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Core-packing constraints, hydrophobicity and protein design 
Enoch P Baldwin and Brian W Matthews 

Howard Hughes Medical  Institute, Universi ty of Oregon, Eugene, USA 

Recent crystallographic studies have shown that both backbone and 
side-chain adjustments occur when different core-packing arrangements are 
accommodated in proteins. Thus, modeling methods, which have typically 
considered only side-chain adjustments, must now also account for backbone 
movements to accurately predict the energies and structures of mutated 
or designed proteins. The 'plasticity' of protein cores demonstrated by 
random mutagenesis simplifies protein design by increasing the likelihood of 

identifying alternative core sequences. 

Current Opinion in Biotechnology 1994, 5:396-402 

Introduction 

To effectively engineer proteins, we need to under- 
stand how amino acid sequences specify structure, func- 
tion and stability. Patterns of hydrophobic residues in 
polypeptide sequences are a key determinant of  the type 
of  fold that is adopted [1,2]. In soluble globular proteins, 
burial of hydrophobic residues drives compaction and 
helps specify secondary and tertiary structure [3,4°,5]. 
Non-polar side chains typically pack tightly in the in- 
terior, forming the solvent-inaccessible protein 'core', 
whereas surface side chains are generally polar. Tight 
packing of buried residues has been suggested to limit 
the core sequences that are tolerated in a particular fold 
[6--9]. In computational approaches to protein design 
and structure analysis, packing constraints are a ma- 
jor consideration. Here, we briefly review the origins 
o f  these ideas and discuss recent work indicating that 
such constraints are, in fact, much looser than previously 
thought. Paradoxically, the structural basis for tolerance 
to different cores complicates prediction of  the effects 
of  mutation on structure and stability, but simplifies the 
problem of protein design. 

cal repeats of  hydrophobic and hydrophilic residues 
[13,14°°,15,16°,17°]. Coiled-coil dimers, trimers and 
tetramers have also been specified by simple patterns 
of  hydrophobic residues [18"]. In mutants contain- 
ing insertions between residues that are in or-helices 
[19°,20°°,21°,22°], the choice between 'looping out' 
or translocating adjacent helical residues was apparently 
controlled by the relative dispositions of polar and non- 
polar residues [19°,20"']. Finally, burial of a non-polar 
surface has been correlated with helical propensity at 
solvent-accessible sites in T4 lysozyme [23°,24°°]. 
The importance of  the hydrophobic nature of protein 
cores for stability is also well established [25°,26°,27]. 
Truncation of  core side chains to alanine [27-31, 
32"-34 °] is much more destabilizing (up to 5 kcal mo1-1 
for leucine residues) than alanine substitutions of  most 
surface residues (+ 1 kcalmo1-1) [23",30,31,32°-34°,35, 
36"]. Similarly, substituting non-polar buried side chains 
with smaller hydrophobic [27,28,37°°,38,39] or polar 
residues [40°,41-43] is more destabilizing than increas- 
ing the hydrophobicity of  surface-exposed side chains 
[23°,24°°]. In some cases, substitution of  buried polar 
residues with non-polar amino acids has led to stabiliza- 
tion [44°,45,46]. 

The importance of the hydrophobic effect in 
determining protein structure and stability 

Hydrophobicity patterns in amino acid sequences are 
one of the most conserved features of  proteins that 
have the same fold [2]. Theoretical studies using highly 
simplified lattice models [10-12] of  protein chains, as 
well as recent experimental work, suggest that such 
patterns can specify secondary and tertiary structure. 
For example, four-helix bundles were readily gen- 
erated using polypeptide sequences based on heli- 

Theoretical evaluation of packing constraints 

The constraints imposed on protein structure and sta- 
bili W by core packing have not yet been clearly de- 
fined [25",26",47",48°,49]. As judged from protein crys- 
tal structures, core side chains are 'well packed': they 
are rigid, clustered at high density, and generally in 
low-energy conformations. This jigsaw puzzle-like fit 
of side chains led to the suggestion that very few com- 
binations of hydrophobic residues might be compatible 

Abbreviation 
rmsd--root mean square deviation. 
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with a given fold [7]. In this view, packing arrangements, 
and thus the identities of core residues, contain crucial 
information specifying protein structure. 

To test this idea and to evaluate packing constraints, Pon- 
der and Richards [7] designed a prototypical packing 
algorithm, PROPAK, that evaluates all of  the possible 
side-chain arrangements of a group of  adjacent residues. 
Trial models were constructed by placing alternative side 
chains in the context of a fixed framework of surround- 
ing side-chain and backbone atoms derived from crystal 
structures. The alternative side-chain orientations were 
restricted to a limited number of  'ideal' or 'preferred' 
conformers (rotamer libraries) that were determined 
from surveys of  known structures [7,24°°,50°,51,52°]. 
Models were evaluated by counting the number of  close 
van der Waals contacts. Only a minute fraction of  the 
total number of side-chain combinations, including the 
wild type, satisfied the contact criteria, suggesting that 
viable alternative core-packing arrangements are rare. 

Recently, more sophisticated algorithms have been de- 
veloped both to predict the mutational effects on pro- 
tein stabihty and to build models of  proteins from 
known homologous structures. These methods surveyed 
potential side-chain configurations, either by stepwise 
enumeration of  the possible conformations for sub- 
sets of side chains [52°,53,54°-56°,57,58,59°] or by 
sampling via Monte Carlo approaches [60] or other 
search methods [51,61°,62]. The side-chain confor- 
mations were generated either from rotamer libraries ~ 
[51,52°,53,55°,58,59°,62] (as with PtkOPAK) or by 
stepping through coarse increments of  torsion angles 
(10-120 °) [54°,57,60], and were often subsequently opti- 
mized using energy functions [51,53,54°-56°,57,60] that 
are very sensitive to interatomic distances [63,64°,65]. As 
is the procedure with PROPAK, the model backbone 
and surrounding framework atoms were held fixed, at 
least during side-chain enumeration. Where overall en- 
ergy minimization was performed on a limited subset of  
culled structures, the backbones did not deviate far from 
their initial positions [53,54°,58]. The inherent assump- 
tion of these approaches is that movements of  the back- 
bone away from the wild-type position to avoid steric 
conflicts are destabilizing [66]. 

Mutational studies of protein cores 

[58,71-74,75°,76°]. In an extreme example, the substi- 
tution Ala98--)Val (three-letter amino acid code) in T4 
lysozyme destabilized the protein by 5 kcalmol-1 [71]. 
The mutant structure showed that the increased size of  
the side chain perturbed the adjacent backbone. On 
the other hand, small to large mutants with increased 
stability have also been generated [43,44°,74,77°,78], 
demonstrating that increased hydrophobicity, improved 
van der Waals contacts, and greater packing efficiency 
can potentially overcome unfavorable factors, such as 
steric interference and torsional strain. Hydrophobic- 
ity and packing can have comparable contributions to 
stability. Interchanging side chains of  similar hydropho- 
bicity, but different shapes (e.g. phenylalanine, leucine, 
isoleucine and methionine), has lead to a wide range 
of  stability changes (+0.3 kcal mo1-1 to -4 kcalmol-I 
[28,37°°,38,39,58,76°]). 
Paradoxically, although proteins can be somewhat sensi- 
tive to single substitutions, they are surprisingly tolerant 
of  multiple adjacent interior substitutions, provided that 
the overall hydrophobicity of  the core is roughly main- 
tained. Libraries of core-packing variants of  the DNA- 
binding domain of  k repressor and T4 lysozyme were 
evaluated for function and stability [79,80,81°°,82°°]. 
As many as 70% [80] of  the possible combinations of  
hydrophobic side chains were tolerated, albeit few with 
stability near that of  the wild type. Some sites were more 
sensitive to substitution than others. Stability or function 
did not correlate well with volume, hydrophobicity, root 
mean square deviation (rmsd) from wild-type structure 
(where structures were determined) or packing density, 
although mutants with larger hydrophobic cores tended 
to be more stable [48°,82°']. The ranges of tolerated 
side-chain volumes and hydrophobicities were within 
+ 5-6 methylenes and +3-4  kcal mol-1, respectively, of  
the wild type, but repressor activity was more sensitive to 
changes in volume than T4 lysozyme. A triple mutant of  
k repressor was actually 0.5 kcal mo1-1 more stable than 
the wild type. Unlike multiple mutants in general, which 
usually have additive effects on stability [83°,84], all core 
mutants with adjacent substitutions that have been ex- 
amined were more stable (by up to 3.9 kcal tool-l) than 
expected by additivity [58,71,76°,82°°,83°]. This non- 
additivity indicates that well packed residues form co- 
operative arrangements that can be disrupted by a single 
substitution [47°,48°,85,86]. Further substitutions result 
in new interactions, although rarely as cooperative as in 
the wild type. 

Early mutational studies supported the idea that core 
residues are also sensitive to hydrophobic substitutions 
[25°,26°,47°,48°]. Temperature-sensitive mutations often 
occur at buried sites [67,68°], which generally have 
a more limited range of permissible substitutions than 
surface sites [68°,69,70°]. Collisions with the backbone, 
disruption of the packing of adjacent residues, and the 
forcing of  side chains into unfavorable conformations, 
are all potential sources of  destabilization at tightly 
packed sites, especially for small to large substitutions 

Structural studies of core mutants 

A number of crystal structures of single and multiple 
core mutants have recently been determined [29,37 °°, 
40°,41,42,44°,58,71,77°,82 °° ,87,88°-90°], revealing why 
proteins are tolerant of  changes in packing, and allow- 
ing evaluation of  the assumptions that underlie current 
computational methods. 
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New packing arrangements were typically accommo- 
dated by overall adjustments of the backbone (up to 
1.0 ft,) without major distortions of  secondary structure, 
together with small changes (10-20 ° ) in side-chain tor- 
sion angles. In mutants in which the net volume of  core 
side chains is reduced, structural relaxation decreases the 
amount of unfilled space [29,37*°,87,88°-90°,91], pre- 
sumably reducing destabilization [29,37"°,92°]. Analo- 
gously, increasing total side-chain volume results in ex- 
pansion of  the cores and concerted shifts of secondary 
structure of  up to 0.8fi, [44",58,82"°,91,93,94",95"°]. 
Increased packing efficiency and stability has been ob- 
served in some [44",77°,95°'], but not all, cases. 

In a few mutant structures, substantial side-chain rota- 
tions toward cavities [29] or away from introduced bulky 
side chains have been observed [44",82"]. Mutated side 
chains or side chains nearby the mutation sites occasion- 
ally adopt non-ideal torsion angles [37"°,44°,58,77°,90"], 
even in stabilized mutants [44",77°]. The conformations 
of alternative side chains in multiple mutants are gener- 
ally similar to each other and are within 20 ° of wild-type 
or 'ideal' torsion angles [58,71,82°°,95°°]. Thus, they are 
determined by similar constraints, including the local 
secondary structure and the surrounding residues that 
are unchanged [52°,59°]. In homologous proteins with 
greater than 50% sequence identity, side-chain confor- 
mations and torsion angles are also typically preserved, 
supporting this idea [57,96-98]. Although changes in 
torsion angles contribute to the reduction of unfavor- 
able contacts, shifts of  secondary structure are largely re- 
sponsible for the accommodation of altered side chains, 
at least in the helical proteins studied. Relatively small 
shifts in backbone or-carbons (0.5 fi~) can be accompanied 
by larger changes (1-2 A) in side-chain atom positions. 
These adjustments assist in redistributing side-chain bulk 
and optimizing new sets of contacts, so that many aker- 
native side-chain combinations can lead to a tolerably 
well packed core. 

For the same protein in different crystal environments, 
where it is subject to different crystal-packing forces, 
the backbone shifts are similar to those observed in 
the repacked mutants (0.3-0.4A rmsd after superposi- 
tion [24"°,80,96,97]), suggesting that protein backbones 
are inherently flexible, and adjustments of  this magni- 
tude may have little penalty [82°']. In an extreme case, 
one triple variant of  T4 lysozyme had a backbone shift 
of  0.63A, yet was destabilized only by 1.4kcalmo1-1 
[81"°]. Clearly, even relatively large deviations of crys- 
tallographically determined backbone positions from the 
wild type do not necessarily translate into large destabi- 
lizations. ~., 

The infrequency of alternative rotamers in packing mu- 
tants is likely due to the close-packed nature of cores. In 
an unusual T4 lysozyme core-repacking variant [82°°], 
the subsititution ofAla--+Trp (a large for a small residue) 
required an adjacent amino acid on the same helix to 
adopt a different rotamer to avoid a steric clash. Because 
this residue was also completely buried, it was expected 

that other potential steric conflicts would be incurred. 
In this case, however, a potential collision was averted 
because the conflicting side chain was at the surface 
and freely rotated away. For tightly packed residues in 
the core, such coordinated conformational changes are 
likely to be more problematic. 

Implications of core-repacking studies for 
protein design 

Computational approaches to structure and stability 
prediction have been reasonably successful (60-90%) 
in reproducing core side-chain conformations from 
known structures [7,51,52°,53,54°-56°,57,59",61°]. In 
some cases, the relative stabilities of mutants [58,61 °, 
66], have also been predicted. These methods have, how- 
ever, been less successful either in correctly predicting 
the conformations of  mutant or homologous structures 
based on a known 'parent', or in predicting the finer 
details of known structures. The variety of structural 
responses to core substitutions, particularly flexibility of  
the backbone, suggests that precise prediction of mutant 
protein stability and structure still presents an enormous 
challenge to computational methods. Substantial devia- 
tions both from wild-type backbone positions and from 
'ideal' torsion angles are routinely observed in mutant 
structures. Therefore, modeling based on 'ideal' torsion 
angles [50 °] or rigid backbones is likely to lead to incor- 
rect structures or unreliable estimates of stability changes 
caused by mutations. Even if such adjustments are small, 
they can significantly influence interatomic distances 
and calculated energies. Furthermore, analysis of  mu- 
tant structures suggests that both backbone shifts and 
changes in torsion angles can have similar energetic 
consequences and, therefore, cannot be evaluated in- 
dependently. Although present prediction methods may 
be in error in excluding viable sequences and config- 
urations, they may still be of use in more qualitative 
apphcations, such as in predicting the least perturbing 
interior substitutions [58,60], predicting the structures 
of  homologous proteins [99,100°,101°], and suggesting 
core-residue combinations for packing de novo designed 
structures. 
Do protein structures and stabilities need to be accurately 
predicted to effectively engineer them? A recent exper- 
iment by Hecht and coworkers [14 °°] suggests that de 
novo designed proteins can be obtained in the absence 
of  strict design criteria [102]. They generated a library 
of  potential four-hehx bundles specified by a simple 
'binary' pattern of  polar and non-polar amino acids. 
Although previous approaches were based on fully de- 
fined sequences [13,15,16°], in this case, a potential 1041 
combinations were specified using random assortments 
of  five different non-polar amino acids and six differ- 
ent polar types. When expressed in Escherichia coli, 48 
of  69 sequences (60%) yielded soluble products. Initial 
characterization of  three polypeptides showed that they 
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were monomeric and highly helical, and two had stabili- 
ties approaching those of  known proteins (3.7 kcal mo1-1 
and 4.4 kcalmol-1). Thus, a large fraction of  all possible 
sequences folded into compact soluble structures. At 
least 3% were reasonably stable, suggesting that pack- 
ing details are a very weak constraint in this system. 
Even so, a cautionary note is required: many of  these 
bundles may be 'molten globules' or may lack well de- 
fined three-dimensional structures. Characterization o f  
native-like sequences obtained in this way should facili- 
tate the formulation o f  rules for design of  novel polypep- 
tide structures. 

Conclusions 

The 'plasticity' o f  protein cores that is demonstrated by 
data from random mutagenesis, simplifies protein design 
by increasing the likelihood of  identifying the alterna- 
tive amino acid sequences that lead to folded functional 
proteins. At the same time, however, recent crystallo- 
graphic studies have shown that both backbone and 
side-chain adjustments occur when different core-pack- 
ing arrangements are accommodated in proteins. Thus, 
modeling methods, which have typically considered only 
side-chain adjustments, must now also account for back- 
bone movements to accurately predict the energies and 
structures of  mutated or designed proteins. This remains 
the challenge for the future. 
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