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Abstract 
 

fMRI imaging measures brain activity by detecting changes in the brain that are 
associated with blood flow and can be used in order to determine the size and location of visual 
field maps. This study measured BOLD responses in humans to understand spatial summation by 
showing them spatial contrast pattern images through vertical and horizontal apertures. 
Nonlinear responses can be computed from the visual field responses, from which the spatial 
summation ratio is calculated. A ratio of less than one indicates a smaller response to exposure to 
a full aperture or contrast image than predicted by the linear model. Datasets were analyzed 
using MATLAB, producing eccentricity maps of the visual cortices from stimuli. BOLD 
response curves identify the intensity of the maps within a particular voxel. The eccentricity 
maps can then be overlain on anatomical representations of the brain, characterizing the various 
visual field cortices. Methods of fMRI data analysis are confirmed with the results of this study. 

 
Key Words: BOLD response, visual field cortex, V1-V3, CSS model, SOC model, MATLAB, 
eccentricity 
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Introduction 
 

The human visual cortex is located in the occipital lobe of the brain. Within the visual 

cortex, it is possible to find visual field maps, which are cortical regions that record and respond 

to spatial information in the visual field (Wandell, Brewer, & Dougherty, 2005). fMRI is a 

valuable tool to visualize cortical maps and identify active cortical regions when presented with a 

visual stimulus. fMRI imaging measures brain activity by detecting changes in the brain that are 

associated with blood flow and can be used in order to determine the size and location of visual 

field maps. The BOLD signal stands for blood oxygen level dependent and measures the changes 

in blood flow across regions in the brain by detecting changes in the oxygenation levels as 

oxygen is transferred from the blood to the brain tissues (Aguirre et al., 1998). It is possible to 

locate and measure visual field maps in the cortex by observing which regions of the brain are 

active when presented with specific visual stimuli. (Wandell, Dumoulin, & Brewer, 2007) 

The early visual cortex consists of visual field maps V1, V2, and V3. These are separate 

cortical regions that take on visual processing functions. It was previously thought that the early 

visual cortex was only involved in early stage rudimentary visual processing, but new evidence 

suggests it is also responsible for high level visual computation. The high resolution buffer 

hypothesis states the early visual areas are necessary for processing precise spatial information. 

This hypothesis is grounded in computational models of the visual system, which show that 

feature detection, object recognition, and spatial precision are visual tasks that are intertwined. 

Additionally, anatomical features of V1 provide clues about its function. The visual field in V1 is 

arranged in retinotopic coordinates that allow for the precise capture of visual data. Receptive 

fields typically thought to only perform high-order processing have large visual fields that 
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capture more spatial information but lose spatial resolution. V1 is thought to be involved in 

higher order processing because it preserves precise data that would otherwise be lost as 

spatial data is collected. The paper proposes that early visual cortex fields are “geometric 

computational engines,” collecting precise data and performing geometric computations that 

determine “contours, surfaces, and shapes” (Lee, 2003). 

Some key methods of fMRI analysis are multivariate analysis, real-time analysis, and 

model-based analysis. For analysis, the brain regions are divided into three dimensional units 

called voxels. fMRI image processing analyses the response of these voxels. Multivariate 

analysis takes in information from voxels spanning large distances to understand spatial 

patterns. This method uses techniques from machine learning to divide voxels into classes. A 

classifier is used to find the weight of each voxel, and then look at patterns of voxel weights 

across populations of voxels. Based on activity patterns in the data, the model can measure 

cognitive tasks like facial recognition and memory. Real-time analysis uses data collected 

during the fMRI scan to adjust the experiment while it is happening in ‘real time.’ A common 

technique is fMRI neurofeedback. In this method, data is collected in real time, then shown to 

the patient to influence their brain activity in a particular region. Model-based analysis uses 

computational analysis to model high level cognitive processes such as decision-making. In 

this method, game theory and reinforcement learning show how social interactions and 

decision-making results respectively impact future interactions. This data can be correlated 

with brain activity to generate a model which predicts neural signaling in specific situations 

(Cohen et al., 2017).   

To further develop hypotheses on function and relationships between visual cortices, a 

fundamental understanding of its methods are necessary prior to making any such conclusions 
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Methods 
 
Stimuli 

 
This experiment uses stimuli in the form of high contrast grayscale images. The stimuli 

were in three separate sets of sets 1, 2 and 3 and the subjects were given a central fixation task 

as the stimuli in each set were presented. The code has the stimuli presented both artificially 

and naturally, to capture the advantages of both. Sets 1 and 2 presented their images in the 

form of artificial noise patterns, while set 3 had distinct natural objects being shown to the 

subject, such as carrots and elephants. 

For the first set, stimuli set 1, the images were high-contrast grayscales images 

constructed at a resolution of 600 x 600 pixels and occupied a field of view of 21-29 degrees 

of retinal angle. Stimulus set one consisted of 69 stimuli each with 30 frames; the use of 

multiple frames were to average out unwanted variability of any specific pattern. During the 

trial, 30 frames of the stimulus 1 set were presented over a duration of 3 seconds and the 

following stimuli were presented with a gap of at least 5 seconds.. 

For stimulus sets 2-3, the stimuli were band-pass filtered grayscale images constructed 

with a resolution of 256 x 256 pixel, which was necessary for the band-pass filter, due to the 

filter’s matrix of dimension being 21 x 21. This is important because the cornea can only pick 

up on certain frequencies and band pass filters remove high frequency and low frequency 

tones. The dimensions of 21 x 21 are applied based on previous data on visual stimuli that 

indicated that this specific dimension allows for stimulation of a certain cortex of the brain that 

is being replicated in this experiment.  The resolution was upscaled to 800 x 800 later, for 

presentation purposes, and occupied a field of view of 12.7 degrees of retinal angle. Stimulus 

set 2 consisted of 156 
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stimuli, each consisting of multiple frames (most typically 9) and were presented in a random 

order. For stimulus sets 2 and 3, 9 frames were presented sequentially over a span of 3 seconds. 

The following stimuli were separated temporally by at least 5 seconds. Stimuli set 3 is similar to 

stimulus set 2, however this set consisted of 35 distinct, recognizable object images instead. Only 

one frame was given to each stimulus so the subject saw the same image flash 9 times over the 3 

second interval. 

CSS Model 
 

The compressive spatial summation (CSS) model predicts uses the following 

computation to predict responses to a stimuli with varying locations in the visual field: a stimulus 

is weighted and summed using an isotropic 2-dimensional Gaussian and then transformed by a 

static power-law nonlinearity. Fitting this model consists of three major sub-processes: stimulus 

processing, model fitting, and resampling. Once the data from a given dataset and relevant 

stimuli are loaded onto MATLAB, we must ensure each stimulus will be efficiently processed in 

subsequent computations. Consequently, we concatenate the stimuli along the third dimension, 

resize them to 100 x 100, and reshape them into a “flattened” format. This is solely to reduce the 

computational time. This concludes the stimulus processing portion of the CSS Model fitting. 

Next, we utilized MATLAB’s fitnonlinearmodel.m function, which to resample, evaluate 

multiple initial seeds, and perform stepwise fitting. We defined an initial seed for the parameters 

of the CSS model— namely the row index (R), column index (C), and standard deviation (S) of 

the 2D Gaussian; the gain parameter (G); and the exponent of the power-law nonlinearity (N)— 

as well as the bounds of the parameters. Implementing the model requires defining a function 

that intakes a vector of parameters and a matrix of stimuli in order to output a predicted response 
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to the stimuli. We thus used an anonymous function that mirrors the overall structure of the 

model by calculating the dot product between the stimulus and the 2D Gaussian, raising it to the 

exponent of the power-law nonlinearity, and multiplying that value by the gain parameter. We 

then defined the final model specification by using a stepwise fitting scheme that optimizes all 

the model parameters in two fittings. In doing so, we avoided local minima and subsequently 

reached a more accurate solution. A version of the coefficient of determination will quantify the 

goodness of fit by computing variance in the data relative to 0, so we defined this metric and the 

index of the voxel to fit it. All the aforementioned data is then used to define an “options struct” 

that we passed through the fitnonlinearmodel function in order to inspect the results of the 

model. These results and their visual manifestations are discussed in the next section. 

In order to run cross-validation and bootstrapping resampling schemes, we defined new 

options structs that specify leave-one-out cross-validation and 100 bootstraps, respectively, and 

pass them through the fitnonlinearmodel function. By now, the model has been fitted to the full 

dataset, so we use it to compute the response of the model to a point stimulus with varying 

locations in the visual field. The visualization for this predicted response are discussed in the 

next section. 

SOC Model 
 

The second-order contrast (SOC) model is an extension of the CSS model, but with the 

addition of computing the second-order contrast. With a broader scope than the CSS model, 

which only analyzes how the location and size of the stimulus reveal the response, the SOC 

model analyzes how an arbitrary grayscale image relates to the response of the stimuli. 

Computing the response of the SOC model requires performing stimulus pre-processing (part 
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one and two), preparing the model for fitting, and finally, getting the model fitting and results. 

Part one of the stimulus pre-processing takes the stimuli and puts it in the dimensions we need, in 

order to get the contrast image later on. In part two, we do the actual stimulus pre-processing, 

applying the Gabor filters, in order to pick up on the contrast in that voxel. Once the data from a 

given dataset and relevant stimuli are loaded onto MATLAB, we perform part one the stimulus 

pre-processing. The overall goal of this is to make the data more accessible for analysis at the 

end. First, we extracted the stimuli we need, only fitting the first 99 out of 156 stimuli, as it was 

calculated in previous fMRI studies that it is standard to take 99 to 100 stimuli frames to get the 

image. We then did pre-computations, which included resizing the stimulus to reduce the 

computational time. We made sure all the values are between 0 & 254, and rescaled to range 

[0,1] to ensure that the image fits on the screen. We then subtracted off the background noise, 

setting it equal to zero in order for the image to come out clearly and then assigned different 

pixel values to the different shades (pixel vals between -.5 and .5, background is 0). Finally, pad 

the stimulus with zeros to reduce edge effects. After inspecting one stimulus, the image will 

appear on the screen, as a grayscale image showing the stimulus response. 

We then move onto part two of the stimulus pre-processing. The purpose of this section 
 
of code is to transform the grayscale image from part one into a contrast image. This will provide 

a visual representation of how each voxel is related to each other. To accomplish this, Gabor 

filters are applied to the grayscale image. These filters analyze the frequency of the image to 

highlight certain features. This filtering process is used often in visual processing and models the 

way the visual cortex integrates visual information. (Khaleefah et al., 2019) The application of 

the filter normalizes the data and encodes the data as sine waves in matrices. The gabor function 



9 VISUAL FIELD MAPS OF THE VISUAL CORTEX 
 

is a complex sinusoid multiplied by a 2D Gaussian. Then 2 new parameters, r and s, are 

introduced. The r parameter is an exponent parameter and the s parameter is a saturation 

parameter. These parameters are used to highlight the relationship between individual frames. 

These processes assign a new value to each pixel in the original grayscale image and create a 

contrast image. 

Next, we prepared the model for fitting. We again utilized MATLAB’s 

fitnonlinearmodel.m function. We defined input parameters, and then fitted some of the 

parameters as the rest were already fixed. The parameters are [R C S G N C]. As mentioned, R is 

the row index of the center of the 2D Gaussian, C is the column index of the center of the 2D 

Gaussian, S is the standard deviation of the 2D Gaussian, G is a gain parameter, N is the 

exponent of the power-law nonlinearity, and C is a parameter that controls the strength of 

second-order contrast. Helper functions are defined and combined in the final model. The socfun 

helper function computed a weighted average and summed the stimuli values. The gaufun helper 

function turns the parameter values into a 2D Gaussian. The final SOC model combines these 

helper functions. 

The final model is implemented in the function, modelfun, in which the six parameter 

values and stimuli values are input and the model computes the predicted response based on the 

normalized data. We next defined seeds for model parameters. The seed is the initial value that is 

run through the model. In the SOC model, 16 initial seeds were chosen and input into the 

fitnonlinearmodel function to find the seed that yields the optimal parameter values. Once the 

parameter values are set, the modelfun function is well defined and the results can be plotted to 

visualize the BOLD response to visual stimuli. 
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Results 
 
Stimuli 

 
All images were presented as grayscale images. The 

stimuli were given at a specific 21-30 degree of retinal 

angle as mentioned to target a particular cortex. Images 

presented in Figure 1 indicate the presence of the 

band-pass filtering to obtain the necessary processing for 

the next two models. 

CSS Model 
 

The final parameter estimates generated by the fitted CSS model were used to map the 

neuronal population receptive field (pRF) location ±2 pRF sizes. The 

pRF, depicted by the red circle in Figure 2-1, explains measured fMRI 

responses to the visual stimuli and thereby forms the basis for visual 

field maps. Regarding the measurements themselves, we generated a 

bar graph to represent BOLD responses to the series of visual stimuli. 

Figure 2-2 depicts this data 
 

in blue, its associated error bars in green, and the 

model fitting in red. Figure 2-3 represents a mapping 

of the CSS model’s predicted response to some new 

stimuli, where lighter colors represent the presence of a 

strong visual response in a given area. 

SOC Model 
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The result of part one image preprocessing is the grayscale 

image in Figure 3-1. This image is generated by simple rescaling 

functions and image processing techniques. The whole image is 

rescaled to 150 x 150 and the values of each pixel is rescaled to a 

number in the range [0,1]. 

Subtracting background noise assigns 

each pixel a value between [-0.5,0.5], 

as seen on the grayscale legend in 

Figure 3-1. 

The result of part two preprocessing is 

the contrast image in Figure 3-2. This image is generated by 

normalizing the stimulus values. The application of gabor filters and 

fitting model parameters normalizes the data. These processes assign 

new weight to the pixels based on the values of the frequency as 

determined by the gabor filters. 

The results of the model are shown in 

Figure 3-3. The BOLD function is defined 

by the average output of the SOC model 

function for each input: stimulus 1 to 

stimulus 99. The model takes in values of 

the [R C S G N C] parameters and values of 

the stimulus and predicts the response to the 
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stimuli based on the normalized data. The normalized data is defined by a 2D Gaussian. The 

SOC model function is fit by the fitnonlinearfunction which assigns the optimal value to the 

parameters. Once the parameters are defined, the SOC model is plotted and results in the graph 

shown in Figure 3-3. Simulating the responses of the SOC model produces Figure 3-4, where 

certain values of the parameter are specified for the model. These parameters are matched to the 

typical values found in V3. 

 

Analysis of Results 
 

The CSS model has 100% contrast stimuli presented to the visual field. GLM and pRF 

fits were computed for data of each voxel. Nonlinear optimization of the responses then 

indicated a weighted sum of the curves to get the BOLD curve. Here, we showed how the code 

fits the CSS model to an example voxel from a provided dataset. Figure 2-1 shows the estimated 

pRF location and size for the particular voxel. The BOLD data curve is visualized with Figure 
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2-2 with the data fit, from which the predicted response to point stimuli can be seen with Figure 

2-3. 

For the SOC model, stimuli with Gabor filters are presented to the visual field for local 

contrast. With the SOC model being more general, we can explain how an arbitrary grayscale 

image relates to the response from another dataset with Figure 3-4. The values for this dataset 

are matched to the typical values found in V3, and we get the computed response as seen in the 

figure. 

 
 
Conclusion 

 
The functional MRI has given the scientific community a greatly informative means of 

exploring human visual field maps. The combination of advances in MR technology and new 

analytical methods will continue to provide new information about the visual field maps. Many 

new computational methods, including diffusion-weighted imaging with tractography, 

MR-spectroscopy, and MR-relaxometry, will contribute to more clear and explicit information 

regarding the structures of the visual cortex. As technological growth progresses, questions 

involving the plasticity, development and function of the visual cortex will continue to be 

discovered. 
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