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LYING FOR STRATEGIC ADVANTAGE: RATIONAL AND

BOUNDEDLY RATIONAL MISREPRESENTATION OF INTENTIONS

by Vincent P. Crawford*

24 September 2001

"Lord, what fools these mortals be!"—Puck, A Midsummer Night’s Dream, Act 3

"You may fool all the people some of the time; you can even fool some of the people all

the time; but you can’t fool all of the people all the time."—Abraham Lincoln

"Now give Barnum his due."—John Conlisk (2001)

Abstract

Starting from Hendricks and McAfee's (2000) example of the Allies' decision to

feint at Calais and attack at Normandy on D-Day, this paper models misrepresentation of

intentions to competitors or enemies. Allowing for the possibility of bounded strategic

rationality and rational players' responses to it yields a sensible account of lying via

costless, noiseless messages. In many cases the model has generically unique pure-

strategy sequential equilibria, in which rational players exploit boundedly rational

players, but are not themselves fooled. In others, the model has generically essentially

unique mixed-strategy sequential equilibria, in which rational players' strategies protect

all players from exploitation.

Keywords: lying, misrepresentation of intentions, preplay communication,

noncooperative games, conflict (JEL C72, D72, D80)

*Department of Economics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California,
92093-0508. I am grateful to John Conlisk, Miguel Costa-Gomes, Herb Newhouse, Joel Sobel, and Kang-
Oh Yi for helpful advice; and to the National Science Foundation for research support.
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Lying for strategic advantage about planned actions, or intentions, is a common

feature of economic and political as well as military life. Such lying frequently takes the

extreme form of active misrepresentation, as opposed to less than full, honest disclosure.

Examples range from the University of California's three (!) consecutive "last chance"

voluntary early retirement incentive programs in the early 1990s; ex-President George

Bush's regrettably memorable 1988 campaign promise, "Read my lips: no new taxes"; the

universal practice of lying about planned currency devaluations; Nathan Rothschild's

pretense of having received early news of a British defeat at Waterloo; and Hitler's 1939

non-aggression pact with Stalin.1 In other cases, the effects of active misrepresentation

are duplicated by tacitly exploiting widespread misperceptions, as in accelerationist

monetary policy; periodic but unpredictable temporary investment tax credits, or

regularizations of the status of illegal immigrants; the failure to disclose known product

safety hazards; and deceptive accounting practices in the private and the public sector.2

These examples share two common features. All involve misrepresentation via

agreements, statements, or non-statements that in themselves have little or no direct costs.

And all involve situations in which the parties have predominantly conflicting interests,

so that successful deception benefits the deceiver only at the expense of the deceived.

Nonetheless, the misrepresentation often succeeds. In fact, in many of the examples the

public has so completely internalized the logic of misrepresentation that criticism of the

gullibility of those deceived is as common as criticism of the misrepresentation.3

Theory lags behind the public's intuition. The examples' common features suggest

that, to a first approximation, they can be modeled as communication via costless

messages ("cheap talk") in a zero-sum two-person game. But in such a model costless

messages must be ignored in equilibrium: If a player could benefit by responding to the

1Roland Benabou and Guy Laroque (1992) give several interesting examples concerning lying to
manipulate financial markets, including Rothschild's, which allowed him to make large clandestine
purchases of British government securities at depressed prices. Examples of lying in international politics
are easy to find, and it is probably no accident that there is a board game called Diplomacy in which
success depends on forming unenforceable agreements with other players and being the first to break them.
2Paul Krugman (2001) discusses the current Bush administration's use of "creative" accounting to make the
2001 tax cut appear feasible without dipping into the Social Security surplus, an example that was highly
topical before the question was made moot by the terrorist attacks of 11 September 2001.
3Mike Royko's (1988) prescient view of Bush's "Read my lips" promise is an entertaining example. An
official who does not lie about his country's plan to devalue its currency risks being removed from office, if
not institutionalized. Other examples are explicitly covered by proverbs such as "All's fair in love and war."
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other player's message, his response would hurt the other player, who would therefore do

better to make his message uninformative. Thus, in equilibrium no information is

conveyed by the message, but neither is anyone fooled by it.4

This result is appealing in its simplicity, but it leaves us with no systematic way to

think about an important phenomenon. This paper seeks to provide one by proposing a

way to model bounded strategic rationality and rational players' responses to it, and using

it to analyze a simple model of misrepresentation of intentions to competitors or enemies.

My analysis is inspired in part by Kenneth Hendricks and R. Preston McAfee's

(2000; henceforth "HM") analysis of misrepresentation of intentions via what they call

"feints" or "inverted signaling." HM's primary interest, like mine, is in economic and

political applications; but they motivate their analysis by Operation Fortitude, the Allies'

successful attempt to mislead the Germans about their intention to land in Normandy

rather than the Pas de Calais (the obvious choice ex ante) on D-Day, 6 June 1944, and I

will follow them in this.5 Their model is a zero-sum two-person game. First the attacker

chooses (possibly randomly) between two possible locations and allocates a fixed budget

of force between them. Next, the defender privately observes a binary signal whose

probability distribution depends on the attacker's allocation, and allocates (possibly

randomly) his own budget of force between the two locations. The attack location and

players' force allocations then determine their payoffs. The attacker's allocation is like a

noisy message to the defender, but as in other models of costly signaling, its large direct

payoff implications sometimes allow equilibria in which it is not ignored.

HM assume that the payoff function and the conditional probability distribution of

the signal are both symmetric across locations. They show, under plausible additional

assumptions, that equilibrium in their game must involve some attempt by the attacker to

misrepresent his intentions (allocating force to both locations with positive probability)

4See Vincent Crawford and Joel Sobel's (1982) and Joseph Farrell's (1993) analyses of strategic
communication of private information and intentions. Crawford and Sobel's equilibria have no active
misrepresentation, only intentional vagueness, taking the extreme form of no transmission if the Sender's
and Receiver's preferences differ enough to make the game effectively zero-sum; Farrell coined the term
"babbling" for such equilibria. Farrell and Matthew Rabin (1996) and Crawford (1998) survey the theory.
5The deception was so successful that the Germans kept 19 divisions in Calais for several critical days after
D-Day. HM summarize the history; see also Gordon Harrison (1951, especially Appendix A) and Anthony
Kemp (1994). HM also give several examples of economic and political misrepresentation, in which firms
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and that his attempt succeeds (inducing the defender to allocate force to both locations

with positive probability). For, if the defender ignored his observation of the signal, the

attacker would assign all of his force to his intended attack location; but if the defender

anticipated this, the attacker would prefer to allocate some force to the other location.

HM identify equilibria in their model in two cases, distinguished by the signal's

informativeness. When the signal is not very informative, they identify "full-defense"

equilibria, in which the attacker deterministically allocates most of his force to one attack

location but randomizes the location itself, and the defender allocates all of his own force

deterministically, to the location the signal suggests is more likely to be attacked. When

the signal is more informative, they identify "split-defense" equilibria, in which the

attacker randomizes his allocation and attack location in such a way that the defender can

draw no inference from the signal, and the defender also randomizes his allocation. In

these equilibria, with positive probability the attacker allocates more than half his force to

the location he does not attack. HM also obtain intriguing comparative statics results,

showing that when the signal is not very informative a reduction in noise hurts the

attacker; but that when it is more informative, a reduction in noise benefits the attacker.

HM stress that their explanation of misrepresentation depends on the noisiness of

the signal: "With perfect observability, feints differ from the standard analysis in

inconsequential ways. In particular, were the Germans to observe the actual allocation of

allied forces, it would not have been possible for the Allies to fool the Germans. Thus,

imperfect observation is a critical element for modeling feints."

HM's analysis makes significant progress in understanding the phenomenon of

misrepresentation, but it has three troubling aspects. I shall describe them from the point

of view of Operation Fortitude, although they are equally troubling in other applications.

First, the cost to the Allies of faking the preparations for an invasion of Calais was

small compared to that of the preparations for the actual invasion of Normandy, hence

more like cheap talk than HM's identification of feints with sizeable fractions (sometimes

more than half) of the attacker's force would suggest. The Germans knew as well as the

Allies that it was feasible to fake, or conceal, invasion preparations at no great cost. In a

distort their exploration or bidding strategies to mislead competitors, political candidates campaign in areas
they believe are unimportant to divert their opponents' efforts from areas they consider crucial, and so on.
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standard equilibrium analysis, they would then rationally ignore both the faked evidence

that the attack would be at Calais and the lack of evidence that it would be at Normandy.

But they didn't—and Allied planners didn't expect them to, with anything like certainty.

Second, HM's analysis does not reflect the asymmetry between Normandy and

Calais that is arguably the most salient feature of Operation Fortitude.6 Why not feint at

Normandy and attack at Calais instead, particularly if the deception has a fair chance of

success? Allied planners rejected Calais in favor of Normandy early in their planning,

mainly (but not entirely) because the proximity to England that made it the obvious attack

location was also obvious to the Germans, who were expected to defend it so heavily that

on balance, Normandy would be preferable (Harrison (1951)). Neither Allied planners'

choice of Normandy nor the fact that they did not explicitly randomize it is inconsistent

with HM's equilibria per se, because they assign positive probabilities to both attack

locations and in a mixed-strategy equilibrium in beliefs, a player need not bear any

uncertainty about his own decision (Robert Aumann and Adam Brandenburger (1995)).

But Allied planners were not indifferent between the locations, and an explanation that

treats their choice as an accidental feature of the history may miss something important.

Finally, an analysis of equilibrium in a game without precedent—of which

Operation Fortitude and D-Day are perhaps the quintessential example—implicitly rests

on the assumption that players' rationality and beliefs are at least mutual knowledge

(Aumann and Brandenburger (1995, Theorem A)). These assumptions are more than

usually strained in HM's model, whose equilibria involve a delicate balance of wholly or

partly mixed strategies that depend on the details of the signal distribution.

This paper shows that a sensible account of misrepresentation of intentions can be

given, in a simpler game, and with costless and noiseless messages, by allowing for the

possibility of bounded strategic rationality. The model and analysis fully reflect the low

message costs, the importance of payoff asymmetry across actions, and the difficulty of

justifying a delicate equilibrium analysis of a game without precedent just noted.

The model is based on the class of zero-sum two-person perturbed Matching

Pennies games in Figure 1. Two players, a Sender (analogous to the Allies) and a

6HM"s only reference to the asymmetry is to note that when their signal is not very informative, if the
attacker's payoffs make one location easier to attack, that location is more likely to be attacked.
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Receiver, choose simultaneously between two pure actions, U for Up (analogous to

attacking at Calais) or D for Down for the Sender and L for Left (analogous to defending

Normandy) and R for Right for the Receiver. I assume throughout that a > 1, reflecting

the lesser difficulty of an unanticipated invasion of Calais. Before playing this underlying

game, the Sender sends the Receiver a costless, non-binding, noiseless message, u or d,

about his intended action, with u (d) representing action U (D) in a commonly understood

language (Farrell (1993)). Players then choose their actions simultaneously. The structure

of the game is common knowledge. These games differ from HM's in having costless and

noiseless messages separate from the attacker's force allocation, simultaneous, 0-1

allocations of force to locations, and a payoff asymmetry across actions.7

Receiver

Left Right

Up
–a

a
0

0
Sender

Down
0

0
–1

1

Figure 1. The underlying game

In a standard equilibrium analysis of this game, in any equilibrium (subgame-

perfect or not) the Sender's message must be uninformative, in that the probability that he

plays U conditional on his message is independent of the message; and the Receiver must

ignore it, in the sense that the probability that he plays L is independent of the Sender's

message.8 The underlying game must therefore be played according to its unique mixed-

strategy equilibrium, in which the Sender plays U with probability 1/(1+a) and the

Receiver plays L with probability 1/(1+a), with respective expected payoffs a/(1+a) and

–a/(1+a).9 Thus, communication is ineffective and misrepresentation cannot occur.

7Because each side's forces were actually somewhat dispersed, the discrete force allocations in the present
model should be thought of as representing principal attack or defense locations.
8The Sender can make his message uninformative by choosing a strategy in which he always sends the
same message, or a strategy in which he randomizes his message independently of his action.
9This equilibrium illustrates a strategic principle noted by John von Neumann and Oskar Morgenstern
(1953 [first edition 1944 (!)], pp. 175-176) in that, counterintuitively, the Sender's probability of playing U
is, like the Receiver's probability of playing L, a decreasing function of a. Thus, in Operation Fortitude, the
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The closest precedents for a non-equilibrium analysis of this kind of game are

Farrell (1988) and Rabin (1994), who study preplay communication about intentions via

cheap talk, mainly in games in which players have substantial common interests, using

augmented notions of rationalizability.10 The model proposed here is similar in spirit, but

it relaxes the assumption of equilibrium in a different way, imposing more structure on

players' behavior by allowing for the possibility that they use simple, boundedly rational

decision rules. The analysis is otherwise completely standard.

Specifically, I assume that each player role is filled randomly from a separate

distribution of decision rules, or types, that assigns positive probability to certain

boundedly rational, or Mortal, types as well as to a Sophisticated type that is a natural

extension of the ideal of a fully strategically rational player to this setting. Players do not

observe each other's types, but the structure of the game, including the type distributions,

is common knowledge. Sophisticated players satisfy the usual mutual knowledge of

beliefs and rationality assumptions with respect to each other, and they can also use their

knowledge of the structure to predict the probability distributions of Mortal players'

strategies.11 Mortal players can be thought of as rational expected-payoff maximizers, if

desired, but their beliefs about others' strategies generally differ from equilibrium beliefs.

The possibility of interacting with Mortal players fundamentally alters the game

from Sophisticated players' point of view. Because Mortal players' strategies are

determined independently of each other's and Sophisticated players' strategies, as

explained below, they can be treated as exogenous, allowing the analysis to focus on a

reduced game between possible Sophisticated players in each role.12 In this game, a

Sophisticated Sender's incentives to misrepresent his intentions weigh the equilibrium

Germans would ignore all messages and be more likely to defend Calais than Normandy. Crawford and
Dennis Smallwood (1984) analyze the comparative statics of such payoff changes in general two-person
zero-sum games with mixed-strategy equilibria, identifying the general principle that underlies this result.
10See also Miguel Costa-Gomes (2002), who extends Rabin's analysis to interpret experimental data.
11The Mortal types are adapted to communication games from the types based on iterated best responses in
Dale Stahl and Paul Wilson (1995) and Costa-Gomes, Crawford, and Bruno Broseta (2001). Andreas
Blume et al. (1998, 2001) find evidence of some such types in experiments with communication games.
The Sophisticated types are adapted from the Sophisticated type in Costa-Gomes et al. (2001).
12An equilibrium analysis of the reduced game generalizes standard equilibrium analysis of the original
game, in that common knowledge that all players are Sophisticated would make their beliefs common
knowledge and therefore the same, and so in equilibrium (Aumann and Brandenburger (1995)). Similar
techniques are used by Colin Camerer, Teck-Hua Ho, and Juin-Kuan Chong (2002) to analyze a reduced
game with sophisticated and adaptive learners, elucidating a phenomenon they call "strategic teaching."
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response of a Sophisticated Receiver against those of various types of Mortal Receivers,

of whom some invert the Sender's message and others believe it. Thus the model adopts a

view of human nature close to Lincoln's, which is more nuanced and arguably more

realistic than Puck's. The reduced game is no longer zero-sum, because a Sophisticated

player's expected payoffs are influenced by possible interaction with a Mortal opponent,

whose payoff may differ from a Sophisticated opponent's. Its messages are no longer

cheap talk, because a Sophisticated Sender's message directly influences his expected

payoff via Mortal Receivers' responses. Finally, the reduced game has incomplete

information, and a Sophisticated Receiver can sometimes draw inferences from a

Sender's message about his type.13 These differences suggest that an analysis with some

Mortal players may differ in interesting ways from a standard equilibrium analysis.

As one might expect, most features of the model's equilibria depend on the

relative frequencies of Sophisticated and Mortal players in each role, but the possibility

of Mortal players affects Sophisticated players' behavior in perhaps unexpected ways.

When the probabilities of a Sophisticated Sender and Receiver are high relative to

the payoff advantage of an unanticipated attack at Calais over one at Normandy, the

reduced game has a generically essentially unique sequential equilibrium in mixed

strategies, similar to the standard analysis's babbling message followed by mixed-strategy

equilibrium in the underlying game. In this case Sophisticated players' equilibrium mixed

strategies offset each other's gains from fooling Mortal players, and in each role,

Sophisticated players have the same expected payoffs as their Mortal counterparts.

Further, all types' expected payoffs are the same as in the standard analysis.

By contrast, when the probabilities of a Sophisticated Sender and Receiver are

low relative to the payoff advantage of Calais, the reduced game has a generically unique

sequential equilibrium in pure strategies.14 In these equilibria a Sophisticated Receiver

13Only Sophisticated players play an active strategic role, but Mortal players' types, which determine their
strategies, influence Sophisticated players' equilibrium strategies and welfare. The role of Mortal players in
the analysis resembles Philip Reny's (1992) notion of explicable equilibrium, which models "trembles" via
"complete theories"; here, however, the trembles are not eliminated by passing to the limit. The preceding
observations suggest that the analysis is robust to small-to-moderate violations of its basic assumptions.
14Generic uniqueness of sequential equilibrium is unusual in signaling games, which normally have both
essential nonuniqueness and, in the case of cheap-talk games, inessential nonuniqueness due to the
ambiguity of the meaning of costless messages in equilibrium (Crawford and Sobel (1982)). My analysis
avoids this ambiguity because I assume that Mortal Receivers understand the literal meanings of the
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can predict a Sophisticated Sender's action, and vice versa; thus their communication is

"disciplined" in the sense of Farrell and Robert Gibbons (1989). In the present model,

however, the discipline comes from the implicit presence of Sophisticated players' Mortal

alter egos, rather than from real other players. Further, the Sender's message plays a

different role, conveying information about the Sender's type rather than his intentions.

When the probability of a Sophisticated Sender is relatively low and the

probability of a Mortal Receiver who believes the Sender's message is not too high, the

model has a unique sequential equilibrium in which a Sophisticated Sender sends

message u but plays D—like feinting at Calais and attacking at Normandy—and both a

Sophisticated Receiver and a Mortal Receiver who believes the Sender's message play

R—like defending Calais. In such an equilibrium, a Sophisticated Receiver plays R

because in the parameter configurations that support it, being "fooled" at a unit cost of 1

by a Sophisticated Sender is preferable to being "fooled" at a unit cost of a by both kinds

of Mortal Sender. There are also configurations with unique sequential equilibria in

which a Sophisticated Sender sends message d but plays U, but it is argued below that the

conditions for the equilibria that resemble Operation Fortitude are more realistic.

The explanation of Operation Fortitude these equilibria suggest is less subtle, and

perhaps more credible, than HM's explanation: Sophisticated Allied planners (or Mortal

planners who make a point of lying to Germans) conceal their preparations for invading

Normandy and fake preparations for invading Calais, knowing that the cost of faking is

low; that the Germans may be the type of Mortal who can be fooled this way; and that

even Sophisticated Germans prefer to defend Calais because they think the Allies are

probably Mortal, and if so will attack at Calais. Mortal Germans who believe the Allies'

messages are fooled because they are too literal-minded (or perhaps too clever) to see

through the deception.15 Sophisticated Germans see through the deception, but still prefer

to defend Calais, even at the risk of being "fooled" by possibly Sophisticated Allies.

Sender's messages and other players know this. It avoids essential nonuniqueness because Mortal Senders
ensure that both messages have positive probability, and Senders' and Receivers' interests are opposed.
15As explained below, Mortal Germans are fooled if they believe they are an even number of steps ahead of
the Sender, in the hierarchy of iterated-best-response types. Other types of Mortal German are not fooled
because they believe they are an odd number of steps ahead; but Sophisticated Allied planners know that
(in this case) such types are less likely than Mortal Germans who will be fooled by feinting at Normandy.
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Importantly for applications, in this explanation Sophisticated players' sequential

equilibrium strategies (pure or mixed) depend only on the payoffs and population

parameters that reflect simple, portable facts about human behavior that could be learned

in many conflict situations, without regard to the quality of the analogy with the present

situation (fortunately, for applications as unprecedented as Operation Fortitude). Further,

in all the model's pure-strategy sequential equilibria, Sophisticated players' strategies are

their unique extensive-form rationalizable strategies, identifiable by at most three steps of

iterated conditional dominance (Makoto Shimoji and Joel Watson (1998)).

With regard to welfare, Sophisticated players in either role by definition do at

least as well in equilibrium as their Mortal counterparts. In the mixed-strategy sequential

equilibria that arise when the probabilities of a Sophisticated Sender and Receiver are

both relatively high, in each role Sophisticated and Mortal players have the same

expected payoffs: Perhaps surprisingly, the prevalence of Sophisticated players fully

protects Mortal players from exploitation. By contrast, in pure-strategy sequential

equilibria (and in some mixed-strategy sequential equilibria), Sophisticated players in

either role do strictly better than their Mortal counterparts. Their advantage comes from

their ability to avoid being fooled (except by choice, when it is the lesser of two evils)

and from Sophisticated Senders' ability to choose which type(s) of Receiver to fool.

These results suggest that an adaptive analysis of the dynamics of the type

distribution, in the style of Conlisk (2001), would show that Sophisticated and Mortal

players can coexist in long-run equilibrium whether or not Sophisticated players have

higher costs, justifying the assumptions about the type probabilities maintained here.16

The rest of the paper is organized as follows. Section I completes the specification

of the model by describing the behavior of Mortal types and showing how to construct

the reduced game. Section II characterizes the model's sequential equilibria, showing how

they depend on the payoffs and the type distribution. Section III compares Mortal and

Sophisticated Sender and Receiver types' equilibrium welfares and briefly discusses an

adaptive model of the evolution of the type distribution. Section IV discusses related

work, and Section V is the conclusion.

16I am grateful to Kang-Oh Yi for this observation.



11

I. The Model

This section completes the specification of the model by describing Mortal types'

behavior, and shows how to construct the reduced game between Sophisticated players.

A Sender's pure strategies are (message, action|sent u, action|sent d) = (u,U,U),

(u,U,D), (u,D,U), (u,D,D), (d,U,U), (d,U,D), (d,D,U), or (d,D,D); and a Receiver's are

(action|received u, action|received d) = (L,L), (L,R), (R,L), or (R,R). Table 1 lists some

plausible Mortal Sender and Receiver types, with their Sophisticated counterparts.17

Sender type Behavior (b.r. ≡ best response) message, action|sent u, action|sent d
Credible ≡ W0 tells the truth u,U,D
W1 (Wily) lies (b.r. to S0) d,D,U
W2 tells truth (b.r. to S1) u,U,D
W3 lies (b.r. to S2) d,D,U
Sophisticated b.r. to population depends on the type probabilities

Receiver type Behavior action|received u, action|received d
Credulous ≡ S0 believes (b.r. to W0) R, L
S1 (Skeptical) inverts (b.r. to W1) L, R
S2 believes (b.r. to W2) R, L
S3 inverts (b.r. to W3) L, R
Sophisticated b.r. to population depends on the type probabilities

Table 1. Mortal and Sophisticated Sender and Receiver types

Like most boundedly rational strategic decision rules, these Mortal types use step-

by-step procedures that generically determine unique, pure strategies, and avoid

simultaneous determination of the kind used to define equilibrium. In the words of

Reinhard Selten (1998, p. 433), "Basic concepts in game theory are often circular in the

sense that they are based on definitions by implicit properties….Boundedly, [sic] rational

strategic reasoning seems to avoid circular concepts. It directly results in a procedure by

which a problem solution is found. Each step of the procedure is simple, even if many

case distinctions by simple criteria may have to be made." Mortal players' strategies are

therefore determined independently of each other's and Sophisticated players' strategies.

This independence allows a simple characterization of the implications of

bounded rationality. Restricting attention to the Mortal types in Table 1 for definiteness,
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note that a Wily Sender, Wj, with j odd always lies; I lump these Mortal Sender types

together under the heading Liars from now on. A Wily Sender with j even (including

Credible as an honorary Wily type, W0) always tells the truth; I lump these types together

under the heading Truthtellers. Similarly, a Skeptical Receiver, Sk, with k odd always

inverts the Sender's message, and a Skeptical Receiver with k even (including Credulous

as an honorary Skeptical type, S0) always believes it; I lump these Mortal Receiver types

together under the headings Inverters and Believers.18 Thus, the behavior of a Sender

population can be summarized by sl≡ Pr{Sender is a Liar}, st≡ Pr{Sender is a

Truthteller}, and ss ≡ Pr{Sender is Sophisticated}, where sl + st + ss = 1; and the behavior

of a Receiver population can be summarized by ri ≡ Pr{Receiver is an Inverter}, rb ≡

Pr{Receiver is a Believer}, and rs≡ Pr{Receiver is Sophisticated}, where ri + rb + rs = 1.

To avoid trivialities, I assume that these type probabilities are all strictly positive

in both populations. I also ignore nongeneric parameter configurations, and all "if and

only if" (henceforth "iff") statements should be interpreted in the generic sense.

Table 1 shows that, although Inverters and Believers always choose different

actions for a given message, its Mortal Sender types always play U on the equilibrium

path. This conclusion follows naturally from the fact that U yields the Sender higher

expected payoffs, other things equal; but it does not hold for all conceivable boundedly

rational Sender types. Nonetheless, I shall maintain it as a plausible simplifying

assumption; moderate violations would not significantly alter the results.

Because all Mortal Senders play U on the equilibrium path, Liars always send

message d and Truthtellers send message u. Thus, both messages always have positive

probability, and a Sophisticated Sender is always pooled with one Mortal Sender type.

After receiving a message for which a Sophisticated Sender's strategy specifies

playing U with probability 1, like Mortal Senders, a Sophisticated Receiver's best

response is R. But otherwise his best response may depend on his posterior probability or

belief, z, that the Sender is Sophisticated. If x is the message and y is a Sophisticated

17I assume for convenience that Credible Senders play u,U,D rather than d,U,D, even though both strategies
are truthful and both yield the Sender the same payoff, 0, if his message is always believed. Credible
Senders could be given a strict preference for u,U,D by perturbing payoffs slightly.
18That such types can be lumped together in this way illustrates a kind of paradox of bounded strategic
rationality, in that with a finite number of possibilities for guessing and outguessing, it is as bad to be too
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Sender's probability of sending message u, a Sophisticated Receiver's belief is determined

by Bayes' Rule: z ≡ f(x,y), where f(u,y) ≡ yss/(st+yss) and f(d,y) ≡ (1–y)ss/[(1–y)ss+sl].

Receiver

L,L L,R R,L R,R
u,U,U a(ri +rs), –a a(ri +rs), –a ari, 0 A ari, 0 B

u,U,D a(ri +rs), –a a(ri +rs), –a ari, 0 A' ari, 0 B'

u,D,U rb, –ast/(ss+st) rb, –ast/(ss+st) (rb +rs), –ss/(ss+ st) (rb +rs), –ss/(ss+st) Γ

u,D,D rb, –ast/(ss+st) rb, –ast/(ss+st) (rb +rs), –ss/(ss+ st) (rb +rs), –ss/(ss+st) Γ '

d,U,U a(rb + rs), –a arb, 0 ∆ a(rb +rs), –a arb, 0 Ε

d,U,D ri, –asl/(ss+sl) (ri + rs), –ss/(ss+sl) ri, –asl/(ss+sl) (ri +rs), –ss/(ss+sl) Ζ

d,D,U a(rb + rs), –a arb, 0 ∆ ' a(rb +rs), –a arb, 0 Ε'

Sender

d,D,D ri, –asl/(ss+sl) (ri + rs), –ss/(ss+sl) ri, –asl/(ss+sl) (ri +rs), –ss/(ss+sl) Ζ'

Figure 2. Payoff matrix of the reduced game between a Sophisticated Sender and Receiver

Receiver Receiver

L R L R

U –a
a(ri +rs)

0
ari

U –a
a(rb+rs)

0
arbSender

D –a(1–z)
rb

–z
(rb +rs)

Sender

D –a(1–z)
ri

–z
(ri +rs)

Figure 3a. "u" game following message u Figure 3b. "d" game following message d

Figure 2 gives the payoff matrix of the reduced game between a Sophisticated

Sender and Receiver, using these observations to derive Sophisticated players' expected

payoffs. If, for example, a Sophisticated Sender's strategy is u,U,D and a Sophisticated

Receiver's strategy is R,L, the former plays U and the latter plays R when he receives

message u. Thus, all Sender types play U, Inverters play L, Believers and Sophisticated

Receivers play R, a Sophisticated Sender's expected payoff is ari, and a Sophisticated

Receiver's is 0. If, instead, a Sophisticated Sender's strategy is u,D,U and a Sophisticated

much wilier, or more skeptical, than one's opponent as to be too much less wily, or skeptical. By contrast,
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Receiver's strategy is L,R, the former plays D and the latter plays L when he receives

message u. All other Sender types play U, Inverters play L, and Believers play R. A

Sophisticated Sender's expected payoff is rb; and a Sophisticated Receiver's, whose

posterior belief that the Sender is Mortal is 1– ss/(st + ss) ≡ st/(st + ss), is –ast/(st +ss).

Figure 3 gives the payoff matrices of the reduced "u" and "d" games following

messages u and d, as determined by a Sophisticated Receiver's belief, z ≡ f(x,y).

Because messages are costless, the only difference between type populations in

which the frequencies of Mortal Senders and Receivers are interchanged is which

message fools which type. Figure 2 reflects this symmetry, in that simultaneous

permutations of the probabilities of Liars and Truthtellers, and of Believers and Inverters,

yield an equivalent game. Figure 3's u and d games are identical except for interchanged

roles of ri and rb, because they differ only in whether Inverters or Believers are fooled.

II. Analysis

In this section I characterize the sequential equilibria of the reduced game, as

functions of the payoff a and the type probabilities. Sequential equilibrium combines the

standard notion of sequential rationality with consistency restrictions on players' beliefs.19

(E) d,U,U; R,R iff rb > ri, arb + ri > 1, and ri > 1/(1+a) (true iff rb > ri > 1/(1+a))
(E') d,D,U; R,R iff rb > ri, arb + ri > 1, and ri < 1/(1+a)
(Γ) u,D,U; R,R iff rb > ri, arb + ri < 1, rb > 1/(1+a), and ss < ast

(Γm) m,D,U; R,R iff rb > ri, arb + ri < 1, rb > 1/(1+a), and ss > ast

(Γ') u,D,D; R,R iff rb > ri, arb + ri < 1, rb < 1/(1+a), and ss < ast (true iff ri < rb < 1/(1+a))
(Γ'm) m,Mu,Md; Mu,Md iff rb > ri, arb + ri < 1, rb < 1/(1+a), and ss > ast

(B) u,U,U; R,R iff ri > rb, ari + rb > 1, and rb > 1/(1+a) (true iff ri > rb > 1/(1+a))
(B') u,U,D; R,R iff ri > rb, ari + rb > 1, and rb < 1/(1+a)
(Ζ) d,U,D; R,R iff ri > rb, ari + rb < 1, ri > 1/(1+a), and ss < asl

(Ζm) m,U,D; R,R iff ri > rb, ari + rb < 1, ri > 1/(1+a), and ss > asl

(Z') d,D,D; R,R iff ri > rb, ari + rb < 1, ri < 1/(1+a), and ss < asl (true iff rb < ri < 1/(1+a))
(Z'm) m,Mu,Md; Mu,Md iff ri > rb, ari + rb < 1, ri < 1/(1+a), and ss > asl

Table 2. Sequential equilibria of the reduced game
between a Sophisticated Sender and Receiver20

in Conlisk's (2001) model Tricksters always find a way to outwit Suckers, just as Puck does with mortals.
19Under my assumptions both messages always have positive probability, so zero-probability updating is
not an issue, and any notion that captures the idea of sequential rationality would yield the same results.
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The Greek capital letters in Figure 2 identify the strategy combinations for

Sophisticated players that are pure-strategy equilibria of the reduced game (sequential or

not) for some parameter configurations. Table 2 lists the sequential equilibria for those

configurations, and Figure 4 [end of the paper] graphs the configurations in (ri,rb)-space.

Proposition 1, proved in the Appendix, is the basic characterization result:

PROPOSITION 1: Unless either rb > ri, arb + ri < 1, and ss > ast, or ri > rb, ari + rb < 1,

and ss > asl, the reduced game has a generically unique sequential equilibrium in pure

strategies, in which a Sophisticated Sender's and Receiver's strategies are as given in

Table 2 and Figure 4. In these sequential equilibria, a Sophisticated Receiver's strategy is

R,R; and a Sophisticated Sender plays U (D) on the equilibrium path iff a max{rb,ri} +

min{rb,ri} > (<) 1 and sends message d (u) iff rb > (<) ri. Sophisticated players' sequential

equilibrium strategies are their unique extensive-form rationalizable strategies,

identifiable by at most three steps of iterated conditional dominance.

If, instead, either (i) rb > ri, arb + ri < 1, and ss > ast; or (ii) ri > rb, ari + rb < 1, and

ss > asl, the reduced game has a generically unique or essentially unique mixed-strategy

sequential equilibrium, in which a Sophisticated Sender's and Receiver's strategies are as

given in Table 2 and Figure 4. In case (i), if rb < 1/(1+a), there are multiple mixed-

strategy sequential equilibria, in each of which a Sophisticated Sender sends message u

with probability y, where ast/ss < y < (1–a)st/ss. Each of these y values leads to u and d

games with a different, unique mixed-strategy equilibrium. In these equilibria a

Sophisticated Sender plays U with probability 1–a/(1+a)[yss/(st+yss)] = [1– ast/yss]/(1+a)

in the u game and 1–a/(1+a)[(1–y)ss/{sl + (1–y)ss}] = [1– asl/(1–y)ss]/(1+a) in the d game;

a Sophisticated Receiver plays L with probability [1– (1+a)rb]/(1+a)rs in the u game and

[1– (1+a)rb]/(1+a)rs in the d game; a Sophisticated Sender's equilibrium expected payoff

is a/(1+a); and a Sophisticated Receiver's equilibrium expected payoff is –a/(1+a).21

20m refers to a probability mixture over messages u and d, and Mu (Md) refers to the player's part of the
relevant mixed-strategy equilibrium in the u (d) game, both described precisely in Proposition 1.
21Thus, there are multiple sequential equilibria, but sequential equilibrium is generically essentially unique
in that in each role, they all have the same expected payoffs for Sophisticated and Mortal players.
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In case (i), if rb > 1/(1+a), there is a unique mixed-strategy sequential equilibrium,

in which a Sophisticated Sender sends message u with probability y = st/ass and plays D

in the u game and U in the d game; a Sophisticated Receiver plays R in the u game and

the d game; a Sophisticated Sender's expected payoff is (st/ass)(rb + rs) + (1– st/ass)arb,

and a Sophisticated Receiver's expected payoff is –st/[a(1+a)ss].

In case (ii), where ri > rb, ari + rb < 1, and ss > asl, the conclusions are the same as

in case (i), but with the roles of ri and rb, and of sl and st, reversed.

It may seem surprising that a Sophisticated Receiver's strategy is R,R in all pure-

strategy sequential equilibria. This conclusion's asymmetry across actions stems from the

fact that because a > 1, all Mortal Senders play U, and it holds trivially if there are

enough Mortal Senders to make R a dominant strategy in the underlying game; but the

conclusion holds even if there are not enough Mortal Senders, as long as the game has a

pure-strategy sequential equilibrium. The reason is that if a Sophisticated Sender deviates

from his pure-strategy equilibrium message, the deviation "proves" to a Sophisticated

Receiver that the Sender is Mortal, making his best response R off the equilibrium path.

But in the only pure-strategy equilibria (sequential or not) in which a Sophisticated

Receiver's strategy is not R,R, a Sophisticated Sender plays U on the equilibrium path, so

a Sophisticated Receiver must also play R on the equilibrium path.

The rest of Proposition 1's conclusions concerning pure-strategy equilibria are

straightforward, given that a Sophisticated Receiver always plays R,R. Because a

Sophisticated Sender cannot truly fool a Sophisticated Receiver in equilibrium,

whichever action he chooses in the underlying game, it is always best to send the

message that fools whichever type of Mortal Receiver, Believer or Inverter, is more

likely. The only remaining choice is whether to play U or D, when, with the optimal

message, the former action fools max{rb,ri} Mortal Receivers at a gain of a per unit and

the latter fools them at a gain of 1 per unit, but also "fools" rs Sophisticated Receivers.

Simple algebra reduces this question to whether a max{rb,ri} + min{rb,ri} > 1 or < 1.

It is clear from Figure 4 that the model's pure-strategy sequential equilibria avoid

the perverse comparative statics of equilibrium mixed strategies with respect to a in the

standard analysis, noted in fn. 9. Within the region that supports a given pure-strategy
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equilibrium, a does not affect Mortal or Sophisticated players' strategies at all. However,

as intuition suggests, increasing a always enlarges the set of type frequencies that support

equilibria in which a Sophisticated Sender's equilibrium action is U (B, B', E, or E').

Proposition 1's conclusions concerning mixed-strategy equilibria in case (i) if rb <

1/(1+a) (Γ'm), or in case (ii) if ri < 1/(1+a) (Z'm), are straightforward extensions of the

standard analysis to parameter configurations in which the probabilities of a

Sophisticated Sender and Receiver are both high.22 But in case (i) if rb > 1/(1+a) (Γm), or

case (ii) if ri > 1/(1+a) (Zm), the model has unique mixed-strategy sequential equilibria

with a different character, in which randomization is confined to a Sophisticated Sender's

message, and serves to "punish" a Sophisticated Receiver for deviating from R,R in a

way that relaxes the ss ≤ ast or ss ≤ asl constraint whose violation prevents a Sophisticated

Sender from realizing the higher expected payoff of equilibrium Γ or Z. These equilibria

are otherwise similar to the pure-strategy equilibria Γ or Z for adjoining parameter

configurations, and converge to them as the relevant population parameters converge.

In both kinds of mixed-strategy equilibrium, players' strategies are determined by

simple, portable behavioral parameters as for pure-strategy equilibria; but both share

some of the delicacy of HM's equilibria, and of mixed-strategy equilibria more generally.

To assess the model's ability to explain Operation Fortitude, consider the

parameter values that lead to the sequential equilibria Γ or Γ'. In general, the conditions

for Γ or Γ' to be a sequential equilibrium are rb > ri, arb + ri < 1, and ss < ast. rb > ri

reflects a preponderance of Believers over Inverters that seems quite plausible, so I shall

assume it.23 Given this, suppose that rb = cri and sl = cst for some constant c. Then, Γ or Γ'

is sequential iff rb < c/((ac +1) and ss < a/(1+a+c). When a = 1.4, as in Figure 4, and c =

3, which seem plausible values, these conditions reduce to rb < 0.58 and ss < 0.26,

plausible ranges for these parameters.24 By contrast, the conditions for the "reverse

Fortitude" sequential equilibria E or E' are rb > ri and arb + ri > 1. Again assuming that rb

> ri and rb = cri, E or E' is sequential iff rb > c/((ac +1). When a = 1.4 and c = 3, the

condition reduces to rb > 0.58. Thus, if the Germans are thought sufficiently likely to be

22This part of Proposition 1 shows that the standard analysis is robust to some bounded rationality of the
kind considered here, but this may be an artifact of the discrete action spaces of the underlying game.
23If ri > rb the sequential equilibria Z or Z' would duplicate the outcomes of Γ or Γ', with inverted messages.
24Higher values of a make the first condition more stringent and the second less stringent.
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gullible, it is better to feint at Normandy and attack at Calais. However, in this

application rb > 0.58 seems less realistic than the conjunction of rb < 0.58 and ss < 0.26.25

III. Welfare Analysis

This section conducts a welfare analysis of the model's sequential equilibria,

comparing the expected payoffs of Mortal and Sophisticated types. The comparisons use

actual rather than anticipated expected payoffs for Mortal types, whose beliefs may be

incorrect. I focus on cases where rb > ri; transposition yields the results when ri > rb.

Sender
type

E or E'
equilibrium message,
action, and payoff

Γ or Γ'
equilibrium message,
action, and payoff

Γm

equilibrium message,
action(s), and payoff

Γ'm
equilibrium message,
action(s), and payoff

Liar d, U, arb d, U, arb d, U, arb d, U, a/(1+a)

Truthteller u, U, ari u, U, ari u, U, ari u, U, a/(1+a)

Sophisticated d, U, arb u, D, rb + rs m, D|u, U|d, (st/ass)x
(rb+rs)+(1–st/ass)arb

m, Mu|u Md|d,
a/(1+a)

Receiver
type

E or E'
equilibrium action|u,
action|d, and payoff

Γ or Γ'
equilibrium action|u,
action|d, and payoff

Γm

equilibrium action|u,
action|d, and payoff

Γ'm
equilibrium action|u,
action|d, and payoff

Believer R, L, –a(sl + ss) R, L, –asl – ss R, L, –asl – ss[(st/ass)
+ (1– st/ass)a] =
–a(sl+ss) – st/a + st

R, L, –a/(1+a)

Inverter L, R, –ast L, R, –ast L, R, –ast L, R, –a/(1+a)

Sophisticated R, R, 0 R, R, –ss –ss(st/ass) = –st/a Mu,Md, –a/(1+a)

Table 3. Expected payoffs of Mortal and Sophisticated Sender and Receiver types (rb > ri)

Table 3 lists all types' messages, actions, and expected payoffs on the possible

sequential equilibrium paths, extending Figure 2's payoff calculations and Proposition 1's

25The plausibility of the Γ or Γ' equilibria may be further enhanced by the human tendency to overrate one's
own strategic sophistication relative to others'. Further, Γm is behaviorally similar to Γ, and so one might
relax Γ's restriction on ss, at the cost of a random prediction of a Sophisticated Sender's message.
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characterization of equilibrium behavior from Sophisticated to Mortal players.26 The

table shows that Sophisticated players in either role have expected payoffs at least as high

as their Mortal counterparts'. This much is true by definition, because Sophisticated

players can always mimic Mortal players, but in pure-strategy equilibria, Sophisticated

players have strictly higher payoffs. Sophisticated Senders' advantage over Mortal

Senders in these equilibria stems from their ability to avoid being fooled and to choose

which type(s) to fool. Sophisticated Receivers' advantage comes from their ability to

avoid being fooled, or to choose the least costly way to be "fooled."

Sophisticated players enjoy a smaller advantage in the mixed-strategy sequential

equilibria Γm or Zm, but for similar reasons. By contrast, in the mixed-strategy sequential

equilibria Γm' or Zm', Sophisticated players' equilibrium mixed strategies completely

offset each other's gains from fooling Mortal Receivers, and in each role, Sophisticated

and Mortal players have the same expected payoffs. Thus, in this case, the prevalence of

Sophisticated players protects Mortal players from exploitation.

IV. Related Work

This section briefly discusses related work.

Sobel (1985) was the first to propose an equilibrium explanation of lying,

studying an "enemy" Sender's incentives in repeated interaction to build and eventually

exploit a reputation for being a "friend" of the Receiver's. His analysis focused on

communication of private information in settings with asymmetric information about the

Sender's preferences, as opposed to the asymmetric information about the Sender's and

the Receiver's strategic thinking analyzed here. Benabou and Laroque (1992) extended

Sobel's analysis to allow the Sender to have noisy private information, and used it to

analyze the use of inside information to manipulate financial markets.27

Farrell and Gibbons' (1989) analysis of costless communication to multiple

audiences has already been mentioned. Loury (1994) provides a different perspective on

the issues that arise with multiple audiences.

26Table 3 sometimes combines the equilibrium-path outcomes of more than one equilibrium, to save space.
The equilibrium actions may therefore differ from Sophisticated players' sequential equilibrium strategies.
27See also John Morgan and Philip Stocken's (2001) analysis of financial analysts' incentives to reveal
private information to investors, and some of the references cited there.
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Finally, Conlisk (2001) studied the adaptive dynamics of selection in favor of

types with higher payoffs among a different set of types, Trickster, Avoider, and Sucker,

taking the "fooling technology" as given (fn. 18). He showed that if those types have

successively lower costs they can coexist in long-run equilibrium, proving (in a special

case) P. T. Barnum's dictum, "There's a sucker born every minute, and two to take him."

Section III's calculation of the types' equilibrium expected payoffs in the present

model could be used to conduct a similar adaptive analysis. I conjecture that unless

Sophisticated players have higher costs, their payoff advantage in pure-strategy (and

some mixed-strategy) equilibria will lead their relative frequencies to grow until the

population frequencies enter the region of mixed-strategy equilibria in which all types'

expected payoffs are equal (region Γ'-Z' in Figure 4). The population can then be

expected to drift among a continuum of neutral steady states in that region. If

Sophisticated players have slightly higher costs, the population frequencies should

approach and remain near the boundary of region Γ'-Z', without entering it.28 This would

also allow Sophisticated and Mortal players to coexist in long-run equilibrium, justifying

the assumptions about the type frequencies maintained here.

V. Conclusion

In this paper, I have proposed a way to model active misrepresentation of

intentions to competitors or enemies. The model focuses on the strategic interaction

between rational and boundedly rational types of players in a game of conflicting

interests, with one-sided preplay communication via costless messages.

Allowing for the possibility of bounded rationality yields a sensible account of

lying via costless, noiseless messages, and simplifies many aspects of the analysis of

games with communication. For many parameter configurations, in contrast to a standard

analysis of communication with conflicting interests, the model has generically unique

pure-strategy sequential equilibria, in which rational players exploit boundedly rational

28This conclusion is not immediate because the present model has two player populations and a more
complex pattern of payoff advantages than Conlisk's model. There, taking cost differences into account, in
pairwise interactions Tricksters do better than Suckers, Suckers do better than Avoiders, and Avoiders do
better than Tricksters. Here, with equal costs for Mortal players and higher costs for Sophisticated players
in each player role, Liars do better than Truthtellers iff there are more Believers than Inverters, and
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players, but are not themselves fooled. In these equilibria, players' strategies are

determined by simple, portable behavioral parameters, and can be identified by iterated

elimination of conditionally dominated strategies. One of these equilibria plausibly

explains the Allies' decision to feint at Calais and attack at Normandy on D-Day.

For other parameter configurations, the model has generically unique or

essentially unique mixed-strategy sequential equilibria, in which rational players'

equilibrium strategies offset each other's gains from fooling boundedly rational players,

completely protecting them from exploitation. In these equilibria, players' strategies are

still determined by simple, portable behavioral parameters, but they share some of the

delicacy of mixed-strategy equilibria in other games.

I hope that the methods for modeling bounded strategic rationality used here can

elucidate strategic communication when players' interests are not in conflict, and can also

be used to create behaviorally realistic models of strategic behavior in other applications.
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Appendix. Proof of Proposition 1

I begin by characterizing the equilibria of the u and d games (Figure 3), as

determined by a Sophisticated Receiver's belief, z, that the Sender is Sophisticated.

LEMMA 1. The u game has a generically unique equilibrium as follows:

(i) U,R is a pure-strategy equilibrium iff ri > 1/(1+a);

(ii) D,L is a pure-strategy equilibrium iff rb > a/(1+a) and z > a/(1+a);

(iii) D,R is a pure-strategy equilibrium iff ri < 1/(1+a) and z < a/(1+a); and

(iv) there is a mixed-strategy equilibrium, with Pr{Sophisticated Sender plays U} = 1 –

a/(1+a)z, Pr{Sophisticated Receiver plays L} = [1– (1+a)ri]/(1+a)rs, Sophisticated
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Sender's expected payoff a/(1+a), and Sophisticated Receiver's expected payoff –a/(1+a),

iff ri < 1/(1+a), rb < a/(1+a) and z > a/(1+a).

The d game has a generically unique equilibrium as follows:29

(i) U,R is a pure-strategy equilibrium iff rb > 1/(1+a);

(ii) D,L is a pure-strategy equilibrium iff ri > a/(1+a) and z > a/(1+a);

(iii) D,R is a pure-strategy equilibrium iff rb < 1/(1+a) and z < a/(1+a); and

(iv) there is a mixed-strategy equilibrium, with Pr{Sophisticated Sender plays U} = 1 –

a/(1+a)z, Pr{Sophisticated Receiver plays L} = [1– (1+a)rb]/(1+a)rs, Sophisticated

Sender's expected payoff a/(1+a), and Sophisticated Receiver's expected payoff –a/(1+a),

iff rb < 1/(1+a), ri < a/(1+a) and z > a/(1+a).

PROOF: Straightforward calculations, noting that (U,L) is never an equilibrium, and,

because ri > 1/(1+a) and rb > a/(1+a) or vice versa are inconsistent, the conditions for (i)-

(iv) are mutually exclusive and (with nongeneric exceptions) collectively exhaustive. □

Lemmas 2-3, which correspond to the pure- and mixed-strategy cases considered

in Proposition 1, characterize the sequential equilibria of the reduced game.

LEMMA 2: Unless either rb > ri, arb + ri < 1, and ss > ast, or ri > rb, ari + rb < 1, and ss >

asl, the reduced game has a generically unique sequential equilibrium in pure strategies,

in which a Sophisticated Sender's and Receiver's strategies are as given in Table 2 and

Figure 4. In these sequential equilibria, a Sophisticated Receiver's strategy is R,R; and a

Sophisticated Sender plays U (D) on the equilibrium path iff a max{rb,ri} + min{rb,ri} >

(<) 1 and sends message d (u) iff rb > (<) ri. Sophisticated players' sequential equilibrium

strategies are their unique extensive-form rationalizable strategies, identifiable by at most

three steps of iterated conditional dominance.

PROOF: Because all types have positive prior probability and Liars and Truthtellers

send different messages, all messages have positive probability in equilibrium. Further, in

any pure-strategy sequential equilibrium, a Sophisticated Sender's message is pooled with

29The characterization here is identical to that for the "u" subgame, with the roles of rb and ri interchanged.
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either Liars' or Truthtellers' message, so a deviation to the other message makes z = 0. In

the u or d game that follows such a deviation, R is a conditionally dominant strategy for a

Sophisticated Receiver; and a Sophisticated Sender's unique best response is U (D) iff ri >

(<) 1/(1+a) in the u game and U (D) iff rb > (<) 1/(1+a) in the d game by Lemma 1.

All that remains is to identify the strategy combinations in Figure 2 that are

equilibria for some parameter configurations, use these conditions to check which

configurations make them sequential, and check the other conclusions of the lemma.

Identifying the configurations by the Greek capital letters in Figure 2, ∆ and ∆' are

equilibria iff rb > ½. For ∆ to be sequential, U,L must be an equilibrium in the u game

when z = 0, which is never true. For ∆' to be sequential, D,L must be an equilibrium in

the u game when z = 0, which is never true. Thus neither ∆ nor ∆' is ever sequential.

Similarly, A and A' are equilibria iff rb > ½, but neither A nor A' is ever sequential.

E and E' are equilibria iff rb > ri and arb > rb + rs, which reduces to arb + ri > 1. For

E to be sequential, U,R must be an equilibrium in the u game when z = 0, which is true iff

ri > 1/(1+a). Thus E is sequential iff rb > ri, arb + ri > 1, and ri > 1/(1+a), where the second

condition is implied by the first and third. For E' to be sequential, D,R must be an

equilibrium in the u game when z = 0, which is true iff ri < 1/(1+a). Thus E' is sequential

iff rb > ri, arb + ri > 1, and ri < 1/(1+a). Similarly, B and B' are equilibria iff ri > rb and ari

+ rb > 1; B is sequential iff ri > rb, ari + rb > 1, and rb > 1/(1+a), where the second

condition is implied by the first and third; and B' is sequential iff ri > rb, ari + rb > 1, and

rb < 1/(1+a).

Γ and Γ' are equilibria iff ss < ast, rb > ri, and rb + rs > arb, which reduces to arb +

ri < 1. For Γ to be sequential, U,R must be an equilibrium in the d game when z = 0,

which is true iff rb > 1/(1+a). Thus Γ is sequential iff ss < ast, rb > ri, arb + ri < 1, and rb >

1/(1+a). For Γ' to be sequential, D,R must be an equilibrium in the d game when z = 0,

which is true iff rb < 1/(1+a). Thus Γ' is sequential iff ss < ast, rb > ri, arb + ri < 1, and rb <

1/(1+a), where the second condition is implied by the first and third. Similarly, Z and Z'

are equilibria iff ss < asl, ri > rb, and ari + rb < 1; Z is sequential iff ss < asl, ri > rb, ari + rb

< 1, where the second condition is implied by the first and third; and ri > 1/(1+a). and Z'

is sequential iff ss < asl, ri > rb, ari + rb < 1, and ri < 1/(1+a).
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In each case, the generic uniqueness of Sophisticated players' best responses can

be verified by iterated conditional dominance, starting with the pure-strategy equilibria in

the 2x2 u and d games. The remaining conclusions are easily verified by inspection. □

LEMMA 3: If either (i) rb > ri, arb + ri < 1, and ss > ast; or (ii) ri > rb, ari + rb < 1,

and ss > asl, the reduced game has a generically unique or essentially unique mixed-

strategy sequential equilibrium, in which a Sophisticated Sender's and Receiver's

strategies are as given in Table 2 and Figure 4. In case (i), if rb < 1/(1+a), there are

multiple mixed-strategy sequential equilibria, in each of which a Sophisticated Sender

sends message u with probability y, where ast/ss < y < (1–a)st/ss. Each of these y values

leads to u and d games with a different, unique mixed-strategy equilibrium. In these

equilibria a Sophisticated Sender plays U with probability 1–a/(1+a)[yss/(st+yss)] = [1–

ast/yss]/(1+a) in the u game and 1–a/(1+a)[(1–y)ss/{sl + (1–y)ss}] = [1– asl/(1–y)ss]/(1+a)

in the d game; a Sophisticated Receiver plays L with probability [1– (1+a)rb]/(1+a)rs in

the u game and [1– (1+a)rb]/(1+a)rs in the d game; a Sophisticated Sender's equilibrium

expected payoff is a/(1+a); and a Sophisticated Receiver's equilibrium expected payoff is

–a/(1+a).

In case (i), if rb > 1/(1+a), there is a unique mixed-strategy sequential equilibrium,

in which a Sophisticated Sender sends message u with probability y = st/ass and plays D

in the u game and U in the d game; a Sophisticated Receiver plays R in the u game and

the d game; a Sophisticated Sender's expected payoff is (st/ass)(rb + rs) + (1– st/ass)arb,

and a Sophisticated Receiver's expected payoff is –st/[a(1+a)ss].

In case (ii), where ri > rb, ari + rb < 1, and ss > asl, the conclusions are the same as

in case (i), but with the roles of ri and rb, and of sl and st, reversed.

PROOF: In case (i), if rb < 1/(1+a), and if z < a/(1+a) in either the u or the d game, D,R

would be its unique equilibrium. But then, in this case, a Sophisticated Sender would

prefer to send the message that led to that game with probability 1, and with z = 0, players

would also have pure best responses in the other game by Lemma 1. But the proof of

Lemma 2 shows that there are no pure-strategy sequential equilibria in this case when ss

> ast. If, instead, z > a/(1+a) in each game, in this case the u and d games have unique

mixed-strategy equilibria as characterized in Lemma 1. yss/(st+yss) > a/(1+a) and (1–
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y)ss/[sl + (1–y)ss] > a/(1+a) provided that ast/ss < y < 1–asl/ss, which is always feasible

when ss > ast. Because a Sophisticated Sender's expected payoff is a/(1+a) in either the u

or the d game, he is willing to randomize with any such y. The rest of the proof in this

case is a straightforward translation of the conclusions of Lemma 1.

In case (i), if rb > 1/(1+a), the d game always has a unique pure-strategy

equilibrium U,R, with expected payoff arb for a Sophisticated Sender. If y = 0, the u

game would be off the equilibrium path, so message u would make z = 0, and the u game

would have a unique pure-strategy equilibrium D,R, with payoff rb + rs > arb for a

Sophisticated Sender. Thus there cannot be an equilibrium in this case with y = 0.

Similarly, if y = 1, iff rb < a/(1+a) the u game has a unique mixed-strategy equilibrium,

with z = ss/(st+ss) > a/(1+a) and expected payoff a/(1+a) < arb for a Sophisticated Sender.

If y = 1 and rb > a/(1+a), the u game has a unique pure-strategy equilibrium, D,L, and

expected payoff rb < arb for a Sophisticated Sender. Thus there cannot be an equilibrium

with y = 1. Because rb +rs > arb > a/(1+a) in this case, a Sophisticated Sender's optimal

choice of y maximizes y(rb +rs) + (1– y)arb subject to the constraint that D,R is an

equilibrium in the u game, which is true in this case iff z = yss/(st+yss) ≤ a/(1+a), or

equivalently y ≤ st/ass. Thus, a Sophisticated Sender's optimal message strategy is y =

st/ass.
30 The rest of the proof follows directly from Lemma 1, noting that a Sophisticated

Receiver's expected payoff is –(st/ass) [(st/ass)ss]/[st+(st/ass)ss] = –st/[a(1+a)ss]. □

Lemma 3 completes the proof of Proposition 1.

30A Sophisticated Sender's best response is not y = 1 in this case, because in the reduced game Mortal
players' responses are treated as part of the payoff function, which effectively constrain his choice of y.
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Figure 4. Sequential equilibria when a = 1.4
(subscript m denotes sequential equilibria when ss > ast (asl) in Γ or Γ' (Z or Z')
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