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Genome-wide association analysis 
of hippocampal volume identifies 
enrichment of neurogenesis-related 
pathways
emrin Horgusluoglu-Moloch1,2, Shannon L. Risacher3,4, Paul K. crane5, Derrek Hibar6,7, 
Paul M. thompson6, Andrew J. Saykin  1,3,4,8, Kwangsik nho1,3,4,8 & Alzheimer’s Disease 
Neuroimaging Initiative (ADNI)*

Adult neurogenesis occurs in the dentate gyrus of the hippocampus during adulthood and contributes 
to sustaining the hippocampal formation. To investigate whether neurogenesis-related pathways are 
associated with hippocampal volume, we performed gene-set enrichment analysis using summary 
statistics from a large-scale genome-wide association study (n = 13,163) of hippocampal volume from 
the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium and two year 
hippocampal volume changes from baseline in cognitively normal individuals from Alzheimer’s Disease 
Neuroimaging Initiative Cohort (ADNI). Gene-set enrichment analysis of hippocampal volume identified 
44 significantly enriched biological pathways (FDR corrected p-value < 0.05), of which 38 pathways 
were related to neurogenesis-related processes including neurogenesis, generation of new neurons, 
neuronal development, and neuronal migration and differentiation. For genes highly represented in 
the significantly enriched neurogenesis-related pathways, gene-based association analysis identified 
TESC, ACVR1, MSRB3, and DPP4 as significantly associated with hippocampal volume. Furthermore, 
co-expression network-based functional analysis of gene expression data in the hippocampal subfields, 
CA1 and CA3, from 32 normal controls showed that distinct co-expression modules were mostly 
enriched in neurogenesis related pathways. Our results suggest that neurogenesis-related pathways 
may be enriched for hippocampal volume and that hippocampal volume may serve as a potential 
phenotype for the investigation of human adult neurogenesis.

Neurons are generated from neural stem cells in two regions of the brain, the dentate gyrus of the hippocampus 
and the olfactory bulb throughout the life span. Dentate gyrus (DG) neurons are incorporated into the hippocam-
pal network. Adult neurogenesis-related pathways include signaling transduction, epigenetic regulation, immune 
system, proliferation of progenitor cells and differentiation, migration, and maturation of adult neurons1–3. Adult 
neurogenesis in DG of the hippocampus is regulated by multiple intrinsic and extrinsic factors such as hormones, 
transcription factors, cell cycle regulators and environmental factors that control neural stem cell (NSC) prolif-
eration, maintenance, and differentiation into mature neurons. The estimated annualized hippocampal atrophy 
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rate is 1.41% for cognitively normal older adults and in adults, new neurons are added in each hippocampus daily 
via adult neurogenesis with an annual turnover of 1.75% and a modest decline during aging4,5. Combination 
of structural MRI and immunohistological markers for newborn neurons and neural stem/progenitor cells in 
neurogenesis-related brain regions in mice revealed that neurogenesis is associated with increased hippocampal 
gray matter volumes in mice6,7. There is hippocampal atrophy and reduction of hippocampal neurogenesis in 
adult rats exposed to oxygen deprivation during birth8. Recently, it has been found that cognitively normal indi-
viduals had preserved neurogenesis compared to less angiogenesis and neuroplasticity9. Environmental factors 
enhance transcriptional and epigenetic changes between ventral and dorsal part of the dentate gyrus that may 
have an effect on hippocampal volume10. Molecular pathways and genes affect the induction of neurogenic niche 
and neural/progenitor cell turnover to newborn neurons for the formation of the hippocampal structure during 
hippocampal neurogenesis.

To our knowledge, there is no study assessing the association of adult neurogenesis related pathways with 
hippocampal volume measured from MRI scans in living people. In this study, in order to investigate whether 
genetic variants associated with variation in hippocampal volume are enriched for neurogenesis-related path-
ways, we performed a gene set enrichment analysis using summary statistics from a large-scale human neuroim-
aging genetics meta-analysis from the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) 
Consortium (N~13,000). Neurogenesis is an important contributor to the formation of the hippocampus in mice 
but less is known about the relationship between human adult neurogenesis and hippocampal volume/atrophy.

Materials and Method
Enhancing neuro imaging genetics through meta-analysis (ENIGMA). The Enhancing Neuro 
Imaging Genetics through Meta-Analysis (ENIGMA) Consortium was initiated in December 2009. The research 
group involved in neuroimaging and genetics worked together on a range of large-scale studies that integrated 
data from 70 institutions worldwide. The goal of ENIGMA was to merge neuroimaging data with genomic data 
to identify common genetic variants that might affect brain structure. The first project of ENIGMA focused on 
identifying common genetic variants associated with hippocampal volume or intracranial volume (ICV)11. The 
aim of ENIGMA2, follow-on study of ENIGMA1, was to perform genome-wide association study (GWAS) using 
subcortical volumes as phenotypes12. In ENIGMA2, GWAS was conducted using mean hippocampal volume as 
a phenotype controlling for age, age2, sex, ancestry (the first four multidimensional scaling components), ICV, 
and diagnostic status, and MRI scanner (when multiple scanners were used at the same site), and genetic imputa-
tion were processed and examined by following standardized protocols freely available online (http://enigma.ini.
usc.edu/protocols/imaging-protocols/). In this study, we used GWAS summary statistics in the discovery sam-
ple of 13,163 subjects of European ancestry from the ENIGMA Consortium12. 3,824 of the 13,163 participants 
(21%) have anxiety, Alzheimer’s disease, attention-deficit/hyperactivity disorder, bipolar disorder, epilepsy, major 
depressive disorder or schizophrenia, and the remaining 9,339 (79%) are cognitively normal subjects.

Alzheimer’s disease neuroimaging initiative (ADNI). The Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) was launched in 2003 by the National Institute on Aging, the National Institute of Biomedical 
Imaging and Bioengineering, the Food and Drug Administration (FDA), private pharmaceutical companies, and 
nonprofit organizations as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD, 
and recruited from 59 sites across the U.S. and Canada. ADNI includes over 1700 subjects consisting of cogni-
tively normal older individuals (CN), significant memory concern (SMC), mild cognitive impairment (MCI) 
and Alzheimer’s Disease (AD) aged 55–90 (http://www.adni-info.org/). The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI 
and early AD. Participants for this study included 367 CN, 94 SMC, 280 early MCI, 512 late MCI and 310 AD. 
Demographic information, APOE, clinical information, neuroimaging and GWAS genotyping data were down-
loaded from the ADNI data repository (http://adni.loni.usc.edu). The CN group does not have any significant 
memory concern or impairment of their daily activities. The SMC group has self-reported significant mem-
ory concerns quantified using the Cognitive Change Index13 and the Clinical Dementia Rating (CDR) of zero. 
Individuals with MCI and AD have to have memory complains. The range of Mini-Mental State Examination 
(MMSE) score was 24–30 for CN and MCI, and 20–26 for AD as well as objective memory loss measured by 
education-adjusted scores on Wechsler Memory Scale-Revised (WMS-R) Logical Memory II14. As diagnosis cri-
teria, CDR score was used as 0 for CN, 0.5 for MCI with the memory box score being 0.5 or greater, and 0.5–1 for 
AD15. A composite memory score was calculated using Logical Memory and the Rey Auditory Verbal Learning 
Test (RAVLT), as well as memory items from the AD Assessment Scale - Cognitive (ADAS-Cog) and Mini-Mental 
State Examination (MMSE)16. Hippocampal volume was determined using MRI scans and FreeSurfer version 5.1 
was used to extract hippocampal and total intracranial volumes (ICV)17–20. Table 1 shows selected demographic 
and clinical characteristics of these participants at baseline.

Genotyping data and quality control. The genotyping data of ADNI participants were collected using 
the Illumina Human 610-Quad, HumanOmni Express, and HumanOmni 2.5 M BeadChips. Standard quality 
control procedures of GWAS data for genetic markers and subjects were performed using PLINK v1.07 (pngu.
mgh.harvard.edu/∼purcell/plink). Quality control procedures included excluding samples and SNPs with cri-
teria including SNP call rate < 95%, Hardy-Weinberg equilibrium test p < 1 × 10−6, and frequency filtering 
(MAF < 5%), participant call rate < 95%, sex check and identity check for related individuals21–25. Non-Hispanic 
Caucasian participants were selected using HapMap 3 genotype data and the multidimensional scaling (MDS) 
analysis (Supplementary Fig. 1) after performing standard quality control procedures for genetic markers and 
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subjects. For imputation of un-genotyped SNPs, MaCH (Markov Chain Haplotyping) software based on the 1000 
Genomes Project as a reference panel was used26,27.

Gene-set enrichment analysis. Gene-set enrichment analysis using GWAS summary statistics was per-
formed to identify pathways and functional gene sets with significant associations with hippocampal volume. All 
SNPs (n = 6,571,356) and subjects with European ancestry were included in this study. Pathway annotations were 
downloaded from the Molecular Signatures Database version 5.0 (http://www.broadinstitute.org/gsea/msigdb/
index.jsp/). This annotation data comprised a collection of Gene Ontology (GO). GO includes 1,454 pathways 
and is publicly available. 825 gene sets are assigned to GO biological processes, 233 gene sets are assigned to 
GO cellular components, and 396 gene sets are assigned to GO molecular functions. GSA-SNP software28 uses 
a p-value of each SNP from GWAS summary statistics to test if a pathway-phenotype association is significantly 
different from all other pathway-phenotype associations. In GSA-SNP, all SNPs within each gene are considered 
in turn and the negative log of the p value is noted; all of these are ranked. To avoid spurious predictions, we used 
the SNP with the second highest negative log p value to summarize strength of association with each gene. Each 
pathway (gene set) was assessed by z-statistics for the identification of the enriched pathways29. Gene-set enrich-
ment analysis was restricted to pathways containing between 10 and 200 genes. False discovery rate (FDR) with 
the Benjamini-Hochberg procedure was used for multiple comparison correction30. We identified as significantly 
enriched pathways with hippocampal volume with FDR-corrected p-value < 0.05.

Genetic association analysis. Genome-wide gene-based association analysis using GWAS p-values was 
performed using KGG (Knowledge-based mining system for Genome-wide Genetic studies) software. KGG uses 
HYST (hybrid set-based test) to determine the overall association significance in a set of SNPs at the gene level. 
HYST is the combination of the gene-based association test using extended Simes procedure (GATES) and the 
scaled chi-square test31,32. First, SNPs in each gene were divided into different LD blocks depending on pairwise 
LD coefficients (r2) for all SNPs. Second, for each block, a block-based p-value for association was calculated, and 
the key SNP was derived and marked. Next, the block-based p-values were combined accounting for LD between 
the key SNPs using the scaled chi-square33.

Targeted gene-based association analysis was performed using a set-based test in Plink v1.07 (http://pngu.
mgh.harvard.edu/purcell/plink/)22. SNPs with p < 0.05 for each gene were chosen. A mean test statistic for each 
SNP within a gene was computed to determine with which other SNPs it is in linkage disequilibrium (LD); i.e., if 
the correlation coefficient between them was r2 > 0.5. A quantitative trait analysis (QT) was then performed with 
each SNP. For each gene, the top independent SNPs (i.e., not in LD; maximum of 5) are selected if their p-values 
are less than 0.05. The SNP with the smallest p-value is selected first; subsequent independent SNPs are selected in 
order of decreasing statistical significance. From these subsets of SNPs, the statistic for each gene is calculated as 
the mean of these single SNP statistics34. The analysis was performed using an additive model or in other words, 
the additive effect of the minor allele on the phenotypic mean was estimated22,35. Covariates included age, sex, 
years of education, and diagnosis for composite scores for memory. An empirical p-value (20,000 permutations) 
was reported for each gene for multiple comparison adjustment22.

Gene expression correlation analysis. We analyzed gene expression data in the hippocampal subfields, 
CA1 and CA3, from 32 normal controls brain samples in the Gene Expression Omnibus (GEO) repository at 
the National Center for Biotechnology Information (NCBI) archives. The Illumina HumanHT-12 v3 Expression 
BeadChip (48,803 probes) was used to measure expression of over 25,000 annotated genes. We processed gene 
expression data and removed the outliers as previously described36. We excluded probes if they were present in 
three or fewer samples or if they do not correspond to any gene symbol annotations. Lastly we removed dupli-
cate probes for a gene and kept only the probe with the highest expression level. After all data cleaning process, 
15,037 genes remained. We performed a weighted gene correlation network analysis (WGCNA) using processed 
expression data to identify clusters of highly correlated genes expressed in specific brain regions (CA1 and CA3) 
as modules. Pearson correlations between gene pairs were calculated. This matrix was transformed into a signed 

CN SMC EMCI LMCI AD

N 367 94 280 512 310

Age (SD) 74.59 (5.57) 71.77 (5.65) 71.14 (7.26) 73.52 (7.65) 74.65 (7.79)

Sex
(M/F) 192/175 38/56 158/122 318/194 176/134

Education (SD) 16.32 (2.68) 16.81 (2.57) 16.08 (2.67) 15.97 (2.91) 15.23 (2.97)

APOE
(ε4−/ε4+) 267/99 62/32 160/119 232/280 104/206

MMSE (SD) 29.07 (1.11) 29.06 (1.16) 28.34 (1.56) 27.24 (1.79) 23.26 (2.04)

Composite score for memory (SD) 0.93 (0.532) 0.94 (0.46) 0.52 (0.49) −0.04 (0.58) −0.77 (0.53)

Intracranial volume (SD) 1523924
(155259)

1466989
(150559)

1513733
(151765)

1560894
(167738)

1535767
(180536)

Hippocampal volume (SD) 3612.7
(463)

3796
(471)

3633.5
(510)

3163.3
(564)

2840.4
(509)

Table 1. Demographic and clinical characteristics of ADNI participants.
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adjacency matrix by using a power function. Then, topological overlap (TO) was calculated by using the com-
ponents of this matrix. Genes were clustered hierarchically by the distance measure, 1-TO, and the dynamic tree 
algorithm determined initial module assignments37. Gene module membership between each gene and each 
module eigengene was calculated. We tested these modules for enrichment of neurogenesis-related pathways.

Results
Gene-set enrichment analysis using large-scale GWAS summary statistics for hippocampal volume (N = 13,163) 
identified 44 significantly enriched biological pathways (FDR-corrected p-value < 0.05) (Table 2) including 38 
pathways related to neurogenesis (Supplementary Table S1). We classified the 38 neurogenesis-related pathways 
as primary (N = 19) and secondary (helper) (N = 19) based on existing knowledge and literature mining (Fig. 1). 
The primary neurogenesis-related pathways were related to cellular processes such as neuronal proliferation, 
differentiation and survival, cellular morphogenesis, axonogenesis, neuronal development, signal transduction, 
and cell-cell adhesion. The secondary neurogenesis-related pathways consisted of enzyme activities related to 
neurogenesis, metabotropic receptor activity, lipoprotein binding and extracellular matrix. Six pathways were not 
related to any neurogenesis-related process such as oxidoreductase activity, phagocytosis, perinuclear region of 
cytoplasm and cornified envelope.

Since the inhibition of neurogenesis could be relevant to hippocampal atrophy38, we also examined if 
neurogenesis-related pathways were enriched with hippocampal atrophy over two years from baseline in cogni-
tively normal individuals without amyloid-β pathology based on [18F]Florbetapir PET or CSF amyloid-β meas-
urement (N = 112) in ADNI. Seven pathways related to neurogenesis processes were significantly enriched with 
hippocampal atrophy (FDR-corrected p-value < 0.05) in cognitively normal adults (Supplementary Table S2). 
These pathways were related to cellular differentiation, cellular morphogenesis during development, neurite 
development, axonogenesis, cell-cell adhesion and neuron development (Table 3).

Furthermore, we performed targeted gene-based association analysis of hippocampal neurogenesis related 
pathway associated candidate genes using ENIGMA GWAS summary statistics31. The gene-based analysis 
revealed that 4 genes (MSRB3, TESC, DPP4, and ACVR1) were significantly associated with hippocampal vol-
ume (corrected p-value < 0.05; Table 4). Since hippocampal volume is correlated with memory performance, we 
performed an association analysis of these four genes (with 682 SNPs) with composite memory scores in ADNI. 
The gene-based association analysis showed that TESC is significantly associated with composite memory scores 
after adjusting for multiple testing (p-value = 5.7 × 10−3; Table 5). One novel SNP (rs117692586) upstream of 
TESC was significantly associated with composite memory scores (p-value = 4.3 × 10−4; Table 6). rs117692586-T 
is associated with poorer memory performance (Fig. 2).

Finally, we analyzed gene expression data in the Gene Expression Omnibus (GEO) repository to investigate 
if neurogenesis-related pathways were enriched in the CA1 and CA3 regions of the hippocampus in normal con-
trols. A weighted gene correlation network analysis yielded 20 modules of co-expressed genes. These 20 modules 
were tested for enrichment of neurogenesis-related pathways. Six modules were found to be significantly enriched 
with neurogenesis-related pathways after adjusting for multiple testing. The six significantly enriched modules are 
all related to neurogenesis-related pathways such as neuronal proliferation and differentiation as well as cellular 
process (Table 7).

Discussion
Using large-scale GWAS summary statistics for hippocampal volume in 13,163 subjects of European ances-
try from the ENIGMA Consortium, we performed gene-set enrichment analysis to identify 44 pathways with 
enrichment for hippocampal volume. These enriched pathways showed that genes associated with variation in 
hippocampal volume are related to neurogenesis and cellular processes including neuronal cell proliferation, 
differentiation and maturation as well as cell adhesion. In addition, co-expression network-based functional anal-
ysis of gene expression data in the hippocampal subfields, CA1 and CA3, from 32 normal controls showed that 
co-expression modules were mostly enriched in neurogenesis-related pathways.

The enriched pathways showed significant relationships between neurogenesis and hippocampal volume/
atrophy. Since several studies showed neurogenesis occurs in the dentate gyrus of the hippocampus4,39, it is not 
surprising that hippocampal volume is significantly related to neurogenesis-related pathways. In particular, we 
observed significant enrichment of pathways related to cell proliferation, neuron differentiation, neuron genera-
tion, neurite development, neuronal development, cell recognition, neurogenesis and axonogenesis. The neural 
progenitor cells in the subgranular zone of the hippocampus differentiate and incorporate into neural network 
circuitry as mature neurons in the adult human brain4. In addition, these newly developed neurons enhance 
the formation of the hippocampus during neurogenesis and many genes are involved in these processes40,41. 
Moreover, our pathway enrichment analysis found that hippocampal volume is significantly related to signal 
transduction processes such as glutamate signaling, protein kinase signaling, and the Jun N-Terminal Kinase 
(JNK) cascade. Previously we identified five neurogenesis related pathways and the signal transduction path-
way was one of the important pathways in adult neurogenesis processes3. During adult neurogenesis, functional 
granule cells in the dentate gyrus of the adult hippocampus release glutamate, project to target cells in the CA3 
region, and receive glutamatergic and γ-aminobutyric acid (GABA)-ergic inputs to control their spiking activ-
ity in neuronal networks that support the formation of memory and learning42,43. Phosphoinositide 3-kinase 
(PI3K)/protein kinase pathways enhance neuronal differentiation and inhibit apoptosis of progenitor cells44,45. In 
addition, studies showed that JNK1 in the JNK cascade plays a role in neuronal differentiation and neuronal and 
axonal maturation46–48. Also, it has been shown that absence of JNK1 enhances hippocampal neurogenesis and 
reduces anxiety-related phenotypes in mouse models46.

Pathways related to enzyme activities such as protein tyrosine kinases, protein tyrosine phosphatases and 
3’5’ cyclic nucleotide phosphodiesterases were enriched for hippocampal volume. Studies showed that three 
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subfamilies, Tyro3, Axl and Mertk (TAM), of receptor protein tyrosine kinases play a crucial role in adult neu-
rogenesis. TAM receptors impact proliferation and differentiation of neural stem cells to immature neurons by 
controlling overproduction of pro-inflammatory cytokines49. Protein tyrosine phosphatases control neural stem 
cell differentiation during neurogenesis50.

Our results revealed the influence of neurogenesis pathway-related genetic variation on hippocampal volume. 
Particularly, two genes, tescalcin (TESC) and activin receptor 1 (ACVR1), were significantly associated with hip-
pocampal volume. In addition, TESC was significantly associated with memory performance. Previous structural 
neuroimaging studies showed TESC-regulating polymorphisms are significantly associated with hippocampal 
volume and hippocampal gray matter structure11,51. TESC cooperates with the plasma membrane Na(+)/H(+) 
exchanger NHE1 that catalyzes electroneutral influx of extracellular Na(+) and efflux of intracellular H(+) and 
establishes intracellular pH level as well as cellular hemostasis52,53. TESC was expressed in tissues such as heart 

Pathways
# of genes/
set size

Corrected 
p-value

Oxidoreductase Activity Acting On Sulfur Group Of Donors 10/10 4.68 × 10−4

Neuron differentiation 73/76 0.001181

Cell Projection 105/108 0.001181

Microvillus 11/11 0.001479

Neurite Development 51/53 0.00312

Cell Recognition 18/19 0.00312

Generation of Neurons 80/83 0.00312

Transmembrane Receptor Protein Kinase Activity 50/51 0.00312

Protein Domain Specific Binding 71/72 0.00312

Neuron Development 59/61 0.003242

Axonogenesis 41/43 0.003242

Cellular Morphogenesis During Differentiation 47/49 0.004265

Neurogenesis 90/93 0.005646

Transmembrane Receptor Protein Tyrosine Kinase Activity 42/43 0.005903

Vesicle Mediated Transport 188/194 0.011803

Glutamate Receptor Activity 20/20 0.011803

Cytoskeletal Protein Binding 153/159 0.011803

Jnk Cascade 45/47 0.011925

Stress Activated Protein Kinase Signaling Pathway 47/49 0.013007

Metabotropic Glutamategaba B Like Receptor Activity 10/10 0.01599

Phagocytosis 16/17 0.018307

Regulation of Axonogenesis 10/10 0.018307

Regulation of Anatomical Structure Morphogenesis 24/25 0.018307

Perinuclear Region of Cytoplasm 51/54 0.018746

Glutamate Signaling Pathway 16/17 0.021249

Cornified Envelope 12/13 0.023212

Lipoprotein Binding 18/18 0.024574

Pdz domain Binding 14/14 0.025352

Protein Tyrosine Kinase Activity 62/63 0.026949

3 5 Cyclic Nucleotide Phosphodiesterase Activity 13/13 0.026949

Negative Regulation of Cell Proliferation 148/156 0.02873

Protein Oligomerization 35/40 0.02873

Exopeptidase Activity 29/32 0.02873

Extracellular Matrix 95/100 0.030238

Cell Cell Adhesion 83/86 0.030238

Proteinaceous Extracellular Matrix 93/98 0.030238

Maintenance of Protein Localization 12/13 0.030238

Maintenance Of Cellular Protein Localization 11/11 0.030238

Transmembrane Receptor Protein Phosphatase Activity 19/19 0.030238

Cell Projection Biogenesis 23/25 0.030415

Cyclic Nucleotide Phosphodiesterase Activity 14/14 0.030799

Central Nervous System Development 110/123 0.030799

Protein Tyrosine Phosphatase Activity 52/53 0.031472

Active Transmembrane Transporter Activity 113/122 0.041004

Table 2. Molecular Signatures Database (MSigDB) GO Ontology pathways enriched for hippocampal volume.

https://doi.org/10.1038/s41598-019-50507-3
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and brain and plays an important role during embryonic development53. TESC plays a crucial role in controlling 
cell proliferation and differentiation for the formation of the hippocampal structure during brain development51. 
In addition, ACVR1, a member of a protein family called bone morphogenetic protein (BMP) type I receptors, 

Figure 1. Conceptual classification of 44 pathways significantly enriched for hippocampal volume.

Pathway (n = 7)
# of genes/
set size

Corrected p-
value

Cellular Morphogenesis During Differentiation 33/49 0.0082

Regulation of Anatomical Structure Morphogenesis 18/25 0.0082

Neurite Development 34/53 0.0082

Axonogenesis 30/43 0.013

Cell-Cell Adhesion 54/86 0.013

Neuron Development 40/61 0.050

Transmembrane Receptor Protein Phosphatase Activity 15/19 0.050

Table 3. Molecular Signatures Database (MSigDB) GO Ontology pathways enriched with hippocampal atrophy 
over 2 years from baseline.

Gene Corrected p-value

MSRB3 3.4 × 10−6

TESC 1.3 × 10−2

DPP4 3.7 × 10−2

ACVR1 4.8 × 10−2

Table 4. Gene-based association analysis results (p-value) of four significant genes for hippocampal volume 
using common variants (MAF ≥ 0.05).

Gene

ADNI (N = 1,563)

p-value Significant Independent SNP

MSRB3 0.26 rs7294862|rs6581626

TESC 5.7 × 10−3 rs117692586|rs12302906

DPP4 0.26 rs35635667|rs3788979

ACVR1 1 NA

Table 5. Gene-based association analysis results (p-values) of four genes for composite scores for memory using 
common variants (MAF ≥ 0.05) in ADNI, where empirical p-values were calculated using 20,000 permutations.

https://doi.org/10.1038/s41598-019-50507-3
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regulates the hippocampal dentate gyrus stem cells during neurogenesis54. In addition, our gene co-expression 
analysis showed that TESC and ACVR1 were co-expressed together in the neurogenesis pathway-related module.

A limitation of the present report is that we used Gene Ontology pathways from MSigDB. For a pathway 
enrichment analysis design, there is no gold standard. There are several tools and strategies for pathway enrich-
ment analysis, and alternate databases and algorithms for pathway enrichment analysis can affect the analytic 
results55,56. Another limitation is the lack of replication in the gene-set enrichment analysis, even though we used 
a large-scale GWAS result (N = 13,163). Replication in independent samples will be important. It is noteworthy 
that recently, Sorrell et al. reported that human hippocampal neurogenesis drops sharply in childhood to unde-
tectable levels in adults, although some aspects are still under controversy57,58, but Boldrini et al. reported that 
healthy older adults display preserved neurogenesis9.

In summary, our results suggest that neurogenesis-related pathways may be enriched for hippocampal volume 
and that hippocampal volume may serve as a potential phenotype for the investigation of human adult neuro-
genesis. Genetic variation in neurogenesis pathway-related genes may have compensatory advantages or confer 
vulnerability to biological processes during adult neurogenesis but studies are needed to identify mechanisms by 
which genetic variants affect neural stem cells differentiation, proliferation, and their maturation to new neurons 
in human brain.

Data Availability
The data analyzed in the study are available from the ADNI website (http://adni.loni.usc.edu/) and the ENIGMA 
website (http://enigma.ini.usc.edu/).

rs117692586 (TESC)

ADNI
(N = 1,563)

β p-value

Memory Composite Score −0.149 (−0.231, −0.066) 4.3 × 10−4

Table 6. SNP-based association analysis results in TESC for composite scores for memory in ADNI.

Figure 2. rs117692586 in TESC is significantly associated with composite scores for memory. Subjects with at 
least one copy of the minor allele (T) of rs117692586 showed poorer memory performance compared to those 
without the minor allele (p-value ≤ 0.001).

WGCNA module Corrected p-value

Green 5.2 × 10−84

Orange 1 × 10−21

Black 3.8 × 10−17

Darkolivegreen 4.4 × 10−11

Bisque4 3 × 10−7

Lavenderblush3 7.6 × 10−4

Table 7. Weighted gene correlation network analysis (WGCNA) results of six modules represented by colors 
enriched with neurogenesis-related pathways after adjusting for multiple testing.
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