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The Biham-Middleton-Levine model (BML) is simple lattice model of traffic flow, self-organization

and jamming. Recently, the conventional understanding was shown to be incomplete: rather than

a sharp phase transition between free-flow and jammed, there is an additional region where conver-

gence to intermediate states is observed, with details dependent on the aspect ratio of the underlying

lattice. For aspect ratios formed by two subsequent Fibonacci numbers, intermediate states converge

to ordered, periodic limit cycles (i.e., periodic intermediate (PI) states). In contrast, for square as-

pect ratios, intermediate states typically converge to random, disordered intermediate (DI) states.

We show these DI states are very robust to perturbation and occur more frequently than the conven-

tional states for some densities. Furthermore, we report here on the discovery of PI states on square

aspect ratios, showing PI states are not just an idiosyncrasy of particular aspect ratios. Finally,

we investigate features that lead towards jamming and identify that local effects can dominate. A

strategic perturbation of a few selected bits can change the nature of the flow, nucleating a global

jam. The global parameters, density together with aspect ratio, are not sufficient to determine the

full jamming outcome.

PACS numbers: 89.40.Bb, 64.60.My, 64.60.Cn, 05.20.Dd

I. OVERVIEW: BML AND RESULTS

Transport phenomena plays an underlying role in a
broad range of physical systems: traffic flow on high-
ways [1, 2, 3, 4], congestion of packets on the Inter-
net [5], flow of nutrients through the body [6], forma-
tion and flow of river networks [7, 8], etc. These all
rely on transportation and flow of physical substances.
Self-organized patterns in the flow, such as vortices and
spiral waves, occur frequently. Moreover, the flow of-
ten jams (i.e., comes to a complete halt) abruptly, in
response to just a small change in an external control
parameter. Simple models from statistical physics have
been proposed which produce aspects of self-organization
and the abrupt onset of jamming, in particular the Bi-
ham, Middleton, and Levine model (BML) [9]. BML is a
simple cellular automata model of two-dimensional traffic
flow, modeling gridlock between east-bound and north-
bound “cars”. The standard understanding is that the
BML model undergoes a first-order phase transition as
a function of traffic density ρ, from free-flow (FF) traf-
fic (all cars move at all times with velocity v = 1) to a
global jam (GJ) of traffic (no car ever moves, so v = 0).
Figures 1 (a) and (b) show typical FF and GJ config-
urations. The dynamics leading to their formation can
be seen at [10]. BML has become a theoretical under-

pinning for traffic modeling, with hundreds of citations
in the scientific literature referencing BML and its first-
order phase transition. For comprehensive reviews see
Refs. [2, 3, 4].

Recently a larger family of behaviors was discov-
ered [11]. BML does not necessarily (or even typically, as
shown below) exhibit a sharp phase transition from FF to
GJ, but instead has a range of “intermediate states” with
regions of FF intersecting at jammed wavefronts. The
geometry and velocities of the intermediate states are
intrinsically dependent upon the aspect ratio of the un-
derlying lattice (i.e., the ratio of the number of columns,
L, to the number of rows, L′). When L and L′ are two
subsequent Fibonacci numbers (referred to herein as “Fi-
bonacci lattices”), the intermediate states each converge
to a periodic limit cycle as was shown in [11]. The exact
microscopic configuration recurs every τ timesteps, with
τ on the order of the number of particles in the system.
These periodic intermediate (PI) states have a highly reg-
ular, crisp geometric structure, as illustrated in Fig. 2 (a),
with bands of free flowing traffic intersecting at jammed
wave fronts that propagate smoothly through the space.
(System 1 of Ref. [10] illustrates this behavior.) Further-
more, as shown in [13] and reproduced here in Fig. 2 (b),
hundreds of runs were simulated for Fibonacci lattices
with densities ρ between 1/3 and 1/2. Each one con-
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FIG. 1: Typical configurations for the BML model on an L × L lattice, with L = 256. (a) The free-flow (FF) phase reached

by any random initial configuration with small density, ρ. Self-organized bands of separated east- and north-bound cars allow

all particles to advance each update, thus v = 1. (b) The global jam (GJ) phase reached by any random initial configuration

for larger ρ. Here all cars are immobilized, thus v = 0. The conventional belief is that there is a first-order phase transition

between these two behaviors as a function of ρ, with critical density ρc ≈ 0.35. (c) Numerical results show otherwise. Each

point represents one individual random realization run until convergence. FF (v = 1) and GJ (v = 0) states do occur, but less

frequently than intermediate states.

verged to a periodic limit cycle with either v ≈ 0.70 or
v ≈ 0.36 (see [11] for a derivation of these velocities).
The conventional behaviors (FF or GJ) were never once
observed and do not seem to be in the accessible phase
space for these densities. Thus, by changing the under-
lying lattice aspect (from square to Fibonacci), one can
considerably delay the onset of when complete jamming
is first observed, and instead observe high-throughput
flow in a regime where previously it was believed the sys-
tem would fully jam.

On square aspect ratios (i.e., L = L′, the configuration
typically studied in the literature), intermediate states
are also observed. Their geometric structure, illustrated
by Fig. 3, is qualitatively similar to Fig. 2 (a), but in
addition most states have disordered chains of particles,
interspersed at random, moving throughout the space
which preclude such states from being on periodic limit
cycles. (System 3 of [10] illustrates the dynamics.) Thus
we distinguish Disordered Intermediate (DI) from Peri-
odic Intermediate (PI) states. Unlike the PI states which
have converged to a fixed limiting behavior, we cannot
rule out the possibility that the DI states are metastable
long-lived transients. Previous evidence [11, 12] strongly
suggested that to reach a periodic limit cycle (i.e., a
PI state) required that L and L′ be relatively prime to
each other. We report here on the discovery of PI states
on square lattices: PI states exist in the conventional
BML model, and are not just an idiosyncrasy of rela-

tively prime aspect ratios. We show that PI states on
square aspect ratios are rare (we observed only two in a
sample of 361 random realizations), yet DI states are ex-
tremely common (over 60% of random realizations with
ρ = 0.36 converge to DI states). In addition, we quantify
how stable the DI states are to perturbation. Here too,
the results are consistent with DI states comprising over
60% of the ensemble of realizations.

For square aspect ratios, DI, PI and GJ phases can all
be observed at the same value of density. Thus we now
know that density together with aspect ratio influence
the jamming outcome, but are not “control parameters”,
sufficient to fully predict it. We show that local effects
play a fundamental role in determining the outcome. A
strategic perturbation of just a few bits (which cannot,
by definition, alter global properties such as density) can
make a realization flip from the DI to the GJ state.

II. IMPLEMENTATION PROCEDURE

The BML model consists of two species of “cars” mov-
ing on a two-dimensional square lattice with periodic
boundary conditions. “Red” cars want to move east-
ward. “Blue” cars want to move north-ward. And they
alternate attempts to do so. First all the red cars in syn-
chrony attempt to advance one lattice site to the east.
Any car succeeds so long as the site it wants to occupy
is currently empty (no red or blue car is already occu-
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FIG. 2: (a) Typical PI state on a Fibonacci lattice for a real-

ization with L = 144 and L′ = 89. (b) Experimental results

for L = 89 and L′ = 55. Each point represents one individual

realization. For densities between ρ ≈ 0.35 and ρ ≈ 0.5, each

realization converges to a PI state.

pying it). Then all the blue cars in synchrony attempt
the corresponding advance north-ward. Cars that ad-
vance are said to have velocity v = 1. Stationary (i.e.,
“blocked”) cars have v = 0. We can think of the BML
lattice as having a traffic light at each site, with all lights
synchronously timed to alternate between east-ward and
north-ward flow. The dynamics is fully deterministic.
The only randomness is in the initial condition, when an
empty lattice is populated uniformly at random with den-
sity ρ/2 of cars of each species. Thus, total car density
is ρ.

We implement the BML model using a square aspect
ratio, with L = L′ = 128, initialized at random with
density ρ ≈ 0.36. We first generate an ensemble of 45
such random realizations of the system and run each one
until at least the “relaxation time” of the system τc =

FIG. 3: A typical DI state with L = L′ = 128 and ρ = 0.36.

Chains of particles are interspersed randomly throughout, in

contrast to the PI state shown in Fig. 2 (a).

200, 000 time-steps, where this value of τc was determined
in [11] to exceed the convergence time for such system
sizes. All simulations were implemented in Python. The
numerical results presented in Fig. 4 and Fig. 5 alone
required over a month of non-stop running time, using
an 8-processor, dual-core, 2.4GHz computer.

III. RESULTS

A. Accessibility of intermediate states

Of the 45 random initial conditions, 14 of them con-
verge to the jammed state (v = 0). The remaining 31
converge to the DI state (with v ≈ 2/3). Figure 4 is
a plot of the exact converged velocity for each sample.
Thus for L = L′ = 128 and densities ρ ≈ 0.36, more
than than 68% of the random initial conditions converge
to the DI state. Less than 32% of them converge to the
expected GJ behavior of v = 0.

B. Robustness of intermediate states

We wish to understand how robust the intermediate
states are to perturbation. If we flip the identity of some
of the cars (i.e., from red-to-blue and blue-to-red), how
likely is the perturbed system to then jam? We consider
the subset composed of the 31 DI realizations discussed
above. For each realization, we choose some fraction of
the particles uniformly at random (ensuring equal num-
bers of red and blue), and exchange their color. Then we
run the perturbed system for a second τc timesteps and
measure the new velocity.
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FIG. 4: Experimental results for the 45 realizations with ρ =

0.36 on an L = L′ = 128 lattice. Each point represents one

individual realization started from a random initial condition

and run until time τc. Only 14 realizations converge to the

expected GJ state. The remaining 31 converge to the DI state.
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FIG. 5: The fraction of realizations which flip from DI to GJ

as a function of the extent of the perturbation.

Figure 5 is a plot of the fraction of intermediate states
which changed from DI to GJ as a function of the per-
centage of the particles whose identities were flipped. Be-
tween 25% and 45% of the realizations flip from DI to
GJ when perturbed, but the majority remain in the DI
phase. We are finding the intermediate states are ex-
tremely robust! Note, in Fig. 5, random perturbations
as large as 25% of the particles are considered and there
is a weak trend indicating a system is more likely to reach
a GJ with increased perturbation. But, as will be pre-
sented in Sec. IV, a tiny strategic perturbation can take
a realization from the DI to the GJ phase.

FIG. 6: A typical PI state on a square lattice for a realization

with L = L′ = 128 and ρ = 0.36. System 2 of [10] illustrates

the dynamics.

C. PI states on square lattices

Two of the DI states, when perturbed slightly (less
than 5%), actually went from DI to PI. For these states
v ≈ 0.5 and the period, τ ≈ 25, 000 timesteps (about four
times the number of particles in the system). A snapshot
of one of the PI realizations is shown in Fig. 6. (System 2
of Ref [10] is a movie of the dynamics.) Our total sample
space includes 361 realizations (i.e., the original ensemble
of 45 plus all the perturbed realizations). Of these 361,
only two went to a PI state.

The PI states observed on a square aspect ratio are
very fragile. Flipping just 1% of the particles takes the
system to the DI phase. On Fibonacci lattices the PI be-
havior is more complex. If just one particle of a particular
PI realization is perturbed, that realization jumps to a
different PI state (i.e., a different periodic limit cycle),
but remains in the PI phase. This same result holds even
when the perturbation is large. Thus, an individual PI
state is fragile, yet the PI phase is extremely robust. (The
phase space breaking into distinct clusters is reminiscent
of ergodicity breaking observed in spin-glasses [14] and
random constraint satisfaction problems, see e.g., [15].)

IV. LOCAL PROPERTIES TRIGGER JAMMING

Jamming and transport play an underlying role in a
wide array of fundamental processes, hence identifying
properties that enhance, delay or trigger jamming is an
important problem. As shown in Sec. III, systems with
L/L′ = 1 and the same exact ρ may converge to GJ, to
DI or to PI states. Thus, ρ, together with L/L′, predict
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some, but not all, properties of the jamming outcome.
Our aim is to identify the additional factors that influence
jamming – to find properties that differentiate between
realizations which, for the same ρ and L/L′ = 1, con-
verge to GJ from those which converge to DI states. We
investigate a range of potential factors, amongst them:
- The maximum density observed in any one row or col-
umn. The assumption is that a highly populated row or
column could nucleate a jam.
- The standard deviation of the distribution of individ-
ual row (and column) densities. The assumption is that
large variance (many high density lines mixed with low
density ones) can nucleate a global jam.
- The difference between the total number of red- ver-
sus blue-cars. The assumption is that a disproportionate
representation of one color could nucleate a jam. Note,
each site is occupied initially at random with probability
ρ, hence the total number of occupied sites is a random
variable.

First we focus on the original ensemble of 45 realiza-
tions (defined in Sec. II). We found no correlation be-
tween the values of any of these properties listed above
and the likelihood to converge to a GJ, rather than a
DI, state. Furthermore, we found no correlation between
any of these properties and the value of the converged
velocity (Fig. 4 is a plot of the latter). These macro-
scopic properties are independent from the likelihood to
jam. Similar results were found in a previous study on
Fibonacci lattices, where there are two types of PI states
(high- and low-velocity), and we found that none of the
properties above differentiated between them [16].

We then focus on comparing individual realizations to
their perturbed variants (as defined in Sec. III B). In par-
ticular we consider realizations that, with just a 1% per-
turbation, change from DI to GJ. We find the properties
discussed above do not differentiate between the original
and perturbed realizations. To clarify whether these par-
ticular realizations that went from DI to GJ are more sus-
ceptible to jamming we tried different random 1% tweaks
– some nucleated a jam, but most did not. Sometimes we
happen to perturb the key particles and nucleate a jam,
but the majority of the time we do not.

Diagonal ordering may be of fundamental importance
to the BML model. The self-organization leading to FF
involves formation of left-sloping (NW-to-SE) diagonals
of the same species (Figure 1 (a) illustrates the end result
of this process, with separated left-sloping bands of the
different species). Jams, in contrast, form along right-

FIG. 7: Closeup of the DI state shown in Fig. 3, with

L = L′ = 128 and ρ = 0.36. Perturbing just three par-

ticles (colored green, lower left hand corner), will make the

new system converge to GJ. (System 4 of Ref. [10] is a movie

of the dynamics, started from the perturbation.)

sloping (NE-to-SW) diagonals. (Figure 1 (b) illustrates
the end result of a global jam). During the evolution
of any realization, from the random initial condition to
the final state, we see a competition between these two
types of diagonals emerging and interfering with each
other. The left-sloping diagonals lead towards v = 1, the
right-sloping towards v = 0. Note, Austin and Benjamini
recently completed an analysis of BML based on diago-
nals [17]. They showed that, for an L × L system with
total number of particles N = L/2 the system always
converges to v = 1. Of course, ρ = 1/(2L) is quite far
from the regime of interest (0.3 < ρ < 0.6), yet [17] is
one of the only rigorous proofs for behavior of the BML
model.

For both DI and PI states, there are regions of left-
sloping bands of FF intersecting at right-sloping jammed
interfaces. By perturbing just a few particles in nearby
left-sloping bands, we can nucleate a jam. Figure 7 shows
an example realization. We start from the same system
shown in Fig. 3 and then exchange the velocity of just
three particles along ordered left-sloping diagonals, which
makes the realization flip from the DI to GJ phase. (Sys-
tem 4 of Ref. [10] is a movie of the process.) Here, per-
turbing all three particles is necessary in order to induce
the GJ phase, however we did observe another realization
where changing just one particle made the realization flip
from DI to GJ. (Note that a 1% perturbation of a real-
ization with L = L′ = 128 and ρ = 0.36 amounts to
perturbing approximately 60 particles. Perturbing three
particles represents just a 0.01% change.) We believe
that pinpointing exactly how to quantify the change in-
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duced by the local perturbation is a difficult challenge,
and leave this as an open question.

V. DISCUSSION

The phase space of the BML model is much richer than
previously expected. A range of intermediate behaviors
are observed, with the exact details dependent, in part,
on the aspect ratio of the underlying lattice. For Fi-
bonacci lattices, three distinct regimes are observed as
a function of increasing ρ: 1) FF, 2) PI and 3) GJ. For
square aspect ratios the regimes observed are: 1) FF, 2)
coexistence of FF, PI and DI, and GJ and 3) GJ.

The intermediate states on the square aspect ratio
comprise a significant fraction of the accessible phase
space. For ρ = 0.36, over 60% of the states observed are
in the DI phase. Furthermore, results from perturbing
DI states also are consistent with such phases compris-
ing over 60% of the phase space. For Fibonacci lattices,
studied at a range of densities (1/3 < ρ < 1/2), the entire
phase space consists only of PI states.

Car density, ρ, together with aspect ratio influence the

jamming outcome, but are not sufficient to fully deter-
mine it. Local properties also play an important role,
and we present evidence that diagonal ordering is an ad-
ditional, fundamental consideration. Our current study
deals with perturbing a realization after it has converged
to the DI phase. Far more powerful (and difficult) would
be to understand what to alter in the random initial con-
dition to control the phase that realization ultimately
converges to.

Perhaps a practical consideration, is that one can ob-
serve high-throughput flow in a regime where previously
it was believed a system would jam and no flow at all
could be achieved. By changing the underlying lattice
aspect ratio (from a square to a Fibonacci lattice), one
can considerably delay the onset of when complete jam-
ming is first observed.
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