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What an animal consumes and what an animal digests and assimilates for energetic 

demands are not always synonymous. Sharks, uniformly accepted as carnivores, have guts 

that are presumed to be well suited for a high protein diet. However, the bonnethead shark 

(Sphyrna tiburo), which is abundant in critical seagrass habitats, has been previously 

shown to consume copious amounts of seagrass (up to 62.1% of gut content mass), 

although it is unknown if they can digest and assimilate seagrass nutrients. To determine if 

bonnetheads digest seagrass nutrients, captive sharks were fed a 13C-labeled seagrass diet. 

Digestibility analyses, digestive enzyme assays and stable isotope analyses were used to 

determine the bonnethead shark’s capacity for digesting and assimilating seagrass 

material. Compound-specific stable isotope analysis showed that sharks assimilated 

seagrass carbon. Additionally, cellulose-component-degrading enzyme activities were 

detected in shark hindguts. I show that a coastal shark is digesting seagrass with at least 

moderate efficiency, which has ecological implications due to the stabilizing role of 

omnivory and nutrient transport within fragile seagrass ecosystems. Furthermore, the 

intestinal microbiome of vertebrates has been shown to play a crucial role in their 

digestive capabilities. This is particularly true for omnivores and herbivores that rely on 

enteric microbes to digest components of plant material that are indigestible 
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endogenously. The bonnethead shark represents an interesting opportunity to explore how 

intestinal microbes provide a mechanism for omnivory in a marine vertebrate. I use 

digestive enzyme assays, histological imaging, measurements of microbial fermentation, 

and 16S rDNA sequencing to identify processes by which the bonnethead shark can digest 

and assimilate plant material. Finally, I delve into the functional morphology of the spiral 

intestine in sharks since this unique structure appears to be important in terms of housing 

enteric microbes and slowing the transit rate of digesta. I use CT scanning technology to 

provide a new way of investigating the spiral intestine.  In addition to being one of the 

most conclusive investigations of shark nutritional physiology to date, my results highlight 

the importance combining studies of structure and function in order to better understand 

the nutritional physiology of organisms.  
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INTRODUCTION 

Sharks make up one of the most abundant and diverse groups of consumers in the 

ocean (Compagno 2008). They may play an important ecological role in energy fluxes in 

marine environments and in impacting the biodiversity of lower trophic levels that we 

depend on as a food and economic resource (e.g., Wetherbee et al. 1990; Cortés et al. 

2008). However, beyond prey capture methods and dietary analyses, the nutritional 

physiology of sharks is woefully understudied. They consume a broad range of diet types 

(smaller sharks, marine mammals, teleosts, crustaceans, zooplankton, etc.) and are 

generally known to be largely carnivorous, consuming prey items high in protein and 

lipids (Wetherbee et al. 1990; Corte ́s et al. 2008; Bucking 2016). Indeed, matching 

physiological concepts with genetic underpinnings and evolutionary background is 

crucial to understanding the patterns and processes involved in the evolution of the 

digestive strategies that sharks possess. 

The broader field of nutritional physiology has a foundation based largely on 

economic theory: the digestive tract is energetically expensive to maintain (Cant et al. 

1996), and thus, from basic economic principles, the Adaptive Modulation Hypothesis 

(AMH; Karasov 1992; Karasov and Martinez del Rio 2007) suggests that gut function 

should match with what is consumed in terms of quantity and biochemical composition 

(Martine and Fuhrman1995; Karasov and Douglas 2013). Shark evolution presumably 

follows AMH and sharks should, therefore, have guts well-suited for their diet types. 

Sharks are also generally known for eating large meals on an infrequent basis, potentially 

going days, or even weeks, without a meal (Wetherbee et al. 1987; Cortés et al. 2008; 

Armstrong and Schindler 2011). Hence, in order to acquire ample nutrients from their 
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infrequent meals, sharks must have mechanisms of slowing the rate of digesta transit to 

allow sufficient time for digestion and nutrient absorption, yet there has been minimal 

investigation into shark nutritional physiology. Although the field of comparative 

nutritional physiology is relatively young (e.g., Karasov and Diamond 1983; Diamond 

and Karasov 1987; Karasov and Martinez del Rio 2007), much has been learned about 

gut function in ecological and evolutionary contexts, albeit mostly about terrestrial 

organisms because of research in biomedical and livestock fields (Choat and Clements 

1998; Clements et al. 2009). Within marine biology, far more advances have been made 

concerning the nutritional physiology of teleost fishes (e.g., German 2011) than for 

sharks. New methods of investigation have been developed, as well as new theories and 

models that could be applied to sharks (e.g., German et al. 2015; Clements et al. 2017). 

The most recent reviews of elasmobranch digestive physiology (Cortés et al. 2008; 

Bucking 2016; Ballantyne 2016; Leigh et al. 2017) lament the dearth of data available on 

shark digestion, and thus, make logical connections to the recent advances in the 

understanding of teleost nutritional physiology, where there have been efforts to integrate 

diet with digestive function and metabolism. In the following chapters, I delve into the 

digestive physiology of sharks, first by focusing on bonnethead sharks, Sphyrna tiburo.  

What an animal consumes and what an animal digests and assimilates for 

energetic demands are not always synonymous. Sharks, uniformly accepted as 

carnivores, have guts that are presumed to be well suited for a high-protein diet. 

However, the bonnethead shark (Sphyrna tiburo), which is abundant in critical seagrass 

habitats, has been previously shown to consume copious amounts of seagrass (up to 

62.1% of gut content mass), although it is unknown if they can digest and assimilate 
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seagrass nutrients. In my first chapter, I determine if bonnetheads digest seagrass 

nutrients. Captive sharks were fed a 13C-labeled seagrass diet. Digestibility analyses, 

digestive enzyme assays and stable isotope analyses were used to determine the 

bonnethead shark’s capacity for digesting and assimilating seagrass material. Compound-

specific stable isotope analysis showed that sharks assimilated seagrass carbon with 

50±2% digestibility of seagrass organic matter. Additionally, cellulose-component-

degrading enzyme activities were detected in shark hindguts. I show that a coastal shark 

is digesting seagrass with at least moderate efficiency, which has ecological implications 

due to the stabilizing role of omnivory and nutrient transport within fragile seagrass 

ecosystems. 

My second chapter investigates the role that the intestine microbiome plays in 

seagrass digestion of the bonnethead shark. Intestinal microbiomes of vertebrates has 

been shown to play a crucial role in their digestive capabilities. This is particularly true 

for omnivores and herbivores that rely on enteric microbes to digest components of plant 

material that are indigestible endogenously. While studies of microbe-host interactions 

are becoming more frequent in terrestrial systems, studies of this type are still largely 

lacking in marine systems, particularly for higher trophic level organisms. The 

bonnethead shark represents an interesting opportunity to explore how intestinal microbes 

provide a mechanism for omnivory in a marine vertebrate. I use digestive enzyme assays, 

histological imaging, measurements of microbial fermentation, and 16S rDNA 

sequencing to identify processes by which the bonnethead shark can digest and assimilate 

plant material. I found evidence of cellobiose and chitin degrading enzymes (β-

glucosidase and N-acetyl-β-D-glucosaminidase) in their distal intestine, microbial 
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fermentation in their spiral and distal intestines (as evident by high short-chain-fatty-acid 

concentrations), increased epithelial surface area in their spiral intestine, and we have 

identified the specific taxa of microbes that make up the majority of the bonnethead shark 

gut microbiome (Vibrionales, Closdridiales, Pseudomondales, Mycoplasmatales, 

Rhizobiales, and others). In addition to being one of the most conclusive investigations of 

a shark gut microbiome to date, our results highlight the importance combining studies of 

microbial community composition with an informed context of host ecology and 

physiology.  

Since the spiral intestine of the bonnethead shark seems to be the location with the 

most microbial activity, as well as the region of the digestive tract where digest spends 

the majority of its time, my final chapter focuses on the functional morphology of the 

spiral intestine in sharks. It has long been stated, despite very little quantifiable evidence, 

that the spiral intestine present in all known sharks, skates, and rays is used to slow the 

rate of transit of digesta through the gut and provides increased surface area for the 

absorption of nutrients. In this investigation, we use a novel technique - creating 3D 

reconstructions from CT scans of spiral intestines - in order to identify the morphology of 

spiral intestines from at least one representative species of each shark family. Using this 

information, we start to provide an evolutionary as well as dietary context to the different 

structures. We also provide the first quantification of the flow rate of material through the 

spiral intestine. This project opens the door to using 3D morphometrics to examine the 

function of the gastrointestinal tract of sharks and fishes in general. The sum of these 

three chapters results in one of the most conclusive investigations in the digestive 

physiology of sharks to date.  
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Chapter 1 

Seagrass Digestion by a Notorious ‘Carnivore’ 

Background: 

Understanding what an animal actually digests and assimilates as opposed to what 

it simply eats allows an understanding of the role of that organism in terms of foraging, 

nutrient excretion, and habitat use (Bucking 2016; Leigh et al. 2017; Taylor et al. 2006; 

Karasov and Martinez del Rio 2007; Tracy et al. 2006; Olin et al. 2013). Overall, the 

nutritional ecology of fishes (including sharks) is insufficiently studied outside of a few 

species used in aquaculture (Bucking 2016; Leigh et al. 2017; German 2011). Carnivores, 

such as sharks, appear specialized for digesting high-protein diets, as indicated by 

elevated digestibility of protein (Wetherbee and Gruber 1993; Di Santo and Bennett 

2011) and high activity levels of protein-degrading digestive enzymes in their guts (Leigh 

et al. 2017; Jhaveri et al. 2015; Papastamatiou 2007; Newton et al. 2015). Omnivores, on 

the other hand, also digest plant material, and thus, face the difficulty of digesting foods 

(like seagrass) that are low in protein, and are sheathed in fibrous cell walls. As such, 

omnivores generally have different digestive biochemistry (e.g., greater carbohydrase 

activities; German et al. 2015), as well as varying diversities and abundances of enteric 

microbial communities in comparison to carnivores (Nayak 2010; Clements et al. 2014; 

Givens et al. 2015). In an ecological context, the effect of omnivores on ecosystem 

stability has been debated, but in marine systems, omnivorous predators that feed across 

trophic levels with strong interactions have been shown to buffer food webs against 

trophic cascades (Ward et al. 2017; Bjorndal 1980; Clements and Raubenheimer 2006).  
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With population estimates of approximately 4.9 million (NOAA/NMFS Highly 

Migratory Species Management Division 2007) individuals along the Atlantic and Gulf 

of Mexico coasts of the United States of America (USA), the bonnethead shark (Sphyrna 

tiburo) is one of the most abundant and conspicuous members of seagrass meadows and 

many other soft bottom habitats in USA coastal waters and beyond. Although they are 

frequently listed as carnivorous, consuming mostly crustaceans and mollusks (Cortés et 

al. 2008), they are also known for consuming copious amounts (up to 62% of gut content 

mass) of seagrass in some populations (Bethea et al. 2007), and for feeding at lower 

trophic levels than other closely-related species (Bethea et al. 2011). However, what an 

animal ingests and what they digest and assimilate are not the same thing (German 2011), 

and hence, the scientific community has largely dismissed seagrass ingestion by this 

shark as incidental intake that does not contribute to the shark’s nutritional ecology (with 

the exception of Bethea et al. 2007 & 2011).  Sharks are uniformly accepted as 

carnivorous (Bucking 2016; Leigh et al. 2017; Cortés et al. 2008), so this assumption is 

not unwarranted.  However, the sheer abundance of bonnethead sharks ingesting seagrass 

in these environments, coupled with the observation that seagrass in the bonnethead distal 

intestine appears “degraded” in comparison to fresh seagrass (Bethea et al. 2007), raises 

the possibility that these sharks are actually assimilating nutrients from seagrass.  If this 

were the case, it would mean we would need to re-evaluate the roles of bonnethead 

sharks in seagrass ecology since they could be responsible for significant grazing and 

nutrient transport within fragile seagrass ecosystems. Seagrass meadows are the most 

widespread coastal ecosystem on earth (Lamb et al. 2017) and provide a multitude of 

ecological and economic services (Nordlund et al. 2016). Some of these services include 
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cross-ecosystem nutrient transfer (Barbier et al. 2011), erosion control (Grech et al. 2012), 

pollution and pathogen management (Lamb et al. 2017; Cullen-Unsworth et al. 2014; 

Waycott et al. 2009), providing habitat and protected nursery areas for thousands of fish 

and invertebrate species thereby supporting the fishing industry (Barbier et al. 2011), 

acting as a CO2 sink (Nordlund et al. 2016), and producing large quantities of oxygen 

(Nordlund et al. 2016). As such it is imperative that studies of trophic interactions in 

seagrass habitats correctly identify the diets and digestive strategies of key, abundant 

taxa.  

To determine if bonnethead sharks are capable of digesting and assimilating 

seagrass nutrients, we fed captive sharks a 90% 13C-labeled seagrass and 10% squid diet 

(Fig. 1.1; totaling 5% of their body weight per day) over a three-week period. Using a 

combination of captive feeding trials, stable isotope analyses, digestibility analyses, and 

enzymatic biochemistry, we show that bonnetheads are omnivorous and can assimilate 

plant organic material.  Furthermore, they demonstrate positive somatic growth on a 

plant-based diet, and possess the enzymatic biochemistry needed to digest even some of 

the fibrous portions of seagrass.   

Methods: 

All methods mentioned here are described in detail in the Supplemental Methods.  

Seagrass Collections and Shark Capture  

 Seagrass was collected in Florida Bay and transported in coolers filled with 

seawater and an aquarium bubbler to the Florida International University (FIU) Biscayne 

Bay campus outdoor mesocosm facility. Seagrass was re-planted in terra-cotta pots 

within a closed, re-circulating, tank system (~454 L) and placed in direct sunlight. We 
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labeled the seagrass by directly adding powdered 13C-labeled sodium bicarbonate (1g; 

99-atom-%, Sigma Aldrich Product #372382) into the seawater in the tank. A chiller 

(Aqua Euro USA, Model: MC-1/2hp) was used to keep the water in the tank from 

reaching above 30°C. The water in the tank underwent a water change once per week and 

new 13C-labeled sodium bicarbonate (1 g) was added each time.  

Bonnethead sharks were caught off the coast of Layton, FL on Long Key 

(24°50'2.6"N 80°48'32.3"W) and off the southwestern coast of Key Biscayne 

(25°41'05.9"N 80°10'41.0"W). There were four incidental mortalities and those 

individuals were immediately dissected for intestinal, liver, and muscle tissue samples 

and henceforth are referred to as the “wild-caught” sharks. Five additional sharks were 

transported alive to Florida International University to undergo feeding trials (henceforth 

the “lab-fed” sharks).  

Feeding Events and Fecal Collections  

 Once at FIU, bonnethead sharks (n=5) were kept in a 40,337 L circular flow-

through tank receiving water pumped directly from Biscayne Bay and acclimated for at 

least 24 hrs. After 24 hrs, the sharks were individually anesthetized via submersion in a 

113 L bin with a 0.2% MS-222 solution buffered with NaOH via recirculating aquarium 

powerhead. Sharks were quickly weighed, their dorsal fins marked with a unique, non-

toxic, water-resistant paint color (ECOS Paints), and then 200 µl of blood (composing 

less than 1% of the blood volume of each shark) was drawn with a 25-gauge needle from 

the haemal arch, just posterior of the anal fin. Blood was centrifuged to separate the 

plasma and RBC phases, dried at 60°C, and stored in a dry location for later use in stable 

isotopic measurements. Blood was drawn in this manner once every week for three 
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weeks. Once the blood was drawn, the shark was placed back into the flow-through 

40,337 L tank for recovery. Sharks were monitored until normal ventilation resumed.  

 Each shark was fed a 90% seagrass, 10% squid (Doryteuthis opalescens) diet 

equaling 5% of their initial body weight daily for three weeks. Fecal material was 

collected daily via siphoning through a 250 µm mesh. Water passed through the mesh 

while fecal material was collected on top. Fecal material was transferred into 50mL 

conical tubes and dried at 60°C for later use in digestibility analyses in order to determine 

digestive efficiency. Approximately 5 g (dry mass) of fecal material was collected per 

shark over the course of the 3 weeks.  

Dissections and Tissue Preparation 

 At the conclusion of the three-week feeding trial, all lab fed individuals were 

euthanized in 1% MS-222 solution, measured [standard length (SL)], weighed [body 

mass (BM)], and dissected on a chilled (~4°C) cutting board. Whole GI tracts were 

removed by cutting at the esophagus and at the cloacal opening. Whole intestines 

(without the stomach) were weighed and the intestine length (IL) was measured. The 

intestine was then divided into three sections: proximal intestine (PI), spiral intestine (SI), 

and distal intestine (DI; German 2009; Leigh et al. 2018). Each of these sections was then 

further subdivided into three sections (i.e. PI1, PI2, PI3, etc.) in order to increase the 

resolution of understanding enzyme activity levels along the digestive tract.  

Digestibility Analyses 

 The protein, soluble carbohydrate, lipid, and total organic matter contents were 

determined for the 90% seagrass/10% squid diet, as well as for the fecal material from all 
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of the lab-fed sharks. The following equation was used to determine the percent 

digestibility of each macronutrient type by the shark: 

         % Digestibility = [((Ash-adjusted Ingested) – (Defecated)) / (Ash-adjusted 

Ingested)] x 100 

 Fiber digestibility was determined using an ANKOM 200/220 Fiber Analyzer, 

following the ANKOM suggested procedures (Goering and Van Soest 1970; Vogel et al. 

1997) for neutral detergent fiber (NDF; which includes cellulose and hemicellulose) and 

acid detergent (ADF; which excludes cellulose). 

 To determine if the lab-fed sharks were meeting their daily metabolic demands on 

the prescribed diet, bonnethead shark metabolic rate was estimated using the equation 

from Parsons 1990:  

M= ((68.9 + 177.8W) 3.25/W) x 24  

where M is metabolic rate (kcal kg-1 d-1 ) and W is weight in kilograms. Initial wet weight 

of the sharks was used here. Coefficients were based on the constants for fish (Solomon 

and Brafield 1972). The amount (g) of the diet consumed by each shark was recorded 

daily.  

Digestive Enzyme Assays 

 Intestinal homogenates were produced as described by Leigh et al. 2018. In order 

to determine the activity of enzymes that digest soluble carbohydrate, protein, lipid, and 

fibrous components of seagrass, we assayed α-amylase, maltase, trypsin, aminopeptidase, 

lipase, and β-glucosidase activity for all intestinal regions. All enzyme assays were 

carried out at 22°C in duplicate or triplicate using a BioTek Synergy H1 Hybrid 

spectrophotometer/fluorometer equipped with a monochromator (BioTek, Winooski, 
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VT). All assay protocols generally followed methods detailed in Leigh et al. 2018, unless 

otherwise noted.  

Stable Isotope Analysis 

 To measure δ13C signatures, samples (red blood cells, plasma, liver tissue, and 

seagrass) were thoroughly dried at 60°C. Samples were then individually dipped into 

liquid nitrogen and ground to a powder using a mortar and pestle.  Ground samples (~700 

µg for shark blood and tissues samples and ~2 mg for seagrass tissues) were then 

transferred into individual 5 mm x 9 mm tin capsules (Costech Analytical Technologies). 

Samples were sent to the University of Florida Stable Isotope Facility for processing 

using a Thermo Delta V Plus isotope ratio mass spectrometer. Lipid was extracted from 

lab-fed shark liver samples and seagrass samples using a soxhlet (Bligh and Dyer 1959) 

prior to compound specific stable isotope analyses (CSSIA). The amino acids measured 

via CSSIA were aspartate, alanine, glutamate, glycine, isoleucine, leucine, lysine, 

methionine, phenylalanine, proline, threonine, tyrosine, and valine since these are 

commonly measured in studies of nutritional physiology of marine fishes (Wilson 1985; 

McMahon et al. 2015).  

Statistical Analysis  

Comparisons of enzymatic activities were made among gut regions with ANOVA 

followed by a Tukey's HSD with a family error rate of P = 0.05. Comparisons of 

enzymatic activities between lab-fed sharks and wild caught sharks were made using 

unpaired t-tests with a Bonferonni corrected error rate of P = 0.006. Comparison of lab-

fed shark liver amino acid δ13C values to seagrass amino acid δ13C values were made 
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using unpaired t-tests with a Bonferroni corrected error rate of P = 0.004. All statistical 

tests were performed in R studio (version 1.0.136). 

Results and Conclusions:  

We provide conclusive evidence that bonnethead sharks, animals previously 

thought to be solely carnivorous, can assimilate nutrients from seagrass. This is the first 

species of shark ever to be shown to have an omnivorous digestive strategy. Lab-fed 

sharks all gained weight on their seagrass-heavy diet (mean: 6.65 ± 3.46% weight gain 

from initial body mass; Table 1.1) and digested the total organic matter (50 ± 2%) and the 

fiber in seagrass (52 ± 3% for neutral detergent fiber and 43±4% for acid detergent fiber; 

Table 1.2) with moderate efficiency. They also more than met their energetic demands on 

their prescribed lab diet (average caloric need: 28 kcal per day, average calories digested 

in the laboratory feeding trial: 203 kcal per day; Parsons 1990; Table 1.1). Remarkably, 

the bonnethead’s digestibility of organic matter is comparable to juvenile green sea 

turtles (Chelonia mydas; mean seagrass organic matter digestibility of 44.7%; Bjorndal 

1980). As green sea turtles mature, they become almost entirely herbivorous, and their 

digestibility of seagrass increases (mean seagrass organic matter digestibility of 64.6%; 

Bjorndal 1980) in parallel with a longer digestive tract and a more diverse microbiome 

(Price et al. 2017). Therefore, bonnetheads are capable of digesting components of 

seagrass, with similar effectiveness to omnivores, making them the only shark species 

known to have the ability to digest plant material (Leigh et al. 2017; Jhaveri et al. 2015). 

For comparison, the carnivorous lizard Crotaphytus collaris digested flowers with only 

32% efficiency, whereas the herbivorous Sauromalus obesus digested these same flowers 

with 67% efficiency (Ruppert 1980), showing that not all carnivores can digest plant 
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material efficiently.  Indeed, Pandas, which are herbivores with a “carnivorous” gut 

(Stevens and Hume 1988), have enteric microbiomes that differ from other herbivores 

(Ley et al. 2008) and also show about 20% organic matter digestibility of bamboo 

(Stevens and Hume 1988). Pandas make a living on high-intake and digest mostly the 

soluble portions of bamboo (Dierenfield et al. 1982).  Thus, bonnethead sharks are 

considerably better at digesting seagrass than either of these terrestrial examples (Ruppert 

1980; Dierenfield 1982).  

Enzymatic assays revealed that protein-degrading enzyme (aminopeptidase and 

trypsin) and lipid-degrading enzyme (lipase) activities peaked in the proximal or spiral 

intestine for both lab-fed and wild-caught sharks, which is congruent with previous work 

on wild-caught bonnetheads, and other fishes (Fig. 1.2; Leigh et al. 2017; Jhaveri et al. 

2015; German et al. 2015; Leigh et al. 2018; Buddington et al. 1997;  Harpaz and Uni 

1999). The spiral intestine is likely the primary site of amino acid and fatty acid 

absorption in bonnetheads and other shark species (Hart et al. 2016). While carbohydrate-

degrading enzyme (amylase and maltase) activities were similar between lab-fed and 

wild-caught sharks, maltase activity was relatively low and constant throughout the 

digestive tract in both groups (Fig. 1.2 & Fig. 1.3; Jhaveri et al. 2015). However, the 

amylase levels observed in bonnethead sharks are high for a carnivorous fish and 

comparable to omnivorous fish such as Xiphister atropurpureus (German et al. 2015). 

Coupled with the bonnethead’s high digestibility of soluble carbohydrates (82 ± 5%, 

Table 1.2), this indicates efficient digestion of the soluble carbohydrates (like starch; 

Govers et al. 2015) found in seagrass material.  
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The presence of elevated β-glucosidase activity in the hindgut of both the lab-fed 

and wild-caught bonnethead sharks indicate the capacity for the digestion of cellulose 

breakdown products (e.g. cellobiose), likely with aid from microbial symbionts, as 

previously suggested for bonnetheads (Fig. 1.3; Jhaveri et al. 2015). The fact that β-

glucosidase activity was significantly higher in the hindgut compared to other gut regions 

(proximal intestine and spiral intestine, Figs. 1.2 & 1.3) indicates likely involvement from 

the gut microbiome in the digestion of seagrass fiber. Surprisingly, the activity levels of 

β-glucosidase in the bonnethead hindgut are on par with activities observed in the 

hindguts of Cebidichthys violaceus, an herbivorous, teleost fish that digests algal material 

with assistance from their gut microbiome (German et al. 2015). Evidence of elevated β-

glucosidase activities in the hindgut of bonnetheads differentiates them from carnivores 

and merits further investigation into the role of the microbiome in the digestion of 

seagrass material. Sharks also have highly acidic stomachs (pH 1-2; Papastamatiou 2007; 

Papastamatiou and Lowe 2004), whereas most herbivorous teleost species have slightly 

higher average stomach pH values of 2-3 (Horn 1989; Zemke-White et al. 1999). Since 

sharks lack the pharyngeal (secondary) jaws that many herbivorous species use for 

mastication or trituration of plant material, the highly acidic shark stomach could weaken 

the cell walls and plasma membranes of seagrass so that digestive enzymes can enter the 

cells and digest seagrass material (Zemke-White et al. 1999).  Bonnethead sharks also 

have molariform teeth that are presumed to be for crushing hard prey (Mara et al. 2010), 

but these teeth may also be capable of seagrass mastication, which could aid in the 

digestive process.  
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While digestibility and enzymatic analyses highlight that bonnethead sharks have 

the capacity to breakdown seagrass, the stable isotope analyses show that they can 

assimilate plant molecules (Larsen et al. 2013). We measured a clear increase in the δ13C 

signature in the blood and liver tissues of the lab-fed sharks over the course of the feeding 

trial (Figs. 1.4 & 1.5). The 13C-labeled seagrass used in the feeding trials had a mean δ13C 

of 104.9‰ (mean atom % of 1.25 ± 0.05) compared to a mean δ13C of -13.4‰ (mean 

atom % of 1.08 ± 0.02) for wild, non-labeled seagrass (Fig. 1.4). The mean δ13C signature 

of the blood plasma from the lab-fed sharks increased from -12.1‰ at the beginning of 

the feeding trial to 2,743.9‰ at the end of the feeding trial (Fig. 1.4). The red blood cells 

also exhibited an increase from a mean of -11.5‰ to 19‰ δ13C over the course of the 

feeding trial. The liver tissues of wild-caught sharks had a mean δ13C value of -12.23‰ 

(mean atom % of 1.09 ± 0.02), while the lab-fed sharks had liver tissues with a mean 

δ13C value of 357.2‰ (mean atom % of 1.49 ± 0.09) at the conclusion of the three-week 

feeding trial (Fig. 1.5).  

The combination of these data shows that bonnethead sharks are not only 

consuming copious amount of seagrass (8.8-62.1% of gut content mass; Bethea et al. 

2007), but they are actually capable of digesting and assimilating seagrass nutrients, 

making them clear omnivores. Since the bonnethead shark digestive tract is 

morphologically similar to other closely related strict carnivores, it shows that a 

“carnivorous” gut can digest at least parts of ingested plant material.  These results in the 

bonnethead shark are also consistent with observations that many herbivorous fishes lack 

what would be called a “specialized” gut morphology for housing enteric symbionts that 
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aid in the digestion of plants (German 2011; Karasov and Douglas 2013), unlike the 

myriad specializations seen in mammals (Choat and Clements 1998).    

We do recognize that the δ13C values for both blood plasma and liver tissues are 

exceptionally high compared to the bulk δ13C values for the seagrass used in the feeding 

trial. The most likely explanation for this elevated signal has to do with urea, which in 

sharks, is synthesized via the ornithine urea cycle in the liver, making urea a sink for 

bicarbonate carbon (Watford 2003; Yancey 2015; Shipley et al. 2017; Forster et al. 1972; 

Evans 2009). Sharks are unique from most teleost fishes in that their total blood 

osmolarity (1118 mOsm/L for dogfish sharks; Forster et al. 1972) is similar to that of 

seawater (1050 mOsm/L; Evans 2009) and that nearly half (441 mM/L) of this is 

accounted for by urea. Since urea synthesis occurs in the liver and uses CO2 (Watford 

2003; Ballantyne 1997), if 13C-labeled bicarbonate in the seagrass was absorbed in the 

digestive tract and then equilibrated with the blood bicarbonate, this would explain the 

exceptionally high δ13C values in the blood plasma and liver tissues (Shipley et al. 2017; 

Malpica-Cruz et al. 2012; Kim et al. 2011; Kim et al. 2012; MacNeil et al. 2005). This 

also explains the discrepancy between the high δ13C values in the plasma versus the red 

blood cells, where the red blood cells have a much slower isotopic turnover rate (>4 

months vs ~1-2 months for plasma proteins; Malpica-Cruz et al. 2012; Kim et al. 2011), 

and the red blood cells don’t contain bicarbonate or urea. The red blood cell isotopic 

signature, therefore, represents labeled proteins, which are similar to the labeled amino 

acids in the liver (Fig. 1.5).   

Furthermore, the compound specific stable isotope analyses (CSSIA) shows that 

amino acids in the lab-fed sharks livers were also labeled, making it unlikely that 13C-
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labeled sodium bicarbonate in the sharks livers caused this result (Fig. 1.5; Table 1.3). 

Moreover, the CSSIA analysis allowed us to identify those amino acids that shared the 

same δ13C signature among the sharks livers and the seagrass as some of the essential 

amino acids for bonnetheads: aspartate, isoleucine, leucine, methionine, valine, and 

proline (Fig. 1.5; Table 1.4; Wilson 1985; McMahon et al. 2015). The other amino acids 

(alanine, glutamate, glycine, lysine, phenylalanine, threonine, tyrosine) were more 

enriched in 13C in the grass than in the sharks (Table 1.4), but this could reflect the fact 

that a three-week feeding trial was not sufficient to allow complete turnover of all amino 

acids in the liver protein (Larsen et al. 2013). Previous analyses of wild seagrass amino 

acids using CSSIA showed that all of the amino acid δ13C values were negative, similar 

to the bulk signatures (δ13C values -11.1 to -15.9‰) of the wild seagrass (Larsen et al. 

2013).  Hence, each of our analyses (including bulk seagrass, seagrass fiber, and CSSIA) 

show that all of the components of the seagrass in the current study were indeed labeled 

with 13C (positive δ13C values), and therefore, the assimilation of the labeled carbon into 

the bonnethead sharks must have come from the labeled seagrass and cannot represent 

some components of wild seagrass (or any marine resource) still persisting in the sharks’ 

tissues.  The CSSIA and enriched seagrass fiber isotopic signatures also argue against the 

assimilated labeled carbon only coming from the labeled bicarbonate, and in fact, some 

of the bulk liver isotopic signature could be contributed by liver glycogen synthesized 

from 13C-labeled glucose assimilated from seagrass tissues, including the fiber, which 

was heavily labeled (Fig. 1.4). Finally, the red blood cells δ13C values were similar to 

those found in the liver amino acids, showing that the actual proteins are enriched at the 

level of amino acids in the red blood cells.   
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The sheer abundance of bonnethead sharks in coastal communities (~4.9 million 

individuals in the Atlantic and Gulf of Mexico coastal waters of the USA; NOAA/NMFS 

2007) coupled with consumption and digestion of seagrass by these animals suggests that 

we need to re-evaluate the role that bonnetheads play in seagrass meadows, critical 

ecosystems that provide habitat for thousands of fish species, filter the surrounding water, 

act as a sink for atmospheric CO2, and produce large quantities of oxygen (Lamb et al. 

2017; Nordlund et al. 2016). Understanding how the consumption and digestion habits of 

bonnethead sharks impacts seagrass ecosystems is important as these omnivores may 

stabilize food web dynamics and even play a role in nutrient redistribution and transport. 

Bonnethead sharks often display short-term residency to core areas within seagrass 

meadows, but shift the location of these areas within a large home range, suggesting that 

individuals may be able to transport nutrients between and within habitat patches (Heupel 

et al. 2006). Considering bonnethead sharks as omnivores, rather than carnivores, in 

models of seagrass meadow function, and then testing the predictions of those models for 

management purposes, changes our understanding of the fluxes of nutrients and energy 

among trophic levels within each part of these ecosystems. To better understand the 

ecological influence of sharks and other marine predators, or any mobile consumers for 

that matter, and how they may act as nutrient vectors, we need to move beyond 

observations of just consumption or bite rates and strive to understand, not only what 

consumers are eating, but also what they are digesting and excreting back into their 

environments (i.e., their nutritional physiology). This is critical to effectively formulating 

conservation efforts including trophic models (Tracy et al. 2006; Clements et al. 2017). 
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Figure 1: Adult bonnethead shark, Sphyrna tiburo, with it’s digestive tract (Adapted2, 10). 
90% seagrass and 10% squid diet illustration by LLM Pandori.  
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Figure 1.1: Adult bonnethead shark, Sphyrna tiburo, with it’s digestive tract. 90% 
seagrass and 10% squid diet illustration by LLM Pandori.  
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Figure 1.2: Trypsin, aminopeptidase, maltase, and lipase activities in the digestive tracts of 
bonnethead sharks. Open circles represent wild-caught sharks, while filled circles represent mean 
± standard deviation values for lab-fed sharks. Protein- degrading enzymes (trypsin and 
aminopeptidase) are in red, soluble carbohydrate- degrading enzymes (maltase) are in blue, and 
lipid-degrading enzymes (lipase) are in purple. No significant differences were found between 
lab-fed and wild-caught sharks for any of the enzymes assayed (P>0.05). Differing letters above 
data points indicate significant difference among gut regions: PI, SI, and DI (P<0.05). 
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Fig. 2. Amylase and β-glucosidase activities in the digestive tracts of bonnethead sharks. 
Open circles represent wild-caught sharks, while filled circles represent mean ± standard 
deviation values for lab-fed sharks. The carbohydrate-degrading enzyme (amylase) is in 
blue and the cellulobiose-degrading enzyme (β-glucosidase) is in green. No significant 
differences were found between lab-fed and wild-caught sharks for any of the enzymes 
assayed (P>0.05). Differing letters above data points indicate significant difference 
among gut regions: PI, SI, and DI (P<0.05). 
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Figure. 1.3: Amylase and β-glucosidase activities in the digestive tracts of bonnethead 
sharks. Open circles represent wild-caught sharks, while filled circles represent mean ± 
standard deviation values for lab-fed sharks. The carbohydrate-degrading enzyme 
(amylase) is in blue and the cellulobiose-degrading enzyme (β-glucosidase) is in green. 
No significant differences were found between lab-fed and wild-caught sharks for any of 
the enzymes assayed (P>0.05). Differing letters above data points indicate significant 
difference among gut regions: PI, SI, and DI (P<0.05).  
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Figure 3: δ13C values for lab-fed bonnethead shark blood plasma for each of the three 
weeks of the feeding trial. Different shaped (and colored) data points represent 
different individual lab-fed sharks. Mean values for 13C-labled seagrass and natural 
seagrass are shown as different-patterned horizontal lines. The total δ13C range for the 
13C-labeled seagrass is denoted by a light grey box.  
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Figure 1.4: δ13C values for lab-fed bonnethead shark blood plasma for each of the 
three weeks of the feeding trial. Different shaped (and colored) data points represent 
different individual lab-fed sharks. Mean values for 13C-labled seagrass and natural 
seagrass are shown as different-patterned horizontal lines. The total δ13C range for the 
13C-labeled seagrass is denoted by a light grey box.  
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Figure 4:  Bulk bonnethead shark liver tissue, bulk seagrass tissue, fiber extracted from 
seagrass, and individual amino acid (AA) δ13C values (means). Abbreviations: Asp (aspartic 
acid), Ile (isoleucine), Leu (leucine), Met (methionine), Pro (proline), Val (valine), Ala 
(alanine), Glu (glutamic acid), Gly (glycine), Lys (lysine), Phe (phenylalanine), Thr (threonine), 
and Tyr (tyrosine).  
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Figure 1.5: Bulk bonnethead shark liver tissue, bulk seagrass tissue, fiber 
extracted from seagrass, and individual amino acid (AA) δ13C values (means). 
Abbreviations: Asp (aspartic acid), Ile (isoleucine), Leu (leucine), Met 
(methionine), Pro (proline), Val (valine), Ala (alanine), Glu (glutamic acid), Gly 
(glycine), Lys (lysine), Phe (phenylalanine), Thr (threonine), and Tyr (tyrosine).  

 



 24 

Table 1.1: The initial and terminal masses (g) of each individual lab-fed bonnethead 
shark.	The weight increase (%) for each individual shark, as well as the means ± standard 
deviations are also provided. Caloric demand (kcal/day), Calories consumed (kcal/day), 
and Calories digested (kcal/day) along with means are standard deviations for each are 
also included.  
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Table 1: Mean (±standard deviation) digestibility (%) of protein, lipid, soluble carbohydrates, 
neutral detergent fiber, acid detergent fiber, and total organic matter of a 90% seagrass, 10% 
squid diet by the bonnethead shark. 

Constituent Digestibility (%) 
Protein 92±3 
Lipid 51±7 

Soluble Carbohydrate 80±3 
Neutral Detergent Fiber 52±3 

Acid Detergent Fiber 43±4 
Total Organic Matter 50±2 

 

 

Table 1.2: Mean (±standard deviation) digestibility (%) of protein, lipid, 
soluble carbohydrates, neutral detergent fiber, acid detergent fiber, and total 
organic matter of a 90% seagrass, 10% squid diet by the bonnethead shark.  
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Table 1.3: The means and standard deviations for the ratio of the mean δ13C essential 
amino acid signatures in the 13C- labeled seagrass used in the feeding trial over the mean 
δ13C essential amino acid signatures in the lab-fed bonnethead shark livers.	 
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Table 1.4: The means and standard deviations of the ratio of the seagrass amino 
10 acid δ13C values as compared to the lab-fed shark δ13C for the essential and 
non-essential amino acids.  
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Chapter 2 
 

Gut Microbial Diversity and Function Highlights Digestive Strategies of an 

Omnivorous Shark 

Introduction: 

 Vertebrates host an assortment of gastrointestinal microbes that play crucial roles 

in their digestive physiology as well as in other aspects of their life history that contribute 

to their overall health (e.g., development, immune protection, behavior; Van Soest 1994; 

Stevens & Hume 1998; Ley et al. 2008; de Paula Silva et al. 2011; Nicholson et al. 2012; 

Clements et al. 2014; Egerton et al. 2018). This is true of organisms across trophic levels; 

however, organisms consuming plant material (herbivores and omnivores) have been 

shown to possess a greater abundance and diversity of microbes in their guts (Van Soest 

1994 Bryant 1997; Mackie 1997; Ley 2008; Sullam et al. 2012; Clements et al. 2014). 

Many herbivores and omnivores rely on these microbes to assist with the digestion and 

assimilation of plant components (i.e., fiber, secondary metabolites), which cannot be 

processed endogenously (by the host). Plants are sheathed in fibrous cell walls, and as 

such, fermentative digestion by microbes is often critical to successful herbivory (e.g. 

Choat and Clements 1998; Karasov and Martinez del Rio 2007). Digestive strategies can 

be interpreted within the “Rate vs. Yield” theoretical framework (Sibly 1981; Clements 

& Raubenheimer 2006; German et al. 2015). One on end of the spectrum, “rate 

maximizers” tend to have high intake of low-quality food, rapid digesta transit rates, and 

little microbial fermentation occurring along the gut (Crossman et al. 2005; German, 

2009; German and Bittong 2009; Clements et al. 2014; German et al. 2015; Clements et 

al. 2017). As such, rate-maximizers tend to assimilate easily digestible nutrients via 
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endogenous mechanisms and pass the rest as waste in their feces (Crossman et al. 2005; 

Clements and Raubenheimer 2006; German, 2009). Pandas are a prime examples of a 

rate maximizers that rely on high intake of bamboo, have rapid gut transit and low levels 

of microbial fermentation in their guts, and thus, overall low digestive efficiency 

(Dierenfield et al. 1982). Any shortcomings are made up by simply eating more (Stevens 

and Hume 1998). Grass carp (Ctenopharyngodon idellus) represent an aquatic example of 

a similar digestive strategy: they rely on high intake of low quality food rather than low 

intake of high quality food (Hao et al. 2016). At the opposite end of the spectrum, “yield 

maximizers” are usually represented by herbivores that tend to have measured intake, 

slower digesta transit rates, higher levels of microbial fermentation occurring in their 

guts, and higher overall digestibility (Hofmann 1989; Mountfort et al. 2002; Crossman et 

al. 2005; German et al. 2015). This allows organisms to access nutrients (i.e., fiber; Itoi et 

al. 2006; Sugita & Ito 2006) that might otherwise be indigestible via endogenous 

mechanisms. Carnivores tend to also fit within a yield-maximizing strategy since they 

also have relatively low rates of digesta transit due to their overall low intake of food (but 

they consume high-quality food). However, carnivores are generally thought to be less 

reliant on microbial fermentation to meet their energetic demands since protein can be 

endogenously digested (Stevens & Hume 1998; German 2009a; Karasov and Douglas 

2013).  

 Recent studies of nutritional physiology have implemented chemical reactor 

theory (CRT), a concept historically used in chemical engineering, to study animal 

digestion. CRT involves the interaction of chemical reactants (in this case, substrates and 

enzymes) to a system in which biochemical reactions can occur (digestive tract) to 
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generate products (e.g., glucose, amino acids, fatty acids) that can be absorbed and used 

by the animal for growth (Penry and Jumars 1987; Horn and Messer 1992; Wolesensky 

and Logan 2006; Leigh et al. 2017). The various regions of the gut (e.g., stomach, 

proximal intestine, middle intestine, distal intestine) may each function differently in 

terms of CRT, which will affect transit time of material through the system (German 

2011). In the context of the “Rate vs. Yield” framework, herbivorous “yield maximizers,” 

who are more reliant on microbial fermentation, would benefit from increasing their 

digesta transit rate, increasing their gut size (both length and absorptive surface area), and 

increasing their production of enzymes that are specific to breaking down components of 

plant matter in order to optimize their digestive efficiency according to CRT. However, 

few studies have investigated the functional roles of the microbiome in the context of 

CRT, particularly for aquatic organisms.  

There are a rapidly growing number of studies addressing the roles of the 

microbiota in terrestrial vertebrates (e.g. Ley 2008; Russel et al. 2009; Kohl et al. 2011; 

Zhao et al. 2013; Kohl and Dearing 2014); however, there are far fewer studies 

investigating this topic in fishes (e.g. Rimmer & Wiebe 1987; Nayak 2010; Givens et al. 

2015; Egerton et al. 2018; Earley et al. 2018). Fishes represent the largest taxonomic 

group of vertebrates on the planet and thus, their impact on ecosystem functions around 

the globe are vast (e.g. Choat and Clements 1998; Karasov & Martinez del Rio 2007). In 

the limited studies focusing on the role of microbial symbionts in the guts of fishes, the 

majority of them target either species that are highly relevant to aquaculture (Clements 

and Choat 1995; Ringø et al. 1995; Harpaz & Uni 1999; Hovda et al. 2007; Zhou et al. 

2009; Ringø et al. 2006; Nayak 2010; Estruch et al. 2015; Ringø et al. 2016) or 
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representative species from lower trophic levels (Rimmer et al. 1987; Mountfort et al. 

2002; Moran et al. 2004; Fidopiastis et al. 2005; Clements et al. 2007; Wu et al. 2012; 

Hao et al. 2016) since such animals may be the most likely to be  more reliant on 

microbial digestion to make a living. There are few studies focusing on the function of 

the gut microbiome in predatory fishes, such as sharks (Sullam et al. 2012; Givens et al. 

2015; Freund 2019). Sharks play an important role in energy fluxes in marine 

environments (Buddington 1997; Bucking 2016; Leigh et al. 2017). Although carnivores 

are generally thought to rely less on their microbiota for digestive purposes, there is one 

species of shark that has been shown to potentially function as an omnivore. The 

bonnethead shark (Sphyrna tiburo; Fig. 1), has been previously shown to consume a diet 

consisting of up to 62% seagrass (Thalassia testudinum) by gut content mass (Bethea et 

al. 2007; Bethea et al. 2011). Furthermore, they have been shown to digest approximately 

50% of the total organic matter in seagrass, as well as assimilate components of seagrass 

into their blood (Leigh et al. 2018b). Additionally, digestive enzymes that are used in the 

degradation of components of cellulose (i.e. cellobiose) have been found in bonnethead 

shark hindguts, indicating likely involvement from enteric microbes (Jhaveri et al. 2015; 

Leigh et al. 2018b). Bonnethead sharks have been previously identified to fit a yield-

maximization strategy (Jhaveri et al. 2015), but there is limited information regarding the 

potential functional role that their gut microbiome plays in this digestive strategy.  

In this study, we further explore the digestive mechanisms in the bonnethead 

shark. To do this, we took a multi-faceted approach. First, we measured the activity levels 

of β-glucosidase (BG) and N-acetyl-β-D-glucosaminidase (NAG) activities, which are 

indicative of the digestion of fibrous materials found in their diet (cellobiose from plant 
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material, and chitobiose from crustacean exoskeletons, respectively). Given the high 

volume of seagrass in their diet, it would be expected that the bonnethead shark would 

possess relatively high activity levels of enzymes specific to degrading components of 

cellulose. Second, we used histological imaging to investigate the absorptive surface area 

of the epithelial lining of their digestive tract. Bonnethead sharks possess a scroll 

intestine in the mid-region of their digestive tract that is thought to increase their 

absorptive surface area (Leigh et al. 2018a), but to date, this has not been quantified.  

Third, using gas chromatography, we measured the levels of short-chain fatty acids 

(SCFAs) in their spiral and distal intestine regions to confirm whether there were active 

fermentations occurring; a clear sign of microbial activity since SCFAs are the end 

products of microbial fermentation. Generally, omnivores and herbivores are known to 

have diverse and abundant microbial communities in their hindguts, and therefore, the 

bonnethead shark should have fermentation levels comparable to other plant-consuming 

organisms. Finally, we used 16S rDNA sequencing of their gut bacterial communities to 

identify possible OTUs that may be assisting the bonnethead shark with the digestion of 

seagrass material. Ultimately, this study represents one of the most rigorous 

investigations of a marine predator gut microbiome and its potential function to date and 

shows how important it is to combine research of microbial community composition with 

physiological and morphological data in order to better understand how microbes 

contribute to the physiological functions of the host. 

 Materials and Methods 

Shark Collection and Tissue Preparation 
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 Bonnethead sharks were caught off the coast of Layton, FL, on Long Key 

(24º50’2.6” N 80º48’32.2” W) and off the southwestern coast of Key Biscayne 

(25º41’05.9” N 80º10’41.0” W). There were four incidental mortalities and those 

individuals were immediately dissected for intestinal, liver, and muscle tissue samples 

and henceforth are referred to as the ‘wild-caught’ sharks. Five additional sharks were 

transported alive to Florida International University (FIU) to undergo feeding trials 

(henceforth the ‘laboratory-fed’ sharks). Once at FIU, bonnethead sharks (n = 5) were 

kept in a 40,337 L circular flow-through tank receiving water pumped directly from 

Biscayne Bay and acclimated for at least 24 hrs. Each shark was fed a 90% seagrass, 10% 

squid (Doryteuthis opalescens) diet equaling 5% of their initial body weight daily for 

three weeks. Feedings were divided into three feeding events per day. Sharks were 

moved into nearby individual 946 L circular, closed-system, tanks during the day for 

feedings in order to ensure that all sharks received the appropriate amount of food. 

Since the smaller 946 L tanks were closed systems, the sharks were moved back into the 

larger (40,337 L) tank in the evening and overnight so that they could be exposed to 

fresh, flowing seawater and oxygen. The smaller 946 L tanks were drained and cleaned at 

the conclusion of each day and filled with fresh seawater the following morning to repeat 

the feeding process. At the conclusion of the three-week feeding trial, all laboratory-fed 

individuals were euthanized in 1% MS-222 solution, measured (standard length (SL), 

weighed (body mass (BM)) and dissected on a chilled (approx. 4°C) cutting board. 

Whole gastrointestinal tracts were removed by cutting at the esophagus and at the cloacal 

opening. Whole intestines (without the stomach) were weighed and the intestine length 

(IL) was measured. The intestine was then divided into three sections: proximal intestine 
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(PI), spiral intestine (SI) and distal intestine (DI; German 2009a; Leigh et al. 2018a). The 

length and mass of each individual gut region was measured. The gut contents were 

removed from each section by pushing along the intestine with the edge of a glass 

microscope slide, placed into a 1.5 mL microcentrifuge tube, and frozen on dry ice before 

storage at -80°C. The remaining tissue from each gut region was weighed and then 

further subdivided into three sections (i.e. PI1, PI2, PI3, etc.) in order to increase the 

resolution of understanding enzyme activity levels along the digestive tract. The mucosal 

layer was scraped from the internal tissue of each intestine region using the edge of a 

glass microscope slide, placed into a 1.5 mL microcentrifuge tube, and frozen on dry ice 

before storage at -80°C. Further details about shark collection, husbandry, and tissue 

preparation can be found in Leigh et al. (2018b).  

Digestive Enzyme Assays 

Intestinal homogenates were produced as described by Leigh et al. (2018a; 

2018b). In order to determine the activity of enzymes that digest chitin, we assayed N-

acetyl-β-D-glucosaminidase (NAG) activity for all intestinal regions. All enzyme assays 

were carried out at 22ºC in duplicate or triplicate using a BioTek Synergy H1 Hybrid 

fluorometer equipped with a monochromator (BioTek, Winooski, VT, USA). All pH 

values listed for buffers were measured at room temperature (22°C), and all reagents 

were purchased from Sigma-Aldrich Chemical (St. Louis). All reactions were run at 

saturating substrate concentrations as determined for NAG with gut tissues from 

bonnethead sharks. Enzyme activity was measured in each subdivision of each gut region 

of each individual shark, and blanks consisting of substrate only and homogenate only (in 

buffer) were conducted simultaneously to account for endogenous substrate and/or 
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product in the tissue homogenates and substrate solutions. NAG activities were measured 

following German et al. 2011 using 200 µM solutions of the substrate 4-

methylumbelliferyl-N-acetyl-β-D-glucosaminide, dissolved in 25 mM Tris–HCl (pH 7.5; 

sodium acetate pH 5.5 for the colon tissue and contents). Briefly, 90 µL of substrate was 

combined with 10 µL of homogenate in a black microplate and incubated for 30 min. 

Following incubation, 2.5 µL of 1 M NaOH was added to each microplate well, and the 

fluorescence read immediately at 365 nm excitation and 450 nm emission. Each plate 

included a standard curve of the product (4-methylumbelliferone), substrate controls, and 

homogenate controls, and enzymatic activity (µmol product released per minute per gram 

wet weight tissue) was calculated from the MUB standard curve. Methods and results for 

additional enzymes are reported in Leigh et al. 2018b.  

Histology 

 Upon removal from the body, the digestive tracts of each individual shark (both 

laboratory-fed and wild-caught) were gently removed and three 1-cm sections were 

excised from each of the proximal, spiral, and distal intestine and placed in their own 

individual vials containing fresh Trump’s fixative, pH 7.5 (4% formaldehyde, 1% 

glutaraldehyde, in 10 mM sodium phosphate [monobasic] and 6.75 mM sodium 

hydroxide; McDowell and Trump 1976).  These tissues were then allowed to fix for at 

least one week at 4ºC. Following fixation, the tissues were removed from the fixative and 

rinsed in 0.1 M phosphate buffered saline (PBS), pH 7.5, for 3 x 20 min, and a final rinse 

overnight at 4ºC.  Following rinsing in PBS, the tissues were rinsed for 40 min in running 

DI water, and prepared following German (2009).  Intestinal tissues were serially 

sectioned at 7 µm, stained in hematoxylin and eosin (Presnell and Schreibman 1997), and 
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photographed at 40X, 60X, and 120X with a Cannon EOS Rebel T6i digital camera 

attached to a Zeiss Axioskop2 plus light microscope. Image J analytical software 

(Abramoff et al. 2004) was used to measure the mucosal surface area of each gut region 

for both the laboratory-fed and wild-caught sharks (n=2 per intestinal region, per 

individual shark; 6 images per shark).   

Microbial Fermentation 

 Measurements of symbiotic fermentation activity were based on the methods of 

Pryor and Bjorndal (2005), as described in German and Bittong (2009). Fermentation 

activity was indicated by relative concentrations of short-chain fatty acids (SCFA) in the 

fluid contents of the spiral and distal intestines of the sharks. As described above, spiral 

and distal intestine contents were frozen in sterile centrifuge vials. Gut content samples 

were weighed, thawed, homogenized with a vortex mixer, and centrifuged under 

refrigeration (4 ◦C) at 16,000 × g for 10 min. The supernatant was then pipetted into a 

sterile centrifuge vial equipped with a 0.22 µm cellulose acetate filter (Costar Spin-X 

gamma sterilized centrifuge tube filters; Coming, NY, USA) and centrifuged under 

refrigeration at 13,000 × g for 5 min to remove particles from the fluid (including 

bacterial cells). The filtrates were collected and frozen until they were analyzed for SCFA 

and nutrient concentrations.  

Concentrations of SCFA in the gut fluid samples from SI and DI gut regions were 

measured using gas chromatography. Samples were hand-injected into an Agilent 

Technologies 7890A gas chromatograph system equipped with a flame ionization 

detector. Two microliters of each sample were injected onto a 2 m-long stainless steel 

column (3.2 mm ID) packed with 10% SP-1000 and 1% H3PO4 on 100/120 Chromosorb 
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W AW (Supelco, Inc., Bellefonte, PA, USA). An external standard containing 100 mg l:1 

each of acetate, propionate, isobutyrate, butyrate, isovalerate, and valerate was used for 

calibration. A 20% phosphoric acid solution was used to clear the column between 

samples, followed by rinses with nanopure water. The SCFA concentrations are 

expressed as mM of gut fluid. 

Gut Microbiome Sample Processing 

 The sample DNA was isolated from the gut contents and musosal scrapings for all 

gut regions (PI, SI, and DI) for both the laboratory-fed and wild-caught sharks using the 

Zymobiomics DNA mini kit from Zymo Research. 16S rRNA amplicon PCR was 

performed targeting the V4 - V5 region using the EMP primers (515F [barcoded] and 

926R; Caporaso 2012; Walters 2016). The library was sequenced at the UC Irvine 

Genomics High Throughput Facility using a miseq v3 chemistry with a PE300 

sequencing length. Sequencing resulted in 24,085,008 reads passing filter. The raw 

sequences were imported into qiime2 (qiime2.org). After initial sample quality check and 

trimming (DADA2 in qiime2) there were 3,003,501 paired-end merged reads.  From the 

sequences the first 5 bp were trimmed and the forward reads were truncated at 299 bp and 

the reverse reads were truncated at 242 bp. Both single-end and paired-end reads were 

evaluated, but only single-end read results are reported. The sequences were assigned a 

taxonomic classification using the September 2016 Ribosomal Database Project (RDP; 

rdp.cme.msu.edu), trained with the primer pairs that were used to amplify the 16S region. 

Sequences were confirmed using the Basic Local Alignment Search Tool (BLAST; 

blast.ncbi.nlm.nih.gov/Blast.cgi). Analyses of the sequences were completed using 

qiime2 software and Rstudio (v.1.0.136).  
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Statistical Analysis 

 Comparisons of enzymatic activities were made among gut regions with analysis 

of variance (ANOVA) followed by a Tukey’s honest significant difference with a family 

error rate of p < 0.05. Comparisons of enzymatic activities and SCFA concentrations 

between laboratory-fed sharks and wild-caught sharks were made using unpaired t-tests 

with a Bonferroni-corrected error rate of p < 0.006. Comparisons of SCFA concentrations 

between spiral and distal intestine regions were made in the same manner. Comparisons 

of intestinal epithelial surface area were completed using an ANCOVA (with body mass 

as a covariate as done by German et al. 2014 and Leigh et al. 2018a) followed by a 

Tukey’s honest significance difference with a family error rate of p < 0.05 to compare 

among gut regions and an unpaired t-test with a Bonferroni-corrected error rate of p < 

0.006 was used to compare laboratory-fed sharks to wild-caught sharks.  All statistical 

tests described above were performed in R studio (v. 1.0.136). Alpha diversity (faith’s 

phylogenetic diversity) significance was determined using a Kruskal-Wallis pairwise test 

(p < 0.05). Beta diversity (Bray-Curtis dissimilarity) significance was determined using a 

PERMANOVA (p < 0.05) with 999 permutations. All statistical tests used to analyze 16S 

rDNA sequencing results were run in qiime2.  

Results 

 No NAG or β-glucosidase (BG) activity was detected in the PI for either shark 

group. Both BG and NAG activity levels were significantly higher in the distal intestine 

compared to other gut regions (PI and SI) for both laboratory-fed and wild-caught sharks 

(p=0.014; Fig. 1). Full results for BG are reported in Leigh et al. (2018b). There are no 

significant differences between laboratory-fed or wild-caught sharks in terms of their 
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mucosal epithelial surface area (p > 0.006; Fig. 2; Supplementary Fig. S1). Surface area 

in the SI (3,057cm2 for lab-fed; 2,904cm2 for wild-caught) was significantly higher than 

either the PI (1,402cm2 for lab-fed; 1,009cm2 for wild-caught) and DI (1,646cm2; 

1,416cm2 for wild-caught) regions (p=0.023 and p=0.031 respectively; Supplementary 

Fig. S1). Total short-chain-fatty-acid measurements were 18mM/L (laboratory-fed SI), 

10.8mM/L (laboratory-fed DI), 8.5mm/L (wild-caught SI), and 8.1mM/L (wild-caught 

DI; Fig. 3). For the SI and DI for both the laboratory-fed and wild-caught sharks, acetate 

was the most abundant SCFA (31.7% of total SCFA concentration for lab-fed SI, 28.9% 

for lab-fed DI, 35.9% for wild-caught SI, and 36.7% for wild-caught DI), followed by 

propionate (17.5% of total SCFA concentration for lab-fed SI, 16.9% for lab-fed DI, 

21.8% for wild-caught SI, and 21.7% for lab-fed DI) and butyrate (14.5% of total SCFA 

concentration for lab-fed SI, 14.7% for lab-fed DI, 12.8% for wild-caught SI, and 12.2% 

for wild-caught DI; Supplementary Table S1). There were no significant differences 

between the laboratory-fed and wild-caught sharks in terms of their alpha (faith’s 

phylogenetic diversity; p=0.8) and beta (Bray-Curtis dissimilarity; p=0.6) microbial 

diversity. The PI showed significantly lower microbial abundance when compared to 

both the SI and DI (permanova: p=0.003; Fig. 4). SI and DI showed no significant 

differences when compared to each other (p=0.8). The top ten most abundant OTUs 

present in the samples were Photobacterium damselae, Closdridiaceae sp., 

Peptostreptococcaceae sp., Pseudomonas veronii, Photobacterium sp., Vibrio sp., 

Mycoplasma sp., Candidatus Heptoplama sp., Clostridium perfingens, and 

Phyllobacterium sp. (Fig. 5; Table 1). The top five orders were Vibrionales, Clostridiales, 

Rhizobiales, Pseudomondales, and Mycoplasmatales (Table 1). A full list of the OTUs 
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identified and their occurrence in each gut region for each shark can be found in 

Supplemental Table S2.  

Discussion 

 The results of this study show that the gut microbiome of the bonnethead shark is 

likely contributing to the digestion and assimilation of seagrass and chitinous material. 

The presence of BG and NAG in the distal intestine suggests that components of 

cellulose and chitin breakdown products (i.e., cellobiose and chitobiose, respectively) can 

be digested (Jhaveri et al. 2015; Leigh et al. 2018b), and these enzyme activities coincide 

with the microbial communities of the hindgut. The activity levels of BG in the 

bonnethead SI and DI are discussed in detail in Leigh et al. (2018b). Elevated levels of 

NAG in the distal intestine are consistent with previous studies on wild bonnethead 

sharks (Jhaveri et al. 2015) and suggest that an active microbial population in their 

hindguts may be aiding with chitin digestion as well, indicating some capacity to 

breakdown the chitinous exoskeletons of crustaceans. Although bonnetheads eat large 

amounts of seagrass (Bethea et al. 2007), most of their diet is still composed of 

crustaceans (crab, shrimp; Cortés et al. 1996), which have chitinous exoskeletons. 

Interestingly, with billions of metric tons produced annually, chitin is the most common 

biopolymer in the ocean (Souza et al. 2011), so observations that marine organisms can 

digest chitin (Alliot 1967; Danulat and Kausch 1984; Fange et al. 1979; Gutowska et al. 

2004), even with the aid of microbial symbionts, isn’t surprising.  

High levels of SCFAs confirm the presence of anaerobic microbes, since SCFAs 

are the end products of microbial fermentation. In the laboratory-fed sharks, we found a 

total of 18mM of SCFAs per L of gut content fluid in the SI and 10.8 in the DI. This is 
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comparable to omnivorous, and in some cases even herbivorous, fish species. For 

example, German et al. (2015) found total SCFA levels of 11.68mM/L in a benthic, 

relatively sluggish, herbivorous species of prickleback fish (Cebidichthys violaceus). The 

same study by German et al. (2015) looked at a carnivorous prickleback species as well 

and found SCFA levels around 2.7mM/L. Clements and Choat (1995) revealed much 

higher concentrations (>40 mM) in the guts of herbivorous fishes from tropical 

environments, but still found relatively high concentrations in planktivorous species as 

well (>15mM in nasid surgeonfish). Additionally, German (2009b) and German et al. 

(2010) found that carnivorous species of minnows had SCFA concentrations of 16mM 

and 14mM respectively. In the wild-caught sharks, whose diets presumably consisted of 

less seagrass than our lab-fed ones, SCFA levels were 8-8.5mM/L, which is what you 

might expect in a carnivore, indicating that the higher levels of fermentation in the 

laboratory-fed individuals can likely be attributed to the larger concentrations of seagrass 

in their diet. Acetate, propionate, and butyrate, all of which are end products of 

carbohydrate catabolism via microbes, when combined, make up over half of the total 

fermentation product produced by microbes in the shark’s intestine (Fig. 3). This is clear 

evidence of microbial fermentation occurring in order to digest various carbohydrate 

forms. However, the total SCFA levels of the laboratory-fed sharks in particular do not 

align with species of bony fishes that are known carbohydrate fermenters nor known 

protein-fermenters (Fig. 3). Instead, the sharks appear to have high levels of both 

carbohydrate and protein fermentation occurring, indicating their capacity to efficiently 

digest an omnivorous diet consisting of proteins and both soluble and non-soluble 

carbohydrates (Fig. 3).  
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The results of the 16S rDNA sequencing of the gut microbiome further confirm 

this claim. There were significant differences when the PI diversity and abundance was 

compared to the SI and DI (Fig. 4), indicating, as predicted by Chemical Reactor Theory, 

that the majority of microbial activity occurs in the hindgut. Vibrionales was the most 

common order present (specifically Photobacterium damselae, another Photobacterium 

sp., and a Vibrio sp.). Vibrionales in general are common in both fresh and salt water and 

several are pathogenic (Clements et al. 2014). Various Vibrionales sp. have been found 

throughout the gut of a carnivorous fish (cod; Egerton et al. 2018). Additionally, 

Vibrionales (specifically Vibrio and Photobacterium) accounted for 70% of sequence 

reads according to a meta-analysis of the gut communities of marine fish (Sullam et al. 

2012). Strains of Vibrio specifically have been found to produce hydrolytic enzymes 

(amylase, lipase, cellulose, chitinase, and others) responsible for the breakdown of 

various dietary components (Hamid et al. 1979; Gatesoupe et al. 1997; Henderson and 

Millar 1998; Itoi et al. 2006; MacDonald et al. 1986; Ray et al. 2012). Overall, Vibrio and 

Photobacterium are commonly found in carnivores, while Closdridiales, the second most 

abundant order present in the guts of the bonnethead sharks, is linked to an herbivorous 

diet (Sullam et al. 2012). Closdridiales are another common member of the gut 

microbiome across species. They have been shown to provide numerous specific and 

essential functions related to gut maintenance (Clements et al. 2007; Sullam et al. 2015). 

Clostridiaceae sp., Peptostreptococcaceae sp., and Clostridium perfringens were among 

the top ten most common OTUs present in the bonnethead shark gut. Clostridium 

perfringens is a common resident of the animal digestive system. For instance, it has been 

shown to make up over 55% of the sequence reads for the clownfish (Premnas 
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biaculeatus; Parris et al. 2019). It is particularly associated with marine herbivorous fish 

species (Clements et al. 2007; Kim et al. 2007; Givens et al. 2015), but its exact function 

is unknown. Pseudomondales, the third most abundant order in the bonnethead shark gut, 

has been shown to increase in the guts of rainbow trout (Oncorhynchus mykiss) when 

levels of plant material are increased in the diet, although their exact role digestion is 

unknown (Michl et al. 2017). In the bonnethead sharks, the most abundant 

Pseudomondales OTU was Pseudomonas veronii, which has been associated with the 

degradation of numerous organic materials (Michl et al. 2017). Rhizobiales has been 

shown to be present in the guts of herbivorous ant species, while absent in carnivorous 

ant species (Stoll et al. 2007; Russell et al. 2009). Rhizobiales has also been found in 

zebrafish (Danio rerio; Earley et al. 2018) and have been associated with nitrogen 

fixation (Stoll et al. 2007; Russell et al. 2009). Finally, Mycoplasmatales have been found 

to make up a large proportion of the gut microbiota in numerous organisms, but their 

function has been explored mostly in mice models and has been associated with aiding in 

immune responses (Zhao et al. 2013).  The fact that there were no significant differences 

between the laboratory-fed and wild-caught sharks shows that future studies can bring 

sharks into the lab, at least for short periods of time, without the risk of altering the 

microbiome significantly. We acknowledge that within each order we have discussed, 

there are far more specific OTUs that have various functions depending on their 

environment and that exact function can not be known with 16S rDNA sequencing alone. 

Using programs like PICRUSt, while beneficial in analyzing the functional role of 

microbes in human studies, are risky in unknown environments (Langille et al. 2013), 

like the guts of sharks. Future studies should incorporate metagenomics in order to 
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further understand microbial functions within the guts of the bonnethead shark 

specifically. However, the results presented here are a critical first step to beginning to 

classify and understand the gut microbiome in this unique shark species.   

Overall, these results show that the gut microbiome of the bonnethead shark is 

likely involved in their ability to digest seagrass material. They possess the enzymes 

necessary to breakdown components of cellulose, they have increased surface area for 

maximum absorption in their spiral intestine (although this is likely true of all sharks), 

and they have microbial fermentation occurring in their spiral and distal intestines which 

coincides with some of the possible functions of the orders of taxa present in these gut 

regions. These results also further support that the bonnethead shark is taking a yield 

maximization strategy to digestion as an omnivore. Indeed, the sharks can digest ~52% of 

the neutral detergent fiber in seagrass (Leigh et al. 2018a), likely with assistance from 

their active gut microbiome. Furthermore, with the presence of their spiral intestine 

(which has a scroll shape; Leigh et al. 2017, 2018a), they have increased absorptive 

surface area and likely slow the rate of digesta transit in this gut region (Supplementary 

Table S3; Leigh et al. unpublished data). Overall, in the context of Chemical Reactor 

Theory, the bonnethead shark does have a digestive tract that is functionally well suited 

to efficiently possess large quantities of seagrass. In addition to being one of the most 

informative investigations of a shark gut microbiome to date, our results highlight the 

importance of combining studies of microbial community composition with an informed 

context of host ecology and physiology. This opens the door to investigating these topics 

in other fish species and other vertebrates in general so that we can better understand the 

complex relationship between microbe and host. 
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Figure	1:	N-acetyl-β-D-glucosaminidase	and	β-glucosidase	activities	in	the	digestive	tracts	of	bonnethead	sharks.	Open	circles	
represent	mean	±	standard	deviation	values	for	wild-caught	sharks,	while	filled	circles	represent	laboratory-fed	sharks.	No	significant	
differences	were	found	between	laboratory-fed	and	wild-caught	sharks	for	any	of	the	enzymes	assayed	(p	<	0.05).	Differing	letters	
above	data	points	indicate	significant	difference	among	gut	regions:	PI,	SI	and	DI	(p		<	0.05).	Adapted	from	Leigh	et	al.	2018b.		Figure	2.1: N-acetyl-β-D-glucosaminidase	and	β-glucosidase	activities	in	the	digestive	

tracts	of	bonnethead	sharks.	Open	circles	represent	mean	±	standard	deviation	values	
for	wild-caught	sharks,	while	filled	circles	represent	laboratory-fed	sharks.	No	significant	
differences	were	found	between	laboratory-fed	and	wild-caught	sharks	for	any	of	the	
enzymes	assayed	(p	<	0.05).	Differing	letters	above	data	points	indicate	significant	
difference	among	gut	regions:	PI,	SI	and	DI	(p	<	0.05).	 
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Figure	2.2:	Histological	cross-sections	of	proximal,	spiral,	and	distal	intestinal	tissue	of	wild-
caught	and	laboratory-fed	sharks.	Tissues	were	stained	with	hematoxylin	and	eosin.	Scale	bars	
are	1000	μm	for	each	row	of	images.	No	significant	differences	between	lab-fed	and	wild-caught	
for	any	gut	region	(p>0.05).	SI	has	significantly	larger	intestinal	surface	area	than	PI	and	DI	for	
both	groups	(p<0.05).	 
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Figure 2.3: Mean ± standard deviation intestinal epithelial surface area for the 
PI, SI, and DI of laboratory-fed and wild-caught sharks. Letters above data 
points indicate differences among gut regions (p < 0.05).  
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Figure	2.4: Total	short-chain	fatty	acid	(SCFA)	vs.	branched-chain	fatty	acids	(isobutyrate	and	
isovalerate	summed)	as	a	percentage	of	total	SCFA.	Black	circles	represent	individual	laboratory-
fed	sharks.	Open	circles	represent	individual	wild-caught	sharks.	Diamonds,	triangles,	and	
rectangles	represent	data	on	protein-fermenting,	mix-fermenting,	and	carbohydrate-fermenting	
bony	fishes,	respectively,	from	Clements	et	al.	2017	and	Clements	et	al.	1995.	1)	Naso	lituratus,	
2)	Naso	unicornis,	3)	Zebrasoma	scopas,	4)	Acanthurus	nigricans,	5)	Acanthurus	nigrofuscus,	6)	
Acanthurus	lineatus,	7)	Naso	vlamingii,	8)	Naso	hexacanthus,	9)	Naso	annulatus,	10)	Naso	
brevirostris,	11)	Abudefduf	septemfasciatus,	12)	Abudefduf	sordidus,	13)	Bolbometopon	
muricatum,	14)	Scarus	niger,	15)	Chlorurus	spilurus,	16)	Scarus	flavipectoralis,	17)	Scarus	
schlegeli,	18)	Scarus	rivulatus.	 
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Figure	2.5: Bray-Curtis	group	significance	plot	depicting	differences	in	microbial	
abundances	between	PI,	SI,	and	DI	gut	regions.	A	distance	of	0	indicates	that	all	samples	
share	the	same	species	at	the	exact	same	abundances	and	a	distance	of	1	means	that	the	
samples	have	complete	difference	species	abundances.	*Indicates	significance	from	a	
pairwise	permanova	(p	<	0.05).	 
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Figure	2.6: Taxonomy	bar	plot	for	PI,	PIGC,	SI,	SIGC,	DI,	and	DIGC	gut	regions	and	
contents	of	both	the	laboratory-fed	and	wild-caught	sharks	depicting	the	relative	
frequency	of	each	bacterial	Operational	Taxonomic	Units	(OTUs)	detected	from	16r	DNA	
sequencing	results.	Only	the	top	10	OTUs	are	included	in	the	legend.	 
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Table	1:	The	average	percent	abundance	of	the	top	five	bacterial	orders	for	each	gut	
region	and	gut	contents	of	each	region.	Since	no	significant	differences	were	found	
between	laboratory-fed	and	wild-caught	sharks,	the	sequences	were	combined	when	
determining	average	percent	abundance.		

	 PI	 PIGC	 SI	 SICG	 DI	 DIGC	

Vibrionales	 44.3	 51.6	 96.2	 99.3	 98.5	 97.6	

Clostridiales	 54.5	 47.4	 3.62	 0.687	 1.40	 1.42	

Rhizobiales	 0.222	 0.220	 0.113	 0.015	 0.014	 0.318	

Pseudomonadales	 0.774	 0.743	 0.051	 0.027	 0.057	 0.088	

Mycoplasmatales	 0.277	 0.009	 0.057	 0.018	 0.004	 0.544	

Table	2.1:	The	average	percent	abundance	of	the	top	five	bacterial	orders	for	each	
gut	region	and	gut	contents	of	each	region.	Since	no	significant	differences	were	
found	between	laboratory-fed	and	wild-caught	sharks,	the	sequences	were	
combined	when	determining	average	percent	abundance.	 
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Table	2.2: Total	short-chain	fatty	acid	concentrations	for	the	SI	and	DI	of	the	laboratory-fed	
and	wild-caught	sharks.	Percent	concentrations	included	for	acetate,	propionate,	and	
butyrate.	 
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Table 2.3: Complete list of all operational taxonomic units found within the digestive 
tract of the bonnethead shark.  
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Chapter 3 
 

Spiraling Into Control:  

The Function of the Spiral Intestine in Elasmobranchs 

Introduction  

Sharks have long been considered one of the most diverse groups of upper trophic 

level consumers in the ocean (Compagno 1984; Bucking 2016; Leigh et al. 2018). As 

such, they play a crucial role in the biodiversity of lower trophic levels that humans 

depend on for food and economic resources (Wetherbee et al. 1990). However, beyond 

prey capture methods and dietary analysis, the nutritional physiology of sharks is 

woefully understudied. Sharks consume a broad range of diet types (smaller sharks, 

marine mammals, teleosts, crustaceans, zooplankton, seagrass etc.; Leigh et al. 2018) and 

are also generally known for eating large meals on an infrequent basis, potentially going 

days, or even weeks, without a meal (Wetherbee et al. 1987; Cortes et al. 2008; 

Papastamatiou et al. 2015).  

As most sharks are carnivorous with relatively low intake of food, they have 

relatively “short” guts that are equal to, or shorter than, their body lengths (Leigh et al. 

2017). However, elasmobranchs (including sharks, skates, and rays) have spiral intestines 

(Fig. 3.1), which effectively expand the surface area and volume of the intestine over 

shorter lengths of the gut, allegedly increasing gut residence time and nutrient absorption, 

although there is little quantitative evidence of these claims (Holmgren and Nilsson 1999; 

Chatchavalvanich et al. 2006; Theodosiou et al. 2012; Jhaveri et al. 2015; Dezfuli et al. 

2018; Leigh et al. 2019). The evolution of the spiral intestine itself is interesting when put 

in the context of the Adaptive Modulation Hypothesis (AMH; Karasov and Martínez del 
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Rio 2007). The AMH suggests that gut structure and function should largely match the 

dietary habits of an animal in order to optimize energy uptake. Based on economic 

principles, and the fact that the digestive tract is energetically expensive to maintain 

(Cant et al. 1996; Martine and Fuhrman 1995; Secor et al. 2012; Karasov and Douglas 

2013), gut structure and function should line up with what is consumed in terms of 

quantity and biochemical composition. With the costs and limitations of maintaining the 

gut, the spiral intestine is a logical solution to thrive on infrequent meals observed in 

elasmobranchs, yet it is intriguing that this gut morphology is restricted to elasmobranchs 

and a few boney fishes amongst vertebrates (Leigh et al. 2017).  

The spiral intestine is located posterior to the stomach and proximal intestine, and 

anterior to the rectum (Fig. 3.1). It consists of a varying number of intestinal tissue folds 

(2-50) and has been observed in four main morphological forms: columnar, scroll, 

funnels oriented posteriorly, and funnels oriented anteriorly (Fig. 3.2; Holmgren and 

Nilsson 1999; Wilson and Castro 2011). To date, these differing morphologies have been 

depicted in the literature using illustrations, photographs from dissections, or histological 

images; however, none of these methods provides an adequate means of analyzing the 

structures as they sit in the intestine, or the potential functionality of the different 

structures using 3-Dimensional models (Fig. 3.2; originally from Parker 1885, 

reproduced in Bertin 1958; Holmgren and Nilsson 1999; Wilson and Castro 2011).  

Given that previously used techniques are damaging to the spiral structure, it is 

clear that a new method is needed in order to accurately depict and quantify the 

morphology of spiral intestines. Therefore, in this study, we investigated the morphology 

of the various spiral intestine shapes using a novel method: 3D reconstructions of 
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computerized tomography x-ray scan images (CT scans). We collected and scanned spiral 

intestines from at least one representative species for most families of known sharks 

(with a few exceptions; Table 3.1), generating functional images of these important 

structures. Based on the AMH, we would expect differing gut morphologies to coincide 

with dietary shifts. Hence, as a test of the AMH, we mapped the various spiral intestine 

structures onto a phylogenetic tree to gain insight into how the diverse spiral intestine 

structures may have evolved and whether the structures correlated with diet (Table 3.1, 

Fig. 3.3).  

From a functional perspective, as we examined the scanned spiral intestines, it 

became apparent that the spiral intestine structures may passively (i.e., without any 

muscular contractions) affect digesta flow, favoring an anterior to posterior flow axis, and 

preventing back flow.  That is, spiral intestines may act as natural Tesla valves, which 

prevent backflow using passive structures (Fig. 3.4.) To test this prediction, we measured 

flow rate through fixed spiral intestines of shark species that represent each of the four 

morphological forms (columnar, funnels pointed anteriorly, funnels pointed posteriorly, 

and scroll), showing that spiral intestines do in fact behave like Tesla valves. Finally, 

because spiral intestines actually function with muscular contractions, we quantified the 

contraction rate of the intestinal smooth muscle used to transport digesta through the 

columnar spiral intestine in Squalus suckleyi (Pacific Spiny Dogfish). Overall, this 

project seeks to understand the potential evolutionary trajectory of spiral intestine 

structures, and quantify the function of the spiral intestine by (1) comparing spiral 

intestine morphology across shark families and known diet types using 3D 

reconstructions of CT scans and (2) evaluating the movement of material through the 
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spiral intestines using quantifications of flow rate and intestinal muscle contraction rate. 

This study is the first to quantify spiral intestines in this manner and in this many taxa, 

thus providing insight on the evolution and function of this interesting gut structure.  

Materials and Methods 

Specimen Collections and CT Scanning 

  Spiral intestines were either dissected out from preserved shark specimens (in 

formalin) from the Natural History Museum of Los Angeles County (Table 3.2) or from 

previously frozen spiral intestines from donated shark specimens. To dissect out the 

spiral intestine, the ventral body cavity was opened using a razor blade (from anus to 

mouth) and cuts with dissecting scissors were made at the distal end of the proximal 

intestine and the anus. The spiral intestines from all specimens were flushed out with de-

ionized water to remove any residual gut contents. They were then put through an ethanol 

series (30%, 50%, 70%). They stayed submerged in each ethanol concentration for a 

minimum of four hours and were stored in 70% ethanol. The intestines then underwent 

iodine staining for a minimum of four hours (using Lugol’s Solution). After the stain, 

each intestine was tied off at one end with fishing line. They were then filled with 70% 

ethanol and tied off at the other end with fishing line. They were placed into individually 

labeled plastic 15mL or 50mL vials (depending on the size of the specimen) to be 

scanned.  

 CT scanning was done at two different facilities. One set was done at Friday 

Harbor Laboratories (University of Washington, Friday Harbor, WA, USA) to generate 

high-resolution images.  These samples underwent lyophilization (Table 3.1). The 

lyophilizer (SP Scientific: VerTis, Warminster, PA) was set to -40°C for two hours prior 
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to use. The caps of the sample vials were loosened and then the vials were placed into the 

vacuum chamber of the lyophilizer. The vacuum pump was turned on and decreased the 

pressure in the chamber to 30 millitorr. The samples were left in the vacuum for a 

minimum of 12 hours to ensure complete freeze-drying. At the end of 12 hours, the 

samples were removed from the lyophilizer and kept dry in their individual vials until 

they could be prepped for the CT scanner. Each individual sample was removed from its 

vial and wrapped in dry cheesecloth. All of the individually cheesecloth-wrapped 

specimens were then wrapped together in more dry cheesecloth. This bundle was then 

placed into a plastic cylinder (size varied based on size of intestine sample) and packed 

so that no movement of the specimens could occur during the scan. The cylinder was 

wrapped with plastic wrap and then secured tightly inside the CT scanner (Bruker 

Skyscan 1173, Kontich, Belgium). The scanner had a 1mm filter type and x-ray detector 

resolution was 1120x1120 voxels (61.4µm pixels) and ran for 4 and a half hours. 

SkyScan1173 software was used to manage the scanning parameters. After the scanning 

was complete, the samples were removed and returned to their individual vials to be kept 

dry. The image files created by the scan were separated by species using Data Viewer and 

CT Vox. The files were converted in Dicom files and uploaded into Horos (version 

1.1.7). Horos was used to create the 3D renderings of each of the spiral intestines. Each 

of the spiral intestine types (column, funnel (anterior), funnel (posterior) and scroll) were 

scanned using this lyophilization method. The remaining  spiral intestines were 

immediately scanned once filled with 70% ethanol, which produced highly contrasted, 

useful images, at University of California (Irvine, CA, USA) using a Gamma Medica X-

SPECT scanner (50kVp, 1000uA). The image files created by the scan were 
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reconstructed using exxim COBRA (2006 version). This latter set of scanned spiral 

intestines allowed us to identify the morphological type of each spiral intestine, but the 

images were not as high-quality as those produced at Friday Harbor Laboratories.   

Flow Rate 

 A 50 L carboy was filled with 5L of de-ionized water. As a control, a clear plastic 

tube (15cm long, 0.75cm in diameter) was attached to the outflow valve of the carboy 

and a bucket was placed below the outflow. When the outflow valve was opened, time 

was recorded until 1L flowed completely through the clear plastic tubing.  This was 

repeated five times. The plastic tubing was removed and replaced with the proximal and 

spiral intestines of Squalus suckleyi, Centrophorus squamosus, Mustelus canis, and 

Sphyrna tiburo (previously fixed overnight in 70% ethanol) were attached to the carboy 

individually. These species were chosen to represent each of the four spiral shapes 

(column, funnels pointed anteriorly, funnels pointed posteriorly, and scroll, respectively). 

They were attached (individually) onto the carboy outflow (so water would flow from the 

anterior end to the posterior end of each intestine), and the process was repeated five 

times for each intestinal section. Flow rate was initially recorded as liters per second and 

was converted in m3s-1 in order to calculate resistance. Resistance was calculated as the 

change in pressure divided by flow rate (R = ΔP/Q) (Mearin et al. 1990). P1 was 

calculated as height of the water column (0.17m) multiplied by the density of the water 

(assumed to be 1000kg/m3) multiplied by the force of gravity (9.8m/s2) (P1=hρg). P2 was 

determined to be zero since the height of the water column at P2 was zero, and therefore, 

ΔP = 0.00166MPa. Resistance (MPa*s/m3) was calculated for the plastic control tube, as 

well as each proximal intestine and each spiral intestine. To examine whether flow was 
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impeded when moving from the posterior to the anterior end of the intestinal sections, the 

entire process was repeated with the posterior ends of both the proximal and spiral 

intestines attached to the carboy outflow so that the flow of water was moving from the 

posterior end to the anterior end of each intestinal section.  

Intestinal Smooth Muscle Contractions 

 In order to examine the smooth muscle contractions of a spiral intestine, five S. 

suckleyi were collected alive from an otter trawl in Friday Harbor, WA. They were 

transported in live wells to Friday Harbor laboratories on San Juan Island where they 

were held in two large round tanks (one meter deep and two meters in diameter) with 

flow-through seawater systems (University of Washington IACUC #4239-03 to Adam 

Summers). Contraction experiments were performed only on the S. suckleyi. Each shark 

(n=5) was individually euthanized using 1% MS-222 in buffered (NaOH) seawater. The 

shark remained submerged in the MS-222 for 20 minutes to ensure death. Immediately 

after death, the ventral body cavity was opened and the proximal and spiral intestines 

were identified. Corn syrup with a known viscosity (20 poise) was mixed with green food 

coloring. A 16-gauge needle attached to a 3mL syringe was slowly filled to 1mL with the 

green corn syrup. The same step was repeated with corn syrup mixed with blue food 

coloring. The corn syrup with the green food coloring was injected into the lumen of the 

anterior proximal intestine. The corn syrup with blue food coloring was injected into the 

lumen of the anterior spiral intestine. 3mL of 1M acetylcholine in saline solution 

(containing 102.7mM NaCl, 1.61 mM KCl, 1.36mM CaCl2, and 1.19mM NaHCO3) was 

injected into the smooth muscle layer of both the anterior proximal and anterior spiral 

intestine using a 21-gauge needle (Jensen and Holmgren 1985; Kitazawa et al. 1990). A 
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timer was started upon the injection of the acetylcholine and a camera (Panasonic lumix 

DMC-FZ200) recorded the contractions of the intestines until the food coloring 

previously injected into the spiral intestine lumen began to emerge from the colon. At this 

time, the timer was stopped. Throughout this process, seawater was dripped onto the 

exterior of the intestines using a transfer pipette until the intestines ceased to contract. 

The video was used to calculate the average number of contractions that occurred per 

minute, the average length of time (s) that a single contraction took to occur, and to 

confirm the total time for the dye to pass through the entire length of the spiral intestine. 

This information was then used to determine the average number of contractions required 

to move the corn syrup from the anterior of the intestine to the colon. However, the 

proximal intestine did not contract in response to acetylcholine and therefore the material 

injected into the proximal intestine never moved through the intestine to the colon. As 

such, the average number of contractions required to move corn syrup through the 

intestine was calculated for the spiral intestine only.  

Statistical Analyses  

 A phylogenetic generalized least squares (PGLS) test was performed to determine 

phylogenetic relationships of shark species with respect to their spiral intestine 

morphology. Correlations between diet and spiral intestine type were determined using a 

logistic regression test (diets were reduced to numerical categories, i.e. primarily bony 

fish diet = 1). Comparisons of flow rate were made between proximal and spiral 

intestines (anteriorly to posteriorly only) for each species using paired t-tests with a 

Bonferroni-corrected error rate of p=0.004. Comparisons of flow rate among the 

proximal intestine, the spiral intestine with flow anteriorly to posteriorly, and the spiral 
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intestine posteriorly to anteriorly were made using an ANOVA (p<0.05).  All statistical 

analyses were run in R (1.1.383).  

Results 

 A full list of the shark species analyzed, their spiral intestine morphology types, 

and their diets can be found in Table 3.1. There is not a significant correlation between 

diet type and spiral intestine morphology (p < 0.05). For families with multiple species 

included in the analyses, different species within a single family tended to have the same 

spiral intestine morphology; however, different families within a single order can have 

differing spiral intestine morphologies among the families (Fig. 3.3). Generally speaking, 

the columnar spiral intestine morphology seems to be the ancestral condition, but the 

evolution of the other morphologies doesn’t appear to follow any specific sequence of 

one spiral morphology (e.g., column) preceding the other types (Fig. 3.3). Volumetric 

flow rate (m3/s) was compared to resistance (MPa*s/m3) for all four species. Higher 

resistance led to significantly slower volumetric flow rate (Fig. 3.5). The spiral intestines 

for all species exhibited a significantly higher resistance and slower volumetric flow rate 

than the proximal intestines or control tubing (p < 0.01). The control tubing flow rate and 

resistance was not significantly different from any of the proximal intestines (p > 0.05), 

showing that the proximal intestine functions as a bore tube. When the flow rate of the 

proximal intestine is compared to the spiral intestine as a ratio, it is found that the spiral 

intestine has a flow rate three and a half times slower than the proximal intestine. When 

flow rate is compared between the spiral intestines oriented anteriorly/posteriorly to 

spirals oriented posteriorly/anteriorly it was found that flow rate was slower and 

resistance was higher in the spirals oriented posteriorly/anteriorly (Fig. 3.5). In other 
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words, there was less resistance to flow in the anterior to posterior direction, showing that 

the structures of the spiral intestine passively engender anterior to posterior flow. The 

average number of contractions that occurred per minute for S. suckleyi was 0.74 (±0.33). 

The average amount of time necessary for the dyed corn syrup to move from the anterior 

end of the spiral intestine to the posterior end was 35.65 minutes (±13). This was used to 

calculate the average number of contractions necessary to transport the dyed corn syrup 

through the spiral intestine, which was found to be 48.17 contractions (±3.9). The 

proximal intestine never contracted upon injection of acetylcholine, and never moved the 

dyed corn syrup through to the spiral intestine. However, upon dissection after the 

experiments, green dye was found in the esophagus of S. suckleyi, indicating that the 

proximal intestine is subject to back-flow of digesta material. Previous histological data 

(Leigh, Chapter 2) of the proximal, spiral, and distal intestines reveals that the muscular 

layer of the spiral intestine is significantly thinner than either the proximal or distal 

intestines (p<0.05), perhaps contributing to this result.  

Discussion 

This investigation produced the first 3D images of spiral intestines, which is 

important because two-dimensional histological images and sketches are what we have 

had to work with for over 130 years (e.g., Parker 1885; Wilson and Castro 2011; 

Theodosiou et al. 2012; Dezfuli et al. 2018). We can now confirm the spiral intestine 

structures for species within the majority of the existing shark families. However, 

families within a single order do have differing spiral intestine structures. Also, there is 

no clear correlation between shark diet types and spiral intestine morphology. For 

example, Sphyrna tiburo has a scroll intestine and consumes a diet consisting of up to 
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62% (by gut content mass) of seagrass material, along with crustaceans, cephalopods, and 

small bony fishes (Cortés et al. 1996; Bethea et al. 2007). However, the closely related 

Sphyrna zygaena also has a scroll intestine, but consumes smaller elasmobranchs, a 

variety of bony fishes, and various invertebrates (e.g. Smale and Cliff 1998; Table 3.1). 

This same trend occurred throughout various families of sharks containing multiple 

species (Figure 3.3). While the most basal groups (those that arose prior to 

Selachimorpha) all possess the columnar spiral intestine shape, there does not appear to 

be any phylogenetic reason for why different families of sharks evolved different spiral 

intestine shapes according to the PGLS analysis (Figure 3.3). Thus, a potential functional 

reason for the differing spiral shapes remains a possibility. Nevertheless, by mapping the 

various spiral structures onto the phylogentic tree, assuming the tree is correct, we can 

qualitatively see the general order in which the different structures evolved, beginning 

with the columnar morphology. After the columnar shape, the scroll intestine becomes 

present within the family Hexanchidae. Next, we see the funnels pointed posteriorly arise 

in Etmopteridae, followed by the funnels pointed anteriorly arising in Somniosidae. 

However, we still see the columnar and scroll intestine morphologies in some of the most 

derived orders, such as the Carcharhiniformes, again indicating that structure may play an 

important functional role rather than following linear evolutionary changes. For instance, 

greater resistance, and thus, slower flow rates along the posterior to anterior axis, is more 

likely to occur for all spiral morphologies as digesta viscosity is increased. However, at 

lower viscosities, only the funnel morphologies showed significantly slower flow rates 

along the posterior to anterior axis in comparison to the anterior to posterior axis (Fig. 

3.5), thus suggesting that families with these funnel morphologies may have lower 
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digesta viscosities, perhaps relating to water absorption in the spiral intestine 

(Theodosiou and Simeone 2012). There are also some non-elasmobranch fishes that 

possess a spiral intestine such as Acipenseridae (sturgeon; Buddington and Doroshov 

1986), Dipnoi (lungfish; Argyriou et al. 2016), and Lepisosteidae (gar; Frías-Quintana et 

al. 2015) indicating that the spiral intestine is a characteristic that appeared early in the 

evolution of vertebrates, but also that it has independently evolved for various fish 

species (Kikugawa et al. 2004). The roles of these structures in the digestive process 

should be explored further. 

Investigating the genes involved in spiral intestine development may also be 

crucial in understanding how the different morphologies evolved. For example, roles in 

gut patterning and subsequent intestinal epithelial and smooth muscle differentiation have 

been identified for Hox genes in Danio rerio (zebrafish; Jiang et al. 2015). Interestingly, 

genes Hoxa13 and Hoxd13 implicate posterior Hox gene function during development of 

the skate spiral intestine (Theodosiou and Simeone 2012; Theodosiou et al. 2007; Warot 

et al. 1997). Future investigations should focus on determining if mutations to these 

genes or shifts in their expression patterns during the developmental process can lead to 

changes in the morphological development of the spiral intestine in sharks. Perhaps 

simply changing the timing of expression of some genes leads to subtle changes that 

result in the different spiral intestine morphologies.  

In addition to providing evolutionary insights, the 3D images we generated allow 

us to visualize the actual structure of the tissue folds in the spiral intestine and compare 

the morphology between species without needing to physically cut it open, which 

damages the structure. These images can also be used to quantify the number of intestinal 
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folds, the volume of the lumen, and the surface area of tissue provided by the spiral shape 

that may lead to increased levels of nutrient absorption. These 3D renderings also allow 

us to visualize how flow may occur through the spiral intestine For instance, the spiral 

intestine of S. suckleyi and others appears to have a central lumen (separate from the 

spirals), meaning that digesta could pass directly through and bypass the spirals, or travel 

through the spirals to allow more time for nutrient absorption. The topic of a central 

lumen in a spiral intestine has not been discussed in the literature, showing how these 3D 

renderings can provide insight to the morphology. It was these observations that 

prompted us to test whether the spiral intestines could function as natural Tesla valves 

(Cieri and Farmer 2016). A Tesla Valve allows fluid to move unidirectionally, without 

any moving parts (Nobakht et al. 2013). The general idea is that currents flow along 

different paths, in different directions, and that these differences have a disproportionate 

effect on the resistance of the tube (Figure 3.4). The spiral intestine may be working in a 

similar fashion, which would allow segmental contractions to better mix digesta in the SI 

without the risk of much backflow. Spiral intestines evolved approximately 450 million 

years ago (e.g. Williams 1972) (before the existence of insects, mammals, birds, etc.), 

suggesting that it is a successful structure in the digestive process. Hence, spiral intestine 

morphologies should be explored further as mechanisms to produce one-way flow 

without the use of mechanical parts or energy. While we cannot know for sure what spiral 

intestine morphology was like 450 million years ago, there is evidence of fossilized 

columnar shaped coprolites (e.g. Williams 1972), agreeing with our phylogenetic analysis 

that the columnar shape may be the ancestral phenotype (Fig. 3.3).  
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We also provide the first quantitative analysis of the functional flow rate and 

contraction rate of the spiral intestine (SI) in a shark. The flow rate results also provide 

support for the idea that the spiral intestine is acting similarly to a Tesla Valve, We have 

established, quantitatively, that flow rate is slowed in the spiral intestine due to the high 

resistance produced by the tissue folds. Additionally, the flow rate was significantly 

slowed further when the two funnel-shaped spiral intestines (anterior and posterior 

funnels) were subjected to flow in the posterior to anterior direction. This indicates that at 

least the two funnel shaped spiral intestines are capable of producing unidirectional flow, 

similarly to a Tesla Valve design. The proximal intestine (PI), which is a relatively 

straight lumen lacking in any additional internal tissue, provided very little resistance to 

flow. The PI also did not produce contractions when stimulated with acetylcholine while 

the SI produced an average of 48.17 contractions per minute. This indicates that digesta 

can flow freely through the PI and needs to be pushed through the SI via contractions, 

and the spiral morphology prevents back flow.  This type of quantitative data could 

explain why digesta transit rates vary among species and among different SI structures 

(Aedo and Arancibia 2001; Bush and Holland 2002; Papastamatiou and Lowe 2004; 

Papastamatiou et al. 2007). It is time to start investigating these unique intestinal 

structures as a key component to the digestive success of sharks. Until now, very little 

was known about their functional morphology. The new techniques produced by this 

project lays the groundwork for future investigations involving the spiral intestine, and 

for understanding the functional role of the digestive tract in vertebrates in general. 
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Figure 3.1: Digestive anatomy of the bonnethead shark (Sphyrna tiburo). Drawing of 
scroll intestine by A. Dingeldein. CT scan reconstruction of scroll intestine by SC Leigh.  
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Figure 3.2: The four spiral intestine structures: (i) columnar, (ii) scroll, (iii) funnels 
pointed posteriorly, and (iv) funnels pointed anteriorly. Sketches adapted from Parker 
1885. CT scans by SC Leigh.  
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Figure 3.3: Phylogeny of sharks to the family level based on the tree from Vélez-Zuazo & Agnarsson 
(2011). Adapted from Leigh et al. (2018). Depicts which spiral intestine morphology corresponds to 
each family. Light gray lines show which families belong to certain orders. A) column, B) scroll, C) 
funnels pointed posteriorly, and D) funnels pointed anteriorly. Most basal categories (prior to 
Selachimorpha) do not have CT scans. Information about their spiral intestine structure came from 
previous literature.  
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Figure 3.4: A Tesla valve (A and B) produces unidirectional flow without the use 
of mechanical parts. A spiral intestine (C) appears to have a similar structure. 
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Figure 3.5: Average volumetric flow rate in the proximal and spiral intestine (both oriented 
anteriorly to posteriorly and posteriorly to anteriorly) for Squalus suckleyi, Sphyrna tiburo, 
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Table 3.1: Families, species, spiral intestine shape, and diet type for all samples CT scanned. 
*= Lyophilized prior to scanning. 
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Table 3.2: Sample names and ID#s from the Natural History Museum of Los Angeles.  

Sample Name Sample ID# 

Aliopias vulpinus 36227-1 

Ginglymostoma cirratum 9045-6 

Hemiscyllium ocellatum 39985-36 

Apristurus brunneus 39985-36 

Cephaloscyllium ventrosum 24508 

Galeus area 42328-1 

Carcharhinus nesiotes 1948 

Carcharhinus melanopterus 54163-1 

Sphyrna lewini 36277-5 

Sphyrna zygaena 9500-1 

Squalus acanthias 23100 

Centroscyllium nigrum 11156-1 

Notorynchus cepedianus 42298-1 

Heterodontus francisci 45685-1 

Chlamydoselachus anguineus 43793-1 

Squaliolus laticaudus 36021-1 

Squatina californica 57653-1 

Echinorhinus cookei 33827-31 

Deania rostrata 42154-1 

Isurus oxychinus 30830-2 

Somniosus pacificus 39568-1 

Stegostoma fasciatum 38125-2 

Chaenogaleus macrostoma 38145-2 

Orectolobus maculatus 42624-16 

Pseudocarcharias kamoharai 45857-1 
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DISSCUSSION 

 The chapters of this dissertation represent one of the most conclusive 

investigations into the nutritional physiology of sharks to date. I have provided 

conclusive evidence that bonnethead sharks, animals previously thought to be solely 

carnivorous, can assimilate nutrients from seagrass. This is the first species of shark ever 

to be shown to have an omnivorous digestive strategy. I have also provided one of the 

most informative investigations of a shark gut microbiome to date, and my results 

highlight the importance of combining studies of microbial community composition with 

an informed context of host ecology and physiology. This opens the door to investigating 

these topics in other fish species and other vertebrates in general so that we can better 

understand the complex relationship between microbe and host. Finally, I show how new 

methodology can be used to investigate the digestive morphology and function of sharks 

and fishes in general. I provide qualitative data using CT scan images to understand how 

the unique spiral structures evolved and how they correlate with diet type, as well as 

quantitative data with respect to the flow rate of digesta through the spiral intestine as 

well as information on the contraction rate of the smooth intestinal muscle.  

Few studies have explored the role of digestive enzymes in the guts of sharks. 

There is much to be learned from identifying and classifying the enzymes in each region 

of the digestive tract, or what enzymes are even present in shark genomes (e.g., Castro et 

al. 2014; Venkatesh et al. 2014). Such information can be used to pinpoint exactly which 

nutrients are being used by sharks and where their breakdown is occurring within the gut. 

This may also provide insight about shark vitamin and mineral requirements. It has been 

assumed that their needs are similar to other vertebrates (iron, calcium, B vitamins, lipid 
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soluble vitamins, etc.) but this has yet to be explored in a shark species (Halver 2002; 

Teles 2012). Many of the techniques to measure enzymatic activity are already being 

used to explore the digestive physiology of other organisms, and therefore, the 

methodology could be readily applied to sharks as well (German 2011), especially using 

incidental mortalities from survey work (e.g., Bethea et al. 2007; Jhaveri et al. 2015; 

Newton et al. 2015). Understanding which enzymes are of microbial origin versus 

endogenously derived would also aid in developing the field of digestive physiology from 

a biochemical standpoint. Since microbiomes are prone to change based on the 

surrounding environment and individual physiology, it is likely that sharks, particularly 

migratory sharks, have access to variable sources of exogenous enzymatic activity and 

nutrient input at varying points throughout their lifetime. This could greatly impact their 

digestive success and food choices as they develop. As for endogenous enzyme 

production, exploration in gene expression (transcriptomics) would provide insight to 

which genes activate the secretion of different enzymes for different shark species. There 

are many studies of teleost genomics and transcriptomics (Whitehead et al. 2011; Qian et 

al. 2014; German et al. 2016; Calduch-Giner et al. 2016), but few in sharks (Dowd et al. 

2008; Pinhal et al. 2012; Wyffels et al. 2014; Venkatesh et al. 2014; Mulley et al. 2014), 

and none on the gut in sharks. Understanding which genes are expressed in various shark 

species would reveal the molecular underpinnings leading to dietary specialization. 

Ontogenetic shifts in gene expression and enzyme activity have also not been explored 

(except in teleost fishes) and could be extremely informative given that many species 

have dramatic shifts in diet as they grow. More genomic studies of sharks should be a top 

priority given that there is currently very little genomic information available for 
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elasmobranchs (Leucoraja erinacea; Wyffels et al. 2014) and holocephalans 

(Callorhinchus milii; Venkatesh et al. 2014).  

Despite years of scientists citing reviews that state that the spiral intestine is the 

most important organ in the nutrient absorption process and that it slows the rate of 

transit through the gut, there is little quantitative evidence to support these contentions 

(Wilson and Castro 2011; Jhaveri et al. 2015; Chatchavalvanich et al. 2006; Hart et al. 

2016). This needs to be addressed if we are to further the field of shark digestive 

physiology. We need to move beyond dissection photographs and illustrations and use 

CT scan technology to create 3D renderings of the various spiral intestine structures. 

These renderings give us the ability to visualize flow, and make quantitative assessments 

of the intestinal volume and tissue surface area. This information, paired with 

quantification of the contractive capabilities, volumetric flow rate, and absorptive 

properties of the entire shark gut, and the spiral intestine in particular, would reveal how 

this unique gut type contributes to the economical design of the gastrointestinal tract as a 

whole. I propose that the ‘‘rate vs. yield’’ theoretical framework currently used to 

describe teleost digestive strategies should be applied to sharks as well (e.g., Jhaveri et al. 

2015). Like teleosts, sharks consume a broad range of diet types, inhabit a broad range of 

habitats, and feed with different frequencies. As such, they likely encompass a broad 

range of digestive strategies and efficiencies that could be described using this 

framework. Dietary specialization within this framework could be coupled to stable 

isotope analysis (e.g., Lujan et al. 2011) and fatty acid profiling (e.g., Clements et al. 

2017) to further our understanding of shark dietary diversity (Bucking 2016). 
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Additionally, more studies of isotopic turnover rates and tissue-diet discrimination in 

sharks are necessary in order to make sense of field isotopic data.  

Sharks are undeniably still a mystery in many respects, especially with regards to 

their nutritional physiology. We know that they share some similarities with other, well-

studied, carnivorous vertebrates, such as teleosts. However, there are still knowledge 

gaps in the topics of feeding mechanics, functional morphology of the digestive tract (the 

spiral intestine in particular), digestive biochemistry, and gastrointestinal/microbiota 

relationships. As important as sharks are presumed to be ecologically, there is a definite 

need for future research to investigate their nutritional physiology. 
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