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Abstract

Membrane proteins are assembled through balanced interactions among protein, lipids and water. 

Studying their folding while maintaining the native lipid environment is necessary but challenging. 

Here we present methods for analyzing key elements in membrane protein folding including 

thermodynamic stability, compactness of the unfolded state and folding cooperativity under native 

conditions. The methods are based on steric trapping which couples unfolding of a doubly-

biotinylated protein to binding of monovalent streptavidin (mSA). We further advanced this 

technology for general application by developing versatile biotin probes possessing spectroscopic 

reporters that are sensitized by mSA binding or protein unfolding. By applying these methods to 

an intramembrane protease GlpG of Escherichia coli, we elucidated a widely unraveled unfolded 

state, subglobal unfolding of the region encompassing the active site, and a network of cooperative 

and localized interactions to maintain the stability. These findings provide crucial insights into the 

folding energy landscape of membrane proteins.

Understanding the free energy landscape of protein folding requires determination of the 

free energy levels and conformations of states populated during folding as well as analysis 

of energy barriers to reach the native conformation
1
. Experimentally, this task has been 

carried out by equilibrium and kinetic folding studies using denaturants that can readily shift 
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population distribution between folded and unfolded states
2
. However, the overall shape of 

the folding energy landscape substantially changes in the presence of denaturants, and 

certain short-lived higher energy states may not be detected in denaturing conditions
3,4. 

Thus, studying protein folding under native conditions is necessary for a full survey of the 

folding energy landscape. For water-soluble proteins, methods such as hydrogen-deuterium 

exchange (HDX), NMR relaxation dispersion and proteolysis have revealed the dynamic and 

multi-state nature of the native conformational ensemble
4-8 which is critical to protein 

function
9-11

. However, such features remain largely unexplored for membrane proteins. The 

poor accessibility of solvent water to the interior of micelles and bilayers and the large sizes 

of protein-micellar and protein-liposomal complexes have made it difficult to apply these 

methods for characterizing the native ensemble of membrane proteins
12,13

.

Steric trapping is a promising tool for investigating thermodynamic stability and folding of 

membrane proteins directly under native conditions. The method couples unfolding of a 

target protein labeled with two biotin tags to competitive binding of bulky monovalent 

streptavidin molecules (mSA, MW=52 kD)
14-18

 (Fig. 1a for detailed description).

Although promising, it is yet difficult to apply steric trapping to various types of membrane 

proteins. The method requires two essential features: two site-specifically conjugated biotin 

labels on a target protein and a probe to monitor mSA binding or protein unfolding. Site-

specific biotinylation has been achieved by labeling of engineered cysteine residues with 

thiol-reactive biotin derivatives
14,15,18

. For detection of unfolding, widely-used tools such as 

tryptophan fluorescence and circular dichroism cannot be used due to large signal 

interferences from mSA molecules. A method for direct detection of mSA binding has not 

been developed yet. Thus, the application has been limited to proteins possessing convenient 

unfolding readouts such as absorbance of a conformation-sensitive intrinsic chromophore 

(e.g. retinal in bacteriorhodopsin
15

) and enzymatic activities (e.g. dihydrofolate reductase
14 

and diacylglycerol kinase
18

). In this study, we developed a generalized steric trapping 

strategy which utilizes novel thiol-reactive biotin probes containing spectroscopic reporter 

groups for sensitive detection of mSA binding and protein unfolding. This strategy was 

applied to analyze the thermodynamic stability, compactness of the unfolded state and 

folding cooperativity of the six-helical bundle intramembrane protease GlpG of E. coli.

GlpG is a member of the rhomboid protease family widely conserved in all kingdoms of life. 

Rhomboid proteases are involved in diverse biological processes by activating membrane-

bound signaling proteins or enzymes via cleavage of a specific peptide bond near the 

membrane
19-22

. Due to the functional importance of rhomboid proteases and detailed 

structural information available (28 PDB entries, http://www.rcsb.org/), GlpG has emerged 

as an important model for studying the folding of helical membrane proteins. Critical 

regions for the stability have been identified using heat and sodium dodecylsulfate (SDS) 

denaturation tests of 151 variants
23

. A kinetic folding study using SDS as a denaturant has 

suggested the existence of a compact folding nucleus in the folding transition state
24

. A 

single-molecule tweezers study has shown that GlpG largely unfolds cooperatively at a 

constant tension
25

.
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Here, using steric trapping, we provide new insights into the folding energy landscape of 

GlpG in the absence of heat, chemical denaturants or pulling force. We elucidated an 

expanded heterogeneous conformational ensemble of the unfolded state, a structural region 

that undergoes subglobal unfolding, and an intricate network of cooperative and localized 

interactions to maintain the stability of GlpG.

RESULTS

Design and synthesis of new steric-trapping probes

Our steric-trapping probes are highlighted by three features that are integrated into one 

molecular tag (Fig. 1b): (1) a biotin group for binding mSA, (2) a thiol-reactive group for 

conjugation to engineered cysteine residues on a target protein, and (3) a fluorescent or 

paramagnetic reporter group whose spectroscopic signal is sensitized by mSA binding or 

protein unfolding. Each probe was synthesized by stepwise substitutions of building blocks 

possessing characteristic features to a lysine or cysteine template (Supplementary Results, 
Supplementary Notes). BtnPyr-IA (1) is a pyrene-based fluorescent sensor to detect mSA 

binding. When used to doubly label a target protein, pyrene fluorescence is remarkably 

sensitive to binding of quencher-labeled mSA by Förster resonance energy transfer (FRET). 

BtnRG-TP (2) is a paramagnetic sensor possessing a 1-oxyl-2,2,5,5-tetramethylpyrroline 

spin label to detect protein unfolding. The spin labels allow distance measurements in the 

native and steric-trapped unfolded state using double electron-electron resonance 

spectroscopy (DEER).

Steric trapping controls reversible folding of GlpG

To prove the principle of our steric trapping strategy employing the new probes, we used 

GlpG as a model and its proteolytic activity as a folding indicator. Here all studies were 

performed in dodecylmaltoside (DDM) micelles, in which a majority of functional and 

folding studies of GlpG have been carried out
23,26-29

, and with the isolated transmembrane 

(TM) domain (residues 87–276) for which all structures of GlpG have been solved. For 

precise and efficient measurement of GlpG activity with membrane-bound substrates, we 

developed a fluorescence-based assay that can be transformed into a high-throughput format 

(Supplementary Fig. 1). The activity of the TM domain of GlpG was indistinguishable 

from that of the full-length protein (Supplementary Fig. 2).

For steric trapping, we first identified optimal residue pairs for cysteine substitution to 

conjugate thiol-reactive biotin labels. After testing of multiple single- and double-cysteine 

variants, two double-cysteine variants, P95C/G172C and G172C/V267C were selected (Fig. 
2a). The biotin pair conjugated to P95C/G172C is located in the approximate N-terminal 

half of GlpG (95/172N hereinafter) while the biotin pair to G172C/V267C is located in the 

C-terminal half (172/267C). Individual single-cysteine variants P95C, G172C and V267C 

labeled with fluorescent BtnPyr-IA maintained the wild-type activity level (Fig. 2b, top) and 

this activity level was not significantly altered after binding of wild-type mSA (mSA-WT). 

Michaelis-Menten analysis of the proteolytic activity showed that KM, kcat and kcat/KM of 

the single-biotin variants bound with mSA were indistinguishable from those of unbound 

forms demonstrating that binding of one mSA molecule to each biotin site did not perturb 

Guo et al. Page 3

Nat Chem Biol. Author manuscript; available in PMC 2016 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the structure and function of GlpG (Supplementary Fig. 2). The wild-type activity level 

was also maintained after labeling of double-cysteine variants. In marked contrast, saturated 

binding of mSA to two biotin labels on each variant induced a substantial loss of activity 

implying GlpG was trapped in the unfolded state (Fig. 2b, bottom).

Next, we tested if the steric-trapped unfolded state can refold after dissociation of bound 

mSA. Wild-type mSA binds biotin with an enormously high affinity (Kd,biotin≈10−14 M) 

and slow dissociation rate (koff≈days)
30

. Thus, we used mSA-S27A variant with a weaker 

biotin affinity (Supplementary Fig. 3) to facilitate dissociation of bound mSA by addition 

of excess free biotin (Fig. 1a)
31

. Both double-biotin variants which were inactivated with 

mSA-S27A significantly regained the activity upon addition of free biotin (Fig. 2b, bottom). 

For 95/172N-BtnPyr2, 50–70% of activity was regained while >90% was regained for 

172/267C-BtnPyr2. Thus, we achieved reversible folding of GlpG without using denaturants 

by steric trapping.

Steric-trapped unfolded state is widely unraveled

So far, protein unfolding by steric trapping has been tested by the loss of enzymatic 

activity
14,18

, decrease of retinal absorbance
15

, or increased susceptibility to proteolysis
14,15

. 

Although those features indicate unfolding, a possibility remains that the protein 

conformation trapped with mSA molecules is only locally distorted or still compact with 

significant residual tertiary interactions. Therefore, to elucidate the conformation of the 

steric-trapped unfolded state as well as to gain insights into the unfolded state ensemble of 

membrane proteins under non-denaturing conditions, we used a thiol-reactive biotin 

derivative possessing a spin label (BtnRG-TP) (Fig. 1b). By labeling of double-cysteine 

variants of GlpG with this probe, we have the advantage of both trapping the unfolded state 

and measuring the distances between spin labels using DEER. DEER allows for 

measurements of long-range (15–60 Å) inter-spin distances
32

. It provides not only the most 

probable distance but also distance distribution, which is of great interest in characterization 

of the unfolded state
33,34

. Here, we obtained inter-spin distances for 95/172N-BtnRG2 and 

172/267C-BtnRG2 in their native, SDS-induced unfolded and steric-trapped unfolded states 

(Fig. 3). In the native states, the distance distributions between BtnRG labels were overall 

similar to those between well-characterized R1 spin labels
35

 (Supplementary Fig. 4) 

demonstrating that our BtnRG label is capable of distance mapping of protein conformation.

For both variants, SDS induced substantial broadening of the inter-spin distance distribution 

over the range from the native-like distances (15–35 Å) up to ~60 Å (Fig. 3, right panels), 

which indicates a heterogeneous conformational ensemble of the unfolded state in SDS. 

Interestingly, in non-denaturing DDM micelles, the steric-trapped unfolded states also 

exhibited similarly broad inter-spin distance distributions. The increase of the most probable 

distance from ~25 Å in the native state to ~55 Å in the steric-trapped unfolded state 

corresponds to a ~30 Å expansion of each half of the polypeptide chain covered by the 

respective biotin pair. This increased dimension is comparable to the whole diameter of 

native GlpG. Thus, our DEER data for GlpG rules out a compact unfolded state under non-

denaturing conditions, which has been observed for several water-soluble proteins
36

. We 

note that, because of the detection limit of DEER, even longer distance components (>60 Å) 
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may have existed but not been detected. Addition of dithiothreitol to break the disulfide 

bond between GlpG and the biotin label bound with mSA led to a regain of activity (>70%) 

indicating that a majority of the unfolded conformations were able to refold 

(Supplementary Fig. 5).

Steric repulsion between bound mSA molecules may have biased the conformational 

ensemble of the unfolded state. However, during the selection of optimal biotin pairs, we 

found that saturated binding of mSA to the biotin pairs conjugated to G94C/G172C and 

G172C/N271C, whose Cα-Cα distances were similar to those of 95/172N and 172/267C, 

completely retained the activity and therefore did not induce unfolding (Supplementary 
Fig. 6). This result implies that bound mSA molecules are allowed to coexist within close 

distances probably also in the steric-trapped unfolded state. Therefore, steric repulsion may 

not fully explain the expanded unfolded state.

We further characterized the conformational features of the steric-trapped unfolded state 

using proteolysis by chymotrypsin, which primarily targets aromatic residues prevalent 

throughout GlpG (Supplementary Fig. 7). While the unfolded state bound with two mSA 

molecules was gradually proteolyzed over ~30 min, either native GlpG or GlpG bound with 

one mSA molecule was not significantly proteolyzed. As a control, we tested proteolysis of 

casein which dominantly exists in random coil conformation in aqueous solution
37

. Casein 

was rapidly proteolyzed within 1 min. Thus, we speculate that the steric-trapped unfolded 

state was significantly protected by secondary structures and micelles, but possessed more 

dynamic features than the native state.

DEER and proteolysis results demonstrate that steric trapping induced a true unfolded state, 

which was an ensemble of expanded dynamic and heterogeneous conformations. This work 

also represents the first measurement of the physical dimension of a helical membrane 

protein in its unfolded state under non-denaturing conditions.

Stability of GlpG determined by steric trapping

To develop a general steric-trapping strategy that does not depend on specific characteristics 

of a target protein, ideally the spectroscopic signal from the reporter group in our probe (Fig. 
1b) should sensitively change upon either mSA binding or protein unfolding. Here we 

achieved a highly sensitive detection of mSA binding by employing FRET between pyrene 

on BtnPyr label and non-fluorescent quencher DABCYL on mSA (mSADAB) (Fig. 4a).

SDS denaturation and linear extrapolation of the denaturation data to zero-SDS mole 

fraction yielded the same stability (ΔGo
U,SDS) for 95/172N-BtnPyr2 (8.4±1.5 kcal/mol) and 

172/267C-BtnPyr2 (8.7±1.2 kcal/mol) (Fig. 4b and Supplementary Fig. 8), which was 

similar to that of the full-length wild type (8.2±1.4 kcal/mol)
24

. This result indicates that the 

two double-biotin variants possessed the same global stability as wild type GlpG. By design, 

steric trapping specifically captures transient unfolding of native interactions between a 

biotin pair. Thus, probing the stability with two biotin pairs located in different regions (Fig. 
2a) provides a novel opportunity to test the folding cooperativity of GlpG.
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Using FRET, we obtained high-quality binding isotherms between each double-biotin 

variant and three mSADAB variants with different biotin affinities (Fig. 4c). mSADAB binds 

the biotin label at each site with a similar affinity (Supplementary Fig. 3a). An essential 

element of steric trapping to determine protein stability is choosing an mSA variant whose 

binding to a biotin label (ΔGo
Bind) optimally competes with folding (ΔGo

U) to yield 

attenuated second binding in a desirable [mSA] range (Fig. 4a). Among mSA variants 

tested, mSADAB-S27A yielded an optimal separation of the first tight and second weaker 

binding phases (Fig. 4c). Parallel activity measurements showed that, for each GlpG variant, 

the second binding coincided with the activity loss (i.e. unfolding), which validated the 

unfolding-binding coupling. The same coupling was observed with a high-affinity variant, 

mSADAB-WT, further confirming that the activity loss strictly depended on the second 

binding of mSADAB (Supplementary Fig. 9).

Fitting of the second binding phases yielded the thermodynamic stability (ΔGo
U,ST, ST: 

steric trapping), 5.8±0.2 kcal/mol for 95/172N-BtnPyr2 and 4.7±0.1 kcal/mol for 172/267C-

BtnPyr2 (equation (4) in Online Methods) in non-denaturing DDM micelles (Fig. 4c). Both 

ΔGo
U,ST's were significantly lower than the extrapolated stability from SDS denaturation 

(8.4–8.7 kcal/mol) but higher than the stability in a bicelle (6.5 kBT equivalent to ~4 kcal/

mol) extrapolated to zero force from single-molecule tweezers study
25

. If GlpG unfolded 

cooperatively, the same ΔGo
U,ST would be expected regardless of the position of the biotin 

pair. However, while SDS denaturation yielded the same global stability for the two double-

biotin variants, their stabilities obtained by steric trapping were comparable but significantly 

different by 1.1±0.2 kcal/mol.

Subglobal unfolding of GlpG near the active site

To track down the origin of the discrepancy between the stability obtained by steric trapping 

(ΔGo
U,ST) under a non-denaturing condition and the extrapolated stability obtained by SDS 

denaturation (ΔGo
U,SDS), we directly measured the stability of the two double-biotin 

variants using steric trapping in the range of SDS mole fraction (XSDS=0–0.4), where a 

major fraction of GlpG existed in the folded state (folded fraction >0.9) (Fig. 4b). The 

ΔGo
U,ST vs XSDS plot (Fig. 5) revealed two major features that clearly deviated from the 

behavior predicted from linear extrapolation of SDS denaturation data. First, rather than 

following a linearly-decreasing trend, ΔGo
U,ST of both variants exhibited an upward 

curvature as XSDS increased. Second, while ΔGo
U,ST of 95/172N-BtnPyr2 were overall larger 

than that of 172/267C-BtnPyr2, they remarkably converged at XSDS≈0.4 where the main 

unfolding transition by SDS began, and this convergence was maintained up to XSDS=0.5. 

This result confirms that the two variants possessed the same global stability.

The overall nonlinearity of ΔGo
U,ST against XSDS implies a complex interaction between 

GlpG and DDM/SDS micelles. A similar disagreement between steric trapping and SDS 

denaturation has been reported for bacteriorhodopsin in DMPC/CHAPSO/SDS bicelles
15

. In 

the case of GlpG, ΔGo
U,ST of both variants reached a maximum at XSDS≈0.2 but linearly 

decreased at higher XSDS (Fig. 5). Notably, in the range of XSDS=0.2–0.4, the m-value of 

95/172N-BtnPyr2 (14±2 kcal/mol/XSDS), which represents the slope of ΔGo
U,ST against 
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XSDS, was significantly larger than that of 172/267C-BtnPyr2 (8±1 kcal/mol/XSDS) but 

similar to those obtained by SDS denaturation (16–17 kcal/mol/XSDS).

For water-soluble proteins, the m-value is correlated with the hydrophobic surface area 

exposed upon unfolding
38

. Although the physical meaning of the m-value in SDS 

denaturation is still under debate
39

, it is most likely related to the difference in the affinity of 

SDS for different states of the protein, hence to the degree of exposure of buried stabilizing 

interactions upon unfolding
40

. Therefore, from the different denaturant sensitivities of the 

two double-biotin variants, we conclude that trapping of the unfolded state with the biotin 

pair 95/172N-BtnPyr2 led to substantial exposure of the buried surfaces throughout the 

protein, while trapping with the biotin pair 172/267C-BtnPyr2 mainly occurred through 

subglobal unfolding which exposed less buried-surface area
9
. Steric trapping of 172/267C-

BtnPyr2 detects transient separation between TM3 and TM6 to which biotin labels are 

conjugated, and TM6 contains a biotin label (V267C-BtnPyr) as well as His254 of the 

catalytic dyad (Fig. 6a). Thus, subglobal unfolding should directly involve disruption of the 

active site.

Subglobal unfolding has been frequently observed from HDX studies of water-soluble 

proteins
9,41,42

, but not been reported for membrane proteins. Besides the different m-values, 

subglobal unfolding of GlpG is further supported by the lower stability of 172/267C-BtnPyr2 

from steric trapping (Fig. 4c) and the reproducibly higher refolding yield of 172/267C-

BtnPyr2 (>90%) than that of 95/172N-BtnPyr2 (50–70%) (Fig. 2b), implying different 

unfolded states.

We also note that ΔGo
U,ST was larger than ΔGo

U,SDS after it crossed the extrapolation lines 

at XSDS≈0.1 and this discrepancy became increasingly pronounced up to 2.8 kcal/mol at 

XSDS=0.4 (Fig. 5). We reason that the larger ΔGo
U,ST was primarily due to the 

conformational difference between the steric-trapped unfolded state and the SDS-induced 

unfolded state. Our DEER result supports this argument (Fig. 3). The steric-trapped 

unfolded state on average exhibited larger inter-spin distances than the SDS-induced 

unfolded state. Thus, steric trapping appears to induce more unraveled conformations than 

SDS at least for the interactions between the biotinylated sites. However, we are cautious 

with this direct comparison because the compactness of the SDS-induced unfolded state may 

change as a function of XSDS due to the effects of SDS on the size and shape of mixed 

micelles
43

.

Strategy to identify cooperative interactions

The higher stability and more substantial unfolding obtained with 95/172N-BtnPyr2 indicates 

that the native interactions between this biotin pair in the N-terminal region are critical to the 

conformational integrity of the whole protein. On the other hand, the lower stability and 

subglobal unfolding obtained with 172/267C-BtnPyr2 indicates that the C-terminal region 

possesses differential folding properties from the N-terminal region. This result suggests 

complex energetic coupling between different regions in GlpG. To clarify this complexity, 

we developed a method to identify cooperative and localized interactions that contribute to 

the protein stability at a side-chain resolution (Fig. 6a).
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First, we dissected GlpG into two subdomains: (1) the more stable N-terminal subdomain I 

encompassing TM1-L1-TM2-TM3-L3198 (ending at residue 198 in the L3 loop) whose 

unfolding was trapped with 95/172N-BtnPyr2, and (2) the less stable C-terminal subdomain 

II consisting of L3199-TM4-TM5-L5-TM6 (starting from residue 199) whose subglobal 

unfolding was trapped with 172/267C-BtnPyr2 (Supplementary Fig. 10 for dissection 

procedures). The uncertainty of the division point was ±20–30 residues.

Second, we made a single mutation (typically to alanine) in either subdomain to perturb a 

specific side-chain interaction in the background of 95/172N-BtnPyr2 and 172/267C-

BtnPyr2. We referred to these background double-biotin variants as “wild type (WT)” 

because the wild-type native interactions were equally preserved in both as shown by SDS 

denaturation (Fig. 4b). We referred to two double-biotin variants possessing the same 

mutation as “mutants (Mut)”. Next, we probed the stability changes induced by the mutation 

with two different biotin pairs using steric trapping. We quantified the differential effect of 

the same mutation on the stability of each subdomain (ΔΔΔGo
U) using equation (1) 

containing the stabilities of four variants:

(1)

ΔΔGo
U,95/172N-BtnPyr2(WT-Mut) and ΔΔGo

U,172/267C-BtnPyr2(WT-Mut) designate the 

stability changes caused by the same mutation in the backgrounds of 95/172N-BtnPyr2 and 

172/267C-BtnPyr2, respectively. Thus, ΔΔΔGo
U represents the difference in the stability 

changes that are probed with two different biotin pairs upon the same mutation.

If a mutation causes a similar degree of destabilization for both double-biotin variants with a 

difference within thermal fluctuation energy (|ΔΔΔGo
U|≤RT=0.6 kcal/mol; R: gas constant; 

T=298K), the mutated site engages in a “cooperative” interaction. That is, the perturbation 

by the mutation similarly propagates to both subdomains. Among the cases where |ΔΔΔGo
U|

>RT, if a mutation preferentially destabilizes the subdomain containing it, the perturbed 

interactions are “localized” within that subdomain. If mutation of a residue, which makes its 

side-chain contacts only with the subdomain containing it, preferentially destabilizes the 

other subdomain, we classified the perturbation as “over-propagated”.

Cooperativity network in GlpG

We targeted 20 residues covering key packing regions
23

 and analyzed their roles in the 

folding cooperativity of GlpG (Supplementary Table 1). The stability changes upon 

mutation ΔΔGo
U(WT-Mut) obtained by steric trapping were reasonably well correlated with 

the changes in melting temperature ΔTm(WT-Mut)
23

, which validated our approach 

(Supplementary Fig. 11). 20 ΔΔΔGo
U values were distributed over a wide range from −1.8 

to 2.0 kcal/mol and their individual errors ranged from ±0.1 to ±0.4 kcal/mol, smaller than 
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RT (Supplementary Fig. 12). We applied four cut-off values, ΔΔΔGo
U= −2RT, −RT, RT 

and 2RT (i.e. five sets of the cooperativity profile) to account for the wide distribution of 

ΔΔΔGo
U as well as to more precisely resolve the degree of cooperativity of each side-chain 

interaction.

We mapped the effects of mutations onto the structure, which we called the “cooperativity 

map” (Fig. 6b). Surprisingly, we observed significant clustering of cooperative and localized 

interactions in defined regions in the GlpG structure and divided their spatial distributions 

into four distinct groups. First, cooperative interactions of five residues, Met100, Leu161, 

Leu174, Thr178 and Ser201, clustered in the buried region which was surrounded by 

subdomain I and the subdomain interface near the center of the membrane. This cooperative 

cluster overlapped with one of the key packing regions previously identified
23

 and partially 

with the folding nucleus formed between TM1 and TM2 in the folding transition state
24

.

Second, all tested residues located in the folded L1 loop (Tyr138, Thr140 and Leu143) and 

the residue packed against L1 (Cys104) in subdomain I engaged in moderately 

(RT<ΔΔΔGo
U≤2RT) or highly (2RT<ΔΔΔGo

U) localized interactions in subdomain I. This 

region is known to form non-native interactions in the folding transition state
24

. Third, 

Leu225 (ΔΔΔGo
U<−2RT) and Gln226 (−2RT≤ΔΔΔGo

U<−RT) in TM5 in subdomain II, 

which were located at the subdomain interface and exposed to the water-micelle interface, 

respectively, were both classified as localized in subdomain II. TM5 is not tightly packed 

against the rest of the protein and does not significantly contribute to the thermostability
23

.

In the fourth cluster, interestingly, mutation of residues at the TM4/TM6 interface (Ala253, 

Gly261, Ala265 and Asp268) in subdomain II preferentially destabilized subdomain I, not 

the subdomain containing them. Particularly, Gly261 and Ala265 make their side-chain 

contacts entirely with the residues in subdomain II, but perturbing these interactions exerted 

larger impacts on the stability of subdomain I. Thus, we classified these residues as over-

propagated. The TM4/TM6 interface harbors the catalytic dyad and plays a pivotal role in 

both stability and function of GlpG
23

. Especially, Gly261 and the dyad are absolutely 

conserved among rhomboid proteases
44

. Our result suggests that these conserved residues 

are also critical to the energetic coupling between different regions of GlpG. Breakage of the 

interactions near the C-terminus and its propagation towards the N-terminus is known to be 

the primary mechanism of the force-induced unfolding of GlpG
25

.

It should be noted that 5 among 20 tested mutations completely inactivated GlpG 

(Supplementary Table 1). Thus, our steric trapping strategy allowed stability measurements 

of not only functional but also non-functional variants, which had been difficult under the 

original steric-trapping framework. An ANOVA test of the five sets of ΔΔΔGo
U including 

the upper and lower standard-deviation limits of each ΔΔΔGo
U indicates that differences 

among these sets were statistically significant (Supplementary Fig. 12). While the two 

double-biotin variants bearing the same mutation exhibited differential stability change in 

DDM micelles, they possessed the same global stability from SDS denaturation 

(Supplementary Fig. 13). Therefore, we conclude that the networked side-chain 

interactions revealed in this work is a novel phenomenon that occurs under native 

conditions.
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DISCUSSION

Here we presented a new steric-trapping strategy to investigate thermodynamic stability of 

membrane proteins and conformation of their unfolded state under native conditions by 

employing novel thiol-reactive biotin tags. Fluorescent BtnPyr allowed determination of the 

thermodynamic stability of GlpG through high-quality binding isotherms obtained by FRET. 

Paramagnetic BtnRG enabled characterization of the unfolded state based on the distance 

measurements using DEER. Because this combined strategy is not limited by either target-

specific unfolding readout or specific lipid environments, it is applicable to other types of 

membrane proteins including nonfunctional and misfolded variants whose folding 

characterization is difficult under native conditions.

Unfolded state of proteins has gained significant interest because it determines 

thermodynamic stability with the folded state, directs folding mechanisms, and serves as a 

target for chaperoning and degradation
45

. However, conformation of the unfolded state of 

membrane proteins was difficult to study under native conditions due to its transient nature 

preventing biophysical analysis. By combining DEER and steric trapping, we elucidated a 

largely-unraveled dynamic and heterogeneous conformational ensemble of the unfolded 

state of GlpG in non-denaturing micellar solution. It is still an open question to what extent 

trapping would affect the protein conformation beyond the region containing the biotin pair. 

Investigating the conformation of the unfolded state in a lipid bilayer, which provides a more 

defined hydrophobic environment than micelles, will be a crucial future task to understand 

thermodynamics and mechanisms of membrane protein folding in cell membranes.

We identified subglobal unfolding of the C-terminal region which encompasses the active 

site. This asymmetric stability profile of GlpG is analogous to the highly-polarized folding 

transition state possessing a compact folding nucleus in TM1–TM2 and largely unstructured 

TM3–TM6
24

. Single-molecule tweezers study has also identified TM3–TM6 or TM5–TM6 

as a flexible region
25

. Although we defined the region that underwent subglobal unfolding as 

the approximate C-terminal half, it would be more reasonable to interpret it as an ensemble-

averaged event which involved unfolding of a various number of the C-terminal helices. Our 

work is unique in that we demonstrated partial unfolding even under a non-denaturing 

condition, which reflects intrinsic conformational malleability of the region that 

encompasses the active site. Although it is not clear if subglobal unfolding is necessary 

during the catalytic cycle of GlpG, we speculate that this malleability is adequate for 

conformational changes required for substrate interaction and catalytic mechanism. Further 

supporting this idea, disordering of the L5 loop, partial unfolding of TM5 and tilting of TM6 

have been observed from crystal structures of GlpG in apo and inhibitor-bound forms
27,46,47

.

Our unprecedented cooperativity analysis suggests that the helical-bundle architecture of 

GlpG is maintained through a network of cooperative and localized interactions. Although 

the cooperativity network and its role in protein stability and function have been analyzed 

for water-soluble proteins
4,7,9,41,48

, such aspects have not been investigated for membrane 

proteins. Our experimentally-determined cooperativity map indicates that the degree of 

cooperativity was the largest for the buried residues near the center of the membrane and 

faded out towards the lipid- and water-contacting regions. This positional dependence of the 
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cooperativity profile suggests that complex environmental constraints for stabilizing 

membrane proteins, i.e. protein-protein, protein-lipid and protein-water interactions, play an 

important role in the organization of the interaction network. Our general steric trapping 

strategy and steric trapping-based approaches will serve as powerful tools for exploring the 

folding energy landscape of membrane proteins in native lipid bilayers, which still remains 

as a far-reaching goal.

ONLINE METHODS

Synthesis of BtnPyr-IA and BtnRG-TP

Synthesis schemes and characterizations are shown in Supplementary Notes.

Preparation of GlpG DNA constructs

GlpG gene was amplified from chromosomal DNA of E. coli strain MG1655 (Coli Genetic 

Stock Center at Yale University) using primers containing NdeI and BamHI restriction sites. 

The amplified gene was ligated into pET15b vector with an N-terminal His6-tag. Site-

directed mutagenesis for introducing amino acid substitutions was performed using the 

QuikChange Site-Directed Mutagenesis Kit (Agilent).

Expression and purification of GlpG

GlpG was expressed in E. coli BL21(DE3) RP strain. Cells were grown at 37 °C until OD600 

= 0.6 was reached. Protein expression was induced with 0.5 mM isopropyl β-

thiogalactopyranoside (IPTG, GoldBio), followed by additional cultivation at 15 °C for 16 h. 

GlpG was purified from the total membrane fraction obtained by ultracentrifugation 

(Beckman Coulter, Type 45 Ti rotor, 50,000 g, for 2 h) using Ni2+-NTA affinity 

chromatography (Qiagen) after solubilization with 2% n-dodecyl-β-D-maltoside (DDM, 

Anatrace).

Labeling of GlpG and determination of labeling efficiency using SDS-PAGE gel shift assay

For labeling, purified cysteine variants (0.2% DDM, 50 mM Tris-(hydroxymethyl) 

aminomethane hydrochloride (TrisHCl), 200 mM NaCl and pH 8.0) were diluted to less than 

100 μM and incubated with a ten-fold molar excess Tris(2-carboxyethyl)phosphine 

hydrochloride (TCEP-HCl, Pierce) for 1 h at room temperature. 40 times molar excess of 

BtnPyr-IA or BtnRG-TP dissolved in dimethyl sulfoxide (DMSO) (~20 mg/ml) was added 

to the mixture while vortexing. Labeling reaction was allowed to proceed at room 

temperature overnight in the dark. Excess free labels were removed by extensive washing of 

the proteins bound to Ni2+-NTA affinity resin using 0.2% DDM, 50 mM TrisHCl, 200 mM 

NaCl and pH 8.0 solution. Labeled GlpG was dialyzed against 0.02% DDM, 50 mM 

TrisHCl, 200 mM NaCl, pH 8.0 buffer to remove imidazole.

Typically, the labeling efficiency of BtnPyr-IA and BtnRG-TP ranged from 1.5–2.2 as 

estimated from SDS-PAGE gel shift assay or comparison of the concentration of BtnPyr 

determined by pyrene absorbance (ε346nm=43,000 M·cm−1) and the concentration of GlpG 

determined by DC protein assay (Bio-Rad). SDS-PAGE was employed utilizing the facts 

that mSA maintains its tetrameric structure and the biotin-mSA complex is resistant to 
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dissociation in the presence of SDS. SDS-PAGE gel shift assay (Supplementary Fig. 14) 

was carried out as follows: 10 μl of 5 μM of labeled GlpG was incubated with 10 μl of 2% 

SDS sample-loading buffer with 10% (v/v) β-mercaptoethanol for 30 min. Then, wild-type 

monovalent streptavidin (mSA-WT) was added to labeled GlpG (GlpG:mSA-WT molar 

ratio of 1:3) and the mixture was incubated at room temperature for 30 min before SDS-

PAGE without sample heating. The gel box was incubated in ice during electrophoresis to 

prevent heat-induced dissociation of mSA-WT bound to biotin label on GlpG. Labeling 

efficiency was determined by comparing the intensities that correspond to single-mSA 

bound GlpG and double-mSA bound GlpG after accounting for the molecular mass of GlpG 

and mSA (AlphaImager, ProteinSimple). GlpG with no label was not considered because 

this species does not bind mSA, thus not participating in steric trapping. mSA was prepared 

as described previously
30,51

.

Expression and purification of GlpG substrate SN-LacYTM2

As a folding indicator for GlpG, we used its proteolytic activity mediating specific cleavage 

of a transmembrane (TM) substrate, the second TM domain of the lactose permease of E. 
coli

50
 fused to staphylococcal nuclease (SN-LacYTM2) (Supplementary Fig. 1). The DNA 

construct for LacYTM2 was amplified from a DNA template containing full length lactose 

permease using primers containing XmaI and XhoI restriction sites, which was then ligated 

into a pET30a vector containing SN domain
16

, TEV protease recognition site, and C-

terminal His6-tag (SN-TEV-LacYTM2-His6). In the LacYTM2 region, the position which 

was five residues upstream from the scissile bond (P5 position) was substituted with cysteine 

for labeling with thiol-reactive, environment-sensitive fluorophore iodoacetyl-7-nitrobenz-2-

oxa-1,3-diazol (IA-NBD amide, Setareh Biotech). SN-TEV-LacYTM2-His6 containing the 

substituted cysteine was expressed in BL21(DE3) RP E. coli strain. The protein was 

expressed, purified and labeled using the protocol for SN-GpATM-His6 described 

previously
51

.

Fluorescence-based high-throughput activity assay for GlpG

Activity assay (Supplementary Fig. 1) was initiated by addition of 10 times molar excess of 

NBD-labeled SN-LacYTM2 to purified GlpG. Time-dependent changes of NBD 

fluorescence was monitored in 96-well plate using SpectraMax M5e plate reader (Molecular 

Devices) with excitation and emission wavelengths of 485 nm and 535 nm, respectively. 

Fluorescence change was normalized to a control sample containing NBD-SN-LacYTM2 

alone. The effect of mSA binding on the activity of single- and double-biotin variants of 

GlpG were tested by addition of excess mSA-WT (20 μM). The GlpG-mSA mixture was 

incubated overnight (single-biotin variants), for 2 days (172/267C-BtnPyr2) or for 5 days 

(95/172N-BtnPyr2). Folding reversibility was tested using the following steps: Each double-

biotin GlpG variant was first inactivated with mSA-S27A variant (20 μM) possessing a 

weaker biotin binding affinity (Kd,bioin=1.4 nM) for the same incubation time as with mSA-

WT. Next, excess free biotin (2 mM) was added to induce competitive dissociation of bound 

mSA. The activity of refolded GlpG was measured after incubation overnight. The statistical 

significance of the activity changes upon unfolding and refolding were evaluated using 

Student's t-test (n=3–5).
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Double electron-electron resonance EPR spectroscopy (DEER-EPR)

DEER-EPR measurements were performed on a Bruker Elexsys 580 spectrometer with 

Super Q-FTu Bridge, Bruker ER 5107DQ resonator and 10 W Q-band amplifier at 80 K. 

The spin-labeled samples ranging from 80 to 160 μM GlpG were flash-frozen in quartz 

capillaries using a liquid nitrogen bath immediately prior to data collection. For data 

collection, 36-ns π-pump pulse was applied to the low field peak of the nitroxide absorption 

spectrum, and the observer π/2 (16 ns) and π (32 ns) pulses were positioned 17.8 G (50 

MHz) upfield, which corresponded to the nitroxide center resonance. A two-step phase 

cycling (+x, −x) was carried out on the first (π/2) pulse from the observer frequency. The 

time domain signal collected for each sample varied from 2.3 to 2.5 μs. Based on the 

collection time, the reliable inter-spin distance range was ~15−~60 Å. DEER data were 

analyzed using the program LongDistances, which was written in LabVIEW by Christian 

Altenbach (http://www.biochemistry.ucla.edu/biochem/Faculty/Hubbell/).

Time-dependent proteolysis of GlpG using chymotrypsin

GlpG variants (5 μM) were incubated for 7 days (95/172N-BtnPyr2: residual activity 40%) or 

4 days (172/267C-BtnPyr2: residual activity 20%) in the presence and absence of 25 μM 

mSA-WT in 20 mM sodium phosphate (pH 7.5), 20 mM DDM, 200 mM NaCl, 1 mM TCEP 

buffer. In the presence of mSA-WT, the residual activities were ~40% for 95/172N-BtnPyr2 

and ~20% for 95/172N-BtnPyr2 relative to those without mSA before proteolysis. 

Proteolysis of 5 μM casein (from bovine milk, Sigma) was performed in the same buffer 

condition but without prolonged incubation. For all protein samples, proteolysis was 

initiated by the addition of 2.5 μM chymotrypsin (bovine chymotrypsin-α: sequencing 

grade, Sigma) to 10 μL aliquots, and quenched at specified time by the addition of 10 mM 

permethylsulfoxide. Time-dependent proteolysis was monitored by SDS-PAGE 

(Supplementary Fig. 7).

Construction of binding isotherms to determine thermodynamic stability of GlpG by steric 
trapping using FRET

1 μM of GlpG labeled with BtnPyr was titrated with mSA specifically labeled with 

DABCYL-plus-maleimide (AnaSpec) at Y83C-position of the active subunit (mSADAB) in 5 

mM DDM, 0.25 mM TCEP, 20 mM sodium phosphate and 200 mM NaCl (pH 7.5). The 

titrated samples were transferred to a 96-well UV-compatible microplate, sealed with a 

polyolefin tape, and incubated for 5 days (for 95/172N-BtnPyr2) or 2 days (for 172/267C-

BtnPyr2) at room temperature. Binding was monitored by the decrease of pyrene-monomer 

fluorescence at 390 nm with an excitation wavelength of 345 nm using SpectraMax M5e 

plate reader. Data were averaged from four readings. Nonspecific FRET was obtained by 

measuring the fluorescence intensity of double-biotin GlpG variants which were pre-

saturated with 10 μM of the high-affinity mSA-WT (without DABCYL-label) at an 

increasing concentration of the lower-affinity variant mSADAB-S45A. In this condition, 

mSADAB-S45A cannot compete for biotin label and only diffuses around in the solution.
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Fitting of binding isotherm to obtain thermodynamic stability of GlpG

Fitting equation to obtain thermodynamic stability of GlpG using steric trapping was based 

on the following reaction scheme
14

:

(2)

(3)

Fitting equation for the second mSA binding phase was:

(4)

where F is measured fluorescence intensity, and F0 and F∞ are the fluorescence intensities 

from GlpG labeled with BtnPyr at [mSA]=0 and at the saturated bound level, respectively. 

[mSA] is the total mSA concentration, Kd,biotin is the dissociation constant for unhindered 

biotin binding affinity of mSA (Supplementary Fig. 3), and KU is the equilibrium constant 

for unfolding of GlpG. After obtaining the fitted KU, the thermodynamic stability was 

calculated using the equation ΔGo
U,ST =−RTlnKU.

Determination of biotin affinity (Kd,biotin) of mSA variants by FRET

Biotin binding affinity of a weaker binding mSA variant mSA-W79M was measured by 

titration of 50 nM GlpG single cysteine variants labeled with BtnPyr (FRET donor) with 

mSADAB-W79M (FRET acceptor) in 5 mM DDM, 0.25 mM TCEP, 20 mM sodium 

phosphate and 200 mM NaCl (pH 7.5). The titrated samples were transferred to a 96-well 

UV-compatible microplate, sealed with a polyolefin tape, and incubated for 24 h at room 

temperature. Binding was monitored by the decrease of pyrene-monomer fluorescence at 

390 nm with an excitation wavelength of 345 nm using SpectraMax M5e plate reader. Data 

were averaged from four readings. For fitting of binding data to obtain Kd,biotin of mSADAB-

W79M, the following equation was used:

(5)

where F is measured fluorescence intensity, PT is total GlpG concentration, [mSA] is the 

total mSA concentration (variable), Kd,biotin is the dissociation constant for biotin binding 

affinity of mSADAB, A1 is the net fluorescence change, A2 is the fluorescence level without 

mSADAB. Fitted values include Kd,biotin, A1 and A2; other known values were fixed.
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To determine Kd,biotin of tight-binding mSA variants and mSA variants lacking DABCYL 

quencher label, a FRET-based competition assay was employed. 1 μM GlpG was pre-

equilibrated with 2–5 times excess of mSADAB variant for 1 h at room temperature. In this 

condition, pyrene fluorescence was suppressed. Weaker-affinity unlabeled mSA variant was 

titrated into the sample. Here either DABCYL-labeled or unlabeled mSA variant had known 

Kd,biotin. The titrated samples were transferred to a 96-well UV-compatible microplate, 

sealed with a polyolefin tape, and incubated for 24 h at room temperature. Resultant 

dissociation of mSADAB by competition was monitored by the increase of pyrene-monomer 

fluorescence at 390 nm with an excitation wavelength of 345 nm using SpectraMax M5e 

plate reader. Data were averaged from four readings. For fitting of competition data to obtain 

unknown Kd,biotin, the following equation was used:

(6)

where F is measured fluorescence intensity, PT is the total GlpG concentration, CT is the 

total mSADAB concentration, [mSA] is the total unlabeled mSA concentration (variable), 

Kunlabel is the Kd,biotin for mSA without a DABCYL label, Kdabcyl is the Kd,biotin for 

mSADAB, A1 is the amplitude of binding, and A2 is the initial fluorescence level. Fitted 

values include the unknown Kunlabel or Kdabcyl, A1 and A2; all other values are fixed.

SDS-denaturation of GlpG variants labeled with BtnPyr

0.4 uM GlpG doubly-labeled with BtnPyr was titrated with SDS in 5 mM DDM, 20 mM 

Na2HPO4, 200 mM NaCl, pH 7.5, ranging from 0–0.9 SDS mole-fraction (XSDS=[SDS]/

([SDS]+[DDM]). Samples were incubated overnight at room temperature. The detailed 

scheme for fluorescence spectroscopy to monitor SDS-induced equilibrium unfolding is 

described in Supplementary Fig. 8. The unfolding curves were constructed using the 

average of three measurements. To determine thermodynamic stability of GlpG from SDS 

denaturation (ΔGo
U,SDS), the unfolding curves were fitted to the following two-state 

Santoro-Bolen equation
52

:

(7)
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(8)

F is the net fluorescence change. Baselines for the pre- and post-transition regions were 

determined by the fitted parameters: FlF, the fluorescence value for fully folded GlpG; FlU, 

the fluorescence value for fully unfolded GlpG; mF, the slope of the fully folded baseline; 

and mU, the slope of the fully unfolded baseline. mSDS is the slope of the transition region 

against XSDS and XSDS,1/2 is the transition midpoint. Fitted values include FlF, FlU, mF, mU, 

mSDS, and XSDS.1/2. ΔGo
U,SDS represents thermodynamic stability in the absence of 

denaturant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Principle of steric trapping and steric-trapping probes developed in this study
(a) Steric trapping principle for measuring thermodynamic stability (ΔGo

U) of proteins. 

After conjugation of biotin tags to two specific residues that are spatially close in the folded 

state but distant in the amino acid sequence, the first mSA binds unhindered to either biotin 

label with intrinsic binding affinity (ΔGo
Bind). Due to the steric hindrance with pre-bound 

mSA, the second mSA binds only when the native tertiary contacts between biotinylated 

sites are unraveled by transient unfolding. Coupling of mSA binding to unfolding leads to 

attenuation of the apparent binding affinity of the second mSA relative to that of the first 
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mSA, whose degree is correlated with the protein stability. Thus, thermodynamic stability of 

the target protein can be determined by fitting of the second binding phase (see equations 
(2)–(4) in Online Methods). Overall, protein unfolding is driven by the affinity and 

concentration of mSA without perturbing the native solvent condition. Folding reversibility 

is tested upon addition of excess free biotin by which bound mSA molecules are released by 

competition. (b) Thiol-reactive biotin derivatives possessing a spectroscopic reporter group 

developed in this study. BtnPyr-IA (1): biotin (red shaded)-pyrene (green shaded)-

iodoacetamide (blue shaded) conjugated to a lysine template, and BtnRG-TP (2): biotin (red 

shaded)-1-oxyl-2,2,5,5-tetramethylpyrroline spin label (green shaded)-thiopyridine (blue 

shaded) conjugated to a cysteine template.
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Figure 2. GlpG reversibly unfolds by double-binding of mSA
(a) Locations of two different biotin pairs for steric trapping in the structure of GlpG (PDB 

code: 3B45
49

) and their Cα-Cα distances. (b) Reversible control of GlpG folding tested by 

the proteolytic activity as a folding indicator. The second TM domain of the lactose 

permease
50

 of E. coli fused to staphylococcal nuclease was used as a model substrate 

throughout this study (Supplementary Fig. 1). All activity levels were normalized relative 

to the activity of wild-type GlpG. Error bars denote mean ± s. d. (n=5 for the data without 

mSA and n=3 for the data with mSA). Top panels: binding of wild-type mSA (mSA-WT) to 
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individual single-cysteine variant labeled with BtnPyr did not affect the activity. Bottom 
panels: saturated binding of mSA-WT to each double-cysteine variant labeled with BtnPyr 

led to an inactivation of GlpG (the second bar from the left in each panel). To test folding 

reversibility, double-biotin GlpG variants were first inactivated with mSA-S27A possessing 

a weaker biotin binding affinity (Kd,bioin=1.4×10–9 M) for 2–5 days (the third bar). Next, 

excess free biotin was added to induce competitive dissociation of bound mSA (the fourth 

bar). All p-values obtained from Student's t-test were smaller than the threshold significance 

level (α=0.05), indicating that the activity changes for the unfolding and refolding reactions 

were significant.
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Figure 3. DEER suggests steric trapping induce wide separation of two biotinylated sites
Background-subtracted dipolar evolution data and their fits (left) and inter-spin distances 

(right) for the native (dashed lines), SDS-induced unfolded (gray solid lines, SDS mole 

fraction =[SDS]/([DDM]+[SDS])>0.8, in which the unfolded fraction exceeded 0.9), and 

steric-trapped (black solid lines) unfolded states for (a) 95/172N-BtnRG2 GlpG and (b) 

172/267C-BtnRG2 GlpG. The approximate upper limit of the reliable mean distance was ~53 

Å
32

.
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Figure 4. Thermodynamic stability of GlpG using steric trapping and SDS denaturation
(a) Steric-trapping strategy using FRET between fluorescent pyrene (donor) in BtnPyr 

labeled on GlpG and non-fluorescent quencher DABCYL (acceptor) thiol-specifically 

labeled near the biotin binding pocket (Y83C) of the active subunit of mSA (mSADAB). (b) 

Equilibrium unfolding of GlpG variants 95/172N-BtnPyr2 and 172/267C-BtnPyr2 as a 

function of SDS mole fraction measured by FRET between Trp residues (donor) of GlpG 

and pyrene (acceptor) on BtnPyr labels (Supplementary Fig. 8). Errors in ΔGo
U,SDS values 

denote mean ± s. d. from fitting. (c) Binding isotherms of 95/172N-BtnPyr2 and 172/267C-
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BtnPyr2 with three mSA variants mSADAB-WT (black circles, Kd,biotin=~10−14 M), 

mSADAB-S27A (red circles, Kd,biotin=1.4×10−9 M) and mSADAB-S45A (blue circles, 

Kd,biotin=9.0×10−9 M) (Supplementary Fig. 3). The activity change for each double-biotin 

variant (crosses, right y-axis) was measured at an increasing concentration of mSADAB-

S27A. The thermodynamic stability (ΔGo
U,ST) of each variant was obtained by fitting of the 

second mSA-binding phase to equation (4) in Online Methods. Procedures to obtain 

nonspecific FRET (open circles) are described in Online Methods. Errors in fluorescence 

denote mean ± s. d. (n=4). Errors in activity denote ± s. d. from fitting. Errors in ΔGo
U,ST 

values denote mean ± s. d. (n=3).
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Figure 5. Dependence of thermodynamic stability of GlpG on SDS mole fraction
The plot containing ΔGo

U,ST's (diamonds) obtained by steric trapping and ΔGo
U,SDS's 

(squares) obtained by SDS denaturation as a function of SDS mole fraction (XSDS) for 

95/172N-BtnPyr2 and 172/267C-BtnPyr2. To fit ΔGo
U,ST, we accounted for the changes in 

the biotin affinity of mSADAB variants which depended on XSDS (Supplementary Fig. 3d). 

Errors in ΔGo
U,ST denote ± s. d. from fitting. Solid lines are the linear-regression fits of 

ΔGo
U,ST in the range of XSDS=0.2–0.4 and dashed lines indicate the extrapolation lines of 

ΔGo
U,SDS to zero XSDS from equilibrium SDS denaturation. The slope in the ΔGo

U vs XSDS 

plot represents the m-value. For 95/172N-BtnPyr2, m=16±3 (blue dashed line) from SDS 

denaturation and m=14±2 (blue solid line) from steric trapping. For 172/267C-BtnPyr2, 

m=17±2 (red dashed line) from SDS denaturation and m=8±1 (red solid line) from steric 

trapping. Errors in the m-values denote ± s. d. from fitting.
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Figure 6. Cooperativity map reveals a network of clustered cooperative and localized 
interactions for the stability of GlpG under a native micellar condition
(a) Scheme for quantifying the cooperativity of interactions of a specific side chain. The 

stability changes (ΔΔGo
U) induced by the same mutation (black star) were probed with two 

biotin pairs, 95/172N-BtnPyr2 and 172/267C-BtnPyr2 located in the N- and C-terminal 

regions, respectively, and compared to each other to yield ΔΔΔGo
U using equation (1). The 

cyan-backbone region designates subdomain I (TM1-L1-TM2-TM3-L3198), which ends at 

residue 198 in the L3 loop (marked with a magenta wedge) and the yellow-backbone region 
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(L3199-TM4-TM5-L5-TM6) indicates subdomain II. The uncertainty of the subdomain-

division point was ±20–30 residues around residue 198. The detailed strategy for the 

subdomain dissection and the estimation of the uncertainty is described in Supplementary 
Fig. 10. Catalytic dyad composed of Ser201/His254 is shown as spheres. (b) Cooperativity 

map at a side-chain resolution. The map shows the “cooperative” (green, |ΔΔΔGo
U|≤RT=0.6 

kcal/mol) and “localized” (|ΔΔΔGo
U|>RT) side-chain interactions. Localized interactions 

were further divided using additional cut-off energy values, 2RT≥|ΔΔΔGo
U|>RT 

(“moderately-localized” interactions) and |ΔΔΔGo
U|>2RT (“highly-localized” interactions). 

Each side chain was color-coded based on these criteria for ΔΔΔGo
U as shown in the figure. 

Interactions mediated by residues G261 and A265 (denoted with stars) were “over-

propagated”. Errors in individual ΔGo
U were ±0.1−±0.2 kcal/mol (mean ± s. d. from fitting) 

and errors in ΔΔΔGo
U ranged from ±0.1−±0.4 kcal/mol, which were calculated using the 

propagation of errors in ΔGo
U (Supplementary Table 1).
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