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Abstract

Greenspace may benefit sleep by enhancing physical activity, reducing stress or air pollution 

exposure. Studies on greenspace and children’s sleep are limited, and most use satellite-derived 

measures that do not capture ground-level exposures that may be important for sleep. We 

examined associations of street view imagery (SVI)-based greenspace with sleep in Project Viva, a 

Massachusetts pre-birth cohort.
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We used deep learning algorithms to derive novel metrics of greenspace (e.g., %trees, %grass) 

from SVI within 250m of participant residential addresses during 2007-2010 (mid-childhood, 

mean age 7.9 years) and 2012-2016 (early adolescence, 13.2y) (N=533). In early adolescence, 

participants completed >5 days of wrist actigraphy. Sleep duration, efficiency, and time awake 

after sleep onset (WASO) were derived from actigraph data. We used linear regression to examine 

cross-sectional and prospective associations of mid-childhood and early adolescence greenspace 

exposure with early adolescence sleep, adjusting for confounders. We compared associations with 

satellite-based greenspace (Normalized Difference Vegetation Index, NDVI).

In unadjusted models, mid-childhood SVI-based total greenspace and %trees (per interquartile 

range) were associated with longer sleep duration at early adolescence (9.4 min/day; 

95%CI:3.2,15.7; 8.1; 95%CI:1.7,14.6 respectively). However, in fully adjusted models, only the 

association between %grass at mid-childhood and WASO was observed (4.1; 95%CI:0.2,7.9). 

No associations were observed between greenspace and sleep efficiency, nor in cross-sectional 

early adolescence models. The association between greenspace and sleep differed by racial and 

socioeconomic subgroups. For example, among Black participants, higher NDVI was associated 

with better sleep, in neighborhoods with low socio-economic status (SES), higher %grass was 

associated with worse sleep, and in neighborhoods with high SES, higher total greenspace and 

%grass were associated with better sleep time.

SVI metrics may have the potential to identify specific features of greenspace that affect sleep.

Keywords

sleep; greenspace; children’s health; deep learning algorithms; longitudinal data; environmental 
epidemiology

INTRODUCTION

Healthy sleep is vital for optimal health in children and adolescents, and it entails 

adequate duration, good quality, regularity, and the absence of sleep disorders.1 Greater 

sleep quality and quantity have been found to be positively associated with cognition,2 

academic performance,3 and mental health and behavioral outcomes in children and youth.4 

Nevertheless, insufficient sleep is prevalent among children. A recent study showed that only 

5% of United States (U.S.) high school students (3% of girls; 7% of boys) spend the optimal 

time sleeping.5

Greenspace may positively influence sleep through improved health behaviors, such as 

physical activity and social engagement,6-8 or through mental health benefits, such as 

stress reduction, possibly via attention restoration.6,9 Greenspace can also benefit sleep 

through reducing exposure to air pollution, noise, and extreme temperatures.6 The literature 

is fairly consistent about the beneficial contribution of greenspace to sleep quality and 

quantity among adults.10 However, the association of greenspace and sleep in children 

and adolescents is less clear. The few studies that have assessed greenspace and sleep in 

children were cross-sectional, used subjective metrics of access to greenspace,11 and were 

inconclusive.12
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Most studies examining the association between greenspace and health have quantified 

exposure to greenspace using a satellite-based measure, i.e., the normalized difference 

vegetation index (NDVI), in the area around a residential address.13 NDVI ranges from −1 

to 1, with more positive values representing higher quantities of vegetation. While NDVI is 

well-established and standardized across studies, it cannot distinguish between trees, grass, 

crops, or other types of vegetation. The latter is fundamental for causal inference and policy 

relevance. In addition, the most direct connection between individuals and their environment 

is best represented by ground-based measures that capture what a person can actually view 

from the ground, but few studies have been able to incorporate exposure information from 

this perspective. This is especially important for sleep-related pathways, which may be 

related to visual greenspace. Novel methods, such as deep learning algorithms combined 

with street view imagery (SVI), may provide rapid advances in exposure assessment and 

new insights into the health impacts of greenspace on sleep.14

To overcome limitations of greenspace exposure assessment, we used deep learning 

algorithms applied to SVI to classify detailed types of vegetation from a ground-based 

view as participants experience them, in association with objective actigraphy-estimated 

sleep characteristics in adolescents. The aim of this study was to analyze cross-sectional 

and prospective associations between SVI greenspace exposure and sleep among children 

and adolescents, and to evaluate whether differently operationalized greenspace metrics (i.e., 

street view vs. satellite-based) led to diverging results.

METHODS

Data

We used data from Project Viva, a pre-birth cohort based in Eastern Massachusetts 

participating in the Environmental influences on Child Health Outcomes consortium. Project 

Viva recruited pregnant women from Atrius Harvard Medical Associates between 1999–

2002 and has been following mother-child pairs since pregnancy. Of 2,128 children, 1,038 

participated in the adolescent in-person visit (mean [SD] age was 13.2 [0.9] years; range: 

11.9–16.6 years) and were eligible for the sleep examination. Of these participants, 829 

provided valid actigraphy measurements and 533 had complete data on SVI-based metrics. 

All mothers provided written informed consent at each visit, and children began providing 

verbal consent at mid-childhood. The Institutional Review Board of Harvard Pilgrim Health 

Care approved this study.

Exposure

Georeferenced SVI captured from 2007-2018 by Google were used to develop novel 

measures of the natural environment representing an on-the-ground perspective. We created 

a 250 m grid for the entire Commonwealth of Massachusetts. For each grid point in 

each year, we used the Google application programming interface (API) to obtain the 

location of the nearest images. For each location nearest a grid point, we then used 

four images representing North, South, East, and West orientations within view. We then 

applied the pyramid scene parsing network (PSPNet)15 deep learning model, pre-trained on 

the ADE20K dataset16,17, to derive computer vision-based measures of greenspace from 
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SVI. The ADE20K dataset has densely annotated images covering a diverse set of scenes, 

object, and object part categories.17 Driven by powerful deep neural networks,18-20 PSPNet 

incorporates local and global contextual cues together to derive pixel-level segmentation of 

each image with an overall accuracy higher than 93% on pixel-level prediction tasks.21 Each 

pixel within each image (640 x 640 resolution) was classified into one of 150 pre-defined 

classes from ADE20K,22 including natural features, such as trees, shrubs, grass, plants, 

and flowers. For each image, the algorithm estimates the percentages of each output class 

(e.g., 50% trees in an image). We then averaged across the four orientations to estimate the 

percentages of each class within a 360° view for a given location. Using the percentages at 

each location, we created a raster file for each SVI year with a 250 m spatial resolution, 

which was linked to geocoded participant addresses (latitude and longitude were assigned) 

for the corresponding year. For example, mid-childhood visits took place from 2007-2010; 

therefore, we linked SVI-based exposure from 2007-2010. If no SVI data were available 

for a particular year, we carried forward SVI data from the year prior and up to 2 years 

before if needed. The key exposure metrics that we examined included: % total greenspace 

(% trees, % grass, % flowers, and % plants combined), % trees, and % grass; all exposure 

metrics were treated as continuous variables. We used interquartile ranges (IQR) for the 

main analyses.

We also estimated satellite NDVI for study participants to compare the results with our new 

SVI measures. NDVI is a satellite-derived indicator of the quantity of vegetation on the 

ground that has been used as a marker for exposure to greenspace in numerous previous 

epidemiological studies13,23,24 and in this cohort.25 Briefly, we used Landsat satellite data at 

30 m resolution for each participant’s geocoded address. We used the estimate for July of 

the specific year of follow-up (mid-childhood and early adolescence) averaged across a 90 m 

buffer around each address to evaluate the immediate area around residences.

Outcome

Nighttime sleep at early adolescence was assessed from actigraphy data analyzed using 

ActiLife-6 software (ActiGraph, Inc, Pensacola, FL). Participants were asked to wear an 

actigraph, which collected activity data in 60-second epochs, on their nondominant wrist 

for 7-10 consecutive days and nights and complete daily sleep logs. The primary sleep 

period was based on logs and observation of a sharp decrease in activity with a subsequent 

increase.26 Data from participants with ≥5 days of recordings with ≥10 hours of wear-time 

were included. More details in the algorithm on the classification of sleep and wake 

periods has been published elsewhere.27 The following sleep metrics were averaged over 

all nights of valid recording: (1) duration (sleep time in minutes), (2) maintenance efficiency 

(percentage of time between sleep onset and final awakening spent asleep), and (3) wake 

after sleep onset (WASO) (time awake after sleep onset in minutes). All sleep metrics were 

treated as continuous variables.

Covariates

At baseline, mothers reported their education level (% ≥ college graduate), spouse’s 

education level (% ≥ college graduate), and household income (% > $70,000/year). 

Information on child’s sex (female or male) was obtained from the delivery interview, and 
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mothers reported their child’s race/ethnicity (White, African American, Asian American, 

Hispanic, or Other) at the early childhood (3-year) visit. Child’s age was based on the 

early adolescent visit (continuous age in years). Neighborhood socioeconomic status (NSES) 

was assessed by census tract median annual household income at the mid-childhood visit 

based on 2000 U.S. Census data [census tract median household income at enrollment 

(continuous)] and urbanicity [based on population density at the census tract level].

Statistical Analyses

We used linear regression to quantify the association between greenspace metrics and 

sleep among adolescents in Project Viva. To evaluate whether differently operationalized 

greenspace metrics (i.e., street view vs. satellite-based) led to diverging results, we estimated 

models separately for SVI metrics and NDVI. As previously noted, actigraphy-based 

sleep metrics were assessed only at early adolescence, and green space exposure was 

measured at mid-childhood and early adolescence. We examined prospective associations of 

greenspace at mid-childhood with sleep at early adolescence and cross-sectional associations 

of greenspace at early adolescence with sleep at early adolescence (Figure S1). To assess the 

shape of exposure-outcome associations, we fit generalized additive models for continuous 

exposures. Penalized splines did not suggest deviations from linearity (p value > 0.1) for 

associations with all sleep metrics; therefore, we present the results from linear models. 

Additionally, we performed a sensitivity analysis using a log transformation to account 

for non-normality of the distribution of the sleep metrics. Results using log-transformed 

sleep metrics yielded similar results, thus we kept the un-modified metrics to facilitate 

interpretation. We present unadjusted models and models adjusted for potential confounders 

based on prior evidence28 and directed acyclic graphs.29 Model 0 is unadjusted; Model 

1 is adjusted for child’s age, sex, and race/ethnicity; and Model 2 is further adjusted 

for maternal and paternal education, marital status, household income, census tract level 

household income, and urbanicity. In addition, we assessed the effect measure modification 

of associations of greenspace with sleep by child’s sex, race/ethnicity (White/Black/Other), 

NSES (tertiles), and neighborhood population density (tertiles) using stratified analyses. 

Race/ethnicity was included in the models to capture the effects of perceived race, along 

with other aspects, such as quality of schools, which are correlated with parental skin 

color, cultural context, and racism.30 We used likelihood ratio tests to evaluate statistically 

significant effect modification. Lastly, we used multiple imputation to impute missing 

covariate values. We used SAS 9.4 with 50 imputations and 2,128 participants. Following 

guidelines,31 the imputation model included all model variables, plus main predictors of 

missingness (parity, maternal pre-pregnancy BMI, maternal age at enrollment, birthweight 

[z-value], gestational age, parental smoking, pregnancy smoking status, child’s asthma, 

cognitive function, executive function and behavior, BMI, among others). Regression 

analyses were run across 50 imputed datasets, and the pooled estimates were reported. 

Imputed results were broadly similar to those obtained using observed values; the former 

are presented. Statistical analyses were performed in R version 3.4.0 (R Core Team, Vienna, 

Austria)32.
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RESULTS

From the 829 participants with valid actigraphy measurements, 533 participants had 

complete data on SVI-based metrics of greenspace at early adolescence and 328 had 

complete data for SVI-based metrics of greenspace at both the early adolescence and 

mid-childhood in-person visits. On average, participants’ age at the early adolescence 

visit was 12.9 (0.7) years, and 59% of the sample were White; this percentage increased 

among the higher quartiles of greenspace (Table 1). About half of mothers and fathers in 

the lowest quartile of greenspace reported having a college education (54.9% and 52.1% 

respectively) compared with 87.7% and 70.0% in the highest quartile of greenspace, 

respectively. Household income also varied across greenspace quartiles from 57.9% 

reporting a household income larger than $70,000 in the lowest quartile to 88.3% in the 

highest quartile. We observed similar gradients by greenspace for census tract median 

household income (Table 1). All sleep metrics were slightly better in the top quartile of 

greenspace compared with the lowest quartile, e.g., sleep duration was 452 (39) minutes in 

the top quartile compared with 434 (41) minutes in the lowest quartile.

The median percentage of total greenspace within view based on SVI metrics was 28% (IQR 

25%) for mid-childhood and 34% (24%) for early adolescence. The median percentage of 

trees within view was 22% (23%) for mid-childhood and 25% (19%) for early adolescence 

while the median percentage of grass was 1% (5%) and 4% (7%), respectively. The median 

NDVI was 0.5 (0.2) for mid-childhood and 0.6 (0.2) for early adolescence. The correlation 

between SVI-based metrics of greenspace and NDVI varied by type of vegetation. For 

example, the correlation between NDVI and the percentage of total greenspace was 0.6, 

whereas it was 0.53 for the percentage of trees and only 0.01 for the percentage of plants 

(Figure S2). The correlations between the percentage of total greenspace and sleep were 

similar to the correlations between NDVI and sleep (e.g., 0.15 vs 0.13 for average sleep 

time).

Table 2 shows the estimates for SVI-based exposure measured at mid-childhood in 

association with sleep duration (sleep time in minutes), efficiency (percentage), and time 

awake after sleep onset (WASO; in minutes) measured prospectively in early adolescence. 

Unadjusted analyses showed a consistent, but small, positive relationship between SVI-

based and satellite-based greenspace and average daily sleep duration. For example, in 

unadjusted models, we saw that a one IQR increase in SVI-based greenspace was associated 

with 9.4 (95% CI: 3.2, 15.6) more minutes of sleep per night. This association seemed to 

be driven by the percentage of trees (8.1; 95% CI: 1.7,14.6). We also observed a positive, 

albeit slightly smaller, unadjusted association between NDVI and sleep duration (5.1; 95% 

CI: −0.4,10.6). However, these associations were attenuated and no longer statistically 

significant after adjusting for age, sex, and race/ethnicity, with the latter having a bigger 

impact on the estimate for greenspace. In the fully adjusted model for daily sleep duration, 

all the CIs included the null (e.g., % total greenspace 3.5, 95% CI: −3.8, 10.7; NDVI −0.1, 

95% CI: −6.5, 6.5; Table 2). We observed a positive association between the percentage 

of grass and WASO, where one IQR increase in SVI-based grass was associated with 4.1 

(95% CI: 0.3, 7.9) more minutes of WASO in fully adjusted models. High levels of WASO 

indicate sleep fragmentation and may result in non-restorative sleep.33 This association was 
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observed only after adjusting for confounders. We did not observe evidence of associations 

between SVI-based or satellite-based greenspace metrics and sleep efficiency (Table 2). 

In sensitivity analyses we further adjusted for clustering by Census tract and our results 

remained consistent.

Table 3 shows the estimates for the cross-sectional association between SVI-based exposure 

and sleep metrics in early adolescence. In unadjusted models, analyses showed a consistent 

beneficial relationship between SVI-based and satellite-based greenspace and all sleep 

metrics. We also saw evidence that the positive associations were driven by the presence 

of trees. However, in adjusted models, associations were generally attenuated and all CIs 

included the null.

Stratified Analyses

We observed no differences in the association between greenspace and sleep metrics in 

Project Viva when we stratified the analyses by child’s sex and urbanicity level, as CIs 

included the null for all strata (Figures S3-S4). In models stratified by NSES, we observed 

that in neighborhoods with a high SES, one IQR increase in total percentage of greenspace 

(17.8, 95% CI: 5.0, 30.7) and percentage of grass (8.3, 95% CI: 1.4, 15.3) were associated 

with more minutes of sleep per night (Figure 1). We also observed that in neighborhoods 

with a low SES, one IQR increase in the percentage of grass was associated with less sleep 

efficiency (−1.6, 95% CI: −3.0, −0.2) and more sleep fragmentation, as measured by WASO 

(10.5, 95% CI: 2.0, 19.0) (Figure 1). All other findings were null. In models stratified by 

race/ethnicity, we observed that among Black participants, one IQR increase in NDVI was 

associated with more sleep efficiency (2.6, 95% CI: 0.6, 4.6) and less sleep fragmentation 

(fewer minutes of WASO; −14.8, 95% CI: −25.9, −3.6) (Figure 2). Estimates for other 

race/ethnicity categories were null across greenspace metrics (Figure 2).

DISCUSSION

In a prospective cohort in Massachusetts, novel metrics of greenspace exposure based on 

SVI at mid-childhood were not associated with objectively measured sleep duration or 

efficiency in early adolescence, but we did observe an association between percentage of 

grass at mid-childhood and more sleep fragmentation in early adolescence, as measured by 

WASO. We also examined cross-sectional associations of greenspace at early adolescence 

with sleep at early adolescence, and all CIs consistently crossed the null. The association 

between greenspace and sleep did not differ by sex or urbanicity level, but we did 

observe differences by race/ethnicity and NSES. Specifically, we observed that among Black 

participants, higher NDVI was associated with better sleep, and in neighborhoods with a 

high SES, a higher total percentage of greenspace and grass were associated with better 

sleep time. In contrast, in neighborhoods with a low SES, a higher percentage of grass was 

associated with worse sleep.

SVI combined with deep learning provided a unique approach to estimate specific 

natural features from a ground-level perspective. Our results on sleep duration and 

efficiency were consistent with nationally representative studies of Australian (N=2,814) and 

German (N=4,172) adolescents, which found no significant associations between residential 
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greenspace and insufficient sleep or poor sleep quality.28 The observed unadjusted 

association between percentage of trees and sleep duration is in accordance with a study that 

found that an increased percentage of tree canopy in a census block group was associated 

with lower odds of short weekday sleep (<6 hours) (OR 0.76 [0.58-0.98]; N=2,712).6 

Another study of adolescents found that 1-SD increase in neighborhood tree canopy was 

associated with more favorable sleep timing (e.g., an 18-minute earlier sleep onset (β = 

−0.31, 95% CI: −0.49, −0.13).34 Further, the analysis by type of vegetation also suggested 

that the association between greenspace and increased WASO, or more non-restorative sleep, 

was driven by percentage of grass. The pathways through which specific natural features 

may influence sleep are complex. Particularly, percentage of grass could positively influence 

sleep through higher opportunities for physical activity, but it could also negatively influence 

sleep through limited attenuation of urban heat island effects35 or crime in cities,36 as 

compared to the attenuation provided by trees. A recent systematic review of neighborhood 

environments and sleep among children reported that living in a neighborhood with high 

crime was associated with poorer sleep outcomes.37 This result is in contrast to a study 

that evaluated adults older than 45 years of age and reported no statistically significant 

associations between insufficient sleep and open grass or other low-lying vegetation or total 

greenspace (N=38,982).38 That study and those by Feng et al. (2020) and Johnson et al. 

(2018) did not adjust for NSES.

Stratified analysis by sex and urbanicity level did not support the hypothesis that the 

association between greenspace and sleep differed by these factors. These results are 

similar to those found in a study of neighborhood determinants of sleep problems in 

U.S. children and adolescents, where the authors examined interaction models of built-

environment characteristics (e.g., parks/playgrounds), household SES, and sex, but none 

were statistically significant.11 However, we found evidence that the association between 

greenspace and sleep differed by race/ethnicity and NSES. Consistent with the findings of 

Grigsby-Toussaint et al. (2015),39 we found that the satellite-based measures of greenspace 

(NDVI) were associated with better sleep among Black participants. Research has shown 

that racial minorities experience a greater burden of environmental features, such as higher 

exposure to air pollution, neighborhood disorder, lower social cohesion, more crime, and 

less proximity to green space.40 Racial/ethnic minorities also have a high prevalence 

of insufficient sleep, poorer sleep quality and unrecognized sleep disorders.41 Evidence 

indicates that the neighborhood environment is an important determinant of insufficient 

sleep for racial/ethnic minorities.42,43 Our results are in accordance to a study on the 

neighborhood social environment and objective measures of sleep that found an association 

among African Americans, but not among other racial/ethnic groups.43 If the hypothesis 

that unhealthy sleep patterns among minorities contribute to racial/ethnic health disparities 

holds,44 then ameliorating environmental features, particularly green space exposure, across 

racial/ethnic groups can potentially improve overall population health.

We observed an association between percentage of grass and less efficient sleep (higher 

WASO and lower sleep efficiency) among participants living in neighborhoods of low SES. 

In addition, among participants living in neighborhoods with a high SES, we observed 

that the total percentage of greenspace and grass was associated with better sleep (more 

minutes of sleep per night). These findings are in contrast to the “equigenesis” hypothesis 
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of greenspace, which states that greenspaces may mitigate health inequalities by providing 

health benefits for socioeconomically disadvantaged groups who usually have lower access 

to health-promoting resources.8 The observed association between percentage of grass and 

insufficient sleep in neighborhoods of low SES may also be related to the differing health 

effects depending on vegetation types discussed previously. A recent systematic review on 

green space quality and health found that health benefits were more consistently observed 

in areas with greater tree canopy, but not grassland.45 A reason may be that due to 

their foliage, trees have the capacity to intercept airborne pollutants and buffer against 

traffic noise, whereas grass might not convey the same range and levels of benefit.45 In 

a longitudinal cohort study of adolescents, results showed that higher neighborhood noise 

was associated with lower odds of sufficient sleep, measured using actigraphy.34 On the 

other hand, a systematic review on green space and healthy equity reported that parks in 

low-SES neighborhoods tend to be of lower quality (e.g., lower maintenance) and have 

higher crime rates than parks in more privileged communities.46 The authors discuss that 

research has shown associations between low park quality and low health status in North 

American contexts perhaps due to the fact that when parks are of low quality or unsafe, 

people may choose to engage in less physical activity in them. Other studies have shown that 

large areas of open grass may reduce walkability if it is fenced-off, as can be the case for 

private green spaces or golf courses;47 and that large areas of open grass where strangers 

may be less easily identified by members of the community may create opportunities for 

crime.48 A study of sleep efficiency using actigraphy data found that living in economically 

and socially disadvantaged neighborhoods predicts risk for shorter and lower quality sleep in 

children.49

The strengths of this study include longitudinal data, use of objective detailed greenspace 

metrics representing the ground level and objective individual-level sleep measures, and 

the inclusion of many covariates to control for confounding. Self-reports of sleep duration, 

sleepiness, or trouble sleeping, while convenient and less time consuming to collect, may 

not be particularly accurate.50 In this study, we used wrist activity monitoring (actigraphy) 

to measure three sleep parameters: sleep duration, efficiency and WASO. Unlike the 

gold standard of polysomnography, the advantage of actigraphy is that it is unlikely to 

actually affect bedtime, sleep latency, and duration.50 This study represents an advancement 

in greenspace assessment compared with previous studies, which were often restricted 

to satellite-based data. Our approach, based on individualized addresses as opposed to 

administrative units in which participants live, expanded on advances in computer vision 

and deep learning and resulted in more accurate exposure metrics that correspond well to 

participants’ ground-level perspective. To our knowledge, this is the first study to examine 

specific types of greenspace in association with objective metrics of sleep among children 

and adolescents. To date, only a handful of studies have examined greenspace and sleep, and 

to our knowledge, even fewer have explored this association in children. Health behaviors 

during childhood are a strong predictor of health in adulthood and thus more work in this 

area is needed.

The limitations of this study should be noted. First, the limited sample size could be a 

potential reason for relatively wide CIs. However, we were still able to observe some 

associations between SVI and NDVI metrics with sleep, which suggests that future research 
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should explore these relationships in other datasets. Second, the strong association between 

SVI-based greenspace and SES measures suggested potential confounding, and although 

we adjusted for individual- and neighborhood-level measures of SES, residual confounding 

is likely. Third, we examined features of greenspace in isolation, but research has shown 

that there is likely a combination of multiple environmental exposures that may exert 

a positive/negative impact on health.14,51 Fourth, while use of SVI and deep learning 

algorithms to create novel metrics of greenspace features is an advancement in this area of 

research, images themselves have limitations as they exclude behavioral aspects of exposure, 

including time spent indoors or actual use of the greenspace.14 Images are also a snapshot 

of a location at a given time and may not provide an accurate representation of seasonal 

variability. We also used images within 250 m of a participant’s address, but these images 

may not be representative of where a participant spends time, which would contribute to 

exposure measurement error. Furthermore, studies have suggested that infancy is a sensitive 

period of exposure to greenspace that may have repercussions on health later in life.52 

Thus, it may be possible that exposure to greenspace earlier in life, before mid-childhood, 

has a stronger association with sleep in early adolescence. Since Google SVI started in 

2007, and the Project Viva children were born from 1999-2002, we were not able to test 

exposure to SVI-based greenspace at earlier periods of life. In addition, we do not have 

information on school exposure to greenspace in childhood or adolescence, a possible source 

of measurement error. Finally, a recent analysis of sleep characteristics in Project Viva 

participants reported that only 2.2% of adolescents met the lower bound of the National 

Sleep Foundation’s recommended sleep duration and a majority (58.4%) were classified as 

having low sleep efficiency.27 Because insufficient sleep is prevalent among participants in 

Project Viva, the beneficial impact of greenspace on sleep may have been harder to detect.

CONCLUSION

Our study was among the first to integrate deep learning methods into greenspace exposure 

assessment in association with objectively measured sleep among children and adolescents. 

The results suggested that greenspace overall and specific features of greenspace (e.g., trees, 

grass) were not associated with sleep among adolescents in Project Viva. When stratified 

by NSES and race/ethnicity, we observed beneficial associations for Black participants and 

neighborhoods with a high SES but unfavorable associations for neighborhoods with a 

low SES. Future studies should examine whether these results can be replicated in other 

populations and whether investment in trees in urban areas is cost-effective.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Effect modification by neighborhood socioeconomic status (NSES) of the association 

between SVI-based metrics of greenspace and sleep in Project Viva (N=328)
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Figure 2. 
Effect modification by race/ethnicity of the association between SVI-based metrics of 

greenspace and sleep in Project Viva (N=328)
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