UCLA

Posters

Title

Self-Calibrating Distributed Acoustic Sensor Array: Localization of Bio-acoustic Sources (SYS 3)

Permalink

https://escholarship.org/uc/item/6k64v5hk

Authors

Lewis Girod Martin Lukac Andreas Mantik et al.

Publication Date

2006

Self-Calibrating Distributed Acoustic Sensor Array: Localization of Bio-Acoustic Sources

Lewis Girod, Martin Lukac, Andreas Mantik, Vlad Trifa, Travis Collier, Deborah Estrin CENS Systems Lab – http://research.cens.ucla.edu

Introduction: Self-configuring platform for collaborative acoustic monitoring

Passive Acoustic Monitoring Applications

- Detect, classify, and localize targets using sound
- Minimize disturbance to targets and environment
- Suitable for animal behavior monitoring

Vocal social animals: Woodpeckers Marmots Wolves and many more

System architecture

- Network of acoustic arrays distributed in field
 - Four microphones in a tetrahedral array
 - PXA255 platform, 2.6 Linux kernel
 - VXPocket 440 PCMCIA 4-channel 48kHz sound card
 - Arrays are wirelessly connected via 802.11

Acoustic monitoring through collaborative processing

- Animal vocalization is detected by nearby acoustic arrays
- All nodes are triggered to record data
- Sound is classified and DOA is estimated from phase comparison
- Animal location is estimated through collaboration of multiple arrays

Problem Description: Challenges in collaborative acoustic monitoring

- Self-calibration and self-localization are required
 - Each node's location is needed for target localization
 - Difficult to obtain manually, especially in dense-foliage
 - Localization info must be maintained when bumped or moved
 - Requires precise time synchronization
- High data rates are required
 - 4 channels of 48kHz 16 bit data
 - Very low power systems such as motes are not suitable
 - Transmitting/collecting all data is not feasible

Node 108

Must be truly "field-deployable"

- Small size and physically robust to transport Highly weather-resistant
- Simple to setup and low maintenance

• Flexibility is critical

- Algorithms, especially detection, must be tunable in the field
- Precise deployment geometry cannot be determined in advance
- Conditions such as network connectivity, environmental noise, and target signal probability will change over time

System Design: Acoustic ENSBox: a portable acoustic monitoring node

Staged signal processing model

• Detection of possible events (low false rejection rate)

- Signal alignment, correlation based between nodes
- Time-of-flight localization estimate using alignment lags
- Single node DOA (search space limited by TOF estimate)
- Precise localization from combining DOAs across nodes
- Signal Enhancement / Beamforming
- Classification and data association

Software System

• Buffered Continuous Sampling Interface

- Allows online detection and post-facto processing
- Abstracts away non-deterministic system delays, such as network latency

Multihop Time Conversion

- Nodes have independent clocks and maintain time conversion parameters
- Service provides pair wise time base conversion and global event time service

Collaborative Network Primitives

- Flood service with hop-by-hop time conversion
- Reliable state dissemination mechanism with publish-subscribe interface

Location and Orientation Self-Calibration

- 3D location and orientation of sensor array

• Based on time of flight (TOF) of acoustic signals

• Deviation from ground-truth results from experiment at the James Reserve in the San Jacinto mountains of California

Self-Localization

(d) 2D Position Deviation, JR Experiments Angle and Residual Rejection Angle Outlier Rejection Only No Outlier Rejection Centimeters

Signal Enhancement & Classification

Applied AML bearing estimation algorithm to enhance antbird calls and apply HMM recognizer

DOA based target localization

• Combined DOA from a wild marmot alarm call at the Rocky Mountain Biology Laboratory in Colorado

