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Abstract

Application of enhanced methods of microbial assessment in piped
drinking water, wastewater, and recycled water systems

by

Lauren Catherine Kennedy

Doctor of Philosophy in Engineering- Civil and Environmental Engineering

University of California, Berkeley

Professor Kara Nelson, Chair

A primary goal of microbial monitoring in piped water systems is to ensure an acceptably low
risk of ingesting enteric pathogens from contact with treated water. Microbial monitoring
strategies in piped water systems are generally based on the type of water being treated and
the intended use, but strategies that are developed with a narrow focus on each type of water
system could disincentivize some beneficial monitoring targets. For example, raw wastewater
contains genetic material from pathogens that does not pose a risk public health from the
perspective of water treatment but could be monitored to assess the disease burden in the
contributing population (e.g., severe acute respiratory syndrome coronavirus 2; SARS-CoV-
2). Developing integrated microbial monitoring strategies in water systems could produce
data that are beneficial for drinking water providers, wastewater treatment service providers,
and public health departments.

The overall goal of this work was to apply enhanced methods of microbial assessment in
piped water systems and to identify integrated microbial monitoring strategies with the po-
tential to benefit public health. Enhanced methods of microbial assessment include methods
to assess microbial abundance (e.g., intact cell counts, total cell counts, intracellular ATP,
and total ATP), microbial community composition (e.g., 16S rRNA gene amplicon sequenc-
ing), and specific microbial targets (e.g., quantitative polymerase chain reaction; qPCR).
Applications for enhanced microbial assessment include (i) routine assessment such as mon-
itoring impacts of local-scale water quality conditions on microbial abundance in drinking
water distribution systems (e.g., disinfectant concentration); (ii.) diagnostic or preventative
assessment such as monitoring impacts of system-scale changes on microbial communities in
drinking water distribution systems (e.g., transition to direct potable reuse); and (iii) public
health surveillance such as monitoring pathogens in community sewersheds during disease
outbreaks.

First, five measures of microbial abundance were applied in six chlorinated and chlorami-
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nated drinking water distribution systems and enhanced methods of microbial assessment
(i.e., total and intact cell counts and total and intracellular ATP concentrations), were com-
pared with heterotrophic plate counts. Flow cytometry-based intact cell counts were the
least variable (intraassay coefficient of variation = 16.9%) and most quantifiable (97.6%) of
the viability assays tested. Therefore, intact cell counts may be promising monitoring tar-
gets for diagnostic or preventative monitoring in drinking water distribution systems and in
low microbial abundance conditions (i.e., monitoring advanced-treated wastewater). In one
chloraminated distribution system, a generalized linear mixed model was used to asssess the
effect of physicochemical water quality conditions on intact cell counts, and total chlorine
had the greatest inverse effect on intact cells with a greater positive effect of temperature at
lower levels of total chlorine.

Next, preventative monitoring of simulated distribution systems was completed during aug-
mentation of conventional drinking water with advanced-treated wastewater. The five pipe
loop rigs used to simulate this event were sampled over 21 weeks using 16S rRNA gene
amplicon sequencing and total cell counts. While this simulation study may not accurately
represent a full-scale direct potable reuse system, the experiments demonstrate the enhanced
microbial monitoring that could be completed during full-scale implementation. It was ob-
served that despite advanced-treated wastewater having high water quality (e.g., low concen-
trations of organic carbon and nutrients) and low cell counts, microorganisms were seeded
and grew in reverse osmosis permeate. Furthermore, the pipe loop bulk water and biofilm
bacterial community profiles shifted with introduction of the advanced-feedwater that had
been seeded with microorganisms and nutrients.

Finally, the value of wastewater as a source of information to assess the health of the con-
tributing population was investigated. Raw wastewater was collected from five locations
in the San Francisco Bay Area during the coronavirus infectious disease 2019 (COVID-
19) pandemic. For these samples, SARS-CoV-2 wastewater testing results were compared to
geocoded COVID-19 clinical testing results. Findings include that SARS-CoV-2 was reliably
detected (95% positivity) in frozen wastewater samples when reported daily new COVID-19
cases were 2.4 or more per 100,000 people. Additionally, spatio-temporal trends in wastewa-
ter SARS-CoV-2 signal and daily per capita COVID-19 cases were generally consistent with
each other, with a few exceptions that could indicate clinical undertesting at some locations.

This research is useful to academics as well as practitioners considering or implementing
management practices for integrated water systems. This dissertation includes one of very
few studies on drinking water distribution system microbial impacts from direct potable
reuse, which also provides recommendations for future microbial assessments in simulated
direct potable reuse distribution systems. More work is needed applying DNA sequencing
methods in full-scale systems as part of diagnostic or preventative monitoring and applying
integrated monitoring methods in full-scale water systems. Additionally, while SARS-CoV-
2 wastewater testing is a promising public health surveillance strategy, it is a relatively
new application that requires more research and development. With these advancements
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to the field of wastewater-based epidemiology, pathogen targets in raw wastewater could
be expanded to include enteric pathogens. Particularly as more full-scale direct potable
reuse systems come online, these methods with other public health surveillance campaigns
can be used to verify that consumption of advanced-treated wastewater does not result in
transmission of pathogens back to the contributing population.
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Chapter 1

Introduction

1.1 An integrated approach to microbial monitoring

in piped water systems

Society is continuing to face the consequences of increased human activity, including climate
change and biodiversity loss [1]. Environmental Engineering and Science is a field actively
evolving to address these challenges using integrated solutions from multiple fields of exper-
tise [2]. This approach is exemplified through the concept of one water for which all forms
of water (e.g., wastewater, stormwater, irrigation water, drinking water, etc.) are managed
together [2, 3, 4]. The one water concept can help cities become more sustainable by devel-
oping integrated urban water management for water that is linked through the same water
cycle [4]. As water management becomes more integrated, the microbial monitoring strate-
gies applied in water systems will also require integration. For example, ingesting pathogens
from wastewater represents the greatest microbial risk of drinking water to public health [5],
but wastewater can also serve as a supplemental water source [6, 7, 8, 9] and a valuable tool
for understanding and mitigating the circulation of pathogens in the contributing population
[10]. Designing integrated microbial monitoring strategies could benefit public health and
make the resulting data of greater use to both utilities and public health departments than
current monitoring strategies alone Figure 1.1.

Microbial monitoring in piped drinking water systems is one of multiple barriers designed
to minimize the risk of ingesting feces or water contaminated by fecal pollution [11]. Spe-
cific microorganisms that indicate fecal contamination could have occurred are monitored,
which ideally are similar in behavior to pathogens of concern, are sourced from feces, are
relatively easy to detect, and are not pathogenic themselves [12, 11]. Usually, only bacte-
ria are regulated, monitored, and expected to result in non-detects, such as total coliform
bacteria and Escherichia coli [5, 12, 13, 14, 11, 15]. While monitoring these indicator mi-
croorganisms is necessary to diminish the risk of fecal pathogens to public health, relying on
a microbial monitoring strategy that only includes fecal indicator bacteria has several disad-
vantages. First, results are limited to whether fecal contamination could have occurred, and
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for that reason, positives should be extremely rare because multiple barriers of protection
are in place to prevent fecal contamination of drinking water. Additionally, assessment of
fecal contamination potential does not cover environmental opportunistic pathogens that
are found in drinking water (e.g., non-tuberculous mycobacteria [16]) or common microbial
issues in drinking water distribution systems (e.g., microbially-induced corrosion [17, 18,
19, 20] or nitrification [21, 22, 20, 23]). Furthermore, fecal indicator bacteria in particular
are imperfect representations of enteric pathogens because they are readily susceptible to
disinfectants [24], can have non-fecal origins [25, 11, 15], and do not always correlate with
pathogens of concern [26, 27].

Microbial monitoring strategies that integrate drinking water quality targets and broader
health outcome targets could increase the value and performance of centralized drinking wa-
ter and wastewater treatment systems. In drinking water, monitoring could be expanded
to include non-enteric microorganisms that are more commonly present in drinking water
distribution systems, including opportunistic pathogens and broad measures of microbial
abundance. Similarly, raw municipal wastewater contains information not commonly mon-
itored that could be relevant to public health. Monitoring pathogens of concern in raw
wastewater could help characteize the variation in concentration expected for a given sewer-
shed, and, for potable reuse applications in particular, ensure that the risk of infection from
finished water is sufficiently low [28, 6, 29, 30]. Additionally, through wastewater-based epi-
demiology, wastewater can be used to monitor the sewersheds of communities for pathogens
that are shed in feces [10] but do not necessairily present a safety concern from a wastewater
treatment performance perspective, such as severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [31, 32, 33, 34, 35, 36]. Particularly, in the midst of the coronavirus infectious
disease 2019 (COVID-19) pandemic, the applicability of wastewater-based epidemiology to
assist with pandemic response has become of great interest to the environmental engineer-
ing community [37]. Thus, integrating enhanced monitoring methods in centralized water
treatment systems could improve both water treatment performance and public health in
communities.

In this introduction, foundational concepts for the research presented in this dissertation
are summarized. First, microbial communities in disinfected drinking water systems and
their importance for these systems are discussed. Next, wastewater is presented as a resource
in two ways: as a source of drinking water and as a resource for public health surveillance.
Afterward, strategies for enhanced assessment of microorganisms in disinfected drinking
water systems and in raw wastewater are summarized. Finally, the objectives of the research
in this dissertation are presented.
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Figure 1.1: Examples of enhanced methods of microbial assessment in drinking water (left)
and wastewater (right) systems that together depict an integrated microbial monitoring
strategy for the direct potable reuse system shown.

1.2 Microbial communities in disinfected drinking

water distribution systems and risks to public

health

Drinking water distribution systems host microbial communities that respond to physic-
ochemical water quality changes and infrastructural changes, such as upgraded treatment
systems. Large shifts in the abundance of microorganisms or composition of microbial com-
munities do not inherently pose risks to public health, but may signal that water is of low
quality. Notably, these shifts are often not detected by conventional monitoring methods [38,
39, 40]. Currently, only a subset of microorganisms present in drinking water distribution
systems is monitored in the United States (i.e. total coliform bacteria, Escherichia coli, and
sometimes heterotrophic plate counts; HPC). Thus, physicochemical parameters are applied
to assess and control threats to water quality from microorganisms not commonly monitored.
For example, to control and prevent nitrification in chloraminated drinking water systems,
drinking water providers have been advised to monitor disinfectant residuals, pH, nitrite,
ammonia, and nitrate [41]. However, accessible physicochemical water quality parameters
cannot always be used to preemptively detect microbial water quality issues arising from
specific microorganisms (e.g., nitrification [21, 22]). Furthermore, when repetitive microbial
issues arise in drinking water distribution systems, a deeper understanding of the micro-
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bial communities associated with the issue may elucidate new approaches for rectification.
Research on microbial water quality assessment techniques is needed to diversify microbial
monitoring strategies for drinking water providers, to explore drinking water distribution
system issues caused by commonly undetected microorganisms, and to confirm that changes
to source water quality will not adversely affect finished drinking water quality.

In particular, the origin of and the selection pressures on microbial communities in drink-
ing water distribution system bulk water have implications for engineering applications. Re-
searchers have found evidence that microorganisms in drinking water distribution systems
originate from source water [42, 43, 44, 45] and from intrusion during low pressure events
[46, 47]. Microorganisms respond to selection pressures imposed within in drinking water
systems, such as the treatment process [48, 49, 45, 50, 43, 44] and application of residual
disinfectant [51, 48, 52, 49]. For example, drinking water distribution systems with chlorine
or chloramine residuals had significantly lower alpha-diversity, lower relative abundance of
Legionella-classified sequences1, and higher relative abundance of both Mycobacterium- and
Pseudomonas-classified sequences compared to systems without residual disinfection pro-
cesses [51]. Selection pressures in drinking water distribution systems that induce shifts in
microbial community composition are concerning when the shift reflects an increase in op-
portunistic pathogens [49, 53, 16] or in microorganisms with unwanted functionality (e.g.,
microorganisms that cause pipe corrosion [17, 18, 19, 20], nitrification [21, 22, 20, 23], or
finished water aesthetic deterioration [54]). An unexpected increase in the abundance of
microorganisms or shift in microbial community composition could indicate an unidenti-
fied issue occurred in a drinking water distribution system, even without knowledge that
the shift reflected an increase in concerning microorganisms. More research is needed to
explore the utility of advanced microbial water quality monitoring techniques in drinking
water distribution systems.

Enhanced monitoring techniques are needed to characterize shifts in microbial water
quality resulting from perturbations in drinking water distribution systems both at local
scale (i.e., site-to-site within a distribution system) and system scale (i.e., full distribution
system). At local scale, residual disinfectant concentration is a key parameter that interacts
with other characteristics of the distribution system, such as water age, pipe material, and
pipe age. In the United States, drinking water providers apply residual disinfectants (e.g.,
free chlorine or chloramine) in an effort to prevent microbial growth during distribution,
but disinfectant concentrations decrease with water age, which can be exacerbated by pipe
characteristics. For example, tuberculated cast iron pipes are known to exert a demand
on disinfectant residual [55, 56] that is higher in older pipes [57]. In general, higher disin-
fectant residual concentrations are associated with lower microbial abundance [58, 59, 60,
61, 62]. The impacts of local-scale changes on microbial community composition are con-
tradictory. Researchers have proposed that disinfection concentration explained spatial [62]
and temporal [63] shifts in microbial community composition in drinking water distribution

1In this chapter, amplicon sequence varients or operational taxonomic units are referred to as the Genera
followed by “-classified sequences”
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systems. However, in a full-scale distribution system with a low disinfectant residual, Perrin
et al. (2019) found that the most abundant taxa were positively correlated with nitrate con-
centration, conductivity, and temperature, but not disinfectant residual. Some researchers
observed spatial differences within bulk water microbial communities that were not discussed
in relation to local water quality parameters [65, 66], while others did not observe spatial or
short-term temporal differences [48, 67, 68, 69, 44].

System-scale changes that affect the whole distribution system (e.g., natural events,
treatment upgrades, and source water switches) also influence microbial water quality. Re-
searchers have observed increases in abundance or shifts in microbial communities after nat-
ural events such as changes in season [70, 67, 51, 66, 68] and flooding [64]. However, studies
of operational changes are less common. Chen et al. (2020) found that the overall microbial
water quality six months after a treatment upgrade to include filtration and softening was
higher than before the upgrade; however, there was a transition period three weeks after the
upgrade during which biofilm sloughing likely occurred and the bacterial community profile
shifted (for example, the genera Legionella-classified sequences represented the largest rel-
ative abundance in bulk water, only during the transition period) [71]. Similarly, Chan et
al. (2019) found that when a full-scale system upgraded treatment to include ultrafiltration,
pipe biofilm that sloughed into the bulk water and represented most of the bulk water com-
munity over five weeks after the transition, but they did not sample at a later time point (i.e.,
more than six months after the upgrade). Research at lab scale has focused on implications
of switching source water supply, and findings have included higher relative abundances of
sulfate reducing bacteria after switching to source water with a higher sulfate concentration
[73, 74] and lower microbial abundance in bulk water after switching to source water with
higher overall quality [75]. The Flint, Michigan Water Crisis exemplifies the importance of
understanding the impacts of switching source water on the microbial water quality in addi-
tion to chemical water quality. Following the change in source water from Lake Huron to the
Flint River, an outbreak of Legionellosis occurred that accompanied elevated lead levels (up
to 100 µg/L [76]). Researchers have proposed that proliferation of Legionella pneumophila
stemmed from a lack of residual disinfectant and an increase in assimilable organic carbon
in the drinking water distribution system [77]. Shifts in microbial communities are expected
but understudied for some applications that are currently uncommon, such as in drinking
water systems that augment conventionally-treated drinking water with advanced-treated
wastewater.

1.3 Piped wastewater: an undervalued resource

In this section, I will discuss two applications for piped wastewater 1. Wastewater as a source
of drinking water and 2. Wastewater as a resource for public health surveillance.
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Wastewater as a source of drinking water

While wastewater is commonly treated to a quality that is acceptable for environmental
discharge, it would be concerning for human health if used directly as a conventional drink-
ing water source. Thus, advanced treatment (typically consisting of microfiltration, reverse
osmosis, and advanced oxidation processes) can be applied to further treat wastewater to
meet and often exceed drinking water quality standards for conventional systems (i.e., those
that treat surface water or groundwater) [78, 79]. Through direct potable reuse (DPR),
this advanced-treated wastewater may be blended with conventional surface water prior to
treatment, resulting in raw water augmentation, or with finished conventional drinking water
resulting in treated water augmentation [80]. Treated water augmentation has been applied
in Windhoek, Namibia since 1968 [81, 82], but the United States has been slow to adopt
this practice, with El Paso, Texas planning to build the first treated water augmentation
system in the United States [82]. Previous studies have focused on reduction of pathogens
following advanced treatment of wastewater [78], the effect of advanced treatment on micro-
bial water quality [83, 84, 85, 86, 87], and the potential for antibiotic resistance in finished
water [88, 87]. However, implementation of DPR will require that existing drinking water
distribution systems undergo a system-scale change in operation that could impact microbial
water quality. Research focusing on the microbial impact of introducing advanced-treated
wastewater to drinking water distribution systems and premise plumbing is limited [6, 89,
84, 85]. Garner et. al (2019) found that introduction of advanced-treated wastewater to
simulated premise plumbing rigs did not increase potential of antimicrobial resistance, quan-
tity of opportunistic pathogens, or absolute abundance of bacteria relative to the finished
water. More research is needed to characterize the impacts of treated water augmentation
on drinking water distribution system microbial water quality and to anticipate issues that
might arise in full-scale DPR systems.

To safely use wastewater as a source of drinking water, pathogens need to be adequately
removed through advanced treatment processes. Wastewater contains enteric pathogens that
cause gastrointestinal disease and are transmitted through a fecal-oral route [7, 6, 90]. The
pathogens that are of primary concern for DPR include Adenovirus, Norovirus, Giardia, and
Cryptosporidium [7]. It is not feasible to ensure that each individual pathogen is removed,
but instead they are grouped into categories of viruses, bacteria, and protozoa that require
certain log10 reduction values to be achieved through treatment [6, 91]. In California, potable
reuse systems require 12 log10 reduction of enteric viruses and 10 log10 reduction of Giardia
and Cryptosporidium, which is higher than that for conventional drinking water sources
(4 log10 reduction of enteric viruses, 3 log10 reduction of Giardia, and 2 log10 reduction of
Cryptosporidium) [6, 91, 92, 93]. A recent draft proposed framework for regulating DPR
in California suggests that even higher log10 reduction targets will be required for both
treated water and raw water augmentation (e.g., 20 log10 reduction of viruses) [94]. The
higher virus log10 reduction targets proposed could be partially because enteric viruses are
of particular concern for DPR as they occur in higher concentrations in wastewater and have
greater infectivity than protozoa or bacteria [95]. Furthermore, enteric virus concentrations
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in wastewater can be higher (i.e., 107 to 109 viral particles per L) than the concentrations
used to determine the log10 reduction targets for potable reuse in California (i.e., 105 to 106

viral particles per L) [28]. Also, compared to bacteria and protozoa, viruses generally are
more difficult to inactivate (especially non-enveloped viruses) and remove [90].

Similar to conventional drinking water systems, DPR systems should have microbial
monitoring plans for source water, treatment processes, final effluent, and drinking water
distribution systems [6]. Ideally pathogens of concern would be monitored, but maintaining
a risk of infection less than or equal to 10−4 /person/year requires monitoring pathogens
quickly and at a much lower concentration than can be reliably measured in the final ef-
fluent (e.g., 2.2x10−7 viral particles/L) [6, 96]. Instead, surrogate microorganisms (e.g.,
Escherichia coli) or related physicochemical parameters (e.g., turbidity) are monitored [6,
7, 8, 9]. First, raw wastewater is variable in flow and composition compared to conven-
tional drinking water sources, and physicochemical parameters (e.g., total organic carbon)
are often monitored to help ensure treatment trains meet performance goals [7]. Monitoring
the variation of pathogens in raw wastewater is not common but has been recommended to
help ensure that the risk of infection is sufficiently low [28, 6, 29, 30] by providing data for
quantitative microbial risk assessments and to ensure that outbreaks are not occurring in a
sewershed [6] by providing routine concentrations of pathogens that can be used to to estab-
lish a baseline or seasonal trends in pathogen concentration by location. Furthermore, these
data could become an additional part of the recommended public health surveillance for DPR
systems [6] to ensure ingestion of recycled water does not result in adverse health conditions.
Next, in addition to raw wastewater, treatment train unit processes are monitored through
process monitoring to ensure regulations are continuously met [7, 8, 9]. Through process
monitoring, physicochemical parameters that are easily measured online, such as turbidity
or disinfectant concentration, are continuously monitored during operation to ensure the
barrier is operational and to catch issues before potentially compromised water is conveyed
[8]. Finally, finished water and distribution system monitoring is similar to that in conven-
tional drinking water systems and relies on indicator microorganisms, such as Escherichia
coli, and disinfectant residual monitoring [7, 6, 8]. However, for DPR systems specifically,
additional monitoring of drinking water distribution systems beyond what is commonly done
in conventional systems has been recommended [6].

Wastewater as a resource for public health surveillance

Physicochemical conditions (e.g., total organic carbon) are commonly monitored at wastew-
atertreatment facilities to ensure consistent treatment efficiency, but monitoring efforts could
expand to include public health surveillance targets that provide insight into the health of
the contributing community through wastewater-based epidemiology (WBE). In general, the
field of WBE has focused on assessing the impact of pharmaceuticals, illicit drugs, tobacco,
and alcohol in wastewater catchment areas [10]. Research assessing disease burden in com-
munities has been founded on early work monitoring poliovirus, which includes evidence
that WBE has been helpful in global efforts to eradicate poliovirus [97, 98, 99, 100]. From
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an integrated monitoring perspective, the pathogens monitored in raw wastewater could
expand beyond those that present the highest risk from a treatment breakthrough perspec-
tive to include those that present the highest risk from a general public health perspective.
For instance, pathogens detectable in wastewater that present a low risk of transmission
through wastewater directly but a high risk to public health include Ebola virus [7, 5] and
SARS-CoV-2 [101, 102].

Supplementing clinical public health surveillance strategies with WBE could be benefi-
cial for society. Correlations between clinical data and wastewater data can help validate
WBE methodologies [103]. While researchers have observed statistical correlations between
wastewater and clinical data for norovirus [104], poliovirus [98], and SARS-CoV-2 [105, 106,
107, 108, 109], others only observed visual trends [110, 111, 112, 113, 114, 115]. Situations
where correlation was not significant or the pathogen was detected in wastewater but not
in clinical data could be the result of sampling bias associated with clinical testing, clinical
undertesting, or high proportions of asymptomatic carriers [112, 116, 113]. Because WBE
methods aggregate results from anyone who sheds the virus in stool, not just symptomatic
individuals, early detection of outbreaks in wastewater compared to clinical data is possible
[117]. Lead time in the wastewater signal has been observed for poliovirus [97], norovirus
[111], and SARS-CoV-2 [105, 107, 118, 106, 114, 119, 115, 109]. In addition, WBE could
help overcome selection bias and stigma associated with individual clinical testing [120,
121] that can lead to underreporting of disease occurrence [122, 123]. WBE is completed
at population-level rather than individual-level to compare across communities, which also
anonymizes data [124, 125]. Concerns with WBE include that, as with any type of public
health surveillance, the monitoring could become invasive or result in stigmatization, espe-
cially if surveillance occurs on a small enough basis (i.e., household level) [124, 121, 126,
125]. Additionally, sewer system conditions might influence quantification of pathogens and
respective interpretation of disease burden. For example, wastewater is an inhospitable envi-
ronment and can degrade genetic material too quickly to be accurately quantified, especially
in warm conditions [127, 128]. Thus, the detection of a pathogen could vary seasonally or
with other physicochemical changes in wastewater [127, 129, 117].

Recently, WBE has been applied to aid with testing efforts of the COVID-19 pandemic
[130, 131, 125, 108, 121, 105, 132, 133, 106, 107, 118, 114, 119, 134, 115, 109]. SARS-
CoV-2 is an enveloped, single-stranded RNA virus that is primarily transmitted through
respiratory pathways [32]. However, SARS-CoV-2 is shed in feces [32, 31, 33, 36, 130] and
possibly transmitted through fecal-oral routes [33, 135]. Not all individuals with COVID-19
shed SARS-CoV-2 in feces, and the shedding rate and duration is still unclear and possibly
erratic [129, 34, 136]. For successful application of WBE, SARS-CoV-2 or its RNA needs
to persist in the sewer system long enough for detection and accurate quantification. While
there is evidence that high temperatures degrade the SARS-CoV-2 signal [137, 127, 128,
102], globally, researchers have detected SARS-CoV-2 in wastewater and sludge [130, 108,
134]. These data are promising, but more research is needed to determine the applicability
of WBE during the COVID-19 pandemic.
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1.4 Strategies to enhance assessment of

microorganisms in piped water systems

Applying enhanced methods to assess microorganisms in piped water systems could benefit
public health by expanding on the commonly assessed and often regulated monitoring target,
fecal indicator bacteria [5, 12, 13, 14, 11, 15], to include microbial abundance, bacterial com-
munity composition, and targeted pathogens. Microbial abundance can be incorporated into
routine or diagnostic monitoring and can help providers understand day to day fluctuations
in water systems [138, 139, 140, 39, 40, 141, 142, 143, 144, 145]. Additionally, in anticipation
of major changes in water quality, characterizing bacterial community composition can add
to the insights gained from real-time monitoring. For example, broad assessment of bacte-
rial community profiles could reveal specific taxa to target with more specific methods such
as quantitative polymerase chain reaction (qPCR). Additionally, qPCR can be applied to
monitor pathogen concentrations in raw wastewater for applications in direct potable reuse
or WBE. Four emerging methods to monitor microorganisms in piped water systems are dis-
cussed in this section: adenosine triphosphate (ATP) quantification, flow cytometry-based
cell counts, qPCR and 16S rRNA gene amplicon sequencing. None of these methods assess
viability directly, and, for some applications, such as early detection of disease outbreaks
using wastewater, viability is not as important to assess, but for others, such as determining
risk of infection from ingesting pathogens, quantifying viable pathogens is ideal.

Drinking water treatment facilities can supplement routine and diagnostic monitoring
with assessment of microbial water quality. The most common and well-known option for
assessing microbial abundance is a culturing method that quantifies only a subset of the
microorganisms known to inhabit drinking water systems, HPC [146]. Comparatively, flow
cytometric cell counts and ATP assays are much faster to quantify and are inclusive of all
microorganisms as opposed to only heterotrophic microorganisms [147, 148, 143, 144]. While
these methods are not routinely applied in drinking water facilities in the United States,
they have most commonly been applied in systems with no or low residual disinfectant
concentrations [39, 61, 149, 150, 151, 58, 144] and might be useful in systems with high
disinfectant residuals, such as those in the United States. Assessing microbial abundance
provides a quick but broad snapshot of microorganisms in water systems, but this type of
assessment cannot distinguish which types of microorganisms are present.

Methods that require polymerase chain reaction (PCR) can be specific, to quantify tar-
geted microorganisms, or broad, to characterize bacterial community profiles in water sys-
tems. When monitoring a specific pathogen, most water treatment facilities currently use
culturing methods for fecal indicator bacteria [5, 12, 13, 14, 11, 15] and sometimes for cul-
turable pathogens of interest such as Legionella pneumophila [152]. These methods apply to
only culturable microorganisms, require time for microorganisms to replicate before quantifi-
cation, and quantify only a fraction of the viable portion of the cultured microorganism [153,
154, 155]. Furthermore, by design, cultured microorganisms grow in number, and, therefore,
the culture can be more dangerous than the sample itself when working with pathogens.
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Alternatively, specific pathogens can be sensitively quantified in water using qPCR (DNA
targets) or reverse-transcription qPCR (RNA targets), which might be useful for retrospec-
tive pathogen monitoring in water systems [153, 155]. In addition, the application of 16S
rRNA gene amplicon sequencing shows promise for retrospective monitoring applications in
water systems [38, 44, 156], especially because the cost of nucleotide sequencing has rapidly
decreased [157]. However, limitations to any method that utilizes PCR, including amplicon
sequencing and qPCR, include well-known biases [158, 159, 160, 161, 162], contamination
issues [153, 163, 164, 165], PCR inhibition [166, 167, 168, 169, 170], and that viability can
only be assessed using a modified assay [171, 172, 173, 174].

In drinking water distribution systems, there are several challenges to characterizing mi-
crobial communities with enhanced methods. First, for methods targeting genetic material,
disinfectant residuals lyse microorganisms relatively quickly compared to the time it takes
to completely degrade genetic material [175, 176], therefore, disinfected drinking water often
contains an abundance of genetic material from nonviable organisms that pose no public
health risk. Thus, if viability is important to an assessment, a separate assay is often re-
quired (e.g., intact vs total cell counts) [177, 171, 178]. Another challenge is concentration of
enough biomass to quantify or detect changes in microbial water quality throughout drink-
ing water systems, particularly in systems that have low biomass because of high residual
disinfectant concentrations or advanced treatment processes (e.g., reverse osmosis [83, 84]).
While microbial abundance measures can rely on grab samples, nucleotide sequencing and
qPCR methods require filtering large quantities of water to increase chances of detection
[167, 179]. The fluctuations in water quality throughout the range of distribution systems
may also impact PCR inhibition, which occurs as a result of some components in drinking
water, such as organic material [168, 169, 170]. In addition, for 16S rRNA gene amplicon
sequencing, comparisons across different systems is difficult because lab methods are not
standardized and have large impacts on results, including the hypervariable region of the
16S rRNA gene targeted, the library preparation protocol, and the use of both negative and
positive controls [180, 159, 161, 162, 164].

Challenges to monitoring pathogens as part of WBE begin with collecting a representative
sample from a sewer system. One benefit to working with raw wastewater compared to
sludge is that it can be collected upstream of a wastewater treatment plant and specific
wastewater catchment areas can be selected by sampling at different locations in the sewer
system. However, this approach requires effort from the wastewater treatment facility to
determine where to sample and then verify that the sewage being sampled represents a
known population [10, 181]. Once the sampling locations are selected, a method to collect
the samples must be determined. There are two methods that have been applied in COVID-
19 WBE: collection of a grab sample, which is a sample taken at one point in time that could
miss the peak signal of the pathogen of interest, or collection of a composite sample, which
is a combination of smaller subsamples collected at regular intervals over a long time period
(e.g., 12 or 24 hours) that could dilute the signal to a value below the detection limit [182,
183, 184] and could be too little volume to capture the heterogeneity of wastewater over the
collection period. Once the sample is collected, preservation of the genetic material becomes
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a concern. If the target is RNA, it is pivotal to keep the sample cold and preserve the RNA
as quickly as possible. For example, in the case of SARS-CoV-2 it is likely that the signal
detected in wastewater is largely from free RNA and that temperature and storage conditions
impact quantification [102, 185, 186, 187]. Once the genetic material is transported back to
lab, accurate quantification is pivotal. While wastewater contains more biomass compared
to drinking water, it also has higher concentrations of the components that contribute to
PCR inhibition [168, 169, 170, 188], which makes accurate quantification more challenging.
Lastly, all of these challenges contribute to difficulties in interpreting the concentration of a
pathogen in wastewater for public health decision-making.

1.5 Research objectives

The goal of this research was to apply enhanced methods of microbial assessment in piped
water systems and to identify integrated monitoring strategies that benefit public health.
Current microbial monitoring strategies in piped water systems are applied to address the
specific problem of fecal contamination. Enhanced microbial monitoring methods could be
integrated into current strategies to provide data that are of greater use to both utilities
and public health departments. Applications for enhanced microbial assessment include
1. routine assessment such as monitoring impacts of local-scale water quality conditions
(e.g., residual disinfectant) on microbial abundance in drinking water distribution systems
(Chapter 2), 2. diagnostic or preventative assessment such as monitoring impacts of system-
scale changes (e.g., transition to direct potable reuse) on drinking water distribution system
microbial communities (Chapter 3), and 3. public health surveillance such as monitoring
pathogens in community sewersheds during outbreaks (Chapter 4). The following objectives
are addressed:

Objective 1: Evaluate enhanced microbial monitoring strategies
for disinfected, piped drinking water

Six full-scale chlorinated and chloraminated distribution systems were sampled and five mea-
sures of microbial abundance were compared for quantifiability and variability throughout
distribution: total cell counts, intact cell counts, total ATP, intracellular ATP, and het-
erotrophic plate counts.

Objective 2: Characterize the impact on bacterial community
composition from transitioning a piped distribution system fed
with surface water to a treated water augmentation system.

Five pipe loop rigs that circulated 100-L of water each were used to simulate transition from
conventional drinking water to augmentation with advanced-treated wastewater. The impact
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of the transition on biofilm and bulk water microbial communities in the pipe loop rigs was
assessed using flow cytometry-based cell counts and 16S rRNA gene amplicon sequencing.

Objective 3: Assess SARS-CoV-2 wastewater testing as a public
health surveillance strategy during the COVID-19 pandemic

SARS-CoV-2 was measured weekly in raw wastewater from five locations in the San Francisco
Bay Area during the COVID-19 pandemic (April - September 2020). Daily per capita
COVID-19 cases were geocoded to each sewershed and used to interpret spatial and temporal
trends in SARS-CoV-2 measured in wastewater.

Conclusions

The implications of this work and methods to develop an integrated approach to microbial
monitoring that benefits public health are discussed in the final chapter of this dissertation
(Chapter 5).
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Chapter 2

Evaluation of enhanced microbial
monitoring strategies for disinfected,
piped drinking water

The following chapter is adapted from Kennedy et al. (2020). Effect of disinfectant residual,
pH, and temperature on microbial abundance in disinfected drinking water distribution
systems. Environmental Science Water Research & Technology 7, 78–92, with permission
from Scott E. Miller, Rose S. Kantor, and Kara L. Nelson. Copyright 2020, The Royal
Society of Chemistry.

2.1 Introduction

Microbial water quality in piped drinking water distribution systems depends on complex
interactions between the microbial community (composition, abundance, and growth rates of
microorganisms) and chemical and physical conditions. Over the last five years, researchers
have made great progress to better understand these interactions with the common goal
of guiding drinking water providers toward more efficient management of microbial water
quality in piped drinking water systems with continuous or intermittent flow [190, 51, 52,
62, 191, 192, 193, 150, 64, 194, 43]. Advances in meta-omics techniques allow researchers
to characterize changes in the microbial community composition throughout piped distribu-
tion [195, 196], but these techniques often do not quantify absolute microbial abundance.
Increases in microbial abundance in piped drinking water distribution systems can signal
mobilization of loose deposits [197, 71], loss of disinfectant residual [61, 59, 58], treatment
breakthrough [198], nitrification [199, 200], stagnation [201, 202], and intrusion or backflow
[190]. It is important to pair measures of microbial abundance with compositional data to
better characterize microbial water quality in drinking water systems.

In the United States, total coliform bacteria are the only regulated parameter for micro-
bial abundance, but because levels are required to be maintained below the quantification
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limit, this parameter provides little insight into the total microbial abundance. Given this
limitation, other measures of microbial abundance have been used that include heterotrophic
plate counts (HPC), which are the most common [203, 64], and newer methods that aim to
capture the entire microbial community such as adenosine triphosphate (ATP) assays [204,
205] and flow cytometry-based assays [206, 70]. Each assay has its limitations. The World
Health Organization recommends HPC for monitoring the “general bacterial content” of
water [203], but the HPC assay has been shown to quantify a varied fraction of total bac-
teria in drinking water [146] that can be several orders of magnitude smaller than total cell
counts and usually requires two days to complete [148]. However, HPC may require less
technical skill than ATP or cell counts if user-friendly proprietary HPC kits are used. As
an alternative to HPC, the quantification of intracellular ATP has been used to estimate
the viable biomass in water samples [207, 208, 209]. However, ATP concentration depends
on the types of microorganisms present [210] and local conditions [211, 212], which hinders
accurate quantification of microbial abundance. In addition, ATP assays require an extra
filtration step during sample processing to measure total ATP (both intracellular and extra-
cellular) as well as extracellular ATP (ATP in 0.1 µm filtered sample), which is subtracted
from total ATP to obtain intracellular ATP [204]. In contrast, flow cytometry-based meth-
ods can be used to quantify microbial cells [213, 147] with high reproducibility (<5% error
[38]), low limits of quantification (<25 cells/mL [85]), and rapid sample turnaround. Flow
cytometry-based monitoring has been estimated to cost twice that of standard monitoring
methods using HPC [214], and that cost does not include the cost of instruments needed,
which for flow cytometry are currently more expensive than for HPC. For flow cytometry-
based monitoring, an assessment of viability can be included by distinguishing between total
cells and intact cells through staining procedures.

Drinking water distribution systems are dynamic, and changes in physical and chemical
conditions in full-scale systems also influence the microbial abundance. For example, seasonal
variations in drinking water quality have been linked to changes in intact cell count in a
full-scale system without disinfectant residual [70]. In drinking water systems with residual
disinfectants, characterizing these impacts can be difficult because environmental factors that
can impact microorganisms can also impact the efficacy of disinfection (e.g., temperature,
pH) [215]. In addition, high levels of residual disinfectant can make microbial abundance
difficult to quantify because they might drive the quantity of microorganisms below the
quantification limit of the assay. For instance, flow cytometry-based methods have only
been applied in full-scale systems with relatively low residual concentrations (<0.9 mg/L
free chlorine and <1.8 mg/L combined chlorine) [39, 61, 149, 150, 151, 58], while drinking
water systems in the United States have reported free chlorine concentrations of up to 4 mg/L
as Cl2 after primary disinfection [216]. The understanding of disinfectant residual, and its
interaction with other physical and chemical parameters, on total microbial abundance is
still far from complete. Nonetheless, measures of microbial abundance that better reflect
the entire microbial community, rather than a small fraction, and that are quantifiable
throughout the range of conditions encountered in piped drinking water distribution systems,
have the potential to provide more insight to guide the safe management of drinking water.
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In this study, five measures of microbial abundance were compared (total and intact
cell counts, total and intracellular ATP, and HPC) in six piped drinking water distribution
systems. The drinking water systems had different treatment trains and used either free
chlorine or chloramine as a residual disinfectant. These systems were surveyed to: (1) assess
the impact of commonly measured parameters (disinfectant concentration, pH, and temper-
ature) on microbial abundance, including statistical approaches to account for interactions
between parameters; and (2) compare the quantifiability and variability of five measures of
microbial abundance under the conditions of distribution. This study may be the first to ap-
ply flow cytometry-based total and intact cell counts in drinking water distribution systems
with high disinfectant residual concentrations (>0.9 mg/L free chlorine and >1.8 mg/L total
chlorine). These data will serve as points of comparison for future studies applying these
methods in similar water systems.

2.2 Methods

Sampling Locations

Piped drinking water distribution systems in California and Texas were sampled as indicated
in Table A.1. Treatment processes and other metadata for these systems are shown in
Table 2.1. Sampling efforts were coordinated with drinking water providers, and samples
were collected from a subset of their routine monitoring locations. Systems A and B were
sampled one time each in both 2016 and 2018. Systems C, D, and E were sampled one
time in 2016. System F was sampled six times in 2018 (Table A.1). Prior to bulk water
grab sampling, drinking water distribution system site taps were flushed for 10 minutes and
500-mL grab samples of bulk water were aseptically collected in autoclaved-sterilized glass
bottles. pH (Electrode Sealed SJ F; Fisher Scientific) was determined within eight hours of
sampling. Temperature (Electrode Sealed SJ F; Fisher Scientific) and free and total chlorine
measurements (HACH pocket colorimeter II) were determined onsite at the time of sampling.
Samples for quantification of microbial abundance were treated with sodium thiosulfate in
excess to quench disinfectant residual and kept at 4◦C until processing within 24 hours of
sampling. For DWDS F, water ages for each site were provided by the utility based on an
internal model of the full distribution system developed using SynerGEE Water (v4.7.0).
Consumables, including filtered pipette tips (RAININ TerraRack or Finntip Flex) and 2-
mL microcentrifuge tubes (Thermo Scientific) used for microbial analyses were purchased
presterilized and free of DNA, DNase, and RNase as well as of ATP when available.

Cell counts by fluorescent staining and flow cytometry

Total and intact cell concentrations were measured following the methods of Miller et al.
(2020). Briefly, cell concentrations were measured using flow cytometry with SYBR Green
I (S9430; Sigma-Aldrich, St. Louis, MO) and propidium iodide (30 mM P1304MP; Life
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Technologies, Carlsbad, CA) to distinguish cells with intact membranes. From each bulk
water grab sample, a 1000-µL aliquot of each triplicate was processed and the geometric
mean and geometric standard deviation were calculated. Measurements were performed on
two separate flow cytometers, an Accuri C6 flow cytometer (Accuri; BD Biosciences, San
Jose, CA) and a BD FACSCanto cell analyzer (Canto; BD Biosciences, San Jose, CA). The
Accuri was used to sample all locations but had to be sent in for repair during field sampling
at DWDS F. While the Accuri was not available the Canto was used, which was during
sampling of DWDS F (more information can be found in the Appendix A). The Accuri was
equipped with a 50 mW laser emitting a fixed wavelength of 488 nm, and measurements were
performed at the “fast” flow rate of 66 µL minute−1 on sample volumes of 50 µL. Microbial
cell signals were distinguished and enumerated from background and instrument noise on
density plots of green (FL1; 533 ± 30 nm) and red (FL3; >670 nm) fluorescence using
FlowJo gating software (v10.5.3). Gate positions were modified slightly from a template
publicly available for the BD Accuri C6 [147] to adapt for FlowJo software. The Canto was
equipped with a 20 mW laser emitting a fixed wavelength of 488 nm, and measurements were
performed at a flow rate of 1 µL s−1 for 50 seconds. Microbial cell signals were distinguished
and enumerated from background and instrument noise on density plots of green (FTIC;
530 ± 30 nm) and red (PerCP; 695 ± 40 nm) fluorescence using FlowJo gating software.
Gate positions were modified slightly compared to BD Accuri C6 gating based on calibration
beads (Spherotech, Catalog # NFPPS-52-4K, Lake Forest, IL). For the Accuri, the lower
quantification limits were determined for intact cell count (22 cells per mL) and total cell
count (12 cells per mL) by Miller et al. (2020) using the same instrument used in this
study. All data from the Canto were deemed detectable based on the recommended lower
quantification limit (> 102 cells per mL [147]) after gate adjustment (more information can
be found in the Appendix A). All of the flow cytometric measurements in this study were at
least an order of magnitude lower than the upper recommended upper quantification limit
(< 107 cells per mL [147]). For a negative control, 0.22 µm filtered, Millipore Milli-Q water
was used.

Adenosine tri-phosphate concentrations

Total and intracellular ATP concentrations were measured following the methods of Miller et
al. (2020). Briefly, ATP concentrations were measured using the BacTiter-GloTM Microbial
Cell Viability Assay (G8231, Promega Corporation, Madison, WI) and GloMaxR 20/20
Luminometer (Turner BioSystems, Sunnyvale, CA). From each bulk water grab sample,
a 500-µL aliquot of each triplicate was processed and the geometric mean and geometric
standard deviation were calculated. Relative light units from the luminometer were converted
to ATP concentrations using calibration curves made with a pure ATP standard (P1132;
Promega Corporation, Madison, WI). Extracellular ATP was separated from total ATP
prior to sample incubation through removal of microbial cells by filtration (0.1 µm, Millex-
VV Syringe Filter Unit; Millipore, Billerica, MA). For total and extracellular ATP, the
quantification limits were set by the standard curve, which ranged from 1x10−4 nM to 10
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nM. No total or extracellular ATP measurement was higher than the upper quantification
limit. The lower quantification limit for intracellular ATP was determined by Miller et al.
(2020) as 1.83x10−5 nM. Empty tube measurements and reagent-only measurements were
used as negative controls and reagent controls respectfully.

Heterotrophic plate counts

Heterotrophic plate counts (HPC) were determined using Quanti-Tray 2000 (IDEXX US;
Westbrook, Maine) with HPC for Quanti-Tray media (IDEXX US; Westbrook, Maine) fol-
lowing the manufacturer’s instructions with the trays incubated at 37◦C for 44-72 hours.
100 mL of bulk water grab sample was transferred to autoclave-sterilized bottles for each
replicate and the geometric mean and geometric standard deviation were calculated. Tech-
nical duplicates of all samples were completed except samples from distribution system B in
2016, for which there were no replicates. The lower limit of quantification was set using the
IDEXX Quanti-Tray format at a most probable number of one cell per 100 mL. The upper
limit of quantification was set at a most probable number of 2419.6 cells per 100 mL (a fully
positive IDEXX tray).

Statistical Analyses

This dataset had inherent dependencies that needed to be considered in the analysis, in-
cluding dependent variables that may be correlated with each other (e.g., pH, temperature,
chlorine residual), samples collected from the same drinking water distribution system on
the same day, or at the same location within a distribution system over time. Thus, rela-
tionships between microbial abundance and water quality parameters were assessed via cor-
relation analyses and generalized linear mixed models using R (3.6.2) [217]. To investigate
potential multicollinearity, Spearman’s Correlation values of all chemical and microbial wa-
ter quality parameters were determined using Hmisc (4.3-0) [218] and GGgally (1.4.0) [219].
Data exploration was completed following Zuur et al. (2009) using Cleveland dot plots to
detect outliers, GGgally to assess colinearity, and scatter plots of all covariates to visual-
ize relationships [220, 221]. Outliers and collinearity between covariates were not detected.
Generalized linear mixed model (GLMM) analysis and validation was completed following
the methods of Zuur et al. (2013, 2016). Prior to analysis, microbial abundance metrics
were tested for goodness of fit to a normal distribution, log-normal distribution, and gamma
distribution [223] using goft (1.3.4) [224]. The GLMM was fitted to raw intact cell counts
from distribution system F with centered and scaled predictors (to improve the parameter
optimization process) using lme4 (1.1-23) [225] with site as a random variable. The most
optimal model was selected based on minimizing conditional Akaike information criterion
with MuMIn (1.43.15) [226] through backward stepwise model selection. Wald confidence
intervals for fixed effects were calculated using lme4. For correlation, GLMM, and summary
statistic calculations, values below the quantification limit of intracellular ATP, total ATP,
intact cell counts, total cell counts, HPC, free chlorine and total chlorine were replaced with
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the respective lower quantification limit for the assay to be conservative. However, for cal-
culations of the coefficient of variation, only the quantifiable samples were used (Table 2.4).
In figures, these data were plotted at a value below the quantification limit for visualization.
Four HPC samples were above the quantification limit and were removed from all statistical
analyses and figures. Plotting was completed using ggplot2 (3.2.1) [227], tables were gener-
ated using stargazer (5.2.2) [228], plot fonts were set using extrafont (0.17) [229], figures with
multiple plots were generated using ggpubr (0.4.0) [230], and color palettes were chosen from
viridis (0.5.1) [231]. The full reproducible code and csv files that have all data used in this
paper are available in GitHub (https://zenodo.org/record/3993877#.X5n0Qy9h1TZ).

2.3 Results

Impacts of physicochemical parameters on microbial abundance

Disinfectant residual concentration was expected to be a master variable affecting microbial
abundance across the various the drinking water distribution systems that were sampled.
Thus, all data were plotted for each measure of microbial abundance as a function of dis-
infectant residual concentration. Of the five measurements of microbial abundance applied,
inverse trends were observed for two of them: intact cell counts (Figures 2.1A and 2.1D)
and intracellular ATP (2.1B and 2.1E). The trends for HPC (Figures 2.1C and 2.1F), total
cell counts in chloraminated systems (Figure A.1A), and total ATP (Figure A.1C and A.1D)
were less clear. In free chlorinated systems, a similar trend was observed for total cell count
(Figure A.1B) as for intact cell count (Figure 2.1D), likely because chlorine is a stronger
disinfectant than chloramine [215]. Thus, signal from non-viable cells and free DNA likely
decreases more rapidly than in chlorinated systems. A trend was not observed for proportion
of potentially viable cells (intact:total cells) (Figure A.2).

In addition to disinfectant residual concentration, temperature and pH might influence
microbial abundance. To explore these relationships statistically, Spearman’s correlation
coefficients (rs) were used to assess the strength of correlation between the various micro-
bial abundance metrics, disinfectant concentration, temperature, and pH (Figures 2.2A and
2.2B). The correlation between microbial abundance metrics and residual disinfectant con-
centration is discussed first. In both chloraminated and chlorinated systems, total chlorine
concentration was significantly and inversely correlated with both intracellular ATP and in-
tact cell counts (rs values between -0.65 and -0.85 ; p-values <0.001; Figures 2.2A and 2.2B),
consistent with the visual trends in Figure 2.1. HPC were only significantly correlated with
disinfectant residual in chloraminated systems (rs -0.45; p <0.001; 2.2A). In contrast, in-
tracellular ATP was more strongly correlated with disinfectant concentration in chlorinated
systems (rs= -0.77 ; p <0.001; Figure 2.2B) compared to chloraminated systems (rs= -0.65
; p <0.001; Figure 2.2A), but intact cell count was similar in both chlorinated (rs= -0.63;
p <0.01; Figure 2.2B) and chloraminated (rs= -0.67; p <0.001; Figure 2.2A) systems. In
chlorinated systems, the majority of the total chlorine concentration consisted of free chlo-
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rine except for in two cases for which total chlorine concentrations were <0.3 mg/L as Cl2.
Thus free and total chlorine concentrations were strongly correlated and appear to have
similar impacts on measures of microbial abundance (Figure 2.2B). However, in chlorami-
nated systems free chlorine concentration varied and was not significantly correlated with
any microbial abundance parameters (Figure 2.2A).

In terms of the other two commonly monitored water quality variables, significant corre-
lations were observed in chloraminated systems of temperature with intact cell counts (rs =
0.44; p < 0.001) and with intracellular ATP (rs = 0.48; p <0.001), but temperature was not
correlated with any measures of microbial abundance in chlorinated systems (Figures 2.2A
and 2.2B). pH was not significantly correlated with any measure of microbial abundance. It
should be noted that this dataset included ranges for disinfectant residual, temperature, and
pH that are typical of drinking water distribution systems located in the western/ south-
western United States (Table A.2).

In the chloraminated distribution system, microbial abundance measures were strongly
correlated with both disinfect residual and temperature, and pH was strongly correlated
with disinfectant residual. To assess relationships between these variables using a model,
interactions between variables and measurements from the same location that were not
independent needed to be considered. For this approach, intact cell counts were the focus
and a mixed model was developed using data from distribution system F (n=80). Raw intact
cell counts were not normally or log normally distributed, but the fit to a gamma distribution
was not rejected [223]. Thus, scaled and centered predictor variables (pH, temperature, free
and total chlorine) and raw intact cell counts were used in a generalized linear mixed model
with log link function (Equation 2.1). The log link function was chosen because it requires
positive fitted values. Sampling location within distribution system F (“site”) was used as
a random intercept to account for dependency associated with samples taken from the same
site.

ICCij ∼ Gamma(µij, τ)

log(µij) = total chlorineij + free chlorineij + pHij + temperatureij

+ total chlorineij X pHij + free chlorineij X pHij

+ free chlorineij X temperatureij

+ total chlorineij X temperatureij + sitei

sitei ∼ N(0, σ2
site)

(2.1)

In Equation 2.1, ICCij is the intact cell count (with mean µij) for the jth observation of
sitei. ICCij is assumed to follow a gamma distribution with scale parameter, µij, and shape
parameter, τ . The random intercept, sitei, is assumed to be normally distributed with mean
of 0 and variance of σ2

site. Fixed effects include total chlorine, free chlorine, pH, temperature,
and their interactions (included as interaction terms). Stepwise model selection was applied
(Table A.3) to determine the most optimal model (Equation 2.2) with parameter estimates
in Table 2.2.
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Figure 2.1: intact cell counts (A & D), intracellular ATP (B & E), and HPC (C & F). Left
(chloraminated systems): Shapes denote sites in system F that were sampled at least
six times between August 2017 and April 2018. Right (chlorinated systems): Shapes
denote locations in systems A and B that were sampled in 2016 and 2018. Dashed lines
denote quantification limits for each assay. Points are the geometric mean of the technical
replicates and error bars represent the geometric standard deviation.
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Figure 2.2: (A) Spearman’s correlation coefficient heat map for all samples with complete
water quality data collected from a chloraminated drinking water distribution system (n= 61)
(B) Spearman’s correlation coefficient heat map for all samples with complete water quality
data collected from chlorinated drinking water distribution systems (n= 21). Insignificant
coefficients are shown in grey where significance is coded as * p< 0.01; ** p<0.001; ***
p<0.0001.

ICCij ∼ Gamma(µij, τ)

log(µij) = total chlorineij + pHij + temperatureij + free chlorineij X pHij

+ total chlorineij X temperatureij + sitei

sitei ∼ N(0, σ2
site)

(2.2)

The most optimal model shows that lower total chlorine concentrations resulted in higher
intact cell counts; as expected, there was also an interaction with temperature that could
result in higher intact cell counts at lower total chlorine values and higher temperatures
(Figure 2.3). In Figure 2.3, quantiles of temperature, from lowest (purple line) to highest
(yellow line), are used in Equation 2.2 at a range of total chlorine concentrations. The total
chlorine term was the largest parameter estimate for a fixed effect in this model (Table 2.2),
which indicates that total chlorine had a large inverse effect on intact cell counts. In addition,
higher pH and temperature values resulted in higher intact cell counts (Figure A.3 and Table
2.2). However, the effect of temperature and pH on intact cell counts was smaller than that
of total chlorine (Table 2.2). In addition, the interaction between pH and free chlorine in the
optimized model was indistinguishable from 0 (0 falls within the confidence intervals shown
in Table 2.2). It is known that free chlorine disinfection is more effective at pH values below
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Figure 2.3: Visual representation of the most optimal model of intact cell counts in distribu-
tion system F (Equation 2). To generate dashed grey line, all fixed effects were held constant
at their average value except for total chlorine (with bootstrapped 95% confidence intervals
are shown in grey). To generate other lines, temperature was varied in the model at each
quantile value (-1.9, -0.10, -0.53, 0.87, and 2.1). In Figure A.3, other fixed effects are shown.

7.5 [215], but the minimum pH value in system F was 7.67 (Table A.4). Thus, the pH in
this system likely did not vary enough to produce an accurate estimate for this interaction
term (Table A.4).

Another variable in drinking water distribution systems that may correlate with microbial
abundance is water age, given that the concentration of chlorine residual is known to diminish
with water age, which could have substantial impacts on microbial abundance [232]. To
investigate the impacts of water age on water quality, water age was compared with with
intact cell counts, intracellular ATP, HPC, and total chlorine concentration in distribution
system F (Figure 2.4). Surprisingly, the measures of microbial abundance generally did not
trend with water age (Figure 2.4 A-C). However, total chlorine generally decreased with
water age during each specific sampling event (Figure A.4). To investigate the variability in
chlorine residual at individual sampling sites, data from a year of sampling at 21 sites were
aggregated in distribution system F (Figure A.5). Total chlorine at each sited varied over
the course of a year depending on the location sampled and was not directly correlated with
the water age at that site (Figure A.5). These results suggest that total chlorine had a large
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Table 2.2: Estimated parameters, standard errors, and confidence intervals for each covariate
of the most optimal model of intact cell counts in distribution system F (Equation 2.1).
Generalized linear mixed model for intact cell counts with sampling location (“site”) as a
random variable, where σ2

site = 0.26 and τ = 1.72.

parameter estimate standard error
lower confidence

interval (5%)
upper confidence

interval (95%)

intercept 8.6 0.19 8.3 9.0
total chlorine -1.3 0.13 -1.6 -1.1

pH 0.40 0.17 0.062 0.73
temperature 0.35 0.097 0.16 0.54

pH X
free chlorine

0.39 0.23 -0.066 0.84

total chlorine X
temperature

-0.24 0.12 -0.47 -0.0087

impact on microbial abundance that was independent of water age in distribution system F.

Quantifiability and variability of five measures of microbial
abundance

To evaluate the utility of the microbial abundance assays, the measures of microbial abun-
dance that were most frequently quantifiable in disinfected drinking water systems were
determined. Intact cell counts yielded the highest percentage of results that were above
lower quantification limits (97.6% of samples, n= 166; Table 2.3). In contrast, intracellular
ATP was quantifiable in only 69.6% of samples (n= 115), and HPC were quantifiable in only
81.4% of samples (n= 102; 18.6% of samples either above or below limits of quantification).
Total ATP and total cell counts were quantifiable in 100% of samples, as no samples were
below the limit of quantification (Table 2.3). Interestingly, quantifiability of intracellular
ATP was dependent on the system sampled (Table A.5). In particular, a greater fraction of
samples was observed with concentrations of intracellular ATP above lower quantification
limits from distribution system A (90.9% of samples with n= 11; Table A.5) and distribution
system B (90% of samples with n= 10; Table A.5) and lower quantifiability was observed in
samples from distribution system F (64.9% of samples with n= 94; Table A.5).

To evaluate the variability of the microbial abundance assays, the measures of microbial
abundance that had the lowest average coefficients of variation were determined. The co-
efficient of variation is commonly used to assess variability in quantitative bioassays and is
reported as a percentage with a higher percentage indicating more variation among replicates
[233]. To summarize the variability across all samples taken in this study, an average coeffi-
cient of variation was calculated for each of the measures of microbial abundance by taking
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Figure 2.4: intact cell counts (A), intracellular ATP (B), HPC (C), and total chlorine con-
centration (D) by water age (hours) in distribution system F. Shapes denote locations in
distribution system F that were sampled at least six times between August 2017 and April
2018. Horizontal dashed lines denote quantification limits for each assay. Points are the geo-
metric mean of the technical replicates and error bars represent the variation associated with
technical replicates as quantified by the geometric standard deviation for technical replicates.
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Table 2.3: Percent of samples above quantification limit, below quantification limit, and
quantifiable in all drinking water distribution systems sampled for this study for each mi-
crobial water quality assessment method. “n” is the number of samples per assay.

assay n
percent

quantifiable
percent below

quantification limit
percent above

quantification limit

intact cell counts 166 97.6 2.4 0
total cell counts 166 100 0 0

intracellular ATP 115 69.6 30.4 0
total ATP 115 100 0 0

HPC 102 81.4 14.7 3.9

Table 2.4: Ranges in coefficient of variation determined by geometric mean (%; min, median,
and max) and average coefficient of variation (%) for replicates taken in all drinking water
distribution systems sampled for this study for each microbial water quality assessment
method. “n” is the number of samples per assay.

assay n
min

coefficient of
variation

median
coefficient of

variation

max
coefficient of

variation

average
coefficient of

variation

intact cell
counts

162 0.0266 9.78 148 16.9

total cell
counts

166 0.318 6.15 255 17.0

intracellular
ATP

80 42.9 48.6 328 56.0

total ATP 115 0.389 4.81 66.0 9.30
HPC 73 0 27.1 293 49.4

the arithmetic mean of all sample coefficients of variation (Table 2.4). Notably, variability
was lower for total ATP (9.30%; Table 2.4), total cell counts (17.0%; Table 2.4), and intact
cell counts (16.9%; Table 2.4), compared to intracellular ATP (56.0%; Table 2.4) and HPC
(49.4%; Table 2.4).

2.4 Discussion

Five measures of microbial abundance were compared by surveying drinking water systems
that apply residual disinfectants in California and Texas. In one chloraminated system,
a generalized linear mixed model was used to estimate the effect of commonly measured
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water quality parameters on intact cell counts. In the following sections, the purpose and
interpretation of typical microbial water quality factors are discussed and the future role of
enhanced measures of microbial water quality is considered for three applications: routine
monitoring, diagnostics, and research.

Considerations for routine monitoring of drinking water systems

A key finding from this study is that disinfectant concentration in drinking water distribution
systems provided an indirect measure of microbial abundance, which has useful implications
for routine monitoring of distribution systems. Disinfectant residual had the largest inverse
correlation coefficient regardless of residual type (Figures 2.2A and 2.2B). Furthermore, total
chlorine had the greatest inverse effect on intact cell counts in a chloraminated drinking
water distribution system (distribution system F). Gillespie et al. (2014) and Nescerecka et
al. (2014) also surveyed disinfected distribution systems, but did not report trends between
intact cell counts and disinfectant residual. Gillespie et al. (2014) sampled in chlorinated
systems with free chlorine <0.8 mg/L as Cl2 and recommend maintaining free chlorine above
0.5 mg/L as Cl2 to keep the fraction of potentially viable cells below 0.2. In contrast, a similar
trend was not observed with the fraction of viable cells (Figure A.2), but intact cell count
decreased to <100 cells/mL at free chlorine concentrations above 1.5 mg/L as Cl2. Intact
cell counts were assessed at a wider range of disinfectant concentrations and a clear trend
was observed between disinfectant residual and intact cell counts.

A proof of concept was presented that development of mixed models could help relate
routinely monitored physicochemical data to intact cell counts in drinking water distribution
systems. Drinking water providers in the United States commonly monitor pH, temperature,
free chlorine, and total chorine, and these data were incorporated into a model to estimate
intact cell counts using data from a chloraminated distribution system. The most optimal
model (Equation 2) suggests that total chlorine had the largest effect on intact cell counts and
that this effect depended on temperature. Zhang et al. (2002) also found that disinfectant
concentration had an inverse effect on log-transformed HPC and visually observed higher
values of log transformed HPC in the summer than in the winter, but statistical results were
inconsistent, likely due to variability in HPC results. Using intact cell counts, instead of just
the small fraction of total coliform bacteria or HPC, holds promise to model a commonly
observed phenomenon: in summer, a higher residual disinfectant is necessary to maintain
microbial water quality [235]. This study focused on routinely measured parameters in
drinking water distribution systems in the southwestern United States, but more research is
needed to expand the dataset and modeling approach. This approach could include a dataset
that accounts for seasonal variability and source water quality changes as well as includes
additional biological (e.g., assimilable organic carbon) and physicochemical parameters (e.g.,
total organic carbon concentration). However, including more parameters would require a
larger sample size than was collected in this study (n=80). In addition, modeling completed
using data from multiple distribution systems will introduce a nested dependency structure
in which both samples from the same system will be correlated as well as samples from the
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same site within a distribution system over time. With a more complete dataset, it might be
possible to generate a model for which consistent deviations from model predictions at specific
sites may be indicative of water quality problems, such as pipe corrosion or nitrification.

Intact cell counts and intracellular ATP assays as diagnostic tools

To better understand observed or expected changes in water quality, such the impact of
nitrification, upgrading treatment processes, or incorporating a new treated water source
(e.g., potable reuse), diagnostic monitoring can be necessary. However, the culturing meth-
ods commonly employed in routine monitoring, such as for total coliforms and HPC, often
produce unquantifiable or unrepresentative results. For example, in a survey of U.S. drinking
water providers, 57% of respondents reported never detecting total coliforms while the other
43% reported having fewer than 12 positive samples per year (n= 256 respondents; [216]).
Similarly, the results of this study support previous claims that HPC vastly underestimates
drinking water microbial abundance as compared with intact cell counts [148]. HPC only
quantifies bacteria that can utilize organic nutrients for growth [146, 214] and they have
been shown to comprise <1% of bacteria in some drinking water samples [207, 236]. Prest et
al. (2016) reported a very high fraction of treated drinking water samples with HPC results
below 5 CFU/mL while total cell counts ranged from 9.0x104 to 4.5x105 cells/mL.

For diagnostic purposes, use of intact cell counts would allow drinking water providers to
detect changes in microbial water quality that are not observable using traditional microbial
monitoring methods like HPC or total coliform quantification [214, 237, 238, 206, 148, 39].
In this study, 97.6% of samples had quantifiable intact cell counts. Only four samples
were below the intact cell count quantification limit, which occurred at the highest residual
concentration observed in chlorinated drinking water distribution systems (1.5 - 2.0 mg/L
as Cl2; Figure 2.1). Intact cell counts spanned four orders of magnitude in chloraminated
systems (from <22 cell/mL to 1.09x105 cells/mL) and more than two orders of magnitude in
the chlorinated systems (<22 cells/mL to 2.12x103 cells/mL). As might be expected, these
cell counts were lower than those reported in other studies with lower maximum residual
disinfectant values or in systems without disinfectant residuals. For chlorinated distribution
systems, the maximum cell counts from this study are about 1000 times less than those
reported in Gillespie et al. (2014). In addition, the geometric mean of intact cell counts of
all distribution system samples in this study (3x103 cells/mL) was about 100 times lower
than that of total cell counts reported for a system that does not apply a residual disinfectant
(1x105 cells/ mL) [239].

Intracellular ATP may also be useful for diagnostic purposes because the values measured
in this study correlated strongly with intact cell counts and ATP assays are less expensive.
Drinking water providers monitoring microbial abundance for diagnostic purposes will need
to choose measures of microbial abundance that maximize information gained and minimize
expense. For this reason, it is important to consider how much each technique overlaps
with other measures of microbial abundance and with chemical or physical water quality
parameters. Intact cell counts and intracellular ATP results were strongly correlated (Figures
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2.2A and 2.2B), and other studies have found similar correlations between ATP and intact
cell counts among both chloraminated and chlorinated systems [70, 58, 236, 148]. The
results in this study support the likelihood that most microbial abundance information will
be obtained if either intact cell counts or intracellular ATP is measured. However, intact cell
count was still more quantifiable and consistent compared to intracellular ATP. Intracellular
ATP was quantifiable in only 69.6% of samples (Table 2.3) and technical replicates varied
considerably (average coefficient of variation = 56.0%; Table 2.4). Thus, intracellular ATP
may only be preferable when expense is a primary concern.

Assessment of biostability and risk in disinfected drinking water
systems

While there is no evidence that the safety of drinking water is compromised simply due
to variations in microbial abundance, microbial growth in distribution systems is generally
considered to be a risk [206, 240, 241]. Choosing universal guidelines to maintain microbial
water quality is not straightforward because microbial abundance is not directly linked to
specific risks to infrastructure or public health. For example, setting a numerical operational
limit for cell counts (e.g., 100 cells/mL) is not logical because microbial abundance varies
considerably by water source and even within the same distribution system [59]. In lieu of
numerical operational limits, researchers have proposed maintaining biologically stable wa-
ter, in which microbial abundance and composition does not significantly change throughout
a distribution system [242, 239]. However, biologically stable drinking water is difficult to
maintain in disinfected drinking water distribution systems [59, 58] because disinfectant
residual concentration has been shown to degrade in drinking water distribution systems as
it reacts with pipe walls and organic matter (Figure A.4) [232]. In this study, disinfectant
residual varied over a large range within chloraminated and chlorinated distribution sys-
tems, and there was a strong inverse correlation between the residual concentration and the
microbial abundance.

Instead of maintaining biologically stable water, setting more subjective operational limits
might be necessary in disinfected drinking water systems. Subjective operational limits
have been set for HPC in the United Kingdom, France, the Netherlands, and Belgium
where the upper limit is “no abnormal change” in HPC [148]. While it is difficult to define
“normal” in drinking water systems, normal can be operationally defined by measuring
microbial water quality under a range of conditions encountered in the system to establish a
baseline and to discern contamination events from natural fluctuations [138, 140] that have
been well documented in drinking water distribution system [243]. To establish a baseline
microbial abundance in drinking water systems, water providers could monitor intact cell
counts or intracellular ATP data throughout the range of chemical and physical water quality
conditions encountered in their systems under routine operations. The generalized linear
mixed model presented in this paper represents one way to establish such a baseline and the
methodology could be applied in other systems.
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To more thoroughly assess health risk in drinking water systems, more research is needed
to pair absolute microbial abundance measures with assessments of microbial community
composition and the concentration of specific pathogens of concern. Significant research is
underway to characterize microbial communities in drinking water using high-throughput se-
quencing technologies (e.g., 16S rRNA gene amplicon and metagenomic sequencing). Some
researchers have paired microbial abundance data with sequencing data using quantitative
polymerase chain reaction (qPCR) methods to provide a deeper characterization of microbial
water quality [244, 48, 245]. Combining qPCR with viability dyes brings a similar benefit
as cell counts and ATP assays in that cell membrane damage can be used as a viability
metric [171]. However, these methods have limitations discussed previously [246], including
limited resolution (twofold changes in gene copies; [247]), bias introduced from assay design
([247, 248], and bias introduced with PCR [249]. Others have paired flow cytometry with
sequencing data to provide a similar characterization of microbial water quality without
bias introduced from PCR [247, 84, 38]. Ultimately, these studies may provide a sophisti-
cated understanding of the complex interactions and factors that govern microbial ecology in
drinking water systems. However, not all microbial ecology studies report absolute microbial
abundance data. Pairing measures of microbial abundance with sequencing results has the
potential to characterize microbial water quality in greater resolution than using any single
method. This approach can provide more insight into risk in drinking water distribution sys-
tems including potential exposure to opportunistic pathogens and other microbially induced
issues, such as pipe corrosion [17, 18], nitrification [21, 22], and aesthetic deterioration of
finished water [250].

For meta-omics research, the microbial abundance measures in this study that will be
most useful to include are intact and total cell counts. The flow cytometry results in this
study indicate that a varied fraction of cells in the sites that were sampled were viable (Figure
A.2). Intact and total cell counts are quantified by a fluorescent dye that intercalates with
DNA [251] and are a more direct measure of microbial abundance compared to ATP assays.
Though cell count data were correlated with ATP data, ATP results were varied and often
unquantifiable in these systems. While total cell count is more reflective of the sequenced
microbial community, intact cell count is more reflective of the risk imposed by the microbial
community. Thus, both total and intact cell counts could be useful to pair with meta-omics
data and provide a more informative assessment of microbial water quality in drinking water
systems.

2.5 Conclusions

Applying measures of microbial abundance in piped drinking water systems can be useful
for routine monitoring, diagnostics, and research. The results in this study support that
disinfectant residual is an indirect measure of microbial abundance, and the necessity of
pairing it with direct measures is questionable for routine monitoring. However, for diag-
nostic purposes, additional monitoring data in systems with large ranges in microbial and
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physicochemical water quality conditions could help drinking water providers diagnose is-
sues early and move beyond the goal of ensuring total coliforms are not detectable [243,
252]. For research, pairing meta-omics data with measures of microbial abundance can help
researchers better characterize microbial water quality. The results in this study support
that HPC assays are uninformative in these systems because these results are variable and
often unquantifiable. Microorganisms are present throughout drinking water systems, and
by limiting analyses to HPC, the true microbial water quality cannot be observed. Instead,
either intracellular ATP or intact cell counts could be useful for diagnostic purposes and
both intact and total cell counts could pair with meta-omics data. The main findings are
summarized as follows:

• Intact cells were measured in all six piped drinking water distribution systems, includ-
ing chloraminated sites with total chlorine > 2.5 mg/L as Cl2

• Only 2.4% of sampling sites, with the highest free chlorine concentrations (i.e., 1.5-2
mg/L as Cl2), had intact cell counts below quantification limits

• Residual disinfectant concentration was significantly and strongly correlated with in-
tracellular ATP and intact cell counts in distribution systems

• Negative correlations between residual disinfectant concentration and intracellular ATP
were stronger in chlorinated systems than in chloraminated systems

• The parameter that had the greatest impact on intact cell counts in a chloraminated
drinking water distribution system was total chlorine concentration, which interacted
with temperature

• Of the five measures of microbial abundance, only total cell counts and total ATP were
quantifiable in all samples, but these assays do not assess viability of cells

• Total ATP had the least variability among technical replicates followed by intact cell
counts and total cell counts
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Chapter 3

Microbial impacts of transitioning a
drinking water distribution system to
a treated water augmentation system

3.1 Introduction

Water-stressed cities need diverse drinking water sources to become more resilient and pre-
pare for future water demand. For many cities, direct potable reuse (DPR) could provide a
relatively cost-effective and reliable source of drinking water compared to other alternative
sources of water (e.g., seawater desalination [253]). In DPR systems, wastewater is treated
to meet or even exceed the drinking water quality standards in the United States that are
set for drinking water facilities that treat surface or groundwater (conventional treatment)
[6, 91, 92, 93]. Even though wastewater contains more nutrients, pathogens, and other
contaminants compared to ground or surface water, finished advanced-treated wastewater
often contains fewer contaminants compared to finished conventional drinking water [78, 79].
Conventional treatment does not include the key components of advanced treatment that
substantially improve water quality (e.g., reverse osmosis and advanced oxidation processes).
Advanced-treated wastewater can be blended with either conventional surface water prior to
treatment (raw water augmentation) or with finished conventional drinking water (treated
water augmentation) [80]. Directly introducing advanced-treated wastewater into distribu-
tion systems circumvents treatment at a conventional drinking water facility, reduces the
cost associated with treatment and, in some cases, reduces the cost associated with pumping
advanced-treated wastewater to a drinking water treatment facility.

Microbial water quality in drinking water distribution systems will be impacted by the
changes in water quality associated with transitioning a fully conventional system to a treated
water augmentation system. However, expectations are limited for system-scale microbial
issues that could arise during such transitions, partially because only three full-scale systems
exist in the world [82]. In addition to a lack of full-scale systems to study, prior micro-
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bial research simulating the introduction of advanced-treated wastewater to drinking water
distribution systems is limited in scope (i.e., the transition from conventional treatment to
advanced treatment has not been studied) [6, 89, 84, 85]. However, studies of conventional
drinking water systems that have transitioned source waters or upgraded treatment could
be applicable. For example, decreases in the concentration of nutrients feeding drinking
water distribution systems could lead to chemical or microbial destabilization [254], which
could expose consumers to microbial contaminants (e.g., sloughed opportunistic pathogens)
[255]. Researchers have simulated the upgrade of conventional treatment to include mem-
brane filtration and found that organic carbon and biomass decreased in bulk water and
biofilm in simulated distribution systems [256, 257, 75], but full-scale upgrades in conven-
tional treatment have been associated with biofilm sloughing [254, 71, 72]. Because of the
limited experience in transitioning conventional drinking water systems to DPR systems,
regulatory bodies in California have recommended applying enhanced microbial monitoring
in drinking water distribution systems before and after transitioning to DPR [6].

The objective of this work was to characterize the impact on microbial community com-
position from transitioning a piped distribution system fed with surface water to a treated
water augmentation system. Specifically, the objectives were to (1) evaluate the study de-
sign by comparing pipe loop feedwaters to their respective origins (i.e., full-scale drinking
water distribution system or demonstration-scale RO permeate); characterize the impact on
(2) bulk water and (3) biofilm microbial community composition of transitioning a conven-
tional drinking water distribution system to a treated water augmentation system; (4) assess
the potential for opportunistic pathogens to have higher absolute abundance in pipe loop
rigs compared to feedwaters and respective origins. This study demonstrates the applica-
tion of enhanced microbial water quality assessment before, during, and after transition to
treated water augmentation in simulated distribution systems. Recommendations for future
simulation studies are discussed.

3.2 Methods

In this study, five pipe loop rigs recirculated conventionally-treated drinking water that
was either unaltered (conventional) or blended with advanced-treated wastewater (advanced
blend; Figure 3.1). The advanced blends consisted of 90% conditioned reverse osmosis per-
meate from a demonstration-scale advanced wastewater treatment facility that was condi-
tioned, stored, and then chemically disinfected in pipe loops reservoirs. All rigs underwent
a one-week inoculation period with concentrated biomass from the full-scale conventional
drinking water distribution system. Two transition loops were fed with only conventional
feedwater for ∼ 10 weeks and then were fed with the advanced blend for ∼ 11 weeks. The
transition loops were compared to a conventional control loop and two advanced blend loops
that maintained the same feedwater over the study period. Grab samples for flow cytometry
(total cell counts) were paired with concentrated bulk water and biofilm samples for 16S
rRNA gene amplicon sequencing. The methods described in this dissertation have also been
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described in Miller (2019).

Pipe loop rig design, start up, and operation

To simulate a transition to treated water augmentation, water from a full-scale conventional
drinking water distribution system and from a demonstration-scale advanced treatment fa-
cility were used to feed pipe loop rigs that were located onsite at the conventional drinking
water treatment facility. Five pipe loop rigs were designed to simulate drinking water distri-
bution and were constructed identically using the materials that were most common in the
full-scale conventional drinking water distribution system: PVC, copper, galvanized iron,
leaded brass, and cement-lined ductile iron piping. 12 removable segments of 1-foot PVC
pipe were included in each rig for biofilm collection. The pipe loops were designed to recir-
culate 100-L batches of water with residence times roughly equal for both the piping and
reservoir sections of each rig (1.8 and 1.5 minutes respectively) to simulate drinking water
distribution system conditions. During start up, pipe loop rigs were disinfected by recircu-
lating 100-L of 100 mg/L as CL2 of free chlorine, rinsed with four full batches of conventional
drinking water, and then inoculated with concentrated biomass from the conventional drink-
ing water distribution system (described in more detail in the bulk water collection section).
The concentrated biomass was divided evenly across the five pipe loops and mixed with a
fresh 100-L batch of conventional water. The pipe loops recirculated the inoculum for seven
days, after which, Phase 1 of operation began (Figure 3.1).
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Figure 3.1: Pipe loop rigs were onsite at the conventional drinking water treatment facil-
ity (top left). Conventional feedwater originated from a tap in the full-scale conventional
drinking water distribution system. RO permeate originated from the advanced wastew-
ater treatment facility (top right) and was transported to the pipe loop site conditioned
and stored until use. Advanced blends consisted of 10% conventional feedwater and 90%
advanced feedwater. The bottom portion of the figure shows the feedwater composition in
the pipe loops during Phases 1 (10/23/17-1/5/18) and 2 (1/5/18-3/26/18; with timeline
represented by the arrow at the bottom).

Depending on the phase of the study, the pipe loops were fed with conventional water or
advanced blend water (Figure 3.1). The chloraminated conventional drinking water was ob-
tained onsite from the conventional drinking water distribution system (conventional feedwa-
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ter). To compare the water quality in pipe loops to that in the full-scale distribution system,
three additional sites in the distribution system were sampled six times throughout the study
period (distribution system). The advanced feedwater originated from a demonstration-
scale advanced wastewater treatment facility, at which tertiary-treated wastewater under-
went ozonation, biological activated carbon filtration, microfiltration, reverse osmosis, and
advanced oxidation. Reverse osmosis permeate (RO permeate) was transported from the
demonstration-scale advanced treatment facility, conditioned with calcium hydroxide and
carbon dioxide gas to achieve an alkalinity of 75-100 mg/L as CaCO3 and a pH of 8, and
stored until use in a tank onsite at the conventional drinking water treatment facility (ad-
vanced feedwater; Figure 3.1). During batching, the pipe loops were drained entirely of
water and refilled with 100 L of either 100% conventional feedwater or 10% conventional
feedwater and 90% advanced feedwater (advanced blend). Pipe loops fed with the advanced
blend also had a primary disinfection step completed in the reservoir with free chlorine fol-
lowed by the addition of ammonia to produce a chloramine residual that is decribed in more
detail in Miller (2019). The average water age in the pipe loops was 3.5 days, and the pipe
loops recirculated over either a three-day or four-day batch period, with the exception of two
short-term attempts to increase microbial activity in Phase 1: 1. Over four batch periods in
November 2017, pipe loops recirculated over a seven-day batch period, and 2. over several
batch periods in early December 2017, conventional feedwater was stored in a tank to allow
for disinfectant decay over 3.5 days (instead of feeding directly to pipe loops).

Bulk water and biofilm concentration

Bulk water samples were collected from the full-scale drinking water distribution system
sites, demonstration-scale RO permeate, feedwater to the pipe loops, and pipe loops (Figure
3.1). Before sample collection, taps were flushed at maximum flow rate for different time
periods and volumes dependent on the sample: at least five minutes (distribution system, RO
permeate, and conventional feedwater), at least two minutes (advanced feedwater hose), and
about 1 L (pipe loop sampling ports). For all bulk water sampling locations, grab samples
were collected in 500-mL autoclave-sterilized glass bottles with sodium thiosulfate in excess
to quench chloramine residual, transported on ice, and stored at 4◦C until flow cytometry
analysis. Bulk water biomass was concentrated using dead-end ultrafiltration (DEUF) as
per Smith et al. (2009) with different volumes concentrated depending on the biomass and
volume available by sample type: pipe loop bulk water (60-100 L), pipe loop feedwaters
(100-300 L), drinking water distribution system (350-900 L), and RO permeate (700-4,000
L).

The DEUF process involved three main steps: 1. Blocking: Ultrafilters (REXEED 25S,
Henry Schein; Melville, NY) were “blocked” overnight before sampling with 5% w/v sterile-
filtered bovine calf serum (catalog # 12133C; Fisher Scientific) as per Hill et al. (2005),
and 1 L of sample was used to rinse the ultrafilter via crossflow filtration before the start
of sample filtration. 2. Filtration: At sampling sites, the DEUF pump and ultrafilter
setup were the as per Smith et al. (2009), and following filtration, all ultrafilter ports were
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capped with autoclave-sterilized caps, and the ultrafilters were transported on ice for further
processing. 3. Backflushing: In lab, the filtration setup was adjusted for backflushing as
per Smith et al. (2009), and 500 mL of backflush solution (0.5% w/v Tween 80, 0.01%
w/v sodium polyphosphate, and 0.001% w/v Y-30 antifoam emulsion) was pumped through
the ultrafilter and collected in an autoclaved-sterilized 1-L glass bottle that was used for
downstream secondary concentration using polyethylene glycol (PEG) flocculation.

Biofilm samples were collected from 12 PVC segments (length = 1 ft., diameter = 1
in.). During a biofilm sampling event, valves on either side of a segment were closed and
the segment exterior was sterilized with 70% ethanol. The segment was removed, filled with
700 mL of 0.22-µm filtered bulk water from the respective pipe loop that was quenched
with excess thiosulfate, capped, and transported on ice for further processing. A clean
replacement PVC segment was produced by soaking a segment in 0.5% free chlorine solution
for at least 30 minutes and thoroughly rinsing with conventional water. Removed PVC
segments were sonicated (Branson 3510-DTH) in the laboratory in three steps. 1. The
pipe segment was sonicated with one side submerged for 3 minutes with 100 mL of the
filtered pipe loop bulk water inside the segment, and then the sonicated water was poured
into a separate autoclaved-sterilized glass bottle. 2. The pipe segment was filled with an
additional 100 mL of filtered pipe loop bulk water, rotated in the sonicator, and sonicated
for an additional 3 minutes. This second set of sonicated water was combined with the
first set of sonicated water. 3. The pipe segment was scraped with a sterile cell scraper
(catalog # RPI-162423CS; Research Products International), filled with an additional 20
mL of filtered pipe loop bulk water, and shaken vigorously by hand for 15 seconds. The
water was poured into an autoclave-sterilized glass bottle, the cell scraper was placed inside,
and the bottle was sonicated for 30 seconds. This water was then combined with the first
and second sets of sonicated water. In total, about 220 mL of water was recovered from the
sonication procedure, and this recovered biomass was processed via PEG flocculation (the
same procedure as bulk water samples).

PEG flocculation was used to concentrate sonicated water from biofilm samples and
ultrafilter backflush from bulk water samples following a protocol from Mark Borchardt
at the United States Department of Agriculture (USDA; Marshfield, WI). Briefly, backflush
samples or sonicated biofilm samples were mixed with 1.15% w/v NaCl, 8% w/v polyethylene
glycol 8000, and 1% w/v beef extract (catalog # DF0115173; Fisher Scientific). The solution
was then kept at 4◦C as it was stirred for 1 hour, incubated overnight, and centrifuged at 4,200
RPM for 45 minutes in a swing-bucket centrifuge. Supernatant was removed by decanting,
and resulting pellets were resuspended in 1 to 4 mL of autoclave-sterilized tris-EDTA buffer
and stored at -80◦C for further processing through DNA extraction.

Pipe loop inoculum biomass and field blanks were also concentrated using DEUF and/or
PEG flocculation. For the pipe loop inoculum samples, three premise plumbing taps in the
conventional drinking water distribution system were filtered for 23 hours (6,070 L of tap
water filtered in total). The filters were backflushed into autoclave-sterilized glass containers
and stored at 4◦C until inoculation of pipe loops (∼10 days). Field blanks for DEUF sampling
were prepared by blocking an ultrafilter, rinsing blocking solution with deionized water via
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crossflow filtration, exposing the blank to conditions in the field without actually filtering,
and then processing in parallel with bulk water samples. One field blank for pipe biofilm
sampling was concentrated by filtering (0.22 µm) 225 mL of water from a pipe loop rig into
a sterile bottle, keeping the bottle open during field sampling and laboratory sonication, and
finally processing the water through PEG flocculation in parallel with biofilm samples.

Cell counts by fluorescent staining and flow cytometry

Total and intact cell counts were determined for bulk water grab samples as in Kennedy
et al. (2020). Briefly, cell concentrations were measured using flow cytometry with SYBR
Green I (S9430; Sigma-Aldrich, St. Louis, MO) and propidium iodide (30 mM P1304MP;
Life Technologies, Carlsbad, CA) to distinguish cells with intact membranes. From each
bulk water grab sample, a 1000-µL or 1500-µL aliquot of each triplicate was processed
and the geometric mean and geometric standard deviation were calculated. Measurements
were performed on two separate flow cytometers, an Accuri C6 flow cytometer (Accuri; BD
Biosciences, San Jose, CA) and a BD FACSCanto cell analyzer (Canto; BD Biosciences, San
Jose, CA). The Accuri was used to sample until February 6th, 2018, when it was sent in for
repair, and the Canto was used for the remaining study period. The Accuri was equipped
with a 50 mW laser emitting a fixed wavelength of 488 nm, and measurements were performed
at the “fast” flow rate of 66 µL minute−1 on sample volumes of 50 µL. Microbial cell signals
were distinguished and enumerated from background and instrument noise on density plots
of green (FL1; 533 ± 30 nm) and red (FL3; >670 nm) fluorescence using FlowJo gating
software (v10.5.3). Gate positions were modified slightly from a template publicly available
for the BD Accuri C6 [147] to adapt for FlowJo software. The Canto was equipped with a
20 mW laser emitting a fixed wavelength of 488 nm, and measurements were performed at a
flow rate of 1 µL s−1 for 50 seconds. Microbial cell signals were distinguished and enumerated
from background and instrument noise on density plots of green (FTIC; 530 ± 30 nm) and
red (PerCP; 695 ± 40 nm) fluorescence using FlowJo gating software. Gate positions were
modified slightly compared to BD Accuri C6 gating based on calibration beads (Spherotech,
Catalog # NFPPS-52-4K, Lake Forest, IL). For the Accuri, the lower quantification limits
were determined for intact cell count (22 cells per mL) and total cell count (12 cells per mL)
by Miller et al. using the same instrument used in this study [85]. For negative controls,
0.22 µm filtered, Millipore Milli-Q water was used.

DNA extraction, library preparation, and sequencing

DNA extraction from concentrated biomass samples was completed using a PowerSoil Pro
extraction kit (Qiagen), with slight modifications. Briefly, sample pellets were thawed and
vortexed for 10 seconds. For advanced feedwater, 200 µL of homogenized sample was added
directly to each PowerSoil Pro Powerbead tube. For all other samples, sample homogenates
were centrifuged at 34,000xg for 1 minute. The supernatant was aliquoted onto a centrifugal
filtration unit (Amicon ultra-15 centrifugal filter unit; Millipore, Cork, Ireland) and the
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pellet was stored on ice. The filtration unit was centrifuged at 7,500xg for 30 minutes and
the concentrate was combined with the pellet and homogenized. 200 µL of the concentrated
sample was added to the Powerbead Tube. The sample was incubated at 37◦C for 30 minutes
with an enzymatic digestion solution (50 µL of 0.001% lysozyme (Sigma-Aldrich, Damstadt,
Germany), 50 µL of 0.00001% achromopeptidase (Sigma-Aldrich, Damstadt, Germany), and
8 µL of 0.01% carrier RNA in buffer AVL (Qiagen)). Solution CD1 was added to the sample
(500 µL), and then the PowerSoil Pro kit was followed as specified by the manufacturer until
the step immediately before elution, when a room-temperature incubation step was added
(five-minutes). The sample was eluted and stored at -80◦C until further processing.

Library preparation for amplicon sequencing followed the Schloss Lab MiSeq wet-lab
protocol1 for amplification of the V4 region of the 16S rRNA gene and Kantor et al. (2019),
with slight modifications. Briefly, the V4 region was amplified using uniquely barcoded 515F
and 806R primers with Phusion HotStart II polymerase (ThermoFisher Scientific), HF buffer
(ThermoFisher Scientific), and 10 to 25 ng (up to 2 µL total) of genomic DNA. Triplicate 25
µL reactions were combined. For reactions that failed to amplify, 3% dimethyl sulfoxide and
0.2% bovine serum albumin were added (25 µL total reactions). At the Vincent J. Coates
Genomics Sequencing Laboratory at UC Berkeley, the dual-barcoded libraries were pooled
and then sequenced on an Illumina HiSeq 2500, yielding 150 bp paired-end reads.

Amplicon sequence data processing

Amplicon sequence data were processed as per Kantor et al. (2019) with slight modifications.
Reads were demultiplexed, mapped to PhiX, and processed using DADA2 (v1.12.1) [261] to
generate amplicon sequence variants (ASVs). Briefly, FastQC2 was used to assess quality
and to determine cutoffs for the following five quality control measures: 1. Truncation of all
reads after 251 nucleotides (nts); 2. Trimming of all reads to remove 5 nts from the 5’ end;
3. Truncation of a subset of reads where quality score dropped to 10 or below; 4. Removal
of reads with expected errors greater than 1; and 5. Removal of reads with lengths less
than 200 nts. The remaining reads were denoised, chimeras were removed from the dataset
using removeBimeraDenovo, and taxonomy of sequences was assigned using the Ribosomal
Database Project Näıve Bayesian classifier [262] trained using data from the SILVA database
(v132) [263]. The resulting ASVs were analyzed using Phyloseq (v1.30.0) [264] in R (v3.6.2)
[217].

Contamination in samples was assessed using DeSeq2 (v1.24.0) as per Kantor et al.
(2019). In brief, samples were compared to extraction and field blanks and ASVs shared
between samples and any negative control were determined. All of these ASVs were removed,
except any ASV significantly enriched in samples over negative controls. Afterward, only
samples with more than 300 reads were kept for further analysis.

1https://github.com/SchlossLab/MiSeq_WetLab_SOP/blob/master/MiSeq_WetLab_SOP.md
2 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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The relative abundance of each ASV in each sample was determined and then Bray-
Curtis dissimilarities were calculated. Non-metric multidimensional scaling (NMDS) of
Bray-Curtis dissimilarities was completed for all bulk water samples as well as only pipe
loop bulk water samples (i.e., not including samples from the full-scale distribution system,
the demonstration-scale RO permeate, or the feedwater to the pipe loops). Clustering by
sample date and feedwater composition was assessed in pipe loop bulk water samples using
PERMANOVA (Vegan v2.5.6). Estimated absolute abundances were calculated for each
sample by multiplying the relative abundance fraction with the total cell count measured.

3.3 Results and Discussion

Five pipe loop rigs were used to simulate the process of transitioning a conventional drinking
water distribution system to a treated water augmentation system (Figure 3.1). The pipe
loops were onsite at a conventional drinking water treatment facility, and conventional feed-
water originated from a sampling site in the full-scale drinking water distribution system.
The advanced feedwater originated as RO permeate from a demonstration-scale advanced
wastewater treatment facility and then was conditioned and stored onsite until use. For
Phase 1, the first 74 days of the study, pipe loops were fed with either 100% conventional
feedwater (3 loops) or a blend of 10% conventional feedwater and 90% advanced feedwater
(2 loops; advanced blend). In Phase 2, the last 80 days of the study, two of the conventional
loops transitioned to the advanced blend and feedwater to all other loops remained the same
as Phase 1.

Transport, conditioning, and storage altered the microbial
community composition in the advanced feedwater to the pipe
loop rigs

To evaluate the study design, the microbial community composition was compared in pipe
loop feedwaters and the respective origins they were designed to represent (i.e., full-scale
drinking water distribution system and demonstration-scale RO permeate). Ideally, the
feedwater and origin samples would have similar microbial community composition. How-
ever, the microbial community composition in the advanced feedwater shifted compared
to the RO permeate as evidenced by very few high abundance amplicon sequence variants
(ASVs) were shared between the RO permeate and the advanced feedwater (Figure 3.2).
While 43 ASVs were shared between the conventional feedwater and full-scale drinking wa-
ter distribution system samples, only 10 ASVs were shared between advanced feedwater and
RO permeate (Figure 3.3). Additionally, Bray-Curtis dissimilarities were compared using
NMDS, and RO permeate samples clustered together tightly and separately from advanced
feedwater, whereas the conventional feedwater overlapped with the full-scale drinking wa-
ter distribution system but neither clustered tightly relative to the RO permeate and the
advanced feedwater samples (Figure 3.4).
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Figure 3.3: Comparison of recurring ASVs shared in pipe loop feedwaters compared to full-
scale conventional drinking water distribution system and demonstration-scale RO permeate.
Counts include ASVs with at least 100 reads in at least one sample from each location.

In this study, transportation, conditioning, and storage was only required for the demonstration-
scale RO permeate because the pipe loop rigs were onsite at the conventional drinking water
treatment facility. As a result of these experimental constraints, the conventional feedwater
shared more high abundance ASVs with the full-scale drinking water distribution system
samples compared to the amount of ASVs shared between the advanced feedwater and RO
permeate. The only differences between the conventional feedwater and distribution system
samples are sampling port (hose compared to tap) and water age (∼24 hours compared to
between 9.43 and 289 hours). In contrast, the differences between RO permeate and ad-
vanced feedwater include transportation from the demonstration-scale facility to the pipe
loops, conditioning to adjust the pH and alkalinity, and storage until use. Furthermore,
large volumes of RO permeate (∼90 L of advanced feedwater) were required for each batch-
ing process for the advanced blend loops. Other studies assessing the impact of DPR on
distribution system microbial communities only filtered about 1 L of water [84, 89] and sim-
ulated distribution systems were either located onsite with the advanced-treated wstewater
[85, 84] or the impacts of storage on feedwater were not discussed [89]. Despite the changes
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Figure 3.4: Non-metric multidimensional scaling of Bray-Curtis dissimilarity for all bulk
water samples (i.e., pipe loop feedwaters, feedwater origins, and pipe loop samples) (stress=
0.17).

to the advanced feedwater microbial community composition in this study, these impacts
are a conservative example of what could happen if advanced-treated wastewater is stored
and conveyed without a disinfectant residual. Furthermore, even with the changes in micro-
bial community composition in the transported, conditioned, and stored RO permeate, the
advanced feedwater had a different microbial community composition than the conventional
feedwater, which allowed for testing the impact of a transition in drinking water quality.

The pipe loop bulk water microbial community profile shifted
depending on the feedwater composition

The feedwater was transitioned from 100% conventional to blends of 10% conventional and
90% advanced feedwater midway through the experiments in two pipe loop rigs (transition
loops). To characterize the impact of transitioning to advanced blends on the microbial
community composition of the transition loops, a comparison was made to the pipe loops that
maintained the same feedwater composition throughout the sampling period. As expected,
the advanced blend phase of the transition loops shared more unique and high abundance
ASVs with the continuously operated advanced blend loops compared to the conventional
phase of the transition loops (Figure 3.2). Specifically, the advanced blend loops shared three
ASVs with Phase 1 transition loops (conventional) and eight ASVs with Phase 2 transition
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Figure 3.5: Comparison of recurring ASVs shared in transition pipe loop bulk water com-
pared to pipe loops that maintained the same feedwater composition throughout the study
period. Counts include ASVs with at least 100 reads in at least one sample from each
location.

loops (advanced blends; Figure 3.5). In contrast, all pipe loops contained between 10%
and 100% conventional water, and there were 13 shared ASVs across all pipe loop bulk
water samples (Figure 3.5). Additionally, the transition loops had more distinct ASVs after
transitioning to the advanced blend (15) than before (three) (Figure 3.5). Surprisingly, the
conventional control loop, which was identical to the transition loops in Phase 1, had the
most distinct ASVs (22) (Figure 3.5). One possible explanation is that the water quality of
the conventional feedwater may have changed in Phase 2 of the study. Finally, Bray-Curtis
dissimilarities in bulk water pipe loop samples were compared through NMDS (Figure 3.6),
and samples clustered by feedwater composition (R2= 0.26, p< 0.001) but not sample date
(R2= 0.03, p>0.05).

Introducing advanced feedwater to conventionally-fed pipe loops shifted the microbial
community composition of the bulk water. A literature review did not reveal other work
that assessed the microbial impacts of the transition from conventional to treated water
augmentation in distribution systems. Other researchers have observed similar shifts in mi-
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Figure 3.6: Non-metric multidimensional scaling of Bray-Curtis dissimilarity for pipe loop
bulk water samples (stress= 0.16).

crobial community composition in conventional systems following the transition to a new
feedwater or an upgrade in full-scale treatment [75, 71, 72]. However, the interpretation
of the results of this study is limited by the confounding effects of transportation, storage,
and conditioning of the RO permeate. Additionally, the advanced blend was not directly
measurable prior to recirculation in the pipe loops because blending and disinfection oc-
curred in batch and using the same volume of water filtered at the end of the batch period.
Another inherent limitation of this study is that temporal changes in feedwater and other
environmental conditions (e.g., ambient temperature fluctuations at the outdoor study site)
could not be controlled for. Recommendations for future experimental design based on the
limitations of this study are discussed in the conclusions of this chapter.

The bulk water and biofilm microbial community profiles of each
pipe loop were similar throughout sampling and shifted
depending on the feedwater composition

The microbial community profiles of pipe loop bulk water and biofilm samples were compared
throughout the study period. The most abundant ASVs were similar within the same feed-
water composition throughout the study in biofilm and bulk water (Figure 3.7). Similarly
to the bulk water samples, the biofilm of the transition loops shared more high abundance
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ASVs with pipe loops fed with the same composition of feedwater (Figure 3.7). However,
the bulk water and biofilm microbial community composition in the transition loops shared
more ASVs after the transition to advanced blends (41 or 84% of the ASVs in the biofilm of
advanced blend transition loops) than in the conventional phase before the transition (21 or
53% of the ASVs in the biofilm of the conventional transition loops), with 20 of the ASVs
shared across all conditions (40% and 50% of the ASVs in the biofilm of advanced blend and
conventional phases of transition loops respectively; Figure 3.8).

The microbial community composition in the pipe loops shifted based on the feedwa-
ter composition, regardless of sample type (i.e., biofilm or bulk water). More ASVs were
shared between bulk water and biofilm samples after transition to advanced blends, but mi-
crobial community profiles were similar in bulk water and biofilm samples of the same loop
throughout the study, as others have observed [89]. Other researchers have observed shifts
in microbial community composition in destabilized biofilm samples following upgrades in
treatment that accompanyed biofilm sloughing in distribution systems [72, 71]. The find-
ings in this study are limited because the experimental constraints affected the quality of the
advanced feedwater. In this study, it might not have been possible to observe biofim destabil-
isation from introduction of low-nutrient water to distribution systems because the advanced
feedwater after transportation was able to support the growth of more microorganisms than
RO permeate [258], which suggests nutrients were introduced during transportation.

Estimated absolute abundances of genera containing opportunistic
pathogens were low throughout the study

To assess the potential for opportunistic pathogens to have higher absolute abundance in
pipe loop rigs compared to feedwaters and respective origins, estimated absolute abundances
were calculated for all Legionella-, Mycobacterium-, and Pseudomonas- classified ASVs with
at least 0.05% abundance in at least one sample (Figure 3.9). RO permeate was expected to
have very few of these genera of concern. However, RO permeate had at least one ASV from
each genera in at least 80% of samples (e.g., Legionella 144 and Pseudomonas 24). Six of the
18 Mycobacterium-classified ASVs were identified in at least 70% of RO permeate samples.
Of the ASVs identified in RO permeate samples, two Pseudomonas-classified ASVs were
observed in 100% of the advanced feedwater samples (24 and 55) and one was observed in
>65% of the advanced blend loop samples (24). Pseudomonas-classified ASVs were otherwise
identified in low percentages of samples (<45%). Legionella-classified ASVs were sparse in all
sample types, including RO permeate (<33%), except one ASV in the conventional feedwater
(67%; Legionella 245). In contrast, Mycobacterium-classified ASVs were found in all sample
types with at least one ASV identified in 100% of samples, except for the advanced feedwater
(<50% of samples).

Based on the assessment of opportunistic pathogen-containing genera, opportunistic
pathogens of the genera Mycobacterium and Pseudomonas could be monitored more closely
as qPCR targets. In this study, Mycobacterium-classified ASVs were identified in both
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Figure 3.8: Comparison of recurring ASVs shared in transition pipe loops bulk water and
biofilm samples. Counts include ASVs with at least 50 reads in at least one sample from
each location.

full-scale drinking water distribution system samples and demonstration-scale RO perme-
ate samples. Kantor et al. (2019) observed Mycobacterium-classified ASVs in simulated
distribution systems fed with advanced-treated wastewater, and a similar maximum concen-
tration to that of the advanced blend loops (3.7x104 compared to 4.2x104, respectively). In
this study, some Mycobacterium-classified ASVs were at higher abundance in the simulated
distribution system compared to the RO permeate and drinking water distribution system
samples. In contrast, Garner et al. (2019) found that Mycobacterium spp. gene copies
decreased in pipe loops rigs relative to the advanced-treated feedwater. In addition, two
Pseudomonas-classified ASVs increased in absolute abundance from the RO permeate to
the advanced feedwater, and one remained at high abundance in the advanced blend pipe
loops. These ASVs could have increased in abundance when exposed to the nutrients intro-
duced during transportation of RO permeate [258], and warrant further study. In contrast,
Garner et al. (2019) did not identify any Pseudomonas aeruginosa genes pipe loop rigs fed
with advanced-treated wastewater or in the feedwater, and they found that all rigs fed with
advanced-treated wastewater did not support the growth of any opportunistic pathogens
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quantified. Legionella-classified ASVs were not found in as many samples as the other gen-
era, possibly because of the chloramine residual applied in this study [265, 266, 51]. Results
from 16S rRNA gene amplicon sequencing do not reveal if the ASVs identified are actual
opportunistic pathogens or even if they were viable, but the methods shown here can be used
to select targets to monitor more closely in the future with qPCR (such as Mycobacterium
Avium complex and Pseudomonas aruginosa).
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Figure 3.9: Estimated absolute abundances of potential opportunistic pathogens. ASVs (x-
axis) are grouped by genera (column facets) and by sampling location (row facets). ASVs
with 0% abundance are plotted on the grey horizontal line for visualization.
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3.4 Conclusions

Though studies simulating the process of transitioning a fully conventional drinking water
distribution system to a treated water augmentation system cannot fully capture the micro-
bial issues that could arise during a full-scale transition, these studies can help prepare for
a full-scale transition. For example, paired flow cytometry-based cell counts and 16S rRNA
gene amplicon sequencing could be used in enhanced monitoring programs to identify mi-
crobial targets to monitor more closely using qPCR. However, key considerations need to be
taken during design of simulation studies that include enhanced microbial assessment. This
work is one of few studies investigating microbial community composition in distribution
systems fed with advanced-treated wastewater. Based on the challenges encountered during
this study, the following considerations are recommended for future studies:

• Despite the high water quality (e.g., low concentrations of organic carbon and nutrients)
and low cell counts of advanced-treated wastewater, microorganisms will still be seeded
and grow in RO permeate. Transporting advanced-treated wastewater for experiments
should be avoided if possible or should mimic anticipated full-scale conditions. Rather,
an ideal experimental setup would be located where the advanced-treated wastewater
is produced. If that is not possible, as was the case in this study, only advanced-
treated wastewater with a disinfectant residual should be transported and/or stored
for microbial studies.

• DPR studies of microbial community composition in simulated distribution systems
require controls and replication. DPR studies generally include samples from a large
range in cell counts and nutrients, particularly if the advanced treatment facility is
sampled (e.g., secondary treated wastewater to advanced oxidation). In this study,
RO permeate was sampled and required large volumes of water to be filtered to col-
lect enough biomass for high resolution of the microbial community composition (i.e.,
up to 4,000 L in this study). The negative controls that were collected during field
sampling, extractions, and PCR helped with identification of contamination in these
samples. Additionally, two comparisons were pivotal to contextualization of results (1)
comparison of feedwaters to respective origins and (2) comparison of advanced-blend
loops to the conventional control loop. Finally, several pipe loop rigs in this study had
replicated experimental conditions. This decision was difficult to make considering the
cost of operation and potential to add in additional conditions (e.g., other blend ra-
tios). Yet, replication was important because even though pipe loop materials were all
purchased from the same location, there were still inconsistencies between replicates
for important chemical parameters, such as lead, as discussed in Miller (2019). While
these did not notably alter the microbial community composition between transition
loop replicates, it demonstrates the importance of having replicates to compare. Hav-
ing at least two replicates for each condition (ideally three) is recommended for future
studies.
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• In general, collecting enough biomass to characterize changes in microbial community
composition requires more water and more stringent sterile conditions compared to
what is needed for chemical analyses, particularly if meta-omic techniques will be
employed. Researchers studying both microbial and chemical impacts of treated water
augmentation should consider trade-offs in experimental design.

• Pipe loop rigs can provide a higher volume of water for biomass collection compared
to lab-scale annular reactors, but a trade-off has to be made with respect to choice of
operation as continuous flow systems or batch systems. Continuous flow operation is
advantageous from a labor perspective and does not require circulation of water, but
it also requires residence times, pipe diameters, and shear forces that do not mimic
full-scale distribution systems. In contrast, batch operation provides more flexibility
in design to mimic full-scale distribution system residence times, pipe diameters, and
shear forces, but circulation of water is required and batching large-volume systems
likely requires more labor and time than flow through systems of the same volume.
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Chapter 4

Assessment of SARS-CoV-2
wastewater testing as a public health
surveillance strategy

The following chapter is adapted from Greenwald and Kennedy et al. (2021). Interpretation
of temporal and spatial trends of SARS-CoV-2 RNA in San Francisco Bay Area wastew-
ater, medRxiv : the preprint server for health sciences, with permission from Hannah D.
Greenwald, Adrian Hinkle, Rose S. Kantor, and Kara L. Nelson.

4.1 Introduction

Increasing hospitalizations and limited diagnostic testing capacity early in the coronavirus
disease 2019 (COVID-19) pandemic made it clear that multiple and robust methods to test
circulation of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) are needed
[37]. COVID-19 wastewater-based epidemiology (WBE) might serve this purpose because
SARS-CoV-2 RNA has been detected in stool of infected individuals [32, 31, 33, 36, 35, 268]
as well as in wastewater and sludge by researchers globally [130, 108, 134]. Together, WBE
and clinical assessment of population-level COVID-19 occurrence might provide more reliable
information about disease burden in communities than either method could provide alone.
Clinical testing of individuals is resource-intensive and has well-known biases (e.g., selection
bias based on symptom severity, symptom recognition, occupation, etc. [122, 121]), which
have compounded negative impacts in communities with higher proportions of low-income
residents and of Black, Indigenous, and People of Color, including in the San Francisco
Bay Area [269, 270]. In contrast, WBE may provide a less biased assessment of COVID-19
occurrence [120, 121], but a better understanding is needed of the variability of SARS-
CoV-2 in wastewater and how it relates to the occurrence of COVID-19 in the contributing
population.

Smoothing procedures can assist in discerning temporal trends in SARS-CoV-2 occur-
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rence. While seven-day moving averages have been widely used for assessing clinical data
trends in real-time (e.g., the Johns Hopkins University of Medicine Testing Trends Tool1)
wastewater sampling is often performed only 1-3 times per week. Therefore, smoothing tech-
niques are needed that can be applied to data with lower sampling frequency that minimize
loss of temporal resolution, such as locally weighted scatterplot smoothing (Lowess) [271,
272, 132, 106]. However, no standard value for the bandwidth parameter exists (analogous
to the selection of a seven-day window for moving averages of clinical data) and the default
parameter differs for two common languages used for data analysis (R spatialEco package:2

0.75 and Python statsmodels:3 0.67). Furthermore, the bandwidth selection process gener-
ally has not been specified in studies incorporating Lowess [271, 272, 132, 106].

Systematic approaches are also needed to estimate the minimum number of clinical
COVID-19 cases for which SARS-CoV-2 RNA is reliably detected in wastewater (WBE
case detection limit). The WBE case detection limit is dependent on the methods used
to extract genetic material as well as the extent of local clinical testing and may require
sewershed-specific assessment. However, a systematic approach to estimate this value across
studies can aid interpretation of nondetects and elucidate the number of COVID-19 cases
per capita above which COVID-19 WBE will be a reliable public health surveillance strat-
egy. Wu et al. (2021) developed a systematic method for determination of a WBE case
detection limit estimated using a dataset with 1,687 samples, which was large enough to
include repeated wastewater measurements at low case numbers. With fewer data points,
researchers have estimated this value observationally by reporting the number of cases they
were able to detect or quantify [107, 105].

Finally, SARS-CoV-2 RNA signal in wastewater has been shown to provide lead time of
population-level increases in occurrence compared to clinical testing data in some locations
[105, 107, 118, 106, 114, 119, 115, 109], but there are discrepancies in the way wastewater
data and clinical data are reported that complicate this assessment. Data collected by both
clinical and wastewater testing laboratories can be associated by the sample collection date
(e.g.,the date the nasal swab or wastewater composite sample was collected) or by the result
date, which is highly influenced by the testing capabilities of the laboratory. Peccia et al.
(2020) found that differences in clinical data date association alone could be the difference
between no lead time and eight days lead time in the SARS-CoV-2 signal from wastewater
compared to clinical testing data. However, the extent to which date discrepancies affect
perceived wastewater lead times is still unclear and important to consider in assessments of
early warning of outbreaks through wastewater testing.

The goal of this study was to develop and assess approaches for interpretation of SARS-
CoV-2 signal in raw wastewater and compare with geocoded clinical testing data during
the COVID-19 pandemic. The objectives of this research were to (i) evaluate a systematic
method for trendline smoothing; (ii) apply this method to interpret spatial and temporal

1https://coronavirus.jhu.edu/testing/tracker/overview
2https://rdrr.io/cran/spatialEco/src/R/poly.regression.R
3https://www.statsmodels.org/dev/_modules/statsmodels/nonparametric/smoothers_lowess.

html#lowess
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trends in COVID-19 occurrence based on wastewater and clinical testing data (iii) develop a
systematic method for estimating a WBE case detection limit; and (iv) determine whether
wastewater trends lead clinical trends and could provide early warning of COVID-19 out-
breaks. From April to September 2020, SARS-CoV-2 RNA in raw wastewater was measured
weekly from five locations in the San Francisco Bay area. This dataset has variable trends
in clinical testing data to assess correlation and smoothing and a wide range of COVID-19
per capita cases to enable assessment of WBE case detection limit.

4.2 Methods

Five locations in the San Francisco Bay area were sampled for this study (referred to through-
out as locations A, S, N, K, and Q). Raw wastewater samples were collected weekly from
April to September 2020, and biological replicates were processed for some locations as indi-
cated in Table 4.1. SARS-CoV-2 and crAssphage were measured in wastewater samples via
RT-qPCR in the laboratory. Associated physicochemical data were collected by wastewater
utilities, and associated geocoded clinical COVID-19 data were collected by public health
departments (Table 4.1). The methods described in this chapter are also described in Green-
wald and Kennedy et al. (2021).

Wastewater composite sample collection

24-hour time-weighted composite samples of raw wastewater were collected using Teledyne
ISCO autosamplers. Some samples were collected and processed in biological replicate (i.e.,
wastewater subsamples were aliquoted from the same composite sample but independently
extracted). After collection, all samples were transported to the lab on ice, stored at either
-20◦C or -80◦C, and then thawed at 4◦C for 36-48 hours before hours before extractions.
Wastewater data was not individually identifiable; therefore, no IRB was needed. More
information on location-specific data collection and wastewater sampling, transport, storage,
and biological replicates is provided in Table 4.1 and Appendix C.

One rainfall event occurred (May 12-19) during which sampling locations experienced
0.8 to 1.8 inches of precipitation (NOAA Climate Data Online database). Although none of
the sampled locations was a combined sewer system, rainfall could still increase flow rates
through infiltration and inflow. Daily wastewater flow rate values during this period varied
<4%, which is negligible when compared to the near 100-fold increases observed during
rainfall events in some sewer systems [274].

Clinical testing and population data

Geospatial vector data of the sewersheds (locations S, K, A, and N) were used to determine
the COVID-19 clinical testing data that mapped to each wastewater catchment area (Table
4.1). For all locations, daily new case data correspond to the date that results were reported
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Table 4.1: Descriptions of wastewater sampling locations including associated wastewater
facility, clinical testing data sources, population, and flow rates. “d” represents the number of
unique dates on which samples were collected. “n” represents the total number of wastewater
samples collected, including biological replicates. For location Q, the population and clinical
data is from people incarcerated only and does not include staff.

wastewater
catchment

area

wastewater
treatment

facility

COVID-19
clinical

data source
population

mean
flow rate
(MGD)

mean per
capita flow
(L/person/

day)

d n

Location K
influent to the

wastewater
treatment facility

Central Contra Costa
Sanitary District

Contra Costa
County

Public Health
Department

483,600 33 261 13 39

Location S
upstream of the

wastewater
treatment facility

East Bay
Municipal

Utility District

Alameda
County

Public Health
Department

469,344 35 282 20 22

Location A
upstream of the

wastewater
treatment facility

East Bay
Municipal

Utility District

Alameda
County

Public Health
Department

82,818 6 274 11 17

Location N
upstream of the

wastewater
treatment facility

East Bay
Municipal

Utility District

Contra Costa
County and

Alameda
County

Public Health
Departments

139,037 10 272 18 18

Location Q
wastewater collection point

for San Quentin
Prison

Central Marin
Sanitation

Agency

California
Department of

Corrections and
Rehabilitation

open data
portal

Ranges from
3,587 (June)

to 2,930
(September)

0.41 481 10 11
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(result date) for each COVID-19 test. For location K, additional data were available that
correspond to the sample collection date and the episode date, defined as the earliest of:
(i) the date of first symptoms; (ii) the sample collection date; or (iii) the date the sample
was received by the testing lab. Clinical testing data were provided by the corresponding
county or open data portal (Table 4.1). Data were masked by public health departments
to maintain confidentiality of the contributing population (below 11 new cases per day)
and were provided as 7-day (A, S, K) or 14-day (N) moving averages. Masked values were
substituted at 5.5 new cases per day for further analysis and plotting. For San Quentin
Prison (location Q), unmasked COVID-19 clinical data were obtained from the California
Department of Corrections and Rehabilitation open data portal,4 and instances of zero cases
were substituted at 0.5 cases for comparison to masked data in statistical data analysis
(Figure 4.4). For clinical data obtained for this study, no IRB was needed because data were
either provided masked or were publically available. More information about masking and
population data is provided in Table 4.1 and Appendix C.

Wastewater sample processing via the 4S method

Samples were concentrated and extracted following the 4S method as detailed in a publicly
available protocol5 and in Whitney et al. (2021) with a minor modification: elution buffer
was not pre-warmed; instead, it was added to the column, and the column was heated at 50◦C
for 10 minutes before centrifugation to collect the eluate. Each extraction batch contained
a negative extraction control, and each sample or control was spiked with a surrogate virus
control (Bovilis coronavirus; Merck Animal Health, BCoV) and a free RNA control (synthetic
oligomer construct, SOC). Because it is not possible to independently quantify the surrogate
spike without the influence of extraction efficiency [275], extraction controls were used to
assess consistency of extractions rather than recovery. Outlier analysis (alpha=0.05) was
conducted for BCoV and SOC Cq values using Grubbs test. No outliers were detected, and
all samples tested were considered to have passed this quality control screen. Wastewater
sample processing is further described in Appendix C.

RT-qPCR plate setup,controls, and data processing

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed
on wastewater extract targeting five sequences: (i) SARS-CoV-2 CDC nucleocapsid gene
(N1) assay duplexed with (ii) VetMAXTM XenoTM Internal Positive Control (Xeno) assay;
(iii) crAssphage CPQ 056 (crAssphage) assay [276]; (iv) bovine coronavirus transmembrane
protein gene (BCoV) assay [277]; and (v) Synthetic Oligomer Construct T33-21 free-RNA
(SOC) assay [278]. Reaction conditions (Table C.1), thermocycling conditions (Table C.2),
and primers, amplicon sequences, and probes (Table C.3) are included in Appendix C. Re-
actions consisted of 20 µL total volume, including 5 µL of RNA extract, TaqMan Fast

4https://data.ca.gov/dataset/cdcr-population-covid-19-tracking
5https://www.protocols.io/view/v-4-direct-wastewater-rna-capture-and-purification-bpdfmi3n
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Virus 1-Step Master Mix (ThermoFisher Scientific), primers, probes, and nuclease-free wa-
ter. Reactions were completed on a QuantStudio 3 Real-Time qPCR system (ThermoFisher
Scientific), where Cq values were determined through automatic thresholding on QuantStu-
dio 3 Design and Analysis Software (v1.5.1). Every plate included samples, no template
controls (NTCs), and standards, each quantified in technical triplicate (qPCR replicates).
Individual standard curves were used as a quality control measure (efficiencies ranging from
83.2% to 97.8% and R2 ranging from 0.974 to 0.999 for the N1 assay) and were later com-
bined into master standard curves (Table C.5) to calculate quantities as in Ahmed et al.
(2020). Further details on RT-qPCR materials are provided in Appendix C.

Raw Cq values that did not amplify or that amplified below the limit of detection were
substituted with the Cq value corresponding to half the limit of detection (for N1) or half the
lowest point of the master standard curve (for all other assays; TableC.5), and then outliers
were assessed using a two-sided Grubbs test (alpha=0.05). The N1 qPCR limit of detection
(LoD) was calculated by analyzing all RNA standard curves from the study as well as four
additional extended triplicate standard curves. The N1 LoD was set at 5 gene copies per
reaction, at which point 67% of technical replicates were positive (Table C.8).

Assessing PCR inhibition via serial dilution and an internal
amplification control

There may be no standard methodology for assessing PCR inhibition in raw wastewater
samples. Hence, two previously utilized approaches were combined. One approach included
a non-competitive internal amplification control [280, 281, 282, 170] and the other involved
serial dilution [283]. The internal amplification control can easily be included in every sample,
but cannot detect assay-specific inhibition [170]. Serial dilution consumes more resources and
risks diluting the target signal below the detection limit, but it more accurately tests the
target itself and allows selection of a dilution value that best reduces the impacts of inhibition.
Thus, the VetMAXTM XenoTM Internal Positive Control (ThermoFisher Scientific) was used
as a screening tool to select samples for further testing with serial dilution.

For all samples, Xeno RNA was spiked into the reaction mix (Table C.1), and NTCs
were used as an inhibition-free baseline to compare each sample on that plate. Ten samples
showed >2 Cq deviation from the baseline and were selected for further inhibition testing
[280]. Subsequently, a dilution series (1x, 2x, 5x, 10x) was performed on the ten samples
with a high enough Cq deviation, and the duplexed N1 and Xeno assay was repeated. A
dilution was chosen by comparing SARS-CoV-2 N1 signal in each dilution to theoretical
expectations (based on theoretical doubling per PCR cycle). If diluting the sample led to a 1
Cq difference between actual and expected change in Cq, then the sample at the base dilution
was deemed inhibited [283]. Following the serial dilution test, only three samples required
dilution (Tables C.7 and C.7), and subsequent qPCR results in this study are reported using
this chosen dilution. Results from the internal amplification control were inconsistent with
inhibition assessed via serial dilution, and the use of Xeno is not recommended for testing
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N1 inhibition in future studies.

Normalization of SARS-CoV-2 N1 concentrations to adjust for
fecal content

Researchers have measured wastewater SARS-CoV-2 concentrations as well as proportions
of SARS-CoV-2 to endogenous biomarkers for fecal content (e.g., crAssphage [284, 285]) to
help account for variability in wastewater signal. Dilution of target signal in wastewater
because of precipitation is a contributor to target signal fluctuations [129] that is ideally
reduced using normalization biomarkers. However, in this study, minimal rainfall and low
flow rate variation for the locations that provided flow data (<4%), support that signal
dilution from precipitation was not an issue for this dataset, and mean per capita flow
rates were similar across sewersheds (Table 4.1). Thus, unnormalized N1 concentrations
should not be influenced by precipitation, but there are additional sources of variablility
that normalization biomarkers may address (e.g., signal degradation with residence time in
sewersheds). Hence, unnormalized N1 is compared to crAssphage-normalized N1 throughout
this chapter. More information about normalization of SARS-CoV-2 N1 concentrations to
adjust for fecal content, including comparisons with additional biomarkers (e.g., pepper mild
mottle virus), for this dataset can be found in Greenwald and Kennedy et al. (2021).

Data analysis

All data analysis was performed in Python (v3.6.9) using key modules Pandas (v1.1.5),
NumPy (v1.19.5), SciPy (v1.4.1), and Plotnine (v0.6.0).

The WBE case detection limit was estimated as follows. The paired wastewater and case
data for all sewersheds were combined and sorted from highest to lowest case counts. For
each case count, all technical replicates in the wastewater data at and above that point were
tallied to determine the cumulative percentage of replicates that amplified in RT-qPCR.
Equation 4.1 was used to fit a logistic function [286] to the dataset (SciPy v1.4.1), where y
is the fraction of amplified technical replicates, x is the log10(moving average of new cases
per person per day), k sets the growth rate of y, and γ sets the inflection point. Zero new
cases per capita cannot be represented in a logistic growth model, but in this study, case
values of zero were only available for location Q, and these values were substituted as 0.5
cases before the analysis. The COVID-19 per capita case rate that corresponded to 95%
cumulative amplification of technical replicates was reported as the estimated WBE case
detection limit, and the analysis was repeated with samples where daily per capita cases
were provided as masked values.

y =
1

1 + e−k∗(x−γ)
(4.1)

Correlations between wastewater and case data were calculated as Kendall’s tau-b co-
efficients (SciPy v1.4.1), a method adapted for left-censored data [287] (i.e., datasets with
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data below a lower limit of detection) because 22% of the data are below the N1 LoD. For
wastewater data, any smoothed trendline displayed in a figure was determined using a fitted
local regression (Lowess; statsmodels v0.10.2) with bandwidth parameter (α, the fraction
of the dataset used for smoothing), set as in Jacoby (2000) (Figures C.1, C.2, C.3, C.4,
and 4.1). Lowess trends of SARS-CoV-2 N1 signal were also visualized as heatmaps to aid
in discerning peaks (Figures C.6 and C.7). Full dataset and associated code are available
through GitHub6).

4.3 Results

From April to September 2020, the raw wastewater from five locations in the San Francisco
Bay area was sampled weekly, which generated 72 samples (107 with biological replicates).
Each sample was tested for SARS-CoV-2 N1 and crAssphage and paired with associated
geocoded clinical testing data. Unnormalized and crAssphage-normalized N1 signal are
compared throughout this chapter to assess the impact of normalizing for fecal content on
analyses. This dataset was used to interpret SARS-CoV-2 signal in raw wastewater and
compare with geocoded clinical testing data during the COVID-19 pandemic.

The Lowess bandwidth parameter affected wastewater data trend
interpretation

Variation in wastewater SARS-CoV-2 N1 signal from sources other than fluctuation in true
COVID-19 incidence can obscure temporal trends (i.e., obscure increases or decreases in
SARS-CoV-2 N1 at a location), and scatterplot smoothing techniques can be used to distin-
guish temporal trends from noise. Smoothing techniques can be used to visually distinguish
temporal trends from noise. Similar to the choice of the number of days included for each
average calculation for moving averages (window), Lowess requires selection of the fraction
of the whole time series that is used for each local regression calculation (bandwidth). Thus,
a method was employed to set the bandwidth parameter systematically based on residuals
[288] independently for each location. The bandwidth was increased stepwise, beginning
with inclusion of one point in each local regression calculation and ending with inclusion of
all points (α =1). For each bandwidth value, the residuals were calculated and plotted by
date, and a Lowess trendline with α =1 was fit to these residual plots to monitor residual
trends as the bandwidth varied. Finally, the maximum bandwidth value was selected for
which the residuals visually maintained horizontal Lowess trendlines (Figures 4.1, C.1, C.2,
C.3, and C.4).

As an example, for unnormalized and crAssphage-normalized SARS-CoV-2 N1, band-
width parameters of 0.39 and 0.33 were respectively chosen for location N (Figure 4.1 A).
This process was repeated for all locations, and and bandwidths in the range of 0.25-0.6

6https://zenodo.org/record/4730990#.YIxkrqlKgUo
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Figure 4.1: (A) Residual plots for Lowess bandwidth parameter (α; column labels) deter-
mination for location N where the bandwidth parameter increases from inclusion of 1 data
point (far left) to inclusion of all data points (far right) in each local regression for unnor-
malized N1 (top) and crAssphage-normalized N1 (bottom). The value of α that minimized
the residual was selected (red boxes). (B) Visualization of how bandwidth parameter af-
fected the Lowess trendline for location N. Black dashed line indicates the resulting Lowess
trendline when α=0.39. Similar figures for all locations can be found in Appendix C.

were selected based on the optimization procedure (Figures 4.1, C.1, C.2, C.3, and C.4).
To assess the impact of bandwidth on SARS-CoV-2 N1 signal interpretation, Lowess was
performed for all locations sampled and for all possible bandwidths (Figures 4.1 B, C.1, C.2,
C.3, and C.4). The bandwidth parameter influenced the overall temporal trends of wastew-
ater data for some locations (N and A; Figures C.4 and 4.1). For example, at location A,
a bandwidth of 1 resulted in a gradual increase in SARS-CoV-2 N1 signal during sampling,
while a bandwidth of 0.73 resulted in a peak around July. However, for location K, all band-
widths resulted in trends that would have similar interpretations (Figure 4.2). These results
illustrate that choice of bandwidth could have implications for interpreting WBE data and
informing COVID-19 response strategies, and systematic methods should be used to select
the appropriate bandwidth.



CHAPTER 4. ASSESSMENT OF SARS-COV-2 WASTEWATER TESTING AS A
PUBLIC HEALTH SURVEILLANCE STRATEGY 62

Figure 4.2: Visualizations of SARS-CoV-2 N1 Lowess trendlines to demonstrate the impact
of adjusting the bandwidth parameter to include increasing amounts of data in each local
regression calculation: from one data point (purple lines) to all data (yellow lines; α=1).
Locations K (A) and A (B) are shown as examples of minimal and dramatic changes caused
by changing bandwidth parameters, but similar figures for all locations can be found in
Appendix C.

Interpretation of spatio-temporal trends

Relative spatio-temporal trends in clinical and wastewater testing results were compared
across sampling sites (Figures 4.3, C.6, and C.7). In general, clinical and wastewater data
at all locations paralleled one another, with San Quentin prison (Q) showing the highest
COVID-19 burden across locations. Due to a COVID-19 outbreak, location Q had a maxi-
mum that was 53 times (SARS-CoV-2 N1 4.89x103 gc/mL), 17 times (crAssphage-normalized
SARS-CoV-2 N1 2.9x10−3), and 203 times (∼ 85 new cases per 1000 people on 6/29) higher
than the highest value at the sewershed scale. There were a few discrepancies between
clinical and wastewater trends (heatmap visualizations in Figures C.6 and C.7 highlight dis-
crepancies in peaks). For example, at location N, there may have been clinical undertesting,
based on the peak in wastewater data in August (Figures 4.3 and C.6) and higher SARS-
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Figure 4.3: For sewershed-scale locations: (top) Daily per capita COVID-19 cases, where
symbols are plotted at the daily new cases per 1000 people per day, the trendline represents
the seven-day moving average of these data, and the horizontal dashed line indicates 1 case
in 1000 people for each location. (middle) SARS-CoV-2 N1 signal in wastewater, where
symbols indicate the amount of technical replicates that amplified during qPCR, horizontal
dashed line indicates the limit of quantification, and solid lines represent the most optimal
Lowess trendline. (bottom) SARS-CoV-2 N1 signal normalized to crAssphage signal in
wastewater, where symbols indicate the amount of technical replicates that amplified during
qPCR, horizontal dashed line indicates the limit of detection for N1 over the 75% quantile for
crAssphage for each location, and solid lines represent the most optimal Lowess trendlines.

CoV-2 signal in wastewater at location N (relative to other locations) than represented by
the clinical data (Figures 4.3 and C.7).

At location Q, clinical data included an estimate of active cases, which allowed for an
observational comparison of wastewater data to estimates of incidence and prevalence. Un-
normalized and crAssphage-normalized SARS-CoV-2 N1 signal in wastewater were visually
compared to new cases per day per 1000 people (incidence) and the estimated active cases
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per 1000 people (prevalence; Figure 4.4). The peaks for incidence and prevalence were close
(8 days apart), but the spans were different (45 and 80 days, respectively; Table 4.2). The
Lowess trendline for unnormalized SARS-CoV-2 N1 signal had a similar span to the COVID-
19 incidence (41 days compared to 45 days), and the crAssphage-normalized signal had a
shorter span compared to that of the incidence (27 days compared to 45 days). Based on
these observations, the trend in SARS-CoV-2 N1 signal in wastewater aligned more with
COVID-19 incidence compared to prevalence at location Q, as others have observed [115,
289, 290]. However, these findings are limited because the wastewater signal may have
peaked before the start of the study period, only four points were positive in the time series,
and the time series only included a decreasing trend. The conclusions might differ for an
increasing trend depending on the shedding profile in relation to disease progression, but the
clinical results about fecal shedding duration that would support this finding are less clear,
with estimates of fewer than seven days [136] and up to over 30 days in some cases [34].

Table 4.2: At location Q, comparison of date when SARS-CoV-2 N1 signal was at the
maximum or earliest minimum value for seven-day moving averages of daily per capita
new cases and daily per capita active cases compared to that of the most optimal Lowess
trendlines for SARS-CoV-2 N1 unnormalized and normalized in wastewater.

type
date of

maximum value
date of earliest
minimum value

days from maximum value
to earliest minimum value

SARS-CoV-2 N1 7/1/20 8/11/20 41
New COVID-19 cases 6/29/20 8/13/20 45

SARS-CoV-2 N1/crAssphage 7/1/20 7/28/20 27
Active COVID-19 cases 7/7/20 9/25/20 80

The WBE case detection limit was estimated to be 2.4 COVID-19
cases per 100,000 people

Quantifying the minimum per capita new COVID-19 cases in a sewershed at which there
is reliable detection of SARS-CoV-2 N1 in wastewater (WBE case detection limit) is im-
portant for gauging the utility of COVID-19 WBE when the true incidence is low. This
WBE case detection limit depends on the detection limit of the wastewater measurement
(i.e., the methods used to store, concentrate, extract, and measure SARS-CoV-2 RNA in
wastewater) and the accuracy of the clinical testing data available. To estimate the WBE
case detection limit in a way that is replicable across studies, the cumulative percentage of
amplified technical replicates of the wastewater data for inversely-ranked daily per capita
COVID-19 cases was fit to a logistic growth model (without samples associated with masked
case values; see Methods). When COVID-19 case rates equaled or exceeded 2.4 daily cases
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ter and clinical data at location Q
from June to September 2020, where
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Figure 4.5: Estimated minimum number of COVID-19 cases needed for reliable detection
of SARS-CoV-2 RNA in wastewater. The cumulative percentage of amplified wastewater
technical replicates was calculated by ranking the moving averages of daily per capita cases
(x-axis) from highest to lowest and calculating the fraction of qPCR replicates that amplified
cumulatively (y-axis) for each value of x. The dashed line represents the daily new cases
per capita value above which 95% of wastewater technical replicates amplified (2.4 cases in
100,000 people).

per 100,000 people, 95% of wastewater technical replicates amplified via RT-qPCR for N1
(Figure 4.5). Other researchers have used non-cumulative methods to estimate the WBE
case detection limit by calculating the percent of amplified wastewater replicates for each
case value [273]. This method requires repeated wastewater measurements associated with
each possible clinical case value or range of case values (i.e., bins). Otherwise, the percent
of amplified technical replicates is limited, as was the case in this study where only one
biological replicate was often associated with each case number (Figure C.8 A). Ideally, all
data would be unmasked when applying this method. To verify that the masked clinical
data did not affect the estimated WBE case detection limit, the process was repeated with
masked values, and the estimate was similar (2.2 cases in 100,000 people; Figure C.8 B).
These limits are within the theoretical range possible [137] and similar in magnitude to Hata
et al. (2021) (10 in 100,000 people) and Wu et al. (2021) (13 in 100,000).
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Impact of the date associated with clinical testing data on lead
time in wastewater surveillance at location K

The time for laboratories to process samples and return results (testing turnaround time)
affects the potential for wastewater surveillance to provide lead time over clinical surveillance.
In general, clinical testing data correspond to either the date the sample was collected
or the date the results were returned. The ideal date to use for informing public health
decisions would be the result date, to include differences between clinical and wastewater
testing turnaround time in the analysis. Alternatively, sample collection dates should be
compared to understand the timing of the underlying biological mechanisms that result in
a positive wastewater signal (onset and duration of fecal shedding) and positive clinical
test (onset and duration of nasopharyngeal shedding). Onset and duration of symptoms
may influence the timing of the clinical test (sample collection date), depending on whether
testing is routine or only available to symptomatic individuals. Hence, the ideal date to
use for comparison of wastewater and clinical testing data differs depending on the goals
of the comparison. The clinical testing data for location K included sample collection date,
result date, and episode date (the earliest date associated with the case), allowing assessment
of the correlation between case data and wastewater data with and without clinical testing
turnaround time. Episode date was frequently the same as the sample collection date, unless
a patient reported symptoms prior to test date (Figure C.5). In contrast, wastewater testing
data for location K only correspond to the sample collection date because all samples were
processed retroactively in this study. For example, in the COVID WEB laboratory,7 the
result date is generally 1-3 days after the sample collection date but varies depending on
shipping time. The impact of date associated with clinical testing data was investigated for
location K.

To test the influence of the date associated with clinical testing, correlation analysis was
completed for location K (Figure 4.6). The wastewater testing data (sample collection date)
correlated with the clinical testing data without offset for episode date (tauunnormalized=0.56,
taucrAssphage = 0.54, p < 0.01) and sample collection date (tauunnormalized=0.59, taucrAssphage
= 0.62, p < 0.01) without a lead or lag. When the result date was used for clinical testing
data, the strongest correlation with wastewater data was associated with a two-week lead
time (unnormalized N1 concentration) or one-week lead time (N1 normalized to crAssphage;
Figure 4.6). When values below the N1 qPCR LoD were removed, wastewater data were no
longer significantly correlated with episode date-associated clinical data, but the strongest
correlations for the other date associations remained significant. This analysis is limited
because of the small dataset, but the methodology presented here can be used to assess the
lead time provided by wastewater surveillance with larger data sets and with wastewater
data processed contemporaneously with decision-making.

7https://www.covid-web.org
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Figure 4.6: Kendall’s Tau-b at location K for comparisons between wastewater SARS-CoV-
2 N1 signal (associated with the sample collection date) and COVID-19 new cases (date
association varies as indicated by color: episode date, sample collection date, and result
date) both with and without samples below the N1 limit of detection (BLoD) included
(column facets). Wastewater SARS-CoV-2 data (row facets; unnormalized N1 (gc/mL) and
crAssphage-normalized N1 (unitless)) were compared to the seven-day moving average of
average of geocoded COVID-19 new cases. The analysis was completed with wastewater date
aligned with clinical date (no lead) as well as with one- and two-week lead times (wastewater
leads clinical testing data by one or two weeks). Significance is indicated as <0.05 . , <0.01
*, and <0.001**.



CHAPTER 4. ASSESSMENT OF SARS-COV-2 WASTEWATER TESTING AS A
PUBLIC HEALTH SURVEILLANCE STRATEGY 69

4.4 Discussion

Potential use scenarios of SARS-CoV-2 wastewater testing data

At the sewershed scale, the benefit of WBE to public health extends beyond early warn-
ing. Discrepancies between wastewater testing data and clinical testing data trends from
early in the time series at location N (April-July 2020; 4.3) could be used to infer clinical
undertesting, which is supported by lower testing capacity in this time frame (Figure C.9).
Although pairing COVID-19 clinical testing data with wastewater SARS-CoV-2 data can
generate new insights for public health decision-making, it can be challenging in practice.
Pairing wastewater SARS-CoV-2 data with geocoded COVID-19 clinical testing data re-
quired collaboration between academics, wastewater treatment facility representatives, and
public health officials. These collaborations may be particularly difficult at sewershed-scale,
where multiple public health department jurisdictions overlap (e.g., location N). Partner-
ships for data sharing between agencies are critical to support ongoing wastewater-based
epidemiology for SARS-CoV-2 and other pathogens.

At the facility scale, monitoring raw wastewater for SARS-CoV-2 might be particularly
useful for early detection of COVID-19 outbreaks. San Quentin Prison (location Q) had a
COVID-19 outbreak during the study period after a transfer from the California Institution
for Men [291], where, at its peak, 47% of the population had active cases. The maximum
SARS-CoV-2 N1 concentration (4.89 x 103 gc/mL) was higher than any sewershed sampled in
this study and among the highest values found in a literature review for N1 in raw wastewater
[132, 105, 186, 115, 118, 273], despite regular clinical testing (Figure C.9). Prison conditions
cause incarcerated people to be particularly susceptible to respiratory disease outbreaks, and
maintaining safety in prisons requires deliberate planning and coordination by correctional
institutions (e.g., coordination with local public health systems to develop pandemic response
plans, coordination of transfers between institutions, etc.) [292]. Furthermore, the health of
incarcerated people is linked to the health of the community, and incorporating correctional
institutions into community safety plans will help ensure better protection against COVID-
19 for everyone [292]. Once protective measures are implemented, WBE may be useful to
monitor prisons and other high-risk facilities (e.g., skilled nursing facilities, homeless shelters,
etc.), especially where clinical testing is not available or routine.

A critical question for public health decision-making is how much early warning WBE
can provide ahead of clinical testing, which could allow more timely public health responses
to slow COVID-19 outbreaks. However, lead time is difficult to measure. Biologically, the
time between onset of fecal shedding and nasal shedding is unclear [136, 34]. Practically,
lead time depends on testing turnaround time and frequency of sampling for both wastewa-
ter and clinical testing. For example, clinical testing capabilities can increase the lead time
of wastewater data if patients are only tested after symptom onset and can decrease the
lead time if asymptomatic and symptomatic individuals are regularly screened with rapid
turnaround time. Ideal assessments of wastewater data lead time due to biological mecha-
nisms would not include turnaround time, whereas assessments of the performance of clinical
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and wastewater laboratories for public health action and practical limitations would include
turnaround time. Although other studies observed lead time for wastewater data over clin-
ical data starting on the order of days [109, 106], the weekly sampling in our study could
explain why no lead time was determined when the sample collection date was used for both
wastewater and clinical testing data (Figure 4.6). However, the impact of clinical testing
strategy (i.e., only screening symptomatic individuals) could also be affecting this result.
Wastewater and clinical result dates could not be compared in this retroactive study, but
when clinical data were associated with the result date and wastewater data were associ-
ated with sample collection date, lead time of 1-2 weeks was observed (Figure 4.6). Other
researchers have observed lead time in wastewater data of up to three weeks [105], and our
results reflect a similar range in possible lead times (0-2 weeks) depending on which date is
associated with the clinical data.

Systematic approaches for WBE data interpretation

In general, public health decisions are based on temporal trends in disease burden, not
individual data points, but trends in wastewater and clinical data can be difficult to visu-
ally distinguish, especially when available resources constrain sampling frequencies. When
Lowess was applied to wastewater data, the value of one parameter could influence the trend
visualization such that the same dataset could lead to different public health responses (Fig-
ure 4.2). Based on our analysis, the bandwidth parameter for Lowess should be determined
for each sewershed sampled. Lowess with a systematically chosen bandwidth could be used
to smooth trendlines and minimize the loss of temporal resolution. The method presented
here could be applied in retrospective analysis or in real-time analysis completed as part
of wastewater public health surveillance programs. For real-time applications, the band-
width parameter could be selected using a subset of data, and the residuals plot could be
frequently checked to ensure no new residual patterns emerge over time that could obscure
the smoothed trend.

In addition to data smoothing, an approach was developed for identifying a WBE case
detection limit that can be applied systematically to studies using PCR-based methods.
This analysis was applied to SARS-CoV-2 N1 signal in wastewater ato find that the daily
new clinical cases at which wastewater surveillance could reliably detect clinically diagnosed
COVID-19 cases in the contributing population was estimated at 2.4 cases per 100,000 peo-
ple. There are multiple limitations to this analysis because wastewater detection depends on
factors other than incidence, such as sampling methods (e.g., frequency of sampling aliquots),
which can influence the probability of capturing shed viral particles from an infected individ-
ual. Additionally, the estimate may vary based on site-specific clinical testing availability,
wastewater sampling methods (e.g., composite sampling, freezing before processing) and
laboratory processing (e.g., 4S extraction method, RT-qPCR). The estimation method for a
WBE case detection limit presented here could benefit both COVID-19 WBE and WBE for
other diseases by providing a systematic method to compare the case detection limits across
studies.
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Chapter 5

Conclusions

5.1 Summary

As water systems become more integrated through management approaches, such as one
water, and treatment processes, such as direct potable reuse, microbial monitoring strategies
in these systems could benefit from inclusion of monitoring targets relevant across integrated
systems. Current drinking water microbial monitoring strategies rely on both fecal indicator
bacteria that can only indicate whether fecal contamination could have occurred (e.g., total
coliform bacteria) and physicochemical parameters that indirectly assess microbial water
quality (e.g., chlorine concentration in drinking water distribution systems with residual
disinfectants). However, microbial monitoring strategies that only include these common
parameters may not capture the microbial impacts from changes in water quality at local
(i.e., site-to-site within a distribution system) or system (i.e., distribution system-wide)
scale. For example, current drinking water microbial monitoring strategies would likely not
capture microbial impacts in drinking water distribution systems during transition to direct
potable reuse (DPR). Furthermore, in wastewater there are additional monitoring targets
that could be monitored to inform treatment efficacy of DPR systems (e.g., enteric pathogens
in raw wastewater). Microbial monitoring strategies that incorporate enhanced methods of
microbial assessment could produce data that are mutually beneficial for drinking water
providers, wastewater treatment service providers, and public health departments (Figure
1.1).

The overall goal of this work was to apply enhanced methods of microbial assessment
in piped drinking water systems and to identify integrated microbial monitoring strategies
that benefit public health. Enhanced methods of microbial assessment include methods
to assess microbial abundance (e.g., intact cell counts, total cell counts, intracellular ATP,
and total ATP), microbial community composition (e.g., 16S rRNA gene amplicon sequenc-
ing), and specific microbial targets (e.g., quantitative polymerase chain reaction; qPCR). In
Chapter 2, five measures of microbial abundance were applied in six chlorinated and chlo-
raminated drinking water distribution systems. Microbial impacts from site-scale changes in
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physicochemical parameters were determined by comparing enhanced methods of microbial
assessment (i.e., total and intact cell counts and total and intracellular ATP concentrations
and heterotrophic plate counts). Chapter 3 expanded on the microbial abundance assessment
in Chapter 2 to evaluate shifts in microbial community composition during augmentation
of conventional drinking water with advanced-treated wastewater. Five pipe loop rigs were
used to simulate this event and also included control loops that did not transition or only
contained conventional water for comparison. The pipe loop rigs were sampled over 21 weeks
using 16S rRNA gene amplicon sequencing and flow cytometry. In Chapter 4, the value of
wastewater was explored beyond that of a potential source of drinking water, and the circu-
lation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in San Francisco
Bay Area communities during the coronavirus infectious disease 2019 (COVID-19) pandemic
was investigated using wastewater surveillance. From April to September 2020, one facility
and four sewersheds were sampled weekly, and SARS-CoV-2 was quantified using RT-qPCR
for the N1 gene target and compared with geocoded clinical testing data. The findings and
implications of these studies are discussed in this chapter.

5.2 Diagnostic and preventative microbial monitoring

strategies in disinfected drinking water

distribution systems

In drinking water distribution systems, enhanced methods of microbial assessment could
increase the success of monitoring for diagnostic and preventative purposes. Microbial mon-
itoring can be completed in regular intervals (e.g., weekly; routine monitoring), in response
to an issue (e.g., nitrification; diagnostic monitoring), or in preparation for a system-scale
change (e.g., switching source waters; preventative monitoring). Routine monitoring in con-
ventional systems (i.e., those that treat surface or ground water) is generally required by
legislation such as the Revised Total Coliform Rule in the United States [14] and the Ni-
trification Action Plan in Texas [293]. Diagnostic monitoring has been recommended in
response to elevated lead and copper levels and before switching source waters in the United
States [294] as well as in response to the indicators of nitirification that are deemed “red flag
alarm triggers” of nitrification action in Texas [41]. In these cases, chemical indicators were
recommended, but in some situations, microbial targets could provide more insight.

For routine monitoring, chlorine was found to be a useful surrogate for microbial abun-
dance in normal operating conditions, but enhanced microbial assessment could improve
diagnostic and preventative monitoring practices in conventional drinking water systems.
In Chapter 2, intact cell counts, total cell counts, intracellular ATP, and total ATP were
significantly and strongly correlated with disinfectant residual concentration in the conven-
tional drinking water systems sampled (Figure 2.2). This finding suggests that changes in
disinfectant concentration should capture increases in microbial abundance associated with
disinfectant decay in normal operating conditions. However, disinfectant concentration may
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not be enough to capture the full extent of an issue. For example, an interaction between
temperature and disinfectant concentration was observed that resulted in proportionally
higher intact cell counts at low levels of disinfectant compared to the same conditions at
lower temperatures (Figure 2.3). Thus, measurement of intact cell counts could be use-
ful to pair with chlorine measurements during summer conditions, when disinfectant decay
can become problematic [235] and higher temperatures can increase monochloramine decay
[295]. However, a baseline of cell counts or ATP expected in a drinking water distribution
system under normal operating conditions before implementing these practices would need
to be established prior to the issue for comparison. Additionally, paired 16S rRNA gene
amplicon sequencing data with total cell counts could help ensure that an increase in mi-
crobial abundance is not linked with taxa of concern and identify any targets to monitor
using qPCR. For example, in Chapter 3, 16S rRNA gene amplicon sequencing was applied
and opportunistic pathogens were investigated in simulated drinking water distribution sys-
tem with total cell counts. Mycobacterium- and Pseudomonas-classified amplicon sequence
variants were at higher estimated absolute abundance in simulated distribution systems com-
pared to full-scale distribution system and demonstration-scale RO permeate samples. Thus,
these amplicon sequence variants were flagged to investigate more closely during the full-
scale implementation of potable reuse using qPCR for Mycobacterium avium complex and
Pseudomonas aeruginosa (Figure 3.9).

The research in Chapters 2 and 3 contributes to a growing body of literature assessing
microbial water quality in drinking water systems, but more work is needed applying DNA
sequencing methods in full-scale systems as part of diagnostic or preventative monitoring and
applying viability measures for PCR-based methods in systems with residual disinfectants.
While researchers have applied DNA sequencing methods at treatment plants in short-term
[296, 297, 23, 298, 299, 67, 64, 300] or long-term [48, 301, 70] (e.g., 2 or more years of
sampling) sampling campaigns, application of these methods as diagnostic or preventative
tools is rare. Previous studies have used 16S rRNA gene amplicon sequencing to assess
the microbial impact of temporarily converting chloraminated drinking water systems to
chlorinated systems [302, 303] and of treatment upgrades [72, 304, 71]. Diagnostic studies
may be rare because they require collaboration with drinking water providers to obtain
samples and publish resulting data. Additionally, more work is needed assessing viability
with 16S rRNA gene amplicon sequencing or qPCR in full-scale drinking water distribution
systems [171]. Staining bacterial cells with propidium iodine is a reproducible method to
assess viability for flow cytometry-based microbial abundance [147] that has some caveats
(e.g., staining intact but nonviable cells [171]), but is important to apply in systems with
residual disinfectants to accurately quantify microbial abundance [305]. However, propidium
iodide has not been successfully paired with subsequent DNA sequencing, and methods that
are compatable with DNA sequencing (e.g., propidium monoazide) are not straightforward to
apply in environmental matrices, but hold promise for future application [171]. For example,
impacts of disinfection conditions on 16S rRNA gene amplicon sequencing results have been
observed using propidium monoazide that were unclear without the viability assay [178].
In the future, longitudinal studies of drinking water distribution systems could generate
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more complete datasets that include flow cytometry, 16S rRNA gene amplicon sequencing,
and even metagenomics sequencing data with paired viability assays and high sampling
frequency. High resolution datasets could be used to develop machine learning models for
which consistent deviations from model predictions at specific sites may be indicative of water
quality problems, such as pipe corrosion or nitrification, as has been simulated previously
[306].

5.3 Integrated microbial monitoring strategies for

integrated urban water management systems

Water-stressed cities need access to reliable drinking water sources to meet future drinking
water demands, and DPR is an option that integrates drinking water with wastewater treat-
ment and management. The process of implementing DPR to increase the drinking water
supply of a city will constitute a disturbance in the conventional drinking water system, and
there will be a transition period when advanced-treated wastewater is introduced. Microbial
monitoring strategies for drinking water systems expecting a system-scale perturbation in
water quality, such as transition to DPR, could benefit from enhanced microbial assessment.
For DPR in particular, enhanced monitoring has been recommended before and after the
transition in full-scale systems [6].

For potential treated water augmentation systems, enhanced methods of microbial assess-
ment (e.g., flow cytometry, 16S rRNA gene amplicon sequencing, and qPCR) could be used
before and after the transition to identify shifts in microbial water quality that may have
unintended consequences. In Chapter 2, intact cell counts were demonstrated to be quantifi-
able throughout the distribution system in 97.6% of samples as opposed to other microbial
abundance measures that assess viability: heterotrophic plate counts (81.4%) and intracel-
lular ATP (69.6%) (Table 2.3). Thus, intact cell counts could be a useful measurement in
these systems that would likely provide fewer non-detects and therefore more information
than alternatives (heterotrophic plate counts and ATP assays). This finding is supported by
other researchers who have successfully applied flow cytometry-based methods in advanced
wastewater treatment systems [142, 85, 84] as well as by the total cell counts that were
measured successfully in the demonstration-scale reverse osmosis permeate from Chapter 3
(reverse osmosis permeate, Figure 3.9). Also in Chapter 3, 16S rRNA gene amplicon se-
quencing was used both to identify targets to monitor more closely using qPCR (Figure 3.9)
and to identify shifts in microbial community composition following the transition to DPR
compared to pipe loop rigs that maintained the same feedwater composition throughout the
study period (Figure 3.4). This approach could be applied in simulation studies in prepara-
tion for a full-scale change, as well as during the full-scale implementation of DPR. However,
this approach to assessing shifts in microbial community composition is conservative because
it does not account for viability.

Pathogen monitoring of raw wastewater with qPCR could serve multiple purposes in
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DPR systems. First, enteric pathogen monitoring can be used to ensure that pathogen
reduction targets through treatment are sufficient. Wastewater has variable enteric virus
concentrations that have been found to be higher (i.e., 107 to 109 viral particles per L)
than the concentrations used to set the log10 reduction targets for potable reuse in Cal-
ifornia (i.e., 105 to 106 viral particles per L) [28]. Second, the contributing population
can be monitored for potential pathogen outbreaks to ensure public health. Public health
surveillance is recommended after implementation of DPR systems to verify that consump-
tion of advanced-treated wastewater does not result in transmission of pathogens back to
the community, which will require collaboration from public health departments and water
treatment providers [6]. In Chapter 4, SARS-CoV-2 was monitored in raw wastewater and
compared with geocoded clinical testing data. While SARS-CoV-2 is likely not a concern
for DPR [101, 102], this work demonstrated the types of collaboration between public health
departments and wastewater treatment facilities recommended for public health surveillance
following implementation of DPR. Pairing clinical surveillance with wastewater surveillance
could help overcome some biases associated with clinical testing (e.g., sampling bias, under-
testing, etc.), especially for diseases from enteric pathogens which have less robust clinical
testing compared to SARS-CoV-2 [112, 116, 113].

The research presented in Chapter 3 is one of very few studies on drinking water distri-
bution system microbial impacts from DPR, and more work is needed applying integrated
monitoring methods in simulated and full-scale DPR systems. Previous research on microbial
impacts of DPR in distribution systems found shifts in microbial community composition
relative to feedwater during simulated distribution that were attributed to water stagna-
tion [84] or bacterial regrowth [89] in drinking water distribution systems. Similar or lower
levels antibiotic resistance genes or opportunistic pathogens compared to conventional sys-
tems were also reported [89, 84]. However, these studies did not simulate a transition from
conventional drinking water to direct potable reuse. This process needs to be studied more
thoroughly, particularly at full-scale, because it imparts a system-scale change in drinking
water quality that is currently uncommon: one report only identified three planned full-scale
treated water augmentation systems in the world [82]. However, El Paso, Texas is on track to
build the first treated water augmentation system in the United States [82], and as of March
2021, the California Water Board just released a draft of a proposed regulation framework
for DPR that specifically addresses treated water augmentation [94]. Thus, this practice
will likely become more common. Once more full-scale systems are online, demonstration
of integrated monitoring techniques across multiple systems are needed that benefit both
public health and treatment facilities. For example, in the future, online flow cytometers
could be combined with pathogen monitoring through (viability) qPCR to assess treatment
performance with flow cytometry, while also monitoring treatment efficacy and the burden
of pathogens of concern on the contributing population.
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5.4 COVID-19 wastewater-based epidemiology

The coronavirus infectious disease 2019 (COVID-19) pandemic prompted a need for al-
ternatives to clinical testing. SARS-CoV-2 is shed in feces [32, 31, 33, 36, 130], and re-
searchers globally have quantified SARS-CoV-2 RNA in wastewater and sludge [130, 108,
134]. Wastewater testing for SARS-CoV-2 could help overcome bias and stigma associated
with clinical testing [120, 121]. While COVID-19 wastewater-based epidemiology is a re-
cent development, the practice of monitoring the pathogen burden in a population using
wastewater signal has been applied in global efforts to help eradicate poliovirus for over
40 years [97, 98, 99, 100]. Routine wastewater testing could be supplemented with testing
for pathogens of high public health relevance to help with pandemic response and outbreak
prevention. For example, public health departments, wastewater treatment providers, and
wastewater testing laboratories have worked together during the COVID-19 pandemic to
provide wastewater testing results for communities1.

During the COVID-19 pandemic, both the methodological research for SARS-CoV-2 test-
ing in wastewater and the application of wastewater-based epidemiology have been occurring
simultaneously, and systematic methods that would allow results comparisons across studies
are not consistently applied. In Chapter 4, two systematic approaches were presented that
have potential for real-time SARS-CoV-2 wastewater monitoring applications and retrospec-
tive analysis. First, the minimum number of COVID-19 cases needed to detect SARS-CoV-2
RNA in wastewater was estimated using a method that can be repeated in other studies.
The limit was estimated at 2.4 daily COVID-19 cases in 100,000 people (Figure 4.5), which
is within the range of what is theoretically possible [137] and is the same order of magnitude
as others have found [107, 273]. This result is promising and suggests wastewater testing
could still be useful when COVID-19 occurrence is low. Additionally, interpretation of trends
in wastewater or clinical testing data is important to determine if the overall burden is in-
creasing or decreasing and to assess pandemic mitigation strategies [307]. Wastewater data
are generally not collected with a sampling frequency that would allow for calculation of
a seven-day moving average, which is the smoothing method commonly applied to clinical
testing data for public dashboards such as the Johns Hopkins University of Medicine Testing
Trends Tool2. Indeed, a sampling frequency of at least two times weekly has been suggested
for wastewater testing [308], and sampling at weekly intervals is common. Instead, some re-
searchers have used locally weighted scatterplot smoothing (Lowess) for wastewater testing
data, but they do not specify reasoning for choice of bandwidth parameter (the fraction of
series used in each local regression calculation) [132, 106, 271, 272]. However, in Chapter
4, choice of bandwidth parameter was found to affect the overall trend interpretation for
some locations sampled (Figure 4.2). Thus, Lowess with a systematic bandwidth selection
process (Figures 4.1, C.1,C.2, C.3, and C.4) was applied that can be used to smooth and
interpret weekly SARS-CoV-2 signal in wastewater (optimal bandwidth parameters ranged

1https://www.covid-web.org
2https://coronavirus.jhu.edu/testing/tracker/overview
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from 0.25 to 0.6). Finally, comparisons across five locations in the San Francisco Bay Area
showed consistency between trends in SARS-CoV-2 signal in wastewater and trends in daily
per capita COVID-19 case data, with a few minor discrepancies that could indicate clinical
undertesting for some locations (e.g., location N; Figure 4.3). When trends were compared
across locations, the facility-scale location sampled was experiencing an outbreak that was
clear in the clinical and wastewater testing data. The SARS-CoV-2 signal in San Quentin
Prison’s wastewater was 88 times higher than the maximum measured at any of the lo-
cations sampled, emphasizing the disproportionate COVID-19 burden on this underserved
population.

The research in Chapter 4 contributes to a fast-growing body of work demonstrating that
SARS-CoV-2 wastewater testing is a promising public health surveillance strategy, but it is
a relatively new application that requires more research and development. First, variation in
wastewater SARS-CoV-2 signal that is not reflective of the true COVID-19 incidence needs
to be better characterized. Feng et al. (2021) found that the difference between signal on
consecutive days was the largest contributor to variability compared to the qPCR SARS-
CoV-2 N1 assay and wastewater concentration method. Similar work applying different
collection methods is needed to characterize the main contributors to variation in wastew-
ater signal and to determine how much this variation obscures actual disease-burden in the
contributing population, so that approaches can be developed to account for or reduce this
variability. Second, lead time provided by wastewater testing data over clinical testing data
could be because of an underlying biological mechanism that results in peak fecal shedding
before symptom onset, because wastewater laboratory turnaround time is faster than clinical
laboratory turnaround time (situation-dependent), or a combination of both. Analyses to
assess lead time in wastewater testing data should account for which comparison is being
made by using the proper date association for clinical and wastewater testing data (i.e.,
result date versus sample collection date). While the dataset in Chapter 4 is limited, the
date used for clinical data affected the correlation with wastewater data (associated with
sample collection date) by showing earlier perceived lead time in wastewater data if clinical
result date was used (Figure 4.6), as others have also observed [109]. Ideally, clinical and
wastewater data would be compared using the same date association that depends on the
comparison being made (e.g., result date to compare turnaround times from clinical versus
wastewater testing laboratories in communities). More work is needed comparing date as-
sociations using larger datasets and determining whether fecal shedding could contribute to
lead time [136, 34]. Third, more work is needed to determine whether wastewater SARS-
CoV-2 signal aligns more with incidence or prevalence. In Chapter 4, a small dataset was
used to investigate whether wastewater data reflects incidence or prevalence at the facility
scale location sampled (Figure 4.4), and only a few other researchers have addressed this
question [115, 289]. More of this research is needed to determine if the SARS-CoV-2 signal
in wastewater is reflective of new cases or active cases and to properly interpret trends in
wastewater signal. Fifth, as with any public health surveillance campaign, ethical consider-
ations for WBE should be carefully considered to ensure privacy and prevent stigmatization
or misuse of surveillance data, as others have discussed in detail [126, 129, 309, 310]. Finally,
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more work is needed applying wastewater testing for other pathogens, especially now that
the field of wastewater-based epidemiology is in a rapid development phase. In the future,
wastewater treatment facilities could be screened for common pathogens in the population
shed in feces (e.g., Influenza A and likely SARS-CoV-2 even post-pandemic) to determine if
outbreaks are occurring and eventually employ metagenomics to catch emerging pathogens
and strains.

5.5 Collaborative work in environmental engineering:

reflections

The projects I have worked on during my Ph.D. have resulted from collaborations with
representatives from water and wastewater treatment facilities, consultants, public health
officials, and other academics. Working with collaborators has been beneficial in that I was
able to conduct applied research: I sampled and studied full-scale drinking water distribution
systems (Chapter 2), completed a pilot project prior to an actual implementation of potable
reuse (Chapter 3), as well as monitored SARS-CoV-2 locally during a pandemic and provided
results to public health departments (Chapter 4). However, working with many collaborators
also had challenges, and a few are listed below:

• Balancing collaborator interests

– Publishing and sharing data when there are perceptions that the data could reflect
poorly on the facility being tested

– Meeting academic goals within the constraints of industry projects (e.g., budget,
project timeline, and client considerations)

– Accepting the experimental design tradeoffs of shared microbial and chemical
water quality studies for direct potable reuse (Chapter 3)

• Authorship and credit (discussed in detail below)

– Clarifying roles and credit of multiple authors without diminishing the roles of
others and disincentivizing collaboration

– Overcoming perceptions about co-first authorship

Collaboration allows for Ph.D. students to work on projects that would otherwise be
too large for one person to complete. Large and complex problems are the precise type of
problems environmental engineers are trying to understand and solve. An example of this
is the COVID-19 pandemic, during which environmental engineering and science academics
and water industry professionals realized that monitoring SARS-CoV-2 in wastewater was
possible and had potential at a time when supply chain issues, testing biases, and other
constraints made it difficult to accurately assess COVID-19 occurence via clinical testing
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alone [37]. I paused my planned dissertation research to work on a large interdisciplinary
team contributing to COVID-19 wastewater-based epidemiology3, and a direct result of this
pivot has been my first co-first-authored manuscript [267]. The decision to pursue this
path was difficult at first because of the controversy surrounding Equal Co-authorship, but
once I learned more about this practice I realized that standardizing and normalizing Equal
Co-authorship could be beneficial.

Equal Co-authorship is the practice of sharing one of the authorship positions on an
academic paper (e.g., co-first authors or co-corresponding authors), and this practice is con-
troversial because of the lack of guidelines for establishing these roles and the potential for
diffusion of responsibility and accountability [311, 312]. Yet, Equal Co-first authorship is be-
coming more common [313, 314, 315, 316, 311], likely because this practice provides flexibility
for collaboration on large and complex problems. However, there are challenges that need to
be addressed. For example, academic journal platforms and citation practices inconsistently
address Equal Co-authorship and often advantage the author whose name is listed first [311,
313]. Also, publishing first- and last-author papers has importance for hiring and promoting
academics [313, 311], but there are no guidelines for how Equal Co-first authorship should
be used during these processes [311], and it is likely inconsistent across institutions and dis-
ciplines. To address some of these concerns, it has been recommended that journals have a
clear statement indicating whether Equal Co-authors are allowed [311] and guidelines that
clarify how the order of author names should be determined [312]. Additionally, CASRAI’s
CRediT- Contributor Roles Taxonomy4 has been recommended to address concerns about
whether Equal Co-authors had truly equal contributions [311]. If there can only be one
first author, and first authorship is a metric considered important for hiring and promoting
academics, dismissing this practice as flawed will discourage large-scale collaboration. In-
stead, by encouraging collaboration in the ways we approach and talk about researchers, the
field of environmental engineering will be able to tackle much larger challenges than can be
addressed with only one person leading.

3urlhttps://www.covid-web.org
4https://casrai.org/credit/
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[47] Marie-Claude Besner, Michèle Prévost, and Stig Regli. “Assessing the public health
risk of microbial intrusion events in distribution systems: Conceptual model, available
data, and challenges”. In: Water Research 45.3 (2011), pp. 961–979. doi: 10.1016/
j.watres.2010.10.035.

[48] Natalie M Hull et al. “Longitudinal and Source-to-Tap New Orleans, LA, U.S.A.
Drinking Water Microbiology”. In: Environ. Sci. Technol. 51.8 (2017). doi: 10.1021/acs.est.6b06064,
pp. 4220–4229. doi: 10.1021/acs.est.6b06064.

[49] Hong Wang et al. “Effect of GAC pre-treatment and disinfectant on microbial com-
munity structure and opportunistic pathogen occurrence”. In: Water Research 47.15
(2013), pp. 5760–5772. doi: 10.1016/j.watres.2013.06.052.

[50] Xiao Ma et al. “Centralized Drinking Water Treatment Operations Shape Bacte-
rial and Fungal Community Structure”. In: Environ. Sci. Technol. 51.13 (2017). doi:
10.1021/acs.est.7b00768, pp. 7648–7657. doi: 10.1021/acs.est.7b00768.

[51] Quyen M. Bautista-de los Santos et al. “Emerging investigators series: microbial com-
munities in full-scale drinking water distribution systems – a meta-analysis”. In: En-
viron. Sci.: Water Res. Technol. 2.4 (2016), pp. 631–644. doi: 10.1039/c6ew00030d.

[52] Zihan Dai et al. “Disinfection exhibits systematic impacts on the drinking water
microbiome”. In: Microbiome 8.1 (2020), p. 42. doi: 10.1186/s40168-020-00813-0.

[53] Paul W. J. J. van der Wielen and Dick van der Kooij. “Nontuberculous Mycobac-
teria, Fungi, and Opportunistic Pathogens in Unchlorinated Drinking Water in the
Netherlands”. In: Applied and Environmental Microbiology 79.3 (2013), pp. 825–834.
doi: 10.1128/aem.02748-12.

[54] Timothy G. Otten et al. “Elucidation of Taste- and Odor-Producing Bacteria and Tox-
igenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun
Metagenomic Analysis”. In: Applied and Environmental Microbiology 82.17 (2016),
pp. 5410–5420. doi: 10.1128/aem.01334-16.

[55] Andrew Westbrook and Francis A. Digiano. “Rate of chloramine decay at pipe sur-
faces”. In: Journal - American Water Works Association 101.7 (2009), pp. 59–70.
doi: 10.1002/j.1551-8833.2009.tb09924.x.

[56] Charles N. Haas et al. “Chlorine Demand in disinfecting Water Mains”. In: Journal -
American Water Works Association 94.1 (2002), pp. 97–102. doi: 10.1002/j.1551-
8833.2002.tb09385.x.

[57] A.O. Al-Jasser. “Chlorine decay in drinking-water transmission and distribution sys-
tems: Pipe service age effect”. In: Water Research 41.2 (2007), pp. 387–396. doi:
10.1016/j.watres.2006.08.032.

[58] Alina Nescerecka et al. “Biological Instability in a Chlorinated Drinking Water Distri-
bution Network”. In: PLoS ONE 9.5 (2014), e96354. doi: 10.1371/journal.pone.
0096354.



BIBLIOGRAPHY 85

[59] Alina Nescerecka, Talis Juhna, and Frederik Hammes. “Identifying the underlying
causes of biological instability in a full-scale drinking water supply system”. In: Water
Research 135 (2018), pp. 11–21. doi: 10.1016/j.watres.2018.02.006.

[60] Huiping Huang et al. “High-performance size exclusion chromatography with a multi-
wavelength absorbance detector study on dissolved organic matter characterisation
along a water distribution system”. In: Journal of Environmental Sciences 44 (2016),
pp. 235–243.

[61] Simon Gillespie et al. “Assessing microbiological water quality in drinking water dis-
tribution systems with disinfectant residual using flow cytometry”. In: Water Research
65 (2014), pp. 224–234. doi: 10.1016/j.watres.2014.07.029.

[62] Vanessa C. F. Dias et al. “Identification of Factors Affecting Bacterial Abundance
and Community Structures in a Full-Scale Chlorinated Drinking Water Distribution
System”. In: Water 11.3 (2019), p. 627. doi: 10.3390/w11030627.

[63] Stacia T. McCoy and Jeanne M. VanBriesen. “Temporal Variability of Bacterial Di-
versity in a Chlorinated Drinking Water Distribution System”. In: Journal of Envi-
ronmental Engineering 138.7 (2012), pp. 786–795. doi: 10.1061/(asce)ee.1943-
7870.0000539.

[64] Yoann Perrin et al. “Microbiome of drinking water: A full-scale spatio-temporal study
to monitor water quality in the Paris distribution system”. In: Water Research 149
(2019), pp. 375–385. doi: 10.1016/j.watres.2018.11.013.

[65] Vicente Gomez-Alvarez et al. “Bacterial composition in a metropolitan drinking water
distribution system utilizing different source waters”. In: Journal of Water and Health
13.1 (2014), pp. 140–151. doi: 10.2166/wh.2014.057.

[66] I. Douterelo et al. “Spatial and temporal analogies in microbial communities in natural
drinking water biofilms”. In: Science of The Total Environment 581 (2017), pp. 277–
288. doi: 10.1016/j.scitotenv.2016.12.118.

[67] Ameet J. Pinto et al. “Spatial-Temporal Survey and Occupancy-Abundance Modeling
To Predict Bacterial Community Dynamics in the Drinking Water Microbiome”. In:
mBio 5.3 (2014), e01135–14. doi: 10.1128/mbio.01135-14.

[68] Fangqiong Ling et al. “Core-satellite populations and seasonality of water meter
biofilms in a metropolitan drinking water distribution system”. In: The ISME Journal
10.3 (2016), pp. 582–595. doi: 10.1038/ismej.2015.136.

[69] Joline El-Chakhtoura et al. “Dynamics of bacterial communities before and after
distribution in a full-scale drinking water network”. In: Water Research 74 (2015),
pp. 180–190. doi: 10.1016/j.watres.2015.02.015.

[70] E. I. Prest et al. “Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Dis-
tribution System”. In: PLoS ONE 11.10 (2016), e0164445. doi: 10.1371/journal.
pone.0164445.



BIBLIOGRAPHY 86

[71] Lihua Chen et al. “Assessing the transition effects in a drinking water distribution
system caused by changing supply water quality: an indirect approach by character-
izing suspended solids”. In: Water Research 168 (2020), p. 115159. doi: 10.1016/j.
watres.2019.115159.

[72] Sandy Chan et al. “Bacterial release from pipe biofilm in a full-scale drinking water
distribution system”. In: npj Biofilms and Microbiomes 5.1 (2019), p. 9. doi: 10.
1038/s41522-019-0082-9.

[73] Fan Yang et al. “Effect of sulfate on the transformation of corrosion scale composition
and bacterial community in cast iron water distribution pipes”. In: Water Research
59 (2014), pp. 46–57. doi: 10.1016/j.watres.2014.04.003.

[74] Huifang Sun et al. “Effects of sulfate on heavy metal release from iron corrosion
scales in drinking water distribution system”. In: Water Research 114 (2017), pp. 69–
77. doi: 10.1016/j.watres.2017.02.021.

[75] Yue Hu et al. “Potential shift of bacterial community structure and corrosion-related
bacteria in drinking water distribution pipeline driven by water source switching”. In:
Frontiers of Environmental Science & Engineering 15.2 (2020), p. 28. doi: 10.1007/
s11783-020-1320-3.

[76] Susan J. Masten, Simon H. Davies, and Shawn P. Mcelmurry. “Flint Water Crisis:
What Happened and Why?” In: Journal - American Water Works Association 108.12
(2016), pp. 22–34. doi: 10.5942/jawwa.2016.108.0195.

[77] David Otto Schwake et al. “Legionella DNA Markers in Tap Water Coincident with
a Spike in Legionnaires’ Disease in Flint, MI”. In: Environ. Sci. Technol. Lett. 3.9
(2016). doi: 10.1021/acs.estlett.6b00192, pp. 311–315. doi: 10.1021/acs.estlett.
6b00192.

[78] Brian M. Pecson et al. “Reliability of pathogen control in direct potable reuse: Per-
formance evaluation and QMRA of a full-scale 1 MGD advanced treatment train”.
In: Water Research 122 (2017), pp. 258–268. doi: 10.1016/j.watres.2017.06.014.

[79] Jeffrey A. Soller et al. “Evaluation of microbiological risks associated with direct
potable reuse”. In: Quantitative Microbial Risk Assessment of Reclaimed Water 5
(2017), pp. 3–14.

[80] California Water Boards. “A PROPOSED FRAMEWORK FOR REGULATING DI-
RECT POTABLE REUSE IN CALIFORNIA”. In: (2018).

[81] P. du Pisani and J. G. Menge. “Direct potable reclamation in Windhoek: a critical
review of the design philosophy of new Goreangab drinking water reclamation plant”.
In: Water Science & Technology: Water Supply 13.2 (2013), pp. 214–226.

[82] All options on the table: Lessons learned from the journeys of others. Tech. rep. Water
Services Association of Australia, 2019.



BIBLIOGRAPHY 87

[83] Blake W. Stamps et al. “Characterization of the Microbiome at the World’s Largest
Potable Water Reuse Facility”. In: Frontiers in Microbiology 9 (2018), pp. 2435–2435.

[84] Rose S. Kantor, Scott E. Miller, and Kara L. Nelson. “The Water Microbiome Through
a Pilot Scale Advanced Treatment Facility for Direct Potable Reuse”. In: Frontiers
in Microbiology 10 (2019), p. 21. doi: 10.3389/fmicb.2019.00993.

[85] Scott E. Miller, Roberto A. Rodriguez, and Kara L. Nelson. “Removal and growth
of microorganisms across treatment and simulated distribution at a pilot-scale direct
potable reuse facility”. In: Environ. Sci.: Water Res. Technol. 107.11 (2020), p. 36.
doi: 10.1039/c9ew01087d.

[86] Takahiro Fujioka and Sandrine Boivin. “Assessing bacterial infiltration through re-
verse osmosis membrane”. In: Environmental Technology & Innovation 19 (2020),
p. 100818. doi: 10.1016/j.eti.2020.100818.

[87] Moustapha Harb et al. “Background Antibiotic Resistance and Microbial Communi-
ties Dominate Effects of Advanced Purified Water Recharge to an Urban Aquifer”.
In: Environmental Science & Technology Letters 6.10 (2019), pp. 578–584. doi: 10.
1021/acs.estlett.9b00521.

[88] Blake W. Stamps and John R. Spear. “Identification of Metagenome-Assembled
Genomes Containing Antimicrobial Resistance Genes, Isolated from an Advanced
Water Treatment Facility”. In: Microbiology Resource Announcements 9.14 (2020).
doi: 10.1128/mra.00003-20.

[89] Emily Garner et al. “Impact of blending for direct potable reuse on premise plumbing
microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant
bacteria”. In: Water Research 151 (2019), pp. 75–86. doi: 10.1016/j.watres.2018.
12.003.

[90] Sharon P. Nappier, Jeffrey A. Soller, and Sorina E. Eftim. “Potable Water Reuse:
What Are the Microbiological Risks?” In: Current Environmental Health Reports 5.2
(2018), pp. 283–292. doi: 10.1007/s40572-018-0195-y.

[91] California Code of Regulations. “Water Recycling Criteria, Title 22, Division 4, Chap-
ter 3”. In: Sacramento, CA (2015).

[92] California State Water Resources Control Board. Regulations Related to Recycled
Water, Title 22, Division 4, Chapter 3. 2018.

[93] United States Environmental Protection Agency. Long Term 2 Enhanced Surface
Water Treatment Rule. 40 CFR Parts 9, 141, and 142. 2006.

[94] Addendum to A Framework for Direct Potable Reuse. 2021. url: https://www.

waterboards.ca.gov/drinking%5C_water/certlic/drinkingwater/documents/

direct%5C_potable%5C_reuse/dprframewkaddendum.pdf (visited on 03/29/2021).



BIBLIOGRAPHY 88

[95] Charles P. Gerba et al. “Reducing uncertainty in estimating virus reduction by ad-
vanced water treatment processes”. In: Water Research 133 (2018), pp. 282–288. doi:
10.1016/j.watres.2018.01.044.

[96] Stig Regli et al. “Modeling the Risk From Giardia and Viruses in Drinking Water”.
In: Journal - American Water Works Association 83.11 (1991), pp. 76–84. doi: 10.
1002/j.1551-8833.1991.tb07252.x.

[97] Radboud J. Duintjer Tebbens et al. “Insights from a Systematic Search for Infor-
mation on Designs, Costs, and Effectiveness of Poliovirus Environmental Surveil-
lance Systems”. In: Food and Environmental Virology 9.4 (2017), pp. 361–382. doi:
10.1007/s12560-017-9314-4.

[98] Yakir Berchenko et al. “Estimation of polio infection prevalence from environmental
surveillance data”. In: Science Translational Medicine 9.383 (2017), eaaf6786. doi:
10.1126/scitranslmed.aaf6786.
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[123] S. M. Cacciò and R. M. Chalmers. “Human cryptosporidiosis in Europe”. In: Clinical
Microbiology and Infection 22.6 (2016), pp. 471–480. doi: 10.1016/j.cmi.2016.04.
021.

[124] Wayne Hall et al. “An analysis of ethical issues in using wastewater analysis to monitor
illicit drug use”. In: Addiction 107.10 (2012), pp. 1767–1773. doi: 10.1111/j.1360-
0443.2012.03887.x.

[125] Janelle R Thompson et al. “Making waves: Wastewater surveillance of SARS-CoV-2
for population-based health management”. In: Water Research 184 (2020), p. 116181.
doi: 10.1016/j.watres.2020.116181.

[126] Guidelines on Ethical Issues in Public Health Surveillance. Tech. rep. World Health
Organization, 2017.

[127] Olga E. Hart and Rolf U. Halden. “Simulated 2017 nationwide sampling at 13,940
major U.S. sewage treatment plants to assess seasonal population bias in wastewater-
based epidemiology”. In: Science of The Total Environment 727 (2020), p. 138406.
doi: 10.1016/j.scitotenv.2020.138406.

[128] Olga E. Hart and Rolf U. Halden. “Modeling wastewater temperature and attenuation
of sewage-borne biomarkers globally”. In: Water Research 172 (2020), p. 115473. doi:
10.1016/j.watres.2020.115473.

[129] Alireza Zahedi et al. “Wastewater-based epidemiology—surveillance and early detec-
tion of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and
Giardia”. In: Parasitology Research (2021), pp. 1–22. doi: 10.1007/s00436-020-
07023-5.



BIBLIOGRAPHY 91

[130] Masaaki Kitajima et al. “SARS-CoV-2 in wastewater: State of the knowledge and
research needs”. In: Science of The Total Environment 739 (2020), p. 139076. doi:
10.1016/j.scitotenv.2020.139076.

[131] Christian G. Daughton. “Wastewater surveillance for population-wide Covid-19: The
present and future”. In: Science of The Total Environment 736 (2020), p. 139631.
doi: 10.1016/j.scitotenv.2020.139631.

[132] Raul Gonzalez et al. “COVID-19 surveillance in Southeastern Virginia using wastewater-
based epidemiology”. In: Water Research 186 (2020), p. 116296. doi: 10.1016/j.
watres.2020.116296.

[133] Fuqing Wu et al. “SARS-CoV-2 Titers in Wastewater Are Higher than Expected
from Clinically Confirmed Cases”. In: mSystems 5.4 (2020), e00614–20. doi: 10.

1128/msystems.00614-20.

[134] Manish Kumar et al. “First proof of the capability of wastewater surveillance for
COVID-19 in India through detection of genetic material of SARS-CoV-2”. In: Science
of The Total Environment 746 (2020), p. 141326. doi: 10.1016/j.scitotenv.2020.
141326.

[135] Amarylle S. Doorn et al. “Systematic review with meta-analysis: SARS-CoV-2 stool
testing and the potential for faecal-oral transmission”. In: Alimentary Pharmacology
& Therapeutics 52.8 (2020), pp. 1276–1288. doi: 10.1111/apt.16036.

[136] Amy E. Benefield et al. “SARS-CoV-2 viral load peaks prior to symptom onset: a
systematic review and individual-pooled analysis of coronavirus viral load from 66
studies”. In: medRxiv : the preprint server for health sciences (). doi: 10.1101/

2020.09.28.20202028.

[137] Olga E. Hart and Rolf U. Halden. “Computational analysis of SARS-CoV-2/COVID-
19 surveillance by wastewater-based epidemiology locally and globally: Feasibility,
economy, opportunities and challenges”. In: Science of The Total Environment 730
(2020), p. 138875. doi: 10.1016/j.scitotenv.2020.138875.

[138] Michael D. Besmer et al. “Evaluating Monitoring Strategies to Detect Precipitation-
Induced Microbial Contamination Events in Karstic Springs Used for Drinking Wa-
ter”. In: Frontiers in Microbiology 8 (2017), p. 81. doi: 10.3389/fmicb.2017.02229.

[139] Michael D. Besmer et al. “Online flow cytometry reveals microbial dynamics influ-
enced by concurrent natural and operational events in groundwater used for drink-
ing water treatment”. In: Scientific Reports 6 (2016), 38462 EP –-. doi: 10.1038/
srep38462.

[140] Michael D. Besmer et al. “Laboratory-Scale Simulation and Real-Time Tracking of
a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking
Water”. In: Frontiers in Microbiology 8 (2017), p. 366. doi: 10.3389/fmicb.2017.
01900.



BIBLIOGRAPHY 92

[141] Ruben Props et al. “Detection of microbial disturbances in a drinking water microbial
community through continuous acquisition and advanced analysis of flow cytometry
data”. In: Water Research 145 (2018), pp. 73–82. doi: 10.1016/j.watres.2018.08.
013.

[142] Nicole Rockey et al. “The utility of flow cytometry for potable reuse”. In: Current
Opinion in Biotechnology 57 (2019), pp. 42–49. doi: 10.1016/j.copbio.2018.12.
009.

[143] Franciszek Pistelok et al. “Using ATP tests for assessment of hygiene risks”. In:
Ecological Chemistry and Engineering S 23.2 (2016), pp. 259–270. doi: 10.1515/
eces-2016-0018.

[144] Frederik Hammes et al. “Measurement and interpretation of microbial adenosine
tri-phosphate (ATP) in aquatic environments”. In: Water Research 44.13 (2010),
pp. 3915–3923. doi: 10.1016/j.watres.2010.04.015.
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Appendix A

Supporting information for Chapter 2

A.1 Flow cytometer comparison

Two flow cytometers were used for these sampling campaigns, an Accuri C6 flow cytometer
(Accuri; BD Biosciences, San Jose, CA) and a BD FACSCanto cell analyzer (Canto; BD
Biosciences, San Jose, CA). DWDS F is the only location for which the Canto was used be-
cause the Accuri broke down during field sampling (the supplemental data files include which
cytometer was used to produce which data point: https://zenodo.org/record/3993877#

.X5n0Qy9h1TZ). Once the Accuri was repaired and returned, a comparison experiment was
completed. For both cytometers, the publicly available gate developed by researchers at the
Swiss Federal Institute of Aquatic Science and Technology (Eawag gate; [147]) was first used
and then results from Sperotech nano fluorescent size standard kit (Spherotech, Catalog #
NFPPS-52-4K) were used to adjust the gate for the Canto (adjusted gate; Figure A.6). The
Spherotech beads were all at a concentration of 1x106 beads per mL. The Accuri was able
to quantify the larger beads with under 10% error (Table A.6). The Canto with adjusted
gate was most accurate for the largest bead (less than 1% error), but still had an error of
18.5% for the 0.88 µm beads, which improved from the standard error with the Eawag gate,
25.5%.

The beads that were 0.22 µm and 0.45 µm were not accurately quantified by either
cytometer (Table A.6), but the small beads were detected outside of the gate by the Accuri
and not by the Canto. This result might be evidence that the Accuri has a lower limit of
quantificaiton than the Canto (Figure A.6), and the quantification limit was not determined
specifically for the Canto. However, the Eawag method used in this study recommends
working with cell counts of 102 − 107 cells per mL [147]. If the detection limit for samples
taken with the Canto was 102 cells per mL for both total cell counts and intact cell counts
instead of the limits of 12 and 22 cells per mL respectively determined by Miller et al.
with the Accuri [85], nothing would be impacted because the lowest Canto total cell count
datapoint is 350 cells per mL and that of intact cell count is 304 cells per mL.

Bottled Evian water was used to verify that adjusting the Eawag gate led to comparable
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cell counts of a microbial community from the same source. Three bottles of Evian water
purchased from the same location were analyzed in biological triplicate with the Accuri on
June 12, 2019 and in biological duplicate with the Canto on June 14, 2019. Adjusting the gate
brought the Canto intact or total cell count value closer to that of the Accuri than the Eawag
values in most cases (Figure A.7). This pattern did not hold for total cell count of bottle 1,
which had an adjusted average greater than the Accuri average. However, this sample had
the largest standard deviation (Table A.7), and the paired intact cell count measurement
was brought much closer to that of the Accuri. Overall, the differences associated with
cytometers following adjustment were minor as compared to differences associated even with
the same site in a distribution system over time, which can range orders of magnitude (e.g.,
site ut in Figure 2.1 A).

A.2 Supplemental Tables

Table A.1: Summary of sample locations and parameters measured. Each system was sam-
pled in either 2016 and/or 2018 in the distribution system (where n is the number of sites
sampled each year). The parameters measured were intact cell counts (ICC), total cell
counts (TCC), residual disinfectant concentration, pH, temperature, adenosine triphosphate
concentration (ATP), and/or heterotrophic plate counts (HPC).

system
distribution

system

TCC
and
ICC

residual
disinfectant

pH temperature ATP HPC

A
2016
2018

12
12

2016
2018

2016
2018

-
2018

-
2018

2016
2018

B
2016
2018

12
10

2016
2018

-
2018

-
2018

-
2018

-
2018

C
2016

-
12
-

2016
-

2016
-

-
-

-
-

-
-

D
2016

-
7
-

2016
-

2016
-

2016
-

-
-

-
-

E
2016

-
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Table A.6: Result of calibration bead experiments with beads of four different diameters
measured on Accuri flow cytometer with Eawag gate and Canto flow cytometer with Eawag
gate and adjusted gate. Accuri results are biological triplicates of geometric averages from
technical triplicates and Canto results are biological duplicates of geometric averages from
technical triplicates.

flow cytometer
and gate

measurement 0.22 µm 0.45 µm 0.88 µm 1.35 µm

Accuri
Eawag
gate

arithmetic
mean

(beads/mL)
7.8e+05 4.5e+03 1.1e+06 1.1e+06

arithmetic
standard
deviation

1.7e+04 8.3e+02 2.2e+04 1.2e+04

percent error
(%)

22.3 99.6 6.20 9.82

Canto
adjusted

gate

arithmetic
mean

(beads/mL)
3.7e+03 2.4e+03 8.2e+05 9.9e+05

arithmetic
standard
deviation

2.2e+03 1.6e+03 4.0e+04 2.4e+04

percent error
(%)

99.6 99.8 18.5 0.77

Canto
Eawag
gate

arithmetic
mean

(beads/mL)
1.2e+03 9.1e+02 7.5e+05 9.9e+05

arithmetic
standard
deviation

8.1e+02 5.4e+02 6.1e+04 2.5e+04

percent error
(%)

99.9 99.9 25.5 0.96
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A.3 Supplemental Figures
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Figure A.1: Total cell counts (A-B) and total ATP (C-D) in drinking water distribution
systems sampled in this study. Horizontal lines denote quantification limits. Points are
the geometric mean of the technical replicates and error bars represent geometric standard
deviation for technical triplicates.
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Figure A.2: Fraction of potentially viable cells (intact cell counts/total cell counts) in chlo-
raminated (A) and chlorinated (B) drinking water distribution systems sampled in this study.
Shapes in A denote locations in distribution system F that were sampled at least six times
between August 2017 and April 2018. Shapes in B denote locations in distribution system
A and distribution system B that were sampled once in 2016 and repeated in 2018.The four
samples with intact cell counts/total cell counts > 1 had intact cell counts and total cell
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Figure A.3: Visual representation of the most optimal model (Equation 2.2).To generate
lines, all fixed effects were held constant at its mean except (A) Figure 2.3 in the main text
included for comparison: total chlorine is on the x-axis and temperature is varied in the
model at each quantile value (-1.9, -0.10, -0.53, 0.87, and 2.1), (B) temperature is on the
x-axis and total chlorine is varied in the model at each quantile value (-1.8, -0.43, 0.51, 0.96,
and 1.9), (C) pH is on the x-axis and free chlorine is varied in the model at each quantile
value (-0.69, -0.69, -0.58, -0.38, and 1.3), and (D) free chlorine is on the x-axis and pH is
varied in the model at each quantile value (-2.3, -0.78, -0.17, -0.20, and 2.2).
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Figure A.6: Result of calibration bead experiments with beads of four different diameters
measured on Accuri flow cytometer with Eawag gate and Canto flow cytometer with Eawag
gate and adjusted gate. One technical replicate is shown for each particle size with green
fluorescence on the y-axis and red fluorescence on the x-axis.
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Figure A.7: Result of the same three bottles of Evian water measured on Accuri flow cy-
tometer with Eawag gate and Canto flow cytometer with Eawag gate and adjusted gate.
Accuri results are biological triplicates of geometric averages from technical triplicates and
Canto results are biological duplicates of geometric averages from technical triplicates. Error
bars represent spread associated with standard deviation of biological replicates. Data for
total cell count assay (A) and intact cell count assay (B) are shown.
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Appendix B

Supporting information for Chapter 3

No data shown.
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Appendix C

Supporting information for Chapter 4

C.1 Supplemental Methods

Wastewater composite sample collection, continued

Immediately after collection at location K, wastewater was mixed and aliquoted in 1-L
bottles that were frozen at -20◦C. These samples were transported together on ice and
processed within 48 hours, and biological triplicates were taken from each bottle, where
biological replicates refer to wastewater subsamples. All location K samples were processed
in triplicate. Samples were collected in 1-L bottles transported on ice within 48 hours
of collection and then frozen at -80◦C until processing. For location S, no samples had
replication except 6/30 which was processed in triplicate. For location A, samples were
processed in duplicate from 5/28/20 to 7/28/20 and with only one replicate from 8/4/20 to
9/9/20. For location N, no samples had biological replication. For location Q, no samples
had replication except 7/1 which was processed in biological duplicate.

Wastewater Sample Processing via the 4S method, continued

Briefly, sodium chloride was added to 40-50 mL of wastewater to a final concentration of 4
M, Ethylenediaminetetraacetic acid was added to a final concentration of 1 mM, and the
solution was buffered using 10mM tris(hydroxymethyl)aminomethane to pH 7.2. Samples
were heated to 70◦C for 45 minutes and prefiltered with a 5-µm PVDF filter using syringe
filtration. The filtrate was mixed with 40 mL of 70% ethanol and vacuum filtered through
a silica column (Zymo III-P), and the column was washed using 5 mL of wash buffer 1 and
10 mL of wash buffer 2. Genetic material was eluted from the column by adding 200 µL
ZymoPURE elution buffer and heating to 50◦C for 10 minutes, then centrifuging to collect
the flowthrough. The eluent was stored in multiple tubes to minimize freeze-thaw at -80◦C
until qPCR.

Each extraction batch contained a negative control of 40 mL of phosphate buffered
saline (PBS) solution, and each sample or control was spiked with 20 µL of a free RNA
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control (SOC; stock solution of 1.33x109 gene copies/µL) and 50 µL of a surrogate virus
lysis/extraction control from the same bottle of Bovilis Coronavirus Calf Vaccine (Merck
Animal Health, Merck & Co. Inc., Kenilworth, NJ, USA) resuspended in 20 mL of PBS to
monitor recovery with and without lysis across batches. Because of challenges surrounding
quantification of the surrogate spike without the influence of extraction efficiency [275], the
controls in this study were used to assess consistency of extractions rather than recovery.
Four representative samples were chosen from each location to assess SOC and BCoV recov-
ery along with the batch PBS control, and Cts remained relatively consistent for SOC and
varied considerably for BCoV. However, no signs that an extraction procedure failed were
observed, and all samples were considered to pass this quality control screen.

RT-qPCR plate setup and controls, continued

To minimize qPCR contamination, sample processing and RT-qPCR plate assembly were
performed in separate laboratories. Primers and probes were purchased as custom DNA oli-
gos (Integrated DNA Technologies), except for the N1 assay (2019-nCoV CDC RUO Kit) and
the Xeno assay (VetMAX™ XenoTM Internal Positive Control - VICTM Assay, ThermoFisher
Scientific). Standard curves consisted of 10-fold serial dilutions of RNA standard from the
same production batch of either synthetic RNA (Control 2- 102024, Twist Bioscience, San
Francisco, CA) for the N1 assay, RNA from custom Ultramer RNA Oligonucleotides (Inte-
grated DNA Technologies) for BCoV, geneBlocks DNA (Integrated DNA Technologies) for
crAssphage, or RNA in-vitro transcribed from geneBlocks (Integrated DNA Technologies)
with a HiScribe T7 Quick High Yield RNA Synthesis kit (New England Biolabs) for the
SOC assay.

qPCR data processing

Raw Cq values were imported into a custom pipeline in python (v3.6.9) with key modules
including Pandas (v1.1.5) and NumPy (v1.19.5). First, raw Cq values that did not amplify
or that amplified below the limit of quantification were flagged. These Cq values were subbed
with the Cq value corresponding to half the limit of detection (for N1) or half the bottom of
the master standard curve (for all other assays) (Table C.5) so that unamplified values could
be considered during outlier analysis. The N1 limit of detection (LoD) was calculated by
analyzing all the RNA standard curves from the study as well as four additional triplicate
standard curves that extended down to 0.3 gc/µL (Table C.8). The N1 LoD was set at 5
gc/rxn, at which point 67% of technical replicates were positive (Table C.8) The number of
true unamplified values was also determined prior to substitution. For normalization pur-
poses only, all samples that were below the detection limit for the N1 assay were divided
by the upper quartile value for that biomarker within each location instead of the measured
value, such that when N1 values below the detection limit were normalized, all values were
equal. Next, outlier testing was performed using a two-sided Grubbs Test (alpha= 0.05;
scikit-learn v0.22.post1). Raw Cq values that did not pass scikit-learn Grubbs test were
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removed from further analysis. Next, Cq values were combined by calculating the average
of the remaining values. Finally, the individual standard curve information was determined
(Table C.4) for validation after outlier assessment, but Cq values were converted to quan-
tities (gene copies per reaction) using the master standard curves (Table C.4). Individual
standard curves ranged from 83.2% to 97.8% and R2 ranged from 0.974 to 0.999 (Table
C.4). NTCs only amplified for the SOC assay and they amplified far outside the range of
the standard curve (Cq of the NTCs= 38 and Cq of the bottom of the standard curve =
29). qPCR quantities were converted to gene copies per mL using the weight-based volume
of the wastewater samples and the elution volume after the 4S extraction. For samples with
biological replicates (Table 4.1), the geometric mean and standard deviation of the biological
replicates were calculated (SciPy v1.4.1) and used to plot points and error bars respectively.

Clinical testing and population data, continued

For daily new cases from locations S, K, A, and N, values below 11 new cases per day
were masked by public health departments to maintain confidentiality of the contributing
population and substituted at 5.5 cases for further analysis (Figure 4.3). For Location S,
daily new case data (masked) and seven-day moving averages were provided (unmasked
because all values were >11). For location K, daily new case data (masked) were provided,
and seven-day moving averages of daily new cases were then calculated. Due to the low
number of cases in locations A and N, most of the daily new case data were masked and
are not shown. For location A, seven-day moving averages (masked) were provided and, for
location N, fourteen-day moving averages (masked) were provided. These moving averages
of new COVID-19 cases per day were divided by the sewershed population (daily per capita
cases) (Table 4.1). Population data were provided by East Bay Municipal Utility District
for locations S, A, and N. Population data for location K was provided by the Contra Costa
County Public Health Department.

For San Quentin Prison (location Q), COVID-19 clinical data were obtained from the Cal-
ifornia Department of Corrections and Rehabilitation open data portal1 (Table 4.1). These
data included TotalConfirmed, defined as the cumulative number of patients with a positive
COVID-19 result, and TotalActive, defined as the TotalConfirmed minus cases resolved due
to death, release, or case resolution. A resolved case was defined on the open data portal as
either 1. The case was closed as recovered or resolved, 2. The Public Health case surveillance
system confirmed and documented that the patient was released from isolation in the past,
and 3. The date the case was closed is in the past. The data provided correspond to the
clinical reporting date. TotalConfirmed was used to calculate new cases reported each day.
TotalActive was used to estimate the active cases on each day. Population and prison ca-
pacity data were found in population reports2 and were divided by by population (estimated
incidence and prevalence, respectively). No data were masked by the California Department

1https://data.ca.gov/dataset/cdcr-population-covid-19-tracking
2https://www.cdcr.ca.gov/research/population-reports-2/
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of Corrections and Rehabilitation for location Q, but instances of 0 were subbed at half of 1
case for data analysis (to compare to masked data) and log-scale plotting (Figure 4.4).

C.2 Supplemental figures and tables

Table C.1: RT-qPCR reaction conditions for each assay. All reaction volumes were 20 µL.

reaction
component

duplexed
N1-Xeno

(mM)

BCoV
(mM)

SOC
(mM)

crAss-
phage
(mM)

TaqMan Fast
Virus 1-Step
Master Mix

1x 1x 1x 1x

primer F 0.5 0.9 0.5 0.5
primer R 0.5 0.9 0.5 0.5

probe 0.125 0.25 0.125 0.125

Xeno assay
proprietary

(0.8 µL/rxn)
- - -

Table C.2: RT-qPCR thermocycling conditions for SARS-CoV-2 N1, crAssphage, BCoV,
and SOC assays.

reaction cycling
step

temperature
(◦C)

time
(minutes : seconds)

UNG incubation 25 2:00
RT step 50 15:00

polymearse
activation

95 2:00

45 cycles
95 0:03
55 0:30
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Table C.3: qPCR assay information for the SARS-CoV-2 nucleocapsid N gene (N1), the
bovine coronavirus transmembrane protein gene (BCoV), and crAssphage 056 (crAssphage)

gene
target

type of
sequence

(length; accession)

sequence
(5’ -> 3’)

SARS-CoV-2
N1

forward primer GACCCCAAAATCAGCGAAAT

reverse primer TCTGGTTACTGCCAGTTGAATCTG

probe FAM-ACCCCGCATTACGTTTGGTGGACC- ZEN/IBFQ

amplicon
(72 bp; MN908947.3)

GACCCCAAAATCAGCGAAATGCACCCCGCATTACGT
TTGGTGGACCCTCAGATTCAACTGGCAGTAACCAGA

VetMaxTM

XenoTM

internal
positive
control

forward primer proprietary

reverse primer proprietary

probe proprietary

amplicon proprietary

BCoV

forward primer CTGGAAGTTGGTGGAGTT

reverse primer ATTATCGGCCTAACATACATC

probe FAM-CCTTCATATCTATACACATCAAGTTGTT- ZEN/IBFQ

amplicon
(85 bp; AF39154)

CTGGAAGTTGGTGGAGTTTCAACCCAGAAA
CAAACAACTTGATGTGTATAGATATGAAGGG

AAGGATGTATGTTAGGCCGATAAT

crAssphage

forward primer
056F1

CAGAAGTACAAACTCCTAAAAAACGTAGAG

reverse primer
056R1

GATGACCAATAAACAAGCCATTAGC

probe
056P1

FAM-AATAACGATTTACGTGATGTAA-ZEN/IBFQ

amplicon
(126bp; MT006214.1)

CAGAAGTACAAACTCCTAAAAAACGTAGAGGTA
GAGGTATTAATAACGATTTACGTGATGTAACTCG

TAAAAAGTTTGATGAACATACTGATTGTAATAAAG
CTAATGGCTTGTTTATTGGTCATC

SOC

forward primer CCACCAAAGTGGGCGATAAA

reverse primer GGTGCCATTCGCCTCAATAA

probe FAM/TGGCGGTGAGGAAGTTTGGAAAGA/ZEN/IBFQ

amplicon
(89 bp, NA)

CCACCAAAGTGGGCGATAAAGGCAGCACCCGTTT
ATTTGGCGGTGAGGAAGTTTGGAAAGATAGCCCG

ATTATTGAGGCGAATGGCACC
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Table C.4: All RT-qPCR plate-specific standard curves after outlier assessment for the N1
assay throughout the study.

plate id
linear

dynamic
range

slope y-intercept R2 PCR
efficiency

min Cq
of NTC triplicates

87 6 -3.8 40.31 0.9928 0.832 negative
88 7 -3.4 39.21 0.9989 0.967 negative
92 7 -3.56 39.69 0.9921 0.91 negative
93 7 -3.42 40.47 0.9839 0.962 negative
94 7 -3.44 40.6 0.9968 0.954 negative
95 7 -3.42 38.91 0.9976 0.962 negative
96 7 -3.46 39.28 0.9992 0.945 negative
99 7 -3.54 40.09 0.9954 0.915 negative
100 7 -3.51 39.56 0.9944 0.927 negative
101 7 -3.57 40.49 0.9964 0.905 negative
102 7 -3.38 38.79 0.9919 0.978 negative
127 7 -3.65 40.35 0.993 0.879 negative

Table C.5: Master standard curve parameters (calculated after outlier assessment) and the
values substituted for each assay for samples below the qPCR limit of detection.

target slope
y-

intercept

substitution for
BLoD samples
(gc/rxn, Cq)

min
(gc/rxn; Cq)

max
(gc/rxn; Cq)

PCR
efficiency

R2

N1 -3.48 39.78 2.5, 38.39 5, 37.35 1e+05, 22.4 0.94 0.986
SOC -3.52 42.02 5000, 29.01 10000, 27.95 1e+10, 6.85 0.92 0.997

BCoV -3.83 47.27 50, 40.76 100, 39.61 1e+08, 16.63 0.82 0.996

crAss-
phage

-3.56 43.85 500, 34.24 1000, 33.17 1e+09, 11.81 0.91 0.996
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Table C.8: Evidence for the qPCR limit of detection for the N1 assay which was chosen as
5 gene copies per reaction. This table includes all N1 standard curves run throughout the
study and four additional extended standard curves with quantities below 5 gene copies per
reaction. All standard curves were processed in triplicate.

standard curve quantity
(gene copies per reaction)

fraction
of positive
replicates

total number
of replicates

0.312 0.08 12
0.625 0.08 12
1.25 0.25 12
2.5 0.50 12
5 0.67 54
10 0.90 51
20 0.98 54
100 0.98 54
1000 1 54
10000 1 54
100000 0.98 54
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Figure C.1: (A) Residual plots for Lowess bandwidth parameter (α; column labels) deter-
mination for location K where the bandwidth parameter increases from inclusion of 1 data
point (far left) to inclusion of all data points (far right) in each local regression for unnormal-
ized N1 (top) and crAssphage-normalized N1 (bottom). The value of α that minimized the
residual was selected (red boxes). (B) Visualization of how bandwidth parameter affected
the Lowess trendline for location K.
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Figure C.2: (A) Residual plots for Lowess bandwidth parameter (α; column labels) determi-
nation for location S where the bandwidth parameter increases from inclusion of 1 data point
(far left) to inclusion of all data points (far right) in each local regression for unnormalized N1
(top) and crAssphage-normalized N1 (bottom). The value of α that minimized the residual
was selected (red boxes). (B) Visualization of how bandwidth parameter affected the Lowess
trendline for location S. (C) The Lowess residual of two points for crAssphage-normalized
N1 obscured trends and were removed for selection of the bandwidth parameter in part A.
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Figure C.3: (A) Residual plots for Lowess bandwidth parameter (α; column labels) deter-
mination for location Q where the bandwidth parameter increases from inclusion of 1 data
point (far left) to inclusion of all data points (far right) in each local regression for unnormal-
ized N1 (top) and crAssphage-normalized N1 (bottom). The value of α that minimized the
residual was selected (red boxes). (B) Visualization of how bandwidth parameter affected
the Lowess trendline for location Q.
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Figure C.4: (A) Residual plots for Lowess bandwidth parameter (α; column labels) deter-
mination for location A where the bandwidth parameter increases from inclusion of 1 data
point (far left) to inclusion of all data points (far right) in each local regression for unnormal-
ized N1 (top) and crAssphage-normalized N1 (bottom). The value of α that minimized the
residual was selected (red boxes). (B) Visualization of how bandwidth parameter affected
the Lowess trendline for location A.
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Table C.9: By location, total number of biological replicates and detectable portion compared
to the percent below the N1 limit of detection

location
total number of

biological replicates
number of detectable
biological replicates

percent of biological
replicates below

the limit of detection

A 17 10 41.2
K 39 32 17.9
N 18 14 22.2
Q 11 5 54.5
S 22 22 0

total 107 83 22.4
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Figure C.5: Comparison of geocoded COVID-
19 clinical testing results (top) to wastew-
ater SARS-CoV-2 N1 signal (middle), and
crAssphage-normalized signal (bottom) at lo-
cation K from June to September 2020.
COVID-19 clinical testing results are the
seven-day moving averages of daily per capita
cases with data aligned by episode date (yel-
low line), result date (green line), or sam-
ple collection date (blue line), with semi-
transparency to visualize overlapping sections.
Wastewater SARS-CoV-2 N1 signal is aligned
by sample collection date (lines are the most
optimal Lowess trendlines).



APPENDIX C. SUPPORTING INFORMATION FOR CHAPTER 4 138

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

K

S

N

A

Q
Lo

ca
tio

n

log10(N1 gc/mL)

1

2

3

(a)

20
20

-05
-01

20
20

-06
-01

20
20

-07
-01

20
20

-08
-01

20
20

-09
-01

K

S

N

A

Lo
ca

tio
n

log10(N1 gc/mL)

0.4

0.8

1.2

1.6

(b)

Figure C.6: Heatmap visualization of most optimal Lowess trendlines for SARS-CoV-2 N1
signal in wastewater by location (A) all locations (B) without location Q.
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Figure C.7: Heatmap visualization of seven day moving average of COVID-19 daily per
capita new cases by location (A) all locations (B) without location Q.
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Figure C.8: (A) The percent of amplified technical replicates for each value of the moving
average of daily per capita cases (x-axis). Each biological replicate had three technical
replicates, so the horizontal, dashed lines at 0%, 33%, 66%, and 100% show the range of
values associated with each biological replicate that was associated with a unique x value.
One or more biological replicates were associated with each moving average case value. The
solid vertical line represents the estimated WBE clinical detection limit determined without
masked data (2.4 cases in 100,000 people; Figure 4.5). (B) The cumulative percentage of
amplified wastewater technical replicates was calculated by ranking the moving averages of
daily per capita cases (including masked clinical case values; x-axis) from highest to lowest
and calculating the fraction of qPCR replicates that amplified cumulatively (y-axis) for each
value of x (same methodology as in Figure 4.5). In both plots, the dashed line represents
the daily new cases per capita value above which 95% of wastewater technical replicates
amplified (including masked values; 2.2 cases in 100,000 people), and shapes denote which
daily per capita case values were masked.
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Figure C.9: COVID-19 tests administered per capita (%) during the sampling period for two
locations: K and Q, where dashed lines are plotted at the mean percentage of the population
tested for the sampling period.
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