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Some directions in ecological theory

BRUCE E. KENDALL
1

Bren School of Environmental Science & Management, University of California, Santa Barbara, California 93106-5131 USA

Abstract. The role of theory within ecology has changed dramatically in recent decades.
Once primarily a source of qualitative conceptual framing, ecological theories and models are
now often used to develop quantitative explanations of empirical patterns and to project
future dynamics of specific ecological systems. In this essay, I recount my own experience of
this transformation, in which accelerating computing power and the widespread incorporation
of stochastic processes into ecological theory combined to create some novel integration
of mathematical and statistical models. This stronger integration drives theory towards
incorporating more biological realism, and I explore ways in which we can grapple with that
realism to generate new general theoretical insights. This enhanced realism, in turn, may lead
to frameworks for projecting ecological responses to anthropogenic change, which is,
arguably, the central challenge for 21st-century ecology. In an era of big data and synthesis,
ecologists are increasingly seeking to infer causality from observational data; but conventional
biometry provides few tools for this project. This is a realm where theorists can and should
play an important role, and I close by pointing towards some analytical and philosophical
approaches developed in our sister discipline of economics that address this very problem.
While I make no grand prognostications about the likely discoveries of ecological theory over
the coming century, you will find in this essay a scattering of more or less far-fetched ideas that
I, at least, think are interesting and (possibly) fruitful directions for our field.

Key words: biomass overcompensation; causality; Centennial Paper; conservation biology; eco-
evolutionary dynamics; ecological theory; NCEAS; quantitative ecology.

INTRODUCTION

At the most essential level, the science of ecology seeks

to understand the processes that determine the distribu-

tion and abundance of organisms, along with those that

determine how organisms modify the abiotic environ-

ment. In an era of increasing anthropogenic impacts,

ecologists also seek to predict how these processes will

play out in a changing environment. What is the role of

theory in these projects, and what theoretical advances

might transform the science of ecology in coming decades?

Ecological theory is as varied as ecology itself, and is

too vast to encompass in an essay such as this one. If

you seek a review of the current state of theoretical

ecology, I can instead point you to two (much longer)

recent publications. The Encyclopedia of Theoretical

Ecology (Hastings and Gross 2012) provides a survey of

the field in great breadth and satisfactory depth. It

comprises heterogeneous articles on concepts (e.g.,

ecosystem services), analytical toolkits (e.g., branching

processes), models (e.g., the Ricker model), and theories

(e.g., the metabolic theory of ecology). One might

reasonably expect a theoretical ecologist to be familiar

with everything that is in this volume, but, lacking an

integrative framework, it can be difficult to see the forest

for the theoretical trees.

In contrast, The Theory of Ecology (Scheiner and

Willig 2011a) focuses on the emergent properties of the

theoretical forest, seeking integration and unification

both within major subfields and across ecology as a

whole. The philosophical premise is that a theory can be

expressed as a collection of general principles or

propositions that can be linked to specific models

(Scheiner and Willig 2011b). Some of the proposition

lists in the volume are useful and compelling: for

example, the six propositions of ‘‘the theory of niches’’

(Chase 2011) provide a comprehensive high-level over-

view of coexistence theory. Some of the other proposi-

tion lists, I find, do not capture the essence of the theory

being described, but most of the chapters provide

valuable syntheses of the models and sub-theories within

their domains.
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I should probably pause here and say something

about what I think scientific theory is and does. I am no

philosopher of science, but in practice I view theory as

being a collection of supportable statements about how

a system works and how these processes lead to patterns

that we might, in principle, observe. The statements need

to be precise and unambiguous, and based on rigorous

reasoning. In practice, this means that that expression

and demonstration of theory usually needs to be

mathematical, for verbal statements tend to be linguis-

tically ambiguous, and verbal reasoning can be easily led

astray by the mental heuristics and imperfect analogies

that we use to make sense of the everyday world

(rigorous verbal analysis is possible, but it tends to be

voluminous). A theory may be very general, or it may be

tailored to a specific empirical system; we tend to call the

latter ‘‘models,’’ but I think of all theory as being a

model of reality. There is an important role for verbal

and graphical statements of theory: to communicate the

essence of the theoretical insights to those who are not

fully fluent in the requisite mathematics. Indeed, this

communication is essential if theory is to substantially

influence the field; but such statements are generally not

a robust starting point for extending and elaborating

theory, or exploring its implications.

Two innovations have transformed ecological theory

in recent decades, without which the ideas I want to

discuss in this essay would not be possible. The first is the

introduction of stochastic processes into our theory and

models. At a broad conceptual level, stochasticity leads

to outcomes that are impossible with simple deterministic

processes alone, and has transformed areas such as

population dynamics and coexistence theory; at a more

tactical level, incorporating stochasticity explicitly into

models opens new doors for linking theory to data. The

second innovation is the development of fast computers.

This has allowed us to analyze nonlinear and stochastic

models that were previously intractable, and has greatly

increased the richness and detail of ecological theory.

In the rest of this essay, I will discuss three themes

around the changing role of theory in ecology. The first

involves the link between theory and data that I alluded

to in the previous paragraph, and a personal story about

the transformation in the relationship between the two.

Second, I explore the strategic addition of realism to

ecological models, which can reveal general insights that

would be difficult to uncover by tinkering directly with

simple models. Finally, I turn to the challenge of a

changing planet, and consider how theory can help us

predict the future in ways that usefully inform manage-

ment decision-making.

THEORY AND EMPIRICISM

As a graduate student in the early 1990s, I saw what

looked like a vast divide between ‘‘theoretical’’ ecology,

which was published in journals like Theoretical

Population Biology and was 100% math, and ‘‘real’’

ecology, which was published in journals like Ecology

and used experimental data and statistical hypothesis

tests to address narrowly proscribed empirical questions.

I was taught that models, which abstracted away so

much of biological complexity, could not hope to fit or

predict actual data, and instead provided (at best)

qualitative insights into pattern and process. Unfortu-

nately, relatively few of us on the theory side were adept

at translating these insights into forms that empiricists

could incorporate into their research. Furthermore,

there was a general sense, at least among dynamical

systems folks like me, that long-term data collection was

needed to test even these qualitative insights, and that

such data (aside from some overworked collections such

as fur-trapping records) did not (and probably could

not, given the three-year grant cycle) exist.

Thus the inaugural working group at the National

Center for Ecological Analysis and Synthesis (NCEAS),

which I joined as a postdoc, seemed extraordinary: bring

together theorists, statisticians, and empiricists to go

beyond the usual theoretical conclusion (‘‘these n

ecological processes can all generate population cycles’’)

and the usual empirical conclusion (‘‘this population is

cycling’’) to ask ‘‘which of the n cycle-generating

processes is causing cycles in this population?’’ There

was analysis: deepening our understanding of stochastic

dynamical systems, customizing canonical mechanistic

models to match the particularities of the populations,

developing and testing statistical tools to quantitatively

assess how well the mechanistic model predictions match

the time series in oscillating systems. There was syn-

thesis: we incorporated all kinds of additional empirical

information about the population besides the time series

itself, and forced the models to be consistent with them

(e.g., ‘‘can host–parasitoid models create cycles without

requiring the peak parasitism rate to be substantially

higher than has ever been observed?’’). It was often

frustrating, and a huge amount of fun.

In retrospect, it is clear that some of this cross-

fertilization and integration of statistical and mecha-

nistic models had been occurring already, outside the

confines of my graduate department. For example, Ray

Hilborn and Marc Mangel (1997) were writing The

Ecological Detective, which soon became a mainstay of

graduate reading groups, popularizing the use of like-

lihood-based techniques to fit simple process-based

ecological models to data. Furthermore, many of these

techniques had long been used in fisheries science and

biological control, which have the explicit mission of

predicting the dynamics of particular empirical systems.

An independent line of research used autoregressive

models to unify the statistical description of time series

data with mechanistic models of population dynamics

(e.g., Stenseth et al. 1996). Furthermore, many ecologists

pursued both theoretical and empirical work, although

often the two were linked only at a broad conceptual

level. Nevertheless, two lines of evidence illustrate the

novelty of the integrative approach pursued by our

working group. First, I was able to obtain the postdoc
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with a fairly transparent bluff about my statistical

abilities: very few students were being trained in both

theory and statistics. Second, once we got beyond proofs

of concept (Kendall et al. 1999) and were drawing

ecological conclusions about ecological processes in

particular populations (Turchin et al. 2003, Kendall et

al. 2005), editors and reviewers wanted us to reframe the

papers as being about methods—‘‘here’s a mathemati-

cally complex method, and here’s an illustrative example

of how it could be applied to real data (but we don’t

really care about, or even believe, the ecological

implications).’’ The approach, so far from the empirical

convention of controlled experiment/hypothesis testing/

ANOVA table, was simply not viewed as a credible way

of drawing empirical conclusions—even by the theoret-

ical ecologists who were reviewing the papers!

Our working group turned out to be the harbinger of

the ‘‘new normal’’ at NCEAS, driven mostly by the

incredibly talented young ecologists who worked there

as postdocs. Those who, like me, had been trained in

mathematical theory and modeling, were entranced by

the growing collection of spatially, temporally, and

taxonomically extensive data sets being assembled by

the working groups (as well as the impressive Global

Population Dynamics Database assembled at the Centre

for Population Biology; NERC Centre for Population

Biology 1999). Those with a background in empirical

and statistical analysis were won over by the ability of

models to make sharp, quantitative predictions. Facili-

tated by the growing power of computers, which allowed

interactive analyses of nonlinear stochastic models, a

new type of scientist emerged, at NCEAS and elsewhere:

the integrated statistical and mechanistic ecological

modeler.

First popularized by Hilborn and Mangel (1997), the

key tool of this new generation of quantitative ecologists

is the data-constrained dynamic model, which provides a

framework by which conceptual understanding of

ecological processes can be translated into concrete

predictions of particular outcomes. There are two main

ways to generate these data constraints. First, some

model parameters can be measured directly. For

example, matrix population models and their relatives

(Easterling et al. 2000, Caswell 2001) and analogous

individual-based models (e.g., Vortex; Lacy 1993) are

built up from short-term processes of birth, growth and

survival, which are sometimes easily observable in the

field; such models allow ecologists and conservation

biologists to translate short-term observations into long-

term projections. In contrast, inverse procedures esti-

mate parameters (and even model structure) by trying to

get the model to generate spatial and temporal patterns

that match the observations (Wood 1997). Advances in

computing power and software usability are important

here; but so is the close connection between the models

and empirically measureable quantities. The use of

Bayesian approaches (such as Markov chain Monte

Carlo as implemented in BUGS; Link et al. 2002, Kéry

2010) to link a greater variety of data sources to

dynamic models, as exemplified by integrated popula-

tion models (which can combine direct estimation of

some parameters with inverse estimation of others;

Besbeas et al. 2002, Abadi et al. 2010) are likely to

further enhance the utility of theoretical models for

practical ecological application; and continues to blur

the distinction between ‘‘theory’’ and ‘‘statistics.’’ For

example, when multi-state mark–recapture models are

used to estimate parameters of stage-structured popula-

tion models (e.g., Fujiwara and Caswell 2001), the

statistical and mathematical models have exactly the

same structure, allowing accurate propagation of

correlated uncertainty in the parameter estimates.

Increasing numbers of empirical studies are being

designed, not around classical, statistical, hypothesis

testing, but instead using models that have emerged

from the theoretical realm, to examine the magnitudes

of, and relative importance of, multiple interacting

factors on biological processes and outcomes (e.g.,

Johansson et al. 2012).

Training the next generation

A prominent theoretical ecologist once remarked to me

that NCEAS proposals had too much synthesis (bringing

together diverse data sets) and not enough analysis

(deepening understanding through the application and

development of advanced quantitative techniques). How

can we ensure that quantitative ecologists have the

methodological depth they really need? Such depth is

hard, because the relevant domain of knowledge is broad:

a deep mathematical understanding of dynamical systems

and stochastic processes; thorough fluency in, and

awareness of the limitations of, biometry, econometrics,

and a vast array of ‘‘modern statistics’’; the ability to

write fast and numerically reliable code that is also

transparent and reproducible; as well as all the ecological

principles and theories that we would want any ecologist

to know. We simply do not have a ‘‘canon’’ in these areas.

However, the development of such a canon, looking both

at high-level concepts like those in the Encyclopedia of

Theoretical Ecology and at underlying mathematical

fundamentals such as the Random Perron-Frobenius

Theorem (Ruelle 1979), would be a valuable project of

the Theoretical Ecology Section of the ESA. Perhaps it is

too much to expect of a graduate student to master all of

this; but I have observed individuals who are self taught

in one or more of these areas (including myself) being

surprised by phenomena that are actually well under-

stood (such as the emergence of chaotic transients in

stochastic nonlinear dynamical systems). We each should

develop sufficient familiarity with a broad enough range

of principles and approaches (beyond our own area of

deep expertise) that we know when to seek out a

collaborator. The field of integrated statistical and

mechanistic ecological modeling emerged organically,

but now that we see its value, we should start to cultivate

it more systematically.
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INCREASING BIOLOGICAL GENERALITY FOR ECOLOGICAL

THEORY

In an influential essay published nearly one-half

century ago, Levins (1966) suggested that we cannot
have all three of generality, realism, and precision in a

‘‘manageable’’ model, which leads naturally to three
strategies. The first, sacrificing generality, is evidenced

today in detailed models of particular systems which, at
their best, expand our understanding of empirical

patterns in ways that complement conventional statisti-
cal analysis, in particular through the ability to do

controlled numerical experiments on the model in ways
that are impossible for large ecological systems. The

third, which Levins himself claims to prefer, sacrifices
precision (i.e., quantitative predictions). This third

strategy has generally gone into decline as ecology as a
whole became more quantitative, although the recent

development of ‘‘partially specified models,’’ in which
parametric functional forms are replaced by splines
(Wood 2001), sort of falls within this approach. The

second, which is where I spend most of my time, is to
sacrifice realism in favor of generality (models without

too many biological details apply broadly) and precision
(simple models are analytically tractable). In the areas I

know best (population dynamics and few-species com-
munity models), we rely on very old foundations of this

type: the logistic model and its discrete-time relatives,
the Lotka-Volterra competition model, the Nicholson-

Bailey host–parasitoid model, the Leslie age-structured
population model, the Rosenzweig-MacArthur preda-

tor–prey model, and the Levins metapopulation model.
I increasingly believe that many of us who work in this

tradition have given up too easily on the realism
dimension, and that there are aspects of organismal

biology that we can incorporate into our models,
without adding too much conceptual complexity, that

will generate new general ecological insights and will
constrain the space of ecological dynamics in ways that

treating organisms as simple physical particles does not.
I’ll make this notion more concrete in a moment, but
first I want to comment on the process of adding

biological detail to simple models.
It is easy to forget that the simple models we learn

from textbooks are not idealizations, but rather cartoon
approximations from which most biology has been

abstracted away. As a robust simplification of reality,
they apply only if certain assumptions hold, such as

being very close to equilibrium or resource dynamics
being infinitely fast. It is tempting to increase the realism

of models by encrusting additional detail onto the simple
models that seem so paradigmatic. I’ll hold myself up as

a role model: I investigated the population effects of
differences among individuals by simply adding hetero-

geneity in birth or death rates into simple models,
without thought for how the underlying biological

differences might affect other aspects of the indviduals’
life histories (Kendall et al. 2011, Stover et al. 2012).

However, the nonlinearities inherent in biological

systems will often mean that adding a biological detail

to an existing approximation will give different results

from adding that detail to an underlying realistic model

and repeating the approximation process. The latter is

more likely to be a useful cartoon.

Explaining biomass overcompensation

Let’s look at an example where adding a little realism

has generated a new class of general biological insights.

Almost all organisms change in size throughout at least

part of their development, as well as making qualitative

changes in their biology (from non-reproductive juvenile

to reproductive adult, for example). If resources are not

limiting and environmental conditions are unchanging,

one can formulate conceptually straightforward popu-

lation models that incorporate empirically measureable

size-dependent reproductive, death, and growth rates.

But how should one incorporate ‘‘density dependence’’

into such a model? If the limitation is due to intra-

specific competition for a shared resource, then it is

likely that the declining resource level is likely to affect

survival, growth, and reproduction of all individuals.

One can justifiably argue that, at equilibrium, only one

of those rates, impacting one of the life stages, will be

limiting the population, and on this basis a density

dependent function can be applied to one of the vital or

growth rates, informed, perhaps, by empirical data on

responses to varying density. But what if conditions

change: the resource production rate goes up, or

extrinsic mortality (from predation or harvest) goes

up? It is not necessarily true that the same vital rate, or

life stage, will remain the limiting factor on the

population, so our modified simple model is an

unreliable extrapolation tool.

What can we learn by making the implicit resource

dependence explicit? This might lead us to develop a

size-structured model of a consumer feeding on a

resource, which has its own renewal dynamics; the

feeding rate of an individual consumer depends both on

its size and on the resource abundance. A dynamic

energy budget model (Kooijman 2010) might provide

the link between resource consumption and the individ-

ual’s growth, death by starvation, or reproduction;

maturation into a reproductive adult might take place at

a fixed size. A model of this sort, adding explicit

resource dynamics to the model of Kooijman and Metz

(1984), was described and analyzed by de Roos and

Persson (2013:100–107). It has a seemingly curious

property: over a range of resource densities, increasing

the extrinsic mortality of the consumer (e.g., due to

predation or harvest) leads to an increase in equilibrium

juvenile or adult consumer biomass. This phenomenon,

termed ‘‘biomass overcompensation’’ by de Roos et al.

(2007), turns out to be common property of models with

this general structure (de Roos and Persson 2013).

Indeed, with sufficient care, and some restrictive

assumptions, the fully size-structured model (which,

being a system of partial differential equations, can be

BRUCE E. KENDALL3120 Ecology
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tricky to analyze even numerically) can be approximated

by a system of three ordinary differential equations

(juvenile and adult consumers, and the resources). The

assumptions include a particular allometry of size-

dependent resource uptake and metabolism, and that

the system be at equilibrium; the care includes specifying

the maturation function such that rate at which juveniles

become adults reflect the cumulative mortality over the

(resource-dependent) time required to grow to maturity

(de Roos et al. 2008b).

This simplified model also demonstrates the phenom-

enon of biomass overcompensation and it facilitates a

conceptual understanding of the biological circum-

stances under which this result is likely to occur (for

details, see de Roos and Persson 2013: chapter 3). In

addition, this simplified model allows investigation of

the effects of biomass overcompensation in multi-species

communities. For example, it can create a form of Allee

effect for a predator of the size-structured species: when

the predator is at low density, the prey biomass is

insufficient for the predator to persist, but with high

predator density the biomass overcompensation in the

prey (caused by the predator-induced mortality) allows

the predator to persist (the bistability this creates has

been suggested as a cause for the collapse of fisheries

stocks; de Roos and Persson 2002). Likewise, two

predators that feed on different stages of a size-

structured prey can facilitate each other, as the

predation on one stage creates biomass overcompensa-

tion in the other (de Roos et al. 2008a). This result

greatly expands the range of ecological circumstances

under which we might see facilitation (typically thought

to be primarily the domain of mutualistic interactions).

This new cartoon, which retains key dynamical

properties without the burden of explicitly modeling

the underlying mechanism, could not have been found by

just adding detail to existing simple models. Rather than

adding phenomenological density dependence to a size-

structured model, resource dependence was made explicit

and dynamic. This step was not in itself revolutionary:

the fact that dynamic resources can qualitatively change

system dynamics, while often ignored, has long been

known (e.g., Armstrong and McGehee 1980). Indeed, the

structural form of the consumer–resource model derived

by de Roos et al. (2008b) had already been developed

and studied (Yodzis and Innes 1992). However, the

particular form of the maturation function, which is key

to making the stage-structured model a valid approx-

imation of the size-structured model, and hence repro-

ducing the phenomenon of biomass overcompensation,

would not have been found without building the more

mechanistically realistic model and then analyzing its

properties at equilibrium.

Now, the purpose of the preceding paragraphs is not

to demonstrate that I’m a fan of de Roos and Perrson’s

work (although I certainly am), but to illustrate that

adding a bit more biological realism to our general and

precise models can illuminate new realms of ecological

understanding. Admittedly, the size-structured models

look complex, requiring a page or more of equations to

fully explain, but the model is conceptually straightfor-

ward. To the uninitiated, this complexity may falsely

give the impression that the model has so many

parameters that a comprehensive analysis would be

impossible. Indeed, as a graduate student, I wrote a

scathing review (fortunately only seen by my committee

members) to this effect. However, as this biological

complexity is based on physiological processes, the

parameters are strongly constrained even when looking

across a wide range of taxa (de Roos and Persson 2013),

so that, despite the biological richness, there are only a

relative handful of parameters that need to be explored

in an analysis of the model. Many avenues in which to

explore the consequences of biomass overcompensation

still remain; more importantly, in many other domains

of theoretical ecology the addition of modestly more

biological realism is opening the way to ecological

discovery.

Trade-offs, constraints, and eco-evolutionary dynamics

One such area is the field of eco-evolutionary

dynamics. It has become clear that populations can

exhibit evolutionary change on ecological timescales,

and that these evolutionary changes can affect ecological

dynamics in surprising ways (Pelletier et al. 2009). This

was the topic of an Ignite session at the 2013 ESA

annual meeting, and presents an important challenge to

ecological theory, which still typically assumes that

parameters are fixed or fluctuate stochastically. The

distinguishing feature of eco-evolutionary dynamics is

the feedback between evolution and ecology (Post and

Palkovacs 2009).

The key element of such models is a trade-off, such

that selection on one trait or in one context (such as

resistance to predation) leads to declining performance

in another (such as reproduction). Trade-offs may be

empirically observed (e.g., Miller et al. 2012), although

they can be obscured by heterogeneity in individual

quality (which creates positive correlations between life-

history components; Hamel et al. 2009); life-history

theory often simply assumes the existence of trade-offs

between components of fitness (Roff 1992). However,

eco-evolutionary theory currently does not encompass

generalizable trade-off mechanisms. Models of specific

systems use trade-offs that have been empirically

observed in those systems (e.g., Jones et al. 2009),

whereas more general models simply assert a trade-off

between quantities such as survival and reproduction.

The former are not generalizable, and the latter, while

based on broad biological insights, are not mechanistic

(quantities such as survival rate or population growth

rate are not fundamental traits, but rather the outcome

of (typically multiple) phenotypic traits interacting with

the individual’s state and the environment).

Evolutionary studies of trade-offs have different

shortcomings. Their focus is on the genetic basis for
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correlations between traits, generated by processes that

give rise to linkage disequilibrium or pleiotropy (Roff

and Fairbairn 2007). Two common conceptual models

for the existence of negative trade-offs between traits

that each positively influence fitness are that the traits

are both functionally redundant and costly, or that the

traits depend on a shared limiting resource (Agrawal et

al. 2010). However, the ecological and physiological

models employed in these studies are often unrealistic.

For example, to explain the often observed pattern that

correlations between traits that share a resource are

positive, de Jong and van Noordwijk (1992) developed a

model (commonly called the ‘‘Y model’’) in which one

gene controls the resource acquisition rate and another

controls the allocation between the traits of interest;

large variation in the former can swamp the negative

trade-off between the traits that would be expected if

resources were fixed. However, this model does not take

into account the bioenergetics and ontogeny of resource

acquisition and allocation, simply assuming that the

resource acquisition ability is a fixed trait and that the

traits of interest respond linearly to the total resources

allocated to them.

This presents an opportunity to add usefully general

realism by explicitly incorporating ecologically derived

energy allocation models, such as dynamic energy

budget models (Kooijman 2010). These include consid-

erably more ecological realism than the evolutionary Y

models, and allow explicit links to fluctuations in

resource supply and conditions. In this case, the relevant

trait is the (potentially state-dependent) allocation rule,

such that, for example, selection for early reproduction

will change the allocation rule in a way that may slow

growth and/or make the organism more vulnerable to

starvation. Incorporating biologically realistic con-

straints and within-individual processes into eco-evolu-

tionary models should move us towards a more general

understanding of when evolutionary changes are likely

to affect ecological dynamics, as well as helping us

understanding coevolutionary fitness landscapes when

interacting species act on very different time scales (e.g.,

Gilchrist and Sasaki 2002).

THEORY IN SERVICE TO NATURE AND HUMANS

The psychologist Martin Seligman, writing in defense

of applied psychology, suggests that strong basic science

can only emerge on the foundations of applied work,

pointing to engineering and the predictions of eclipses as

the antecedents of physics, and gunpowder and the

alchemical search to create gold as the antecedents of

chemistry (Seligman 2011:59–61). Many of the enduring

elements of ecological theory also have applied roots: for

example, branching process models (now used to

understand demographic stochasticity and genetic drift)

were developed to answer Francis Galton’s questions

regarding the persistence of family names (a very applied

question if one is living in a 19th-century patrilineal

aristocracy; Allen 2012). Similarly, Vito Volterra devel-

oped his predator–prey model in response to practical

questions about fisheries management (Volterra 1926,

Kingsland 1995:106–107). In the third quarter of the

20th century, the science of ecology (at least as

represented by the ESA) moved away from these roots,

increasingly engaging in what Seligman would call

‘‘puzzle-solving’’ than in problem-solving. By the

1980s, however, it had become clear that humans were

influencing ecological processes everywhere on the

globe, and ecologists are now called to solve practical

questions not just around biodiversity conservation, but

also around fundamental sources of human welfare such

as the provision of ecosystem services and adaptation to

climate change.

Theory played a tremendous role in the early history

of conservation biology. For example, notions of how

rarity relates to endangerment, now fully codified in the

IUCN Red List, have their roots in a series of highly

mathematical papers, ultimately synthesized by Lande

(1993), relating extinction risk to carrying capacity,

growth rate, and various sources of stochasticity. The

design principles used by systematic conservation plan-

ning draw on ecological theories such as those of island

biogeography and metapopulation dynamics (Margules

and Pressey 2000). Demographic theory and models,

once theoretical abstractions, are now applied routinely

in tools such as population viability analysis (e.g.,

Akçakaya et al. 2004), which attempt to project the

fates of particular species under various scenarios.

However, we are finding that there are limits to the

quantitative application of such models in the face of

parameter uncertainty and inherent stochasticity. Even a

model that is right ‘‘on average’’ may not make useful

predictions for a particular place and time (Ellner et al.

2002), and there may be irreducible limits to predict-

ability in many ecological systems (Melbourne and

Hastings 2009). There is also a need for further

theoretical development; for example, the theoretical

roots of conservation biogeography remain unintegrated

(Whittaker et al. 2005), and the mathematical richness of

modern conservation planning derives more from

optimization and control theory than from explicitly

ecological theory (Moilanen et al. 2009). How might we

uncover new theoretical generalizations that can provide

conceptual guidance to applied ecology?

One approach could be to explicitly consider evolution.

Might a species subject to anthropogenic threat be able to

evolutionarily or plastically adapt? Such ‘‘evolutionary

rescue’’ is possible (Bell 2013), especially if the population

size is large or the anthropogenic change is gradual (as in

climate change; Hoffmann and Sgrò 2011). However,

species that are rare or declining have little opportunity to

express this response (e.g., Gomulkiewicz and Houle

2009), and an important challenge moving forward is to

unpack the existing theoretical principles, along with

emerging theory about the effects of community inter-

actions on evolutionary rescue, in a form that can be

applied to assess individual species of concern.
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Identifying such species that are likely to survive is but

one component of a triage approach to conservation

(Bottrill et al. 2008). An equally important question is,

‘‘Which species are most likely to respond to interven-

tion?’’ Demographic theory allows us to identify, from a

sufficiently well-quantified life history, the life stages and

vital rates where reducing threats will best improve that

species’ prospects (e.g., Crouse et al. 1987). I’d like to

propose that knowing something about a species’

evolutionary history may also provide guidance, even

in the absence of intensive demographic study. For

example, Lande’s (1993) synthesis of the dependence of

extinction time on carrying capacity suggests that any

species that is naturally rare (i.e., has persisted for a long

time with a low carrying capacity) is likely to have a life

history that exhibits rapid population growth at low

density, low sensitivity to various sources of environ-

mental stochasticity, or both—species without such

characteristics would likely have gone extinct long

before humans began to affect it. Such species would

be expected to recover quickly if the anthropogenic

factors that hold them below their natural carrying

capacity can be removed. The rapid recovery of some

island species, such as the Lord Howe Island Woodhen

(Miller and Mullette 1985, Brook et al. 1997) and the

Channel Islands fox (Coonan et al. 2010), is highly

suggestive in this regard. Of course, we need to update

Lande’s results (which are based on a simple unstruc-

tured model) to incorporate life history information and

extinction-colonization dynamics, take into account the

many ways to be rare (Rabinowitz 1981), focus on the

anthropogenic impacts that are in fact reversible, and

move beyond anecdotal examples. This seems to me to

be an area ripe for impactful theoretical study.

DATA AND CAUSALITY

I want to close by returning to the interface between

statistical and mechanistic modeling, and particularly to

the data engagement part of that. Much of the data being

used in such studies are observational, rather than

experimental, and this will only increase as ecology

enters the ‘‘big data’’ era. Drawing inferences about

causality and mechanism from observational data is

tricky. In fact, ecologists are often taught that it is

actually impossible; ‘‘correlation does not imply causa-

tion’’ and all that. While explicitly incorporating

theoretical models into the data analysis can help, it will

still not rule out, in general, the possibility that the

observed variables may covary because both are corre-

lated with a confounding variable, or that the relation-

ship between the variables of interest is obscured or

distorted by the effects of an unobserved causal variable.

Are we doomed to choose between cloaking our results in

uncertainty and confidently hoping for the best?

The field of economics has some answers. There is a

long history of association between ecology and

economics: strong analogies between fitness and profit

have allowed conceptual and theoretical tools to apply

in both fields; and bioeconomic models of natural

resources and ecosystem services are central to much

applied ecology. But economics also has an empirical

side; and almost all of the data available to economists

are observational. Thus econometrics, which looks

superficially similar to biometry (both have a strong

focus on linear models, although econometrics privileges

regression rather than ANOVA), includes a diverse

toolbox for rigorously drawing inferences from such

data (notably, but not exclusively, the method of

instrumental variables; Hanley et al. 2008, Kendall

2015). To be sure, these methods require finesse, and

each requires certain data conditions that don’t always

apply (I recommend collaborating with an economist to

be sure to get it right; Armsworth et al. 2009); they also

come with a cost of reduced statistical power. The

economists I know also start from sound conceptual

and/or mathematical theory before doing data analysis,

and devote considerable effort towards thinking of, and

analyzing, all the reasons that the patterns in their data

might have other causes (much as was advocated over a

century ago as the ‘‘method of multiple working

hypotheses’’; Chamberlin 1890).

If integrated statistical and mechanistic and statistical

modelers can extend their existing toolboxes to emulate

economists’ skepticism and attention to detail in the

evaluation of causality, then we should be able to

generate much more robust tests of ecological theory

using large-scale observational data sets. The careful,

model-driven analysis of such data will allow us to

identify areas where adding biological realism to our

theory and models can generate broad insights; I have

suggested a few examples frommy own areas of expertise,

but I am sure there are many more. Both integrating

theory with data and developing new theory may require

us to rethink the way we train our students and ourselves.

The payoff for this work will be a more complete

understanding of the interplay between general principles,

biological constraints, and ecological contingency. From

this, we can use theory to make useful predictions

(including bounding the uncertainty of the predictions)

for the specific communities, ecosystems, and populations

that sustain humans and their environments.
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