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ABSTRACT OF THE THESIS 

 

Uneven Technological Development: 

The Geographic Evolution of Optics Technologies in the United States, 1976-2010 

 

by 

 

Melissa Haller 

 

Master of Arts in Geography 

University of California, Los Angeles, 2018 

Professor David L. Rigby, Chair 

 

While significant research has examined processes of knowledge production across space, less 

work has focused on understanding the dynamics of technological change within particular 

industries. Why do technologies emerge unevenly across space, and how does the evolution of 

particular knowledge trajectories enable growth in some cities, while constraining growth in 

others? To better understand these questions, this project uses the optics industry as a case study. 

Optics is the study of the behavior and transmission of light, and optics technologies have fueled 

breakthrough innovations in the fields of photography, medical imaging, defense and security, 

fiber optics and telecommunications, and many other areas. Using USPTO optics patents from 

1976 to 2010 and methods drawn from social network analysis and community ecology, I map 

the evolution of the optics industry across time and space. I find that optics technologies evolve 

along distinct trajectories over time, and that those trajectories vary from one location to another. 

This uneven distribution of technologies has important implications for the development of cities 

and regions, and this research provides an important platform for future studies on the evolution 

of regional economies.  
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Introduction: An Evolutionary Perspective of Technological Change 

 

 

Innovation, or the novel application of economically valuable knowledge, has long been 

viewed as a key driver of the growth and decline of regional economies (Schumpter, 1942; 

Solow, 1957; Feldman, 2000). As the decline of traditional manufacturing in the developed 

world has given rise to economies built around innovative industries, regions increasingly gain 

competitive advantage by specializing in the production of particular technologies (e.g. biotech, 

nanotechnology, optics, etc.). The development of technological industries is largely influenced 

by processes of technological change and the new ideas and flows of knowledge that drive 

particular development paths; new technologies are continually created through a search for new 

possibilities and the recombination of old ideas (Nelson and Winter, 1982; Kogut and Zander, 

1992). Technological production may also exhibit path dependency, as choices in one time 

period continually influence the range of technological possibilities in future time periods 

(Arthur, 1998; David, 1987; Martin and Sunley, 2006). Technologies vary not only across time, 

but also over space: locations serve as a nexus between people, their ideas and human capital, 

regional resources, institutions, and organizations. All these characteristics influence the ways in 

which knowledge is created, borrowed and diffused throughout regional economies. Cognitive, 

social and spatial forms of proximity interact and guide knowledge production and the 

trajectories along which that production flows (Boschma, 2005; Leamer and Storper, 2001). This 

project seeks to understand the role of geography in producing uneven technological 

development.  

While considerable work has been devoted to theorizing the formation, growth, and eventual 

decline of industries over time, less work has focused on the evolution of industries, or the ways 

in which the rise and fall of particular technologies drives changes in industry growth over time 
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and space. This paper aims to add to existing research by investigating the evolution of the optics 

industry in the United States. Optics is the study of the behavior and transmission of light, and 

optical technologies have fueled breakthrough innovations in the fields of photography, medical 

imaging, defense and security, fiber optics and telecommunications, and many other areas. Often 

described as an enabling technology, optics is unique because of the clear synergies that it 

possesses with other technologically-focused industries; its transformation from an industry built 

on end-user products (e.g. cameras and eye glasses) to one fueled by components and 

applications (e.g. fiber optics cable) make it an interesting case study in technological evolution 

(Feldman and Lendel, 2010). 

Using networks built from USPTO data from 1976-2010 and methodological techniques 

drawn from both network science (Rosvall and Bergstrom, 2008) and evolutionary and 

community ecology (Anderson and Walsh, 2013), I aim to investigate the following two 

questions. First, how has the optics industry grown and developed over time? What technologies 

drive industry growth, and can we identify how they have changed? Second, is the production of 

different optics technologies shaped by the regions in which they emerge? Can we expect optics 

technologies to take on different evolutionary paths in different places, thereby contributing to 

the uneven distribution of technologies and their production across space? In this way, my 

project seeks to understand both the ways in which the production of optics technologies 

dynamically unfolds, and how the evolution of optics technologies varies in different places. 

The paper is organized in the following way. Section II introduces the theoretical motivation 

for the paper, drawing on works from economic geography, economics, technology studies, and 

other related areas. Section III discusses the optics industry and the unique characteristics that 

make it of particular interest. Section IV outlines the empirical methods used to identify 
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technologies and map their variation across space and time. Section V discusses the key results. I 

find that, at the national scale, optics technologies generally follow very distinct trajectories over 

time. While some technologies become more stable over time, many of these trajectories exhibit 

continuous technological change and variability, illustrating the dynamism of the optics 

industry’s evolutionary history. In addition, my analysis reveals that there is considerable 

differentiation in the technological structure of the optics industry between key U.S. urban areas. 

I further find statistically significant differences in the mix of technological categories across 

cities over time. This suggests that, even within a single industry like optics, technological 

production likely looks very different from one city to the next, and this has important 

implications for the industry’s evolution over space. Section VI concludes the paper, and 

discusses implications for future research.  

 

Literature Review 

 

Economic geographers have long recognized the role of knowledge in producing 

landscapes of uneven technological development (e.g. Maskell and Malmberg, 1999; Frenken 

and Boschma, 2007; Kogler, Rigby, and Tucker, 2012). As industries increasingly gain success 

through the production of innovative technologies, knowledge has become more valuable than 

ever before. Firms, research institutes, universities, and other organizations (henceforth referred 

to collectively as “organizations”) use their knowledge bases, or the knowledge that they can 

readily draw upon, to invent new technologies and to build or improve upon existing ones. 

Knowledge is increasingly a source of competitive advantage that organizations can leverage to 

be successful (Grant, 1996). These knowledge bases can consist of both information (e.g. how to 

build a technology) and know-how (e.g. how to organize a team), and are the result of people and 

their interactions: they materialize not only from current employees’ or members’ levels of 



 

 

4 

 

expertise, but are also passed down over time from previous members (Kogut and Zander, 1992; 

Cohen and Levinthal, 1990). Ultimately, under a knowledge-based view of the organization, a 

key advantage of organizations is their ability to coordinate the specialist knowledge of their 

members into something greater, and successful organizations do so better than others. 

How do organizations learn to create and adopt new technologies? This, again, has much 

to do with the ability of the organization to coordinate the interactions of its members and their 

existing knowledge. Cohen and Levinthal (1990) identify one way that organizations learn 

through their “absorptive capacities,” or their ability to recognize the value of new information, 

assimilate it, and apply it commercially. Whether or not an organization adopts a new idea is 

highly dependent upon its existing level of related knowledge and the experiences of members; 

organizations are best positioned to utilize new knowledge when they are familiar with it and 

have the potential to implement it. Organizations not only adopt new, external knowledge, but 

they can also create new knowledge. Their ability to do this is often dependent upon their 

“combinative capabilities”, or the capability to exploit an existing knowledge base in order to 

create something new (Kogut and Zander, 1992, p. 391). Organizations rarely conceive of new 

ideas from nowhere; innovations are frequently new combinations of existing knowledge bases 

and incremental learning processes, all of which are coordinated through the organization (p. 

392; Schumpeter, 1934). 

These ideas can be extended further to understand how organizations and the 

technologies that they produce evolve. An evolutionary view of technological change is one in 

which new ideas are continually produced and recombined to form new innovations. Building on 

the knowledge-based view of the organization, evolution explicitly incorporates a time 

dimension into our understanding of the innovative process. The evolution of technologies is a 
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dynamic process that is both dependent on events in previous time periods and an important 

determinant of future technological development. Technologies are made up of components that 

take on different configurations over time; as new combinations of ideas enter dynamic sectors, 

they often merge with existing ideas and technologies to create entirely new technological 

configurations. As technologies change in this way over time, they follow distinct paths or 

trajectories. Tracing the paths that different technologies take is an important step in 

understanding the rise, growth, and decline of technological industries. How are these new ideas 

and configurations produced? One way that knowledge is accumulated is through 

experimentation within the firm, a key focus of evolutionary economic literature. 

How does evolution happen? A number of evolutionary economists theorize that firms 

possess a finite set of behaviors or “routines” that both enable them to operate and restrict their 

opportunities to adopt new behaviors (Nelson and Winter, 1982; Winter, 2005).  Routines can be 

any of the forms, rules, procedures, conventions, strategies, and technologies that the 

organization uses on a day to day basis (Levitt and March, 1988). The range of routines available 

to the organization is conditioned by its existing knowledge base. Similar to genetic inheritance, 

these routines are maintained and passed down over time by the firm. Firms evolve over time 

through the process of searching for new routines and ideas in a heterogeneous selection 

environment. As firms compete, those with routines that are more “fit” tend to survive (note that 

“fitness” is not the same as “efficiency;” firms may ensure their survival, for example, by 

capturing a niche market or using other strategies to increase sales), while firms with less fit 

routines face declining profitability or are pushed out of the market. As a response to declining 

profitability or uncertainty in their environment, firms may engage in an experimental search 

process, producing new ideas and routines that build on existing capacities and knowledge in 
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order to become profitable again or adapt to changing conditions. In the case of innovative 

industries, this search may involve creating new technologies or developing different 

combinations of existing technological components.  

This is, however, not the only way that scholars conceive of economic evolution. 

Evolutionary ideas have proliferated through parts of economics, management, geography, 

sociology, and other related disciplines, and conceptions of how ideas, firms, industries, and 

regions evolve over time have taken numerous forms. Although there is no clear consensus on 

what we mean when we say that things “evolve,” there are similar patterns throughout the 

literature: most evolutionary theories conceive of economic processes as dynamic; they 

recognize that choices made in one time period not only influence the next time period, but are 

often irreversible; and they show how variety and, more specifically, novel ideas, are a primary 

driver of economic change (Boschma and Martin, 2007). Thus, firms use knowledge and new 

ideas to gain a competitive advantage over others, industries employ knowledge to grow and 

forge new paths of development (often at the expense of existing paths), and all of this allows 

regions and the firms and people within them to capture new waves of economic growth across a 

heterogeneous economic landscape. Knowledge is often embodied in the creation of a new 

invention or technology, and the exploitation of new these technologies can give rise to impacts 

at multiple levels of analysis. 

If new ideas are built upon the recombination of existing knowledge and the learning 

capabilities of organizations, what determines the nature of the technologies that are produced? 

Ultimately, an organization’s ability to recombine ideas is constrained by its ability to process 

new combinations, and the decision to recombine certain ideas may simultaneously open up new 

development paths while closing off others (Weitzman, 1998). Along this vein, a number of 
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researchers have conceptualized this process of looking for new combinations as a search across 

fitness landscapes, operationalizing a concept from evolutionary biology (Kauffman and 

Johnson, 1991; Levinthal, 1997). Fleming and Sorenson (2001), building on the work of 

Kauffman (1993), envision technological components as “genes” which are continually 

recombined through technological evolution, and inventors as continually searching across these 

landscapes, seeking higher positions (which correspond to greater degrees of success or fitness). 

The topography of the landscape is then determined by the number of components and the 

interdependence between them; while increasing component interdependence increases the 

likelihood of finding synergies between components, very high levels of interdependence make it 

increasingly difficult to find useful new combinations as components become more similar. 

Thus, inventors are tasked with sorting through a complex landscape, and moving along one 

direction or peak meaningfully closes off opportunities in other directions (although such a 

conceptualization is limited, in that it does not explain how the topography of the landscape was 

developed in the first place). Social and cognitive constraints, access to resources, risk aversion, 

and other characteristics further limit an inventor’s ability to access the full extent of the 

landscape, and influence the direction of the inventor’s search efforts. 

Assuming they cannot visibly see this landscape of invention, how do inventors choose 

what components to recombine? While many new, recombinative technologies have a minor 

impact, sometimes technologies can destabilize existing industries or even lead to the growth of 

new ones, often by reconfiguring the architecture of existing technologies or combining existing 

knowledge in distant but complementary fields (Hargadon, 1998; Henderson and Clark, 1990). 

As the above discussion has implied, the full range of possibilities for recombination are 

influenced by heterogeneity or variety within the existing knowledge base of an organization or 
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location, as new technologies are generally the result of combinations that have not yet been 

implemented.  To this end, variety can be related or unrelated to existing knowledge, and a 

choice to pursue one type of variety over another is conditioned by inventors’ ultimate goals and 

incentives. ‘Related’ variety includes ideas that occur in proximate or similar industries and 

technologies, and is easy to recombine to produce new products, while ‘unrelated’ variety is 

more difficult to recombine, and often involves a larger diversification of an organization’s 

knowledge base (Frenken et al., 2007; Content and Frenken, 2016). While related variety 

enhances the growth of a particular industry and likely involves less risk, unrelated variety may 

enhance regional diversity but is likely more risky to pursue. When one technological pathway 

has been exhausted, the organization that is most successful is often the one that is able to 

combine the most distant technological possibilities in order to forge a new path. However, 

related technologies are often closer to an organization’s existing competencies, and learning 

new skills and technological areas requires significant time and investments by the organization. 

Generally, more local search processes are common, as the payoffs for those technologies are 

much more certain (Stuart and Podolny, 1996).  

The search for new ideas can occur locally, within the organization, or globally, through 

inter-organizational partnerships and networked collaboration structures. A number of authors 

have written on patterns of search within firms, stressing the importance of organizational 

boundaries in both constraining and enabling inventor collaboration and the subsequent 

production of new ideas. Zucker and Darby (1996) imagine institutional boundaries as 

“information envelopes,” protecting a firm’s ideas and preventing them from diffusing across 

organizations. Organizations choose to form partnerships with other organizations in those 

situations wherein the benefits of collaboration outweigh the costs; often, the obstacles to 



 

 

9 

 

changing existing firm structures are particularly large. According to Powell, Koput, and Smith-

Doerr (1996), such a networked organizational structure is most likely to occur when the 

knowledge base of an industry is both complex and expanding and the sources of expertise are 

widely dispersed. In these cases, the incentives to collaborate in order to gain access to 

information from other organizations are particularly high. The authors’ papers find evidence in 

support of university-firm partnerships and networked collaboration structures, respectively, in 

some high tech industries like biotechnology (although some industries are more collaborative 

than others), and later work has further emphasized the importance of technological and industry 

boundary-spanning in producing high-impact technologies (e.g. Rosenkopf and Nekar, 2001). 

Overall, a significant body of literature exists which suggests that collaboration structures 

significantly impact the production of ideas in knowledge-intensive industries.  

All of these literatures point to the complex and evolutionary nature of technological 

change. Not only do future inventions depend on pre-existing ideas, but technological trajectories 

are continually shaped by inherited behaviors and routines, patterns of search and collaboration, 

organizational incentives, and our ability to process immense quantities of complex information. 

Although tracing the evolution of particular technologies or industries over time cannot possibly 

uncover the wide range of contextual factors that have led to particular instances of technological 

change or differentiation, being able to delineate technological trajectories over time is an 

important first step towards understanding why industries and regions have taken on particular 

forms across time and space. These questions lead to my first two research hypotheses: 
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H1: Despite the diversity of optical technologies and applications, the industry can be 

separated into clear, distinct technological trajectories across time1 

H2: Because new ideas are often built on pre-existing, proximate forms of knowledge, 

these trajectories have been relatively stable over time as a result of continual 

recombination along existing paths 

 

The Role of Geography 

 

 What role, then, can geography play in helping us to understand how technologies evolve 

over time? Industries, and the technologies they produce, are often linked to particular 

geographies. Even as the costs of doing business, including transportation and communication 

costs, continually decline, evidence suggests that industries are more spatially clustered than ever 

(Porter, 1998). This is increasingly because of the unique benefits of co-location, which include 

access to resources, human capital, and regional capabilities (Glaeser, 2010; Duranton and Puga, 

2003; Storper and Venables, 2004). One particular advantage of place is the ability to 

communicate and access complex information, particularly in high tech industries: because 

complex scientific knowledge is often tacit, or cannot be easily written down and diffused, being 

close to key people with technical knowledge is crucial to developing new technologies within 

and between organizations (Nelson and Winter, 1982; Polanyi, 1967). Organizations develop 

new ideas through face-to-face interactions with their members and by building collaborative 

relationships with other nearby organizations; because of the advantages organizations gain 

access to as a result of their location, firms are incentivized to concentrate in particular places, 

creating an uneven geography of industrial location (Maskell and Malmberg, 1999; Storper and 

                                                 
1 Alternatively, an industry could evolve along complex, interconnected 
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Venables, 2004). As industries concentrate in regions, their knowledge bases become 

concentrated in those places as well. 

 A number of researchers have quantified this local dimension of knowledge production. 

In their early work, Jaffe, Trajtenberg, and Henderson (1993), followed by Sonn and Storper 

(2008), studied knowledge spillovers using US patent citations; they ultimately found that 

citations to US patents were more likely to come from the same state and metropolitan area than 

what might be expected based on pre-existing research concentrations, evidence of a strong 

localization of knowledge in the US. Others have continued to pursue work in this research 

stream: Audretsch and Feldman (1996) echo earlier findings, and further illustrate that the 

geographic concentration of innovative activity is most likely to occur in industries where 

knowledge spillovers are greater. From a network perspective, Owen-Smith and Powell (2004) 

find that the interaction between geographic proximity and organizational form is an important 

factor in determining the character of knowledge flows. All of these point to the important role 

of geography in shaping knowledge creation and transmission.  

It is worth noting that geographic proximity is not the only mechanism through which 

knowledge can be transferred, and firms often leverage local and global knowledge sources to 

produce new ideas. For example, Boschma (2005) suggests that geographical proximity likely 

does not stimulate knowledge production on its own, but heightens other proximity dimensions, 

such as cognitive and social proximity, by promoting interactive learning processes. Further, 

Bathelt, Malmberg, and Maskell (2004) distinguish between different scales of interaction and 

collaboration: they call “local buzz” the dimension of interaction which occurs among actors 

embedded in a community by just being there, and “global pipelines” the knowledge that is 

attained by investing in building channels of communication beyond a firm’s local milieu. They 
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argue that the coexistence of high levels of local buzz and global pipelines provide key 

advantages which are not available to firms that are less connected. Although knowledge 

production is likely a complex, multi-dimensional process, geography nevertheless remains an 

important explanatory variable.  

Can the localization of knowledge flows be a bad thing? As many authors have argued, while 

the geography of technological evolution may facilitate interactive learning processes and 

opportunities to recombine proximate ideas, it may also create an environment in which the 

production of new technologies becomes too local. Facing bounded rationality and other 

cognitive constraints, firms often concentrate their search for new ideas on a restricted range of 

possibilities (Simon, 1990; Maskell and Malmberg, 2007). The environment in which a firm is 

located further contributes to this myopic behavior by constraining the nature and variety of 

ideas that a firm can access locally, and creating isomorphic pressures for emerging firms to 

conform to the norms established by dominant regional firms (Frenken and Boschma, 2007; 

DiMaggio and Powell, 1983). Because technological evolution is path dependent, or conditioned 

on factors including past technological events and existing regional capabilities, regions can 

become “locked-in” to particular technological trajectories (Grahber, 1993; David, 1985; Arthur, 

1988). While lock-in can sometimes be a positive process, it is often associated with a region’s 

tendency to become “over-reliant on, or dominated by, a particular self-reinforcing industrial-

technological path that renders the regional or local economy increasingly structurally and 

technologically rigid” (Martin and Sunley, 2006, p. 7). Thus, some regional environments may 

constrain the search for new ideas and lock particular technologies into infertile paths, while 

others will more readily enable continuous technological growth and development.  
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It is not known why some paths tend to become more successful than others, and many 

authors attribute initial path selection to random chance or historical accident rather than rational 

deliberation; although firms have agency in the decision making process, imperfect information 

prevents them from being able to make perfectly optimal decisions. In economic geography, this 

is similar to a “window of locational opportunity” view of industrial location, which suggests 

that because there is often a gap between the requirements of a new industry and the surrounding 

environment, infant industries can settle anywhere (Boschma and Frenken, 2003; Scott and 

Storper, 1987). Both views suggest that random or exogenously determined events can determine 

or permanently alter a region’s potential paths. Others have contested this perspective. For 

example, Martin (2009) points out that many find that the pre-existing industrial structure of a 

region can be both a positive or negative determinant of whether a new industry emerges there. 

He further points out the contradictory logic behind the historical accident assumption; why 

should history only begin to matter after a technology or industry has been selected for? Can the 

history of a region be a determining factor for future industrial location? Overall, there is no 

agreed upon explanation for how path selection occurs, and there is significant space for more 

research in this area. 

Finally, it is important to recognize that path dependency need not be interpreted as an 

equilibrium process. It need not be the case that regions converge to a stable state at which they 

become locked into a technological or industrial trajectory; if economic development is a 

dynamic process, and economic paths are in a continual state of change and transformation, then 

it seems unlikely that a region could become permanently stuck on one path (Martin and Sunley, 

2006). Instead, there remains a possibility that new paths could continually emerge from older 

paths; regions are complex systems made up of institutions, organizations, individuals, and the 
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composite “organizational elements, structural arrangements, sociocultural norms, and individual 

rules and procedures” around which these regional systems emerge and are configured (Martin, 

2009, p.13). It is possible that new routines and structures are continually layered upon old ones, 

changing the nature of an existing evolutionary path and potentially converting it to something 

new, or, like technologies, recombining with old structures to create a novel structural 

configuration (p.14-15; Boas, 2007; Stark and Bruzst, 2001). Given this, there is no reason to 

assume that technologies necessarily become locked-into particular technological trajectories 

either; as regions evolve, the technologies that they produce likely co-evolve with them, and 

building a new economic path may be associated with new patterns of technological production. 

This discussion leads to two further hypotheses that will be examined in the analysis below: 

H3: Potential components for recombination differ from one city to another, leading to 

different evolutionary trajectories 

H4: These differences are persistent over time       

 

Evolutionary Case Study: The Optics Industry 

 

This study considers technological evolution from the perspective of the optics industry. 

Optics is the field of physics and engineering based around the science of light, and it 

encompasses a broad range of technologies and applications, including innovations in photonics, 

opto-electronics, optical discs, photography and imaging, and other related fields which involve 

“the integration of optical and electronic techniques in the acquisition, processing, 

communication, storage and display of information,” (Gaschet et al., 2017, p.1). Although early 

optical technologies, including optical lenses and photographic apparatuses, were prominent in 

the early 20th century, particularly in Rochester, NY, the home of photography giant Eastman 

Kodak and lens producer Bausch and Lomb, more recent breakthroughs have transformed the 
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industry (Loudon, 2015). While early optics technologies took advantage of natural lighting to 

observe objects, leading to the production of technologies like eyeglasses and telescopes, new 

discoveries have expanded the ways that scientists use and understand light. In particular, the 

development of the laser in the 1960s by the US military and the discovery of optical waveguide 

fiber that could carry an unprecedented amount of information in 1970 by researchers at Corning 

Glass Works revolutionized the applications of optical technologies for the foreseeable future 

(Hecht, 2016; Alwayn, 2004). Additional innovations in optics include the bar code scanner, the 

CD player, the laser printer, soft contact lenses, the optical mouse, and the display screens of 

televisions, computers, and mobile phones (Bass, 2016). Optics technologies have also given rise 

to important components of medical imaging devices, digital cameras, smart phones, surveillance 

devices, and a range of other diverse technologies that are prevalent in everyday life (OSA, 

2017).  

An important characteristic of the optics industry is the fact that optical technologies 

possess synergies with many related fields. According to Gaschet et al. (2017), optics 

technologies fall into three primary categories: underlying generic technologies (e.g. optical 

glasses), key components (lasers), and end-user products and systems (p. 3). As a result, many 

optical innovations are considered ‘enabling technologies,’ with a wide array of applications 

across a variety of different sectors. Recent breakthrough discoveries have enabled optics to 

develop more applications than ever before. Figure 1 provides an early list of some of the 

industries within which optics technologies have been most widely adopted, but a modern list 

would likely include an ever greater variety of industries (Clark, 2004). The diversity of the field 

has fueled fast growth in optics careers. The International Society for Optical Engineering 

estimates that optics is growing 3.5 times more quickly than other major industries, making it a 
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promising driver of economic development for many regions (Feldman and Lendel, 2010). These 

characteristics make it an interesting and case study for understanding the geographic evolution 

of an industry.  

Figure 1: Top Markets for Optics, Imaging, and Photonics Firms 

Source: Clark, 2004 

 
 However, given the ability of optical technologies to interface within many other fields, 

this also makes it challenging to define the breadth and scope of the industry. No industry 

classification fully encompasses all of optics, and capturing optical technologies proves a 

challenging endeavor (Feldman and Lendel, 2010). How large is the optics industry? In the 

Optical Society of America, the leading American professional society in optics and photonics, 

there are 315 firms and 21,000 individual members (OSA, 2018). However, this measure misses 

any optics firms that do not opt into OSA membership and is likely an underestimate of true 

industry size. On the other hand, there are 1,070 firms that have produced at least ten patents in 

optics in the data used for this project (the methods used to collect this data are described in 

detail below), suggesting that the optics industry might be much larger. However, this may 
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capture firms that do not solely produce optics technologies, and is likely an overestimate of the 

industry size. Given the diverse nature of the field, measuring the size and scope of the industry 

is particularly challenging. What firms produce optics technologies, and where are they located? 

Table 1 lists the top ten firms in the data. Unsurprisingly, the top firms include Eastman Kodak, 

IBM, Xerox, AT&T, and other industry giants. Geographically, the top optics-producing cities 

are listed in table 2. The majority of optics patents are produced in California’s Bay Area (San 

Francisco and San Jose) and in major east coast cities (New York, Boston). Rochester, NY, is the 

smallest city on the list, and much of its patenting is driven by the continued presence of 

Eastman Kodak and Xerox, among other firms. The industry is also very geographically 

concentrated; although there are 353 total cities that produce at least one patent in optics, 

approximately 48% of all patents are produced by the top ten cities.  

 

Table 1: Top 10 Optics Producing Firms  
Firm Number of Patents 

Eastman Kodak Company 2276 

IBM 2187 

General Electric Company 2055 

Lucent Technologies Inc. 1760 

The US Navy 1447 

Xerox Corporation 1383 

Intel Corporation 873 

AT&T Bell Laboratories  820 

Hewlett-Packard Company 799 

Corning Incorporated 794 
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Table 2: Top 10 Optics Producing Cities 
City Number of Patents 

San Jose-Sunnyvale-Santa Clara, CA 12365 

New York-Northern New Jersey-Long 

Island, NY-NJ-PA 

11662 

San Francisco-Oakland-Fremont, CA 8781 

Boston-Cambridge-Quincy, MA-NH 7318 

Rochester, NY 4122 

Minneapolis-St. Paul-Bloomington, 

MN-WI 

3141 

Washington-Arlington-Alexandria, 

DC-VA-MD-WV 

3080 

Chicago-Joliet-Naperville, IL-IN-WI 3016 

San Diego-Carlsbad-San Marcos, CA 2784 

Philadelphia-Camden-Wilmington, 

PA-NJ-DE-MD 

2721 

 

 

 

 
Figure 2: Optics Production in Top US Cities, 1976-2010 

 

How has the geography of the optics industry changed over time? Looking at patent 

production between 1976 and 2014, figure 2 depicts patenting in the top six cities. Although 

New York and Rochester lead the industry in the mid 1990s, over time San Jose, and later San 

Francisco, managed to capture a greater share of optics patents. The decline of the earlier two 
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cities appears to coincide with the rise of the later two. Boston and Minneapolis, by contrast, 

appear to produce a relatively stable quantity of optics patents over time, with only a modest 

increase in later years. All of this suggests that the industry is relatively dynamic; while some 

cities have experienced declines over time, others exhibit clear growth patterns.  

A few recent empirical studies have been conducted which investigate the nature and 

extent of optics clusters in the US and Europe. Most work has focused on delineating the 

different geographic and structural forms that optics clusters take on. Feldman and Lendel (2010) 

study the optics industry in the US using patent data to identify emerging optics clusters, and 

find that optics clusters tend to conform to three general geographic forms: small, specialized 

metropolitan areas dominated by a few large firms, cities with a few anchor firms and a number 

of smaller firms that benefit from the presence of local universities, and large urban 

agglomerations that are known to specialize in innovation more generally. They further find that 

anchor firms are one of the most important means of building optics clusters. Patterns of search 

and collaboration have been a particular focus of the literature on optics clusters. Gaschet et al. 

(2017) study optics clusters in the European Union using patent data, and find that, due to optics’ 

broad applicability and strong synergies with other industries, it tends to cluster in more diverse 

technological regions that facilitate recombinatory knowledge production and collaboration 

across firms. Using US patent data for the optical disk industry, Rosenkopf and Nerkar (2006) 

analyze the role of search patterns in generating high-impact technological breakthroughs. They 

find that search patterns that span firm boundaries produce the highest impact within the optical 

disk industry, and that search that spans both firm and technological boundaries has the highest 

impact beyond the optical disk industry. This suggests that networks of collaboration are key to 
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producing optics innovations, while inward-looking knowledge production is more likely to lead 

to technological lock-in or “competency traps.” 

Hendry et al. (2001) use case studies of opto-electronics firms in Wales and Thuringia, 

Germany to produce a general model of cluster evolution and inter-firm collaboration patterns 

over time. They find that, while young clusters tend to benefit from local processes of knowledge 

sharing and proximity to university research labs, as firms mature, they tend to look farther 

afield, beyond the regional level. However, as the mature firm becomes increasingly global in 

scope, local knowledge sharing becomes important again. DeMartino et al. (2006) similarly 

study knowledge sharing and collaborative linkages in the optics sector in Rochester, NY, and 

find that, as optics firms become increasingly global in scope, local collaboration relations 

become less significant in favor of more global connections. In contrast, Hassink and Wood 

(2006) question whether inter-firm collaboration has been over-emphasized in the opto-

electronic industry. Studying opto-electronics industry in Germany, they find that, although the 

industry exhibits considerable geographic clustering, not all optics clusters exhibit strong inter-

firm collaboration patterns. Thus, although some optics producers may exhibit strong tendencies 

towards collaboration and recombinatory knowledge production, it may be difficult to generalize 

about these patterns. Although all of these studies investigate some of the structural features of 

the optics industry both broadly and in different regions, none of them explicitly models how the 

industry has evolved over time and in different places. This project represents an important and 

novel contribution to existing literature.  

 

 

 

 

 

 



 

 

21 

 

Methods  

 

 In order to study the evolution of the optics industry over time, this project uses patent 

data as a proxy for invention. Although patents are not the only way to measure innovative 

activity, and not all inventions are patented, patent data are a consistent and reliable source of 

information on firms’ inventive activity, and numerous studies have shown that patenting 

activity strongly correlates with other innovative activities like R&D (Griliches, 1998). Patents 

are a rich source of technological information, as they contain data on the particular 

technological classification of each invention, the year of invention, the inventors and assignees 

of each patent, the abstract and title of the patent, and the geographic location(s) where each 

patent was created, allowing us to trace the geography of invention over time (USPTO, 2010). 

Because traditional sector data using NAICS and SIC codes is often only able to capture the 

geographic distribution of mature industries, patent data uniquely allows for the identification of 

emerging sectors within the US technology space (Feldmen and Lendel, 2010). Patent data has 

been used to study the evolution of patent regimes (Lamareoux and Sokoloff, 1996), the 

technological relatedness of regions (Rigby, 2013; Kogler, Rigby, and Tucker, 2013), the 

localization of knowledge spillovers (Jaffe et al., 1993; Sonn and Storper, 2008), the evolution of 

industries (Feldman and Lendel, 2010; Gaschet et al., 2017), and a variety of other research 

questions. 

For this research, data are compiled from the USPTO between 1976 and 2010. Raw data 

are compiled and assembled from the USPTO’s online Patents View service, and contains 

information on each patent, including the grant date, title, abstract, inventor and assignee IDs and 

locations, and a variety of other pertinent information. The city or metropolitan statistical area 

(MSA) for each patent can be assigned based on the location of each inventor on the patent; 
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because patents often involve the collaboration of multiple inventors, it is possible for the same 

patent to be assigned to multiple cities. Because there is no pre-existing industrial classification 

for patent data, patents are compiled using a text-based search of optics-related key words. To do 

this, I use the patent abstracts, which provide detailed information on the purpose, composition, 

and technological contribution of each patent. The keyword list is compiled from the Optical 

Society of America’s Optics Classification and Indexing Scheme (OCIS), and only unique, 

optics-specific words were used2 (OSA, 2017). Overall, the words refer to very broad optical 

categories rather than specific optics technologies, in order to ensure that the dataset include a 

wide diversity of optics technologies, components, and applications. Keywords are presented in 

table 3 (with suffixes stemmed to allow for better text matching). Using a keyword search on 

patent abstracts was determined to be the best way to do this because of the diverse nature of 

optics technologies; only taking optics-related primary classes would likely miss some optical 

technologies that interface more with other industries, while only looking at patents assigned to 

optics firms misses optics patents produced by larger firms that span multiple industries. Using 

optics keywords is a clear way to capture as many technologically relevant patents as possible.  

Table 3: Optics Keywords (OSA, 2017) 

optic 

photonic 

laser 

photograph 

microscop 

x-ray 

holograph 

diffract 

optoelectronic 

spectroscop 

scattering 

  

After the set of optics patents was selected, I constructed a network from the subclasses 

assigned to each patent. Networks are appropriate here because they allow us to understand 

technological evolution from a relational perspective; technologies are not only important on 

                                                 
2 E.g. many specific optics categories were excluded from the list because the term “optic” captures the majority of 

optical technologies, including major technologies like fiber optics and optical waveguides; on the other hand, very 

broad words like “physics” and “measurement” were also excluded from the list 
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their own, but in the ways that they build upon and relate to other technologies. Co-classification 

networks allow us to visualize how individual patents relate to other patents, and to construct 

technological trajectories based on these patterns of relatedness. All patents are assigned to a 

series of primary and sub USPTO classifications that provide detailed categorical information on 

the nature of the technology being patented; broadly speaking, primary classes delineate one 

technology from another, while subclasses delineate “processes, structural features, and 

functional features of the subject matter encompassed within the scope of a class,” (USPTO, 

2012). In practice, because there are only 438 primary classifications, and primary classifications 

are quite stable over time (new technologies are more likely to be placed in existing primary 

classes than to lead to the introduction of a new primary class, even if the new technology is 

meaningfully distinct from those that came before it), the coarse nature of the data makes it 

difficult to distinguish between individual technologies within technological fields without also 

considering subclass information.  

Subclasses provide more detail about the heterogeneity of inventive activity, and new 

subclasses are continually introduced to capture the novelty of inventions. However, they also 

exhibit a complex hierarchical structure in which mainline or parent subclasses are classified 

directly beneath the primary class structure, and indented subclasses represent the children or 

descendents of mainline subclasses, indicating that they are related to classes above them in the 

hierarchy. Because there is a great deal of heterogeneity within the hierarchical structure (some 

mainline classes have only one or two descendents while others may have as many as fifteen or 

more), and because the inclusion of all subclasses yields 157,759 possibilities, this analysis is 

limited to mainline subclasses. A bipartite network is constructed from patent data such that all 

unique optics patents, i, form a link to all corresponding subclasses, j in an mxn adjacency 
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matrix. A one-mode projection is then performed to construct an nxn adjacency matrix which 

captures the co-occurrence of mainline subclasses on patents, allowing for the construction of a 

simplified (weighted) network in which connected subclasses are more related than unconnected 

subclasses. Subclass pairs then represent different components of technologies in the data. 

To better understand how the optics industry has evolved, I cannot simply look at the 

interactions of subclasses over time; not only do individual subclasses represent technological 

components or processes rather than unique technologies, but the sheer numbers of subclasses 

that appear on optics technologies in each year (around 3,000 or more) do not lend themselves to 

meaningful interpretation. An alternative exploratory tool is to group subclasses into 

technological categories or trajectories. A promising way of doing this is dynamic community 

detection. Community detection aims to capture the mesoscopic structure of a given network; 

communities, or modules, are groups of nodes that are strongly connected to each other but 

sparsely connected to other dense groups in the network (Porter, Onnela, and Mucha, 2009). This 

research utilizes Rosvall and Bergstrom’s (2008) map equation to detect technological 

communities in the data. The intuition behind the map equation is simple: suppose you take a 

random walk through the network structure. A community is a collection of nodes in which the 

walker spends a lot of time before moving on. More formally, the mapping attempts to encode 

the flow of information in the network in the most efficient way, using unique codes for each 

node and module to map this flow with the shortest description length possible. Longer codes 

occur infrequently (and are often nodes), while shorter codes are traversed more frequently (and 

are often modules) This is accomplished using the following algorithm: 

 

                             ���� = �⤳��	 � + ∑ �⥁
��

��� �����                                    (1) 
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where the first part of the equation is the entropy of the movement between modules, and the 

second is the entropy of movements within modules (p. 1120). Here, L(M) is the description 

length, given the network partitions, M. �⤳ is the probability that the random walk switches 

modules on any given step. H(Q) is the entropy of the module codes (i.e. the code words used to 

describe the random walk on the network). ����� is the entropy of the within-module 

movements, including the exit code for module i. The weight �⥁
�  is the fraction of within-module 

movements that occur in module i, plus the probability of exiting module i such that  

 ∑ �⥁
� = 1 +  �⤳

�
��� . The best partition of the network is the one in which the description length 

is minimized. A fast and stochastic search algorithm is employed in which nodes are assigned to 

modules, and each node is then re-assigned in random sequential order to the neighboring 

module that results in the largest decrease in description length, a process which is repeated until 

the model can no longer be improved (Rosvall et al, 2009). 

 One clear benefit of the map equation is that we can ensure the robustness of 

communities by performing many iterations of the model using parametric bootstrap resampling 

of the edges between nodes; this allows the researcher to compare observed network structure to 

the proportion of bootstrap samples that support the observation, thus assessing the significance 

of the model and ultimately allowing the most stable community structure that emerges to be 

selected (Rosvall and Bergstrom, 2010). I am thus likely prevented from selecting a structure 

which represents a local minimum, rather than the true community structure. The communities 

are built based on five-year time slices of the network between 1976 and 2010; the best 

community structure is determined by running 50 iterations of the model. By running the model 

over different time periods, I can capture the dynamic nature of technological evolution. Based 

on the discussion above, it is clear that not only does the prevalence of particular subclasses 
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grow and decline over time, but subclasses are also continually recombined in ways that 

simultaneously lead to the creation of new technological paths while potentially disrupting older 

trajectories. The map equation uniquely allows me to map the flow of technological trajectories 

over time, and to visualize the way in which trajectories in time t can either decline, expand, 

merge with other trajectories, or split into multiple new trajectories in time t+1. An alluvial 

diagram, which maps the changing community structures over time, can then be used to visualize 

the movement of subclasses (and the introduction of new ones) from time t to time t + Δt 

(Rosvall and Bergstrom, 2010).  The technological trajectories are named by taking the subclass 

names assigned to each subclass in a given module, and looking at the most frequently used 

words to determine a common theme in each. The text of each subclass is modified using typical 

natural language processing techniques: stop words, special characters, punctuation, and white 

space are removed, and words are stemmed to ensure that similar words with different suffixes 

are grouped together. I assigned module names with the help of an expert in the optics field to 

ensure that categories represented relevant technological themes. 

The stability of technological trajectories is measured by computing the similarity 

between modules from one time period to the next. A simple way to do this is to compute the 

pairwise similarity of each module in time period t to all modules in time period t+1. This can be 

done by calculating the percentage of subclasses from one time period that appear in the next 

time period; if a high percentage of subclasses (e.g. >50%) appear in a module in the next time 

period, we can generally conclude that the modules represent the same community. 

The evolution of cities is computed by selecting all patents and their corresponding 

mainline subclasses on a city-specific basis. The same subclass co-classification networks that 

were built out for the entire optics industry can then be constructed for each individual city. The 
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map equation algorithm, as outlined above, is then run for each city to determine the city-specific 

evolution of optics technologies. Because running the algorithm for each individual city would 

be extremely time consuming, only a few illustrative case studies are selected for alluvial 

visualization. The top five most productive optics cities are selected for comparison, and 

communities and their themes are determined in the same way as for the optics industry as a 

whole. In this way, we can analyze whether technologies evolve in different ways in different 

geographic locations. 

 How can this analysis be generalized across cities? Because the mix of subclasses in 

different locations is a key driver of evolutionary differences, methods that are common in 

literature on evolutionary ecology are implemented to measure the diversity of technology 

distributions in cities over time. Just as species biodiversity is a key driver of evolutionary 

differences in particular locations, and traits at the species level can impact aggregate community 

structure, the diversity of technological components in particular cities can help us to make sense 

of evolutionary differences in technologies and the broader evolutionary paths in which they are 

situated (Legendre and Legendre, 1983; Whitam et al., 2006). As discussed earlier, a lot of new 

knowledge is simply a recombination of pre-existing, proximate ideas; because the knowledge 

base of a region conditions its combinative capabilities, we need to understand just how diverse 

underlying knowledge structures are in different places. However, the number of subclasses in 

the data (3366) makes this kind of analysis computationally difficult. Additionally, as discussed 

above, individual subclasses are not necessarily meaningful in discerning differences between 

the technologies being produced in different places. As an alternative to subclasses, the map 

equation is run again, this time for all cities across all time periods to ensure concordance 

between communities in different years. Although aggregating up to the community level 
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reduces the variation that we would expect to see from one city to another, differences in the 

distribution of communities in each city may be more illustrative of technological diversity, as 

the 115 communities detected by the algorithm are comprised of unique mixes of subclasses 

(components) which represent broader technological categories. The distribution of communities 

in a city, therefore, gives us insight into the technologies being produced there. A “community 

matrix” is constructed, in which rows are observations for each of the 16 largest optics-

producing cities3 in two time periods, 1980-1985, and 2005-20104. Columns are the individual 

communities that appear in each city (measured by the number of subclasses on patents that 

correspond to each community). Using this data structure, zero-corrected5 Jaccard similarity 

measures can be calculated for each city pair in each year as follows: (Clarke, Somerfield, and 

Chapman, 2005) 

                                                 ���, �� =  
|� ⋂ �|

|� ⋃ �|
                                                               (2) 

or the intersection of communities that appear in both cities X and Y divided by the number of 

communities that appear in either city. Then, to test whether there are significant differences in 

community diversity within cities and across time, a permutational multivariate analysis of 

variance (PERMANOVA)6 test is performed on the resulting Jaccard distance matrix (Anderson, 

                                                 
3 These represent all cities with at least 5000 patents in optics across the whole study period; this is a reasonable 

decision because the inclusion of cities with a large number of zero values could potentially skew the results, and 

because this study is primarily interested in evolution within large optics clusters. 

4 Rather than use the whole study period, change over time can be demonstrated just as well using an early and a late 

time period, and using only twelve years reduces the dimensionality of the data to allow for easier data processing.  

5 Similarity has to be zero-corrected because at least one city produces no patents in optics in some years; to deal 

with this problem, a dummy subclass is added which is equal to 1 for each city-year observation. This does not 

change the resulting diversity estimations, and allows the research design to remain balanced, which is an 

assumption of the PERMANOVA test that should not be violated.  

6 Additionally, PERMANOVA is less sensitive to heterogeneity of dispersions within the data, unlike other similar 

measures like ANOSIM or the Mantel test (Anderson and Walsh, 2013). Because running a test for heterogeneity in 

dispersions, using the measure developed by Anderson, Ellingsen, and McArdle (2006), indicated significant 

dispersion in the data, PERMANOVA is likely the best choice of statistical test.  
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2017; Anderson and Walsh, 2013). The PERMANOVA test is well suited to this kind of analysis 

rather than a more traditional ANOVA or MANOVA because it is specifically designed to test 

for differences in a variety of distance measures (beyond simple Euclidean distance), and makes 

no assumptions about the normality of the data. Instead, p-values are estimated by a random 999 

permutation test. The null hypothesis (H0) for the PERMANOVA test is that the centroids of the 

groups (in this case, the arithmetic mean of the year observations for each city) are equivalent for 

all groups; if the means for each city are the same, then there will be no statistically significant 

differences in the distribution of communities across cities. On the other hand, a rejection of the 

null hypothesis suggests that there are significant differences in the diversity of subclass 

distributions across cities, and we should, therefore, expect evolution to look significantly 

different in different places and different time periods.    

 

Results and Discussion 

 

 The results of the community detection are presented below in the alluvial diagram in 

figure 3. Bars in each year represent the communities detected by the algorithm, and flows 

between them represent those subclasses or components that persist from one time-period to the 

next. The size of the bars is determined by a PageRank algorithm, with the most important 

communities scaled larger than less important communities. For visualization purposes, only 

those communities with a PageRank of at least three percent are depicted in order to prevent the 

diagram from becoming overly cluttered. Because many of the larger communities have a 

PageRank between 10-20%, the largest communities in each time period are of most interest in 

understanding the evolution of the optics industry. The technological trajectories of the optics 

industry are colored according to the categories in the time period 2006-2010; colors that go all 

the way back in time represent components that have persisted from one time-period to the next 
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in the same community. The base color of the alluvial is gray, and gray flows represent 

communities that emerge in an early time period and decline before reaching the end of the study 

period. We can, therefore, visualize the growth, persistence, and decline of technological 

categories in the optics industry. 

 Some optics technologies emerge in 1976 and are prevalent throughout the study period. 

Semiconductor design and light detection and control methods are two examples of technological 

persistence; they likely represent technologies which have been used in a number of applications 

and have remained foundational in optics over time. Others have a much more turbulent history. 

The components that make up coating methods in 1976 split and were combined with a number 

of other technological trajectories over time (e.g. semiconductors, mirror and lens design, etc.) 

before eventually re-merging and solidifying into a larger coating category. Technologies like 

laser design begin in 1976 and their components move around over time before dropping out of 

optics’ evolutionary history in 2005. Other new technologies pop up later in time. Components 

that make up optical communications do not become a prominent technological category until 

the early 1990s, and medical device optics becomes particularly prominent after the mid-1980s. 

Additionally, some technologies become completely new categories over time: rather than 

emerging on their own, fiber optics emerge from earlier technologies dealing with lens and 

mirror design. While there is a great deal of disorder in the evolution of the optics industry, it is 

clear that there are distinct patterns that we can trace over time, confirming hypothesis one. It is 

also clear that components themselves are multi-purpose; organizations and individuals have 

continuously found new ways to re-purpose components from one technological area to others, 

suggesting that there are interdependencies between many of the technologies that are prominent 

in the data.  
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Figure 3: The Evolution of the US Optics Industry, 1976-2010 

 

Table 4 digs deeper into the community structure. Some of the top key words that I 

identify for each optical category are listed. Although there is some overlap between categories, 

each appears to make up a unique technological field within optics. The largest category is 

optical waveguides, with 526 components, followed by semiconductors and lasers. It is 

important to note that this does not correspond to total patents; while many components may 

signify many patents, a very complex category may contain many components but few patents, 

and a simpler technology may have many patents but few components. How similar are 

communities from one time-period to the next? Do communities change significantly over time? 

The last three columns of the table calculate the persistence of components across different time 

periods. As illustrated, there is a lot of variability in the similarity of communities over time. 

While some trajectories, like semiconductors and fiber optics, become increasingly more similar 

over time, others continuously incorporate new components. Optical waveguides and silicon 
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photonics are clear examples of this: by 2006-10, less than 40% of components from 2000-05 

carry over, suggesting that these fields are continuously combining new components to produce 

optical technologies. The evolution of optics does not, therefore, look the same for every 

technology: while some technological paths stabilize over time, others are continuously 

changing, by branching to form new technologies, incorporating new components, and 

sometimes even by declining or merging with existing paths. I do not, therefore, find support for 

hypothesis two. Optical evolution is clearly a diverse and dynamic process.  

 

Table 4: Final Optics Communities, and Component Persistence over Time 
 

*Communities need to make up at least 50% of a module in order to persist from one time-period to another. In cases where two communities 

merge into one, the larger of the two is interpreted as the primary community in the module. This is why, for example, medical device optics 
disappears in some time periods. 

 

 How sensitive is the community structure to changes in the model parameters? If 

subclasses can move from one community to the other depending on the iteration of the map 

equation algorithm, then there are clear concerns for the validity of this evolutionary model. In 

order to test the sensitivity of the communities to these changes, the algorithm was run a number 

Category  Key Words  Total 

Components 

1976-1985  1990-1999 2000-

2010  

Fiber Optics optical, light, element, waveguide, 

optic, fiber, plural, reflect, surface, 

image 

526 17% 45% 35% 

Optical 

Semiconductors 

semiconductor, layer, structure, 

device, light, material, substrate, 

laser, element, optic 

282 42% 74% 78% 

Light Detection 

and Control 

Methods 

light, detect, radiate, beam, plural, 

source, measure, surface, optic, 

reflect, image 

219 30% -- 39% 

Coating 

Methods for 

Laser 

Manufacturing 

metal, coat, polymer, material, 

layer, optical, reactant, silicon, 

atom, group, compound 

214 14% 30% 32% 

Medical Device 

Optics 

test, measure, optical, acid, carrier, 

antibodies, optic, nucleic, sample, 

process, cell 

162 -- 38% -- 

Optical 

Communications 

waveguide, fiber, control, element, 

feedback, fault, receiver, 

communication, circuit, transmit, 

transceiver 

106 -- 23% 64% 
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of times, varying both the seed value and the number of parametric bootstraps. As the number of 

bootstraps increases, the number of communities varies and converges on a stable value around 

50 bootstraps, regardless of the seed set. This pattern is demonstrated by figure 4 below, which 

shows the number of bootstraps that were run (iterations) versus the number of modules 

discovered by the map equation for the 1976-1980 data. Similar patterns are found in the rest of 

the data. The contents (subclasses) of each community are the same for every successive 

bootstrap added once convergence is reached. We can generally conclude that the final model is 

a good representation of the community structure in the data. 

Figure 4: Communities per Bootstrap Iteration 

 
 

 I next look at evolution within individual cities. Using subclass networks at the city level, 

alluvial diagrams are developed for the top five patenting cities in the data: San Jose, New York, 

San Francisco, Boston, and Rochester, NY. Figure 5 presents the results of this analysis. There 

are some commonalities from one city to the next. For example, technological categories dealing 

with semiconductors, optical coating materials, and light detection and control methods appear in 

a number of the cities, and generally persist over time. In four of the five cities, categories 

dealing with fiber optics, optical communications, and optical waveguides emerge later in the 
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period, suggesting that these technologies rise to prominence from about the mid 1990s and 

onward. The precise nature of these categories differs from one city to the next; some cities 

produce technologies in multiple categories related to optical communications, while some cities 

are much less specialized in these types of technologies. The alluvial diagrams are colored 

according to the sizes of the communities in the period between 2005 and 2010. It is clear that 

there is a lot of variation in the size and importance of communities from one city to the next; for 

example, while most cities produce a large quantity of subclasses pertaining to semiconductors, 

the importance of other communities varies significantly. While some cities like San Jose and 

New York specialize in fiber optic technologies right away, others, like Boston, do not begin to 

pick up communications technologies until much later in the time period. There are also clear 

instances where some technologies rise to prominence and decline or completely drop out of the 

data by the end of the time period. By illustrating technological change in this way, we can 

clearly see that there are differences in the evolutionary paths taken from one city to the next, 

and we can get a better sense of what is happening within each individual city.  

 What does evolution look like within each city? San Jose begins 1976 with a number of 

different categories pertaining to semiconductors and light detection methods; as time goes on, 

few of the early subclasses persist except those pertaining to semiconductors, which merge into a 

larger “semiconductor design” category by 2010. Fiber optics becomes prominent in 2000, 

optical coating methods emerge out of earlier semiconductor technologies, and light detection 

and control methods become increasingly prominent by 2010. There are a number of 

technological categories that emerge after 1976, but that do not persist to 2010 (the gray flows), 

indicating that there has been considerable variability and change in San Jose’s optics sector over 

time. Despite its close proximity to San Jose, San Francisco seems to have a more diverse optics 
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sector in 1976, specializing in lasers, semiconductors, light detection, and optical coating. Most 

of the early subclasses are not present later in the time period, suggesting that there is quite a bit 

of change in the components implemented in optics technologies over time. By 2010, San 

Francisco looks more similar to San Jose, producing semiconductors, light detection devices, 

optical coating materials, and fiber optics (after 2000).  

 New York, on the other hand, has much clearer trajectories over time. In particular, a 

number of categories relating to semiconductors merge to become one large semiconductor 

category that appears to be relatively stable over time (with the exception of 1995, in which it 

briefly splits into two communities). Other technologies exhibit much more variability: the 

purple trajectory emerges in laser and light detection methods, and proceeds to merge and split a 

number of times before settling on optical coating materials by 2010. Optical coating processes 

exhibit a similar pattern, and emerge out of an earlier semiconductor community. This suggests 

that early technologies are being repurposed or recombined to produce entirely new optical 

fields. New York also adopts fiber optic technologies earlier than the bay area cities, beginning 

in 1995 rather than 2000. Like the other three cities, Boston also begins producing 

semiconductors early on, and continues to produce them through 2010. Like San Jose, Boston is 

heavily specialized in light detection and control methods. Boston also produces a large number 

of subclasses in lens and mirror design, and later on produces optical waveguides, illustrating 

that the city’s optics sector produces a slightly different mix of technologies than the other top 

cities. Rochester is the most dissimilar of the five cities. Specializing early in lens and camera 

design (likely influenced by the presence of Eastman Kodak), Rochester follows a relatively 

turbulent path, which is illustrated by the fact that its trajectories are particularly challenging to 

trace over time. By 2010, Rochester has moved into coating processes and light detection 
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methods, although camera design persists across the whole time period. While it has diversified 

its optics sector over time, Rochester still remains heavily tied to its photographic roots. Overall, 

these small snapshots of each city’s optics industry illustrate considerable variation both in the 

kinds of technologies that different cities specialize in, as well as in the pathways that each city 

follows from one year to the next.  

Figure 5: Technological Evolution in Optics by City, 1976-2010 
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The results of the PERMANOVA test are presented in Table 5. Given the significance of 

both the MSA and year terms, we can generally conclude that there are significant differences in 

the distribution of communities across places (more specifically, we can reject the null 

hypothesis: there are significant differences between the centroids of the groups), and that those 

differences vary across time. But do those differences also persist in cities from one time period 

to another? To investigate this, an additional PERMANOVA test was run with a “decade”7 term, 

as well as an interaction term between cities and decades. Results of this are presented in Table 

6. The MSA*Decade term captures whether there are significant differences in centroid values 

within cities between the two time periods. The significant result suggests not only that there is 

significant variation between cities and across time, but also that individual cities change 

significantly over time as well. This upholds both hypotheses 3 and 4, illustrating not only that 

the top optics cities differ significantly in the mixes of subclasses that they employ in the 

production of optics technologies, but that these differences are persistent over time, both 

between and within cities. We would expect, therefore, that the evolutionary trajectories from 

one city to another likely take on very different forms, and that the nature of the optics 

technologies produced within cities likely exhibit strong regional differences, depending on the 

regional distribution of pre-existing technological components, inventors’ abilities to create new 

components or recombine existing ones, and other contextual factors which condition regional 

organizations’ capacity to learn and to produce new technological possibilities.  

 

 

 

 

 

 

                                                 
7 Because the observations are already city-year observations, using a “year” term here would result in one 

observation per group, which cannot work because the PERMANOVA must be able to take the average (centroid) 

within groups. 
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Table 5: Result of PERMANOVA Test for Spatial Differences  

 DF Sum of Squares Mean Squares F R2 P (> F) 

MSA 15 7.646 0.510 3.502 0.210 0.001*** 

Year 11 4.797 0.436 3.00 0.132 0.001*** 

Residuals 165 24.016 0.146  0.659  

Total 191 36.459   1  

Signif. codes:  *** = 0.001, ** = 0.01, * = 0.05  

 
Table 6: Result of PERMANOVA Test for Spatial Differences Over Time 

 DF Sums of Squares Mean Squares F R2 Pr(>F) 

MSA 15 7.656 0.510 3.851 0.210 0.001*** 

Decade 1 3.000 3.000 22.662 0.082 0.001*** 

MSA*Decade 15 4.635 0.309 2.334 0.127 0.001*** 

Residuals 160 21.179 0.132  0.581  

Total 191 36.459   1  

Signif. codes:  *** = 0.001, ** = 0.01, * = 0.05 

 

    

 These results provide interesting insight into the evolution of a single industry. There are, 

of course, clear limitations to this kind of project. By studying cities individually, I am assuming 

that there are no interdependencies between cities; this is likely an unrealistic assumption, 

because not only do firms often have multiple offices in different locations, but inventors often 

collaborate across space as well (e.g. Bathelt, Malmberg, and Maskell, 2004). Future work in this 

area should take these patterns of inter-regional knowledge sharing into account, as they likely 

also play a role in determining the evolutionary trajectories of technologies. It is also likely the 

case that the evolution of the optics industry is influenced by other related industries. I limit the 

scope of this analysis not only to tell a more manageable evolutionary story, but also because 

identifying other industries that should be taken into account presents clear identification 

challenges. Further, I am unable to make any statement about why different technological 

components, and, by extension, the technologies that they comprise, are initially present in some 

places and not others. This research produces a rich descriptive history of the optics industry, but 

makes no causal claims about what drives optical evolution, aside from the idea that location 

conditions recombinatory possibilities. The locational decisions of firms, the influence of 
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universities and research institutes, the presence of key inventors, resources, and funding 

opportunities, and many other factors likely shape evolutionary processes, and future work 

should seek to understand the role that these factors play. This research is intended to be a 

starting point to understanding how industries and regions evolve, which will hopefully spark 

deeper investigation into evolutionary processes and mechanisms.  

   

Conclusion 

 

 As regional economies become increasingly structured around high-tech, innovative 

industries, there is a growing need for research that seeks to trace and understand how 

technologies grow, decline, and co-evolve with the growth and decline of cities and regions. This 

project is a step towards understanding how one particular industry, optics, has changed and 

evolved over time in US cities. Using patent data from the optics industry and dynamic 

community detection, I trace the evolution of the optics industry as a whole as well as at 

individual city levels, and ultimately find that, while some technologies exhibit relatively stable 

trajectories over time, others are very dynamic, continuously adding new components and 

combining with other technological paths over time. This creates exciting new possibilities for 

understanding how industries grow, decline, and change over time. Further, at the city level, 

there is strong evidence that the evolution of optics technologies exhibits variation from one 

place to another. Looking at alluvial diagrams in different cities, not only do technological 

trajectories exhibit very distinct differences, as cities follow unique technological pathways over 

time, but additional analysis using methods from community ecology suggests that the 

distribution of technological categories in cities is significantly different over time and space. All 

of this suggests that we can expect evolution to vary geographically, and that understanding the 

particularities of place is an important component for understanding why the development of 
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industries is geographically uneven. This project further highlights the fact that much more work 

is needed in this area to better understand why evolution unfolds the way that it does, and what 

characteristics allow some cities to capture particularly successful evolutionary paths while 

others cannot. Even as technologies evolve over time, there is considerable space for future work 

that seeks to understand the co-evolution of technologies and the places where they are 

produced. Being able to delineate evolutionary trajectories at different times and in different 

spatial scales is an important foundational piece for these future analyses.  
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