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Abstract

There is wide-spread recognition of the urgent need to improve software processes in
order to improve the performance of software organizations. Process models are essential
in achieving understanding and visibility of processes and are important for other uses
including the analysis of processes for improvement. It has been increasingly difficult
to compare and evaluate the variety of process modeling formalisms that have appeared
in recent years without a clear understanding of precisely for what they will be used.
The contribution of this paper is to provide an understanding and a fairly comprehensive
catalog of the applications of process modeling for which formalisms may be used. The
primary mechanism for doing this is a guided tour of the literature on process modeling
supplemented by recent industrial experience. In the paper, basic definitions concerning
processes, process descriptions and process modeling are reviewed and then uses of pro-
cess modeling are surveyed under the following headings: communication among process
participants, construction of new processes, control of processes, process analysis, and
process support by automation. Comments are offered on paradigms for process model-
ing formalisms and directions for future work to permit evolution of a discipline of process
engineering are given.

1 Introduction

1.1 Importance of Process

In [Ost91] one of the authors (LO) summed up the significance of processes in our lives:

Ineffectiveness in the design, analysis, and execution of processes lies at the heart
of many of the most important problems faced by many of our most important




institutions. Processes are used to guide manufacturing, construction, manage-
ment, government, and military activities. Existing processes are often inefficient,
of poor quality, or incorrect. Deficient processes lead to poor products. When
processes are ineflicient, products are late to market, roads and buildings are com-
pleted late, military forces are deployed tardily, and project deadlines are missed.
Poor quality processes generally lead to poor quality products, uncontrollable ac-
tivities, and unpredictable outcomes. Incorrect processes can lead to disasters
such as misplaced trust in faulty products, malcoordinated military campaigns,
and government institutions that simply do not work.

A disciplined, uniform approach to the development of high quality processes, and efficient
execution of such processes is needed. The most significant benefits of this are: increased pre-
dictability of an organization and its products, improved organizational efficiency, increased
productivity for individuals and groups, and enhanced contributions by computers to the

work of organizations.

1.2 Need for Software Process Improvement

Since, as Mark Dowson [Dow91c] points out, the software industry manufactures large, com-
plex artifacts — software systems, it is important that its products be of high quality and
reasonable cost, and be delivered on time and within budget. To achieve this, it is corre-
spondingly important that we improve the manufacturing process — the software process. In
the same connection, Watts Humphrey points out:

The software process provides the most practical framework for making both long
and short-term improvements in the performance of software organizations. Be-
cause of the growing importance of software to humankind, software process im-
provement must be a high priority. The issues needing research and development
attention range from the management of large software operations to fostering
and supporting the creative and effective performance of individual software pro-

fessionals. [Hum91]

It has been noted [Dow91c] that “historically, the software engineering community has
focused mainly on the products of software processes. Recent advances in the understanding
of these processes, focusing on the activities involved in creating software products, present
an opportunity to solve many of the problems underlying software creation and evolution.”
Understanding and improving the software process is directly related to two major problems
with which software engineering is concerned: (1) High cost due to long execution time of the
development process; and (2) low quality of products in the development process. Lehman
[Leh91] defines software quality as the measure of “user satisfaction with a software product
over its lifetime.” Cycle time reduction for software products is tied to the process so there is
a need to understand development processes, and meeting quality objectives in the delivered
product requires a suitable quality-oriented process. The current quality of the development
process is acknowledged to be of too low a level to be satisfactory.




The recent concern with Software Engineering Institute (SEI)-defined process maturity
levels and the capability maturity model [Hum91] for software acknowledges that organi-
zations must learn from their own and others successes and the realization that improv-
ing the process implies continual and continuous need to change for the better. We must
therefore assure and manage the activities of evolution and change in a constant regimen of
self-improvement.

Humphrey [Hum91] concludes:

There is an urgent need to improve software processes at both the organizational
and individual levels. In the future, we need major improvements in the capability
of the software industry. These will generally come, not from a few block-buster
inventions but from the countless small process improvements that compound to
produce well managed organizations that effectively use their software profession-

als.

Lehman [Leh91] states that software development processes must be deliberately designed and
that for process design one must be able to describe and reason about processes. This requires
descriptive models and models that provide a context reflecting the objectives, development
- and usage environments and technologies to be used including methods, procedures, tools
and measures. In particular “...process models play a vital role in achieving understanding
and process visibility. Both are necessary for development of quality, cost effective, processes
and their evolution as software technology advances.”

1.3 Role of Process Formalisms

Process models play an important role in process guidance, “elucidating process and project
relationships, action sequences, interaction and flow of information [Leh91].” In addition,
the mechanization of some process steps by means of CASE tools can only be effective if
applied on a process and project basis, if benefits are assessed over product lifetime, and if
methods and tools are integrated leading to “a coherent process that can be readily introduced,
adopted and pursued [Leh91].” Process models are at the core of having a disciplined process;
mechanization and process guidance to ensure correct use of methods and following the defined
process.

Process formalisms have evolved rapidly in recent years, attested to by a series of seven an-
nual International Software Process Workshops [Pot84, WD86, Dow86, ISP88, ISP89, ISP90,
ISP91], a Buropean Software Process Modeling Workshop [FCA91], and an International
Conference on the Software Process [Dow9la]. The goal of the formalism developers is for
the formalisms to be used to achieve the objectives outlined above. It has been difficult to
evaluate and compare these formalisms without a clear understanding of precisely for what
they will be used. The contribution of this paper is to provide an understanding and a fairly
comprehensive catalog of the applications of process modeling for which formalisms may be
used. The primary mechanism for this will be a guided tour of the literature supplemented
by recent industrial experience. In what follows, basic definitions concerning processes, pro-
cess descriptions and process modeling will be reviewed and then uses of process modeling




will be surveyed under the following headings: communication among process participants,
construction of new processes, control of processes, process analysis, and process support by
automation. Finally, comments will be made on process modeling formalisms and directions
for future work to permit evolution of a discipline of process engineering will be given.

2 Processes

2.1 The Variety of Processes

An elementary definition of process (given in [Ost87]) is: a systematic approach to the creation
of a product or the accomplishment of some task (this characterization includes the notion
of process commonly used in operating systems — a computational task executing on one
computing device.) The concept of process occurs in a number of subject matter domains:
cooking, chemical engineering, office procedures, value engineering, VLSI design, and software
among them. The varieties of process encountered in these domains have a common thread:
they represent an interplay of products and processes and transformations on the products
against the flow of time. The transformations are often described by a set of actions performed
by various agents. The flow of time is often organized into events that are characterized by
" changes in the state of products or of the world external to the process under discussion. We
shall further limit the processes to which the comments in this paper are meant to apply to
include only those that involve human and (possibly) computer participation. (For example,
we exclude processes featuring chemical agents.)

It will pay us to try to be somewhat more precise in defining process, however. Generalizing
the definition given in [SO91] for a “design methodology”, we may say that the commonly used
term “methodology” refers to a collection of methods (which specify how to arrive at decisions
needed in the process), chosen to complement one another, along with rules for applying them.
Concepts, artifacts, measures, guidelines, rules of thumb, notations, and procedures are parts
of a method (the method components). A process, then, can be described as a type of activity
that adapts a methodology in response to local factors, and uses it to devise artifacts that
are to satisfy specific requirements. Thus, a process can perhaps be viewed as an execution
of an instantiation of a methodology.

There is a hierarchy of concepts, varying in their degree of generality, that are related
to the notion of process. In efforts to define a corporate software development process at
Texas Instruments, five levels of process concepts were distinguished (in order of increasing
specificity): meta-process, process framework, generic process, process model, and process (an
execution of the process model) [Fra91]. We will be concerned here primarily with process

models.

2.2 Basic Process Description Primitives

The following distinction between processes and process descriptions was made in [Ost87).
A key difference between a process and a process description is that while a process is a
vehicle for doing a job, a processs description is a specification of how the job is to be done.




Cookbook recipes are process descriptions while the carrying out of the recipes are processes.
Office procedure manuals are process descriptions, while getting a specific office task done is a
process. From a computer science perspective, the difference can be seen to be the difference
between a type or class and an instance of that type or class. The process description defines
a class or set of objects related to each other by virtue of the fact that they are all activities
which follow the dictated behavior.

Processes consist of artifacts, concepts, representations, as well as actions. Tully [Tul88b]
states that the things that process models must be able to represent include at least some of the
following: actions, activities, agendas, agents, configurations, deliverables, events, messages,
methods, obligations, permissions, pre- and post-conditions, roles, rules, tools, triggers, types,
versions, views. Depending on the purpose to which a process description is intended to be
put, all these things may need to be captured in the description.

Definitions are given here for the more specialized of these:

e process step: an action performed during a software process [DNR90],

e resource: an available asset supportive of carrying out tasks (resources must be allocated
to tasks before they can be used to support task execution) [DNR90],

e agent: an entity which performs process steps (an agent may be either human or soft-
ware) [DNR90],

e role: defines the behavior of a human resource (i.e., of an individual with well identified
skills who devotes a given amount of time to perform a task inside the software process)

[Amb91],
e event: means of synchronizing process step performance [DNR90],

e constraint: a restriction upon process steps and the data they operate on (agents, events,
and their interrelationships) [DNR90].

Other things that may need to be captured are Song and Osterweil’s method components
[SO91): concept, artifact, measure, guideline, rule-of-thumb, notation, and procedure.

Feiler [Fei90] discusses how event/action modeling primitives of different formalisms and
environments vary in the set of events and the set of actions they accommodate. Events may
consist of completion of various operations on objects or of events on tasks. Actions may
register an event with other objects, instantiate new tasks, send E-mail or execute arbitrary
command scripts. A model can offer events on objects (a product-oriented view), on tasks (a
task-oriented view), or on both (mapping events on objects into actions on tasks). The latter
is common.

One intrinsic difficulty in process modeling comes from the static nature of process descrip-
tions contrasted with the dynamic nature of executing processes. The process description may
specify a very wide and diverse collection of dynamic processes, some of which may not per-
form “correctly”. Processes (as with Dijkstra’s observation concerning program executions)
are hard to comprehend and reason about while process descriptions (as with programs) may




be far easier to comprehend due to their static nature. The closer our process descriptions can
resemble the processes that might be instantiated from them, the more useful our reasoning
about the descriptions will be in understanding the processes [Ost87].

Humphrey [HK89] notes some resulting difficulties with traditional task-oriented views
in process models. Task-oriented views (such as the waterfall model) are “appropriate and
relatively easy to understand when the tasks are simply connected, [they] become progressively
less helpful when the number of possible task sequences increases.” In attempting to make
these models more comprehendable, the formalisms may overconstrain task scheduling by
limiting the number of action sequences that are permissable.

2.3 Process Modeling

Process modeling as a research area “studies software process, (i.e., those activities, such as
methodology guided design activities, involved in software development and maintenance).”
[SO91] It “supports the rigorous and explicit descriptions of static software processes and
structures of their components” [SO91]. Process modeling as an engineering technique involves
the creation and use of an appropriate abstraction to describe the nature or behavior of a real-
life process (paraphrasing the definition of a model given by [Kri69]). Like other engineering
modeling techniques, it is used for thinking, communication, prediction, control, and training
related to the real-world thing it abstracts.

It has been pointed out that to be complete, a process model needs to contain functional,
behavioral, structural, and conceptual data modeling views and that a complete model of a
complex process is inherently complex [HK89]. Dealing with this complexity through the use
of multiple views is also characteristic of systems engineering, and, as we shall see, many of
the issues associated with process modeling are also issues associated with building system
models during system development. A process viewed as a system, is decomposable into levels
of subsystems and eventually simple components, connected by a variety of interfaces. (Tully
notes, in fact, that “systems analysis, systems design, and systems engineering are in essence
interface analysis, interface design and interface engineering [Tul90b]”.) The subsystems and
components are subprocesses and tasks, and the interfaces are intermediate products.

The level of detail included in a model is another such issue. It has been stated that
process models must be refinable to whatever level of detail is needed and that previous
models have been guilty of not providing sufficient detail to support process optimization.
[HK89].

Understandability versus precision is a central tradeoff in deciding how to model a process.
For some uses of process modeling, understandability is the most important attribute of a
model, for other uses, precision is paramount. Informal semantics and flexible constructs
in a modeling formalism allow an expressive representation to be designed that is easy for
human readers to understand and requires little familiarity with the formalism on the part
of the reader. Well-defined or formal semantics supporting an extensive set of constructs
may permit process model execution or enable fine distinctions to be made regarding a rich
array of process aspects. For the most part, however, formalisms well-suited for producing
understandable models may not be well-suited for producing precise ones and vice-versa.




In the course of developing, adapting, using, and maintaining process models, various op-
erations (meta-operations, to be precise) need to be performed on the process models them-
selves. The following set of primitive operations on process models has been proposed [Rue90]:
specialization, decomposition, instantiation, deduction, generalization, and aggregation.

3 Uses of Process Modeling

The authors firmly agree with Watts Humphrey when he says, “The question, therefore, is not
‘What is the right way to model the process?’ but ‘What is the most appropriate way to model
this process for this purpose? [HK89]’ ” Furthermore, the selection or design of appropriate
process modeling formalisms that expose the appropriate view of a process and that can
represent the process with a useful degree of precision depends on a firm understanding of
the various purposes to which process modeling can be put. (In fact, for a given purpose, a
mix of a number of formalisms may be necessary.) The discussion in this section is intended
to contribute to such an understanding.

The various uses of process modeling have been discussed by a limited number of authors.
Tully [Tul88a] has stated the need to “understand and compare software processes, evaluate
and reason about them, and design and replicate (reuse) better ones.” Lehman is another who
has recognized that “desirable characteristics of models will vary with the purpose for which
they are to be used, the benefit one hopes to derive from their development or use and the
value attached to benefit to be gained from such activity”. He has provided an extensive list
of roles for process models [Leh89]. To a large extent, however, research in process modeling
has been centered on the development of modeling formalisms and experience in creating
models for particular purposes, or, in some cases, on the development of modeling formalisms
independent of any particular purpose for which they might be used. There is a need to
characterize the various applications to which process modeling formalisms have been put
so that the formalisms can be evaluated and compared. It is necessary to rationalize our
knowledge about the nature of the various formalisms in order to begin to create a scientific
discipline of process engineering.

In what follows, the uses of process modeling are discussed under the following head-
ings: communication among process participants, construction of new processes, control of
processes, process analysis, and process support by automation. The interrelationships of
these five categories of process model use are shown schematically in Figure 1. As the figure
suggests, process analysis has a relationship with all the four major application areas since
analysis techniques provide the manipulations of the process model that allow the model to
solve problems in each area. For each use, the central problems that process modeling is being
called on to solve are explained and example applications from the literature are cited.

3.1 Communication Among Process Participants

Here, we consider the use of process models to communicate information about a software
process and its instantiation. (We discuss the need to construct process models that represent
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Figure 1: Uses of Process Modeling Formalisms

general technical communication among participants in the section on construction of new
processes.) Situations where two or more groups on a project need to communicate but do
not are commonplace. This can be caused by failing to realize the need for communication
or by neither group perceiving that it is their responsibility to initiate it [KCI87]. Not only
are there obvious synchronization failures in software processes (e.g., failures to communi-
cate, missed deadlines, duplicated effort, omitted tasks), but there are misunderstandings
and disagreements about contents of products (e.g., software requirements specifications) due
to failure to understand how they will be used in the project by various participants. For
example, when major phases of a large project are performed by different groups of people,
there are problems in the transition between phases when groups hand off intermediate prod-
ucts to the succeeding group. Furthermore, major problems can occur when iteration back
through these phases is necessary and the previous groups have been disassembled or reas-
signed [KCI87]. Process models are used to enable effective communication among process
users, process developers, or managers in the various engineering groups involved in a project.

Another aspect the use of process models for communication is the process experience
transfer problem [Rom89]. It is difficult to transfer the organization’s informal process knowl-
edge. Industrial experience shows process models can help to train new personnel by making
that knowledge more formal. An example of this use of process models is found in the ef-
forts of Texas Instruments Incorporated to define a preferred software engineering process for




use throughout the company [Fra91]. In the hierarchy of process representations mentioned
in section 2.1, Texas Instruments set out to create a process framework that would act as
a “blueprint” to be instantiated for particular applications. In Frailey’s words, “the process
framework provides leverage for learning from the experience of others, and a common ground
for organization-wide goals [Fra91].” The primary users would be software project planners
and managers, and the software improvement teams that support their efforts at process
improvement. The framework could also be used to train software engineering and support
personnel, however.

In selecting a modeling formalism for their framework, Texas Instruments needed a method
of presentation that could readily be understood by the majority of their end users. Due to
their wide acceptance and intuitive appeal, data flow diagrams were selected. In retrospect,
however, they probably would have made a distinction between the model used to define the
process and the model used to present it to end users. Frailey offers the following opinion:

Our compromise proved workable but not the most desirable for either definition
or representation. It was not formal enough to form a solid, provably consistent
definition; and it was not intuitive enough to serve as the end-user’s guide about

what to do [Fra91].

The distinction is illustrated well by Watts Humphrey’s observation (from a private commu-
nication with Frailey) that the definition model is analogous to source code whereas the end
user model is analogous to object code for a human processor. This suggests that commu-
nication models might be defined formally, then tailored for a particular project and then
presented in a user-accessible form.

Efforts are also being made [MYKS90] to use a description of a software development
process as an instructional tool. The process description is used to provide a learner at a
workstation with a list of inputs, outputs, and process constraints for a human-executed task.
The learner is then presented with an actual set of inputs and must use the described process
to produce an actual set of outputs. Efforts must be made to keep the development work
performed within specified constraints for schedule, budget, quality, etc. The goal is to use the
prompting of the instruction tool to both enable the learner to understand the development
process and master the skills involved in doing development that way.

3.2 Construction of New Processes

Process development is expensive. Yet, every organization, and even every project within
an organization, generally develops its own and develops it from nothing more concrete than
the intuition of the project’s managers. Watts Humphrey acknowledges the situation and
concludes: “For software development to progress from a tediously unproductive craft, we
must learn to build on the results of others. This starts with a defined working process
[Hum90].” Osterweil suggests that “...the most important benefit of process [modeling] is
that it offers the hope that software processes themselves can be reused” [Ost87].

There are at least three important subproblems in the construction of new processes from
existing ones. First is the selection of appropriate existing processes or of components from




applicable processes to be recombined in possibly new ways to create a new process. Second
is what Colin Tully refers to as “method integration” which

...alms, by selecting and adapting methods appropriately, to avoid counterpro-
ductive conflicts which might otherwise arise from the use of different notations
to represent similar information, from the use of different techniques to perform
similar tasks, or from gaps and overlaps in their coverage of the process” [Tul90a].

Third is what Dieter Rombach has referred to as a process tailoring problem: namely that
“tailoring of processes to changing project goals and project environment characteristics is
based on subjective rather than objective knowledge regarding the project differences and the
effectiveness of candidate methods and tools” [Rom89].

All of the above subproblems can benefit from good comparisons of existing generic pro-
cesses for software development. For example, in the case of design methodologies, [SO91]
notes that a systematic and objective comparison would aid in codifying, enhancing and
integrating the design methodologies that have been developed over the last 20 years. It
is noted that existing assessments and comparisons of methodologies are overly affected by
differences in application domains and project personnel as well as varying levels of under-
standing of method components by various authors. Such design methodologies can be viewed
as a generic and static process definition that can be instantiated to create a process model
for a particular project. [SO91] proposes an approach to comparing methodologies based on
process modeling. The methodologies are decomposed into method components and artifacts
using a set of process modeling formalisms. The components are classified by comparison
to a methodology-independent model of the design process. Objective comparisons of anal-
ogous components and assessment of overall process coverage by the various methodologies
are now possible. This approach has been used to compare a number of contemporary design
methodologies.

It is clear that the existence of explicit models of existing processes are a step in the
solution of all three of the above subproblems. We should note some of the characteristics
that the formalisms for expressing these explicit models should possess.

Process modeling formalisms must allow the construction of processes that possess cer-
tain key attributes. One of these is the ability to represent technical communication among
participants. That communications among process participants is an important consideration
can be seen from studies showing job communications accounts for as much as 32% of a pro-
grammer’s time [KCI87]. Curtis, et. al. note in [CKSI87] that organizational structures used
in software development generally assume that the artifacts produced are sufficient to convey
all the information the software developers will need to complete their assignments. Curtis
believes, and most software developers will confirm, that this is not the case. In addition to
supporting less formal communications, a process should not require recipients to wait for
complete information; a process should allow information to reach its audience in time to be
used for making subsequent design decisions. Often times these decisions are being made in
concurrent tasks in the process. It has been noted [KM91] that in many situations where
process steps can be executed concurrently, they are executed concurrently by exchanging in-
formation about their progression through a number of points of interaction that are difficult
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to identify in advance. The model of communication will need to address this kind of concur-
rency. In the opinion of many [CKSI87, HK89], a process model needs to address the need
for constant technical communication among participants. Indeed, according to Curtis, since
common organizational structures are frequently not designed to enhance communications
among engineering groups, the process model should be able to “imply recommendations for
the organizational design best suited for supporting large systems projects” [CKSI87).

One attempt to address the representation of information communication in a project
is the work of Peuschel, Schifer and Wolf [PSW90, PSW91], implemented in the MERLIN
environment. Here the process model describes the “cooperation model” between a number
of small teams working together on a project. Information is assigned to one of three levels
of working context based on whether it is needed for coordination of the entire project, the
coordination of just a team, or only necessary for the job of a single individual. Objects may
be manipulated by either fine-grained representations or coarse-grained representations (or
both); may be manipulated using different transaction models; or may be distributed to sites
depending on the working context within which they are being accessed.

As a second key attribute, process modeling formalisms must allow the construction of
processes that possess domain understanding. As Zave [Zav89] points out “based on our cur-
rent level of understanding of the software process, there are major unexplained differences
between application domains.” She states that in a well understood application domain,
there exists a great deal of public knowledge about how the required class of functions can be
mapped successfully onto software structures. This knowledge can be most easily captured,
used, and communicated in the form of “domain understanding”, a specific framework for
specification and implementation of a class of functions. Domain understanding is conven-
tionally captured in the form of subsystems, layers, languages, techniques, constraints, or by
humans in the form of “exceptional designers” [CKI88]. Zave states that domain understand-
ing should be a major factor in any model of the software process. Among other reasons,
this is because “domain understanding cuts across (and undermines) the traditional divisions
between requirements, design, and implementation” [Zav89].

Balzer [Bal90] points out another key attribute when he states that process modeling for-
malisms should permit the construction of processes that tolerate and deal with inconsistency
and incompleteness. Rather than requiring inconsistency and incompleteness to be treated
informally (outside the system) or as absolute constraints, the processes constructed should
spot such violations, treat them as problems, organize resources to resolve them, recognize
when this has occurred, and limit access to the inconsistent data by agents not involved in the
resolution. One approach to modeling processes that handle unexpected events that interrupt
software development activities has been proposed by Mi and Scacchi [MS91]. It incorporates
a knowledge-based model of resolution or recovery activities into the modeling formalism.
Such activities (referred to as articulation work) and the breakdowns to which they respond
are an inherent part of the software process. The approach uses problem-solving and selection
heuristics to direct how articulation work is carried out, how a solution is formulated and
selected, and how a solution is realized (perhaps incompletely). The indicated solution is
represented by using the process modeling environment to make changes such as replacing
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the resource allocation, adding an activity, or replacing an existing activity.

Humphrey suggests: “As process model development and customization costs decrease
and as the benefits of an orderly process framework become more apparent, it will be more
reasonable for each project to define and/or adapt its process before launching into a new
product development [Hum90].”

3.3 Control of Processes

Process control may be exerted at both the individual level (process guidance) and the orga-
nizational level (project management). The two applications are intimately related, however,
and are related through their use of process modeling. As Hubert points out, “...the project
management activity can be viewed as the instantiation mechanism for process guidance
[HFB90].” Project management takes the process model, with its implied methodological
constraints, and uses managerial constraints such as schedules and available resources that
are part of the project plan to instantiate the process for execution [HFB90]. This project
management activity is what Watts Humphrey refers to as the planning process that “typi-
cally breaks large problems into manageable tasks and assigns individuals to perform them
[Hum90].” He goes on to point out, however, that plans not only mobilize the organization’s
resources to the task in hand but also provide individual guidance. From a process perspective,
process guidance/monitoring takes the instantiated process and the policies and constraints
it implies and controls the process at the level of the individual participant through execution
of a process model according to the policies and constraints.

The notion of execution of process descriptions (sometimes referred to by the phrase pro-
cess “enactment”) is central to control of processes using process models. Implicit in execution
is the idea that human beings involved in the software process receive computer guidance and
assistance in what is generally an extremely complex activity [Tul88b]. To do this, process
models are used, as [Tul88b] points out, “on-line” while processes are being carried out, as
a means of directing, controlling, monitoring, and instrumenting them. A more careful defi-
nition of the notion has been supplied by Christer Fernstrém [FO91]: “‘process enactment’
refers to the simultaneous and synchronized execution of a human-oriented development pro-
cess and an executable model of this process in order to enhance the computer-based support

given to the human-oriented process.”

3.3.1 Project Management

The conventional wisdom is that project managers undertake three main types of activi-
ties: planning, controlling, and monitoring projects [Dow91b]. In a survey of Department of
Defense program management offices, the Defense Systems Management College’s Decision
-Support Systems directorate further refined the program/project manager’s responsibilities
and identified the need for four capabilities: risk management, cost estimating, scheduling,
and monitoring [Def91]. Project managers, then, strive to create plans that control risk, min-
imize and reflect accurate cost estimates, and schedule resources and activities accordingly.
One tool for this is the construction of an explicit process model.
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Dowson [Dow91b] points out that project managers do planning “in the light of a model
of the process that should be followed by the project, and attempt, perhaps incrementally and
reactively, to produce plans that conform to that model.” The model may be implicit, based
on the manager’s personal experience, or explicit, represented in the language or formalism
of a process model. Dowson further points out that “if both the process model and the plans
produced for a project are explicit and unambiguous, it is possible, at least in principle, to
verify that the plans conform to the process model”.

Huff’s GRAPPLE system [Huf89], in an attempt to support the dynamic, context-depen-
dent nature of planning through the use of powerful instantiation facilities; adopts a general
approach to reasoning about actions, based on the artificial intelligence theory of actions. In
the GRAPPLE view of planning, knowledge of a domain is expressed in terms of predefined
operators (having defined preconditions and resulting effects), a state schema (consisting of
predicates describing the world for the domain in question), and goals (logical expressions
composed of state predicates). A plan, then, is defined as “a hierarchical, partial order of
operators (with bound parameters) that achieves a goal given an initial state of the world
[Huf89].” Through decomposing a plan’s complicated goals into simpler subgoals by replacing
operators with lower level operators one at a time, the plan is incrementally developed and
“executed”. Using such plan-based process definitions, a form of analysis is performed that

' permits reasoning about sequences of actions without actually executing the actions. In fact,
one of the main reasons for constructing an explicit process model is to allow reasoning about
and analysis (in the form of risk management, cost estimation, and scheduling) of processes so
that they may be improved, irrespective of the project-specific decisions of project managers
and other project staff. Monitoring of project performance can provide feedback which will
allow models to be improved and evolved,

Work has been done to develop analysis techniques based on explicit process models to
support the project manager’s risk management, cost estimation, and scheduling. Statechart-
based simulations of processes with manpower levels and durations assigned to the process
steps (states) is an example of automated analysis of a computer-readable model to determine
manning levels (and hence cost) and schedules. (Statechart simulations can be used to auto-
matically produce Gantt charts.) Resource-constrained statechart simulations can be used to
show schedule implications of manning constraints. Steepness of staffing curves can be used to
associate risk levels with plans. The cost drivers for various software cost estimation models
are essentially means of quantifying risk and applying it to cost estimates. Manual analysis to
determine bottlenecks, redundant effort, level of automation, and efficiency of interfaces are
often applied to less formal but still explicit models. These techniques for supporting project
manager planning and others are discussed below under process analysis.

For use in monitoring a project, Fernstrom [FO91] notes that an executing process model is
an instance of a process model whose current status is maintained by the “enactment system”.
This allows the project manager to get a complete picture of the state of the project in real
time, enabling decisions to be made based on actual facts rather than optimistic or pessimistic
estimates. He further states the executing process model “can even, to some extent, do the
monitoring automatically and work out the actions to be taken at certain decision points in

13




the workplan”. Use of statechart-based process models to do monitoring and replanning when
actual progress differs from the plan [Kel91b] is an example of this.

Defining an organization’s software process explicitly not only provides to management
visibility of and standards for individual tasks as they are performed, but may also enable
the process to be supported so that routine tasks (e.g., change management, design control,
interface coordination) are handled routinely [Hum90]. This is described later under process

automation.

3.3.2 Process Guidance

In discussing process control problems, Watts Humphrey observes:

Policies which are overly specific constrain action, limit freedom, and demotivate
the people. If guidance is too vague and imprecise, however, the professionals
will likely be confused and unwilling to act. When people are uncertain about
management’s desires, they often fail to exercise initiative or blindly follow some
rule or procedure. In software, clear policy is thus an essential prerequisite to
both high productivity and quality.[Hum90]

" Along a similar vein, Dieter Rombach states that the lack of explicit and formal process
specifications creates a process control problem in that “controlling the adherence of a process
execution to an inadequate specification is necessarily based on subjective judgement rather
than objective criteria [Rom89]”. The problem thus described is an area that can be addressed
by means of process modeling.

It has been asserted that within a software development environment, a computer-readable
process model can be used to help assure that a project is conducted within the framework of
a disciplined process making errors less likely and making them easier to detect and correct
when they do occur [DNR90]. In addition, after instantiation of a process model according to
the constraints of a project plan using the project management capabilities discussed above,
the instantiated model can update project status information as it is executed [HFB90].

Experimental environments constructed as part of the ESF project, the OPIUM [HFB90]
and ARCHIPEL [FO91] environments, have explored these issues with some success. In
ARCHIPEL accessing tools and data through an Agenda rather than the conventional win-
dowing environment gives the user full support from the executing process model. Access
with process guidance (for planned activities) or without is realized through user activation
of a task stored in the Agenda. An Agenda’s tasks may be visualized as lists, icons, or graph
vertices. Tasks may also be created, modified, deleted, or delegated. Work contexts defined
by the model accompany tasks. It can be seen, then, that a variety of restrictions may be
imposed on the user to control and guide the process. One of the most valuable forms of
guidance, however, that a process model may provide is a simple indication of options or
alternative means of accomplishing a task are available to the user at a given point in time.

Humphrey’s call for process models that are clear and precise, without being overly precise,
is acknowledged in recent work that concerns different styles of computer-readable process

14




descriptions. Dennis Heimbigner states that “the degree to which a process-centered envi-
ronment is accepted will depend both on its ability to enforce a specified process and on its
ability to support a non-restrictive style of interaction with programmers using that environ-
ment [Hei90].” To accommodate these seemingly disparate goals, he discusses the prescriptive
style of process model versus the proscriptive style of process model. The term “prescriptive”
indicates that the environment (driven by the process model) closely controls the means by
which a task is to be completed and the order in which tasks are to be performed. Such
a model (or “process program”) tends to be procedural and serial requiring one task to be
completed before beginning another. In contrast, the term “proscriptive” indicates that the
environment operates by prohibiting inappropriate manual actions and ensuring conformance
with specified consistency constraints. It does not constrain the means or order in which tasks
are performed. Choices of prescriptive versus proscriptive process models are design choices
responding to the nature of the process and the formalism should support both [Sut91a].

Recognizing this same tension in the style of guidance provided, Dowson, Nejmeh and
Riddle [DNR91] talk about the need for constrained cooperation software processes, defined as
“software processes which flexibly maintain a dynamic balance between self-guided coopera-
tive problem solving and the discipline imposed by constraints upon this cooperation”. They
further note that

The successful application of constrained cooperation software processes addition-
ally depends on the degree to which constraint observance can be monitored and
software processes can be dynamically modified in response to events occurring
during the project.

3.4 Process Analysis

In general, process analysis is making inferences about processes. This may be for global
optimization or other improvement, for verification, or for evaluation. Dowson [Dow91b]
states that improvement is, in fact, one of the main reasons for constructing an explicit
process model. Elsewhere, Humphrey and Kellner have stated that process models must
support comprehensive analysis of the process through the model, and allow predictions to
be made regarding the consequences of potential changes and improvements [HK89]. It has
also been proposed that analysis be directed against detailed, executable process models
called “process programs” to arrive at measures of complexity of the corresponding software
processes [Ost87].

The lack of explicit and formal process descriptions creates the following process improve-
ment problem:

The desired improvement of software processes requires an understanding of their
current status, the identification of weaknesses regarding their current status, a
systematic eradication of those weaknesses, and a validation that the new processes
indeed represent an improvement. Without adequate process specifications this
process will be random rather than systematic [Rom89].
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Curtis warns, however, that models that focus on how a software product evolves through a
series of artifacts poorly describe such crucial processes as learning, technical communication,
requirements negotiation, and customer interaction. Models that merely prescribe a series of
development tasks provide no help in accomplishing a number of the objectives of process
analysis identified in the next subsection. Such evolutionary process models need to be inte-
grated with models that emphasize factors affecting psychological, social, and organizational
processes to create a comprehensive model of the software development process. A model that
overlays these various processes begins to show causes for bottlenecks and inefficiencies in de-
velopment [CKI88]. Unfortunately, existing formalisms and automated analysis techniques
are inadequate for representing and reasoning about psychological, social, and organizational
processes. Consequently a good portion of the most significant analysis techniques may need
to be intuitive, informal reasoning performed by a human analyst inspecting information
collected in notes supporting a process model.

The process analysis that has been described to date has been associated with one or more

of the following goals:
e Analysis to support model building. This includes finding errors in the process model
such as incompleteness or inconsistency of the description due to blunders or lack of

understanding of the process [KH88].

e Analysis to identify real-world process anomalies (e.g., non-determinism — situations
where there is more than one way for the described system to respond) [KH88].

¢ Analysis to show the behavior and reaction of the model to changing events (e.g., the
changes related to one person: sick for two weeks, replaced, removed) [KH88, Kel91b,

Red90].

o Analysis of process attributes of interest (e.g., time-to-complete, manpower require-
ments, quality measures) [KHS88].

e Analysis to determine if the model complies with constraints such as required docu-
ments, formats, review points [KH88].

e Analysis to determine relationship of an explicitly represented manual activity with
other activities (manual or automated) for the purpose of facilitating and directing
manual activities [Sut91a].

¢ Analysis to determine properties of processes (e.g., in process X, a programmer cannot
complete a build without archiving the source [Huf89]; security properties [Red90};
impact on final work products of human error rates [Red90]).

Tools have existed for some time to analyze instantiated processes for certain specific char-
acteristics. Software cost models exist (e.g., SEER [Jen81] and COCOMO [Boe81]) for pre-
dicting the cost to complete of instantiated software development processes utilizing a number
of predictors. Tools have also been written to predict schedule risk of an instantiated pro-
cess based on the steepness of staffing curves required to meet schedule constraints [Orm83].
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Dowson [Dow91b] makes the point, however, that it is important to separate consideration of
inherent properties of a process or class of processes from consideration of project-specific de-
cisions and actions of project managers and staff. Analysis of a modelrather than an initiated
process can lead to “improvements which will be reflected in all projects that are performed
in conformance with it [Dow91b].” Monitoring project performance can, of course, provide
feedback which will help models to be improved and evolved.

3.4.1 Objectives of Analysis

We can conclude from the general goals listed above that analysis is itself not done for its own
sake and that models are used to support analysis. Each analysis effort should be designed to
solve a particular problem, however, and it will be instructive to list some specific objectives
at which analysis of process models has been directed.

¢ Eliminate delays in task initiation [KH88] due to time consumed in data transfer, queu-
ing of tasks, dependence on multiple inputs [Tam91).

¢ Introduce parallelism into the process flow [KH88].

¢ Enhance coordination and communication in order to reduce surprises [KH88].

¢ Identification of bottlenecks [Tam91].

o Identification of contributors to excessive rework [Tam91].

o Identification of hindrances to communication between functional areas [Tam91].
¢ Identification of redundancies (both process and data) [Tam91].

e Determine resource requirements (e.g., CPU resources needed by programmers) as part
of “what if” planning, also called loading analysis [i-L89].

e Determine if the process will reach a situation in which a certain time limit or resource
limit is reached [i-L89)].

e Detect deadlocks in an enacted process [MTH91].

¢ Detect excessive idle time in the midst of scheduled peak periods in an enacted process
[MTH91].

e Discovering complementarity problems between process descriptions and the capabilities
of agents [MTH91].

In addition, Curtis [CKI88] gives several questions whose answers constitute additional ob-
jectives for analyzing. These concern broader issues than are normally represented in process

modeling formalisms:

e How much new information must be learned by a project staff?
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e How discrepant requirements should be negotiated.
e How design teams resolve architectural conflicts.

e How these and similar factors contribute to a project’s uncertainty and risk.

3.4.2 Techniques of Analysis

Techniques used for process analysis seem, so far at least, to be largely specific to the particular
formalism used to model the process to be analyzed. For this reason, we will organize the
discussion of techniques according to the type of formalism for which they are intended.

One traditional technique for process analysis is directed at processes modeled as prece-
dence networks and known as CPM or PERT. Here events or milestones are connected in a
graph by arcs that represent tasks of varying durations that must be completed to achieve
the milestone. The objective is to find those tasks that are on the critical path to know where
task duration reduction will result in a decrease in overall duration of the entire process. It
has been pointed out that the same results can be derived by inspecting Gantt charts that
have in turn been produced from a statechart-based “entity process model” [HK89].

When processes are modeled by the Statemate tool [i-L89] as they are in the entity process
models mentioned above, their description includes an activity-chart (a data-flow diagram)
and a statechart (a modified state-transition diagram with hierarchy, concurrency and broad-
casting). Automated analysis may be done to verify that the activity-chart and statechart
are consistent and syntactically correct. For example, an event that causes a transition in a
statechart needs to be shown as an input on the activity-chart. Appropriate types of consis-
tency and completeness checks may be done with a variety of process modeling formalisms.
Modeling formalisms such as statecharts that have semantics based on executable models of
computation (in this case finite state automata) can be executed and, as we discuss below,
permit dynamic analysis through simulation.

Petri nets have been modified to form a vehicle for process modeling and analysis. One
such type of high-level Petri net, called a FUNSOFT net [EG91], consists of channels (object
stores), agencies (activities) and edges (the relations between object stores and activities).
Activation predicates attached to agencies model the dependence of activity execution on
explicit conditions concerning the values of the tokens that flow through the net. FUNSOFT
nets have semantics based on an executable computation model known as predicate/transition
nets. Since there is an executable semantics, the analysis supported by FUNSOFT nets in-
cludes validation of process models against actual processes by simulation [Gru91]. Standard
analysis facilities for predicate/transition nets are used for verification of interesting process
model properties such as: the existence of object types for which no objects can be produced;
the existence of object types for which no objects are processed; whether arbitrarily many
versions of an object can be produced; identification of activities that can be executed per-
manently; whether objects stored in a particular channel cannot be produced (deadlock); and
other static properties related to traps and activity conflicts as well as the well-formedness of
FUNSOFT nets [Gru90]. Using predicate/transition net representation of FUNSOFT nets,
it is possible “to show that the number of objects in a certain software process model part
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remains invariant [Gru90].” For proving dynamic properties of FUNSOFT nets, a related no-
tion known as quantitative coverability trees is derived. These trees can be used for deciding
about properties such as: software development activities which can periodically or which
cannot be activated (deadness and liveness of agencies); number of objects being in a certain
state (boundedness of channels); maximal number of persons that can concurrently work in
a software process; and potential occurrence of any software process state if interest [Gru90].

A separate effort based on petri nets has shown that plans and schedules for project
management may be derived from a petri net based process model through “net theoretic
manipulation steps” [BGM91]. They note that PERT charts correspond to the notion of
“process” in net theory and that Gantt charts correspond to the firing sequence of a timed
petri net.

Language of Temporal Ordering Specification (LOTOS), originally developed for formal
specification of communication systems, has been used to model processes [SKS91]. It is
claimed that this approach for process modeling allows not only task behavior to be rep-
resented (as with Statemate) but also represents the behavior of resources. There are a
number of simulators available for LOTOS as well as tools for analyzing syntactic correctness
of LOTOS programs. The behavior of LOTOS programs can be validated against real-world
processes by program simulation (concurrency is simulated). The simulation of just the task
behavior part of the description can be used to determine the event sequence of tasks as if
one person were performing them.

Huff [Huf89] has noted that plan-based process descriptions (such as those used by her
GRAPPLE system that were described above under Project Management) “appear to be
amenable to analysis both because the formalism is logic-based and because the effects clause
allows simulation of actions without actual execution” [Huf89]. In the case of GRAPPLE,
the analysis takes the form of repeated application of predefined operators according to their
required preconditions and the state of the system as altered by the effects of previous op-
erators. To overcome some of the difficulties in debugging process descriptions using such
rule-like formalisms, work on the MARVEL environment kernel for enacting such a formalism
has included work on a tool to uncover direct and transitive dependencies among rules by
constructing a dataflow graph of currently loaded rules [Kai89]. This analysis is designed to
cut down on unanticipated interactions between rules. The EPOS environment kernel models
planning activities with production rules and features a planner that interleaves planning
and execution [CLW90]. The EPOS planner is a production system that uses both forward
and backward reasoning on a knowledge-base of tasks to transform incomplete plans into
“flaw-free” plans in a technique referred to as hierarchical planning. The goal is to provide
intelligent assistance guiding a process participant.

Functional descriptions and other less formal representations are commonly used to per-
form analysis of processes in the sense of the dictionary definition of analysis: the separating of
any material or abstract entity into its constituent elements. HFSP, which describes software
processes as mathematical functions that map their inputs into their outputs, has been used
describe a real industrial process to determine its appropriateness and completeness [KM91].
This was done by decomposing functions hierarchically until the resulting functions could be
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performed by humans through either tool invocation or mental activities.

Structured Process Flows (SPFs) are a leveled, end-to-end threaded view of the major
processes in a system and provide the necessary first view of a system while enabling decom-
position for details [Tam91]. SPFs are annotated with process inputs and outputs at each
level of decomposition. In addition to providing a vehicle for process understanding in the
same way as HFSP, SPFs may be annotated with the values of various process metrics to
perform informal analysis of overall processes. Areas of process analysis that have been ad-
dressed with SPFs include: identification of bottlenecks, items contributing to the problem of
excessive rework, hindrances in interfaces between functional areas, and redundant processes
and data. An example of the kind of informal reasoning-by-inspection techniques supported
by such less formal types of descriptions is the following procedure:

1. An aggregate estimate for the elapsed time taken by a process at one level is secured
from a supervisor and used to annotate its symbol on that level’s SPF.

2. The process is then described in detail at a lower level of SPF with a series of subpro-
cesses.

3. Elapsed time estimates for these subprocesses are obtained from the appropriate per-
forming workers and entered on the lower level SPF as an annotation.

4. The aggregated time estimates can then be compared to the estimate obtained at a
higher level to see if there are any gross mismatches.

Such mismatches may be symptoms of overlooked activities (e.g., ad hoc communication
or reviews) or of hidden lags (e.g., time consumed in data transfer, queueing of tasks, or
dependencies on multiple inputs) that may be opportunities for process improvement.

3.4.3 Dynamic Analysis Through Execution or Simulation

One frequently used technique for performing process analysis is not specific to any specific
formalism. That technique is execution or simulation of the model and only demands that the
formalism have well-defined semantics based on some executable model of computation. It
has been stated that such simulation capabilities are crucial to achieving the desired benefits
of software process modeling. This is because, in addition to identifying flaws and prob-
lems in models and modeled processes, simulations provide both qualitative and quantitative
forecasting capabilities. The former include the behavior of the process in response to vari-
ous events and circumstances. The latter include prediction of numerical outcomes such as
time-to-completion, manpower requirements, or quality measures. These capabilities provide
a vehicle for answering “what if” questions about such activities as procedural changes and
technology insertion [KH88, Kel90].

The Statemate tool mentioned earlier has been used to perform simulation supporting a
number of types of analysis of process models [i-L89]. (Use of the same features to analyze
system models is described in [Har92].) The essential ability to carry out a single step of a
process’ dynamic operations may be used to execute a model in a step-by-step interactive
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fashion or iteratively, taking a sequence of external events and signals off of a batch file
and creating a trace file of the model’s execution for later evaluation off-line. Executing
expected behaviors permits verification that the process will behave as expected. Such model
executions can also (just as they can for systems) uncover unexpected patterns of process
behavior [i-L89, Har92].

Programming simulation runs, by means of an execution control language, to include
breakpoints and actions to be taken automatically when the breakpoint conditions are reached
and satisfied permits further types of analysis to be undertaken using the model. In order
to see the model running under circumstances that we don’t care to specify in detail, events
might be selected randomly. As an example, we may want to know how many times an
event occurs during a process. The model may select typical scenarios by generating random
numbers to select new events according to predefined probability distributions. Statistics are
then gathered using appropriate breakpoints and arithmetic operations. Performance analysis
may also be carried out using execution control programs. To find out if certain resource con-
sumption limits (manpower loading limits, elapsed time, development workstations, computer
time) are exceeded by a process during its execution, known resource amounts are associated
with the activities that consume them. Typical scenarios can then be run and total resources
consumed calculated for all activities either active at a moment in time or over history of the
run. As well as determining if consumption limits are exceeded, breakpoints can be used to
determine the set of circumstances causing the limits to be exceeded [i-L89].

If all possible scenarios could be run through, the presence of deadlocks or non-determinism
in the model could be detected. Reachability tests could also be performed, determining
whether the process could ever reach a situation in which some specified condition (either
desirable or undesirable) becomes true. Such analysis presents problems since the number
of possible states and the time required to reach them may increases exponentially as the
number of components and component states does. Useful analysis can be done, however,
within practical limits by restricting scenarios to feasible ones and simulation to selected
portions of a model [Har92].

A variety of logical conditions (expressed perhaps as sentences in a temporal logic) can be
represented as “watchdogs” and cast as reachability questions. Harel describes a watchdog as
“a small special-purpose ‘piece’ of behavioral specification that is carefully set up to enter a
special state if and when the offending situation occurs” (it has been shown that under certain
conditions, any temporal logic formula can be systematically translated into a watchdog)
[Har92]. Reachability tests are run to see if the state is ever entered or under what conditions
it is entered. Harel notes that promising research is under way into automatic verification of
very large finite-state systems against properties in temporal logic using other means than
exhaustive execution. In addition to Statemate, Harel gives references in [Har92] to tools
that have been created to permit simulation of models using other computational models
(e.g., petri nets).

A different type of simulation technique is used by Abdel-Hamid and Madnick [AHM91]
for process analysis. The technique uses a continuous simulation model that integrates man-
agement and production functions of the software development process by the application of
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feedback control systems principles. The software development process is represented in terms
of levels and rates. A “level” is an accumulation of some object involved in the process (e.g.,
resource, product, or rework item), and a “rate” is a flow increasing or decreasing a level. As
an example, a manpower would be represented as a level of people that is increased by the
rate of hiring and decreased by the rate of firing and quitting. Levels are given initial values
and rates are usually defined as functions of auxiliary variables, constants, and levels. The
system’s equations are expressed in DYNAMO, a simulation language for non-linear feedback
models. :

The DYNAMO model permits continuous re-estimation of the effect of changes in the
work force or requirements. In particular, the model has been used for:

e parametric analysis such as where to put more quality assurance or where the schedule
can be compressed;

e continual re-estimation to permit earlier convergence on effort level changes that are
required to meet schedule;

e controlled experiments of the effect of different management decision dynamics;

¢ training of managers; and

¢ analysis of lessons learned from historical projects.

3.4.4 Process Measures to Support Analysis

Part of process analysis is the derivation of quantitative measures of both process models
and instantiated processes. Basili implies the need for analysis when he states, “We need
models of the [software] development process, measures of its characteristics, and practical
mechanisms for obtaining those measures. [BM91]” Kellner [Kel90] states that process anal-
ysis using models often suggests process metrics, measurements, and status indicators that
would aid in process management. For example, we need mechanisms that will identify pro-
cess measures that contribute to product reliability, mechanisms that will identify skills that
a process will impart to its participants (for satisfying skill-up requirements), and mecha-
nisms that will identify software builds that can be separately coded and tested in order to
decrease project risk. Kellner asserts that these measures can then be concretely defined in
terms of the model’s components so as to be meaningful for the process at hand. Rombach
made the point that only integration of the to-be-measured process and the measurement pro-
cess “will provide the desired engineering control for project-specific process execution and
organization-specific [process] improvement [Rom89].” Further, he stated that experience
showed the need to formalize the descriptions of both the to-be-measured and measurement
processes, including “all aspects of measurement, ranging from data collection and validation
to evaluation and feedback.” The resulting models should be consistent as should be the
formalized measurement goals, and appropriate automated support should be provided for
designing and specifying the processes [Rom89]. The Amadeus system [SPSB91] provides
such a framework for integrating empirically based analysis techniques with mechanisms for
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enabling empirically guided to-be-measured processes. It does this by providing mechanisms
for instrumentation of a process model and invocation of activities such as statistics gathering
based on time and progress in execution of the process.

The process measures will provide valuable feedback for use in process control. Kellner
notes that the prescriptive model embodying the project plan, along with associated simula-
tion runs of the model, can serve as a yardstick for evaluating actual behavior and results.
Actual measurements can be compared to the planned outcomes and appropriate action taken
based upon any significant discrepancies. Such actions may include replanning efforts during
which quantitative simulations of the process at the macro level may be employed to evalu-
ate and select appropriate adjustments such as re-allocation of resources to various activities

[Kel90].

3.4.5 Analysis to Support Project Management

In addition to the use of process measurements to control processes that was described above,
another aspect of process analysis that supports project management is the analysis needed to
develop an executable process from a process model. This may be characterized as applying
resource constraints to an unconstrained process model to produce a final constrained process
- model [HK89]. An example of this type of analysis is the TSURU scheduling tool that
assigns individual people to the tasks of a modeled software development process based on
schedule constraints and the resulting need for parallel effort and on the organization’s skill-
up requirements for assigning individuals to tasks in which they need training [WO90]. This
process development process is what we have referred to as process instantiation.

One example of separate application of resource constraints to instantiate an uncon-
strained process model can be seen in the use of the formal specification language LOTOS
to model processes [SKS91]. In LOTOS, resource behavior (such as the numbers and inter-
actions of participants) is described separately from the task behavior (i.e., unconstrained
process model). The process model may be partially executed by executing either one of the
two distinct viewpoints separately. This provides a natural way of describing a generic process
independently of any specific resource allocation. It has been suggested informally by Bob
Balzer that the general program transformation technique of partial evaluation (see [ACM91]
for examples of partial evaluation) may be used in specializing process models for particular
settings without actually instantiating them. A simple example of partial evaluation in a
program translation context would be optimizing by loop unfolding when the value of the
loop variable is known at compile time. A process model might be partially instantiated in
stages by fixing values of various resources used by the process (e.g., numbers of participants,
elapsed time permitted, total man hours permitted) one resource at a time.

3.5 Process Support by Automation

Basili notes that in addition to models of the development process, we need models of how
users will employ the system being developed [BM91]. We divide these models into two
categories: the first category consists of models that specify portions of well-understood
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processes to be automated. Such processes permit the participation of human agents in
certain pre-defined places in the processes. Examples of such systems include air traffic
control systems, airline reservation systems, and military command and control systems.
Modeling formalisms are commonly used in creating operations concepts, in systems analysis
dealing with both system-level and software requirements, and in performance analysis of
such systems.

The second category consists of models that specify processes that are not well-understood
or by their nature are open-ended and not deterministic. The partial automation of such pro-
cesses involves tools that may be invoked flexibly in sequences and combinations that are not
pre-specified. It has been proposed [TBC*88] that the environment that controls the invoca-
tion of tools and access to data be driven by an enactable process model. Examples of such
environments exist in software development, office automation, CAD, and other application

domains.

3.5.1 System Specification

Colin Tully observes [Tul90b]: “Any system may be regarded as a process; and any process
may be regarded as a system....systems built by software engineers are processes and the
- systems within which they function are processes.” Models of the latter are frequently referred
to as system models rather than process models and the people who build and analyze them as
systems engineers rather than process engineers. We may expect to find, therefore, formalisms
in use in systems engineering that are of use in process engineering, and vice versa. In fact
this is the case. Tully holds out the hope that

... building new kinds of processes and process models to support our own activity
may lead to new insights into how we can build application systems, which are
often to do precisely with the more effective management of clients’ processes: in
other words, we may find we have a rich new paradigm which we can apply out-
wardly in developing products, as well as inwardly for managing that development
process [Tul90b].

A number of methodologies have been developed to define and design systems by modeling
them. These models involve partitioning big systems into smaller systems and repeating the
partitioning until small, implementable systems are reached. The methodologies are related
by the relative emphasis they (and their modeling formalisms) place on each of three views
(data, process, or control) in focusing in on the particular problem aspect the methodology
addresses. No single development methodology addresses all problem domains and complex
systems may need multiple models to fully describe their operation [Bra91].

A popular method of modeling used to perform systems analysis and specify functional
requirements for information systems emphasizes first process (data transformation) aspects,
then data (information modeling), and lastly behavioral (sequencing of states and actions). It
is known as structured analysis and makes use of data flow diagrams and, to a lesser extent,
entity-relationship diagrams. It has been noted [FGMM)] that frequently the meanings of the
data flow diagrams and the connection between the flows and entity-relationship diagrams
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are not formally stated and that “the interpretation of these and other ambiguous or vague
aspects is hidden within unstated assumptions made by the user of the notation”. To over-
come the lack of rigorous semantics for the model (particularly the inability to execute the
specifications for analysis or to generate code automatically from the specifications), several
approaches have been proposed to add the missing control information to data flow diagrams
and produce a model better suited for specifying automation of a system. [FGMM] specifies
a set of precise rules for basic synchronization and control activation in data flow diagrams,
thus making them executable. [MDR87] makes data flow diagrams executable and permits
code generation by providing an interpreter that interacts with the user in cases where the
execution might proceed in more than one way. [War86] extends data flow diagram notation
to represent control and timing by introducing signals for activation of data transformations
emanating from separate logic specified using a finite state machine. The approach stops
short of sufficient formality for execution but is actually an extension of the highly successful
approach described next.

Harel [Har92] points out that over the last seven years several separate efforts [WM85,
HP87, HLN*90] to extend information hiding and structured analysis concepts to reactive
systems have resulted in surprisingly similar conclusions. Their joint result is what Harel refers
to as a “vanilla” set of modeling concepts that represent system requirements in terms of both
a functional and a behavioral description of the system. The functional description models
the system in terms of data flow and the behavioral description models the system in terms of
control flow and state changes. These models are developed in combination with and mapped
to a structural or architectural model of the system that deals with subsystems, modules,
channels, physical links, and storage components. The three vanilla modeling strategies,
along with a fourth [BJKW88] resulting from an attempt to merge the strengths of each, are
compared in [WW89]. The comparison found the methods to be largely similar and succeeded
in identifying only small-grained differences.

The vanilla modeling approaches have been used extensively for specifying and analyzing
the automation of reactive systems. For example, [LHH*91] describes use of STATEMATE
modeling to develop a requirements specification for an aircraft collision avoidance system. It
was found that behavioral modeling produced a specification of the system judged by experts
to be easier to understand and to find errors in than a pure functional model.

Variations on the vanilla modeling approach substituting petri net representations for the
finite state machine approach used as a behavioral description in the vanilla techniques have
been proposed. [FFS91] is one such example.

Other modeling techniques have proved useful in analyzing existing manual or partly auto-
mated systems prior to more completely automating them. Structured Process Flows (SPFs)
[Tam91] feature imperative programming-like structured control flow constructs, such as con-
ditionals and various looping constructs, annotated with data flow information, performing
agents, and various metrics. They have been used, in connection with entity-relationship
diagrams in efforts such as: a quality auditing support system that unified and integrated a
set of PC-based, scattered operations; a new document processing system planned to handle
anticipated millions of pages of documentation including people, interfaces, processes, and
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automated support; and development of a functional specification of a command and control
system decomposed for three echelons of command, control and information processing.

3.5.2 Automatic Tool Invocation in Design Environments/Frameworks

We turn now to automated support for processes that rely heavily on human creativity for
their accomplishment. Due to their open-ended nature, the models which support the au-
tomation of these processes have different characteristics. These processes are frequently
characterized by design or problem solving activities. The process that has received the most
attention and the one that has driven work on this use of process modeling is the software
development process.

Watts Humphrey states that the basic reason for defining the software process is “not to
improve creativity but to free it by efficiently handling the details [Hum90].” He goes on to
say that a well controlled and supported process should handle routine tasks routinely. Mun-
dane tasks such as change management, design control, and interface coordination should be
handled smoothly and efficiently so that designers do not become preoccupied with the ad-
ministrative consequences of their work rather than devoting their energies to more creative
activities. In addition to reducing mental load and tedium for team members, it has been sug-
gested that automated support for the software process should impose constraints to improve
consistency as well as enforce project and organizational policies [DNR90]. The same policies,
mechanisms, and structures realized in a process model to support and enforce multi-person
coordination and cooperation should also be used to bound the effects of complexity in the
evolution of large-scale systems [Per90]. Another characteristic of the automation to support
the software process is the facilitation and direction of manual activities [Sut91a].

Feiler [Fei90] distinguishes between fully enacted processes in a software development and
manually enacted processes. Software configuration management (SCM) is cited as a portion
of the software process that is manually enacted (enacted by humans following procedures
and supported by the environment by a set of configuration management operations). Since
there are a number of models of configuration management (checkout/checkin, transaction,
change set, composition) that may be appropriate for different settings, the environment
should support this aspect of the software process with a set of low-level control primitives,
carefully designed to allow a range of higher-level coordination functions to be implemented.
These functions are the operations “executed by humans who map the high-level SCM process
reflected in the SCM procedures into sequences of instructions executed by invoking series of
SCM operations”.

Feiler continues that fully enacted portions of the software process are exemplified by the
build process (this applies to the “derivation of objects through automatic application of tools
[Fei90]”). In the build process, a series of predefined tool invocations is automatically executed
based on a model of the fully enacted portion of the process that constitutes structural
information and derivation rules for the various objects involved. In addition to providing
automated support, Feiler suggests that software process modeling formalisms can be applied
to better understand the semantics of the services offered by an environment and their impact
on the software process in the combined environment/human system [Fei90].
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An early example of support for the build process is the Make tool [Fel79] for UNIX whose
“Makefiles”, containing explicit object names and detailed identification of derivation steps,
are in Feiler’s sense a model of part of the development process that has the environment
as execution agent. Odin [CO90] builds upon Make concepts but stores (and subsequently
interprets) a database of derivation information in the form of a derivation graph that applies
to a type of objects rather than just explicitly named individual objects. By providing
for automatic derivation requiring “the complex synthesis of many diverse tools and the
creation of many intermediate objects”, Odin provides a more sophisticated model of the
build process that features the improved flexibility and ease of use furnished by enhanced
object management capabilities in the modeling formalism. By doing this, the Odin modeling
formalism defines a new use for process modeling formalisms: the integration of existing and
proposed tools in a development environment.

One of the mechanisms for providing partial automation in support of software and other
processes is the simultaneous and synchronous execution of a human-oriented development
process and an executable model of the process (a process program). For example, the
ARCHIPEL environment uses generic process models (in the form of templates for roles,
tasks, work contexts, etc.) to prepare tools by integration of components and activates
tools into work contexts when it receives appropriate task activation events [FO91]. The
process models are expressed using a petri-net based formalism augmented with data flow
and structure information [Hub91]. (ARCHIPEL is a pilot system developed within the
Euréka Software Factory project (ESF) [ESF89, Fer91], a large research effort funded by the
multinational European Euréka program.)

The Software Designer’s Associate (SDA) [KKM™88] represents a research effort (con-
ducted by a consortium of Japanese and American researchers) that is likewise directed toward
establishing a framework for environment architectures with a specific focus on consolidation
and integration of existing tools. Integration in SDA is to be achieved by use of software prod-
uct, software process, and tool collection conceptual models. The process model describes
software development as a set of activities (functions) that are decomposed into constituent
activities. The activity’s action may be performed by invoking a particular tool or sequence of
tools or may be carried out by a developer without automated assistance. Tools for carrying
out a particular function are modeled by a data flow model that gives a tool‘s input and
output object types.

Arcadia is an American (DARPA-sponsored) research effort investigating software devel-
opment environment architecture issues. These issues include environment architectures for
organizing large collections of tools and facilitating their interaction with users and each other
supported by user interface management and object management components as well as tools
to facilitate testing and analysis of software [TBC*88]. To address the apparently conflicting
goals of providing flexibility /extensibility and a high degree of integration, the Arcadia con-
sortium’s efforts have focused on the notion of driving the environment’s interactions by a
formal, executable representation of the user’s development and maintenance processes (pro-
cess programs). In such a process-driven environment, flexibility is obtained by supporting
alterations to process programs. Extensibility is achieved by writing new process programs
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or by modifying existing process programs to incorporate new tools, subprocesses, types or
objects.

In Arcadia research the process modeling formalism, the process programming language,
is a full programming language. One of the process programming languages proposed is
APPL/A, the Ada language extended with abstract, persistent relations with programmable
implementations, relation attributes that may be composite and derived, triggers that react
to relation operations, optionally-enforcible predicates on relations, and composite statements
with transaction-like capabilities [SHO90]. Another proposed process programming language
is P* [Hei89], based on Prolog. A process program indicates how the various software tools
would be coordinated to support a process [TBC*88]. Originally, it was proposed (abstractly)
that the process program drive the environment through interpretation by a “process pro-
gram interpreter” [TBC*88]. Recent work, however, has proposed the separation of process
programming language from the state of the process itself. The latter would be stored by
a “process server” [Hei91]. In this way, multiple styles of process program (prescriptive and
proscriptive) and multiple process programming languages can coexist in an environment.

Other efforts applying process modeling to the domain of software development include the
ALF project’s work to develop a process-centered software environment under the European
ESPIRIT research and development program [Oqu90]. A formalism known as the Model for
Assisted Software Processes (MASP) concept rigorously describes computer-assisted software
process models and enacts them in an environment based on the PCTE public tool interface.

Examples of process-driven environments exist in other application domains than soft-
ware development. One example is the Process Support System (PSS) [BPR91] built by a
collaboration including STC Technology, Ltd., the University of Manchester, and ICL in the
United Kingdom. PSS was applied to the problem report-handling activities of a Customer
Service Department. Diagnosticians select the oldest request for service, assess whether it
can be addressed immediately or must be sent elsewhere for analysis, and take the appro-
priate action. A database of known problems is available for consultation and work pools of
the diagnosticians must be monitored to ensure that queues do not become too long. Line
managers resolve overloading problems by reassigning staff. The process was coded using the
PML process programming language [Rob88, RJ89]. (PML and PSS are outgrowths of the
British IPSE 2.5 project. PML has been augmented with features to facilitate imperative
programming rather than the declarative style of programming for which the original was
intended.) Mundane activities like time-stamping the requests and monitoring work pools
were automated. Automatic selection of the next request to be serviced provides an example
of ensuring conformance to process. Access to up-to-date information about the state of the
process allowed the line manager to make better decisions on how to allocate the available
resources. The intricacies of retrieving information from the reference database were handled
by the process program. The net effect was to allow the diagnostician to concentrate on solv-
ing problems and to simplify the diagnostician’s training [BPR91]. Other applications of PSS
have been made to support software development, health services, investment management,

and project management [War91].
The developers of the process program described above, in evaluating their experience,

28




warn that the decision to introduce process execution must be based on sound business
analysis and an analysis of the current process. Depending on differing levels of process
maturity and other issues, different solutions to process improvement may be more cost
effective or otherwise more appropriate. Rather than conformance to process, however, the
developers believe that

... the true importance of process enactment is that it makes a new set of processes
viable. These are processes that take advantage of the close integration of tools
and participants within a typed environment. They analyse and act on the process
data in a way that would interfere unacceptably with the participants’ work, had
the process not been automated.

They conclude that “the designer of a new process should seek out such benefits rather than
merely replicating the existing process.”

Based on PSS experience, Warboys [War91] has concluded that this use of process models
may itself be broken into two categories of usage. For the first category, the process model is
used for the fine-grained modeling of specific processes. The execution agents that are inte-
grated are people, members of a team in an organization. In the second category, the model is
used as an integration framework for disparate tools and databases. Concrete concerns such
as format conversions, protocols, communication must be addressed. The latter, “architec-
tural” view of process modeling, however, also extends to the human organizational domain.
Just as a windowing environment can contribute to perceived integration of tools as end-users
cut and paste between application windows, the process model can contribute to perceived
integration by “essentially acting as a guidance system for a set of community-wide windows
into some shared corporate model” [War91]. After discussing the major differences in the
features of models for these two purposes, Warboys then reiterates the theme of this paper:
namely that “the role of the process model in these terms is probably the most significant
decision to be taken prior to the introduction of [a] given process model”.

4 Understanding the Process Modeling Formalism Life Cy-

cle

We have given a description of each major category of process model use and described some
of the applications that fall under that use at the same time indicating some of the formalisms
used for those applications. A wide range of formalisms have been designed for or applied
to process modeling. These include process modeling languages of various programming lan-
guage paradigms, charts and diagrams having the expressive power of regular expressions,
and formal specification languages (including state machines, petri nets, and LOTOS). As
with any artifact built by humans, they could be compared in a variety of ways according
to a number of different sets of criteria (the dimensions of their design space). One could
consider characteristics of the formalisms that are stressed such as human readability, preci-
sion, or ability to represent the various concepts identified at the beginning of the paper. One
could also consider characteristics that are addressed regardless of the particular design choice
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made such as object management issues, human-machine interaction issues, etc. One could
also consider particular capabilities possessed by formalisms such as executability, ability to
be analyzed formally, ability to account for unforeseen events, ability to handle rework/error
conditions, ability to support abstraction, ability to support parallelism, or possession of a
graphic representation. These high-level design choices in turn lead to a finer-grained set of
choices that include the paradigm employed by the formalisms (for example, rule-based/logic
programming, functional/hierarchical decomposition, entity-relationship data modeling, or
state-based representations). Following these considerations are still finer choices such as
the particular constructs provided by a formalism in its chosen paradigm. In another paper,
Ziv and Osterweil [Z092] discuss a lifecycle for process modeling formalisms and present a
survey of a number of formalisms with respect to: the uses the formalism was intended to
serve (its requirements), its chosen paradigm (its design), and its linguistic features (its im-
plementation). For the purpose at hand, we construe the term “requirement” rather broadly,
including the levels of abstraction we referred to above as requirements, characteristics, and
capabilities.

As one might conclude from the preceding discussion, there are a number of different
characteristics found in the formalisms described in the literature, and, correspondingly, a
variety of different requirements for the design of process modeling formalisms have been
given. The nature of these requirements is sensitive to the characteristics of the users of the
model (e.g., Kellner [KFF191], in the case of software processes, has identified different usage
characteristics for software managers, software engineers, and process engineers) and to the
model’s domain of application (e.g., software development has been said to require models
capable of representing unusual complexity and dynamism). We claim, however, that the
chief reason for this wide range of requirements is the need for different capabilities in order
to support the various different uses to which the formalism in question is intended to be
put. In other words, one should design a formalism quite differently for one use than for some
other. The intended use for a formalism is sometimes but not always explicitly noted by the
designer; often there is only an implicit use for the formalism. In this section we attempt
to rationalize the diverse requirements that have been expressed by relating them to the
categories of use given in the paper. The exercise of classifying an assortment of requirements
according the use categories will also serve to assess the completeness and usefulness of the
set, of categories we have chosen. While the list of requirements we give is not comprehensive,
we have attempted to make them at least representative.

Requirements for process modeling formalisms have been given in [EG91, SHO90, KH8S,
HK89, Kel9la, Kel88, KH89, Per90, KKMT88, War91, Fei90, Tul88a, Tul88b, KFF+91,
Leh89]. We will identify each requirement and then classify it by the uses of process modeling

to which we feel it applies.
1. Tully in 1988 identified the following requirements:

(a) Process formalisms should be enactable, providing human beings involved in the
software process computer guidance and assistance on-line while processes are be-
ing carried out, as a means of directing, controlling, monitoring and instrumenting
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them [Tul88a]. (This is practically a definition of the control by process guidance
use of formalisms.)

Process programs are written neither to mechanize software production or wholly
prescribe what humans in the process are to do. They are written to “define
possible (allowable) patterns of behavior between non-deterministic human beings
and systems constructed of computer programs” [Tul88a]. (Also representing a
control by process guidance use of formalisms.)

It is generally agreed that models must have the following capabilities: active sup-
port, hierarchy, inheritance, multiple forms of display (especially including graph-
ics), nondeterminism, and parallelism [Tul88b]. (This list of capabilities seems
consistent with both communication and control with the exception of “active
support” which is applicable to control and support by automation.)

2. Also in 1988, the Software Designer’s Associate consortium identified the following
requirements in [KKM*88]:

(a)
(b)
(c)

(h)

A software process conceptual model should “support the definition of a set of
tools to populate a Software Designer’s Associate.”

It should “provide for independence between tools and details of specific software
methods.”

It should “incorporate a distributed, team-based view of software creation and
evolution.”

It should “reflect a broad range of current software methods.”

A process description should specify “what activities should be performed and how
they are related”.

The process model should possess facilities to “determine dependencies among
activities and use this information to determine which activities must be performed
serially and which can be performed in parallel”.

The process model should make it possible to “show which activities are to be
performed at a given time together with information on which tools are to be
used. If several activities can occur, concurrency control is provided....”

The process model must make it possible for its implementation to “keep track of
the status of various activities and provide feedback on the status of the design
process.”

All of the requirements expressed here are clearly advantageous to the use of process
models for automatic tool invocation. Several of the requirements are also useful for
other purposes. Determining activities that can be performed in parallel could also be a
requirement for formalisms used for constructing improved processes from existing (more
serial) ones. Keeping track of process status and providing feedback is a requirement
for process guidance and for project management.
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3. Lehman’s extensive 1989 list of purposes for process models [Leh89] consists of require-
ments that may be assigned to one or more of all the various categories of process model
usage identified in this paper.

4. Kellner and associates at SEI have identified requirements for process modeling for-
malisms in an array of papers [Kel88, HK89, KH89, KFF*91, Kel91a] over the last four
years. They have been summarized in the following list of “requirements for an ideal
approach to software process modeling”, found in both [KH89] and [KH88]:

(a) The formalism should use a highly visual form of information representation (e.g.,

diagrams). (An important requirement for the use of process modeling formalisms
to communicate and in vizualizing current status and progress for project manage-

ment.)

(b) It should enable compendious descriptions by being comprehensive in scope yet

concise in presentation so that complex aspects of a process can be represented
eagily. (This is useful for both communication and process construction.)

(c) It should support multiple, complementary views of the process. In particular, the

following views are quite useful:

o A functional view, focused on the main activities and the data that flows
between them.

¢ A behavioral view (describing when and how these activities are accomplished),
capable of representing feedback loops, iteration, complex decision-making
conditions, entry criteria/trigger conditions, exit criteria, and precedence rela-
tionships. It should also represent parallelism at the level of individual software
objects (e.g., both testing/debugging and documentation revision can occur
concurrently for the same software module) and parallelism at a level that
crosses objects (e.g., some modules may be in test while others are still in

coding).

e An implementation view (describing by whom and where the activities are im-

plemented), connecting activities with the organizational subunits performing
them and describing communication channels.

e A conceptual data modeling view (providing an abstract, global of data re-

garding the software objects being produced and the process itself), connecting
process and product metrics to the process representation.

(This requirement is needed for capturing a complete process and then providing
views for multiple uses: for example, a functional view for communicating it; a
behavioral view for process improvement, process guidance, and automatic tool
invocation; and implementation view for process control; and a conceptual data
modeling view for improvement.)

It should support multiple levels of abstraction/hierarchical decomposition for each
view, providing global to low levels of detail. (Process construction from compo-
nents and system specification uses of a formalism require a variable level of detail
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in the process description. This requirement is also necessary in order to support
multiple uses with the same model such as communication and project manage-
ment at the high end and process guidance and automatic tool invocation at the
low end.)

(e) It should offer a formally defined syntax and semantics so that it can be machine
parsed and analyzed semantically. This also opens the posssibility of automatic
simulation or execution of the description. (This requirement is the essential one
for process guidance and for automatic tool invocation.)

(f) It should provide comprehensive analysis capabilities for evaluating consistency,
completeness, and correctness. (Detecting these types of anomalies is primarily
useful in model building itself but may also be used in process construction.)

(g) It should facilitate the direct qualitative and quantitative simulation of process
behavior from the description. (This type of analysis is useful for process improve-
ment, project management, and system specification.)

(h) It should support the creation and management of variants, revisions, and reusable
components of process descriptions, making reuse of portions of descriptions and
identification of differences between descriptions easy. (This is clearly important
to process construction.)

(i) It should support the representation and analysis for compliance of constraints on
the process such as standards, required documents, and required review points.
(This analysis is important in constructing a process or in instantiation of a model
as part of project management.)

(j) It should enable the representation of purposes, goals, rationales, and intentions
for process components and the overall process. (This is crucial to process im-
provement efforts.)

(k) The process model should integrate easily with other approaches to process rep-
resentation which may be deemed useful such as PERT or CPM for critical path
analysis or entity-relationship modeling for a conceptual data model. (This is im-
portant for acceptance of the model by its potential users in any of the categories of
use that involve direct interaction with the model, as opposed to indirect through
a process-driven software development environment.)

(1) The model should take an active role in process execution, possibly by automat-
ically recording the steps taken and objects manipulated during actual execution
or by providing guidance during execution based on the descriptions. (This is
practically the definition of use of a model for process guidance.)

(m) The formalism’s environment should offer automated tools supporting the ap-
proach. (Applicable to model building itself.)

5. Perry [Per90] identified the following requirements in 1990:
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(a) “What is needed to support the highly dynamic, interactive and incremental [soft-
ware| evolution and integration process is a model ...with several subprocesses
that are dynamically instantiatable and modifiable for each of the particular in-
stance or class of instances.” The application of the activities described in the
subprocess model, the instantiation of its various instances, and the determination
of process state depends on “aspects of the project management structure, the sys-
tem architecture and design structure, and the various mechanisms and structures
being used to implement the process model”.

(b) “Appropriate process model/instantiation support is needed for .. .evolution of the
process model and various instantiations [that] may occur as a result of redefining
policies, changing the policies concerning various activities, changing the degree of
enforcement or support, or changing the underlying process support structures or
mechanisms.”

These requirements seem applicable to process construction as well as process guidance
and automatic tool invocation.

. Feiler, in his 1990 discussion of needs for software process support [Fei90], requires the
infrastructure of software development environments to support:

(a) Software processes fully enacted by an environment (e.g., the build process).

(b) Manually enacted processes (e.g., software configuration management).

(¢) Dynamic enactment of processes (i.e., possessing flexible primitives for events and
actions on objects and tasks). The primitives used for this may involve different
degrees of control for performing change, different degrees of coordination, different
scopes of visibility of change, different degrees of consistency to be asserted by the
environment, and object modification rights that may be reassigned to permit
changes in the resource allocation of the software process.

These are requirements on the modeling formalism that are concerns largely of auto-
matic tool invocation.

. Warboys of the IPSE 2.5 project has recently identified the following requirements for
process modeling environments but also for the languages they use in [War91]:

(a) “..the process modeling environment must “naturally integrate” with the rest
of the Information System being used.... We are indeed faced already with the
problem of introducing a Process Modeling Environment which interworks with
disparate and distributed (through different tools) fragments of process models.”
(This is primarily a consideration for automatic tool invocation.)

(b) “...the process modeling environment must incorporate the means of changing itself
whilst executing and also allow for end-user specialisation of the process under
identifiable constraints.” (This is important for accurate process guidance as well
as automatic tool invocation.)
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(c) A key role of process models (and hence a requirement on their formalisms) “is as a
framework for the integration of disparate tools and databases.” (This is practically
the definition of the use of process models for automatic tool invocation.)

(d) Another principle role of process models is as an auditing mechanism to record the
course the process’ execution took, including the rationale for decisions that were
made and lessons learned. If, as it appears in many cases, this audit role is more
important than the control of what will happen next, this clearly has a significant
effect on the language used for process modeling. (This is one of the key types of
analysis used for process improvement.)

8. Emmerich and Gruhn of the MELMAC project at the University of Dortmund have
identified the following requirements in [EG91]:

(a) “In software process models several situations exist in which it is unimportant in
which way something is done. Instead it is important that it is done in one way
or the other. Modeling this kind of non-determinism is a crucial issue.” (This
is important for process construction and for creating accurate plans to support
project management and guidance.)

(b) “It is necessary to model that several activities can be executed concurrently. This
must be expressible in software process modeling languages. The representation
of concurrent activities, for example, can help to find out how many people can
be deployed, this it can be the basis for personnel management.” (This is clearly
relevant to project management but also to process improvement.)

(c) “Analysis of software process models can contribute to the early detection of errors.
By analyzing software process models it is possible to prove specific properties of
these models, to detect errors, and to gain deeper insights into the nature of the
analyzed software process model.” (Such analysis is needed to support many uses
of formalisms but is especially needed for process construction.)

(d) “A software process modeling language must enable a tight representation of soft-
ware process models, since software process models are usually quite complex. In
order to keep this complexity manageable it is necessary to represent basic entities
as single units of description.” (This is important for both communication and in

specifying tools for automatic invocation.)

9. Finally, Sutton, Heimbigner, and Osterweil of the Arcadia consortium suggest the fol-
lowing desireable characteristics of software process programming languages for support
of change to environments in [SHO90]:

(a) “Explicit representation of both objects and inter-object relationships.”

(b) “Explicit representation of the semantics of objects and relationships, including
constraints and derivations.”
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(c) “Automation of as much of the change process as is feasible, including propagation
of data, maintenance of consistency, and invocation of tools.”

(d) “Abstraction of processes, objects, and relationships from the underlying imple-
mentation system. At the logical level change management should be independent
of the implementation, and changes to the implementaiton should not affect the
abstract representation of development processes and products.”

These requirements are all applicable to the automatic tool invocation aspect of process
support by automation.

In table 1 we summarize the classification of each requirement in the above list by its
applicable categories of process modeling usage. From the correspondence noted between
requirements and categories of process modeling usage, we can see that selection of require-
ments for process modeling formalisms made by different authors is generally uniform in the
usages to which the any single author’s requirements apply (i.e., all of each individual author’s
requirements apply to a very small set of usages). We also found it easy to find one or more
places for each requirement within the set of uses for process formalisms that we had defined.
We conclude that the categories of usage draw meaningful distinctions (corresponding to the
intended application of the author’s work) and that the set of categories is complete with
respect to requirements expressed in the literature for modeling formalisms. We feel that
these comments also hold for the other artifacts of the process modeling formalism life cycle
such as design features and implementation constructs of formalisms.

5 Future Work

Process engineering will involve the selection and tailoring of appropriate formalisms and
their use either separately or in combination to realize the applications outlined in this paper.
Several steps necessary in the development of the knowledge required by process engineering
are already apparent. They are discussed below.

5.1 Developing Guidelines for Choice of Formalism

How should we choose a formalism for a given project? It should be clear from the survey
of uses of process modeling formalisms given in this paper that a central issue in process
engineering is the choice of a formalism appropriate for the particular use at hand. Guide-
lines relating characteristics and capabilities to specific uses or combinations of uses would
greatly aid in the systemization of process engineering and its evolution into an engineering
discipline. One approach to developing such guidelines could be accomplished in two steps:
first, categorize design choices made in the design of formalisms according to the choices that
would support each of the uses identified; second, catalog the design choices that have been
made in the various formalisms that have been described in the literature independently of
their intended use. Formalisms’ profiles of design choices could then be matched against those
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identified as desirable for a particular use. The result would be somewhat objective identi-
fication of formalisms that should be useful for various purposes. This result would require
testing by appropriate modeling activities.

A second approach to developing guidelines would be to develop a process description for
each of the process modeling uses identified in the paper. Following the approach of [SO91] for
software design methodologies, the various formalisms that might be applicable to a particular
use might be fit into a process of applying them and decomposed and compared to the generic
process for the use. The strengths and omissions of the formalisms for supporting a particular
use could then be evaluated.

5.2 Tailoring a Formalism Using Complementary Approaches

It is a general characteristic of the discipline of engineering that models are used that each
make a cost-effective tradeoff of available modeling features to understand salient points
and reach a conclusion about what to build. This is true in particular of process engineering.
Many of the features provided by a given formalism are dependent on the particular paradigm
employed by the formalism for representing processes. The wide variety of paradigms have
been employed in the formalisms we have surveyed intended to address various uses of process
modeling. It may happen, then, that for a particular use of a modeling formalism, the features
of more than one paradigm should be employed in combination. Certainly no single paradigm
provides the modeling capabilities required for all the uses we have surveyed. In fact, for each
given use, different formalism capabilities may be desirable. As Schifer notes: Petri-nets
support graphic visualization and analysis but do not support frequent dynamic changes
or efficient execution. Rules, on the other hand, lack a graphic visualization, and so on
...[Sch91]. As a further example, we previously noted that system modeling for automation
involves formalisms having features of state-based (“control”), data flow (“process”), and
structural (“data”) paradigms to different extents. If we extend the methodology used for
system modeling, we might want to tailor the formalism we use (e.g., Hatley-Pirbhai and
SPFs; DFDs with E-Rs or state diagrams). Liu and Conradi [LC91] point out that several of
the process modeling formalisms we have mentioned previously have such “hybrid” paradigms:
the SPECIMEN system tries to merge FUNSOFT nets and the rule-based MERLIN process
modeling language; the environment-relation (ER) nets of Bandinelli, Ghezzi, and Morzenti
[BGMO1] feature a Petri net model of control with activities modeled in the transitions by
relations implemented in a logic programming language and an environment of structured data
carried in the places by tokens; EPOS combines a static rule-based (AI planning) paradigm
with dynamic triggering in a task network or graph/net paradigm. For a given purpose, then,
multiple paradigms might be employed to advantage to describe different aspects of the same
process, This is Schéfer’s view of a multi-paradigm process: namely, the end-to-end process
model is decomposed into smaller parts which are described using different paradigms [Sch91].

It should also be clear from the discussion in this paper that multiple objectives for mod-
eling may lead to the same process (and the same parts of the process) being described by
alternative models that coexist yet employ different paradigms. For example, various kinds
of process analysis demand use of process descriptions employing different paradigms as dif-
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fering views of the same process. Meyers and Reiss [MR91], addressing software development
using different paradigm-specific views of software, state that the software development en-
vironment “should support this natural plethora of views, should allow developers to create
new views without undue difficulty, and should automatically maintain consistency between
disparate views of the same system, even while the views are being modified.” To avoid the
problem of needing to write N2 inter-view translations for N types of views, they propose
a single canonical, semantics-based representation for software at the core of the environ-
ment with just N translators required for N views. Exactly the same considerations hold
for the various views of a process maintained by what Sutton refers to as a Software Process
Environment [Sut91b]. Heimbigner [Hei91] discusses the use of a process server component
to enable multiple styles of process programs and multiple process programming languages
(possibly employing different paradigms) to usefully coexist and drive a software development
environment. In this approach, the process instance would be independent of the particular
process programming language (or languages) used to represent the process. The process
server stores the paradigm-independent state of the process as it is executed.

Heimbigner notes that even single-paradigm process descriptions may use multiple dis-
tinct representations of a process (e.g., APPL/A tasks for directly executing process code
and APPL/A relations as an explicit representation of the attributes and structure of the
tasks that can be manipulated dynamically by the process. These single-paradigm descrip-
tions use embedded maintenance operations in the code representation of the process and
triggers associated with the explicit structural representation to maintain consistency among
the representations. The process server idea elaborates on this use of an explicit process state,
describing it and maintaining it independently of languages that manipulate it.

Both Scott Meyers’ and Heimbigner’s proposals/experiments suggest the need for and
feasibility of a central canonical form that both forms the basis for static translation and
maintains execution state. Meyers has experimented with the use of a data flow graph similar
to the ones used as object code for the MIT tagged-token dataflow architecture [AN90]. The
data flow graphs are used as a canonical form for translation from Petri-net to Statechart for-
malisms and back. The data flow-based and highly parallel language Id (for Irvine dataflow)
[AGP78| and the data flow graph formalism into which Id is designed to be compiled deserve
investigation as a candidate canonical representation to facilitate use of multi-paradigm pro-
cess representations. The development of suitable architectural components and canonical
representations, then, are areas of future work that would help give process modelers the
ability to tailor formalisms from existing approaches to support the unique requirements of
each process engineering problem.

6 Conclusions

From the survey of its uses we have given above, we can see that process modeling technology
is:

¢ Rapidly developing
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e Broadly applicable both within and outside software engineering

e An enabling technology that, if properly applied, can result in significant benefits to
a wide range of activities. Its proper application, however, is a matter of engineering
judgement, and there is no substitute for the skill of the engineer applying it to solve
real-world problems.

Further, we have developed a list of uses for process modeling formalisms that is both
useful and sufficient for understanding their differences.
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