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Aggregation of a Distributed Source in Morphogen Gradient
Formation

A. D. Lander, Q. Nie, B. Vargas, and F. Y. M. Wan

Abstract
In the development of a biological entity, ligands (such as Decapentaplegic (Dpp) along the
anterior–posterior axis of the Drosophila wing imaginal disc) are synthesized at a localized source
and transported away from the source for binding with cell surface receptors to form concentration
gradients of ligand–receptor complexes for cell signaling. Generally speaking, activities such as
diffusion and reversible binding with degradable receptors also take place in the region of ligand
production. The effects of such morphogen activities in the region of localized distributed ligand
source on the ligand–receptor concentration gradient in the entire biological entity have been
modeled and analyzed as System F in [1]. In this paper, we deduce from System F, a related end
source model (System A) in which the effects of the distributed ligand source is replaced by an
idealized point stimulus at the border between the (posterior) chamber and the ligand production
region that simulates the average effects of the ligand activities in the production zone. This
aggregated end source model is shown to adequately reproduce the significant implications of
System F and to contain the corresponding ad hoc point source model, System R of [2], as a
special case. Because of its simpler mathematical structure and the absence of any limitation on
the ligand synthesis rate for the existence of steady-state gradients, System A type models are
expected to be used widely. An example of such application is the recent study of the inhibiting
effects of the formation of nonsignaling ligand–nonreceptor complexes [3].

1. Introduction
Morphogens (or ligands) are molecular substances that bind to cell surface receptors and
other kinds of (nonreceptor) molecules. The gradients of morphogen-receptor complex
concentrations are known to be responsible for cell signaling and tissue patterning during the
developmental phase of the biological host. For a number of morphogen families (including
Decapentaplegic (Dpp) along the anterior–posterior axis in the wing imaginal disc of
Drosophila fruit flies), it is well established that the concentration gradients are formed by
morphogens transported away from a localized production site and, in the process,
reversibly bound to the surface receptors of cells, some are near and others further away
from the production site (see [4–6], [7] and other references cited in [8]). Recently, the
mechanism of morphogen transport has been reexamined by both theoreticians and
experimentalists to resolve the uncertainty regarding the role of diffusion in transporting
morphogens (see [8] and references therein). Appropriate mathematical models of different
complexity were formulated and analyzed in [8] and [2] to study the diffusive transport of
morphogens. Each consists of a system of partial differential equations and auxiliary
conditions (defining an initial-boundary value problem, abbreviated as IBVP) reflecting a
relevant selection of known morphogen activities in the wing disc. The first group of results
from our quantitative investigation was reported in [8] with the mathematical underpinning
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of the results given in [2] (see also [9]). These results show that diffusive models of
morphogen transport can account for much of the known experimental data including those
that have been used to argue against diffusive transport. When observations and data are
correctly interpreted, they not only fail to rule out diffusive transport, they favor it. At the
same time, they suggest that models that allow for additional morphogen activities are
needed to reproduce and explain other known experimental data such as robustness or to
remove unexpected restrictions such as that imposed on the ligand synthesis rate for the
existence of steady-state behavior in these models. Efforts of this nature can be found in [10]
and [3] and the references therein.

The one-dimensional models (Systems B, R, and C) of [8] and [2] all idealized the narrow
region between the anterior and posterior chamber of the wing disc as a point. In reality,
Dpp is synthesized in a production site of finite extent between the two chambers of the
wing disc in which morphogen activities such as diffusion and reversible binding with
renewable receptors also take place. A subsequent investigation [1] analyzed an extracellular
model of the wing disc corresponding to System R in [2], but now with a spatially
distributed ligand synthesis rate over a (narrow) region between the two chambers,
henceforth designated as System F. One significant feature of this distributed source model
is that unlike System R (and Systems B and C), there is no longer a restriction on the
morphogen production rate for the existence of a steady-state concentration of ligand–
receptor complexes. In this paper, we will deduce from System F an appropriate aggregated
source model to reduce the complexity of the mathematical model and the attendant analysis
and computations. This derived aggregated point source model, designated as System A, is
shown to reproduce all the significant consequences of System F on the one hand and to
contain System R as a special case on the other hand, delimiting the range of applicability of
the latter (and related ad hoc point source models) in the process. Because of their relative
mathematical simplicity along with their effective characterization of the relevant biological
activities, aggregate source type models are expected to be more attractive for the purpose of
analysis and therefore more widely used in the study of morphogen gradients. One example
of such applications in [3] provides an explanation for the apparent inconsistency between
the experimental results of [11] and [12].

2. Spatially distributed synthesis of morphogens and receptors
2.1. An extracellular formulation

In this paper, we derive from a spatially distributed morphogen source model of the
Drosophila wing disc of [1] (System F), a simpler model with an aggregated source at the
border between the anterior and posterior chamber. As in [8], we simplify the development
by working with a one-dimensional model for the posterior chamber of the wing disc
ignoring variations in the ventral–dorsal direction and the apical-basal direction; extensions
of the one-dimensional model to account for developments in these other directions are
straightforward (see [9] for example). We will work with an extracellular formulation
similar to System R in [2] where we have shown that the results for such a model may be
reinterpreted as the corresponding results for a model where morphogen–receptor complexes
internalize (through endocytosis) before degradation (see also [13]). Features and results of
System F [1] relevant to the development of a related aggregated end source model will be
summarized in this section. In Section 3, we will aggregate the effects of the activities in the
ligand synthesis region of this model to result in a corresponding end source model. The
corresponding ad hoc point source model (System R) previously investigated in [2] is then
seen to be a limiting case of the aggregated end source model (System A).

Let [L(X, T)] be the concentration of a diffusing ligand such as Dpp at time T and location X
in the span from the midpoint of the morphogen production region X = − Xmin to the edge of
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the posterior chamber of the wing disc at X = Xmax with morphogen produced only in − Xmin
< X < 0. Let [R(X, T)] and [LR(X, T)] be the concentration of unoccupied receptors and
ligand occupied receptors, respectively. For the developmental processes described in [8],
we add to Fick’s second law for diffusive ligand transport (∂[L]/∂T = DL∂2 [L]/∂X2, DL
being the diffusion coefficient) terms that incorporate the rate of receptor binding, −kon[L]
[R], and dissociation, koff[LR], with kon and koff being the binding rate constant and
dissociation rate constant, respectively. In living tissues, molecules that bind receptors do
not simply stay bound or dissociate; they also (endocytose and) degrade [7]. In accounting
for the time rate of change of the ligand–receptor complexes, we allow for constitutive
degradation of [LR] by introducing a degradation rate term with a rate constant kdeg. There is
also a separate accounting of the time rate of change of the concentration of unoccupied
receptors as they are being synthesized and degrade continuously in time (with a degradation
rate constant kg as in [8] (= k′deg in [2])). In this way, we obtain the following reaction-
diffusion system for the evolution of the three concentrations [L], [LR], and [R] (see [1]):

(1)

(2)

(3)

for − Xmin < X < Xmax and T > 0, where VL(X, T) and VR(X, T) are the rates at which ligand
molecules and receptors are synthesized, respectively. In [2], we were interested only in the
portion of the wing disc corresponding to X > 0 where there is no morphogen production (so
that VL(X, T) = 0 for X > 0) with ligand introduced into the region 0 < X < Xmax through a
point source at the end X = 0. We will discuss in later sections the relation between such an
ad hoc point source model (System R) and the present distributed source model (designated
as System F henceforth), which considers explicitly the activities in the region − Xmin < X <
0 where morphogens are produced.

With −Xmin being the midpoint of the ligand production region, we have by symmetry of the
anterior and posterior chamber of the wing disc

(4)

The edge of the posterior chamber at the far end of the wing disc is taken to be absorbing so
that

(5)

At T = 0, we have the initial conditions
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(6)

where R0(x) is the distribution of steady-state unoccupied receptor concentration prior to the
introduction of ligand.

To reduce the number of parameters in the problem, we let R̅0 be a reference unoccupied
receptor concentration level (to be specified later) and introduce the normalized quantities

(7)

(8)

(9)

In terms of these new quantities, we rewrite the IBVP for System F above in the following
normalized form

(10)

(11)

(12)

for t > 0 and

(13)
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2.2. Time-independent steady-state behavior
For the purpose of this paper, it suffices to limit consideration to ligand and receptor
synthesis rates of the form

(14)

(15)

for t > 0 and nonnegative constants V̅L, V̅p, and ρ2. In (14) and (15), H(·) is the Heaviside
unit step function. With the initial receptor concentration taken to be the steady-state
receptor distribution prior to the onset of morphogen production, R0(x) = VR(X)/kg, we take

(16)

where V̅p is the uniform receptor synthesis rate for x > 0 so that

(17)

We are interested in a time-independent steady-state solution a̅(x), b̅(x), and r ̅(x) for the
system (10)–(12). For such a solution, we may set the time derivatives in these equations to
zero to get

(18)

(19)

where a prime indicates differentiation with respect to x, ( )′ = d( )/dx. The nonlinear system
of ordinary differential equation (ODE) (18) and (19) is augmented by the boundary
conditions

(20)

With υL(x) and υR(x) both being piecewise constant as given in (14) and (15), the form of the
(18) and (19) requires that a̅(x) and its first derivative be continuous at x = 0.
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As in the steady-state problem for System R in [2], the two equations in (19) may be solved
for b̅ and r ̅ in terms of a̅ to obtain

(21)

where

(22)

The expressions in (21) are now used to eliminate r ̅ and b̅ from (18) to get a second-order
ODE for a̅ alone:

(23)

This second-order ODE is supplemented by the two boundary conditions (20), keeping in
mind also the continuity conditions on a̅ and a̅′ at x = 0.

For our choice of synthesis rates VL and VR, we have υL = 0 and r0(x) = 1 for the range 0 < x
< 1 so that

(24)

In the complementary range −xm < x < 0, we have υL = υ̅L and r0(x) = ρ2 so that

for some prescribed value of ρ2 ≥ 0.

For the model with a distributed ligand synthesis rate in (−xm, 0) formulated above, a̅(0) is
determined by the ligand activities within the production region (−xm, 0) and is therefore not
known a priori. The coupling between the morphogen activities in the two regions −xm < x <
0 and 0 < x < 1 (with a̅(x) and a̅′(x) continuous at x = 0) makes it necessary to consider a
single boundary value problem (BVP) for the entire solution domain −xm < x < 0, which is
structurally different from the corresponding BVP for the point source cases considered in
[8,2]. As such, the issues of existence, uniqueness, monotonicity, and stability of the steady-
state concentration gradients were analyzed anew in [1]. We established there the existence
and linear stability of a unique, monotone steady-state concentration of ligand–receptor
complexes for System F without any restriction on the ratio of ligand synthesis rate to the
receptor-mediated degradation rate. Asymptotic solutions various special cases were also
obtained in [1] to delineate the dependence of the steady-state behavior on the biological
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parameters. For subsequent comparisons with results of the aggregated source model to be
derived in Section 3, we will summarize some of these approximate solutions in the next
subsection.

2.3. Approximate solutions
2.3.1. No receptor synthesis in the morphogen production region—For the
extreme case where there is no receptor synthesis in the morphogen production region −xm
< x < 0 so that ρ2 = 0 (and thereby no concentration of either occupied or unoccupied
receptors in that interval), the exact solution of the ODE in that region and the reflecting end
condition a′(−xm) = 0 is

The constant of integration c0 is to be determined through the continuity conditions at x = 0.
It turns out that we can in fact determine the solution in the region x > 0 without knowing c0
and then calculate c0 from the solution obtained. This is because we have

(25)

which is a known quantity. Because of the continuity of a̅′ at the junction x = 0, the
condition (25) serves as the second boundary condition (in addition to a̅(1) = 0) for the ODE

This two-point BVP determines a̅(x) in 0 < x < 1. The continuity of a̅ at x = 0 then
determines c0 to be

For ζ ≪ 1, an explicit solution for the problem is

(26)

where

(27)
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is generally >1 for useful gradients. In particular, we have

(28)

For more general ζ, we may determine a̅(x) for 0 ≤ x ≤ 1 numerically and then calculate c0
from the result obtained.

2.3.2. Perturbation solution for ζ ≪ 1 (ρ2 > 0)—For ρ2 > 0 and ζ < 1, we consider a
perturbation solution in ζ:

The leading term a̅0, determined by the BVP

is an adequate approximation of the exact solution for a sufficiently small value of ζ so that
ζa̅ ≪ α0. Here, we have, in terms of the Heaviside unit step function H(·), r0(x) = {H(x) +

ρ2H(−x)}, with a̅0 and  continuous at x = 0. The exact solution for this linear BVP is

(29)

where

with

(30)

Higher-order correction terms of the perturbation series can also be obtained.

Note as ρ → 0, the results reduce to those of the last section. In particular, we have from
(30)
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(31)

as in (28). On the other hand, with xm → 0 but keeping υ0 = υ̅Lxm fixed, (30) becomes

(32)

Unless we keep υ̅Lxm = υ0 fixed and finite as xm → 0, we would not maintain a finite
aggregated ligand synthesis rate for an equivalent end source at x = 0. Also, we would need
to keep  fixed if a prescribed aggregated rate of ligand–receptor interaction should
be maintained at the source end (as in the case of Systems B, C, and R).

2.3.3. High morphogen production rate—For very high morphogen production rate so
that ζ υ̅L ≫ α0, we let a̅(x) = υ̅L Ah(x). The BVP for a̅ may be written in terms of Ah(x) as

with  and Ah continuous at x = 0. A leading term approximate solution A0(x) for ζ υ̅L ≫ α0
is determined by the linear BVP

and  and A0 continuous at x = 0. If in addition, we have ζ υ̅L ≫ max{g0, g0ρ2}, the
solution of this problem is

(33)

with

(34)

3. The aggregated source formulation
The theoretical results of [1] for System F with a distributed ligand source in −xm < x < 0
provide us with the assurance that we can meaningfully compute the steady-state gradients
of interest for any ligand synthesis rate V̅L. However, the presence of the two distinct
regions, −xm < x < 0 and 0 < x < 1, with different morphogen activities poses unwelcome
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tedium to the solution process except for a small region of the parameter space. It is
therefore desirable to find an appropriate simplification of this model. One possible
approach is to reduce the problem to one for a single solution domain with morphogens
produced and infused at an end point. In fact, ad hoc end source models were first developed
and analyzed (as Systems B, R, and C) in [8], [13], and [2] principally because the
mathematical problems involved were simpler than their distributed source counterpart. We
now use System F to show how these ad hoc point source systems may be related to the
corresponding more realistic distributed source models. We do this by aggregating the
ligand activities in −xm ≤ x < 0 and suitably approximating the aggregated results for small
xm. In doing so, we reduce the effects of the distributed source to a point source at x = 0 that
simulates an (approximate) average effect of the distributed source. However, unlike the
previous ad hoc formulations, the aggregated end source problem developed below is a
direct and appropriate consequence of the distributed source model with all approximations
made explicitly in the derivation.

For an appropriate reduction of the steady-state problem of System F to an aggregate source
problem, we recall the following differential equation for the steady-state free ligand
concentration in the range −Xmin < X < 0 before normalization obtained from (1) and (2)
after setting the time derivative to zero:

(35)

To capture the overall effect of the morphogen activities in the region of ligand synthesis,
we integrate (35) over the interval −Xmin ≤ X ≤ 0 to get

or

(36)

for some X˜ in the interval (−Xmin, 0). In deducing (36), we have used the reflecting
boundary condition at the end X = −Xmin to eliminate a term involving dL/dX at that end.
The change of [LR] over the interval [−Xmin, 0] is generally expected to be relatively small
compared to the drop from X = 0 to X = Xmax (see subsection 2.3 above and Section 3 in
[1]). In that case, we may approximate [LR]X = X˜ by [LR]X = 0− with 0− indicating a point
slightly less than 0. This gives the following approximation of the exact relation (36):

or, in terms of the dimensionless variables,
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(37)

where we indicated the acceptance of the approximation by using = instead of ≃ henceforth.
With b̅(x) and r ̅(x) given in terms of a̅(x) by (21),

(38)

we may use the second relation in (38) to eliminate b̅(0−) in (37) to get a boundary
condition at x = 0 on a̅(x) alone as we did previously:

(39)

Note that we have replaced 0− by 0 since both a̅ and a̅′ are continuous at x = 0.

The relation (39) gives an average effect of the distributed ligand synthesis rate in x < 0 on
the morphogen concentration at the border between the ligand production region and the
posterior chamber. It serves as a boundary condition to augment the physical condition a̅(1)
= 0 of a sink at the far edge X = Xmax so that the ODE (24) and these two boundary
conditions define a BVP for ligand activities in the wing disc chamber 0 ≤ x ≤ 1 with an
aggregated source at x = 0. Once we know a̅(x), the two other concentration gradients b̅(x)
and r ̅(x) are obtained from (21) with r0(x) = 1 for x > 0. As such, we have derived from
System F an aggregated end source model, which we will designate as System A henceforth.
The effects of a distributed source in −Xmin ≤ X < 0 are captured by an end flux at X = 0
given in terms of the parameters σ0 = Xmax/Xmin and ρ2 in the boundary condition (39),
where ρ2 is the ratio of receptor synthesis rate in the distributed source region X < 0 to that
of the wing disc chamber X > 0.

In view of (39), the ad hoc point source model, System R, may be considered as limiting the
special case of the aggregated end source model System A in two different ways. For Xmin
≫ Xmax so that σ0 ≪ 1, it is reasonable to neglect the term multiplied by σ0 (which
corresponds to the limiting case of σ0 = 0). System A is then reduced to System R if the
receptor synthesis rates in x < 0 and x > 0 are the same so that ρ2 = 1.

At the other extreme with Xmin ≪ Xmax (as in the case of the Drosophila wing disc), we have
σ0 = 1/xm ≫ 1 so that the flux term appears to dominate the left-hand side of (39), and we
would have a̅′(0) = 0 in the limit as xm → 0. However, by holding the morphogen synthesis
rate V̅L fixed as Xmin tends to zero; the total concentration of morphogen produced over the
entire interval −Xmin < X < 0 would tend to zero, resulting in no ligand production (and
therefore no net ligand flux across X = 0). An alternative formulation of a point source
model would be to keep V̅L Xmin/Xmax = V0 (and hence ν̅L xm = υ0) fixed so that we have the
same ligand synthesis rate at X = 0 as Xmin → 0. In that case, we see later that System R
becomes a first approximation of System A if we have ρ2xm = 1 and ψ = μ2 = g0/α0 is
sufficiently large so that σ0/ψ = (μ2xm)−1 ≪ 1.
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In either case, the present reduction of the System F to an aggregated end source formulation
has made it possible to delineate the limitation of System R and its range of applicability.
We will comment further on the numerical significance or insignificance of the flux term in
(39) later in this paper. However, independent of its effect on the magnitude of the various
concentrations, the presence of this flux term results in a significant qualitative change in the
existence theory of the steady state solution. From the analysis of the next section, we will
see that the retention of the flux term eliminates any restriction on the range of the synthesis
rate relative to the degradation rate as required by System R (and other ad hoc point source
models in [2]). But before we proceed with this analysis, we note that a similar development
for the IBVP for the time-dependent concentrations leads to the following condition point
source condition at X = 0:

(40)

or

(41)

where we have approximated a(x̅, t), b(x̅, t), and r(x̅, t) for some x̅ in (−xm, 0) by their values
at x = 0−. It should be be kept in mind that the PDE (10) requires both a(x, t) and ∂a(x, t)/∂x
to be continuous at x = 0.

4. Existence, uniqueness, and monotonicity
The existence of a steady-state solution of System R (as well as of Systems B and C) is
proved simply by identifying an upper and a lower solution for the monotone method of
Amann [14] and Sattinger [15] (see also [16]). However, because of the form of the new
boundary condition (39) at x = 0, the same method is not directly applicable to the
corresponding BVP for System A:

(42)

(43)

where σ0 = Xmax/Xmin = 1/xm. On the other hand, it does provide a basis for an existence
proof for the new problem.

Theorem 1
For positive values of the parameters σ0, g0, α0, ζ, and ν̅L and for ρ2 ≥ 0, there exists a
regular solution a̅(x) ≥ 0 of the BVP (42) and (43).
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Proof—For any a0 ≥ 0, the BVP defined by (42) and the Dirichlet conditions a̅(0) = a0 and
a̅ (1) = 0 is known to have a unique, nonnegative, monotone decreasing (analytic) solution in
0 < x < 1 [2] with a̅(x) ≡ 0 for a0 = 0. Let s(a0) be the resulting since a̅′(0) depends on a0, we
set a̅′(0) ≡ s(a0) to denote this dependence. It is known from [2] that s(a0) is negative for
positive a0. Let B[a0] ≡ σ0s(a0) + ν̅L − g0ρ2 a0/(α0 + ζa0). Evidently, we have B[0] > 0. If β ̅f
= β/(ρ2 − ζβ) > 0 with β = ν̅L /g0, then we can complete the proof simply by noting B[α0β ̅f ]
= σ0s(a0) < 0. Because a̅′(x) and a̅(x) depend continuously on a0, we have by the
intermediate value theorem that there is a value a˜0 for which B[a˜0] = 0. The solution of the
Dirichlet BVP with a0 = a˜0 > 0 is then a solution of the BVP (42)–(43).

The proof for the case β ̅f ≤ 0 is slightly more complicated. Let y(x; a0) ≡ a̅/a0; it follows
from the BVP for a̅(x; a0) that y(x; a0) is the solution of the BVP:

Evidently, yu(x) = 1 and yℓ (x) = 0 are, respectively, an upper and lower solutions of the
problem above for a̅ (x) resulting from a0 > 0. By the monotone method of Amann and
Sattinger, there is a unique, nonnegative, and monotone decreasing solution y(x; a0) for this
problem with y′(x; a0) < 0. In particular, we have y′(0; a0) = ∂ [a′(0; a0)]/∂a0 < 0; hence
B[a0] is decreasing function of a0. With B[0] > 0, there exists some a˜0 > 0 for which B[a˜0]
= 0. Again, the solution of the Dirichlet BVP with a0 = a˜0 > 0 is a solution of the BVP
(42)–(43).

Note that the ligand synthesis rate was restricted by β < ν̅L/g0 in [2]; otherwise we would
have a0 < 0 which is biologically inadmissible. In the proof above, the solution of our
problem naturally satisfies the nonnegativity requirement and hence imposes no restriction
on the synthesis (or ν̅L/g0).

Theorem 2
The nonnegative solution of Theorem (1) is unique.

Proof—The proof is essentially the same as that for System R (see [2]). Suppose there are
two solutions a̅1(x) and a̅2(x). Let a(x) = a̅1 − a̅2, then the BVP for a̅k(x) implies

Multiply both sides of the differential equation above by a(x) and integrate the resulting
relation over [0, 1]. After integrating by parts and applying the boundary conditions for a(x),
we obtain

(44)

Because a̅1 ≥ 0 and a̅2 ≥ 0, the condition (44) requires a(x) ≡ 0 and hence uniqueness.
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Theorem 3
The nonnegative solution of Theorem (1) is a monotone-decreasing function.

Proof—Suppose there is a local maximum of a̅ at an interior point x0; then we have a̅″(x0)
≤ 0. At the same time, we have from (42)

because morphogen concentration has already been shown to be nonnegative. Together they
require a̅ (x0) = 0. But a̅ (x) is nonnegative (and a̅ (x0) is a maximum); therefore we must
have a̅(x) ≡ 0, which violates the boundary condition at x = 0. Hence, a̅ (x) does not have an
interior maximum.

The ODE (42) requires a̅ (x) to be continuous and smooth. It follows that the steady-state
concentration a̅ (x) also cannot have a local minimum a̅ (x0) = 0 at an interior point x0.
Otherwise, we would have a̅(x) = 0 for x ≥ x0 and, by the continuity of a̅(x) and a̅′(x), a̅(x) ≡
0 for 0 ≤ x ≤ x0 as well. Hence, a̅(x) must be monotone, and, given the boundary conditions
at the two ends, it must be monotone decreasing.

5. Steady-state solutions for special cases
5.1. No receptor synthesis in the morphogen production region

For the extreme case where there is no receptor synthesis in the morphogen production
region so that ρ2 = V̅n/V̅p = 0 (and hence no concentration of either occupied or unoccupied
receptors in that region), the end condition (39) simplifies to

(45)

where the right-hand side is a known quantity. The two-point BVP defined by the ODE (42)
and the end conditions (43) with ρ2 = 0 determines a̅(x). The ODE is autonomous; hence the
BVP can be solved exactly except for a numerical solution of a nonlinear equation for the
initial amplitude a0 ≡ a̅(0). For ζ ≪ 1, it is straightforward to obtain the following leading
term perturbation solution in ζ for a̅(x):

Theorem 4—The leading term perturbation solution in the small parameter ζ for a̅(x) is

(46)

with

(47)
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Remark 1: The expressions (46) and (47) are identical to the corresponding results for
System F for ρ2 = 0 (see (29) and (31)). Hence, the present aggregated source model
(System A) correctly replicates the value a̅(0) of the more realistic distributed source model
for this extreme case of ρ2 = 0, at least for ζ ≪ 1. Moreover, the ODE for the range 0 < x < 1
as well as the end condition at x = 1 for Systems F and A are identical; it follows that the
distributions of morphogen concentrations must be the same for both models at least for ζ ≪
1.

For more general values of ζ, we integrate the ODE (42) once to get

(48)

where we have made use of the fact that a̅(1) = 0 and where s1 = a̅′ (1) is an unknown
constant. The boundary condition (45) is then applied to get  in terms of a0 = a̅ (0):

where βm = ν̅L xm/gr = ζβ xm, z(x) = ζa̅ (x)/α0, and z0 =ζa0/α0, so that (48) becomes

(49)

Given μ βm, the ODE (49) and the end condition z(0) = z0 (corresponding to a̅ (0) = a0)
determines a̅(x; a0) with an unknown parameter a0. The condition a̅ (1; a0) = 0 then fixes a0
(in terms of the known parameter μβm = μ ζ βxm). The dependence of a0 on β = ν̅L/g0, a
critical amplitude parameter in point source models (see [2,8]), for a typical set of other
biological parameter values is illustrated in column 2 of Table 1 below. The corresponding
values of a0 by the approximate solution (45) are also given in column 4 there. It is seen
from the results in that table that the leading-term perturbation solution for a0 is very
accurate for β ≤1 and is still within 10% of the accurate (to 10−5) numerical solution for β ≤
5 (with ζ = 0.2 and ζ β = 1 for the set of parameter values used for these results). More
significantly, the accurate numerical solutions in Table 1 agree with the corresponding
solutions for Systems F in ([1]) at least to three significant figures for ρ2 = 0.

5.2. Perturbation solutions for small ζ
For ρ2 > 0 but ζ ≪ 1 (corresponding to kdeg ≪ kg and g0 ≪ gr), we may seek an appropriate
parametric expansion of the solution in the parameter ζ. For a moderate morphogen
production rate ν̅0 ≡ ν̅L xm so that ζa̅ (x) ≪ α0, it is appropriate to take
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The leading-term solution is determined by the linear BVP:

subject to the boundary conditions

It is straightforward to obtain the exact solution of this linear BVP.

Theorem 5—For ζ ≪ 1, a leading-term perturbation solution for a̅(x) in ζ is given by

(50)

Remark 2: For relatively high binding rate, the parameter μ2 = g0h0/(f0 + g0) is generally
large compared to 1. Hence, if σ0 = 1/xm is O(1) or smaller, the contribution from the flux
term is negligible. This observation provided the motivation for the omission of the flux
term in System R (as well as Systems B and C in [2,8]). The omission of the flux term is
attractive as it leads to simpler theoretical and computational treatments of the problem.
However, with the aggregated source model (System A) derived from System F, the flux
coefficient σ0 is now seen to be Xmax/Xmin = 1/xm which may well be ≫1 (and is typically
the case for a Drosophila wing disc). Unless μ is sufficiently large so that σ0/μ = (μxm)−1 is
negligibly small, the contribution of the flux term generally cannot be omitted. For the
typical set of parameter values for the Drosophila wing disc used in Table 1, we have μxm ≃
0.32 so that the condition for omitting the flux term is not satisfied. With the flux term,
results given in the fifth column of Table 1 for ρ2 = 1 show that the leading term
perturbation solution is very accurate for β < 5 and has only about a 12% error for β = 5
relative to the accurate numerical solution of column 7.

For the extreme case of xm= Xmin/Xmax → 0, care must be taken so that there is a finite
amount of ligand in the system. This is done by leaving ν̅L xm = ν0 fixed and finite as xm →
0. In that case, we have

(51)

which is in agreement with (32). Thus for ζ ≪ 1, the aggregated source model (System A)
replicates the characteristics features of System F for ρ2 > 0 as well.
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5.3. Approximate solution for high ligand synthesis rates
With all biological parameters other than ν̅L fixed, it is expected that the maximum steady-
state free ligand concentration would increase with ν̅L. Let a̅(x) = ν̅Lxm A(x) and write the
BVP for a̅ (x) in terms of A(x):

For a sufficiently high ligand synthesis rate ν̅L so that ε ≪ 1, we may seek a perturbation
solution of A(x) in ε with its leading term determined by

The condition ε ≪ 1 requires βm = ζβxm = ν̅L xm/gr ≫1/μ 2; it is certainly satisfied by ν̅Lxm/gr
≤ 1 since μ2 = g0/α0 = O(h0) is the effective normalized binding rate and is usually large
compared to unity. The factor xm is often small (as in a Drosophila wing disc) so that the
second term of the end condition at x = 0 may be omitted sometimes; however, we retain the
term here to allow for moderate values of xm.

Theorem 6—For ε ≪ 1, we have the following leading-term perturbation solution in ε

(52)

with

(53)

Remark 3: For very large values of ν̅L, we may further simplifiy the above result to get

The asymptotic behavior of a̅ (0) and a̅′(0) is therefore identical to that of System F given in
(34) [1]. As such, the aggregated source model (System A) reproduces the behavior of the
distributed source model (System F) for the higher range of morphogen production rate as
well. At the same time, the results of this section indicate that the flux term in the end
condition at x = 0 is indispensable in obtaining the correct asymptotic behavior for high ν̅L
beyond the limit βr = ν̅L/gr < 1 imposed by the ad hoc point source model System R on the
existence of steady-state concentrations.
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With g0 = 0.2, gr = 1.0, h0 = 10, f0 = 0.001, and xm = 0.1, we compare in Table 2 the
approximate solution in (53) for a range of ν̅L values with the corresponding accurate
numerical solution. We see from the results that the asymptotic solutions are accurate to
within 5% for ν̅L = 20 (with β = 100 and ε = 0.05025) and with negligible relative error for
larger ν̅L. The range of β(=ν̅L/g0) values is significant in that we have not only β ≫1 but also
ζβ = ν̅L/gr > 1 in all cases, confirming the existence of stable state concentration gradients
for values of β well beyond the restricted range of β = ε0/g0 < 1 required by System R in [2].

5.4. Approximate solutions for large Xmax
In this subsection, we consider the solution for the limiting case of Xmax = ∞ with a̅ (x) → 0
and a̅′ (x) → 0 as x → ∞. (Note that x is now X normalized by some reference length X0.)
For example, we may take X0 = Xmin, the width of the ligand production zone. The
approximation is expected to be appropriate for the case of a very large Xmax, say Xmax ≫
Xmin. For this limiting case, the governing ODE (23) can be integrated once to give

(54)

where μ2 is as previously defined in (27) and where we have made use of the conditions that
a̅(x) → 0 and a̅′ (x) → 0 as x → ∞. At x = 0, we have from (54)

(55)

where a0 = a̅ (0) is still to be determined. In the relation (55), a̅′(0) can be expressed in terms
of a0 by way of (39) to give ν̅L xm/gr = βm as a function of z0 = ζa0/α0 with μ and 
as parameters:

(56)

For a given positive value of βm, it is not difficult to show that the relation (56) determines a
unique positive solution for the unknown z0.

For ρ2 = 0, the relation (56) reduces to

(57)

The quantity  defined by (57) is a monotone increasing,
concave function of nonnegative z0. Hence, there is a unique solution for the BVP for a̅ (x),
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(58)

as assured by the existence theorem. Note that in terms of the biological parameters, the
quantity μβm is independent of the choice of X0. Values of a0 for different values of β = ν̅L/
g0 are given in column 3 of Table 1 for the previously selected set of other biological
parameter values relevant to Drosophila wing imaginal discs. The agreement with the
corresponding exact numerical solution in column 2 is to a relative error of less than half of
a percent for the range of ν̅L calculated. It is important to observe that the solution of the
initial value problem (58) is of the form z = Z(ξ z0(μ βm)) (so that a̅ (x) = α0 Z (ξ; z0(μβm))/ζ),
with ξ = μx and z0(μβm) being the unique positive solution of (57). Hence, we know all about
the structure of the solution in this limiting case without solving any differential equation.

Graphs of ν̅Lxm/gr (= βm) versus ζa0/α0 = z0 for different values of the parameter μ are given
in Figure 1 for the other extreme case of ρ2 = 1 with xm = 0.1. Similar to (57), the quantities
μ βm and μxm in (56) do not vary with the choice of X0. The monotone increasing graphs of
βm in Figure 1 ensure that a positive root z0 = ζa0/α0 is uniquely determined by a prescribed
value of ν̅L (with β = ν̅L /g0 and ν̅L/gr = ζβ). Having the unique positive solution z0 of (56),
the ODE (58) can be integrated exactly to give a̅ (x). With g0 = 0.2, gr = 1.0, h0 = 10, f0 =
0.001, and xm = 0.1, we obtain in column 6 of Table 1 the values of a0 for a range of values
of β = ν̅L/g0 and ρ2 = 1. These values are in excellent agreement with the corresponding
accurate numerical solution in column 7 (as well as the relevant numerical results for
System F reported in [1]). Together, results for the two extreme values of ρ2 suggest that the
limiting case of Xmax = ∞ is a useful simplification and adequate approximation for
problems with Xmax ≫ Xmin.

6. Linear stability analysis
6.1. A nonlinear eigenvalue problem

The stability of the steady-state solution of the aggregated source problem with respect to a
small perturbation can also be examined by considering a time-dependent solution of the
form

(59)

and linearizing the governing PDE and boundary conditions (10)–(12) to obtain the
following eigenvalue problem for {a^(x), b^ (x), r^ (x)} with λ as the eigenvalue parameter:

(60)

(61)

(62)
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(63)

The relations (61) and (62) are solved for b^ and r^ in terms of a^ making use of (21) to get

(64)

(65)

The expressions (64) and (65) are then used to eliminate b^ and r^ from (60) to obtain

(66)

with

(67)

where we have set

(68)

so that a̅ (0) = α0β ̅0. Note that β ̅0 is known to be positive from the solution of the steady-
state problem. Let

(69)

then β0 = b̅(0+) is positive. (In contrast to Systems B, C, and R, there is no restriction on β0
or the rate of morphogen synthesis in the present aggregated source model System A.)

The boundary conditions for the ODE (66) are

(70a)
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with b^(0−) expressed in terms of a^(0) and a̅(0) by (65) and (21) with r0(0−) = ρ2. The first
end condition of (70a) is a consequence of (41) and (37) while the second follows from a(1,
t) = a̅ (1) = 0. We now rewrite these end conditions in terms of a^(x) alone to obtain

(71)

where

(72)

Together, (66) and (71) define an eigenvalue problem with λ as the eigenvalue parameter.
Though the ODE is linear in the unknown a^(x), the eigenvalue problem is nonlinear since λ
appears nonlinearly in qr(x; λ) and qρ(λ) so that (66) and (71) is not a Sturm–Liouville
problem.

6.2. Positive eigenvalues and asymptotic stability
In this subsection, we will show that the eigenvalues of the homogeneous boundary value
problem (66) and (71) for a^(x) must be positive. It follows then that the steady-state
gradients are asymptotically stable according to linear stability theory.

Lemma 1—All the eigenvalues of the nonlinear eigenvalue problem (66) and (71) are real.

Proof: Suppose λ is a complex eigenvalue and aλ (x) an associated nontrivial eigenfunction,
then λ* is also an eigenvalue with eigenfunction , where ( )* is the complex conjugate
of ( ). The bilinear relation

(which can be established by integration by parts and applications of the boundary
conditions in (71)) requires

(73)

where we have made use of the boundary conditions (71). It is straightforward to verify
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with

being a positive quantity for any λ so that Φm(λλ*) > 0. Similarly, we have qr(x; λ) – qr(x;
λ*) = −(λ – λ*)Φ(x; λ, λ*) where

In that case, the condition (73) becomes

Because the integral is positive for any nontrivial function aλ(x; λ), we must have λ – λ* = 0.
Hence, λ does not have an imaginary part.

Theorem 7—All eigenvalues of the nonlinear eigenvalue problem (60)–(62) and (71) are
positive and the steady-state concentrations a̅(x), b̅(x), and r ̅(x) are asymptotically stable by
a linear stability analysis.

Proof: Suppose λ ≤ 0. Let a^λ(x) be a nontrivial eigenfunction of the homogeneous BVP
(66) and (71) for the nonpositive eigenvalue λ. Multiply (66) by a^λand integrate over the
solution domain to get

After integration by parts and applications of the homogeneous boundary conditions (71),
we obtain

(74)

Because λ is not positive, we can write λ = − |λ| ≤ 0 so that
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For any nontrivial solution of the eigenvalue problem under the assumption λ ≤ 0, the right-
hand side of (74) is positive which contradicts the assumption λ = − |λ| ≤ 0 (since the left-
hand side of (74) is nonpositive for a non-positive λ). Hence, the eigenvalues of the
eigenvalue problem (66) and (71) must be positive and the theorem is proved.

7. Decay rate of transients
Although knowing the eigenvalues being positive is sufficient to ensure the (linear)
asymptotic stability of the steady-state morphogen concentration gradients, we want to know
the smallest eigenvalue (or an estimate of it) to get some idea of how quickly the system
returns to a steady state after small perturbations. As parametric studies require that we
repeatedly compute the time evolution of the concentration of both free and bound
morphogens from their initial conditions, the value of the smallest eigenvalue will also give
us some idea of the decay rate of the transient behavior and thereby the time to reach a
steady state.

The eigenvalue problem (66)–(71) whose solution is needed for the determination of decay
rate of transients is nonlinear and the steady-state free Dpp concentration a̅ (x) that appears
in the coefficient qr(x ; λ) of (66) is only known numerically in general. Hence, the smallest
eigenvalue of (66)–(71), denoted by λs, generally can only be found by numerical methods.
Accurate numerical solutions for the nonlinear eigenvalue problem is possible but tedious.
In the subsections below, we will obtain (1) an explicit analytical solution for the case when
the morphogen synthesis rate is relatively low, and (2) some tight upper and lower bounds
for λs which would provide a good estimate of its actual value.

7.1. Approximate decay rates
We learned from (69) β0 = b̅(0+) is a normalized amplitude factor for the bound ligand
concentration, which is expected to be a decreasing function of the normalized synthesis rate
ν̅L. For sufficiently small ν̅L, we should have β ̅0 ≪ 1. In that case, a perturbation solution for
λ and a^(x) may be obtained as parametric series in β ̅0:

(75)

The leading-term solution is determined by the simpler linear eigenvalue problem

(76)

(77)

with

(78)
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Note that the leading term of the parametric series for qr(x ; λ) does not depend on x. The
exact solution for the eigenvalue problem (76) and (77) is

(79)

and λ0 is a root of

(80)

The slowest decay rate of the transients is given (approximately) by the smallest positive λ0,

denoted by , that satisfies (80) with η given in terms λ0 by (79). The following two
observations are helpful for further developments:

Remark 4—Though η = 0 also satisfies (80), it is not an admissible solution for the
eigenvalue problem because it leads to a trivial solution for a0(x ).

Remark 5—From the second equation of (79), we get

so that λ0 is an increasing function of η2.

For ρ2 = 1, (80) may be written as

(81)

It follows that  is the smaller of the two roots of

for the smallest ηs that satisfies (80) with ηs ≤ π/2. We are interested here for xm ≪ 1 (so that
σ0 ≫ 1). In that case, we have ηs ≃ π/2 to a good first approximation and therewith

which is identical to the corresponding result of System F for a spatially distributed source
and does not depend on the (normalized) ligand synthesis rate ν̅L (see [1]). For g0 = 0.2, f0 =
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0.001, and h0 = 10, the solution of the quadratic equation above gives . For f0
= 0.01 and f0 = 0.05, the corresponding values for  are 0.2001847 and 0.2092109,
respectively.

For sufficiently high synthesis rate so that ζβ̅0 ≫ 1, both qρ and qr are O((ζβ̅0)−1). A leading-
term perturbation solution in 1/(ζβ̅0) also gives (81) for the determination of the (leading-
term) eigenvalues but now with . Hence, the present aggregated source model,
System A, correctly reproduces another characteristic feature, the decay rate of transients, of
the distributed source model System F for both low and high ligand synthesis rates.

The accuracy of these leading asymptotic solutions can be improved by obtaining higher-
order correction terms in the relevant parametric series. Instead of doing that, we will obtain
an upper bound and a lower bound for the smallest eigenvalue λs of the eigenvalue problem
(66) and (71). It will be seen from these bounds and the numerical results for the three
special cases how accurate the leading-term perturbation solution can be. For this purpose,
we observe the following facts for sufficiently small ν̅L:

1. η2(λ0 = g0) = g0 with  for Drosophila wing disc problems,

2. η2(λ0) has a simple pole at g0 + f0, and

3. η2(λ0) is an increasing function of λ0 for λ0 < g0 + f0.

With  for the particular set of parameter values considered above, it follows

from the three observations above . This conclusion is consistent with the

approximate solutions for  obtained above. For the three set of parameter values

considered for actual solutions above, the upper and lower bounds narrowly delimit  with

 for the first case. In the next section, this method for finding bounds will be
modified and applied to a broader range of values of ν̅L for which the perturbation method
may not apply.

7.2. Bounds on the decay rate of transients
Recall that λs is the smallest eigenvalue of the (66) and (71). Let

(82)

and

(83)

The function Λ(λ) has two simple poles which are the two roots of the quadratic equation

Let λc be the smaller of the two poles:
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It is straightforward to prove the following key lemma:

Lemma 2—Λ(λ) as given by (83) is a monotone-increasing function of λ in 0 ≤ λ < λc
where λc is the smallest root of Dm(λ) (or the smallest simple pole of Λ(λ)) with (i) gr < λc <
g0 if gr < g0, or (ii) g0 < λc < min{g0 + f0, gr) if gr > g0.

Proof: We compute dΛ/dλ to obtain

(84)

with

(85)

showing that dΛ/dλ is positive because all the parameters involved are nonnegative. The
inequalities on λc asserted by the lemma are immediate consequences of the form of the
quadratic function Dm(λ).

We know Λ(λ) = Λs has a solution in [0, ∞) because Λ (λs) = Λs and λs being an eigenvalue
of (66) and (71) must be positive. Our goal is to find λs or some bounds for it. We cannot
simply solve Λ (λ) = Λs for λs because we do not know Λs (which was defined in terms of the
unknown λs by (83)). But we can now narrow down the range of λs with the help of Lemma
2.

Theorem 8—Λ (λ) = Λs has only one root in (0, λc).

Proof: Because Λ(0) < 0 and Λ(λ) ↑ ∞ as λ ↑ λc, there is only one root of Λ(λ) = Λs in (0, λc).
It must be λs with 0 < λs < λc because λs is the smallest eigenvalue and it is positive.

Theorem 8 above settles the existence and uniqueness of a positive λs. With the help of
Lemma 2, we can obtain the following useful bounds for λs for the case of min{g0, gr} < Λs
most relevant to the Dpp gradient in the Drosophila wing disc.

Corollary 1—If min{g0, gr} < Λs, we have λs > min{g0, gr} and hence min{g0, gr} < λs <
λc.

Proof: The upper bound on Λs is already known from Theorem 8. The lower bound is a
direct consequence of Lemma 2 given Λ(0) < 0 and 0 < Λ(gk) = gk < Λs, with gk being g0 or
gr, whichever is smaller.

Remark 6: Though we do not know Λs a priori, we have from the perturbation solution Λs ≃
π 2/4 for sufficiently small x m and ν̅L. For Dpp in the wing imaginal disc of Drosophilas, we
have g0 < g0 + f0 < gr < π2/4. It follows from Corollary 1 g0 < λs < λc < g0 + f0 which gives a
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sharp upper and lower bound on the decay rate of transients. With f0 ≪ g0 in some cases, the
smallest eigenvalue is again limited to a very narrow range of values as illustrated by the
approximate solutions for three sets of parameter values in the previous subsection. We
summarize this observation in the following corollary:

Corollary 2—If g0 + f0 ≤ min{gr, Λs}, we have λℓ≡ g0 < λs < λc < g0 + f0 ≡ λu. If on the
other hand gr ≤ min{g0, Λs}, then we have λ ℓ+ gr < λs < λc < g0 ≡ λu.

In the complementary range (Λ(0) < 0 <) Λs < min{gr · g0}, we have the following corollary
of Theorem 8:

Corollary 3—For Λs < min{g0, gr}, we have λℓ ≡ Λs < λs < λc < max{g0, min(g0 + f0, gr)}
≡ λu.

Proof: The lower bound is a consequence of Λ (Λs) < Λs and Lemma 2. The upper bound
follows from the bounds on λc in same lemma.

Remark 7: The upper and lower bounds established above for System A are identical to the
correspond bounds obtained for System F in [1]. Hence, the decay rates of the two systems
are bounded by the same sharp bounds and therefore should be in close agreement (as
confirmed by accurate numerical solutions). It is another indication that the aggregated
source model developed herein successfully replicates the essential features of
corresponding distributed source model. The simpler System A has the additional advantage
that the sharper upper bound λc is known explicitly.

8. Conclusion
A system of partial differential equations and auxiliary conditions is formulated as System F
in [1] for modeling the extracellular Dpp activities in Drosophila wing imaginal discs. It is
analogous to System R of [2] but now allows for distributed morphogen production in a
finite region between the (anterior and posterior) chambers of wing discs. In contrast to
System R (and other ad hoc point source models formulated and analyzed previously [2] and
[8]), this new and more realistic model of the wing disc exhibits one new biologically
significant feature: there is no restriction on the ligand synthesis rate for the existence of
steady-state behavior. As concentrated end source model is more attractive for theoretical
analysis and numerical simulations, we derived in this paper an appropriate end source
model consistent with System F by aggregating the morphogen activities in the region where
morphogens are synthesized. With some well-defined and biologically reasonable
approximations, we deduced from System F an aggregated source model (designated as
System A) that is seen to capture the principal features of System F and at the same time
reduce to the corresponding ad hoc point source model System R under suitable
circumstances.

The new System A has been shown to replicate the following essential features of System F
when X min ≪ X max (which is the case for Dpp in a Drosophia wing disc):

1. It poses no limitation on the morphogen synthesis rate for the existence of a unique
set of monotone decreasing and asymptotically stable steady-state free and bound
ligand concentration gradients in the (posterior) chamber region of the wing disc.

2. It has the same analytical expression for the asymptotic steady-state free and bound
ligand concentration gradients in the wing disc chamber for both low (ζβ ≪ 1) and
high (ζβ ≫ σ0) morphogen synthesis rates.
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3. Numerical solutions for ligand synthesis rate are not covered by asymptotic
solutions above are in good agreement with the corresponding results for System F.

4. It has the same leading-term perturbation solution for the decay rate of transient
behavior for low and high ligand synthesis rates.

5. It shares the same relevant sharp upper and lower bounds on the decay rate for all
synthesis rates.

As such, we may use a System A type model for investigating morphogen concentration
gradients particularly when the morphogen synthesis region is narrow compared to the span
of the region without morphogen production. As long as X min/X max ≪ 1, numerical results
of Subsection 5.4 suggest that we may further simplify the solution process by taking X max
= ∞.

Having the aggregate source model, we can now see the factors responsible for the
important qualitative difference between System F and the corresponding ad hoc point
source model System R regarding the restriction on the morphogen synthesis rate for the
existence of steady-state behavior. One essential difference between System A and System
R is the presence of a flux term in the end condition at X = 0 (see (39) for the steady-state
BVP and (41) for the IBVP) with a coefficient determined in terms of the parameters that
appear in the model. Knowing this coefficient allows us to assess the significance of the
contribution from this previously omitted flux term. From (50) and (51), we can see that in
the case ζβ = ζν̅L/g0 = ν̅L/gr ≪ 1, we need

for the contribution of the flux term to the amplitude of the various morphogen gradients to
be negligible. Thus System R may be used (instead of System A) if the binding rate constant
kon R0 is sufficiently large compared to the diffusion rate , at least for ζβ = ν̅L/gr ≪ 1.
However, no matter how small the ratio σ0/μ may be, its presence appears to have been
responsible for the removal of the restriction on the morphogen production rate υL.

To the extent that ad hoc point source models without an end flux term are more tractable
analytically and computationally, System A type models may be (and has been) used instead
of System F type distributed source models when σ0 ≪ μ. Results of this paper show that it
is generally prudent to include the flux term in the boundary condition (39) and (40) at the
source end to allow for a broad range of ligand synthesis rate and effective binding rate of
ligand with receptor. An aggregated source type model has been used in [3] to investigate
morphogen gradient formation allowing for binding with nondiffusive nonreceptor sites
such as HSPC proteoglygans. The results obtained there provide an explanation for the
apparent inconsistency between the experimental results of [11] and [12].
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Figure 1.
Normalized steady-state end free ligand concentration z0 versus synthesis-to-degradation
rate ratio βm (ρ2 = 1 and xm = 0.1).
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Table 1

a0 = a̅(0) vs. β = ν̅L /g0(g0 = 0.2, gr = 1.0, h0 = 10, f0 = 0.001, xm = 0.1)

β a0 (ρ2 = 0) a0|Xmax = ∞ (ρ2 = 0) a0|ζ=0 (ρ2 = 0) a0|ζ=0 (ρ2 = 1) a0|Xmax=∞ (ρ2 = 1) a0 (ρ2 = 1)

0.25 0.001588 0.001593 0.001579 0.001202 0.001212 0.001209

0.50 0.003191 0.003204 0.003159 0.002403 0.002439 0.002432

1.00 0.006448 0.006474 0.006317 0.004807 0.004935 0.004920

5.00 0.034913 0.035119 0.031587 0.024033 0.027082 0.026965

10.00 0.076665 0.077381 0.063173 0.048066 0.060314 0.060209

25.00 0.243073 0.250764 0.157933 0.120165 0.205606 0.200968
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Table 2

Asymptotic vs. Numerical Solution for High Ligand Synthesis Rates (g0 = 0.2, gr = 1.0, h0 = 10, f 0 = 0.001,
xm = 0.1)

ν̅L β ε a0 (ρ2 = 1) a0 (53) (ρ2 = 1) a0 (ρ2 = 0) a0 (53) (ρ2 = 0)

10 50 0.10050 0.5568 0.4000 0.6287 0.5000

20 100 0.05025 1.4683 1.4000 1.5586 1.5000

40 200 0.02513 3.4306 3.4000 3.5271 3.5000

80 400 0.01256 7.4145 7.4000 7.5130 7.5000

160 800 0.00628 15.4071 15.4000 15.5064 15.5000
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