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Abstract 
Plasticity and Perception in Primary Auditory Cortex 

by Hania Köver 
Doctor of Philosophy in Neuroscience 

University of California, Berkeley 
Professor Shaowen Bao, Chair 

 
During an early epoch of development, the brain is highly adaptive to the stimulus 
environment. Repeatedly exposing young animals to a particular tone, for example, leads 
to an enlarged representation of that tone in primary auditory cortex. While the neural 
effects of simple, single-frequency tonal environments are well characterized, the 
principles that guide plasticity in complex tone environments, as well as the perceptual 
consequences of cortical plasticity, remain unclear. To address these questions, this 
dissertation documents the neural and perceptual effects of simple and complex 
manipulations to the early acoustic environment. 

First, I show that rearing rat pups in a multi-tone environment leads to complex primary 
cortical representational changes that are related to the statistical relationships between 
experienced sounds. Specifically, tones that occur together within short temporal 
sequences tend to be represented by the same groups of neurons, whereas tones that occur 
separately are represented separately. This suggests that the development of primary 
auditory cortical response properties is sensitive to higher-order statistical relationships 
between sounds.  

The observed neural changes are accompanied by perceptual changes. Discrimination 
ability for sounds that never occur together within temporal sequences is improved. 
Heightened perceptual sensitivity is correlated with heightened neuronal response 
contrasts. These results suggest that early experience-dependent neural changes can 
mediate perceptual changes that may be related to statistical learning.  

Finally, I develop and experimentally test a model of the relationship between cortical 
sensory representations and perception. The model suggests that cortical stimulus 
representations may function as the neural representation of previously encountered 
stimulus probabilities, and makes predictions about how changes in these representations 
should affect perception within a statistical inference framework. Preliminary behavioral 
results support the model predictions, suggesting that one function of early experience-
dependent plasticity may be to internalize stimulus distributions to shape future 
perception and behavior. 
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Chapter 1 

Introduction: 

Sensory Representations and Perception
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Sensory Coding and Perception 

A central goal of systems neuroscience is to determine how sensory stimuli are 
represented and ultimately “perceived” by the brain. When we hear a sound, for example, 
the physical sound wave is transformed by the ear into a neural signal that propagates 
through the nervous system. In mammals, millions of neurons across multiple, 
hierarchically-organized sensory areas respond to a single stimulus, and at each stage of 
processing the stimulus is represented in different ways. Ultimately, the computations 
that occur are thought to allow us hear (“perceive”), identify, discriminate, locate or 
remember (the list goes on) a stimulus in question. How this occurs, namely the full set of 
principles underlying stimulus encoding and decoding, is still unclear.  

In addition to the complexity of neuronal stimulus representations, they are not static: 
rather, they change dynamically across the lifespan in response to changing stimulus 
statistics, task demands, perceptual learning, and nervous system injury (Merzenich et al., 
1983a; Merzenich et al., 1983b; Kaas et al., 1990; Recanzone et al., 1990; Allard et al., 
1991; Recanzone et al., 1992b; Recanzone et al., 1993; Schoups et al., 2001; Zhang et al., 
2001; Fritz et al., 2003; Polley et al., 2006). The ways in which stimulus representations 
can change are diverse: the number of neurons responding to a stimulus can increase 
(Recanzone et al., 1992a; Recanzone et al., 1993; Polley et al., 1999; Zhang et al., 2001; 
Han et al., 2007) or decrease (Logothetis et al., 1995; Kobatake et al., 1998; Polley et al., 
1999; Miyashita and Hayashi, 2000; Ghose et al., 2002; Atiani et al., 2009); the strength 
of responses can change (Ghose, 2004; Atiani et al., 2009; Insanally et al., 2009); the 
timing of neural responses can be altered (Kilgard and Merzenich, 1998; Bao et al., 2004; 
Russo et al., 2005; Kim and Bao, 2009); and neuronal tuning curves can change shape 
(Recanzone et al., 1993; Schoups et al., 2001; Han et al., 2007). Interpretations of the 
functional relevance of these changes vary widely (Field, 1994; Weinberger, 2004; 
Bieszczad and Weinberger, 2010; Girshick et al., 2011; Reed et al., 2011), reflecting the 
lack of unifying framework as to the goals of sensory coding.   

The Efficient Coding Hypothesis 

Interpretations about the goals of sensory coding can be divided into two major groups. 
One approach, known as the efficient coding hypothesis (Barlow, 1961; Field, 1994; 
Barlow, 2001; Simoncelli, 2003; Singh and Theunissen, 2003), proposes that the goal of 
sensory coding is to represent the sensory world as efficiently as possible, and that this 
can be achieved by making use of patterns in the environment (Attneave, 1954; Barlow, 
2001; Singh and Theunissen, 2003). Initially this idea was based on principles of 
information transmission, which emphasized that exploiting statistical regularities in a 
signal allowed for more economical representation and communication (Shannon, 1949; 
Barlow, 1961). It has since been recognized that economical transmission is only one of 
many concerns of the mammalian brain, and more recent formulations have focused on 
the perceptual and cognitive benefits of making environmental regularities explicit 
(Barlow, 2001).  
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The efficient coding hypothesis has been very successful in accounting for stimulus 
representations in early sensory areas. For example, receptive fields in early visual (Dan 
et al., 1996; Olshausen and Field, 1996; Schwartz and Simoncelli, 2001; Girshick et al., 
2011) and auditory (Lewicki, 2002; Smith and Lewicki, 2006) areas are well matched to 
the statistics of natural images and sounds, respectively. In addition, neuronal firing 
properties across sensory systems appear to be optimized to efficiently represent stimulus 
statistics (Schwartz and Simoncelli, 2001; Niven et al., 2007). Despite these successes, a 
number of authors have pointed out that indiscriminately representing environmental 
stimuli regardless of their behavioral relevance may not be optimal, and that additional 
constraints may guide sensory coding (Machens et al., 2005; Salinas, 2006; Kim and Bao, 
2009). On a broader level, very few studies have directly considered the perceptual 
consequences of stimulus representations that reflect environmental stimulus statistics. 
This dissertation addresses this problem from a theoretical (Chapter 3) and experimental 
(Chapters 2 and 4) perspective. My results suggest that representing environmental 
stimulus statistics may directly lead to adaptive perceptual changes.  

Another outstanding question regarding efficient coding concerns the extent to which 
sensory representations are optimized for the environment on developmental, as opposed 
to evolutionary time scales. While peripheral coding strategies are often conserved across 
species and time (Lewicki, 2002; Neuhofer et al., 2008), cortical stimulus representations 
are highly plastic and can change to match the statistics of the environment. This is 
particularly true in an early “critical period,” when even passive exposure to stimuli 
drawn from different frequency distributions can result in long-lasting changes in 
stimulus representations (Blakemore and Cooper, 1970; Zhang et al., 2001; Han et al., 
2007). Natural, biologically relevant stimuli contain complex structures such as temporal 
dependencies between stimuli (Singh and Theunissen, 2003), and it is not known to what 
extent these higher-order statistics affect sensory representations during the critical 
period. Chapter 2 addresses this question by looking at how complex auditory sequences 
affect the development of frequency representations in primary auditory cortex. 

Decoding Sensory Representations 

The efficient coding hypothesis focuses mainly on the encoding side of sensory 
processing, by asking how neurons can effectively represent the sensory environment. 
The second major approach to understanding sensory coding takes the reverse approach 
and asks how decoding sensory representations can result in advantageous behaviors and 
perception (Metzner and Juranek, 1997; Salinas, 2006; Wang, 2007). According to this 
view, sensory representations are optimized to solve perceptual tasks, and their variety 
and complexity is related to the range of tasks that need to be solved (Metzner and 
Juranek, 1997). For example, discriminating between two similar stimuli may require 
neurons with steep tuning curve slopes at relevant stimulus transitions (Seung and 
Sompolinsky, 1993; Schoups et al., 2001), (Butts and Goldman, 2006; Han et al., 2007; 
Navalpakkam and Itti, 2007) whereas identifying stimuli favors neurons tuned to the 
stimulus in question (Butts and Goldman, 2006). Likewise, rapidly firing neurons may 
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solve the task of faithfully representing sounds at the level of the auditory nerve, whereas 
temporally invariant representations may be better at representing abstract perceptual 
properties of sounds (Wang, 2007). 

The decoding approach to sensory coding implicitly assumes that there could be as many 
encoding goals as there are tasks to solve, and the staggering variety of proposed coding 
strategies illustrates this point (Gilbert et al., 2001). Nevertheless, there is likely to be a 
common decoding strategy across sensory modalities and tasks, and discovering 
computationally and biologically plausible mechanisms has been the subject of much 
theoretical research (Seung and Sompolinsky, 1993; Jazayeri and Movshon, 2006; Rolls 
and Treves, 2010; Fischer and Pena, 2011; Girshick et al., 2011). A major outstanding 
question concerns which response parameters convey meaningful information: suggested 
candidates vary as widely as neuronal firing rates, spike timing, correlations between 
neurons and neuronal oscillations (Rolls and Treves, 2010). Additionally, authors 
disagree on whether perception is mediated by populations of neurons (Pouget et al., 
2000), small efficient circuits (Reed et al., 2011), or even single cells (Britten et al., 1996; 
Houweling and Brecht, 2008). Finally, while many computational models of perception 
have been proposed, several authors have noted the importance of creating biologically 
plausible models that could actually be implemented by the brain (Jazayeri and Movshon, 
2006).   

In this dissertation, I focus on the idea that populations of neurons represent sensory 
stimuli through stimulus-dependent changes in firing rate. Chapter 3 explores how 
experience-dependent changes in such population representations might affect stimulus 
decoding. My theoretical (Chapter 3) and preliminary experimental results (Chapter 4) 
suggest that enlarged sensory representations may provide a neuronal mechanism for 
biasing perception towards previously experienced stimuli. While the model in its 
described form is based on a maximum-likelihood estimation algorithm, more recently 
several authors have proposed biologically plausible versions (Fischer and Pena, 2011; 
Girshick et al., 2011) that lead to similar conclusions.   

A Synthesis 

Sensory representations are likely optimized both for efficient encoding of environmental 
statistics and behaviorally advantageous decoding. In fact, in many cases these may 
actually be the same thing. Psychophysical studies in humans have shown that perception 
can often be described as optimal statistical inference, in the sense that it takes into 
account the distributions of previously encountered stimuli (Knill and Richards, 1996; 
Kersten, 1999; Ernst and Banks, 2002; Kording and Wolpert, 2004; Feldman et al., 
2009). In young infants, the ability to internalize statistical patterns may play a critical 
role in learning adaptive behaviors, such as the ability to segment words from a 
continuous speech stream (Saffran et al., 1996), or to discriminate between phonemic 
units (Saffran et al., 1996). 
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Prior experience with stimuli can affect perception both on short-term scales, such as 
over the course of an experiment (Ernst and Banks, 2002; Kording and Wolpert, 2004), 
or on long-term scales, such as over the course of a lifetime (Feldman et al., 2009). As an 
example of the latter, native English speakers, but not native Japanese speakers, perceive 
an exaggerated difference between the speech sounds /la/ and /ra/, a phenomenon that can 
be attributed to differences in language-specific statistical distributions of these speech 
sounds (Feldman et al., 2009). On a broader level, it has been argued that all behaviors 
learned through associative learning require knowledge of statistical dependencies 
between sensory events and reinforcers (Barlow, 2001). Representations that make 
explicit these statistical relationships may therefore naturally lead to advantageous 
behaviors.  

This dissertation explores the relationships between environmental stimulus statistics, 
sensory representations, and perception. Chapter 2 investigates the neuronal and 
perceptual effects of rearing young rat pups in complex acoustic environments with 
different higher-order statistics. The results add to the existing literature by showing that 
the developing rat auditory cortex is shaped by higher-order conditional probabilities of 
sounds in sequences. In addition, we find that perceptual discrimination behavior in adult 
rats is altered by the developmental sound exposure, indicating that encoding 
environmental stimulus statistics can have downstream perceptual decoding effects. With 
a few exceptions, most previous studies of efficient coding have not directly investigated 
such decoding effects, and so this Chapter makes a contribution to tying together the two 
different approaches to sensory coding.   

Finally, Chapter 3 presents a decoding model that makes the theoretical prediction that 
enlarged stimulus representations should lead to perceptual biases towards over-
represented stimuli. The preliminary results presented in Chapter 4 confirm the model 
predictions, suggesting that one function of experience-dependent plasticity may be to 
mediate perceptual biases towards previously encountered stimuli. 

Together, my results contribute to our understanding of how the sensory environment 
affects neural tuning and perception, and offer new insights into the fundamental 
principles underlying sensory coding.  
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Abstract 

Sensory perception is believed to be a process of statistical inference, in which incoming 
sensory information is integrated with expectations based on previously encountered 
stimulus probabilities. In the present study, we investigated whether neurons in the 
developing primary auditory cortex of rats adapt their response properties to higher-order 
conditional probabilities between stimuli in the environment, and whether this in turn 
affects auditory perception in adult rats. Our results provide evidence that the 
development of tonal frequency-intensity receptive fields, as well as frequency 
discrimination ability, are shaped by conditional probabilities between sounds played in 
sequences. These observations are consistent with previous reports that the tuning 
properties of primary cortical neurons are well matched to environmental stimulus 
statistics, and provide evidence that this phenomenon may be at least partly experience-
dependent. Further, our results suggest a mechanism by which higher-order stimulus 
probabilities may be encoded in sensory cortex to influence sensory perception.  
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Introduction 

Perceiving a sensory stimulus involves both processing incoming information conveyed 
by our sensory receptors, as well as incorporating expectations drawn from experience 
(Knill and Richards, 1996; Barlow, 2001). Recent reports have shown that sensory 
perception across a range of modalities and species is influenced by environmental 
stimulus distributions (Han et al., 2007; Feldman et al., 2009; Fischer and Pena, 2011; 
Girshick et al., 2011), as well as higher-order stimulus statistics such as the temporal 
dependencies between stimuli (Saffran et al., 1996; Hauser et al., 2001; Fiser and Aslin, 
2002; Toro and Trobalon, 2005). How environmental stimulus statistics are encoded by 
neurons and combined with sensory information to bias perception is currently unclear. 
In the case of simple stimulus distributions, stimulus probabilities may be encoded in 
primary sensory cortices through experience-dependent plasticity mechanisms11,12. 
Sound representation in the primary auditory cortex of the rat, for example, is profoundly 
influenced by both the spectral and temporal characteristics of the early acoustic 
environment (Zhang et al., 2001; Chang and Merzenich, 2003; de Villers-Sidani et al., 
2007; Kim and Bao, 2009). Repeated exposure to a sound not only increases cortical 
representation of that sound but also alters auditory perception (Han et al., 2007), 
indicating that stimulus distribution plays a critical role in shaping neural and perceptual 
processes.  (Wiesel and Hubel, 1963; Simons and Land, 1987; Zhang et al., 2001; Kim 
and Bao, 2009). 

Higher-order stimulus probabilities, such as the temporal dependencies between stimuli, 
also influence perception in humans and model animals (Saffran et al., 1996; Hauser et 
al., 2001; Fiser and Aslin, 2002). Rodents, including rats, are sensitive to higher-order 
stimulus statistics (Toro and Trobalon, 2005), and their own vocalizations exhibit 
complex statistical structure (Holy and Guo, 2005). Most notably, rodent pup and adult 
calls are repeated in bouts (Liu et al., 2003; Holy and Guo, 2005; Kim and Bao, 2009), 
resulting in high sequential conditional probabilities for calls of the same type, and low 
sequential conditional probabilities for calls of different types (Holy and Guo, 2005). It is 
not known whether such higher-order structure of sounds experienced during early life 
affects perception or cortical acoustic representation in rats.  

In the present study, we exposed litters of rat pups to sequences of tone pips that differed 
only in terms of the higher-order conditional probabilities between tone pips. We then 
performed neurophysiological recordings to assess changes in neuronal response 
properties, as well as behavioral testing to measure changes in perceptual ability. 

Results 

To probe the sensitivity of the developing auditory cortex to higher-order stimulus 
probabilities, we exposed three groups of rat pups to sequences of tone pips that differed 
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only in terms of the conditional probabilities between tone pips within a sequence (Figure 
2.1A). All groups experienced sequences of six tones repeated at an ethological rate (Kim 
and Bao, 2009) of 6 Hz, with 1 s intervals between sequences. The temporal structure of 
sequences approximated rat vocalization patterns, which are characterized by bouts of 
calls repeated at around 6Hz (Kim and Bao, 2009). The overall spectral distribution was 
the same for all groups: all tones were drawn from a uniform distribution between 4 kHz 
and 32 kHz (Figure 2.1A). Across groups, however, different constraints were placed on 
the spectral composition of individual sequences. For the single-frequency group, 
sequences were made up of the same tone repeated six times. For the full-range group, 
tones within a sequence were drawn from the entire breadth of the tone distribution, 
resulting in a broad spectral range (3 octaves). For the half-range group, tones within a 
sequence were drawn from either the higher or lower half of the frequency range, 
resulting in two categories of sounds with high conditional probabilities, and a low 
conditional probability “boundary” at 11.314 kHz (Figure 2.1A). The half-range group 
sequences had an intermediate spectral range (1.5 octaves). Animals were continuously 
exposed to the tone sequences from postnatal day 9 (p9) to p35, and subsequently 
mapped between p35 to p52. Naïve control animals were maintained in a normal animal 
room, and mapped at matching ages. 

Sound exposure did not lead to gross changes in the tonotopic organization of primary 
auditory cortex (Figure 2.1B). The distribution of characteristic frequencies (CFs; white 
stars in Figure 2.1C) was not different between groups (four-conditions by sixteen-
frequencies ANOVA: no main effect of condition F3,224=0; p < 1 and no interaction 
F45,224=1.31; p<0.1023; data not shown). However, inspection of individual receptive 
fields revealed striking changes in receptive field bandwidth and shape (Figure 2.1C). 
The receptive field bandwidth at 60dB was significantly different between the groups 
(one-way ANOVA, F3,14=10.02; p<0.0009). A posthoc t-test showed that receptive fields 
in the full-range condition were significantly broader than in the control group (p=0.025), 
whereas those in the single-frequency condition were significantly narrower (p=0.0021) 
(Figure 2.1D.). The bandwidth differences were present regardless of whether we 
measured tuning bandwidth at a fixed intensity level (e.g. 60dB as shown in Figure 
2.1D), or relative to threshold (e.g. bandwidth 20 dB above threshold, one-way ANOVA, 
F3,14=12.53; p<0.0003, data not shown). These results indicate that the receptive field 
bandwidth of cortical neurons is shaped by the spectral range of tones with high 
conditional probabilities within sequences, but not the overall spectral distribution of the 
stimulus ensembles. 

Receptive field bandwidth was not different between the half-range condition and the 
control condition (p=0.96). Since the spectral range of the half-range sequences (1.5 
octaves) approximately matched the tuning bandwidth of naïve auditory cortical neurons 
(1.45 +/- 0.16, 95% confidence interval), adaptation to the spectral range should lead to 
shifting, rather than broadening or narrowing, of receptive fields. We examined the 
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distribution of the frequency-intensity response area on each side of the low-conditional-
probability-boundary frequency (11.314 kHz). Receptive fields in the half-range 
condition shifted to preferentially respond to the lower or higher portion of the frequency 
range, with fewer neurons responding equally well to both sides (Figure 2.1C). We 
quantified this effect using a category selectivity index (CSI), defined as the sum of the 
receptive field responses in the higher half of the frequency range divided by the sum of 
responses in the full frequency range. A four-condition by five-CSI bins ANOVA 
showed no main effect of condition, and a significant interaction (F3,12=2.71, p=0.0047). 
Posthoc analysis revealed that in the half-range group, significantly fewer receptive fields 
had CSI values between 0.4 and 0.6 (Figure 2.2A; p=0.039). These results, together with 
the narrower tuning bandwidth seen in the single-frequency group, suggest that pairs of 
sounds with low conditional probabilities within sequences tend to be represented by 
separate populations of cortical neurons.  

The shift in receptive fields but not CFs in the half-range group suggests that changes in 
frequency selectivity occurred at the flanks, but not at the threshold of receptive fields. 
Comparison of frequencies at the center-of-mass of the receptive fields (white triangle in 
Figure 2.1B), which are sensitive to shifts in the flanks of receptive fields, confirmed that 
significantly fewer neurons in the half-range group had receptive fields centered at the 
boundary frequency (Figure 2.2B; four-condition by sixteen-frequency bins ANOVA, no 
main effect of condition and significant interaction F45,224=1.47, p<0.036; posthoc t-test 
for bin centered at 11.3 kHz, half-range condition versus control p<0.0054). We 
compared tuning curve slopes at the receptive field flanks to determine whether they 
were altered by the receptive field shifts. Because tuning curve slopes at any given 
frequency vary depending on a particular neuron’s best frequency (Figure 2.3A), any 
effects will likely be washed out by this peak-dependent variability. Therefore, we 
grouped neurons by the peaks of their tuning curves. Neurons tuned to the boundary 
frequency (Figure 2.3B, peak F – boundary F = 0) and neurons tuned to frequencies far 
away from the boundary frequency did not show changes in slope. However, neurons 
tuned to frequencies flanking the boundary frequency had significantly steeper slopes at 
the boundary frequency in the half-range group relative to all other groups (Figure 2.3B, 
four-condition by nine-CF bins ANOVA: main effect of condition F3,1014=4.37, p<0.0046 
and significant interaction F24,1014=1.77, p<0.0127; posthoc t-test shows that half-range 
group neurons with tuning curve peaks 0.5-1.3 octaves below and 0.2-0.5 octaves above 
the boundary have steeper slopes at the boundary). Slopes at other, non-boundary 
frequency locations were not significantly different between the groups (Figure 2.3C). 

Neurons are most sensitive to stimulus differences at the slopes of tuning curves, and 
experimental (Schoups et al., 2001; Han et al., 2007) and theoretical (Butts and Goldman, 
2006) evidence suggests that the steepness of tuning curves may be related to 
performance in tasks involving fine stimulus discriminations. We therefore examined 
how the steeper tuning curve slopes observed in the half-range group impacted perception 
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using a frequency discrimination task. The behavioral examination consisted of two 
phases: a procedure-learning phase, followed by a perceptual-testing phase. In the first 
phase, the rats were trained to detect the transition from repetitive tone pips of the 
standard frequency (fs, fs, fs...) to tones of alternating standard and target frequencies (fs, 
ft, fs, ft...; Figure 2.4A) The ft was either 1 octave below or above fs. The center of the 
two frequencies was randomly chosen from a range of 4 to 32 kHz. The detection of the 
large 1-octave frequency difference was perceptually unchallenging; the animals learned 
the task procedure in a period of 3 days. On the fourth day, all animals underwent the 
second phase of perceptual testing (3 days), in which their perceptual discrimination 
ability was examined with smaller frequency differences of 0.5, 0.3, and 0.1 octaves. For 
each animal, we chose the frequency difference that gave a mean performance level 
between 60% and 85% for optimal quantification of performance improvement and 
impairment.  

There was no overall difference in discrimination ability between conditions (four-
conditions by three-frequency differences ANOVA: main effect of condition F3,99=2.07, 
p<0.1096, data not shown). In all groups, perceptual discrimination at threshold was 
better at higher frequencies relative to lower frequencies (Figure 2.4B-E). In the half-
range group, there was an additional effect of enhanced perceptual discrimination across 
the probability boundary relative to flanking frequencies (Figure 2.4C), an effect that was 
not present for the naïve control (Figure 2.4A), single-frequency (Figure 2.4B) or the full-
range (Figure 2.4D) groups.  

Discussion 

These results demonstrate that the developing primary auditory cortex is sensitive to the 
higher-order statistics of the sensory input. Specifically, stimuli with high conditional 
probabilities within 6-Hz sequences tended to be represented together, whereas stimuli 
with low conditional probabilities were represented separately. This was manifested by 
broader frequency tuning in the full-range group, narrower tuning in the single-frequency 
group, and preferentially selective receptive fields in the half-range group. Furthermore, 
in the half-range group, the stimulus boundary was represented by steeper tuning curve 
slopes. Correspondingly, perceptual sensitivity was elevated at the low-probability 
boundary compared to the neighboring frequencies, forming a perceptual boundary. 

Developing auditory cortex is sensitive to the stimulus statistics on the spectral and 
temporal domains (Zhang et al., 2001; Chang and Merzenich, 2003; de Villers-Sidani et 
al., 2007; Han et al., 2007; Kim and Bao, 2009). Our results suggest that the developing 
auditory cortex can compute joint stimulus probabilities over hundreds of milliseconds, 
consistent with the prolonged temporal integration window of cortical neurons (Bao et 
al., 2004; Chang et al., 2005). Rodent vocalizations occur in bouts on similar time scales 
(Holy and Guo, 2005; Kim and Bao, 2009). Our results suggest that early experience of 
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those vocalizations could lead to similar cortical representations and reduced perceptual 
contrast of the individual calls despite their substantial trial-by-trial variability (Holy and 
Guo, 2005). By contrast, functionally different call types that do not occur in the same 
bout may be represented by distinct populations of neurons, resulting in perceptual 
boundaries and categorical perception of the calls.  

Theoretical considerations and empirical observations have suggested that statistical 
inference is involved in almost every aspect of the brain function, from sensory 
perception and motor control to language acquisition and decision making (Knill and 
Richards, 1996; Saffran et al., 1996; Kording and Wolpert, 2004). Representing 
probability structures is essential for statistical inference. Previous studies have suggested 
that long-term prior probability distributions of sensory stimuli may be stored in the size 
of their representations in the sensory cortex. Here we show that higher-order probability 
distributions may also be stored in the sensory cortex, where they can be integrated with 
sensory information and shape sensory perception!

Methods 

Acoustic rearing of young rat pups. All procedures used in this study were approved by 
the UC Berkeley Animal Care and Use Committee. Three groups of Sprague Dawley rat 
pups (single-frequency, half-range, full-range) were placed with their mothers in an 
anechoic sound-attenuation chamber from p9 to p35. This time period comprises the 
critical period for experience-dependent plasticity in primary auditory cortex (AI), 
including changes in frequency tuning, neuronal tuning bandwidth, and complex sound 
selectivity. All groups heard 1 s long trains of six tone pips (100 msec, 60dB SPL), with 
one train occurring every 2 s (Figure 2.1A). For all groups, tones were drawn from a 
uniform distribution spanning 4 – 32 kHz, with constraints placed only on the sequential 
conditional probabilities of sounds within a sequence. For the full-range group, tones 
within a single sequence were drawn from the entire breadth of the distribution (Figure 
2.1A). For the single-sequence group, sequences were made up of the same tone repeated 
6 times (Figure 2.1A). For the half-range group, tones within a sequence were either 
higher or lower than the “boundary frequency” 11.314 kHz (Figure 2.1A). After sound 
exposure, rats were moved to a regular animal room environment until they were 
mapped. A control litter was reared in a regular animal room environment. 

Electrophysiological recording procedure. The primary auditory cortex (AI) of sound-
reared (single-sequence n = 4; half-range n = 4; full-range n = 6) and naive control rats (n 
= 4) were mapped at comparable ages from p35 – p52. Rats were preanesthetized with 
buprenorphine (0.05 mg/kg, s.c.) a half hour before they were anesthetized with sodium 
pentobarbital (50 mg/kg, followed by 10-20 mg/kg supplements as needed). Atropine 
sulfate (0.1 mg/kg) and dexamethasone (1 mg/kg) were administered once every 6 h. The 
head was secured in a custom head-holder that left ears unobstructed, and the cisterna 
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magna was drained of CSF. The right auditory cortex was exposed through a craniotomy 
and duratomy and was kept under a layer of silicone oil to prevent desiccation. Sound 
stimuli were delivered to the left ear through a custom-made speaker that had been 
calibrated to have <3% harmonic distortion and flat output in the entire frequency range. 

Cortical responses were recorded with tungsten microelectrodes (FHC). Recording sites 
were chosen to evenly and densely map primary auditory cortex while avoiding surface 
blood vessels and were marked on an amplified digital image of the cortex. 
Microelectrodes were lowered orthogonally into the cortex to a depth of 500 – 600 µm 
where responses to noise bursts could be found. Multiunit responses to 25 ms tone pips of 
51 frequencies (1-32 kHz, 0.1 octave spacing, 5 ms cosine-squared ramps) and eight 
sound pressure levels (0-70 dB SPL, 10-dB steps) were recorded to reconstruct the 
frequency-intensity receptive field. 

Electrophysiological data analysis. The characteristic frequency (CF), center-of-mass 
frequency, tuning bandwidth and threshold of each neuron were determined using an 
automated algorithm, which involves smoothing and thresholding of the receptive field. 
The characteristic frequency (CF) was defined as the frequency at which responses are 
evoked at threshold: the lowest sound pressure level that activates the neuron. Bandwidth 
was measured both at an absolute intensity level of 60dB (bandwidth at 60dB), and 
relative to threshold (bandwidth 20dB above threshold).  

The category response index (CRI) for each receptive field was calculated as the total 
response (number of spikes) to any frequency-intensity combination in the “high” 
category (above 11.314 kHz) divided by the total response to frequencies in the “low” 
category (below 11.314 kHz). Because the majority of receptive fields yielded values of 
either 0 or 1 (i.e. they were not crossing the boundary at all), this analysis was restricted 
to neurons with CFs within a 1 octave range of the boundary. 

To quantify changes in tuning curve slope at the boundary frequency, tuning curves at 
60dB were fitted with a cubic spline interpolation (MATLAB, Mathworks). The squared 
sum of errors of the fitting averaged less than 0.01. Neurons were divided into bins based 
on the difference between their characteristic frequency and the boundary frequency, and 
the absolute value of the tuning curve derivatives was plotted against CF. 

Behavioral testing. Behavioral training and testing began when the pups were two 
months old. Animals were food-deprived to reach a 10% body-weight reduction before 
training was started. Training took place in a wire cage located in an anechoic sound-
attenuation chamber. On automatic initiation of a trial, tone pips of 100-ms duration and 
of a standard frequency were played 5 times per s through a calibrated speaker. After a 
random duration of 5-35 s, tone pips of a target frequency were played in the place of 
every other standard tone pip. Rats were trained to detect the frequency difference and 
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make a nose-poke in a nosing hole within 3 s after the first target tone, which was scored 
as a hit and rewarded with a food pellet. The false alarm rate was determined as the 
percentage responses when the target frequency was the same as the standard frequency 
(10% of trials). In each training day, animals were allowed to achieve 250-300 hits. All 
animals underwent 3 d of initial training with a large difference between the target and 
standard frequencies (delta f = 1 octave). Rapid procedure learning occurred in this phase 
of training. In the subsequent testing phase (3 d), we tested perceptual discrimination of 
smaller delta fs of 0.5, 0.3, 0.2 and 0.1 octaves, randomly intermixed within each block. 
The larger delta f values were included to motivate the animals, and often lead to 
saturated performance levels of greater than 85%. Consequently, for each animal the data 
from the delta f level that led to performance between 60 and 85% was included in the 
analysis. Animals that did not learn the task within the 3 days and had a false alarm rate 
of more than 30% were not included in testing. 

Statistical testing. Unless stated otherwise, statistical significance was determined using 
ANOVA and post-hoc two tailed t-tests (MATLAB, Mathworks). 
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Appendix 2.1: Figures 

 

Figure 2.1. Influences of higher-order stimulus statistics on spectral selectivity of 
primary auditory cortical neurons. A. Schematics of the acoustic environments that the 
animals experienced. The three acoustic environments had the same logarithmically 
uniform frequency distribution and the same temporal presentation rates, but differed in 
the conditional probabilities of the tonal frequencies within sequences. B. Representative 
cortical maps. The sound exposure did not alter the tonotopic characteristic frequency 
distribution. C. Representative frequency-intensity receptive fields. The corresponding 
locations are marked on the tonotopic maps in B. The green vertical lines mark the low 
conditional probability boundary experienced by the half-range group. Stars denote the 
characteristic frequency (CF) and triangles denote the center-of-mass frequency. D. 
Tuning bandwidth at 60 dB SPL. Frequency tuning bandwidth became narrow in the 
single-frequency group and broader for the full-range group. 
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Figure 2.2. Selective representation of low and high tones in the half-range condition. A. 
Distribution the category selectivity index. Fewer neurons in the half-range group had 
receptive fields equally straddling the probability boundary, i.e., with CSI near 0.5. B. 
Distributions of center-of-mass frequency. Fewer neurons in the half-range group had 
center-of-mass frequency near the low-conditional-probability-boundary (dashed line). 
Shown are group mean and SEM.  
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Figure 2.3. Steeper tuning curve slopes in the half-range group at the low conditional 
probability boundary (11.3 kHz). A. Schematic of the dependency of tuning curve slope 
on tuning curve peak. Neurons with tuning curve peaks flanking the low conditional 
probability boundary (green) have the steepest slope at the boundary. B. Absolute values 
of tuning curve slopes as a function of neuronal tuning curve peaks relative to the 
boundary. Tuning curve slopes in the half-range group were steeper than tuning curve 
slopes in the other groups only for neurons tuned to flanking frequencies. C. There were 
no group differences in tuning curve slopes at three other, non-boundary frequency 
locations. * p < 0.05. 
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Figure 2.4. Perceptual boundary shaped by conditional stimulus probabilities. A. 
Schematic paradigm of frequency discrimination task. B-E. Improved discrimination 
performance at the low conditional probability boundary (dashed line) compared to 
neighboring frequencies for the half-range group.  
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Appendix 2.2: Supplemental Information 

Because behavioral data can be variable, we sought to confirm the experience-dependent 
perceptual changes measured using the discrimination task with another test of perceptual 
ability. Previous work has shown that pre-pulse inhibition, also known as the startle 
response, can be used to measure perceptual discrimination ability (Floody and Kilgard, 
2007). In our version of the pre-pulse inhibition test, animals were placed in a small 
plastic chamber with a wire-mesh lid on top of an electric scale (Figure 2.S1A). The 
voltage output of the electric scale provided a continuous record of activity level. A 
standard 50 msec pure tone was played at regular intervals (5 Hz). At random intervals 
(once every 15-30 sec), a loud white noise burst (50msec, 90dB) elicited a startle 
response, which was measured as a deflection of the voltage signal from baseline (Figure 
2.S1A). During uncued trials, the noise burst occurred without warning, resulting in a 
large startle response. During the more frequent cued trials, the noise burst was preceded 
by a target tone of a different frequency, which generally resulted in a reduction of startle 
amplitude (Figure 2.S1B).  

While there was wide variety in startle amplitudes on individual trials and for each 
animal, the ratio of average cued:uncued amplitudes provided a reliable measure of how 
well the animal could discriminate the target from the standard tone: high discriminability 
led to a greater reduction in startle amplitude. In a preliminary experiment, we tested 
naïve animals and animals reared in the half-range sequences using two different 
frequency differences between target and standard (0.1 octaves and 0.3 octaves), at three 
different center frequencies. The center frequencies (6.7kHz, 11.3kHz and 19.0kHz) were 
chosen to lie in the center of the two half-range distributions (6.7kHz—low sequence; 
19.0kHz—high sequence), as well as across the boundary frequency (11.3kHz). A three-
way ANOVA (2 groups x 2 frequency differences x 3 center frequencies) revealed a main 
effect of frequency difference (F(1,80)=35.9, p<0.001)), and no interactions (Figure 
2.S1C). Post hoc t-tests revealed that the startle reduction ratio was significantly less than 
1 for the 0.3 octave frequency difference (p<2.5*10-9) but not the 0.1 octave frequency 
difference. While this result differs slightly from results obtained using the nose-poke 
discrimination task in which animals can reliably detect a 0.1 octave difference, the 
difference is most likely due to the reduced number of target tone instances that the 
animals hear in the startle reduction task (one instance compared to nine instances, 
compare Figure 2.S1C and Figure 2). 

Although these preliminary results showed no statistically significant main effect of 
group, nor an interaction between center frequency and group, there was a trend for 
enhanced perceptual discrimination ability at the boundary frequency in the half-range 
group (Figure 2.S1C). We therefore re-ran the experiment with a new set of age-matched 
animals using only the 0.3 octave frequency difference to increase power. There was an 
almost significant interaction between group and center frequency (p=0.06). Post-hoc 
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paired t-tests revealed that in the half-range group but not naïve controls, startle reduction 
was greater (smaller startle reduction ratio) at the boundary relative to category centers 
(low range center vs. boundary: p<0.04, high range center vs. boundary p<0.06 Figure 
2.S1D). These results confirm that rats in the half-range group have elevated perceptual 
sensitivity at the boundary, and are consistent with the results obtained using the nose-
poke discrimination task. 
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Figure 2.S1: Pre-pulse inhibition test for discrimination ability. A. Schematic of the 
experimental set-up. During the uncued trials, animals startle upon hearing an infrequent 
noise burst. On cued trials, a target tone (green) cues the animal to expect an impending 
noise burst, leading to a reduction in the startle amplitude. B. Example average startle 
waveforms for five different animals and days. Despite large overall variations in startle 
amplitudes, the cued amplitude (green) tends to be smaller than the uncued amplitude 
(black). C. Ratio of cued/uncued startle amplitudes using frequency differences of 0.1 
octaves (dashed line) and 0.3 octaves (solid line) in naïve control (cyan) and half-range 
exposed animals. Trend for improved discriminability (increased startle reduction) at 
boundary frequency in half-range exposed animals. D. Improved discriminability at 
boundary relative to category centers in half-range exposed animals.  
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Supplementary Methods 

Subjects. During preliminary testing (Figure 2.S1C), the subjects were 9 adult naïve 
Sprague-Dawley rats, and 6 adult Sprague-Dawley rats that had been exposed to half-
range sequences during the critical period. Data was collected over 2 sessions for naïve 
controls, and 4 sessions for half-range exposed animals (1 session per day). In the second 
experiment (Figure 2.S1D), the subjects were 6 naïve controls and 6 half-range exposed 
animals tested for one session only. Except during tests, animals were housed in groups 
of two with free access to food and water.  

Startle Test. During testing, animals were housed individually in a small plastic container 
with a wire-mesh lid, positioned directly below a speaker and on top of an electric scale. 
The entire startle apparatus was placed inside an anechoic sound attenuation chamber. 
Each session consisted of a total of 100 noise burst trials, divided evenly across the two 
frequency differences (0.1 and 0.3 octaves), the three frequencies of interest (6.7kHz, 
11.3kHz and 19.0kHz), and cued vs. uncued trials. Cued trials were more frequent than 
uncued trials, with an overall ratio of 5 cued trials for every 2 uncued trials. A standard 
frequency was played at 5 Hz, and at random intervals (15-30 seconds), were interrupted 
by a large noise burst (50msec, 90dB) that elicited a startle. Cued noise bursts were 
preceded by a target tone that was either 0.1 octaves or 0.3octaves higher than the 
standard.  

Data Analysis. Startle amplitudes were calculated by averaging across all trials of a given 
type, and subtracting the maximum and minimum of the average waveform. Cued 
amplitude values were divided by uncued amplitude values for each trial type. Statistical 
significance was determined using 3 frequency x 2 groups x 2 frequency differences 
ANOVA, and post-hoc t-tests.  
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Abstract 

Human perception of ambiguous sensory signals is biased by prior experiences. It is not 
known how such prior information is encoded, retrieved and combined with sensory 
information by neurons. Previous authors have suggested dynamic encoding mechanisms 
for prior information, whereby top-down modulation of firing patterns on a trial-by-trial 
basis creates short-term representations of priors. Although such a mechanism may well 
account for perceptual bias arising in the short-term, it does not account for the often 
irreversible and robust changes in perception that result from long-term, developmental 
experience. Based on the finding that more frequently experienced stimuli gain greater 
representations in sensory cortices during development, we reasoned that prior 
information could be stored in the size of cortical sensory representations. For the case of 
auditory perception, we use a computational model to show that prior information about 
sound frequency distributions may be stored in the size of primary auditory cortex 
frequency representations, read-out by elevated baseline activity in all neurons and 
combined with sensory-evoked activity to generate a percept that conforms to Bayesian 
integration theory. Our results suggest an alternative neural mechanism for experience-
induced long-term perceptual bias in the context of auditory perception. They make the 
testable prediction that the extent of such perceptual prior bias is modulated by both the 
degree of cortical reorganization and the magnitude of spontaneous activity in primary 
auditory cortex. Given that cortical over-representation of frequently experienced stimuli, 
as well as perceptual bias towards such stimuli is a common phenomenon across sensory 
modalities, our model may generalize to sensory perception, rather than being specific to 
auditory perception.  
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Introduction 

Natural stimuli are variable and often mixed with noise. Our perception of these stimuli is 
thus derived from ambiguous sensory inputs. Psychophysical experiments in humans and 
primates indicate that this ambiguity is partly compensated for by incorporating 
information about the probabilities of previously experienced stimuli directly into the 
percept in a Bayesian manner (Kording and Wolpert, 2004; Stocker, 2006; Feldman and 
Griffiths, 2007). However, it is not known how this prior information is encoded, 
retrieved and combined with sensory information by neurons (Kording and Wolpert, 
2006; Ma et al., 2006).  

Previous theoretical investigations of Bayesian inference were often based on 
homogeneous stimulus representations—i.e., all possible values of stimulus parameters 
are evenly represented (Ma et al., 2006). In such a representational system, prior 
information is typically modeled as the activation of a sub-population of neurons by top-
down influences or cross-modal interactions (Basso and Wurtz, 1997; Ma et al., 2006). 
This population activity may be linearly combined with sensory-driven activity for 
optimal integration of information (Ma et al., 2006). These prior storage and integration 
processes are believed to occur in higher-level/multi-sensory cortical areas, but not in 
low-level sensory cortices.  

Although such a mechanism of dynamic prior information encoding and integration may 
underlie perceptual bias arising in the short-term and in a context-dependent manner 
(Kording and Wolpert, 2004), it does not account for the often irreversible, robust and 
context-independent changes in perception that result from long-term, developmental 
experience (Kuhl et al., 1992; Han et al., 2007). Extensive experience of native speech 
sounds, for instance, warps the perceptual space so that speech sound variants near a 
frequently heard prototype are perceived as being more similar to the prototype than they 
actually are (Kuhl, 1991; Kuhl et al., 1992). Such a phenomenon, also known as the 
perceptual magnet effect, has been interpreted as an example of Bayesian inference in 
language perception (Feldman and Griffiths, 2007), and has been correlated with 
experience-altered stimulus representations in the sensory cortices (Guenther FH, 1996; 
Han et al., 2007). 

Cortical stimulus representations are not homogeneous. Sensory experience during early 
development results in robust changes in primary cortical sensory representations that 
persist into adulthood. A very consistent finding is that more frequently experienced 
stimuli gain greater representations in primary sensory cortices (Han et al., 2007). The 
influences of inhomogeneous representations on sensory perception have not been fully 
explored. We reasoned that the sizes of cortical stimulus representations carry long-term 
prior information (Barlow, 2001), and could play an important role in Bayesian inference 
in sensory perception. Using a computational model of auditory perception, we 
investigated the effect of increasing cortical frequency representations on the perception 
of pure tones. The results indicate that prior information stored in primary auditory cortex 
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frequency representations can be read-out by locally generated neuronal activity and 
combined with sensory-evoked activity to generate a percept that conforms to Bayesian 
integration theory.  

Results 

Convergence of maximum-likelihood estimate at the input stimulus 

We first examined model auditory perception with normal levels of baseline activity for 
both the naïve and 7kHz-over-represented model AIs. The maximum likelihood estimate 
or ‘percept’ converged at the input frequency for both naïve and 7kHz-over-represented 
model AIs (Figure 3.2A, Figure 3.3A-B), even for the under-represented frequencies that 
no neurons were tuned to. This is not surprising because primary auditory cortical 
neurons are broadly tuned, and responsive to those frequencies. Thus, the maximum-
likelihood estimate of sensory input from population responses is insensitive to 
inhomogeneity of sensory representations, and always converges on the input stimulus.  

Readout of prior information by nonselectively elevated population activity 

We reasoned that the readout of long-term, context-independent priors should not depend 
on specific patterns of population activity driven by higher-level inferences. Rather, if 
information about prior stimulus distributions is encoded in the size of primary cortical 
representations, it should be retrieved by a non-selective increase in the activity in all 
neurons. Although such activity may be triggered or enhanced by task-related top-down 
influences or neuromodulatory activity (for example in situations where sensory 
information is ambiguous)  (Basso and Wurtz, 1997; Yu and Dayan, 2005), it need not 
contain specific prior information itself. To test this idea, we increased the baseline 
activity of all neurons to their maximum response magnitude, and examined the stimulus 
likelihood distribution in the absence of stimulus-evoked activity (Figure 3.2B). The 
likelihood function of the naïve model AI was flat with no peaks (data not shown), 
whereas that of the 7kHz-over-represented model AI showed a peak near the over-
represented frequency (Figure 3.2B). This peaked likelihood function may be regarded as 
an internal representation of the prior probability distribution of the stimulus. In 
calculating the likelihood function here, we assumed that the maximum-likelihood 
decoder was unaware that the elevated activity was not sensory driven. This is not 
different from the treatment of top-down prior-related or cross-modal activity in other 
models of Bayesian inference (Ma et al., 2006) (see Discussion).  

Bayesian Integration of prior and sensory information 

It has recently been shown that Bayesian integration of probability distributions 
represented in neuronal population codes such as the one used in our model may be 
achieved by simple summation of population activities (Ma et al., 2006). Stimulus-
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evoked and spontaneous activity in primary sensory cortices summates linearly (Arieli et 
al., 1996). When we decoded the summed population response (consisting of the linear 
superposition of elevated baseline activity and 4-kHz-evoked activity (Ma et al., 2006)), 
the peak of the likelihood function was shifted towards 7kHz for the 7kHz-over-
represented model (Figure 3.2C, right). Such a shift was observed for frequencies near 
7kHz in the 7-kHz-overrepresented (Figure 3.3D), but not the naïve (Figure 3.3C), model 
AI. This perceptual bias is consistent with Bayesian integration of prior information and 
noisy auditory input (Feldman and Griffiths, 2007), and may explain the impaired 
discrimination ability for frequencies near over-represented frequencies which has been 
recently reported (Han et al., 2007).  

Decoding variability 

The relative decoding variability at the over-represented frequency range behaves 
differently with and without the elevated baseline activity. With an increased baseline, 
although overall variability is increased, it is relatively lower for the over-represented 
frequencies than for the neighboring frequencies (Figure 3.3D). This is consistent with 
human psychophysical studies showing that extensively experienced native speech 
sounds are perceived with less variability than novel foreign speech sounds (Iverson et 
al., 2003).  

Influences of neuronal population size and activity levels on perceptual bias 

Some parameters of the model AI, such as the total number of neurons and the magnitude 
of the elevated spontaneous firing rate, were arbitrarily chosen. We therefore 
systematically varied these parameters to explore their influence on the observed 
characteristic perceptual shift (Figure 4). The slope of the input-output function in the 
over-represented frequency range was used as a measure of perceptual shift magnitude—
smaller slopes indicate greater prior bias (Figure 3.3D). When the magnitudes of the 
stimulus-evoked responses were fixed, increasing the level of baseline activity led to 
smaller input-output slopes, indicative of stronger prior biases (Figure 4A). Similarly, 
when the ratio of baseline to evoked responses was set at 1, increasing overall activity 
also resulted in stronger prior biases (Figure 4C). Increasing baseline activity led to 
higher decoding variability (Figure 4B), whereas increasing both baseline and sensory-
evoked activity reduced decoding variability (Figure 4D). Increasing neuronal population 
size reduced this variability. Thus, higher baseline-to-evoked activity ratio in a larger 
population of neurons would produce more reliable and robust prior biases. Optimal 
integration of prior and sensory information may be achieved by adjusting the levels of 
baseline activity in a task-dependent manner (e.g., higher baseline activity when the 
stimulus is more ambiguous). 

 



 36 

Discussion 

Earlier studies have suggested that dynamic prior information may be encoded by the 
activity of a subset of primary cortical neurons in a homogeneous representational 
system. The specific pattern of activity is driven by inputs outside of primary sensory 
cortex that carry prior information derived from high-level inference. Thus the encoding 
of the prior is separate from its integration with sensory information and must be 
mediated by different neural circuits. The specific brain substrates and mechanisms for 
prior encoding and retrieval are unknown. The present study considered the possibility of 
storing long-term prior information in the size of sensory representations. A novel finding 
is that in the context of auditory perception, long-term priors about sound frequency 
distributions can be retrieved by non-selective increase in the activity of all neurons in 
primary auditory cortex. In the model, the same cortical circuit performs both the 
encoding and integration of the prior. The increase in overall activity could be driven by a 
general top-down signal without specific prior information. 

In order for optimal Bayesian integration of prior and sensory information to occur, our 
model requires that the relative contributions of prior-related and sensory-evoked activity 
be modulated by task conditions on a trial-by-trial basis. In other words, although the 
prior is long-term, optimal Bayesian inference requires that the extent to which it used in 
generating a sensory percept depend on task demand and stimulus uncertainty. Our 
simulation shows that this could be accomplished by changing overall levels of activity. 
Higher levels of overall activity increase the contribution of prior information to sensory 
perception and increase prior bias. Thus our results suggest that in situations where 
auditory input is ambiguous, the overall level of activity in all primary auditory cortex 
neurons should increase. Although dynamic prior encoding also calls for a higher level of 
prior-related activity when the sensory input is ambiguous, such activity occurs only in a 
subset of neurons. 

Elevated neuronal activity is not the only way that a prior stored in the size of sensory 
representations could be read out. Another possibility, recently proposed in unpublished 
work  (Simoncelli, 2009), is that the decoder is unaware of the change in sensory 
representations: such a scheme leads to the same degree of prior bias as our simulation. 
The major difference between these two schemes is that in our simulation the degree of 
bias is adjustable and dependent on task conditions rather than being a fixed and inbuilt 
property of the decoder. Recent experimental work has suggested that the degree of bias 
for long-term priors may be dependent on task conditions (Feldman et al., 2009). 

Different levels of intrinsic, “baseline” activity in primary sensory cortices have been 
shown to profoundly influence neuronal responses to sensory stimuli (Arieli et al., 1996; 
Fiser et al., 2004), sensory perception (Ress and Heeger, 2003) and motor behaviors (Fox 
et al., 2007). In our model, the level of internally driven activity depends on the 
uncertainty of auditory input. It remains to be determined how this sensory uncertainty is 
encoded and used to optimize performance. Task-related uncertainty has been shown to 
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modulate baseline activity  (Basso and Wurtz, 1997), possibly by activation of 
neuromodulatory systems, thereby influencing the extent to which behavioral responses 
depend on internal prior information versus external sensory information sources (Yu and 
Dayan, 2005). Another possibility is that the background noise that characterizes 
ambiguous sensory situations nonspecifically activates auditory cortex to achieve the 
same end as elevated spontaneous activity. However, unlike elevated spontaneous 
activity, noise activates neurons in different regions of auditory cortex differentially  
(Schreiner et al., 2000) and its effects can therefore not be directly inferred from this 
study.  

Maximum-likelihood estimation is an unbiased feature decoding method. With a 
sufficient number of neurons, as well as the knowledge of which part of the neuronal 
activity is due to the input stimulus, its decoding result always converges on the input 
stimulus (Figure 3.3). In earlier studies of Bayesian integration, top-down prior-related 
activity and cross-modal sensory activity were linearly combined with, and not 
distinguished from, stimulus driven activity (Ma et al., 2006). Perceptual biases arise out 
of this treatment of prior-encoding or cross–modal activity. We treated spontaneous 
activity similarly in our simulation – the decoder does not distinguish it from stimulus 
driven activity.  

Elevating spontaneous activity results in greater decoding variability in our simulations 
(Figure 3.3). Thus, stimulus-decoding performance is decreased. However, the increase 
in spontaneous activity in our model is caused by task demand when the sensory input is 
ambiguous, and cannot be resolved by simple (optimal) stimulus decoding. It enables 
integration of prior information to optimally resolve stimulus ambiguity. Furthermore, 
decoding variability decreases rapidly when more neurons are included in the model 
(Figure 4), and therefore may not pose a problem for the real brain.  

Although our model is based on tonal frequency representations in primary auditory 
cortex, it should generalize to any stimulus dimension represented by populations of 
plastic sensory neurons. Over-representation of frequently experienced stimuli is a 
common feature of primary sensory cortex independent of modality, and occurs for sound 
intensity  (Polley et al., 2006), sweep direction  (Insanally et al., 2009), spectral 
bandwidth [25] and temporal rate  (Kim and Bao, 2009) in primary auditory cortex, line 
orientation  (Sengpiel et al., 1999) in primary visual cortex, and whisker representation in 
primary somatosensory cortex  (Kossut, 1998), to name a few examples. Maximum 
likelihood estimation has also been used to model sensory perception in multiple 
modalities  (Seung and Sompolinsky, 1993; Jazayeri and Movshon, 2006). Although 
there are not many explicitly documented examples of perceptual bias towards long-term 
priors outside of the auditory system, recent work in the visual system has shown that 
subjects perform a line orientation discrimination task in a way that suggests bias towards 
line orientations that occur more frequently in the environment  (Girshick et al., 2010). 
Our model may therefore generalize to sensory perception in general, rather than the 
specific case of auditory perception.  
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In summary, we have shown that long-term prior information in auditory perception may 
be stored in the sizes of primary auditory cortex frequency representations and be read 
out by non-selective increases in baseline activity. Such increase in baseline activity may 
be controlled by task demand through top-down influences, and when combined with 
stimulus-driven activity, allow Bayesian integration of prior and sensory information. 
Our model makes two unique testable predictions independent of sensory modality that 
distinguish it from other models of dynamic Bayesian integration: 1) percepts of 
ambiguous stimuli are biased toward stimuli with larger sensory representations; 2) 
ambiguous sensory input leads to a non-selective increase in baseline activity of all 
coding neurons. 

Methods 

Modeling frequency representations in AI. We modeled primary auditory cortex (AI) 
frequency representations with 800 independent Poisson-firing neurons. The parameters 
of the model were chosen based on properties of the primary auditory cortical neurons 
documented in the literature and our unpublished results. In particular, our experimental 
finding that the firing rates of neurons in auditory cortex exhibit significant variability, 
with a mean Fano factor value of 0.98 +/- 0.21 (Kim, 2008), led us to model neuronal 
firing as a Poisson process. Each neuron had a Gaussian-shaped response-frequency 
tuning curve as:   
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where µ is the characteristic frequency, ! is the maximum response magnitude, 2" is the 
tuning bandwidth and # is the baseline spontaneous firing rate. The distributions of tuning 
bandwidths (2") and maximum response magnitudes (!) are approximately lognormal, 
and based directly on our experimental observations. Lognormal distribution is 
characterized by two parameters—the mean and standard deviation of the logarithm of 
the investigated response property. The baseline spontaneous firing magnitudes exhibit 
an exponential distribution, which is characterized by a population mean. The tuning 
bandwidths, maximum response magnitudes and baseline spontaneous firing magnitudes 
of the model AI neurons were independently and randomly drawn from the 
corresponding distributions. The parameters of the distributions are listed in Table 1.  

To replicate frequency representations seen in AI of naïve animals and animals with 
extensive prior experience of a specific tone (7 kHz) (Han et al., 2007), model 
characteristic frequencies (CFs) were either uniformly distributed on a logarithmic scale 
in the range of 1-32 kHz (naïve) or skewed such that more neurons were tuned to 7kHz 
(7-kHz-over-represented) (Figure 3.1). For the 7kHz-over-represented AI, CFs from 5 to 
10 kHz were shifted to have a Gaussian distribution centered at 7kHz and with a standard 
deviation of 0.1 octave (Figure 3.1). Consistent with our experimental findings the 
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bandwidths of neurons in the over-represented range were slightly smaller (Table 1)  
(Han et al., 2007).  

Modeling frequency perception. We modeled auditory perception by decoding the 
simulated population response to an input frequency using the maximum-likelihood 
decoding method (Seung and Sompolinsky, 1993; Han et al., 2007; Kim, 2008). Assume 
that, when stimulated with a tone of frequency f, the ith neuron of the model AI responds 
with Rstimi spikes. As the model neurons fire spikes in a Poisson-random fashion, Rstimi 
is a Poisson-random number with a mean of Ti(f), where Ti is the neuron’s response-
frequency tuning curve. The probability of the neuron responding to f with Rstimi is  

  (2) 

The stimulus likelihood distribution derived from the population response Rstim of all N 
model neurons (1, 2, … N) is: 
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When given the population response to an unknown frequency f, we can calculate the 
maximum-likelihood estimate of f, denoted as F, by maximizing the following log-
likelihood function (Seung and Sompolinsky, 1993; Jazayeri and Movshon, 2006), using 
a sequential quadratic programming method (Powell, 1977),  
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where Ri is the response of the ith neuron and in this case refers to Rstimi (however, see 
below).  

Modeling Bayesian integration. According to Bayesian integration theory, frequency 
perception depends both on prior-based expectation and sensory input (Kersten D, 2004; 
Kording and Wolpert, 2004; Feldman and Griffiths, 2007). In order to return an optimal 
stimulus estimate, the probability distributions representing each quantity should be 
combined according to Bayes’ rule (Kording and Wolpert, 2004). The stimulus 
probability derived from the sensory stimulus-evoked responses Rstim is the frequency 
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likelihood L( f | Rstim ) = P(Rstim | f). Here we explore the idea that prior probability is 
read out from the frequency representation by elevated spontaneous activity Rspont 
across the whole population of neurons: L(f | Rspont) = P(Rspont | f). It is important to 
distinguish Rspont from #, as in contrast to #, which is part of the neuron’s tuning curve 
and used in the maximum likelihood algorithm, Rspont represents elevated spontaneous 
activity that the maximum likelihood decoder is not aware of.   

We therefore modeled Bayesian integration of sensory input and prior-based expectation 
by calculating the stimulus likelihood function derived from the linear superposition of 
stimulus-evoked activity and elevated spontaneous activity (Rspont and Rstim)(Figure 
3.2C).  
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When the frequency representation is homogeneous, equation 5 may be simplified as,  
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which is in the form of Bayes rule. With inhomogeneous frequency representations, there 

is a small deviation from Bayes rule caused by an additional term, 
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Appendix 3.1: Figures 

 

  

Figure 3.1. Modeling tonal frequency representations in the primary auditory cortex. 
Representative tuning curves of the naïve (A.) and the 7-kHz-over-represented (B.) 
model AI. The histograms in the lower part of the graphs show distributions of CFs.  
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Figure 3.2. Neuronal population activity and derived log-likelihood functions. Left 
panels show population activity of the model 7-kHz-over-represented AI, and the right 
panels show stimulus log-likelihood functions. A. Response of the model to a 4-kHz tone 
pip B. Elevated baseline activity in the absence of a stimulus C. Summed spontaneous 
and 4-kHz-evoked activity). Each bar in the left panels represents the firing rate of a 
model neuron. The neurons are arranged by characteristic frequency, with low frequency-
tuned neurons on the left and high frequency-tuned neurons on the right. Blue dotted 
lines in the right panels show the input frequency, red dotted lines show the over-
represented frequency, and the black dotted lines mark the peaks of the log-likelihood 
functions.  
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Figure 3.3. Decoded frequency as a function of input frequency. Both the naïve model 
AI (A and C) and 7-kHz-over-represented AI (B and D) were examined with (C and D) 
and without (A and B) elevated baseline activity. In addition, standard deviation of the 
decoded frequencies (red) was used to measure the output variability. When baseline 
activity was elevated in the 7-kHz-over-represented AI, the decoded frequencies show 
shifts characteristic of Bayesian prior bias (D). The pink line shows the slope of the 
input-output curve at the over-represented frequency. The slope is a measure of the prior 
bias. 

 

 



 44 

 

Figure 3.4. Influence of neuronal population size, baseline activity level, and overall 
activity level on sensory decoding. (A and C) Slopes of the input-output function (see the 
pink line in Figure 3.3D), showing the degree of prior bias. (B and D) Standard deviation 
of the decoded frequencies, which measures the decoding variability. In A and B, 
sensory-evoked activity level was fixed and the neuronal population size (color-coded) 
and baseline activity level were systematically varied. Baseline activity level refers to the 
multiplicative factor. For example, baseline activity level of 2 indicates doubling of 
activity. In C and D, the ratio of baseline activity to maximum evoked response 
magnitude was set at 1, and activity was systematically varied together. Error bars 
represent SEM, and are mostly masked by the data symbols.   
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Table 3.1. Distribution parameters of neuronal response properties. 

Properties  Groups  Mean  SD 

Control -0.7528 0.4727 

7-kHz, BFs of 7 kHz ± 0.3 octave -0.8723 0.2837 

Log-bandwidth  

7-kHz, other BFs -0.6359 0.4583 

Control -0.1815 0.5562 Log-response 
magnitude 

7-kHz -0.1774 0.5711 

Control  0.0388 N/A Baseline 
Spontaneous firing 
magnitude 7-kHz 0.0374 N/A 
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Abstract 

Perception has been described as a process of statistical inference, in which noisy sensory 
information is combined with prior knowledge to generate a best guess about the 
environment. An appealing hypothesis is that prior knowledge is stored in brain regions 
where sensory experience induces long-term changes in neural coding. Consistent with 
this hypothesis, our preliminary data shows that over-representation of a tone experienced 
during the critical period is correlated with a perceptual bias towards the over-represented 
tone. Increasing the ambiguity of the stimulus through the addition of noise exaggerates 
the bias towards the experienced tone. Animal perceptual behavior is qualitatively in line 
with that of an optimal statistical estimator combining sensory information with prior 
information learned during the critical period.   
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Introduction 

Our perception of the world is constructed from uncertain sensory inputs. Because we 
often receive ambiguous information about the environment, we can only infer about 
external events (Geisler and Kersten, 2002). For example, an image appearing on the 
retina could either be a small object nearby, or a larger one further away; the geometrical 
information alone is not enough to know the object’s size or distance. 

We can improve our estimation by incorporating expectations based on experience. In the 
example above, prior knowledge about the object’s size can help us make a better 
distance judgment. According to a statistical theory known as Bayesian inference (Geisler 
and Kersten, 2002), an optimal stimulus estimate takes into account both sensory 
information and prior knowledge. 

Psychophysical experiments in humans and other animals show that perceptual biases 
observed across a range of sensory and motor tasks can be explained using the Bayesian 
inference framework (Knill and Richards, 1996; Geisler et al., 2001; Kording and 
Wolpert, 2004; Feldman et al., 2009; Fischer and Pena, 2011; Girshick et al., 2011). This 
suggests that subjects have internal representations of previously encountered stimulus 
probability distributions—the Bayesian prior—and are able to combine them with 
sensory information in a statistically optimal manner. Theoretical work (Kover and Bao, 
2010) presented in Chapter 3 (see also  (Simoncelli, 2009; Ganguli and Simoncelli, 
2010)) suggests that the prior may be stored in brain regions where sensory experience 
induces long-term changes in neural coding. Such changes occur in primary sensory 
cortices, where stimulus representations are highly adaptive to the sensory environment, 
and more frequently experienced stimuli become over-represented at the expense of less 
frequently experienced ones (Zhang et al., 2001; de Villers-Sidani et al., 2007; Han et al., 
2007).  

Recent experimental work supports the idea that inhomogeneities in neural stimulus 
representations can account for perceptual biases observed in visual orientation 
perception (Girshick et al., 2011), and auditory sound localization (Fischer and Pena, 
2011). However, these studies leave open whether the priors in question are innate or 
learned—in other words, the result of evolutionary, or developmental shaping of neural 
stimulus representations. More broadly speaking, although the psychophysical evidence 
for Bayesian inference in perception has been steadily growing, very little is known about 
the physiological mechanisms by which statistical priors are learned (Fiser et al., 2010). 

In the present study, we directly test the hypothesis that manipulating stimulus 
probabilities during the early “critical period” of plasticity leads to perceptual bias 
towards cortically over-represented frequencies. Our preliminary results indicate that 
exposing rat pups to 7kHz tone trains during early development leads to systematic 
perceptual biases towards the exposed tone. Increasing the ambiguity of the stimulus 
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through the addition of noise exacerbates the bias towards the experienced tone. 
Perceptual changes were accompanied by changes in frequency representation in primary 
auditory cortex. The behavioral data is qualitatively in line with that of an optimal 
Bayesian estimator performing a categorization task in the presence of a prior learned 
during the critical period. 

Results 

Early experience leads to a perceptual bias 

We exposed a litter of rat pups to 7kHz tone pips from postnatal day 9 (p9) to p30, which 
encompasses the entire critical period. Following sound rearing, animals were maintained 
in normal animal housing conditions. Naïve control animals were raised entirely in 
normal animal housing conditions, with no additional tone exposure. When animals 
reached two months of age, we trained them to differentially respond to two target 
frequencies, 7.5kHz and 15kHz, by making a nose poke in one of two nose-poke holes 
(Figure 4.1A). The majority of tone-exposed and naïve control animals learned this task 
over the course of 25-30 days of training (Figure 4.1B), with no differences in learning 
rate between the two groups. Animals in both groups showed biases towards the right 
nose-poke hole (see Supplementary Figure 4.S1), but did not differ in performance for 
the 7.5kHz or 15kHz components of the task. 

Following the training phase, we determined the psychometric frequency-perception 
functions for both groups by adding 5 intermediate test frequencies that were 
logarithmically spaced along the frequency axis. Test frequency probe trials were 
unrewarded and only occurred on 15% of trials. In the tone-exposed animals 
psychometric functions were systematically shifted towards the rearing frequency relative 
to naïve controls (Figure 4.1C; 2 group x 7 frequency ANOVA, main effect of group 
F(6,84)=48.52, p<0.001). Post hoc t-tests demonstrated that performance between groups 
did not differ for the endpoints (7.5kHz and 15kHz), but that perception of intermediate 
probe tones was biased towards 7.5kHz (Figure 4.1C). This trend was mirrored in the 
reaction time data (Supplemental Figure 4.1), which showed a trend for a rightward shift 
in the maximal point of uncertainty (longest reaction time) in tone-exposed relative to 
control animals. 

Noise exacerbates perceptual bias 

According to the Bayesian inference framework, reliance on prior knowledge should 
increase as uncertainty about the stimulus increases. To test this prediction, we conducted 
additional testing (Figure 4.1A) during which we added uniform white noise to all 
stimuli. In the tone-exposed animals, addition of noise led to a trend for increased bias 
towards 7.5kHz relative to both naïve controls and reared animals without noise (not 
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significant). In naïve controls, addition of noise led to a trend for biases towards both task 
endpoints (not significant) (Figure 4.1C).  

 

Perceptual bias towards cortically over-represented frequencies 

Previous studies (Simoncelli, 2009; Fischer, 2010; Kover and Bao, 2010; Fischer and 
Pena, 2011; Girshick et al., 2011) (see also Chapter 3) have suggested that enlarged 
cortical representations of experienced stimuli may function as a mechanism for biasing 
perception towards these stimuli. To confirm that experienced frequencies were over-
represented in our subjects, we mapped primary auditory cortex of tone-exposed and 
control animals that participated in the task. Consistent with previous findings (Zhang et 
al., 2001; Han et al., 2007), tone-exposed animals had a larger representation of 7kHz 
compared to controls (Figure 4.2). We found no evidence of task-related over-
representation of 7.5 or 15kHz in naïve or tone-exposed animals. 

Discussion 

Our preliminary results suggest that critical period experience of a sound stimulus in rats 
leads to a perceptual bias towards the experienced tone, as well as an over-representation 
of that tone in the primary auditory cortex. These results are consistent with recent 
reports that inhomogeneities in neuronal stimulus representations may be related to 
perceptual biases (Fischer and Pena, 2011; Girshick et al., 2011), and add support to the 
hypothesis that cortical stimulus representations may function as the neural manifestation 
of Bayesian priors (Simoncelli, 2009; Ganguli and Simoncelli, 2010; Kover and Bao, 
2010). Our results go beyond these studies by showing that perceptual biases mirrored in 
representational inhomogeneities can be acquired on developmental, as opposed to 
evolutionary time-scales. This suggests that critical period plasticity may be one 
mechanism by which stimulus distributions are internalized to shape perception and 
behavior. 

Statistical learning plays a critical role during early development, when the neural 
circuitry to support supervised learning is not yet in place. Human infants are exquisitely 
sensitive to the statistical distributions of acoustic stimuli (Saffran et al., 1996; Maye et 
al., 2002), which are thought to directly influence speech sound perception (Kuhl, 2000) 
in ways that are consistent with statistical inference (Feldman et al., 2009). During the 
critical period in early development, neuronal plasticity in primary sensory cortices is 
enhanced, and exposure to different sensory environments leads to dramatic and long-
lasting changes in cortical representation. Although it has generally been assumed that 
these changes serve to improve either sensory processing or sensory perception, very few 
studies have directly examined this question. Here we provide evidence that one function 
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of critical period plasticity may be to learn the statistics of sensory stimuli in order to 
make perceptual judgments that are optimized to the animals’ particular environment. 

Our preliminary data suggests that even in conditions of relatively low external noise, 
perception can be biased towards prior experience. Interestingly, our preliminary results 
in the presence of noise (not significant) suggest that noise alters control and tone-
exposed psychometric functions in qualitatively different ways.  In naïve controls, noise 
appears to lead to symmetric biases towards both endpoints on the task, whereas in the 
tone-exposed animals, we see an asymmetric bias towards the experienced frequency.  
One possible explanation for this observed trend is that in naïve animals, perception is 
biased towards two short-term, task-related priors that have been learned over the course 
of 25-30 days of training.  Previous theoretical work relating to speech sound perception 
has suggested that in the presence of two Gaussian prior categories, increasing stimulus 
uncertainty could cause perceptual warping towards the center of whichever prior 
category is more likely (Feldman et al., 2009)—in our case, whichever task endpoint is 
more likely given the noisily perceived stimulus.  By this logic, we would expect that in 
tone-exposed animals both task-related and early-experience related priors would affect 
perception, with the early-experience related prior causing the asymmetricity of the 
observed bias.  Future work will be necessary to tease apart the respective roles of each 
type of bias.     

If this task does indeed depend on both task-related and early-experience related prior 
information, an interesting question relates to their respective neural representations.  
Previous work has shown that enlarged cortical stimulus representations such as the one 
observed in this study could account for the observed perceptual bias through simple 
biologically plausible decoding mechanisms such as population vector decoding (Fischer, 
2010; Fischer and Pena, 2011; Girshick et al., 2011).  However, we found no potential 
neural candidates for task-related priors. This is consistent with a large body of literature 
showing that while critical period plasticity produces dramatic and long-lasting changes 
in cortical representations (de Villers-Sidani et al., 2007), long-term neural effects of 
adult behavioral training are often subtle or entirely absent in anaesthetized recordings 
(Ghose et al., 2002). By contrast, studies in awake behaving animals have shown task-
related changes in neural tuning curves (Basso and Wurtz, 1998; Platt and Glimcher, 
1999; Rickert et al., 2009) that have been proposed to function as neural representations 
of short-term priors (Ma et al., 2006). During adulthood, statistical priors may be learned 
by different mechanisms, on different time-scales, or in different brain regions than those 
addressed in this study. Future work using recording techniques in awake animals will be 
necessary to gain further insight into this question. 
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Methods 

Acoustic rearing and behavioral testing. All procedures used in this study were approved 
by the UC Berkeley Animal Care and Use Committee. A litter of Sprague Dawley rat 
pups was placed with its mother in an anechoic sound-attenuation chamber from p9 to 
p30. This time period comprises the critical period for experience-dependent plasticity in 
primary auditory cortex (AI). Trains of tone pips (7kHz, 60dB SPL, 100-ms pip duration, 
five pips in a train at 5hz, one train every 2 s) were played to the animals 24 h per day. 
After p30, animals were placed back into normal animal rooms. Behavioral training 
began at p60. Only females were used in this study. Tone-exposed animals (preliminary 
data n = 3) and control animals raised in the animal room (n=14) were food-deprived to 
reach a 10% body-weight reduction before training started. Training took place in a wire 
cage located in an anechoic sound-attenuation chamber. On automatic initiation of a trial, 
tone pips of either 7.5kHz or 15kHz, at 100-ms duration were played 5 times per s 
through a calibrated speaker located directly overhead. Initially, the animal was given 
unlimited time to make a nose poke in one of two nose poke holes—over the course of 
25-30 days of training the response window was decreased to 10 seconds. For data 
reported in the main text, 7.5kHz always required a leftward nose-poke to obtain a food-
pellet reward, whereas 15kHz required a rightward nosepoke. An additional group of 
animals (n=6) was trained with the nose-poke holes reversed (Supplementary Figure 
4S.1). Animals reaching 65% performance or more over the course of 30 days of training 
were included in the psychometric testing stage. Psychometric testing involved the 
addition of 5 intermediate frequencies. Intermediate frequency trials were unrewarded 
and kept at 15% to keep animals motivated. Following 5-7 days of psychometric testing, 
psychometric testing in the presence of noise began. During this stage, we added 100ms 
of uniformly sampled white noise (5msec ramp) to all task stimuli. The relative 
noise:stimulus amplitude ratio was 0.2. Noise testing continued for 5-7 days. 

Electrophysiological recording procedure. The primary auditory cortex (AI) of tone-
exposed (n = 3) and control rats (n = 4) were mapped immediately after completion of 
noise testing. Rats were preanesthetized with buprenorphine (0.05 mg/kg, s.c.) a half hour 
before they were anesthetized with sodium pentobarbital (50 mg/kg, followed by 10-20 
mg/kg supplements as needed). Atropine sulfate (0.1 mg/kg) and dexamethasone (1 
mg/kg) were administered once every 6 h. The head was secured in a custom head-holder 
that left ears unobstructed, and the cisterna magna was drained of CSF. The right auditory 
cortex was exposed through a craniotomy and duratomy and was kept under a layer of 
silicone oil to prevent desiccation. Sound stimuli were delivered to the left ear through a 
custom-made speaker that had been calibrated to have <3% harmonic distortion and flat 
output in the entire frequency range. 
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Cortical responses were recorded with tungsten microelectrodes (FHC). Recording sites 
were chosen to evenly and densely map primary auditory cortex while avoiding surface 
blood vessels and were marked on an amplified digital image of the cortex. 
Microelectrodes were lowered orthogonally into the cortex to a depth of 500 – 600 µm 
where responses to noise bursts could be found. Multiunit responses to 25 ms tone pips of 
51 frequencies (1-32 kHz, 0.1 octave spacing, 5 ms cosine-squared ramps) and eight 
sound pressure levels (0-70 dB SPL, 10-dB steps) were recorded to reconstruct the 
frequency-intensity receptive field. For each neuron, the characteristic frequency (CF) 
was determined as the frequency at which responses are evoked at threshold: the lowest 
sound pressure level that activates the neuron.  

Statistical testing. Unless stated otherwise, statistical significance was determined using 
ANOVA and post-hoc two tailed t-tests (MATLAB, Mathworks). 
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Appendix 4.1: Figures 

 

Figure 4.1. Behavioral training procedure and perceptual results. A. Naïve control and 
tone-exposed animals were trained for 25-28 days until they achieved at least 65% 
performance on the task. Following training, all animals underwent 7 days of 
psychometric testing with 5 intermediate, unrewarded probe frequencies, followed by 7 
days of testing in the presence of background noise. B. Learning curves over the course 
of task training. C. Psychometric functions for naïve (cyan) and tone-exposed (red) 
animals in the absence (solid line) and presence (dotted line) of noise.  Perception was 
systematically shifted towards the experienced frequency (7kHz) in tone-exposed 
animals. * p<0.05, n = 3 tone-exposed, n = 11 controls.   
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Figure 4.2. Enlarged representation of the experienced frequency. A. Representative 
cortical characteristic frequency maps from a control animal that experienced training 
and testing, and a 7kHz exposed animal that experienced training and testing. B. 
Distribution of characteristic frequencies as a function of location along the tonotopic 
axis for control and tone-exposed. C. Percent of A1 tuned to different characteristic 
frequencies. Cyan = control, red = tone-exposed, *p<0.05, n = 3 tone-exposed, n = 4 
control 

 

 

 

 

 

 



!
!

! 59!

Appendix 4.2: Supplementary Figures 

 

Supplementary Figure 4.S1. Animals show systematic right-ward poking bias A. 
Training data for two groups of side-counterbalanced animals trained to poke left for 
7.5kHz and right for 15kHz (blue) and left for 15kHz and right for 7.5kHz (magenta).  
There are no overall differences in performance between the groups. B. Training data 
separated by 7.5kHz (filled circles) and 15kHz trials (open triangles). Animals performed 
better on whichever frequency required a rightward nose poke.  C.  Summary data across 
all days of training.  There was no significant effect of group or frequency, and a highly 
significant group by frequency interaction, ***p<0.001.  On the basis of these results, we 
concluded a rightward poking bias, and only animals who had been trained on the left = 
7.5kHz and right = 15kHz task were included for further analysis.   

 

 

 

 

 

 

 

 

 



!
!

! 60!

 

Supplementary Figure 4.S2. Reaction times mirror psychometric function data. For 
tone-exposed animals (red), the longest reaction time (maximal point of uncertainty) is 
shifted away from 7.5kHz relative to control animals (not significant). 
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Appendix 4.3:  Supplementary Information 

The results presented in Chapter 4 show that perceptual biases towards a tone 
experienced during the critical period are accompanied by an enlarged representation of 
that tone in primary auditory cortex.  To establish a more causal link between the 
representational change and perceptual bias, we attempted to measure the perceptual 
effects of artificially inducing cortical plasticity outside of a behavioral context.  

To this end, we trained naïve animals on the categorization task described in Chapter 4, 
tested their perception of intermediate tones, and then exposed them to 20 days of 
nucleus basalis stimulation paired with one of the two categorization tones. Previous 
work has shown that this procedure can lead to representational changes similar to those 
seen after critical period tone exposure (Kilgard and Merzenich, 1998).  Following NBS 
tone pairing, we re-tested performance to observe any perceptual changes, and also 
mapped primary auditory cortex to assess the neural effects of NBS tone-pairing.   

Contrary to previous reports (Kilgard and Merzenich, 1998), we did not observe cortical 
plasticity in the animals that underwent NBS tone-pairing (Figure 4.S3B).  This was 
despite the fact that we observed decorrelation in the EEG in response to stimulation in 
four out of five subjects (Figure 4.S4). EEG decorrelation, specifically measured as an 
increase in power in the gamma frequency band relative to the alpha frequency band, is a 
hallmark of nucleus basalis activation.  We also did not observe any perceptual changes 
following NBS tone pairing (Figure 4.S3C). 

These negative results do not offer any evidence for or against the hypothesis that 
changes in cortical representation causally result in changes in perceptual bias.  Several 
factors might have contributed to the lack of plasticity seen following NBS tone pairing 
in this study.  First, very recent experimental results (Reed et al., 2011) show that when 
NBS tone pairing follows prolonged learning and mastery of a frequency-identification 
task similar to the one used in our study, primary auditory plasticity is not present when 
measured after completion of NBS tone pairing.  Thus, it is possible that the specifics of 
our experimental design precluded persistent changes in primary auditory cortical 
representation.   

Another possibility is that our chronic stimulating electrodes were not correctly targeting 
the nucleus basalis.  The nucleus basalis is located deep within the basal forebrain, and 
even minute asymmetries in the positioning of the stereotax could in principle preclude 
NB activation upon stimulation.  Anatomically verifying the location of the stimulating 
electrodes post experiment would be desirable.   
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Figure 4.S.3.  Nucleus basalis stimulation tone pairing.  A. Experimental protocol.  Naïve 
animals were trained on the categorization task (8.919kHz versus 12.614kHz), implanted 
with chronic stimulating electrodes and tested on intermediate frequencies.  Following 
this initial testing, they underwent 20 days of nucleus basalis stimulation paired with 
8.919 kHz.  Finally, they were re-tested on intermediate frequencies.  B.  Nucleus basalis 
stimulation did not lead to enlarged representation of the paired tone in primary auditory 
cortex.  Top:  representative map from an example subject. Bottom:  compiled data for 3 
animals.  C.  Psychometric testing data before (cyan) and after (red) stimulation.  There 
were no significant differences between groups, n = 4.   
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Figure 4.S.4.  Nucleus basalis stimulation tone pairing causes desynchronization of the 
cortical EEG. A.-D. Ratio of gamma band power to alpha band power in four subjects 
undergoing nucleus basalis stimulation.  Following the occurrence of the tone (black) and 
stimulation (red), gamma band power increases relative to alpha band power. 
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Supplementary Methods 

All procedures used in this study were approved by the UC Berkeley Animal Care and 
Use Committee. Five female Sprague Dawley rats (290-310g; 3-6 months old) were used 
in this experiment. Behavioral training and electrophysiological procedures were 
identical to those described earlier in this Chapter, except that 4 out of 5 of the subjects 
were trained on a 0.5 octave, rather than a 1 octave, categorization task (8.819 kHz versus 
12.614 kHz).  After 25-30 days of testing, once animals reached at least 65% 
performance, they were allowed free access to food for 3 days before implantation of 
chronic NBS electrodes, as described previously in  (Bao et al., 2003).  Briefly, subjects 
were kept anesthetized with a continuous stream of 2% isoflurane gas.  Stainless steel 
bipolar stimulating electrodes (SNE-200, Rhodes Medical Instruments, Woodland Hills, 
CA; 0.55mm separation, 12mm shaft) were stereotaxically implanted into the right 
nucleus basalis (3.3 mm lateral and 2.3 mm posterior to bregma, 7.0 mm below the 
cortical surface).  Three bone screws were threaded into a burr hole on the skull to anchor 
the electrode assembly.  Leads were attached to the screws over the cerebellum and 
cortex to monitor cortical EEG during NB stimulation.  After a two week recovery 
period, animals received a few more training days before advancing to psychometric 
testing.  Following 7 days of psychometric testing, we tested for the threshold of current 
microstimulation (20 biphasic pulses of 0.1msec duration at 100 Hz) necessary to 
desynchronize cortical EEG during slow-wave sleep.  Thresholds varied between 40 !A 
and 170 !A.  All subjects received 20 days of pulsed tone pips (6 25msec tone pips; 5 
msec on/off ramps; delivered at a rate of 15 pips per second; 65dB sound pressure level) 
with NB microstimulation (20 biphasice pulses of 0.1 msec duration at 100 Hz, initiated 
200 msec after sound onset).  Following NBS tone pairing, animals were trained for 1-2 
days to ensure task retention, and then tested for intermediate tones as before for 7 days.   
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Chapter 5 

Conclusions and Opportunities for Future Research 
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The purpose of this dissertation was to examine the neural and perceptual consequences 
of manipulating the acoustic environment during the critical period. Previous studies 
investigating critical period plasticity focused predominantly on the neural effects of 
simple, single-frequency manipulations, with very little work investigating the perceptual 
consequences. We sought to add to the existing literature by examining the effects of 
more complex stimulus environments, as well as downstream perceptual effects. 

In Chapter 2, we showed that the development of receptive fields in primary auditory 
cortex is sensitive to the spectrotemporal relationships between sounds. Specifically, 
sounds that were played together within one-second sequences tended to be represented 
by the same population of neurons, whereas sounds that occurred together on longer 
time-scales (on the order of seconds) were represented separately. This suggests that the 
relative timing of sound inputs plays an important role in determining the nature of 
cortical representational change.  

An important outstanding question concerns the neural mechanisms underlying this 
temporal dependence of plasticity. A previous study found that critical period plasticity in 
rats is enhanced for sounds repeated at 6Hz relative to other modulation rates (Kim and 
Bao, 2009). This result, together with our finding that sounds within 6Hz sequences are 
represented together, suggests the existence of a cortical integration window for plasticity 
on the order of hundreds of milliseconds. Further work investigating the dynamics of 
neuronal response properties in young animals will be necessary to elucidate this further. 

Another outstanding question relates to the locus of the observed neural tuning changes.  
Recent work suggests that critical period tone exposure leads to representational changes 
in the primary auditory cortex but not the thalamus (Barkat et al., 2011), implicating the 
cortex as a primary site of critical period plasticity.  Within the cortex, changes in neural 
tuning could arise from plasticity at thalamocortical or intracortical synapses (Liu et al., 
2007). Teasing apart the their respective contributions will be an important step in 
understanding critical-period plasticity at a circuit level.  

In Chapters 3 and 4, we propose a model for how changes in cortical sensory 
representations may affect perception within a statistical inference framework. Our model 
shows that enlarged stimulus representations may function as the neural representation of 
a Bayesian prior, and preliminary behavioral results support this idea.  However, our 
current findings are purely correlational—we were not able to establish a causal link 
between cortical plasticity and perceptual change.  Future work that either artificially 
induces or inhibits primary auditory cortical plasticity will be necessary to establish such 
causality. 

In addition, our model is limited in that it considers only static, spectral priors.  As our 
work in Chapter 2 shows, the temporal dependencies between sounds contain information 
that not only shapes neural tuning in primary auditory cortex, but also has downstream 
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perceptual effects. Whether the perceptual changes observed in Chapter 2 can be 
understood in a similar statistical inference framework as the one proposed in Chapter 3 
is an interesting question that requires future theoretical work.  More broadly speaking, 
while we propose that long-term changes in neural representation could be a mechanism 
of prior bias in contexts where experience induces long-term perceptual biases, we 
believe it likely that neural priors can be learned on multiple time scales and by different 
mechanisms.  One promising line of research investigates the manifestation of short-term 
priors in the form of short-term changes in neuronal gain (Basso and Wurtz, 1998; 
Rickert et al., 2009).   

Finally, as expressed in Chapter 1, a more comprehensive characterization of the three-
way relationship between the statistics of the early sensory environment, neural tuning in 
primary sensory cortex, and sensory perception will likely provide important insights into 
the goals underlying sensory coding.  This dissertation has provided a small step in this 
direction, and we are looking forward to the work to come.          
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