptual task through
training or practice. It has been documented in all
sensory modalities (vision: Goldstone, 1998; Lu, Hua,
Huang, Zhou, & Dosher, 2011; Sagi, 2011; Sasaki,
Náñez, & Watanabe, 2010; Sasaki, Náñez, & Wata-
nabe, 2012; Watanabe & Sasaki, 2015; hearing: Banai
& Amitay, 2012; Moore, Amitay, & Hawkey, 2003;
Wright & Zhang, 2009; smell: Stevenson, 2001; Wilson
& Stevenson, 2003; taste: Blair & Hall, 2003; Mackin-
tosh, Kaye, & Bennett, 1991; Scahill & Mackintosh,
2004; Symonds & Hall, 1995; touch: Rodrı́guez &
Angulo, 2014; Sathian & Zangaladze, 1998). Perceptual
learning not only unlocks important plasticity of the
perceptual system (Petrov, Dosher, & Lu, 2005; Sagi,
2011; Sasaki et al., 2012) but also provides noninvasive
rehabilitation methods for a variety of perceptual
impairments such as amblyopia (C.-B. Huang, Zhou, &
Lu, 2008; Polat, Ma-Naim, Belkin, & Sagi, 2004),
myopia (Camilleri, Pavan, Ghin, & Campana, 2014;
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Tan & Fong, 2008; Yan et al., 2015), hemianopia
(Nelles et al., 2001; Perez & Chokron, 2014), and aging
(Andersen, Ni, Bower, & Watanabe, 2010; Bower &
Andersen, 2012; Bower, Watanabe, & Andersen, 2013).

One fundamental empirical phenomenon in percep-
tual learning is the learning curve. Most of the
important discoveries about perceptual learning are
based on the analysis of the learning curve in the
training phase or the transfer phase. Indeed, the very
existence of perceptual learning is based on whether the
slope of the learning curve is significantly different from
zero (Dosher & Lu, 2007; C.-B. Huang et al., 2008;
Polat et al., 2004; Yan et al., 2015; Zhang, Hou, et al.,
2018; Zhou et al., 2006). Changes of the learning curve
obtained under different experimental manipulations
such as external noise (Lu, Chu, & Dosher, 2006; Lu &
Dosher, 2004), training difficulty (J. Liu, Lu, & Dosher,
2010, 2012; Z. Liu & Weinshall, 2000), training
schedule (Hung & Seitz, 2014; Xiao et al., 2008),
feedback (Aberg & Herzog, 2012; Fahle & Edelman,
1993; J. Liu et al., 2010, 2012; Shibata, Yamagishi,
Ishii, & Kawato, 2009), attention (Donovan & Carras-
co, 2015; Mukai et al., 2007; Szpiro & Carrasco, 2015),
and reward (Seitz, Kim, & Watanabe, 2009; Zhang,
Hou, et al., 2018) have revealed important properties of
perceptual learning and are the bases for the develop-
ment of theories and computational models of percep-
tual learning (Dosher & Lu, 2017). One of the hallmark
properties of perceptual learning—specificity—is also
derived from the learning curves during training and
transfer (Ahissar & Hochstein, 1997; Fahle & Morgan,
1996; Z. Liu & Weinshall, 2000; Xiao et al., 2008).

The learning curve in perceptual-learning studies is
typically measured with the method of constant stimuli
that estimates percentage correct (Fahle, Edelman, &
Poggio, 1995; Fahle & Morgan, 1996), with d0 (Ball &
Sekuler, 1982, 1987), or with adaptive procedures that
estimate either contrast thresholds or difference
thresholds in blocks of trials (T. Bi, Chen, Zhou, He, &
Fang, 2014; Donovan & Carrasco, 2015; Liang, Zhou,
Fahle, & Liu, 2015; Polat et al., 2004; Wang et al.,
2016; Xiao et al., 2008) with various forms of the
staircase procedure (Cornsweet, 1962; Watson & Pelli,
1983) as the most frequently used method (Leek, 2001;
Meese, 1995; Monsen & Horn, 2007).

The up-down staircase method is designed to
estimate the threshold at a fixed performance level in a
block of trials. Before each measurement, the initial
stimulus level and the initial step size of the staircase
are determined by the experimenter. The method
adjusts the stimulus level and the step size based on the
observer’s performance and some predefined rules. For
example, in a 3-down/1-up staircase procedure, the
stimulus level is increased by one step if the observer
makes one mistake (1 up) and is decreased by one step
if the observer makes three consecutive correct

responses (3 down). A reversal results when the
direction of stimulus change is reversed (from up to
down or down to up). In addition, the step size may
decrease with the number of reversals. Typically, the
staircase procedure requires a certain number of trials
to generate enough reversals to provide a relatively
precise estimate of the threshold. The performance of
the staircase depends on the initial stimulus level and
step size (Lu & Dosher, 2013).

One major assumption underlying the staircase
procedure is that the threshold does not change during
the measurement block, which typically contains about
60–80 trials (Harris et al., 2015; Schoups, Vogels, &
Orban, 1995; Sowden, Rose, & Davies, 2002; Thurston
& Dobkins, 2007; Xiao et al., 2008). The staircase
procedure has been widely used to measure time-varying
phenomena such as adaptation (Bao, Fast, Mesik, &
Engel, 2013; Binns, Taylor, Edwards, & Crabb, 2018;
Jackson, Owsley, & McGwin, 1999; Ward, Morison,
Simmers, & Shahani, 2018) and perceptual learning
(Badiru, 1992; Heathcote, Brown, & Mewhort, 2000; Lu
et al., 2011; Mazur & Hastie, 1978; Petrov et al., 2005).
However, there has been no systematic study of the
performance of the staircase procedure in measuring
learning curves in perceptual learning, including the
convergence properties of the procedure, its precision
and bias, and the effects of the initial stimulus level and
step size, in relation to different rates of learning. One
goal of the current study is to systematically evaluate the
performance of the staircase procedure in measuring
perceptual learning and its transfer.

Another goal of the current study is to compare the
performance of the staircase procedure to that of a
newly developed Bayesian adaptive procedure, the
quick Change Detection (qCD) method, that has been
shown to provide accurate and precise assessment of
the dark-adaption curve (Zhao, Lesmes, & Lu, 2017,
2019) in an eight-alternative forced-choice (8AFC) task
and perceptual learning in a four-alternative forced-
choice (4AFC) task (Zhang, Zhao, Dosher, & Lu, 2018,
2019). Here we evaluate the performance of the qCD
method in measuring the learning curves during both
the learning and transfer phases of a two-alternative
forced-choice (2AFC) experiment and compare it
directly with that of the staircase procedure. This is
quite important for two reasons: 2AFC is the most
widely used procedure in perceptual-learning studies (a
Google Scholar search on ‘‘perceptual learning and
staircase’’ resulted in 3,380 links; Jogan & Stocker,
2014; Kingdom & Prins, 2010; Vancleef et al., 2018),
and the number of alternatives in an mAFC procedure
strongly affects the performance of the adaptive
procedures (J. Bi, Lee, & O’Mahony, 2010; Hall, 1983;
Hou, Lesmes, Bex, Dorr, & Lu, 2015; Shelton &
Scarrow, 1984). Forced-choice procedures with three or
four alternatives provide more satisfactory measure-
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ment of psychometric performance (Leek, 2001). Hou
et al. (2015) found that increasing the number of
alternatives in a forced-choice task greatly improved
the efficiency of assessing a contrast sensitivity function
in both simulation and psychophysical studies. Previ-
ously, we have used 4AFC and 8AFC tasks in
comparing the staircase and qCD methods (Zhang,
Zhao, et al., 2018, 2019; Zhao et al., 2017, 2019).

The current article consists of two simulation
studies. In Simulation Study 1, we evaluated the
performance of the 3-down/1-up staircase and qCD
methods in measuring the learning curves of three
simulated observers with different learning rates. Five
initial stimulus levels (þ50%,þ25%, 0,�25%, and�50%
different from the true initial threshold) and six initial
step sizes (1%, 5%, 10%, 20%, 30%, and 60% change)
were included in the staircase procedure. Uniform
priors on the parameters of the exponential curve were
used in the qCD method. In Simulation Study 2, we
conducted additional simulations to evaluate the
accuracy and precision of the estimated transfer index
from the qCD and staircase methods.

Simulation Study 1

Methods

To evaluate the performance of the staircase and
qCD methods in measuring the perceptual learning
curve, we simulated three observers with exponential
learning curves at three different rates of learning
(Table 1) in a 2AFC task.

The qCD method

In the qCD method (Figure 1; Appendix A), the true
learning curve is characterized with an exponential
function:

T ~h; n
� �

¼ kexp
�n
c

� �
þ a; ð1Þ

where ~h ¼ k; c; að Þ are the exponential parameters, n is

the trial number during training, and Tð~h; nÞ is the
threshold in trial n. In a 2AFC task, the probability-
correct psychometric function is described by a Weibull
function (Wichmann & Hill, 2001):

p0n r ¼ 1j~h;x
� �

¼

gþ 1� gð Þ 1� exp � x

Tw
~h; n
� �

0
@

1
A

s0
@

1
A

0
@

1
A; ð2aÞ

pn r ¼ 1j~h;x
� �

¼ 1� lð Þp0n r ¼ 1j~h;x
� �

þ lg; ð2bÞ

where p0n is the psychometric function on trial n without
a lapse rate and pn is the psychometric function on trial
n with a lapse rate, r is the response (1 for correct, 0 for
incorrect), x is the stimulus value, and g ¼ 0:5 is the
guessing rate. The slope of the Weibull function was set
as s ¼ 3:06 and the lapse rate was set at l ¼ 0:04.

A prior distribution p0ð~hÞ (see Appendix A for
details) is used to represent a priori knowledge of the
parameters of the learning curve at the beginning of the
experiment. The qCD method selects the stimulus on
each trial from all possible stimulus values to optimize
the expected information gain (Kujala & Lukka, 2006;
Lesmes, Lu, Baek, & Albright, 2010) and updates the
joint posterior distribution based on the response of the
observer via Bayes’s rule. Stimulus selection and
Bayesian updating are iterated until the total number of
training trials is completed. Based on the joint posterior
distribution after each trial, the qCD provides trial-by-
trial estimates of the parameters of the perceptual-
learning function and a single threshold estimate. In
addition, a post hoc analysis can be performed on the
trial-by-trial data to investigate the functional form of
the learning curve, and this information can be used to
further improve the accuracy and precision of the
estimated thresholds by aggregating information across
all trials (Zhao et al., 2017, 2019).

To simulate the qCD method, a broad joint prior

distribution p0ð~hÞ was defined in the three-dimensional

parameter space of ~h ¼ h1; h2; h3ð Þ ¼ k; c; að Þ, with the
subscript 0 denoting that the prior represents a priori
knowledge of the parameters of the learning curve
before the experiment (Appendix A). The parameter
space included 50 log-linearly spaced k values (from 0.1
to 0.4), 50 log-linearly spaced c values (from 20 to 200),
and 50 log-linearly spaced a values (from 0.05 to 0.2).
Both k and a are in the units of the threshold
measurement, while k values are in the unit of trial

number. The joint prior distribution p0ð~hÞ was updated
trial by trial throughout the simulated experiment.

The 3-down/1-up staircase procedure

The 3-down/1-up staircase method (Cornsweet,
1962) was simulated with five starting stimulus levels
(þ50%, þ25%, 0%, �25%, and �50% from the true

Observer 1 Observer 2 Observer 3

k 0.2685 0.2685 0.2685

c 40 80 160

a 0.0895 0.0895 0.0895

Table 1. Parameters of the three simulated observers in
Simulation Study 1.
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initial threshold) and six step sizes (1%, 5%, 10%, 20%,
30%, and 60% of the current stimulus level). We denote
the staircases with their step sizes—for example,
SC10% represents a staircase with a 10% step size. In
the 3-down/1-up staircase procedure, if the simulated
observer makes three consecutive correct responses, the
stimulus level (e.g., contrast, luminance, orientation) is
reduced by the step size (multiplied by 1� step size) in
the next trial (3 down). If the simulated observer makes
a single incorrect response, the stimulus level is
increased by the step size (multiplied by 1þ step size) in
the next trial (1 up). A reversal (or endpoint) happens if
the staircase changes its direction (from upward to
downward or vice versa). Usually, one block of 3-
down/1-up staircase with a 10% step size produces
about a dozen reversals in 80 trials. The estimated
threshold of the block is calculated by averaging
stimulus levels at even numbers of reversals after
deleting the first four or five of them.

Simulation procedures

We simulated 1,000 runs of 800 trials each for each
observer with each of the 35 measurement proce-
dures—qCD and the 3-down/1-up staircase with six
step sizes, each starting at one of five starting stimulus
levels—resulting in 28,000,000 simulated trials per
observer. Each measurement block of the staircase
method consisted of 40, 80, or 160 trials. In order to
investigate the effects of the initial stimulus level on its
performance, we did not use optimal stimulus selection
in the first trial of the qCD procedure. Instead, we

matched the initial stimulus level in the qCD and
staircase procedures.

In each trial, the true threshold T(n) was calculated
using Equation 1. The expected probability of a correct
response was calculated using Equation 2b. To
determine whether the observer’s response was correct,
we first drew a random number q from a uniform
distribution over the interval from 0 to 1 and then
labeled the response as correct if q , pnðr ¼ 1j~h;xÞ, and
incorrect otherwise.

Evaluation metrics

Accuracy is a measure of the difference between the
estimated and true values, usually computed as the bias
of the estimates. Precision is gauged by the variability
of the estimates (Lu & Dosher, 2013; Treutwein, 1995).
We computed the bias and variability of the estimated
thresholds and parameters of the learning curves.
Logarithmic-scale (log10 unit) measures were used in
the following analyses because this allowed us to
compare the quality of measures in different dimen-
sions.
Accuracy: For the qCD method, the bias (on a log10
scale) of the estimated threshold of the nth simulated
trial is defined as

Biasn ¼
P

j log10 Tnj

� �
� log10 Tn;true

� �� �
J

; ð3Þ

where Tnj is the estimated threshold of the nth trial in
the jth simulation and Tn;true is the true threshold in the
nth trial.

Figure 1. (A) An exponential function with three parameters: k, the dynamic range of learning; c, the time constant of the exponential

function; and a, the asymptotic performance level. (B) The quick Change Detection method consists of five steps: (1) The learning

curve—i.e., the time course of threshold—is defined as an exponential function (as a function of trial number n) with three

parameters, h¼ (a, c, k), and their joint prior distribution. (2) The stimulus level in the next trial is selected to optimize the expected

information gain on the joint distribution of the parameters. (3) The posterior distribution is updated by Bayes’s rule based on

observer’s response after each trial. (4) Steps 2 and 3 are repeated until the stop criterion is met (e.g., predetermined number of

trials). (5) Trial-by-trial and post hoc segment-by-segment thresholds are computed from the posterior distributions.
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To compute a summary statistic of the bias over the
entire learning curve, we cannot simply compute the
mean of Biasn, because biases at different time points
may carry opposite signs. Instead, we use the root mean
square error (RMSE) to represent the average bias over
the entire learning curve:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n log10 �Tnð Þ � log10 Tn;true

� �� �2
N

s
; ð4Þ

�Tn ¼
P

j Tnj

J
; ð5Þ

where N is the total number of trials in each run.
The staircase method can only provide a single

threshold estimate in each measurement block. Bias (on
a log10 scale) of the estimated threshold of the bth
simulated block is defined as

Biasb ¼
P

j log10 Tbj

� �
� log10 Tb;true

� �� �
J

; ð6Þ

where Tbj is the estimated threshold in the bth block of
the jth simulation, J is the total number of simulations,
and Tb;true is the true threshold in the middle of the bth
block—that is, the threshold in trial b� 0:5ð Þ3 blocks
ize on the simulated learning curve.

The RMSE of the estimated thresholds of the entire
learning curve from the staircase method is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b log10 �Tbð Þ � log10 Tb;true

� �� �2
B

s
; ð7Þ

�Tb ¼
P

j Tbj

J
; ð8Þ

where B is the total number of blocks.
The biases of the estimated parameters hf ¼ k; c; að Þ

from the qCD method are defined as

Bias n;hfð Þ ¼
P

j log10 hf;nj
� �

� log10 hf;true
� �� �

J
; ð9Þ

where hf;nj is the estimated parameter value after the nth
trial in the jth simulation, J is the total number of
simulations, hf;true is the true parameter value, and f¼1,
2, 3.

For the staircase method, the estimated parameters
were obtained from the best-fitting exponential func-
tion to the estimated block-by-block thresholds in each
run using the MATLAB (MathWorks, Natick, MA)
function fminsearch. The biases of the estimated
parameters from the staircase method are defined as

Bias hfð Þ ¼
P

j log10 hf;j
� �

� log10 hf;true
� �� �

J
: ð10Þ

Precision: We evaluated the precision of the procedures
in two different ways. The first estimate is the standard
deviation (SD) of repeated measures. For the qCD
method, the SD of the estimated threshold of the nth
simulated trial is defined as

SDn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j log10 Tnj

� �
� log10 �Tnð Þ

� �2
J

s
: ð11Þ

The average SD of the estimated threshold of the
entire learning curve is defined as

SDn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n SDnð Þ2

N

s
: ð12Þ

The staircase method can only provide block-by-
block threshold estimates. The SD of the estimated
thresholds in the bth block is defined as

SDb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j log10 Tbj

� �
� log10 �Tbð Þ

� �2
J

s
; ð13Þ

�Tb ¼
P

j Tbj

J
: ð14Þ

The average SD of the estimated threshold of the
entire learning curve from the staircase method is
defined as

SDb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b SDbð Þ2

B

s
; ð15Þ

where B is the total number of blocks in each run.
Similarly, the SDs of the estimated parameters from

the qCD method are defined as

SD n;hfð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j log10 hf;nj

� �
� log10 �hf;n

� �� �2
J

s
; ð16Þ

�hf ¼
P

j hfj
J

: ð17Þ

The SDs of the estimated parameters from the
staircase method are defined as

SD hfð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j log10 hf;j

� �
� log10 �hf

� �� �2
J

s
: ð18Þ

The second way to gauge precision is by the half
width of the 68.2% credible interval (HWCI) of the
posterior distributions (Edwards, Lindman, & Savage,
1963). The HWCI can be used to assess the precision of
a single run of the qCD procedure (Greenland &
Kenneth, 1997). For example, the 68.2% credible
interval approximates the range within which the actual
value lies with 68.2% probability. This is especially
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important for perceptual-learning studies, because the
learning curve can only be measured once in an
individual; and therefore estimating SD from repeated
experimental runs is not possible.

Results

We tested the qCD and staircase methods with five
starting stimulus levels: þ50%, þ25%, 0%, �25%, and
�50% from the true threshold in the first trial. Because
the patterns of results with the five starting levels are
quite similar, we mainly present the results with the 0%
starting level in the main text. The results with the other
four starting levels are presented in the supplementary
information.

Staircase convergence

In the 3-down/1-up staircase procedure, the estimated
threshold in each measurement block is calculated by
averaging stimulus levels at an even number of reversals
after deleting the first four or five of them. We computed
the block thresholds from the endpoints in every 40, 80,
or 160 trials. However, because many staircases with a
block size of 40 did not generate more than five reversals
(see Supplementary Table S1) and staircases with a
block size of 160 produced an insufficient number of
block thresholds (see Supplementary Figure S1), we only
evaluated the performance of the staircase method with
a block size of 80 trials in the following analyses. Table 2
shows the percentage of staircases with more than five
reversals in the first measurement block of the learning
curves. With step sizes of 1% and 5%, many staircases
didn’t generate more than five reversals. We therefore
dropped these two conditions in subsequent analyses. In
summary, we evaluated the performance of the staircase
method only with four step sizes (10%, 20%, 30%, and
60%) and one block size (80 trials).

Estimated learning curves

The estimated learning curves in the first 300 trials in
the trial-by-trial (red line) and post hoc segment-by-

segment (blue line) analyses from the qCD method, and
the block-by-block threshold estimates from the
staircase method with a 0% starting level, are shown in
Figure 2. Visual inspection suggests that the estimated
post hoc segment-by-segment thresholds from the qCD
method were very close to the true thresholds, and
closer than the block-by-block thresholds from the
staircase method (SC10%, SC20%, SC30%, and
SC60%). In addition, the estimated thresholds from the
qCD method were more precise than those from the
staircase method. We quantify these observations next.
The estimated thresholds with 625% and 650%
starting levels are shown in Supplementary Figures S2
through S5.

Accuracy and precision of the estimated thresholds

The biases of the estimated thresholds from the qCD
and staircase methods with the 0% starting level are
plotted in Figure 3A. The RMSEs of the estimated
thresholds from the qCD trial-by-trial, qCD post hoc
segment-by-segment, SC10%, SC20%, SC30%, and
SC60% were 0.015, 0.005, 0.011, 0.014, 0.028, and 0.090
log10 units, respectively, for Observer 1; 0.015, 0.004,
0.007, 0.015, 0.030, and 0.092 log10 units for Observer
2; and 0.018, 0.002, 0.003, 0.015, 0.030, and 0.093 log10
units for Observer 3. The qCD method was much more
accurate than the staircase method. The RMSEs of the
estimated thresholds with starting levels of 625% and
650% are given in Table 3; more details are provided in
Supplementary Figure S6.

The SDs of the estimated thresholds from the qCD
and staircase methods with the 0% starting level are
shown in Figure 3B. The SDs of the estimated
thresholds from the qCD trial-by-trial, qCD post hoc
segment-by-segment, SC10%, SC20%, SC30%, and
SC60% were 0.029, 0.017, 0.045, 0.052, 0.059, and 0.084
log10 units, respectively, for Observer 1; 0.032, 0.018,
0.044, 0.052, 0.059, and 0.085 log10 units for Observer
2; and 0.032, 0.017, 0.043, 0.052, 0.059, and 0.085 log10
units for Observer 3. For the staircase methods, the SD
increased with step size. The SDs of the estimated
thresholds from the qCD method were always consid-
erably smaller than those from the staircase methods.

Observer 1 Observer 2 Observer 3

Step size 0% þ25% �25% þ50% �50% 0% þ25% �25% þ50% �50% 0% þ25% �25% þ50% �50%

1% 49.6% 22.6% 88.2% 17.7% 99.6% 93.9% 45.2% 99.5% 22.8% 99.5% 97% 87.5% 100% 35.2% 99.8%

5% 98.5% 88.8% 99.4% 50.9% 99.6% 100% 99.9% 100% 99.5% 100% 100% 100% 100% 99.9% 100%

10% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

20% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

30% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

60% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 2. Percentage of staircase runs with more than five reversals in the first block of learning.
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In summary, the precision of the estimated thresholds
from the qCD method was much higher than that of
those from the staircase methods. The SDs of the
estimated thresholds with five starting levels are listed
in Table 4; more details are provided in Supplementary
Figure S7.

The 68.2% HWCIs of the estimated thresholds from
the qCD method with the 0% starting level are shown
in Figure 3C. Averaged across the three simulated
observers, the 68.2% HWCIs of the estimated trial-by-
trial threshold were 0.049, 0.042, 0.030, and 0.016 log10
units, respectively, after 100, 200, 400, and 800 trials;
for the post hoc segment-by-segment analysis across
the three simulated observers they were 0.025, 0.018,
0.013, and 0.016 log10 units. The 68.2% HWCIs with all
five starting stimulus levels are listed in Table 5; more
details are provided in Supplementary Figure S8.

Accuracy and precision of the estimated parameters

Since SC20%, SC30%, and SC60% generated esti-
mated thresholds with much lower accuracy and
precision than SC10%, we compared only SC10% with
the qCD method in the following analyses. The biases

and SDs of the estimated parameters from the qCD
and staircase methods with 0% starting levels are
plotted in Figure 4. For the qCD method, the bias was
computed from the post hoc segment-by-segment
analysis. For the staircase method, we calculated the
bias and SD of the best-fitting parameters of the
exponential model to the estimated learning curves.
The biases of the estimated parameters from the qCD
method were smaller than those from the staircase
method, especially for simulated Observer 1, who has
the fastest learning rate among the three observers.

For Observer 1, with the starting stimulus level at
0%, the biases of the estimated k, c; and a were 0.030,
0.028, and �0.001 log10 units, respectively, from the
qCD method and 0.149,�0.029, and�0.004 log10 units
from the staircase method; the SDs of the estimated k,
c; and a were 0.074, 0.083, and 0.013 log10 units from
the qCD method and 0.489, 0.213, and 0.017 log10 units
from the staircase method. For Observers 2 and 3, with
slower learning, the biases and SDs of the estimated
parameters from the staircases were not as large as for
Observer 1. However, qCD still provided more
accurate (less biased) and precise estimates. In addition,
different starting stimulus levels affected the accuracy
of the estimated parameters from the staircase method

Figure 2. Estimated learning curves of the three simulated observers—(A) Observer 1, (B) Observer 2, (C) Observer 3—with a starting

level at 0% from the true threshold in the first trial. Results of the first 300 trials from both the quick Change Detection and staircase

methods are shown. Red and blue lines denote the estimates from trial-by-trial and post hoc segment-by-segment analyses of quick

Change Detection simulation, respectively. Green circles, magenta downward-pointing triangles, cyan squares, and brown stars

represent the block-by-block thresholds from the staircase method with step sizes of 10%, 20%, 30%, and 60%, respectively. The

shaded area and error bars denote the standard deviation in the quick Change Detection and staircase methods, respectively. Black

dash-dotted lines denote the true learning curves.
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but not the qCD method (see Supplementary Figure S9
for details).

The 68.2% HWCIs of the estimated parameters
from the qCD method are shown in Figure 5; they
decreased with trial number. Averaged across the
three observers, the 68.2% HWCIs of the estimated k
were 0.111, 0.087, 0.072, and 0.069 log10 units,
respectively, after 100, 200, 400, and 800 trials; for the

estimated c they were 0.196, 0.158, 0.105, and 0.074

log10 units; and for the estimated a they were 0.169,

0.117, 0.051, and 0.018 log10 units (see Supplementary

Figure S10 for details on 625% and 650% starting

levels). The results indicate that the qCD method can

estimate the parameters of the learning curve with

high precision.

Figure 3. Comparison of the accuracy and precision of the estimated thresholds from the quick Change Detection and staircase

methods. The biases (A), standard deviations (B), and half widths of 68.2% credible intervals (C) of the three simulated observers with

a starting level of 0% from the true threshold in the first trial are shown in separate rows as functions of trial numbers. Red and blue

lines denote the results from the trial-by-trial and post hoc analyses of quick Change Detection simulation, respectively. Green circles,

magenta downward-pointing triangles, cyan squares, and brown stars represent the results from the staircase method with step sizes

of 10%, 20%, 30%, and 60%, respectively.

Observer 1 Observer 2 Observer 3

Method þ50% þ25% 0% �25% �50% þ50% þ25% 0% �25% �50% þ50% þ25% 0% �25% �50%

qCDtrial 0.016 0.015 0.015 0.015 0.016 0.015 0.015 0.015 0.015 0.015 0.018 0.018 0.018 0.018 0.018

qCDseg 0.006 0.006 0.005 0.005 0.006 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.002 0.003 0.003

SC10% 0.006 0.010 0.011 0.090 0.004 0.006 0.007 0.007 0.004 0.006 0.005 0.004 0.003 0.029 0.007

SC20% 0.014 0.014 0.014 0.014 0.015 0.014 0.015 0.015 0.015 0.017 0.016 0.015 0.015 0.016 0.017

SC30% 0.027 0.028 0.028 0.028 0.029 0.029 0.029 0.030 0.030 0.031 0.030 0.029 0.030 0.031 0.032

SC60% 0.088 0.088 0.090 0.090 0.091 0.090 0.090 0.092 0.092 0.092 0.093 0.091 0.093 0.094 0.095

Table 3. Root mean square error of the estimated thresholds from the quick Change Detection (qCD) and staircase methods. Notes:
qCDtrial ¼ trial-by-trial qCD; qCDseg ¼ post hoc segment-by-segment qCD.
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Estimated initial threshold and percent of improvements

Accurate and precise estimates of the initial
threshold (IT¼kþa) and percentage of improvements
(PI ¼ [k þ a]/a) are critical for understanding
characteristics of perceptual learning, such as speci-
ficity, transfer, and retention. As shown in Figure 6A,
the histogram of the estimated ITs from the qCD
method are distributed symmetrically and tightly
around the true IT (¼ 0.358). However, the histograms
of the estimated IT from the staircase method have
long tails in one direction, indicating systematic and
sometimes large biases, with corresponding effects on
the SD. For example, when the time constant was 40
trials (Observer 1), the estimated IT was 0.344 6 0.041
(M 6SD) from the qCD method and 0.847 6 1.608
from SC10%.

The distributions of the estimated PI (Figure 6B)
from the qCD method are also much narrower and
closer to the true PI (¼ 400%) compared to those
from SC10%. For example, when the time constant
was 40 trials (Observer 1), the estimated PI was
384% 6 45% from the qCD method and 944% 6
1769% from SC10%. Obviously, the staircase meth-

od produced a less accurate mean and much larger
SD for the estimated PI. These results demonstrate
that the accuracy and precision of the estimated IT
and PI from the qCD method were much higher
than those from the staircase method. The means
and SDs of the estimated IT and PI of the three
observers with five starting levels are summarized in
Table 6.

Simulation Study 2

Method

Although Simulation Study 1 found that the
estimated initial threshold, which is central to the
formula for the transfer index (Equation 19), was more
accurate and precise from the qCD method than from
the staircase method, a direct evaluation of the
methods in measuring transfer/specificity is still neces-
sary. Therefore, to further evaluate the performance of
the qCD and staircase methods in assessing the transfer

Observer 1 Observer 2 Observer 3

Method þ50% þ25% 0% �25% �50% þ50% þ25% 0% �25% �50% þ50% þ25% 0% �25% �50%

qCDtrial 0.029 0.029 0.029 0.029 0.029 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032

qCDseg 0.017 0.017 0.017 0.016 0.016 0.018 0.019 0.018 0.018 0.018 0.017 0.017 0.017 0.018 0.017

SC10% 0.046 0.046 0.045 0.045 0.045 0.045 0.044 0.044 0.044 0.044 0.044 0.044 0.043 0.043 0.044

SC20% 0.052 0.053 0.052 0.052 0.053 0.052 0.052 0.052 0.052 0.052 0.051 0.051 0.052 0.052 0.052

SC30% 0.060 0.060 0.059 0.059 0.059 0.059 0.058 0.059 0.059 0.060 0.059 0.058 0.059 0.059 0.060

SC60% 0.085 0.085 0.084 0.084 0.085 0.086 0.085 0.085 0.084 0.086 0.087 0.089 0.087 0.085 0.087

Table 4. Standard deviations of the estimated thresholds in the quick Change Detection (qCD) and staircase methods. Notes: qCDtrial
¼ trial-by-trial qCD; qCDseg ¼ post hoc segment-by-segment qCD.

Observer Starting level Trial 1 Trial 100 Trial 200 Trial 400 Trial 800 Average

Observer 1 þ50% 0.150; 0.065 0.058; 0.029 0.044; 0.014 0.023; 0.012 0.013; 0.013 0.031; 0.017

þ25% 0.147; 0.065 0.058; 0.029 0.043; 0.014 0.023; 0.013 0.013; 0.013 0.031; 0.017

0% 0.137; 0.063 0.058; 0.029 0.043; 0.014 0.023; 0.013 0.013; 0.013 0.031; 0.017

�25% 0.133; 0.064 0.059; 0.029 0.043; 0.014 0.023; 0.013 0.013; 0.013 0.031; 0.017

�50% 0.141; 0.064 0.058; 0.029 0.044; 0.014 0.023; 0.012 0.013; 0.013 0.031; 0.017

Observer 2 þ50% 0.150; 0.051 0.048; 0.025 0.046; 0.021 0.032; 0.013 0.016; 0.016 0.035; 0.018

þ25% 0.147; 0.051 0.048; 0.025 0.046; 0.021 0.032; 0.013 0.016; 0.016 0.035; 0.018

0% 0.138; 0.051 0.048; 0.025 0.046; 0.021 0.032; 0.013 0.016; 0.016 0.035; 0.018

�25% 0.133; 0.050 0.048; 0.025 0.046; 0.021 0.032; 0.013 0.015; 0.015 0.035; 0.018

�50% 0.140; 0.051 0.048; 0.025 0.046; 0.021 0.032; 0.013 0.015; 0.015 0.035; 0.018

Observer 3 þ50% 0.150; 0.038 0.043; 0.021 0.037; 0.019 0.036; 0.014 0.021; 0.021 0.036; 0.018

þ25% 0.148; 0.038 0.042; 0.021 0.037; 0.019 0.036; 0.014 0.021; 0.021 0.036; 0.018

0% 0.138; 0.038 0.042; 0.021 0.037; 0.018 0.036; 0.014 0.021; 0.021 0.036; 0.018

�25% 0.148; 0.038 0.042; 0.021 0.037; 0.019 0.036; 0.014 0.021; 0.021 0.036; 0.018

�50% 0.140; 0.038 0.042; 0.021 0.037; 0.019 0.036; 0.014 0.021; 0.021 0.036; 0.018

Table 5. Half widths of 68.2% credible intervals of the estimated thresholds (in log10 units) from the quick Change Detection (qCD)
method: trial by trial and post hoc segment by segment.
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index in a 2AFC task, we extended the simulations in
Simulation Study 1 by adding a transfer phase to each
of the simulated observers. Specifically, each simulated
observer kept the same time constant and asymptotic
performance level but had only half threshold reduc-
tion in the transfer phase (Table 7).

We conducted 1,000 simulated transfer runs for each
observer with each method. Each run consisted of 800
trials of the qCD method and 800 trials of the 3-down/
1-up staircase method (Cornsweet, 1962) with a 10%
step size and 80-trial block size. Both methods were
simulated with five starting stimulus levels (þ50%,
þ25%, 0%, �25%, and �50% from the true initial
threshold in the training phase). We used the same
starting stimulus levels in the training and transfer
phases (Donovan & Carrasco, 2015; Jeter, Dosher,
Petrov, & Lu, 2009; Liang et al., 2015; Xiao et al., 2008;
Zhang, Hou, et al., 2018). The qCD and staircase
procedures were run separately and independently, and

thus never shared any information. In other words, the
terminology ‘‘training’’ and ‘‘transfer’’ in the current
study is purely nominal. The detailed settings of
Simulation Study 2 were the same as those of
Simulation Study 1.

The transfer index (TI) is defined as

TI ¼ 1� TB1 � TBend

TA1 � TAend
; ð19Þ

where TA1 and TAend are the estimated thresholds in the
first and last trials of the training, and TB1 and TBend are
the estimated thresholds for the first and last trials of
the transfer. For the qCD method, TI was computed
using the estimated thresholds from the post hoc
segment-by-segment analysis. For the staircase method,
the TIs were obtained from the best-fitting exponential
function to the estimated block-by-block thresholds in
each run. As shown in Table 7, the true TI of all three
simulated observers was 50%.

Figure 5. Half widths of 68.2% credible intervals of the estimated k (A), c (B), and a (C) of the three simulated observers with starting

levels at 0% from the true threshold in the first trial in the trial-by-trial quick Change Detection simulation. Red, green, and blue dash-

dotted lines denote Observers 1, 2, and 3, respectively.

Figure 4. The biases (A) and standard deviations (B) of the estimated parameters (k, c, and a) of the three simulated observers from

the post hoc segment-by-segment quick Change Detection (blue) and SC10% staircase (green) methods.
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Results

Staircase convergence

Again, the estimated threshold in each measure-
ment block of the staircase was calculated by
averaging stimulus levels at an even number of

reversals after deleting the first four or five of them.

Table 8 shows that the percentage of staircases in the

first block of the transfer that had more than five

reversals was 100% in all but two conditions for

Observer 1.

Figure 6. Distributions of the initial threshold (A) and percentage of improvements (B) from the quick Change Detection and SC10%

staircase methods with the 0% starting level. Blue asterisks and green circles denote results from the post hoc segment-by-segment

quick Change Detection and staircase methods, respectively. Black dash-dotted lines denote the true values. Results from the three

simulated observers are shown in separate rows.

Observer 1 Observer 2 Observer 3

Measure Starting level qCDseg SC10% qCDseg SC10% qCDseg SC10%

IT þ50% 0.341 (0.041) 0.799 (1.609) 0.351 (0.036) 0.380 (0.079) 0.364 (0.026) 0.375 (0.053)

þ25% 0.340 (0.041) 0.901 (1.737) 0.351 (0.037) 0.387 (0.076) 0.365 (0.027) 0.372 (0.051)

0% 0.344 (0.041) 0.847 (1.608) 0.350 (0.035) 0.382 (0.071) 0.363 (0.026) 0.366 (0.048)

�25% 0.344 (0.040) 0.798 (1.534) 0.352 (0.037) 0.369 (0.123) 0.363 (0.026) 0.355 (0.046)

�50% 0.340 (0.042) 0.766 (1.516) 0.352 (0.042) 0.344 (0.069) 0.364 (0.026) 0.342 (0.044)

PI þ50% 381% (46%) 894% (1,787%) 394% (40%) 429% (84%) 405% (35%) 426% (51%)

þ25% 381% (46%) 1010% (1,949%) 393% (41%) 435% (81%) 406% (33%) 431% (206%)

0% 384% (45%) 944% (1,769%) 392% (39%) 431% (76%) 405% (34%) 418% (46%)

�25% 384% (45%) 894% (1,711%) 395% (40%) 417% (131%) 405% (34%) 411% (48%)

�50% 381% (47%) 852% (1,662%) 396% (40%) 390% (71%) 406% (33%) 405% (54%)

Table 6. Means and standard deviations of initial threshold (IT) and percentage of improvements (PI) in the quick Change Detection
(qCD) and staircase methods. Notes: qCDseg ¼ post hoc segment-by-segment qCD.
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Estimated learning curves in the transfer phase

For brevity, in the main text we present only the
results from the qCD method and the staircase
methods in the transfer phases using the 0% starting
level. Visual inspection suggests that the estimated post
hoc segment-by-segment thresholds from the qCD
method were very close to the true thresholds, and
closer than the block-by-block thresholds from the
staircase method (Figure 7). In addition, the estimated
thresholds from the qCD method were more precise
(less variable) than those from the staircase method.
We quantify these observations next. The estimated
thresholds with 625% and 650% starting levels are
shown in Supplementary Figures S11 through S13.

Accuracy and precision of the estimated thresholds in the
transfer phase

The biases of the estimated thresholds from the qCD
and staircase methods with the 0% starting level in the
transfer phase are plotted in Figure 8A. The RMSEs of
the estimated thresholds from the qCD trial-by-trial,
qCD post hoc segment-by-segment, and SC10% were
0.013, 0.003, and 0.006 log10 units, respectively, for
Observer 1; 0.009, 0.003, and 0.005 log10 units for
Observer 2; and 0.015, 0.005, and 0.004 log10 units for
Observer 3. The qCD method was much more accurate
than the staircase method when the learning rate was
more rapid. The RMSEs of the estimated thresholds
with starting levels of 625% and 650% are listed in
Supplementary Table S2; more details are provided in
Supplementary Figure S14.

The SDs of the estimated thresholds from the qCD
and staircase methods with the 0% starting level in the
transfer phase are shown in Figure 8B. The SDs of the
estimated thresholds from the qCD trial-by-trial, qCD
post hoc segment-by-segment, and SC10% were 0.027,

0.016, and 0.045 log10 units, respectively, for Observer
1; 0.030, 0.017, and 0.044 log10 units for Observer 2;
and 0.031, 0.018, and 0.044 log10 units for Observer 3.
For the staircase methods, the SD increased with step
size. The SDs of the estimated thresholds from the qCD
method were always considerably smaller than those
from the staircase methods. In summary, the precision
of the estimated thresholds from the qCD method was
much higher than from the staircase methods. More
details are provided in Supplementary Table S3 and
Supplementary Figure S15.

The 68.2% HWCIs of the estimated thresholds from
the qCD method with the 0% starting level in the
transfer phase are shown in Figure 8C. Averaged across
the three simulated observers, the 68.2% HWCIs of the
estimated trial-by-trial threshold were 0.048, 0.040,
0.028, and 0.015 log10 units, respectively, after 100, 200,
400, and 800 trials; from the post hoc segment-by-
segment analysis they were 0.024, 0.017, 0.013, and
0.015 log10 units. More details are provided in
Supplementary Figure S16.

Accuracy and precision of the estimated parameters in
the transfer phase

The biases and SDs of the estimated parameters
from the qCD and staircase methods with 0% starting
level (relative to the true threshold in the beginning of
the training phase) in the transfer phase are plotted in
Figure 9. The biases of the estimated parameters from
the qCD method were smaller than those from the
staircase method, especially for simulated Observer 1,
who has the fastest learning rate among the three
observers. For Observer 1, with the starting stimulus
level at 0%, the biases of the estimated k, c; and a were
0.042, �0.009, and�0.001 log10 units, respectively,
from the qCD method and 0.302, �0.042, and�0.028
log10 units from the staircase method; the SDs were
0.087, 0.107, and 0.013 log10 units from the qCD
method and 0.978, 0.453, and 0.470 log10 units from the
staircase methods. For Observers 2 and 3, with slower
learning, the biases and SDs of the estimated param-
eters from the staircases were not as large as for
Observer 1. However, qCD still provided more
accurate and precise estimates. In addition, different

Observer 1 Observer 2 Observer 3

Parameter Training Transfer Training Transfer Training Transfer

k 0.2685 0.1343 0.2685 0.1343 0.2685 0.1343

c 40 40 80 80 160 160

a 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895

TI 50% 50% 50%

Table 7. Parameters of the three simulated observers in the training and transfer phases of Simulation Study 2. Notes: TI¼ transfer
index.

Observer þ50% þ25% 0% �25% �50%

Observer 1 99.8% 99.8% 100% 100% 100%

Observer 2 100% 100% 100% 100% 100%

Observer 3 100% 100% 100% 100% 100%

Table 8. Percentage of staircases with more than five reversals
in the first block of learning, by starting level.
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starting stimulus levels affected the accuracy of the
estimated parameters from the staircase method but
not the qCD method (see Supplementary Figure S17
for details).

The 68.2% HWCIs of the estimated parameters from
the qCD method in the transfer phase are shown in
Figure 10; they decreased with trial number. Averaged
across the three observers, the 68.2% HWCIs of the
estimated k were 0.125, 0.109, 0.099, and 0.095 log10
units, respectively, after 100, 200, 400, and 800 trials;
for the estimated c they were 0.276, 0.242, 0.150, and
0.109 log10 units; and for the estimated a they were
0.151, 0.098, 0.040, and 0.017 log10 units (see Supple-
mentary Figure S18 for details on 625% and 650%
starting levels). The results indicate that the qCD
method can estimate the parameters of the learning
curve with high precision.

Estimated IT and PI

The histogram of the estimated ITs and PIs from the
qCD method is distributed symmetrically and tightly
around the true values (IT¼0.224, PI¼250%), but that
from the staircase method is not (see Figure 11),
indicating that the qCD method produced estimated
ITs and PIs with smaller biases and SDs. Consistent

with the results of Simulation Study 1, the qCD method
produced estimated ITs and PIs with higher accuracy
and precision than the staircase method. The means
and SDs of the estimated ITs and PIs of the three
observers with five starting levels are summarized in
Supplementary Table S4.

Estimated TI

The histogram of the estimated TIs of the three
observers with the 0% starting level is shown in Figure
12. The histograms of the estimated TIs from the qCD
and staircase method are both distributed symmetri-
cally around the true value (¼ 50%), but the staircase
method produced tighter distributions for Observers 1
and 2 (see Supplementary Figure S19 for starting levels
of 625% and 650%). The estimated TIs from the qCD
and staircase methods, averaged over starting levels,
were respectively 39% 6 17% (M 6 SD) and�121% 6

491% for Observer 1, 43% 6 14% and 25% 6 219% for
Observer 2, and 47% 6 9% and 46% 6 48% for
Observer 3. The results indicate that the qCD method
provided more accurate and precise measures of
transfer than the staircase method, especially when the
learning is more rapid.

Figure 7. Estimated learning curves in the transfer phase. Results from the first 300 trials of the three simulated observers are shown

in separate rows. Red and blue lines denote the estimates from trial-by-trial and post hoc segment-by-segment analyses of quick

Change Detection simulation, respectively. Green circles represent the block-by-block threshold from the SC10% staircase method.

The shaded areas and error bars denote the standard deviations in the quick Change Detection and staircase methods, respectively.

Black dash-dotted lines represent the true learning curves.
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Discussion

In this study, we systematically examined the
performance of the 3-down/1-up staircase and qCD
methods in measuring the detailed time course of
perceptual learning and transfer in a 2AFC task. The
staircase method generated biased and imprecise
estimations of the learning curve and transfer index,
while the qCD method provided accurate and precise
estimations. The staircase method did not converge
when the block size was 40 trials. Larger block sizes
(e.g., 160 trials) resulted in fewer block thresholds and
therefore inaccurate and imprecise estimates of the
parameters of the learning curves. Staircases with 1%
and 5% step sizes failed to generate more than five
reversals half of the time. Staircases with 10%, 20%,
30%, and 60% step sizes produced imprecise and biased
estimation of thresholds and parameters of the learning
curves. The staircase method could not provide an
accurate and precise estimate of the transfer index even
when the starting stimulus level was set optimally. The

faster the learning was, the worse the staircase method
performed. And the qCD method characterized the
time course of perceptual learning and transfer more
accurately, precisely, and efficiently than the staircase
method.

Zhang, Zhao, et al. (2018, 2019) implemented and
tested the qCD method in assessing the learning curve
in a 4AFC global motion-direction identification task
both in simulations and in a psychophysical experi-
ment. In their psychophysical experiment, the learning
curves estimated from the qCD and staircase methods
matched quite well for this relatively slow learning task.
However, the qCD method still provided a more
precise assessment of the learning curve. In their
simulation experiment, with any one of three starting
stimulus levels (þ25%, 0%, and �25% from the true
threshold), the estimated learning curves from both the
trial-by-trial and post hoc segment-by-segment analyses
of the qCD method were always more accurate and
precise than those obtained from the staircase method
using either 80- or 160-trial blocks. Going beyond

Figure 8. Comparison of the accuracy and precision of the estimated thresholds in the transfer phase. The biases (A), standard

deviations (B), and half widths of 68.2% credible intervals (C) of the three simulated observers with starting level at 0% from the true

threshold in the first trial are shown in separate rows as functions of trial numbers. Red and blue lines denote the results from the

trial-by-trial and post hoc analyses of quick Change Detection simulations, respectively. Green circles represent the results from the

SC10% staircase method.
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previous work, the current simulation studies system-
atically evaluated the performance of the 3-down/1-up
staircase method with six step sizes, five starting levels,
and three block sizes on accessing the detailed time
course and transfer of perceptual learning in a 2AFC
task, which is the most widely used procedure in
perceptual-learning studies (Jogan & Stocker, 2014;
Kingdom & Prins, 2010; Vancleef et al., 2018).

Step sizes of the staircase method were manipulated
at six levels (1%, 5%, 10%, 20%, 30%, and 60%) to
examine which step size could best track the detailed
time course of perceptual learning. Smaller step sizes
(1% and 5%) failed to generate reliable threshold
estimates, because the staircase method does not
generate enough reversals. Larger step sizes (20%, 30%,
and 60%) produced block threshold estimates with
lower accuracy and precision compared to the 10% step
size. Although the commonly used 10% step size is the
best option for the staircase method, it still produced

estimates with substantial bias and SD for the
estimated learning curve parameters in some cases.
Furthermore, when learning is more rapid, the staircase
method is less able to track the detailed time course of
perceptual learning. This is not surprising, since there is
an insufficient number of block measurements to track
reductions in threshold, especially in the early rapid-
changing phase of learning.

In the current study, the starting levels (initial
threshold levels tested) also influenced the performance
of the staircase method in estimating learning curves.
The biases and SDs of the estimated parameters from
the staircase method depended more on the starting
levels, while the qCD method was much less dependent
on the deviation of the starting value from the true
value. The staircase method performed worse when the
starting levels were set nonoptimally.

The staircase method generated biased and imprecise
threshold estimates because a constant threshold is

Figure 9. The biases (A) and standard deviations (B) of the estimated parameters (k, c, and a) in the transfer phase. Results from the

post hoc segment-by-segment quick Change Detection analyses are shown in blue. Results from the SC10% staircase are shown in

green.

Figure 10. Half widths of 68.2% credible intervals of the estimated k (A), c (B), and a (C) from the quick Change Detection method in

the transfer phase. Red, green, and blue dash-dotted lines denote Observers 1, 2, and 3, respectively.
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assumed within each block of trials, whereas the

perceptual sensitivity during perceptual learning

changes continuously (Lu et al., 2011; Mazur & Hastie,

1978; Petrov et al., 2005), even within each measure-

ment block and especially in the early phase of learning

(Badiru, 1992; Dosher & Lu, 2007; Heathcote et al.,

2000). On the other hand, the qCD method parame-

terizes the learning curve as an exponential function

Figure 11. Distributions of the estimated initial threshold (A) and percentage of improvements (B) in the transfer phase from the

quick Change Detection and SC10% staircase methods. Blue asterisks and green circles denote results from the post hoc segment-by-

segment quick Change Detection and staircase methods, respectively. Black dash-dotted lines denote the true values. Results from

the three observers are shown in separate rows.

Figure 12. Distributions of the transfer index of three simulated observers—(A) Observer 1, (B) Observer 2, (C) Observer 3—with a

starting level at 0% from the true threshold in the first trial. Blue and green symbols denote the results from post hoc segment-by-

segment quick Change Detection and SC10% staircase methods. Black dash-dotted lines denote the true values.
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with joint probability distributions of all three param-
eters. Based on the adaptive Bayesian framework
(Kontsevich & Tyler, 1999; Lesmes, Jeon, Lu, &
Dosher, 2006; Lesmes et al., 2010; Watson & Pelli,
1983), the qCD method selects the next test stimulus to
optimize the expected information gain trial by trial. By
continuously updating the posterior distribution trial
by trial, the qCD method provides a detailed trial-by-
trial estimate of perceptual sensitivity that tracks the
detailed time course of perceptual-sensitivity change.
Our simulations show that the estimated learning
curves and their parameters from the qCD method
were very accurate and precise with the 2AFC task
tested here regardless of the deviations in starting
levels.

Although specificity is considered to be the
hallmark of perceptual learning, a growing number
of studies have found that learning can transfer and
that the degree of transfer depends critically on the
difficulty (Ahissar & Hochstein, 1997; Z. Liu, 1995;
Z. Liu, 1999) or precision (Jeter et al., 2009) of the
training or transfer tasks, training duration (Jeter,
Dosher, Liu, & Lu, 2010), and training procedure (J.
Huang, Liang, Zhou, & Liu, 2017; Liang et al., 2015;
Tartaglia, Bamert, Mast, & Herzog, 2009; Xiao et al.,
2008). Accurate and precise estimates of the initial
and final thresholds in the learning phase and the
initial threshold in the transfer phase are critical for
computing the transfer index (Ahissar & Hochstein,
1997; Dosher & Lu, 2007; Jeter et al., 2010; J. Liu,
Lu, & Dosher, 2012). In Simulation Study 1, the
estimated initial threshold from the staircase method
was quite biased and imprecise, while the qCD
method yielded estimated initial thresholds with high
accuracy and precision. In Simulation Study 2, we
found that the estimated transfer index from the
staircase method was much less accurate and precise
than from the qCD method, especially when the
learning was rapid. The qCD method performed well
with all starting stimulus levels and learning rates. In
these stimulations, we assumed that the learning rates
were the same in the learning and transfer phases.
Theoretically, transfer of perceptual learning could
lead to a lower initial threshold or faster learning (Z.
Liu & Weinshall, 2000). This could be even more
challenging for the staircase method to estimate
accurately.

Although the priors in the current study were
uniform rather than the weakly informative secant
functions used by Zhang, Zhao, et al. (2018, 2019), the
qCD procedure still produced estimates with relatively
high accuracy and precision. Our qCD procedure is
also superior to that of Kattner, Cochrane, and Green
(2017). Although their procedure can provide an
estimated continuous trial-by-trial learning curve that
is more detailed than the block-by-block analysis

typically used in perceptual-learning studies with the
staircase method, the selection of test stimuli during
learning was not optimized during data collection. As a
result, the new fitting procedure significantly improved
the confidence intervals of the estimated thresholds in
the late phase of the learning curve, but did not
substantially benefit estimates in the early phases of
learning.

Per the request of an anonymous reviewer, we
rescored the simulated data from the staircase method
using the Bayesian estimation component of the qCD
method. The data of all three simulated observers
(training part only) from the staircase method with
three starting levels (0%, þ50%, and �50% above the
true initial threshold) and two step sizes (10% and 5%)
were rescored using the trial-by-trial and post hoc
segment-by-segment qCD procedures. For the data
obtained with both step sizes, the average accuracy and
precision (RMSE, HWCI, and SD) of the rescored
thresholds were comparable to those of the direct
estimates with the qCD method, except that the
accuracy of the rescored thresholds of the simulated
observer with the fastest learning rate, 5% step size, and
þ50% starting level were worse than those obtained
with the qCD method directly (RMSE: 0.024 vs. 0.006
log10 units; Supplementary Table S5; Supplementary
Figures S20 through S23). These results are different
from those of Zhao et al. (2019), who found that even
after rescoring with the qCD method, the accuracy and
precision of the estimated thresholds from the staircase
methods were worse than those obtained directly with
the qCD method. The difference between the two
studies is that Zhao et al. investigated faster perceptual-
sensitivity changes than we did (time constants of 20 vs.
40 trials).

To further evaluate the effects of rescoring, we
performed additional simulations on the training part
of simulated Observer 1 (time constant¼ 40 trials) in
4AFC and 8AFC tasks and measured the performance
with the staircase (step size¼ 10%) and qCD methods.
In the 4AFC task, the starting levels wereþ22%,þ84%,
and �36% relative to the true initial threshold. In the
8AFC task, the starting levels were 0%, þ50%, and
�50% relative to the true initial threshold. The data
obtained from the staircase method were rescored using
the qCD method. We found that the average accuracy
and precision of the rescored thresholds were compa-
rable to those of the direct estimates from the qCD
method, except when the starting level was much higher
than the true initial threshold. For example, in the post
hoc segment-by-segment analysis, the RMSEs of the
estimated learning curve from the qCD and rescored
staircase data were 0.002 and 0.005 log10 units,
respectively, in the 4AFC task and 0.001 and 0.008
log10 units in the 8AFC task (Supplementary Table S6).
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The qCD method exhibited some advantages in
estimating thresholds in the early phase of learning.
Following the segment-by-segment analysis, in the
4AFC task the biases of the estimated threshold from
the qCD method were �0.008, �0.009, and �0.009,
respectively, after 1, 10, and 20 trials, and for the
rescored staircase data they were �0.027, �0.024, and
�0.021 (all in log10 units); in the 8AFC task they were
�0.003, �0.004, and �0.004 for the qCD method and
�0.043, �0.038, and �0.032 for the rescored staircase
data (Supplementary Figure S24). The same pattern of
results was also true for the HWCIs of estimated
thresholds. In the 4AFC task, the HWCIs of the
estimated threshold from the qCD method were 0.050,
0.040, and 0.032 log10 units, respectively, after 1, 10,
and 20 trials, and for the rescored staircase data they
were 0.063, 0.052, and 0.042 (Supplementary Figure
S25). To examine the effect of the number of
alternatives on the efficiency of the qCD method, we
also evaluated the efficiency of the qCD method in
2AFC, 4AFC, and 8AFC tasks for Observer 1 (time
constant¼ 40 trials). Defining efficiency as the number
of trials for the procedure to reach criterion accuracy
(RMSE) and precision (SD) levels (Zhao et al., 2019),
we found that the qCD procedure required 93, 84, and
76 trials to reach 0.02 log10-unit accuracy in 2AFC,
4AFC, and 8AFC tasks, respectively, and 677, 379, and
291 trials to reach 0.02 log10-unit precision (see
Supplementary Figures S26 and S27). Putting Zhao et
al. (2019) and the current study together, we conclude
the following: Rescoring the staircase-method data
with the qCD method could lead to comparable
accuracy and precision with direct qCD estimates when
perceptual sensitivity changes relatively slowly, but not
when it changes fast; the qCD method holds advan-
tages in early phase of learning; and the qCD method is
more efficient with more alternatives in forced-choice
tasks.

We focused on the staircase method in this study
because it is the most widely used procedure in
assessing effects of perceptual learning. Here we briefly
discuss the difference between qCD and other adaptive
procedures. QUEST is a classic adaptive Bayesian
testing procedure for estimating threshold from a
sequence of psychophysical trials (Watson & Pelli,
1979, 1983). It assumes a single stimulus dimension and
two possible trial outcomes, and estimates a single
psychometric-function parameter that is defined on the
stimulus dimension. Recently, QUESTþ extended
QUEST to allow estimation of multiple parameters of
the psychometric function, more stimulus dimensions,
and more trial outcomes, as well as any form of the
psychometric function and flexible sampling of stimu-
lus and parameter dimensions (Watson, 2017). How-
ever, the qCD method is quite different from QUEST.
Like many existing adaptive psychophysical proce-

dures, QUEST assumes that the threshold does not
change over time or from trial to trial. The procedures
are not designed to measure changing thresholds or
perceptual sensitivity in situations such as dark
adaptation and perceptual learning. Although it can be
extended to assess the time-course perceptual-sensitiv-
ity change, the current implementation and applica-
tions of QUESTþ have focused on thresholds that do
not change over time (Watson, 2017). Additional work
is necessary to extend and evaluate QUESTþ in
measuring the time course of perceptual-sensitivity
change.

Zhao et al. (2019) compared the performance of the
qCD and quick Forced-Choice (qFC; Lesmes et al.,
2015) methods in measuring the time course of dark
adaptation. The qFC method, similar to QUEST and
QUESTþ, belongs to a family of novel Bayesian
adaptive methods that are designed to estimate
thresholds in yes/no and forced-choice tasks. Like
QUEST and current implementations of QUESTþ, the
qFC method does not explicitly model perceptual-
sensitivity change over time. Simulations showed that
the accuracy and precision of the estimated dark-
adaptation curve after one qCD run (RMSE ¼ 0.002;
HWCI ¼ 0.016; SD ¼ 0.020; all in log10 units) were
much higher than those obtained by 10 runs of the qFC
procedure (RMSE¼ 0.020; HWCI ¼ 0.032; SD ¼
0.031).

In conclusion, we have systematically examined the
performance of the 3-down/1-up staircase and qCD
methods in measuring the detailed time course of
perceptual learning and transfer in a 2AFC task. Our
simulations demonstrated that the qCD method
provides far more accurate and precise estimations of
the learning curve and the transfer index than the
staircase methods.

Keywords: quick Change Detection, perceptual
learning, staircase, transfer, adaptive testing
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Appendix A: The qCD procedure

Step 1. Threshold, psychometric function, and
priors

In the qCD method, the true learning curve is
characterized with a single exponential function:

T ~h; n
� �

¼ kexp
�n
c

� �
þ a; ðA1Þ

where ~h ¼ h1; h2; h3ð Þ ¼ k; c; að Þ, n is the trial number

during training, Tð~h; nÞ is the threshold at the d 0 ¼ 1:5

performance level on trial n, k is the dynamic range of
learning, a is the asymptotic threshold level, and c is the
time constant of the exponential function. Therefore,
kþ a is the initial threshold before training. A broad

joint prior distribution p0ð~hÞ is defined in the three-
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dimensional parameter space of ~h, where the subscript 0
is used to denote that the prior that represents a priori
knowledge of the parameters of the learning curve
before the experiment.

The prior distribution p0ð~hÞ was defined by the
hyperbolic secant function

p0 ~h
� �
¼ sech kconfidence log10 kð Þ � log10 kmodeð Þð Þ

� �
3 sech cconfidence log10 cð Þ � log10 cmodeð Þð Þ

� �
3 sech aconfidence log10 að Þ � log10 amodeð Þð Þ

� �
ðA2Þ

where sech xð Þ ¼ 2= ex þ e�xð Þ; kmode, cmode, and amode

are the peaks of the respective secant functions; and
kconfidence, cconfidence, and aconfidence are the spreads of the
respective secant functions. The secant function is used
as a weakly informative prior based on the previous
literature (King-Smith & Rose, 1997) and results from

a pilot study. The joint prior distribution p0ð~hÞ was
updated trial by trial throughout the simulated
experiment. A one-dimensional space X covers all
possible levels of the stimulus variation x 2 Xð Þ.

In a two-alternative forced-choice task, the percent-
age-correct psychometric function is described by a
Weibull function (Wichmann & Hill, 2001):

p0n r ¼ 1j~h;x
� �

¼

gþ 1� gð Þ 1� exp � x

Tw
~h; n
� �

0
@

1
A

s0
@

1
A

0
@

1
A; ðA3Þ

pn r ¼ 1j~h;x
� �

¼ 1� kð Þp0n r ¼ 1j~h; x
� �

þ lg; ðA4Þ

where p0n is the psychometric function on trial n without
a lapse rate, and pn is with a lapse rate, r is the response
(1 for correct, 0 for incorrect), x is the stimulus value,
and g ¼ 0:5 is the guessing rate. The slope of the
Weibull function was set as s ¼ 3:06 (Hou, Lesmes,
Bex, Dorr, & Lu, 2015), and the lapse rate was set at
l ¼ 0:04. In this case, Tw h; nð Þ is the Weibull threshold
at trial n given parameters ~h:

log10 Tw
~h; n
� �� �

¼ log10 T ~h; n
� �� �

� 1

s
log10 log

1� g

1� p1:5

� �� �
; ðA5Þ

where p1:5 ¼ 0:794 is the probability correct corre-
sponding to d 0 ¼ 1:5 in a two-alternative forced-choice

task. Therefore, pnðr ¼ 1j~h;xÞ is the probability of

making a correct response r ¼ 1ð Þ at trial n, condi-
tioned on parameters ~h and the stimulus value x. The
probability of making an incorrect response r ¼ 0ð Þ is

pn r ¼ 0j~h;x
� �

¼ 1� pn r ¼ 1j~h; x
� �

: ðA6Þ

Together, Equations A1 through A6 describe the
probability that any possible observer (defined by~h) will
makeeitheracorrectoranincorrectresponseinallpossible
stimulus conditions (x) throughout the course of percep-
tual learning. The qCDmethod then uses an adaptive
procedure to update theposterior distributions for a given
observer based on their performance in the simulation.

Step 2. One-step-ahead stimulus search

The stimulus in the next trial is selected from among
all possible stimulus values (the one-dimensional space
X) to optimize the expected information gain (Kujala &
Lukka, 2006; Lesmes, Jeon, Lu, & Dosher, 2006). The
expected information gain of a potential test stimulus
with x is defined as

In xð Þ ¼ h
X
~h

pn ~h
� �

pn r ¼ 1j~h;x
� �0

@
1
A

�
X
~h

pn ~h
� �

h pn r ¼ 1j~h; x
� �� �

; ðA7Þ

h pð Þ ¼ �plog pð Þ � 1� pð Þlog 1� pð Þ; ðA8Þ
where h is the information entropy of the distribution p.

Step 3. Bayesian update

After the stimulus for the next trial (e.g., trial n) is
selected by Step 2 and presented to the observer, the
joint posterior distribution of the parameters of the
exponential function is updated based on the response
of the observer.

In the nth trial of the learning curve, rn is the
observer’s response to a stimulus with stimulus value xn
presented at trial n of training, and pnð~hÞ is the prior
distribution of parameters ~h at trial n of training (equal
to the posterior for trial n � 1). The prior distribution

pnð~hÞ is updated to the posterior distribution pnð~hjrn; xnÞ
via Bayes’s rule:

pn ~hjrn; xn
� �

¼
pnðrnj~h; xnÞ pn ~h

� �
pnðrnjxnÞ

; ðA9Þ

pnðrnjxnÞ ¼
X
!
h

pnðrnj~h; xnÞ pn ~h
� �

; ðA10Þ

where R~h is the summation over the three-dimensional
parameter space—that is, R~h ¼ RaRkRc:
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The posterior distribution of ~h following the nth trial
in the learning curve is used as the prior of trial nþ 1:

pnþ1 ~h
� �
¼ pn ~hjrn; xn

� �
: ðA11Þ

The marginal posterior distribution of each param-
eter is computed via summation of the joint posterior
distribution over the other two parameters in the three-
dimensional parameter space:

pn ajrn; xnð Þ ¼
X

k

X
c

pn ~hjrn;xn
� �

pn kjrn; xnð Þ ¼
X

a

X
c

pn ~hjrn;xn
� �

ðA12Þ

pn cjrn; xnð Þ ¼
X

a

X
k

pn ~hjrn; xn
� �

:

The expected values of the marginal posterior
distributions provide estimates of the parameters of the
exponential function after the nth trial in the learning
curve:

�hf;n ¼
X
hf

hf � pn hajrn; xnð Þ; ðA13Þ

where hf ¼ k; c; a for f¼ 1, 2, 3, respectively. (These are
cast as summations rather than integrals because the
parameter values for which these quantities are
computed are quantized in the qCD method and in the
simulations; see main text.)

Based on the updated joint posterior distribution of
parameters, the trial threshold can be estimated by
the following procedures. We constructed 1,000
learning curves from the 1,000 sets of parameters
randomly sampled based on the posterior probability
distributions of the parameters. The average of the
1,000 learning curves was used as the threshold
estimates.

Step 4. Iteration of Steps 2 and 3

Steps 2 and 3 are iterated until a predefined number
of training trials are completed.

Step 5. Trial-by-trial and segment-by-segment
analyses

Based on the joint posterior distribution after each
trial, qCD can provide trial-by-trial estimates of the
parameters and a single threshold in that trial. In
addition, a post hoc segment-by-segment analysis can
be used to partition the posterior distributions into

segments based on their central tendency. The post
hoc segment-by-segment analysis can determine
whether the entire learning curve can be described by a
single exponential function or a cascade of multiple
exponent functions, and use all the information
collected during each segment to further improve the
accuracy and precision of the estimated thresholds
(Zhao, Lesmes, & Lu, 2017, 2019). The posterior
distribution obtained at the end of each segment is
used to compute estimates of parameters and thresh-
olds.

We can partition the posterior distributions based on
their central tendency across time. The distance

between the central tendencies of the posterior distri-

butions pn1ð~hjrn1 ; xn1Þ and pn2ð~hjrn2 ;xn2Þ at two trials, n1

and n2, is quantified by a modified Mahalanobis
distance:

MD n1; n2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~yC�1~ytr

q
; ðA14Þ

C ¼ Cn1 þ Cn2½ �=2; ðA15Þ
where ~y ¼ y1; y2; y3½ �, yi ¼ �hi;n1 � �hi;n2 , hf ¼ k; c; a;for f¼
1, 2, 3, respectively; ~yT is the transpose of ~y; C�1 is the
inverse of the matrix C; and Cnb (b¼ 1 or 2) is the 33 3

covariance matrix of the posterior pnbð~hjrnb ; xnbÞ for
which the diagonal elements cnb;a1a1 and the off-diagonal
elements cnb;ij (i; j 2 1; 2; 3½ �; i 6¼ j) are defined as

cnb;ii ¼ Var hi;nb
� �

¼
X
~h

hi � �hi;nb
� �2 � pnb ~hjrnb ; xnb

� �
; ðA16Þ

cnb;ij ¼ Cov hi;nb ; hj;nb
� �

¼
X
~h

hi � �hi;nb
� �

hj � �hj;nb
� �

� pnb ~hjrnb ;xnb
� �

: ðA17Þ

The null hypothesis is that the posterior distributions

pn1ð~hjrn1 ;xn1Þ and pn2ð~hjrn2 ;xn2Þ are the same. We reject

the null hypothesis when

MD n1; n2ð Þ.MD0; ðA18Þ
where MD0 is a predetermined criterion.

To describe how we partition the posterior distri-
butions of the dark-adaptation curve, we first introduce
some notation: ul is the trial number in the experiment,
where l and ul refer to the lth segment and the ulth trial
in the lth segment, respectively; Ul is the total number
of trials in the lth segment; and L is the number of
segments of the entire dark-adaptation curve. To
partition the dark-adaptation curve into segments, we
start from the last trial of the entire experiment, UL.
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The MD between pnUL
ð~hjrUL

; xUL
Þ and pnuL ð~hjruL ; xuLÞ,

the posterior distributions of the last trial and the
previous trials, is calculated until UL�1; the last trial of
segment L � 1, is found:

MD pnUL

~hjrUL
; xUL

� �
; pnuL

~hjruL ;xuL
� �� �

�MD0;

8uL 2 1;UL � 1½ �; ðA19Þ

MD pnUL

~hjrUL
; xUL

� �
; pnUL�1

~hjrUL�1 ;xUL�1

� �� �
.MD0; ðA20Þ

where nuL and nUL
refer to trials uL and UL (last trial) in

the Lth segment (last segment).
We then repeat the procedure to find all the segments.

Therefore, for the lth segment (l . 1), we have

MD pnUl

~hjrUl
;xUl

� �
; pnul

~hjrul ;xul
� �� �

�MD0;

8ul 2 1;Ul � 1½ �; ðA21Þ

MD pnUl

~hjrUl
;xUl

� �
; pnUl�1

~hjrUl�1 ;xUl�1

� �� �
.MD0: ðA22Þ

Because the learning curve is continuous, we impose
the following constraint on the posterior distributions
between segments:

pul kþ að Þ ¼ pnUl�1
ftUl�1

� �
; ðA23Þ

where pul kþ að Þ is the marginal prior distribution of
kþ a at trial ul (ulth trial in the lth segment) and pnUl�1
ðfnUl�1

Þ is the probability distribution of the threshold

estimate at n Ul�1;l�1f g of segment l � 1.

Following segmentation, we use the posterior in the

last trial of each segment, pnUl
ð~hjrUl

;xUl
Þ, to compute

the estimated thresholds in the entire segment. There-
fore, the posteriors are conditional on the data from the
beginning of the experiment.
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