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ABSTRACT OF THE DISSERTATION

Security of Graphics Processing Units (GPUs) in Heterogeneous Systems

by

Hoda Naghibijouybari

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2020

Professor Nael Abu-Ghazaleh, Chairperson

Modern computing platforms are becoming increasingly heterogeneous, combining

a main processor with accelerators/co-processors to perform data-intensive computations. As

the most common accelerator, Graphics Processing Units (GPUs) are widely integrated in all

computing devices to enhance the performance of both graphics and computational workloads.

GPUs as new components in heterogeneous systems introduce potential vulnerabilities and other

security problems.

This dissertation studies the security of modern GPUs in terms of micro-architectural

covert and side channels attacks and defenses. In micro-architectural attacks, information leakage

is measured through processes interactions through the shared hardware resources on a processor.

The first contribution of my dissertation is a study of covert channel attacks on General

Purpose GPUs (GPGPUs). I first reverse engineer the hardware scheduler to create co-residency

between two malicious applications. I study contention and construct operational channels on

different resources including caches, functional units and memory on three different Nvidia

GPGPUs, obtaining error-free bandwidth of over 4 Mbps.

Next, I explore side channel attacks; a dangerous threat vector on GPUs where a

malicious spy application can interleave execution with a victim application to extract sensitive

vii



information. I build three practical end-to-end attacks in both the graphics and the computational

stacks on GPUs: 1) Website fingerprinting attack that identifies user browsing websites, 2)

tracking user activity on web browsers that captures keystroke timing, and 3) Neural Network

model extraction to reconstruct the internal structure of a neural network with high accuracy.

The third contribution of the dissertation is to study architectural mitigations to protect

GPU-based systems against these attacks. I propose GPUGuard, a decision tree based detection

and a hierarchical defense framework which isolates contending applications into separate

security domains at different hierarchy levels to maximize sharing when it is safe, but to reliably

close contention based channels when there is a possibility of such a channel.

The final contribution of my dissertation is an exploration of cross-component covert

and side channel attacks in integrated CPU-GPU environments, exploiting the sharing of common

resources among them. These attacks demonstrate the vital need to secure heterogeneous systems

and components, and not just the CPUs, against microarchitectural attacks.
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Chapter 1

Introduction

Over last several years, covert and side channel attacks have posed a substantial threat

to modern computing systems. They have particularly gained attention due to their potential to

reveal sensitive data to untrusted parties as recently demonstrated with the Meltdown [140] and

Spectre [124] attacks and their many subsequent variants [128].

Side channels are information leakage channels where an adversary can extract victim’s

secret data through monitoring the computing activity via some effects such as timing, power

or electromagnetic analysis. In covert channels, in contrast, a malicious insider, or trojan,

intentionally colludes with the adversary to exfiltrate secrets.

Unlike electromagnetic or power-based channels, microarchitectural side and covert

channel do not require physical access to the target device. Instead, only malicious or cooperating

spy applications need to be co-located on the same machine as the victim and the leakage is

measured through processes interactions through the shared resources on the processor, including

caches and other structures.

Most microarchitectural covert and side channel attacks have focused on the main

processor and its structures, with substantial research considering variants of attacks and defenses
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for primary structures such as the caches, branch prediction units, and others. However, modern

computing systems are increasingly made up of a federation of the CPU with other special-

ized accelerators and processors to gain performance, and it is essential for hardware security

researchers to understand how covert and side channel attacks manifest within such complex

environments and how to secure the systems against potential attacks.

Graphics Processing Units (GPUs) are integrated in modern computing platforms in

every domain of computing, from high-end servers and high-performance computing machines all

the way down to low-power hand-held devices including mobile phones and tablets to accelerate a

wide range of applications including security, computer vision, computer graphics, computational

finance, bio-informatics and many others [152].

It is not surprising that to date most of the covert and side channel attacks have been

demonstrated on CPUs. GPUs have mostly been spared from such attacks primarily because

until recently they had limited (or even no) support for concurrent kernel execution which leads

to resource contention. But that limitation is rapidly being relaxed. For example, AMD multiuser

GPUs [16] and Nvidia vGPUs [15] both enable up to 16 concurrent clients to share a GPU.

Nvidia GPUs support asynchronous compute to concurrently run graphics and general purpose

workloads since Maxwell [12]. The Volta multi-process service [20] features spatially sharing a

GPU among multiple applications. Intra-SM concurrent kernel execution [176, 230, 219, 220, 70]

further enables finer-grain sharing within a single SM to improve overall GPU utilization.

Furthermore, GPUs are now being deployed in a virtualized cloud environment such as the

Google Cloud [89], Amazon AWS cloud [51] and Microsoft Azure [153]. A malicious VM can

now spy on other applications that share a GPU (a side channel attack) or collude with another to

covertly communicate sensitive information (a covert channel) to bypass information isolation

boundaries.
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GPUs often process sensitive data both with respect to graphics workloads (which

render the screen and can expose user information and activity) and computational workloads

(which may include applications with sensitive data or algorithms). Covert and side channel

attacks on GPUs represent a novel and dangerous threat vector.

In this dissertation, I focus on microarchitectural covert and side channel attacks and

defenses between two applications co-executing on a GPU. At the core of these attacks an

adversary/spy exploits contention in hardware resources to indirectly infer information. GPUs

have a substantially different execution model with massive parallelism, internal hardware

schedulers that impact colocation and contention, as well as several unique (micro)architectural

structures such as constant cache, which provide a varied range of paths for contention based

channel formation. I also explore security of GPUs in integrated heterogeneous systems, where

attacks can spill over from the GPU to compromise the security of whole system.

1.1 Contributions of the Dissertation

This dissertation studies the security of discrete and integrated GPUs and consists of

four main parts (as shown in Figure 1.1): Covert channel and side channel attacks on discrete

GPUs and architectural mitigation against these attacks, as well as microarchitectural attacks in

integrated CPU-GPU systems.

1.1.1 GPU Covert Channel Attacks

For the first time, we demonstrate that with multiprogramming available on GPGPUs,

covert channel attacks between two applications running concurrently on a GPU become pos-

sible [160, 161]. The attack offers a number of advantages that may make them an attractive

target for attackers compared to CPU covert channels including: (1) With GPU-accelerated

3



Figure 1.1: Dissertation Overview

computing available on major cloud platforms such as Google Cloud Platform, IBM cloud, and

Amazon web service [166], this threat is substantial. The model of sharing GPUs on the cloud

is evolving but allowing sharing of remote GPUs is possibility [75, 186, 58, 180]. Therefore,

GPU covert channels may provide the attackers with additional opportunities to co-locate, which

is a pre-requisite for these types of attacks [187]; (2) GPGPUs operate as an accelerator with

separate resources that do not benefit from protections offered by an Operating system. In fact,

due to this property they have been proposed for use as a secure processor [205]; and (3) GPGPU

channels can be of high quality (low noise) and bandwidth due to the inherent parallelism and, as

we demonstrate, the ability to control noise.

Through reverse engineering, we explore how the communicating applications can

leverage two-level scheduler to achieve co-residency. Based on their co-residency options (on

the same Streaming Multiprocessor (SM) or across SMs), the SM local resources or inter-SM

shared resources can be used for contention. We characterize the contention behavior to exploit it

to construct covert channels and demonstrate attacks on constant caches, functional units and

global memory on three generations of Nvidia GPUs. We explore different optimizations to

increase the bandwidth using synchronization and available parallelism on the GPGPU. We

also demonstrate preventing interference from other workloads on covert communication. Our
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experiments on constructing covert channels through different shared hardware resources show

that high bandwidth (over 4 Mbps) and error free covert communication is feasible on GPGPUs,

which is the fastest known microarchitectural covert channel under realistic conditions.

1.1.2 GPU Side Channel Attacks

The presence of a covert channel can also forecast the possibility of a side-channel

attack. This dissertation demonstrates that the inevitable trend towards sharing on GPUs, indeed

leads to side channel exposure in both user devices (through graphics workloads) and compu-

tational/cloud computing environments. We introduce a completely new attack vector for side

channels that can expose secret information [162, 159].

We first reverse engineer how applications share of the GPU for different threat

scenarios and also identify different ways to measure leakage. We demonstrate a series of

end-to-end GPU side channel attacks covering the different threat scenarios on both graphics and

computational stacks, as well as across them. The first attack implements website fingerprinting

through GPU memory utilization API or GPU performance counters. We extend this attack to

track user activities as they interact with a website or type characters on a keyboard. We can

accurately track re-rendering events on GPU and measure the timing of keystrokes as they type

characters in a textbox (e.g., a password box), making it possible to carry out keystroke timing

analysis to infer the characters being typed by the user. A second attack uses a CUDA spy to infer

the internal structure of a neural network application, demonstrating that these attacks are also

dangerous on the cloud. We believe that this class of attacks represents a substantial new threat

targeting sensitive GPU-accelerated computational (e.g. deep neural networks) and graphics (e.g.

web browsers) workloads.

We propose a mitigation based on limiting the rate of access to the APIs that leak the

side channel information. Alternatively (or in combination), we can reduce the precision of this
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information. We show that such defenses substantially reduce the effectiveness of the attack, to

the point where the attacks are no longer effective.

Different attack vectors have been proposed for website fingerprinting and keystroke

timing at the level of CPU hardware, OS or web browser and there are several proposed mitiga-

tions that completely close these leakage vectors. The graphics end-to-end attacks implemented

in this dissertation demonstrate that as GPUs are being involved in the rendering process of

every computing device as hardware accelerator to improve the performance and efficiency of

rendering and freeing up the CPU for other tasks, it opens up a new avenue for the attacker to

bypass all already existed mitigations and spy on users activities in critical applications like web

browsers. Using GPUs for web browsers rendering process are being widely supported and

improved by introducing WebGL that enables websites and browsers to use GPUs for whole

rendering pipeline, making our attacks substantial threat for user privacy. Based on WebGL

statistics [40] 98% of visitors to a series of websites used WebGL enabled browsers that can be

compromised by GPU side channels presented in this dissertation.

In the future, as more applications supports GPU accelerated rendering, our graphics

based side channels such as keystroke timing attack on GPUs can spy on a wide range of

applications including text editors and expose users’ private data.

1.1.3 Mitigation: Secure GPUs

With the assessment of threats on GPUs, our next goal is to provide a comprehensive

solution to mitigate contention based covert and side channel attacks between two kernels co-

executing on a GPU. While solutions for such attacks in CPUs have been proposed, GPUs

have a substantially different execution model with massive parallelism and our solution uses

GPU-appropriate forms of partitioning triggered by detection of covert communication or side

channel.
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We propose GPUGuard, a dynamic detection and defense mechanism against covert

channel attacks [231]. Our attack detection relies on the increased resource contention that

is exhibited when a GPU is facing a covert or side channel attack. In the context of CPUs,

Hunger et al. have already shown that resource contention is one of the most quantifiable impact

of an attack [106]. As such, GPUGuard non-intrusively monitors resource contention across

kernels through a set of well defined features and resource utilization metrics. It then uses

these features and metrics to classify kernel interaction behaviors using a decision tree based

design, and to identify covert and side-channel formation. The detection algorithm feeds the

classification results to Tangram, a GPU-specific covert channel elimination scheme. Tangram

uses a combination of warp folding, pipeline slicing, and cache remapping mechanisms to close

the channels with 8%-23% performance overhead when there are active attacks, and 15% for

normal benchmarks categorized as attacks with only a small (8.5%) false positive rate. In all

other cases, GPUGuard pays nearly zero performance overhead.

1.1.4 Microarchitecural Attacks in Integrated CPU-GPU Systems

GPUs also come in integrated form in which they are tightly integrated in the same die

as the CPUs, sharing some architectural resources such as last level cache and memory subsystem.

This sharing opportunity provides the attackers with the opportunity to launch the attacks that

are originated from one component and spy on the other, compromising security of the whole

system. In this dissertation, we explore the feasibility of microarcitetural covert and side channel

attacks between two asymmetric components in integrated systems. First, we build two covert

channels: LLC-based PRIME+PROBE and contention based on memory bus across CPU and

integrated GPU. Then we investigate the feasibility of more dangerous remote side channel attack

in JavaScript, which is launched on integrated GPUs and uses the last level cache to spy on

applications running on the CPU.
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Although we demonstrate two instances of such cross-component attacks (specifically,

on integrated GPU and CPU) in heterogeneous systems, the threat model can be extended to

include any other accelerator or components, sharing resources with CPUs. Having experience

with these channels improves our understanding of the threats posed of microarchitectural attacks

beyond a single component which is a threat model increasing in importance as we move

increasingly towards heterogeneous computing platforms.

In summary, the high-level contributions of this dissertation are:

• We reverse engineer several components and characterize the contention on different

resources in discrete and integrated GPUs, including memory hierarchy, functional units,

hardware schedulers and colocation of both graphics and computational applications.

• We build high quality and bandwidth covert channel attacks on a variety of shared resources

on GPGPUs: caches, different types of functional units, and global memory.

• We implement a series of end-to-end side channel attacks on graphics and computational

stacks of GPUs, and also across them: website fingerprinting attack, inter-keystroke timing

attack to track user activity on the web browsers, and neural network model extraction

attack.

• We propose an architectural defense framework to dynamically detect and mitigate covert

and side channel attacks on GPUs.

• We present a new class of attacks that span different components within a heterogeneous

systems: microarchitectural attacks in integrated CPU-GPU systems. We illustrate these

attacks by building covert channels in native code and investigating the possibility of

remote side channel in JavaScript.
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1.2 Outline

We present a general background including GPU architecture and programming models

in Chapter 2. Chapter 3 gives an overview of related work and discusses state-of-the-art attacks

and defences on different components in heterogeneous systems. Chapter 4 and 5 present the

covert and side channel attacks on discrete GPUs and our proposed mitigation is discussed in

Chapter 6. In Chapter 7, we explore the possibility of microarchitectural attacks in integrated

CPU-GPU systems. Finally, Chapter 8 concludes before highlighting potential future work.

Our attacks demonstrate that covert and side channel vulnerabilities are not restricted

to the CPU. Any shared component within a heterogeneous system can leak information as

contention arises between applications that share a resource. Given the wide-spread use of GPUs

in safety-critical applications, we believe that they are an especially important component to

secure. Understanding of microarchitectural attacks and architecting security in heterogeneous

systems including GPUs and other accelerators will become an essential design objective.
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Chapter 2

GPU Overview

Graphics Processing Units (GPUs) are integral components to most modern computing

devices including embedded systems, mobile phones, personal computers and workstations. They

were primarily used to optimize the performance of graphics and multi-media heavy workloads.

Their highly parallel structure makes them more efficient than central processing units (CPUs) to

process large blocks of data in parallel. Therefore, General Purpose GPUs (GPGPUs) are also

increasingly integrated on computing servers, computational clouds and clusters to accelerate a

broad range of applications from domains including security, computer vision, computational

finance, bio-informatics and many others [152].

GPUs come in two forms (1) discrete GPUs: a separate device, which is connected

with the rest of the systems typically using a PCIe bus (or NVLink in new generations of Nvidia

GPUs [168]), which addresses a separate physical memory; (2) Integrated GPUs (iGPUs): which

are built on the same die as the main CPU and physically share the same system memory.

Figure 2.1 demonstrates how discrete and integrated GPUs are connected to the the CPU.
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Figure 2.1: GPU in system (a) Discrete GPU; (b) Integrated GPU

This chapter overviews GPU programming interfaces, architecture, and multiprogram-

ming support to provide an idea about how they are programmed, and how resources are shared

and contention arises within them.

2.1 GPU Programming Interfaces

GPUs were originally designed to accelerate graphics and multimedia workloads. They

are usually programmed using application programming interfaces such as OpenGL for 2D/3D

graphics [35], or WebGL [38] which is usable within browsers. We call OpenGL/WebGL and

similar interfaces the graphics stack of the GPU. OpenGL is accessible by any application on a

desktop with user level privileges. On embedded systems like smartphones and tablet computers,

a modified version of OpenGL is available called OpenGL-ES [43].

In the past few years, GPU manufacturers have also enabled general purpose pro-

grammability for GPUs, allowing them to be used to accelerate data intensive applications

using programming interfaces such as CUDA [24], OpenCL [31], and Vulkan [37]. We call this

alternative interface/software stack for accessing the GPU the computational stack.

Computational GPU programs are used widely on computational clusters, and cloud

computing systems to accelerate data intensive applications [26]. These systems typically do not
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process graphics workloads at all since the machines are used as computational servers without

direct graphical output. Nowadays, most non-cloud systems also support general purpose com-

puting on GPUs [23] and are increasingly moving towards GPU concurrent multiprogramming.

On desktops or mobile devices, general purpose programmability of GPUs requires

installation the CUDA software libraries and GPU driver. Nvidia estimates that over 500 Million

installed devices support CUDA [24], and there are already thousands of applications available

for it on desktops, and mobile devices.

2.2 GPU Architecture

Figure 2.2 presents an architecture overview of a discrete GPU. There are a number of

resources that are shared between threads based on where they are mapped within the GPU. The

GPU consists of a number of Graphical Processing Clusters (GPCs) which include some graphics

units like raster engine and a number of Streaming Multiprocessor (SM) cores. Each SM has

several L1 caches (for the instructions, global data, constant data and texture data). They are all

shared among the computational threads mapped to it. There is a globally shared L2 cache to

provide faster access to memory. As a typical example, the Nvidia Tesla K40 (Kepler generation),

includes 15 SMs [30]. The size of the global memory, L2 cache, constant memory and shared

memory are 12 GB, 1.5 MB, 64 KB and 48 KB respectively.

To illustrate the operation of the architecture, we describe how a general purpose

function, written in CUDA or OpenCL, is run on the GPU. A CUDA application is launched

using a CUDA runtime and driver. The driver provides the interface to the GPU. As demonstrated

in Figure 2.3, a CUDA application consists of some parallel computation kernels representing

the computations to be executed on the GPU. For example, a CUDA application may implement
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parallel matrix multiplication in a computation kernel. Each kernel is decomposed into blocks of

threads (CTA: Cooperative Thread Array) that are assigned to different SMs.

Internally, the threads are grouped into warps of typically 32 threads that are scheduled

together using the Single Instruction Multiple Thread (SIMT) processing model to process the

portion of the data assigned to this warp. The warps are assigned to one of (typically a few) warp

schedulers on the SM. In each cycle, each warp scheduler can issue one or more instructions to

the available execution cores. Depending on the architecture, each SM has a fixed number of

various types of cores such as single precision cores, double precision cores, load/store cores and

special functional units. Depending on the number of available cores an instruction takes one or

more cycles to issue, but the cores are heavily pipelined making it possible to continue to issue

new instructions to them in different cycles. Warps assigned to the same SM compete for access

to the processing cores. In addition, warps assigned to the same warp scheduler may compete for

the issue bandwidth of the scheduler.

The GPU memory is shared across all the SMs and is connected to the chip using

several high speed channels (see memory controllers in Figure 2.2), resulting in bandwidths

of several hundred gigabytes per second, but with a high latency. The impact of the latency is
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Figure 2.3: GPU programming model

hidden partially using caches, but more importantly, the large number of warps/threads ensures

the availability of ready warps to take up the available processing bandwidth when other warps

are stalled waiting for memory. This results in fine granularity and frequent interleaving of

executing groups of threads.

With respect to graphics workloads, the application sends the GPU a sequence of ver-

tices that are grouped into geometric primitives: points, lines, triangles, and polygons. The shader

programs include vertex shaders, geometry shaders and fragment shaders: the programmable

parts of graphics workloads that execute on SMs on the GPU. The GPU hardware creates a

new independent thread to execute a vertex, geometry, or fragment shader program for every

vertex, every primitive, and every pixel fragment, respectively, allowing the graphics workloads

to benefit from the massive parallelism available on the GPU.

Figure 2.4: Graphics processing pipeline
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Figure 2.4 demonstrates the logical graphics pipeline. The vertex shader program

executes per-vertex processing, including transforming the vertex 3D position into a screen

position. The geometry shader program executes per-primitive processing and can add or drop

primitives. The setup and rasterization unit translates vector representations of the image (from

the geometric primitives used by the geometry shader) to a pixel representation of the same

shapes. The fragment (pixel) shader program performs per-pixel processing, including texturing,

and coloring. The output of graphics workloads consists of the pixel colors of the final image

and is computed in fragment shader. The fragment shader makes extensive use of sampled and

filtered lookups into large 1D, 2D, or 3D arrays called textures, which are stored in the GPU

global memory. The contention among the different threads carrying out operations on the image

is dependent on the image.

2.3 Multiprogramming on GPU

Multiprogramming is required for our threat model since the spy and the trojan/victim

are different programs that are running concurrently on the same GPU and trying to communicate

indirectly or one of them extracts sensitive information from the other. Recent research has

shown that there are significant performance advantages to supporting multiprogramming on

GPUs [199, 218, 230]. For these reasons we believe that GPU manufacturers are moving to

support multiprogramming.

The current generation of GPUs supports multiprogramming, or the ability to run

multiple programs at the same time, through multiple streams with multi-kernel execution within

the same process, or a multi-process service (MPS) [167], which allows concurrent kernels

from different processes. MPS is already supported on GPUs with hardware queues such as the

Hyper-Q support available on Kepler and newer microarchitecture generations from Nvidia, and
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is being improved in every generation. Volta GPUs [20] features the multi-process service with

hardware support to dedicate separate address spaces to different processes. AMD multiuser

GPUs [16] and NVIDIA vGPUs [15] both enable up to 16 concurrent clients to share a GPU.

NVIDIA GPUs support asynchronous compute to concurrently run graphics and general purpose

workloads since Maxwell [12]. This increasing support on GPU multiprogramming makes our

attacks more dangerous and relevant.
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Chapter 3

Related Work

We organize the discussion of related work into four different categories: (1) Covert

and side channel attacks and defenses on CPUs (We briefly discuss the works that are most

related to our attacks in this dissertation) (2) Side channel attacks and defenses on GPUs and

Heterogeneous systems, (3) Attacks on GPU software stack; and (4) Timing and WebGL based

attacks in web browsers.

3.1 Covert and Side Channels on CPUs: Attacks and Defenses

Microarchitectural side-channel attacks have been widely studied on a variety of

resources on CPUs, including CPU L1 cache [181, 61, 78], shared LLC in multi-core CPUs

[120, 143, 98, 139, 237, 239], branch predictors [82, 83], random number generators [80], and

others [65, 122]. Several works exploit cache coherency protocols to develop timing channels on

multi-core CPUs [234, 232] or multi-CPU systems [90].

There are many defense proposals to close side channel attacks on the CPUs which

mostly focus on caches and memory controllers. These proposals include: (1) Static or dynamic

partitioning of resources like L1 cache [76, 174, 185, 109] that can introduce unacceptable
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performance overhead and can only support a limited number of partitions with reasonable

overhead and mitigation mechanisms like locking the critical cache lines with the support of

OS and compiler [126, 216]. Liu et al. [141] proposes partitioning the LLC into secure and

non-secure partitions and line locking the secure partition for defeating side channels. (2)

Randomizing memory-to-cache mapping, including randomization in the replacement of the

cache lines in the entire cache [217] and in the cache fill strategy [142]. (3) Adding noise to

timing by manipulating time measurement structure of processor [148]. (4) Traffic control in

memory controllers [213, 191]. Such defenses do not transit directly to GPUs or to covert

channels. We propose a solution in Chapter 6 which uses GPU-appropriate forms of partitioning

triggered by detection of covert communication.

Online detection of contention based covert communication is an alternative that

is useful for closing covert channels. Chen et al. [65] present a framework to detect timing

covert channel on shared hardware resources on a CPU by dynamically monitoring conflict

patterns between processes. However, their framework is designed to detect alternating pattern

of cache conflicts between Spy and Trojan and not to detect any variations of the attack—those

channels that access to other shared resources concurrently. Yan et al. [233] propose a record and

deterministic replay framework. It detects timing attacks by replaying execution on a different

cache configuration to detect contention only on caches. In contrast, our presented solution in

Chapter 6 monitors contention on all known resources as it occurs. There are also a number

of online detection schemes based on hardware performance counters [72, 173, 121]. Unlike

these prior solutions that only focus on malware detection, we present a framework that provides

mitigation solutions for preventing information leakage through covert channels.

There are also a number of defenses against timing attacks that seek to equalize the

performance of a single shared resource to hide the contention [213, 191, 212]. Due to the

availability of multiple shared resources in GPUs, attackers will simply shift to use a different
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resource if one is available. Hence, we need a unified approach to mitigate covert channels

across all shared resources. Moreover, many solutions require turning off hyperthreading or

simultaneous multithreading (SMT) to minimize resource sharing within a core. Our proposal

retains SMT to improve latency hiding, while ensuring security.

3.2 Side Channels on GPUs and Heterogeneous Systems: Attacks

and Defenses

3.2.1 Side Channel Attacks on GPUs

Jiang et al. [114] conduct to our knowledge the first timing attack at the architecture

level on GPUs. The attack exploits the difference in timing between addresses generated by

different threads as they access memory: if the addresses are coalesced such that they refer to

the same memory block, they are much faster than uncoalesced accesses which require several

expensive memory operations. Execution time relies on the number of unique memory requests

after coalescing. Thus, in a cryptographic application, the key affects the address pattern accessed

by the threads, and therefore the observed run time of the encryption algorithm, opening the door

for a timing attack where the encryption time is used to infer the likely key. The same group

[115] presented another timing attack on table-based AES encryption. They found correlation

between execution time of one table lookup of a warp and a number of shared memory bank

conflicts generated by threads within the warp. They use these key-dependent differences in

timing to correlate measured execution time to the key at the last round of the AES encryption as

it executes on the GPU.

The self-contention exploited in the these attacks [114] cannot be used for a side-

channel between two concurrent applications. Although memory coalescing and shared memory
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bank conflicts make a large difference in the timing of one kernel, these artifacts had little

measurable effect on the timing of a competing kernel.

Luo et al. [146] present a timing side channel attack on GPU accelerated RSA encryp-

tion. They use two existing optimizations: Sliding Window Exponentiation and Montgomery

Multiplication and exploit the correlation between total execution time of a message decryption

and number of reductions in each window of decryption to extract the RSA private key.

These timing channels are measured from the CPU side, limiting their bandwidth, and

requiring each kernel to be able to launch (or anticipate the launch) of the other to time it. In this

dissertation, we explore a different threat model that investigates general covert and end-to-end

side channels between two concurrent applications on the GPU.

Gao et al. [87, 88] and Luo et.al [147] study Electro-Magnetic and power side channel

attack on AES encryption executing on a GPU. These attacks requires physical access to the

GPU to measure the power or Electro-Magnatic traces.

Wang and Zhang [211] propose a profiling-based side-channel attack to fully recover

the AES encryption secret key. Rather than execution time, they profile two performance matrices,

the number of the memory load and memory store requests. Based on these, the number of

unique memory load requests in the last round encryption for each byte except the first byte then

can be determined. They recover 16-bytes AES key byte by byte. They calculate the number of

unique memory load requests with 256 possibilities of a single byte of the AES key and compare

it to the profiled number. By repeating the same procedure with different input data, they can

successfully extract the exact byte key.

After publishing our side channel on neural network model extraction (Chapter 5), Wei

et al. [221] conducted similar attack to infer the hyper-parameters of a Deep Neural Network

model. Rather than concurrent running of applications on GPU (in our threat model), they

consider fine grained time-sliced sharing of applications and exploit context-switching penalties
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on performance counters as leakage vector. Although, in direct response of our side channel

attack, Nvidia released a patch [42] in their new GPU drivers to disabling the normal users to

access to the performance counter, they bypass this patch by downgrading the GPU driver on

the spy VM which is invisible to the victim. Zou et al. [247] also utilize performance counters

on GPUs as features fed to machine learning based classification model to classify running

workloads on GPU accelerated HPC systems.

Side channel attack has also been studied in virtualized GPU environment. After

publishing our side channel attacks, Liu et al. [144] presented a side channel attack from one

virtual machine to another where both share the same physical GPU, and each virtual machine

has its own GPU system stack, making the attack more difficult. Because the weakness in GPU

library no longer exists and GPU hardware performance counters are (typically) not available

to VMs. They conduct a side channel on intel integrated GPUs. They launch an OpenCL

based probing application which does some read-compute-write pattern of operations to create

contention on different resources on GPU, and measure the execution time as a coarse grained

information leakage. Then utilize machine learning approaches to identify the victim’s GPU

workload among a small dataset of several entertainment and deep learning workloads.

3.2.2 Side Channel Defenses on GPUs

Kadam et al. [117] proposed Rcoal, a redesign of GPUs to eliminate predictable

memory coalescing behavior to prevent side-channels such as those used in the attack presented

in [114]. They propose the memory coalescing randomization techniques in several ways

including the number of subwarps, the threads assigned to each subwarp, or a combination of

both. These randomization generate additional accesses and alleviate such correlation-based

timing attacks by making the relationship between execution time and coalesced memory accesses

less predictable.
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Wang and Zhang [210] developed profiling based side channel attacks against RCoal

focusing on the configurations with high variance in the number of coalesced accesses. Kadam

et al. [118] propose BCoal, a mechanism to further reduces the variance making it a much

stronger defense and to efficiently address the limitations of RCoal in terms of performance

degradation. BCoal is a bucketing-based coalescing technique which generates the number of

coalesced accesses equal to one of the pre-determined values (known as buckets), irrespective of

program secrets. As the number of accesses is always equal to the pre-determined values, the

variance in the number of accesses drops, reduces the correlation in timing attack. To reduce the

performance overhead of additional accesses, they select optimal bucket features by analyzing

the application level coalescing profile, such that overall fewer additional accesses are generated.

To protect the GPU accelerated AES encryption against both timing and cache based

side channels, Lin et al. [137] proposed a new software-based mechanism. They rely on Scather

and Gather approach which slices and re-organizes the pre-computation tables such that key-

dependent table lookups will not leak any timing or address pattern information. This software

based approach is specific to AES encryption. On the other hand, Rcoal and BCoal are generic

hardware based coalescing mechanism applicable to all security-sensitive GPGPU applications

that are vulnerable to coalescing-based correlation timing attacks.

3.2.3 Attacks on Integrated Heterogeneous Systems

In integrated heterogeneous systems, accelerators (such as GPUs and FPGAs) are

tightly integrated on the same die as CPUs and share some hardware resources such as last level

cache and memory subsystem. This sharing opportunity lead to cross-component microarchi-

tectural attacks. Weissman et al. [223] study Rowhammer and last level cache based attacks on

heterogeneous CPU-FPGA platforms.
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Gravellier et al. [94] used FPGA voltage sensors to implement a remote power based

side channel attack running on FPGA to spy on CPU computation, specifically to retrieve the

secret key of AES crypto-algorithm. Zhao and Suh [242] demonstrates the same attack on RSA

encryption, from FPGA to CPU in SoC. Remote power based attacks assume that the adversary

has access to some of the LUTs in the remote FPGA shared with the victim and can implement a

power monitor on the FPGA fabric.

The integrated GPU is available through APIs such as WebGL [38] even for remote

JavaScript programs making this threat vector extremely dangerous. Frigo et al. [86] use WebGL

timing APIs to implement GPU accelerated Rowhammer attack on memory in integrated CPU-

GPU systems in mobile SOCs. They use a timing channel to find contiguous area of physical

memory rather than extracting application state like our attacks in this dissertation, totally

different threat model.

3.3 Other Attacks on GPU and GPU Software Stack

GPUs are a type of accelerator device; specialized accelerators are expected to become

increasingly important components of the computing landscape due to their superior performance

and power properties for specific application classes. Olson et al [171] developed a taxonomy

of vulnerabilities and security threats for accelerators based on threat types into attacks that

affect Confidentiality, Integrity, or Availability. They also classify the risk categories in terms

of what part of the accelerator attacks affect. Although the paper offers no concrete attacks, it

highlights that security of accelerators warrants significant attention. Olson et al. [170] also

propose sandboxing accelerators when the CPU and the accelerators share the same address

space (e.g., under a Heterogeneous System Architecture configuration). This type of defense

does not protect against side- and covert-channel vulnerabilities.
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Mittal et al. [193] present a survey of techniques for analyzing and improving GPU

security. They classify GPU security vulnerabilities and attacks and discuss potential countermea-

sures. In this section, we review a number of attacks that have been published targeting GPUs or

their software stack on the CPU.

3.3.1 Leftover Memory Leakage

Lee et al. [131] reveal three major security threats in GPUs including: lack of initializa-

tion of newly allocated memory pages, un-erasable portion of GPU memory (e.g., constant data)

and lack of prevention of threads of a kernel to access the contents stored in the local and private

memories, written by threads of other kernels. When multiple users share the same GPU, there

is information leakage between concurrently running processes or from processes that recently

terminated. They utilize information leakage that occurs due to not clearing newly-allocated

memory in the GPU to extract rearranged webpage textures of Chromium and Firefox web

browsers (both use GPU-accelerated rendering) from Nvidia and AMD GPUs. In particular, by

using End-of-Context (EoC) attack, the attacker can easily obtain the computation results (e.g.

rendered image), if the victim program does not clear its global memory before termination. In

addition, End-of-Kernel (EoK) attacks are used to obtain intermediate data stored in per-SM

local memory during long-running GPU kernels; since GPU runs long kernels as several kernels

or the same kernel repeatedly. Similar attacks are presented by Di Pietro et al. [183] who also

exploit non-zeroed state available in shared-memory, global-memory and registers. As a case

study, they investigate the impact of this vulnerability on a GPU implementation of the AES

encryption algorithm. Using this vulnerability, an adversary can recover data of a previously

executed GPGPU application in a variety of situations. Wenjian HE et al. [104] exploit the similar

vulnerability on integrated GPUs in which adversaries can steal the key of AES encryption and

implement a website-fingerprinting attack against the Chrome browser. Zhou et al. [245] exploit
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this vulnerability to recover victim’s data directly from the GPU memory residues of four popular

applications: Google Chrome, Matlab, GIMP and Adobe PDF reader. Maurice et al. [150] show

that one of these dangerous situations is GPUs in virtualized and cloud computing environments

where the adversary launches a virtual machine after the victim’s virtual machine using the same

GPU.

This class of vulnerability can be closed by clearing memory before it gets reallocated to

a different application. So in modern GPUs and programming platform, this type of vulnerability

is likely to be removed.

3.3.2 GPU-based Malware

As malwares are getting more robust to evade detection by current anti-malware

defenses and antivirus scanners, GPUs can provide great potential for malware writer to obfuscate

their code. Vasiliatis et al. [204] implement GPU based packing and polymorphism, two most

widely used techniques for evading malware scanners. Balzarotti et al. [56] also demonstrate that

it is possible to successfully hide some malicious behavior, by offloading some computation to

the GPUs. They provide four different techniques that a malware can evade detection on Intel

Integrated GPUs: 1) Unlimited code execution, 2) Inconsistent memory mapping, 3) Process-less

execution, and 4) Context-less execution. Danisevskis et al. [71] present DMA-based malware

on mobile GPUs. An attacker exploit DMA and a bug in Android smartphone’s GPU driver to

bypass memory protection mechanism of GPU and gain access to privileged region of memory

for reading or writing.

Ladakis et al. [130] describe a GPU-based keylogger, a malware that log keyboard

activity for stealing sensitive data. The attacker monitor the systems’ keyboard buffer directly

from the GPU, using DMA. They used a CPU process to control the execution of their malware

which requires root privileges to initialize the environment.
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Because GPUs have separate physical resources, PixelVault [205] proposes using them

as secure co-processors. Zhu et al. [246] show that GPUs are vulnerable to disclosure attacks

through the driver from a privileged user on the CPU, bringing into question the security of

the PixelVault model. Such attacks require root access and are outside our threat model in this

dissertation.

To protect data against GPU malware and information leakage, Hayes et al. [102]

present a taint tracking system on GPUs. They instrument programs statically on a per-application

basis and when the program runs, every thread can dynamically track information flow by itself.

They utilize GPU characteristics and architecture to optimize the taint tracking performance.

3.3.3 GPU Buffer Overflow

Miele [154] study buffer overflow vulnerabilities in CUDA software and exploit it to

hijack GPU control flow. An attacker can overwrite function pointers to his/her injected code to

take control of the GPU’s operation.

Di et al. [74] also explore overflow vulnerabilities on GPUs software, specifically

CUDA. In particular, they exploit stack and heap overflow, such that threads from the same warp

or different blocks overwrite each other’s content, which steers the execution flow. They also

show that integer overflow can be used to overwrite a function pointer in a struct. However,

format string and exception handling vulnerabilities are not exploitable on the GPU due to the

limited support in CUDA.

As Modern GPUs share virtual, and sometimes physical, memory with CPUs, GPU-

based buffer overflows are very dangerous threats, capable of producing program crashes, data

corruption, and security problems on CPU as well. Erb et al. [79] present a tool to detect buffer

overflows caused by OpenCL GPU kernels. This tool uses canaries to alert the users when any
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write occurs outside of a memory buffer. They minimize the overhead of the detector using GPU

kernels to check canary values for overflows.

3.4 Attacks on Web Browsers

Different attack vectors have been proposed for website fingerprinting. Panchenko

et al. [177] and Hayes et al. [103] capture traffic generated via loading monitored web pages.

Felten and Schneider [85] utilize browser caching and construct a timing channel to infer the

victim visited websites. Jana and Shmatikov [111] use the procfs filesystem in Linux to measure

the memory footprints of the browser. Then they detect the visited website by comparing the

memory footprints with the recorded ones. Weinberg et al. [222] presented a user interaction

attack (victim’s action on website leaks its browsing history) and a timing side channel attack for

browser history sniffing. Leakage through the keystroke timing pattern is also a known effect

which has been exploited both as a user authentication mechanism [156, 179, 69]. Keystroke

timing has also been used to compromise/weaken passwords from the keystroke timing [192] or

compromise user privacy [63]. In Chapter 5 we show how we develop GPU-based side channels

to track user activity on the web through website fingerprinting and keystroke timing attack. Also,

in Chapter 7, we demonstrate feasibility of GPU based attacks in JavaScript. Next, we overview

some related work to this threat model.

3.4.1 Timing Attacks in JavaScript

Side channels, specifically timing attacks have been widely studied in JavaScript. Oren

et al. [172] implement a prime+probe attacks on last level cache in JavaScript. They build cache

covert channels and side channel to spy on the user’s mouse movements and network activity

through the cache. They use JavaScript’s timer [44] to carry out timing measurement. Based on
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this timing interface, various attacks have been demonstrated. Goethem et al. [202] and Bortz et

al. [60] propose cross-site timing attacks on web browsers to estimate the size of cross-origin

resources or provide user private information leakage from other site. Gulmezoglu et al. [99]

present a side channel on per-core/per-process CPU hardware performance counters (which are

limited in number). Stone et al. [196] propose two timing channels by measuring the time elapsed

between frames using the JavaScript API. They either detect the redraw events or measure the

time of applying the SVG filter to perform history sniffing. These attacks are difficult currently

since most browsers have reduced the timer resolution eliminating the timing signal used by the

attack.

To protect against these timing attacks, all major browsers limited the resolution of the

timer [68, 13, 240]. This low precision timer is still sufficient for conducting some attacks. Gruss

et al. [96] proposed memory page deduplication timing attack to determine which websites the

user has currently opened. More recently, Vila and Kopf [206] present a side channel attack on

shared event loop in which the attacker enqueues several short tasks, and records the time these

tasks are scheduled. The time difference between two consecutive tasks reveals the existence of

the victim and duration of its task. They exploit this side channel to identify web pages, to build

a covert communication channel, and to infer inter-keystroke timings.

However, to distinguish the cache hits from cache misses in a cache attack, a high

resolution timer is required. Several works propose some timing primitives in JavaScript to

recover highly accurate timestamps [93, 138, 125, 190]. Lipp et al. [138] propose a keystroke

interrupt-timing attack implemented in JavaScript using a counter as a high resolution timer.

Kohlbrenner et al. [125] study the clock-edge technique. They use the degraded JavaScript timer

as a major clock to observe the edges and a tight incrementing for loop as the minor clock to

build a high resolution timer in JavaScript. They also propose FuzzyFox as a mitigation on web

browsers to mitigate all clocks, which introduces randomness in the JavaScript event loop to
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add noise to timing measurements. Gras et al. [93] proposed two mechanisms (Shared memory

counter and time to tick) to craft high resolution timer in JavaScript. They use a dedicated

JavaScript web worker for counting through a shared memory area (SharedArrayBuffers [158]

interface) between the main JavaScript thread and the counting web worker. They showed

that accurate timing information in JavaScript can be exploited to defeat address-space layout

randomization. Schwartz [190] also use similar techniques to build high resolution timer and

implement a new DRAM-based covert channel between a website and an unprivileged app.

To respond these attacks, major browser vendors disabled the SharedArrayBuffers interface in

JavaScript [28, 84].

All of these attack models are proposed at browser/OS level or CPU hardware level,

providing different attack vector than our attacks which target the GPU hardware to extract

sensitive information through side channels. We demonstrate that GPU side channels threaten

not only graphics applications, but also computational workloads running on GPU.

3.4.2 WebGL Attacks

WebGL is a JavaScript API to accelerate rendering 3D and 2D graphics within web

browser [38]. This APIs enables the attacker to launch GPU-based attacks in JavaScript, leading

to dangerous remote attacks.

Yao et al. [235] summarize all WebGL vulnerability disclosures and find that most are

related to reading GPU memory (either uninitialized or other process’s memory). Based on this

analysis and the WebGL security analysis by the Khronous group [39], no GPU side channels

have been reported in the context of WebGL. Yao et al. leverage modern GPU virtualization to

secure GPU acceleration in the web browser by separating WebGL computations into separate

virtual GPUs. Yao et al. [236] also propose Milkomeda, a solution to automate and improve the

existing WebGL security checks to further increase the security of the mobile graphics interface.
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WebGL API has been utilized to implement browser fingerprinting [62, 196]. Browser

fingerprinting refers to the process of collecting information through a web browser to build a

fingerprint of a device [182].

To protect against these attacks, Wu et al. [227] study the WebGL API to identify the

source of these attacks. They found out the results of floating-point operations can vary between

devices across the various graphics layers of a system. They propose a purely software solution

called UniGL to protect against webGL based browser fingerprinting. UniGL redefines floating

operations explicitly written in GLSL programs or implicitly invoked by WebGL, such that every

device running UniGL will have the exact same WebGL fingerprint for a specific rendering task.

Although these defenses are able to contain software vulnerabilities within the WebGL stack, it

cannot close side channels or micro-architectural attacks.

Frigo et al. [86] use WebGL timing APIs to implement GPU accelerated Rowhammer

attack on memory in integrated CPU-GPU systems in mobile SOCs. They use WebGL timer as

the major clock and implement a variant of clock-edging [125, 190] that executes a (padding)

count down over an empty loop before checking for the new timestamp value. This WebGL

timer [123] is driver- and browser dependent. Firefox supports it, while Chrome disables it due

to compatibility issues [84]. In Chapter 7, we build a customized high resolution timer using

GPU hardware resources, to enable GPU-based microarchitectural attacks in JavaScript, even

without accessing to WebGL timers.
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Chapter 4

GPU Covert Channel

Often applications that use GPGPUs operate on sensitive data [59, 73, 164], which can

be compromised by security vulnerabilities present in GPGPUs. In this Chapter, We present a

first study of vulnerability of GPGPUs to covert channel attacks. A covert channel attack may

enable a malicious application (called Trojan) without network access to communicate data to

another application (called Spy) to exfiltrate the data off the device. Covert channel attacks are

dangerous because they allow intentional communication of sensitive data between malicious

processes that have no direct channel between them.

Alternatively, covert communication can be used to bypass protections that track

exposure of sensitive information such as sandboxing or information flow tracking, allowing

sensitive data to escape containment [77]. The presence of a covert channel can also forecast the

possibility of a side-channel attack that we explore in the next Chapter.

With multiprogramming starting to be available on GPUs [218, 230], covert channel

attacks between two kernels running concurrently on a GPU become possible. The attack offers

a number of advantages that may make them an attractive target for attackers compared to

CPU covert channels including: (1) With GPU-accelerated computing available on major cloud
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platforms such as Google Cloud Platform, IBM cloud, and Amazon web service [166] this threat

is substantial [187]. The model of sharing GPUs on the cloud is evolving but allowing sharing of

remote GPUs is a possibility [75, 186, 58, 180]. Therefore, GPU covert channels may provide

the attackers with additional opportunities to co-locate, which is a pre-requisite for these types of

attacks [187]; (2) GPGPUs operate as an accelerator with separate resources that do not benefit

from protections offered by an Operating system. In fact, due to this property they have been

proposed for use as a secure processor [205]; and (3) GPGPU channels can be of high quality

(low noise) and bandwidth due to the inherent parallelism and, as we demonstrate, the ability to

control noise.

At the same time, constructing covert channels on GPGPUs introduces a number

of challenges and operational characteristics different from those on CPUs. One of the new

challenges is to how to establish co-location between the trojan and the spy by exploiting

the hardware schedulers such that the communicating kernels can share resources. Thus, we

first reverse engineer the hardware scheduling algorithms that determine where the different

blocks and warps can be allocated to create contention (Section 4.2). A second problem is

to identify which resources are most effective for communication given the throughput bound

nature of GPGPUs. In particular, GPUs have substantial parallelism, which may enable high

throughput covert communication, but only if effective isolated contention domains can be found.

For example, a shared resource, such as the L2 cache, may have limited capacity limiting the

bandwidth of communication through it. Alternatively, a resource may have high capacity (such

as the memory bandwidth), making it difficult to create measurable contention. We construct

different channels using contention on caches, contention for computational units, as well as

contention for memory operations in Sections 4.3, 4.4 and 4.5 respectively.

Having demonstrated and characterized these different channels on three different

GPGPUs, we explore improvements to the channel bandwidth. We use the inherent parallelism
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in GPGPUs to increase the bandwidth of the channel. We also implement synchronization

to increase the robustness of the communication to increase the communication efficiency in

Section 4.6. To improve resilience to interference from other applications, we propose exploiting

the hardware schedulers to block out co-location from other applications; this is a new approach

to managing noise unique to GPGPUs (Section 4.7). We demonstrate the success of exclusive

co-location on current GPGPUs which support multiprogramming based on leftover policy and

discuss some scenarios to extend our attack for proposed multiprogramming schemes on future

GPGPUs, such as kernel preemption and intra-SM partitioning. Finally, Section 5.5 discusses the

potential mitigations.

4.1 Threat Model

Our threat model consists of a standard covert communication scenario with a trojan

and spy kernels from two different applications that co-exist concurrently on the same GPU.

The two kernels wish to communicate covertly. We consider a case where the trojan and the

spy are the only two applications running on the GPU to characterize the bandwidth of the

channels under the best case scenario. We later relax that assumption and explore approaches

to prevent or tolerate noise from other applications. We assume that the two kernels can launch

applications to the same GPGPU; in a cloud setting a first problem is to establish this ability.

Since no standard sharing model of GPGPUs in the cloud has emerged, we do not focus on this

problem [75, 186, 58, 180]. In most existing settings, the GPGPU is shared among applications

on the same physical node, via I/O pass-through. In such settings, the problem boils down to

achieving co-location on the same cloud node [187]. In the case of non-cloud scenarios, typically

a GPGPU is also shared among applications on the same machine/device.
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4.2 Establishing Co-Location

Our goal is to create covert channels through contention on shared hardware resources

in the GPGPU. As a first step, we need to control the placement of concurrent applications –in

our case, the trojan and the spy. The placement defines what resources the applications share and

therefore what covert channels are available for use. In this section, we show how to establish

co-location as the first step in constructing covert channels. In particular, we reverse engineer the

block assignment algorithm on real GPUs and show how to exploit it to establish co-location. It

is likely that future GPGPUs may use alternative placement algorithms; however, we believe that

the reverse engineering approach we use can be used for not only Nvidia GPUs, but also a large

class of placement algorithms that are both deterministic and do not use preemption. We support

this claim by considering the scheduling algorithms for other multiprogrammed GPUs that were

recently proposed in literature [218, 230].

4.2.1 Co-location on Existing GPGPUs

The Nvidia thread block assignment and kernel co-location algorithms are unpublished;

thus, it is necessary to reverse engineer the placement algorithm. First, we explore whether

blocks belonging to two kernels can be co-located on the same SM. We launch two kernels on

different streams. In each kernel, we read the SM ID register (smid) for each block to determine

the ID of the SM on which the kernel is running. In addition, we use the clock() function to

measure the start time and stop time of each block. By using this information, and repeating

the experiment for different numbers and configurations of blocks, we reverse engineered the

placement algorithm.

We found that the blocks for the first kernel are assigned to different SMs in a mostly

round-robin manner. If there are SMs that are idle, or that have a leftover capacity, they can be
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used for blocks of the second kernel, again in a mostly round-robin assignment. Otherwise, the

blocks of the second kernel are queued until at least one SM is released. Therefore, if each kernel

is launched with a number of blocks equal to or exceeding the number of SMs on the device,

such that each block does not exhaust the resources of the SM, they achieve co-residency within

an SM. This multiprogramming mechanism on current GPUs is called the Leftover policy.

We also discovered that there is another level of sharing within the SM that impacts

the contention behavior. In particular, on many GPGPUs, there are a number of warp schedulers

available on each SM. Each warp is associated with one of these warp schedulers. If different

warps share the same scheduler, we show that their contention behavior is different since the

warps on the same scheduler compete for the issue bandwidth that is assigned to the scheduler.

We experimented with the assignment algorithm of warps to warp schedulers and

discovered that it is also round robin. With this knowledge, the spy and the trojan can set up

their kernel parameters to achieve co-location on the same SM and if desired on the same warp

scheduler. For example, on the Tesla K40C, with 15 SMs and 4 warp schedulers, if each of the

spy and the trojan launch a kernel with 15 blocks each using 4 warps (i.e., 128 threads), they will

each have a warp on each of the warp schedulers of each of the 15 SMs on the GPGPU.

4.2.2 Co-location on other GPGPUs

The left-over policy allows co-location of kernels opportunistically. The current genera-

tion of GPUs supports multiprogramming, or the ability to run multiple programs at the same time,

through multiple streams with multi-kernel execution within the same process, or a multi-process

service (MPS) [167], which allows concurrent kernels from different processes. MPS is already

supported on GPUs with hardware queues such as the Hyper-Q support available on Kepler

and newer microarchitecture generations from Nvidia. To provide a uniform implementation
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including Fermi GPUs, we utilized streams for multiprogramming on GPU to develop covert

channels.

Recent papers [218, 230] improve multiprogramming on GPUs using intra-SM resource

partitioning that execute multiple kernels to more effectively utilize the GPU. We believe that this

approach of varying the configuration of launched kernels and observing how they are scheduled

can be used to reverse engineer any deterministic and non-preemptive co-location algorithm. In

this section, we consider the co-location problem relative to these proposed schedulers.

Wang et al. [218] support a simultaneous multi-kernel by fine grained context switching

at the granularity of thread block. To schedule thread blocks of the new kernel to an SM, those

thread blocks of previously scheduled kernels that have the highest resource usage on the victim

SM may be preempted. Thus, this scheduler makes co-location easier by allowing the spy and

the trojan to reside on the same SM even if other applications are already running there. By using

just one thread block for each spy and trojan on each SM, the spy and trojan will be guaranteed

not to be preempted. However, the co-location of other workloads on the same SM possibly adds

noise to the covert channel. We discuss this issue in Section 4.7.

Xu et al. [230] propose a dynamic intra-SM resource partitioning that does not use

preemption. Intra-SM partitioning attempts to co-schedule kernels that are compatible in their

resource usage to the same SM. Since this multiprogramming scheme does not use preemption,

we can force exclusive co-location of the two kernels by manipulating their initial behavior so

that the scheduler finds them compatible.

We also consider a case where the two kernels cannot be co-located on the same SM,

for example, in cases where there is no leftover capacity on the SMs used by the first kernel. In

this case, covert communication is still possible through contention on resources that are shared

between all SMs such as global memory or the L2 cache. This inter-SM covert channels can also

be applied to some proposed GPU multiprogramming which allows executing multiple kernels
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only on disjoint sets of SMs on GPUs (i.e., no intra-SM scheduling). For example, Adriaens

et al. [48] use inter-SM resource partitioning. Similarly, Tanasic et al. [199] propose kernel

allocation at the granularity of the whole SM to support multiprogramming. It is likely that

these multiprogramming mechanisms are not as efficient as intra-SM resource partitioning, due

to the limited number of SMs and large overhead of context switching on GPUs. Moreover,

multiprogramming at the granularity of the full SM cannot address resource under-utilization

occurring within an SM.

4.3 Cache Covert Channels

In this section, we present the first of three classes of covert channels we investigate:

covert channels through the caches. We illustrate the principles using constant caches, but the

attack applies to other caches on the system. We selected constant memory because the size of

both the L1 and L2 caches is small allowing us to create contention easily.

The attack proceeds in two steps. First, an offline step uses the microbenchmarking

approach introduced by Wong et al. [225] to infer the constant memory and cache characteristics

at each level of the hierarchy. The second step is the communication step where we use contention

to create the covert channel.

4.3.1 Step I: Offline Characterization of Constant Memory Hierarchy

The parameters of the constant memory hierarchy at each level of the cache hierarchy

can be extracted from latency measurement of loading different size arrays from constant

memory using a strided access pattern. The cache is first warmed by accessing the array, which

is subsequently accessed again while timing the accesses [225]. The size of the array is increased

and the access latency observed.

37



Figure 4.1 and Figure 4.2 show the latency measurements for the L1 cache and L2

cache respectively on the Kepler Tesla K40C GPU. Each point on the figure represents an

experiment with the array size shown on the x-axis. While the latency remains constant, the

array fits in cache. When the array spills out of the cache, the latency starts increasing. First,

the spill causes misses only in one set. As we keep increasing the array size, spills in additional

sets occur: the number of steps in the figure is equal to the number of cache sets. The cache line

size corresponds to the width of each step. From the cache size, number of cache sets and cache

line size, we can calculate the cache associativity. For example, for the Kepler (Tesla K40) and

Maxwell (Quadro M4000) GPUs we find that the constant memory L1 cache is 2kB, 4-way set

associative with 64 byte cache line, while the L2 cache is 32kB 8-way set associative with 256

byte cache line. In the Fermi (Tesla C2075) GPU, constant memory L1 cache is 4kB, 4-way

set associative with 64 byte cache line and L2 cache has the same parameters as in Kepler and

Maxwell.
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Figure 4.1: L1 constant cache, stride 64 bytes.

4.3.2 Step II: Constructing Covert Channel through L1

We set up an experiment with two concurrent kernels using different streams on the

GPU. On the Kepler K40C device, there are 15 SMs, so we use 15 thread blocks for each kernel
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Figure 4.2: L2 constant cache, stride 256 bytes.

to be sure of co-residency on the same SM. The trojan kernel communicates by either creating

contention or doing nothing to encode 1 or 0 respectively. To create contention on one set, the

trojan allocates an array with the size of L1 cache (2 KB) and loads it with a stride of 512 bytes

to make the accesses hash into the same set. The spy also loads a 2KB array with the same stride

as the trojan while timing the access: a high latency indicates 1 since the array was replaced by

the trojan, and a low latency indicates a 0. Our results show that in the case of contention (i.e.

sending 1), the measured latency by the spy is about 112 clock cycles, but without contention (i.e.

sending 0), the latency is 49 clock cycles. This difference allows the spy to easily determine the

bit being transmitted. Note that we create contention over only a single set of the cache, rather

than over the whole cache, reducing the memory traffic and accelerating the attack.

To communicate multiple bits, the trojan and the spy have to stay synchronized. Due to

scheduling variability and/or the presence of noise, loss of synchronization can occur. To simplify

this problem in this experiment, we launch two kernels to communicate each bit of the message.

Clearly, this incurs some overhead to launch the kernels, but it simplifies synchronization

by leveraging the stream operations, resulting in error free bandwidth of around 40Kbps. In

Section 4.6, we use synchronization through covert communication (on different sets of the

cache) to remove the need to continue to relaunch the kernels. Implementing this synchronization
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makes the attack more robust to noise, and more resilient to loss of synchronization; it also

improves the channel bandwidth significantly.

4.3.3 Step II: Constructing Covert Channel through L2

When two kernels cannot be co-located on the same SM, they can still communicate

through the L2 constant cache that is shared between all SMs. The process of creating a covert

channel is the same as the L1 channel. However, the parameters of the L2 cache are different: we

consider array size of 32kB and stride value of 4096 bytes (16 sets × 256 bytes) to fill just one

cache set. The measured bandwidth in this scenario is about 20Kbps.

Figure 4.3 shows the bandwidth achieved by the attack on three Nvidia GPGPUs

selected from three generations of microarchitecture (Fermi, Kepler and Maxwell). We modified

the attack to fit the cache parameters, but otherwise left it unchanged. All bits were received

correctly with no errors. Thus, high bandwidth covert channels are feasible through both levels

of the cache.
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Figure 4.3: Cache channel bandwidth

Note that, to ensure overlap between spy and trojan processes and error free communi-

cation, we need to iterate sending each bit a sufficient number of times (20 times for L1 channel

and 2 times for L2 Channel for Kepler GPU in our experiments). The minimum number of

iterations is limited by two factors. First, without synchronization, we must ensure that sufficient

iterations are present for the spy and trojan to overlap. Moreover, the clock() function on the
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GPGPU returns inconsistent results if the size of the code segment being timed is small. These

factors place a limit on the minimum number of iterations necessary to detect contention.

Decreasing the duration below 20 iterations causes errors, since the two kernels some-

times do not overlap. Figure 4.4 demonstrates the bit error rate as the bandwidth of channel

increases (by decreasing the number of iterations) for the Kepler and Maxwell GPUs. The L1 and

L2 channels on Fermi GPU also show nearly identical behavior around the reported error-free

bandwidth.

(a) L1 Channel

(b) L2 Channel

Figure 4.4: Bit error rate of L1 and L2 cache channels

4.4 Functional Unit Channels

Next we explore covert channels that use contention on the functional units (FUs) of

the GPGPU. Conceptually, measurable contention can be created on functional units: when two
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kernels issue instructions to the same functional units, each should observe these instructions

to execute slower than if either of them was issuing instructions on its own. While this general

intuition holds true, we discover that contention behavior is significantly more complicated. The

functional units are pipelined, isolating the contention to contention on the initial dispatch of

operations to the functional units. This behavior is also moderated by the warp schedulers: we

discover that mostly contention is isolated to warps belonging to the same warp scheduler, which

must compete for the issue bandwidth of this scheduler. We first characterize the contention

behavior, then show how we can exploit it to construct covert channels.

4.4.1 Step I: Characterizing Contention Behavior on the Functional Units

We set up an experiment to characterize the impact of contention on the performance

of the different types of functional units. Each GPGPU has a number of computational cores

that are specialized for different instructions; these include single precision units (SP), double

precision units (DPU), and special function units (SFU). The number of functional units varies

by the architecture and the type of the functional unit. We show only floating point operations

because they have the most stringent issue limitations making it easier to create contention, and

achieving the highest bandwidth.

For different types of operations, we launch just one kernel which executes a fixed

number of operations to the functional unit being characterized. We increase the number of warps

and measure the latency of each operation. Figure 4.5 presents latency plots for different single

precision floating point operations (__sinf and sqrt which are executed on SFUs and Add and

Mul which are executed on SPs) on different architectures. Figure 4.6 presents latency plots for

double precision Add and Mul on Fermi and Kepler GPUs (Maxwell GPU does not have double

precision units).
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Figure 4.5: Latency of one single precision operation for different number of warps averaged
over 128 iterations
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Figure 4.6: Latency of one double precision operation for different number of warps averaged
over 128 iterations

The latency plotted in Figure 4.5 and Figure 4.6 is an approximate measure in this case

since it is a function of not only contention but also the number of iterations of the experiment

and the depth of the functional unit pipeline. The latency places an upper bound on the bandwidth

of the channel since even if contention is possible with a single operation, the latency is the

minimum delay of a communication cycle. However, the shape of the delay curve is more

important since it establishes the degree of contention at which observable changes in measurable

delay occur.
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Figure 4.7: Kepler SM architecture overview

Figure 4.8: Maxwell SM architecture overview

The number of available resources in each SM is shown in Table 4.1 for the three GPUs.

In the Maxwell GPU (Figure 4.8), each SM is divided into quadrants, and each quadrant has its

own registers, instruction buffer, and scheduler that spans 32 single-precision CUDA cores and

8 SFUs. Each warp scheduler manages the resources for one of the quadrants. In contrast, the

Fermi and Kepler GPUs (Figure 4.7) implement soft sharing where the warp schedulers do not

have dedicated resources and instead issue instructions to a shared set of resources on the core.

Table 4.1: Number of available resources in each SM.

GPU Warp Scheduler Dispatch Unit SP DPU SFU LD/ST

Tesla C2075 (Fermi) 2 2 32 16 4 16

Tesla K40C (Kepler) 4 8 192 64 32 32

Quadro M4000 (Maxwell) 4 8 128 0 32 32

Main Observations: Due to the different number of warp schedulers, the number

of functional units of each type and the depth of the pipeline for each functional unit, we can
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see different behavior in each plot. The figures show the latency observed by warp 0 which is

assigned to the first scheduler on the GPGPU. As we add warps, we see a step in latency plots, at

the points where the number of operations causes contention either for scheduler issue bandwidth

or for available functional units. For all experiments, the latency stays fixed as we increase the

number of warps up to the point where the number of issued instructions matches the number

of functional units for that operation. After that point, increasing number of warps leads to an

increase in latency for the warps that are co-located on the same warp scheduler with the last

added warp. Contention is isolated to warps belonging to the same warp scheduler. This result

held even for the Kepler GPU which has soft sharing of the resources. For Kepler, the latency

steps are not visible for single precision Add and Mul operations, due to the large number of

available SP units. In contrast, in Maxwell the latency steps are eventually observable because

the resources are split into quadrants (Figure 4.8).

4.4.2 Step II: Constructing FU Covert Channels

The trojan generates operations to the target functional unit to create contention when

it desires to communicate 1, while it stays idle when it desires to communicate 0. Because of

limited number of SFUs and clear jumps in latency on all three architectures, we elect to use

contention on the SFUs. In particular, we take advantage of the more clear steps and lower latency

of __sinf operation to create and demonstrate a covert channel through the warp schedulers and

special functional units. Similar channels can be constructed using other resources.

We launch two concurrent kernels on different streams on GPU. To be sure that thread

blocks of the two kernels can be co-located on each SM, we consider a number of blocks for each

kernel equal to the number of SMs for different architectures. To be compatible with latency plots

in Figure 4.5, we use the minimum number of required warps that will cause observable latency

difference using the __sinf operation on the Spy side. This requirement translates to having
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each block of the spy and the trojan use 3 warps, 12 warps and 10 warps, for the Fermi, Kepler

and Maxwell architectures respectively. The spy kernel does a number of __sinf operations

which are executed on the SFUs. To send 0, the trojan does nothing so just 3 warps of the spy (or

12, 10, on the Kepler and Maxwell respectively) are scheduled to issue instructions and execute

on SFUs. The latency in this case is about 41 clock cycles for Fermi (18 for Kepler and 15 for

Maxwell) which is equal to the latency when there is no contention. For sending 1, the trojan

executes a number of __sinf operations, so that its warps are scheduled to issue instructions

alongside of the spy warps. In this case, there is contention on the SFUs and latency is increased

to 48 clock cycles for Fermi (24 for Kepler and 20 for Maxwell). The measured covert channel

bandwidth is 21 Kbps, 24 Kbps and 28 Kbps on Fermi, Kepler and Maxwell GPUs respectively.

4.5 Global Memory Channels

In this section, we explore constructing covert channels through global memory, which

provides an additional resource for contention when kernels are not co-located on the same SM.

We also explore the impact of the access pattern on interference (coalesced vs. uncoalesced

addresses). In particular, Jiang et al. [114] demonstrated a side channel attack on GPUs that

times an AES encryption kernel running on the GPU from the CPU side. This attack relies on an

observation that key-dependent differences in the coalescing behavior of memory accesses, lead

to key-dependent encryption times which are used to infer the secret key. Thus, we wanted to

explore whether the same phenomena can be exploited to produce high quality covert channels

inside the GPU.

Using normal load and store operations, we did not observe reliable contention in the

global memory. We believe that this is due to the high memory bandwidth. In particular, to

saturate the memory bandwidth, many global memory operations are required, each with high
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latency, significantly harming achievable bandwidth. To create contention, we focused on atomic

operations. Since the atomic operations rely on atomic units that are limited in number, it is

possible to cause measurable contention. At the same time, atomic operations are extremely slow,

which can limit the bandwidth of the covert communication; nevertheless, this channel achieves

comparable bandwidth to other inter-SM channels. We define three scenarios to understand the

observable contention in global memory as follows. As before, the spy executes the operation

described in each scenario while the trojan executes the same operations to transmit 1, or does

nothing to transmit 0. In all three scenarios, the spy and trojan kernels access two different arrays

located in global memory.

• Scenario 1: Each thread does atomic additions on one particular global memory address.

This address differs for different threads.

• Scenario 2: Each thread does atomic additions on strided global memory addresses.

These addresses differ for different threads and accesses for all threads in each warp are

coalesced.

• Scenario 3: Each thread does atomic additions on consecutive global memory addresses.

These addresses differ for different threads and accesses for all threads in each warp are

un-coalesced.

The bandwidth of the three scenarios for each of the three GPUs is shown in Figure 4.9.

For each GPU, we tune the number of iterations to the minimum that will cause observable

contention. On the Kepler and Maxwell GPUs the throughput of global memory atomic operation

is significantly higher than that of the Fermi since atomic operations are supported through the

L2 cache and due to the addition of more atomic units in hardware [30]. Atomic operation

throughput to a common global memory access is improved by 9x to one operation per clock

cycle causing the overall time to communicate a bit to decreased significantly. It is interesting to
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note that the coalescing behavior that benefited Jiang et al.’s attack can not be exploited to create

the covert channel attack. Coalescing causes timing variability to a single kernel, benefiting

an external adversary that times this kernel and has no effect on timing of a competing kernel.

However, our experiments show that the coalescing behavior on GPUs improves the channel

bandwidth. The poor coalescing significantly reduces the possibility of using the faster L2-level

atomic operation support, significantly slowing down the covert communication across the two

different kernels. We can see that scenario 3 results in the lowest achievable covert channel

bandwidth.
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Figure 4.9: Global atomic covert channel bandwidth

4.6 Improving the Attack

In this section, we explore several improvements and optimizations to increase the

bandwidth and reliability of the covert channels.

We use two general approaches to increase the bandwidth of a covert channel on a

single resource: (1) identifying opportunities for parallelizing the communication so that multiple

trojans are communicating to multiple spies concurrently; and (2) implementing synchronization

to eliminate the loss of bandwidth that results from timing drift or, alternatively, the overhead

of successively launching kernels. It is also possible to use multiple resources simultaneously

to increase bandwidth. As an example, we experimented with sending two bits concurrently,
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one through L1 constant cache and one through the SFUs, achieving 56 Kbps bandwidth for

Kepler and Maxwell GPUs. This approach is orthogonal to single-resource channel optimizations,

allowing us to increase the bandwidth in those cases as well. We do not report multi-resource

bandwidth since it is possible to use multiple resources on the CPU as well.

4.6.1 Improving the Cache Channels

The implementations we discussed so far are susceptible to loss of synchronization

where the trojan and spy are not in sync with each other. This can occur due to natural drift due to

unpredictable pipeline dependencies, or due to interference from other workloads. To overcome

this issue, the covert channels we presented so far, forces overlap between the trojan and the

spy by timing the launch of the kernel, leading to significant overhead and loss of bandwidth.

Moreover, in the presence of competing applications, co-location may be difficult to achieve

repeatedly.

To improve both the robustness and the bandwidth of the attack, in this section, we

implement synchronization between the spy and the trojan through the covert channel. With

synchronization, the two kernels are launched only once and use synchronization to communicate

continuously. We illustrate the synchronization process for the L1 and L2 covert channels, but it

is possible to implement synchronization for other channels as well.

The synchronized implementation uses three different sets of cache to fully synchronize

sending and receiving bits, as follows. As with the basic cache side channel we use one set for

communication. The two other sets are used to signal ready-to-send from the trojan to the spy

and ready-to-receive from the spy to the trojan respectively. The synchronized protocol is shown

in Figure 4.10 and explained below.
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On the Trojan side, for sending each bit:

• First, the trojan sends a ready-to-send signal by filling the pre-agreed on cache set with its

data.

• Next it waits on the ready-to-receive cache set to ensure the spy is ready to receive the bit.

• Finally, we send the bit by either filling the set or not. The algorithm moves back to step 1.

Correspondingly, on the Spy side, for receiving each bit:

• First, the spy repeatedly checks the ready-to-send set to check if the trojan has sent the

signal.

• Once it detects the ready-to-send signal (by measuring cache misses on the set), it sends

the ready-to-receive signal on the corresponding set.

• Finally, we receive the bit through checking the access time observed on the communication

set.

Infrequently, due to noise or other factors loss of synchronization can occur leading to deadlock

where the spy and trojan are each waiting in a different part of the communication loop. To

address this situation, we changed the algorithm to time out (by bounding the number of wait

iterations) when the expected signal is not received in time. In the case of a timeout at the sender

or the receiver, we regain synchronization by repeating the step prior to the wait. With this

modification, the communication works seamlessly. We use a three way handshake to ensure that

the trojan and spy are concurrently active at the bit communication component of the program;

attempting a two way handshake led to noise and frequent loss of synchronization.

Although communication through three sets (rather than just one in the original channel)

is required to fully synchronize the communication, removing the overhead of launching kernels
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for each bit of message increases the bandwidth to 61, 75 and 75 Kbps for the Fermi, Kepler and

Maxwell GPUs, respectively.

Table 4.2: Improved L1 Channels

GPU L1 Baseline Sync. Sync. and multi-bits Sync., multi-bits and parallel
Fermi 33 Kbps 61 Kbps 207 Kbps 2.8 Mbps
Kepler 42 Kbps 75 Kbps 285 Kbps 4.25 Mbps
Maxwell 42 Kbps 75 Kbps 285 Kbps 3.7 Mbps

To further improve the synchronized channel bandwidth, we utilize SIMT execution

model of GPUs to send M bits through M different cache sets concurrently in each round. Two

cache sets are used for signaling and we use the remaining cache sets for communication, such

that one bit can be communicated through each cache set by different threads in parallel. For

example, in Kepler and Maxwell GPUs L1 constant cache has 8 sets, enabling transfer of 6 bits

concurrently. This parallelism increases the bandwidth to 207, 285 and 285 Kbps for the Fermi,

Kepler and Maxwell GPUs, respectively. Our experiments demonstrate that by sending 2 bits, 4

bits and 6 bits concurrently, we are able to achieve 1.8x, 2.9x and 3.8x bandwidth improvement

in Kepler GPU. Note that the ratio of bandwidth improvement is sublinear in the number of bits;

we believe that this is due to both port contention, as well as the higher possibility of a cache

miss in each kernel iteration.

The next approach to improve the bandwidth is to exploit the inter-SM parallelism

available on the GPGPU. In particular, if we manage to colocate the trojan and the spy on multiple

SMs, each of these instances can communicate independently using resources on the SM. With

15 SMs available in Tesla K40C device, the trojan is able to send 15 bits simultaneously and

the bandwidth of communication is increased 15 times. Table 4.2 shows the covert channel

communication bandwidth for the baseline attack (column 1), the attack with synchronization

(column 2), the attack with synchronization and sending multiple bits through different cache
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sets (column 3) and the attack with all three improvements (column 4). Clearly, high quality,

high bandwidth covert channels are feasible on GPGPUs.

For the L2 constant cache covert channel, we can create contention in parallel, either by

filling the cache in parallel or by using each thread block to communicate through one particular

L2 cache set. In theory, this should enable the trojan to send 16 bits (number of L2 cache

sets) simultaneously. However, we observe only an 8x improvement in the best case, which we

conjecture is due to cache port contention and cache bank collisions.

Table 4.3: Improved SFU covert channel communication bandwidth on different GPU architec-
tures.

GPU Baseline Parallel through Parallel through

warp schedulers warp schedulers and SMs

Tesla C2075 (Fermi) 21 Kbps 28 Kbps 380 Kbps

Tesla K40C (Kepler) 24 Kbps 84 Kbps 1.2 Mbps

Quadro M4000 (Maxwell) 28 Kbps 100 Kbps 1.3 Mbps

4.6.2 Improving the SFU Channel

Like the L1 covert channel, there is an opportunity to improve the bandwidth by having

a spy and a trojan communicate on each SM for a 15x increase in bandwidth. However, the

warp scheduler offers additional opportunities to increase the bandwidth. In Section 4.4, we also

reverse engineered the warp assignment algorithm and found it to be round robin. By measuring

latency for each warp, we noticed that by increasing number of warps one by one we see latency

increasing only in the warps that are assigned to the same warp scheduler. This effect is likely

due to the limit on the number of instructions that can be dispatched by each warp scheduler.

Certainly, this behavior is more clear in Maxwell GPUs in which each warp scheduler has its

own functional units, but it is also present in the Kepler and the Fermi architectures where the

functional units are soft-shared among the schedulers.
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We use the observation that contention is isolated among the different warp schedulers

to parallelize the covert channel attack by sending one bit through each warp scheduler concur-

rently. We consider K warps for spy which K is multiple of N (the number of warp schedulers)

such that the latency of K warps alone is in the area of constant delay in the sinf plots of

Figure 4.5 for each architecture. For the trojan, we consider M warps such that M is also multiple

of N and the latency of M+K is on one of the steps in the plot. Each warp of the trojan and the spy

is assigned to one of the N different warp schedulers. We select one warp from each scheduler

from the trojan to send one bit and another corresponding warp on the spy side to receive the bit.

We are successfully able to parallelize the communication in this way, leading to a bandwidth

that is N times more than the baseline channel. We are also able to carry out this communication

independently on each of the S SMs, leading to increasing the bandwidth by another factor of S.

The Covert channel bandwidth for the baseline channel is compared to the two parallelization

steps (across SMs, and across warp schedulers in each SM) in Table 4.3. Note that the Fermi

GPU has two warp schedulers per SM while Kepler and Maxwell have four warp schedulers per

SM.

4.7 Mitigating Noise

We consider the presence of interference from other workloads which can affect the

covert channel in two ways: (1) Co-location: the other workloads may prevent the spy and trojan

from being launched together, or may cause them to be assigned to different SMs preventing the

high quality covert channels that are present inside an SM; and (2) Noise: even if the spy and

trojan are co-located, a third application may use the resources used for covert communication

adding noise or even completely disrupting communication.
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DSend [N],DRecv[N] : N is number of bits to transmit and receive
ReadyToSend(): sends ReadyToSendSig to Spy; ReadyToReceive(): sends ReadyToReceiveSig
to Trojan
wait(S): while loop that breaks on signal S
prime(): fills the communication cache line; probe(): access the communication cache line and
return 0 on a hit and 1 on a miss
Trojan protocol:

for i← 0 to N−1 do

ReadyToSend()

wait(ReadyToReceiveSig)

if DSend [i] = 1 then
prime()

Spy protocol:

for i← 0 to N−1 do

wait(ReadyToSendSig)

ReadyToReceive()

DRecv[i]← probe()

Description:

Handshake stage

Transmitting and receiving
stage

Figure 4.10: Synchronization communication protocol

The high parallelism available on GPGPUs can result in high degrees of noise that

challenge error detection and correction. Thus, our primary approach to manage noise is to try

to prevent it completely by manipulating the block scheduler to achieve exclusive co-location

between the spy and trojan at the level of the SM or the full GPGPU. We take advantage of

concurrency limitations on current GPUs which use leftover policy for multiprogramming. In

particular, we have the trojan and spy ask for resources in a way that they can be co-located

with each other but that also makes it difficult for other applications to co-locate with them. For

example, the spy may ask for the maximum available amount of the shared memory (or registers,

thread blocks, threads, etc..) while the trojan asks for only the leftover amount of that resource.

If there are not enough registers or shared memory available per multiprocessor to process at

least one block, a competing kernel will be blocked until these resources become available. In

this way, once the spy and trojan are launched, they can execute on the GPU (or SM) exclusively

and communicate without interference.

In our Fermi (Tesla C2075) and Kepler (Tesla K40C) GPUs, the maximum shared

memory per thread block is equal to maximum shared memory per SM (48KB). Since each of
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the spy and trojan needs just one thread block for communication, if the spy block asks for the

maximum shared memory, it can saturate the SM in term of shared memory. In this case, the

trojan block can be co-located on the same SM, if it does not use any shared memory. Any other

application that uses shared memory, cannot be executed until the spy finishes and there are

enough resources for thread blocks of the third application to be scheduled.

To improve the chances for exclusive co-location, we can also launch additional kernels

that do not generate noise to exhaust other resources but do not use the resources that are claimed

by the trojan and spy. If such kernels are launched at the same time as the kernel and spy, the

scheduler will prefer to run them with the trojan and spy since it prioritizes kernels based on their

launch time.

Note that, on our Maxwell GPU architecture (Quadro M4000), the maximum shared

memory per SM is twice the maximum shared memory per thread block. So if the thread blocks

of both trojan and spy ask for the whole shared memory we can exclusively run on each SM and

noise is prevented.

To evaluate our exclusive co-location strategies, we executed the Rodinia benchmark

applications [64] on a third stream, alongside the spy and trojan communication using L1 cache

channel. By forcing exclusive co-location of the spy and trojan through saturating shared

memory on each SM, we were able to prevent interference against all interfering workloads and

workload mixtures and achieved error free communication in all cases. These workloads include

applications which use shared memory and those that do not. They also include workloads such

as Heart Wall that uses constant memory and that would interfere with the L1 covert channel if it

were co-located with the malicious kernels. We note that if the interfering workload is launched

before the spy and trojan, the built in synchronization in the kernels allows one of them to wait

for the other. When the second kernel is launched, the resource request pattern ensures exclusive

co-location after that.
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As we discussed in Section 4.2, Wang et al.’s [218] intra-SM resource partitioning

mechanism simplifies co-location of two malicious kernels on the same SM. However, it also

allows other workloads to execute on the same SM, necessitating approaches for noise avoidance

or tolerance. In contrast, the approach by Xu et al. [230] does not support preemption and thus

allows exclusive co-location similar to current GPUs. When exclusive co-location to prevent

noise is not possible, noise could be avoided or tolerated using techniques such as the following.

• Dynamically identifying idle resources: The approach is similar to whitespace communi-

cation in wireless networks where the radios opportunistically discover and use available

channels without prior agreement [54], and solutions from that space can be leveraged for

our problem. For example, the sender may scan through available resources (e.g. cache

sets) in a pre-agreed on order until it discovers idle ones and transmits a beacon pattern on

them. The receiver follows by scanning sets until it observes the beacon.

• Error correction: transmit error correcting codes with the data (sacrificing some of the

bandwidth).

Since we were able to establish exclusive co-location on our GPUs and achieved noise free

communication, we did not pursue either of those directions.

4.8 Possible Mitigations

In this section, we provide a brief discussion of possible mitigations on GPU covert

channel. One approach is to use partitioning to ensure possibly communicating applications

do not have a way to effect measurable contention to each other. Partitioning can be done

spatially (e.g., partitioning the cache [216, 76, 141], or temporally (e.g., ensuring instructions

from different kernels do not execute in the same time period).
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Specifically on GPUs, partitioning can be achieved at intra-SM and inter-SM level

resources through scheduling of different application thread blocks or warps to separate them

temporally or spatially. In addition, it is possible to fairly partition shared hardware resources

among multiple simultaneous kernels based on their workload and resource requirements and

make these partitions private to each application to eliminate interference. Although these

approaches may lead to performance degradation and add some hardware overhead, they can

prevent covert and side channel attacks which are results of unrestricted access to shared hardware

resource from two or more co-located applications.

Another mitigation approach is to attempt to detect anomalous contention [65]. Given

the different nature of GPGPU workloads and the degree of contention that is likely to arise

naturally, a detailed evaluation of this class of solutions is necessary to assess its effectiveness.

Solutions are possible that add entropy either to the assignment of the resources [217] or to

the measurement of time [148]. Finally, scheduling algorithms that interfere with co-location,

accommodate preemption, or prevent exclusive co-location (to introduce noise), can significantly

complicate the attack.

In Chapter 6, we demonstrate how we combine machine learning based detection and

fine grained partitioning to provide the efficient GPU-specific mitigation against contention based

channels.
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Chapter 5

GPU Side Channel

In chapter 4, we demonstrate that GPUs provide very high quality and bandwidth covert

channels. In this chapter, we explore whether side channel attacks on GPUs are practical. GPUs

often process sensitive data both with respect to graphics workloads (which render the screen

and can expose user information and activity) and computational workloads (which may include

applications with sensitive data or algorithms). Such attacks represent a novel and dangerous

threat vector. There are a number of unique aspects of side channel attacks on the GPU due to

the different computational model, high degree of parallelism, unique co-location and sharing

properties, as well as attacker-measurable channels present in the GPU stack. We show that

indeed side channels are present and exploitable, and demonstrate attacks on a range of Nvidia

GPUs and for both graphics and computational software stacks and applications.

5.1 Attack Space

In this section, we first define three attack models based on the placement of the spy

and the victim. We then describe the available leakage vectors in each model.
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Figure 5.1: Attack Models

5.1.1 Attack Models

We consider three primary attack vectors. In all three cases, a malicious program with

normal user level permissions whose goal is to spy on a victim program.

• Graphics spy on a Graphics victim: attacks from a graphics spy on a graphics workload

(Figure 5.1, left). Since Desktop or laptop machines by default come with the graphics

libraries and drivers installed, the attack can be implemented easily using graphics APIs

such as OpenGL measuring leakage of a co-located graphics application such as a web

browser to infer sensitive information.

• CUDA spy and graphics victim (Cross-Stack): on user systems where CUDA libraries and

drivers are installed, attacks from CUDA to graphics applications are possible (Figure 5.1,

middle).

• CUDA spy on a CUDA victim: attacks from a CUDA spy on a CUDA workload typically

on the cloud (Figure 5.1, right) where CUDA libraries and drivers are installed.

In the first attack model, we assume that the attacker exploits the graphics stack using APIs such

as OpenGL or WebGL. In attack models 2 and 3, we assume that a GPU is accessible to the

attacker using CUDA or OpenCL.
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5.1.2 Available Leakage Vectors on GPUs

In Chapter 4, we showed that two concurrently executing GPU kernels can construct

covert channels using CUDA by creating and measuring contention on a number of resources

including caches, functional units, and atomic memory units [161, 160]. However, such fine-

grained leakage is more difficult to exploit for a side channel attacks: the large number of threads,

and the relatively small size of caches, makes it difficult to conduct high-precision prime-probe

or similar attacks on data caches [120].

Thus, instead of targeting fine-grained contention behavior, we focus on aggregate measures of

contention through available resource tracking APIs to develop side channels.

There are a number of mechanisms available to the attacker to measure the victim’s

performance. These include: (1) the memory allocation API, which exposes the amount of

available physical memory on the GPU; (2) the GPU hardware performance counters; and (3)

Timing operations while executing concurrently with the victim. We verified that the memory

channel is available on Nvidia GPUs [33] on any Operating System supporting OpenGL (includ-

ing Linux, Windows, and MacOS). Nvidia GPUs currently support performance counters on

Linux, Windows and MacOS for computing applications [29] and on Linux and Android [27, 36]

for graphics applications. WebGL does not appear to offer extensions to measure any of the

three channels and therefore cannot be used to implement a spy for our attacks. Although web

browsers and websites which use WebGL (as a JavaScript API to use GPU for rendering) can be

targeted as victims in our attacks from an OpenGL spy.

A. Measuring GPU Memory Allocation: When the GPU is used for rendering, a content-related

pattern (depending on the size and shape of the object) of memory allocations is performed

on the GPU. We can probe the available physical GPU memory using an Nvidia provided API

through either a CUDA or an OpenGL context. Repeatedly querying this API we can track the
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times when the available memory space changes and even the amount of memory allocated or

deallocated.

On an OpenGL application we can use the ”NVX gpu memory info ” extension [33] to

do the attack from a graphics spy. This extension provides information about hardware memory

utilization on the GPU. We can query ”GPU MEMORY INFO CURRENT AVAILABLE VIDM

EM NVX ” as the value parameter to glGetIntegerv. Similarly, on a CUDA application, the

provided memory API by Nvidia is ”cudaMemGetInfo”.

B. Measuring Performance Counters: We use Nvidia profiling tools [29] to monitor the GPU

performance counters from a CUDA spy. Table 5.1 summarizes some important events/metrics

tracked by the GPU categorized into five general groups. Although the GPU allows an application

to only observe the counters related to its own computational kernel, these are affected by the

execution of a victim kernel: for example, if the victim kernel accesses the cache, it may replace

the spy’s data allowing the spy to observe a cache miss (through cache-related counters). We

note that OpenGL also offers an interface to query the performance counters enabling them to be

sampled by a graphics-based spy.

C. Measuring Timing: It is also possible to measure the time of individual operation in attack

models where the spy and the victim are concurrently running to detect contention.

Leakage Vectors on Integrated GPUs: Although this chapter focuses on discrete GPU side

channels, we verified that similar leakage and attacks are possible on integrated GPUs as well.

In integrated GPU systems, there is no memory API to track GPU memory utilization, since

memory is shared between CPU and GPU. Although userspace interfaces to query performance

counters, available in almost all integrated and discrete GPUs, making our attacks effective

on integrated GPUs such as Intel Graphics and Qualcomm Adreno as well. Specifically, Intel

provides an OpenGL extension ”Intel performance query”[32] to access the GPU performance

counters organized in some query types including ”Intel GT Hardware Counters”. This query
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type includes counters like stall time and read and write memory throughput that can be affected

by other co-running applications on GPU, providing side channel leakage.

Experimental Setup: We verified the existence of all the reported vulnerabilities in this chapter

on three Nvidia GPUs from three different microarchitecture generations: a Tesla K40 (Kepler),

a Geforce GTX 745 (Maxwell) and a Titan V (Volta) Nvidia GPUs. We report the result only on

the Geforce GTX 745 GPU. The experiments were conducted on an Ubuntu 16.04 distribution,

but we verified that the attack mechanisms are accessible on both Windows and MacOS systems

as well. The graphics driver version is 384.11 and the Chrome browser version is 63.0.3239.84.

Table 5.1: GPU performance counters

Category Event/Metric
Memory Device memory read/write throughput

Global/local/shared memory LD/ST throughput
L2 RD/WR transactions
Device memory utilization

Instruction Control flow, INT, FP (single/double) instructions
Instruction executed/issued, Issued/executed IPC
Issued load/store instructions
Issue stall reasons (data request,
execution dependency,texture,...)

Multiprocessor SP/DP function unit(FU) utilization
Special FU utilization
Texture FU utilization, Control-flow FU utilization

Cache L2 hit rate (texture read/write)
L2 throughput/transaction

Texture Unified cache hit rate/throughput/utilization

5.2 Attack Model I : Graphics Spy on a Graphics Victim

We consider the first threat model where an application uses a graphics API such as

OpenGL to spy on another application that uses the GPU graphics pipeline (Figure 5.1, left).

Reverse Engineering Co-location: To understand how two concurrent applications share the

GPU, we carry out a number of experiments to see if the two workloads can run concurrently

and to track how they co-locate. The general approach is to issue the concurrent workloads and
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measure both the time they execute using the GPU timer register, and SM-ID they execute on

(which is also available through the OpenGL API). If the times overlap, then the two applications

colocate at the same time. If both the time and the SM-IDs overlap, then the applications can

share at the individual SM level, which provides additional contention spaces on the private

resources for each SM.

We launch two long running graphics applications rendering an object on the screen re-

peatedly. OpenGL developers (Khronos group) provide two extensions: ”NV shader thread group ”

[34] which enable programmers to query the ThreadID, the WarpID and the SM-ID in OpenGL

shader codes and ”ARB shader clock ” [22] which exposes local timing information within a

single shader invocation. We used these two extensions during the reverse engineering phase in

the fragment shader code to obtain this information. Since OpenGL does not provide facilities

to directly query execution state, we encode this information in the colors (R, G, B values) of

the output pixels of the shader program (since the color of pixels is the only output of shader

program). On the application side, we read the color of each pixel from the framebuffer using the

glReadPixels() method and decode the colors to obtain the encoded ThreadID, SM-ID and

timing information of each pixel (representing a thread).

We observed that two graphics applications whose workloads do not exceed the GPU

hardware resources can colocate concurrently. Only if a single kernel can exhaust the resources

of an entire GPU (extremely unlikely), the second kernel would have to wait. Typically, a GPU

thread is allocated to each pixel, and therefore, the amount of resources reserved by each graphics

kernel depends on the size of the object being processed by the GPU. We observe that a spy can

co-locate with a rendering application even it renders the full screen (Resolution 1920x1080) on

our system. Because the spy does not ask for many resources (number of threads, shared memory,

etc...), we also discover that it is able to share an SM with the other application. In the next two

subsections, we explain implementation of two end to end attacks on the graphics stack of GPU.
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5.2.1 Attack I: Website Fingerprinting

The first attack implements website fingerprinting as a victim surfs the Internet using

a browser. We first present some background about how web browsers render websites to

understand which part of the computation is exposed to our side channel attacks and then describe

the attack and evaluation.

Web Browser Display Processing: Current versions of web browsers utilize the GPU to acceler-

ate the rendering process. Chrome, Firefox, and Internet Explorer all have hardware acceleration

turned on by default. GPUs are highly-efficient for graphics workload, freeing up the CPU for

other tasks, and lowering the overall energy consumption.

As an example, Chrome’s rendering processing path consists of three interacting

processes: the renderer process, the GPU process and User Interface (UI) process. By default,

Chrome does not use the GPU to rasterize the web content (recall that rasterization is the

conversion from a geometric description of the image, to the pixel description). In particular, the

webpage content is rendered by default in the renderer process on the CPU. Chrome uses shared

memory with the GPU process to facilitate fast exchange of data. The GPU process reads the

CPU-rasterized images of the web content and uploads it to the GPU memory. The GPU process

next issues OpenGL draw calls to draw several equal-sized quads, which are each a rectangle

containing the final bitmap image for the tile. Finally, Chrome’s compositor composites all the

images together with the browser’s UI using the GPU.

We note that WebGL enables websites and browsers to use GPU for whole rendering

pipeline, making our attacks effective for all websites that use WebGL [38]. For websites that

do not use WebGL, Chrome does not use the GPU for rasterization by default, but there is an

option that users can set in the browser to enable GPU rasterization.1 If hardware rasterization is

1GPU rasterization can be enabled in chrome://flags for Chrome and in about:config through setting the
layers.acceleration.force-enabled option in Firefox.
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enabled, all polygons are rendered using OpenGL primitives (triangles and lines) on the GPU.

GPU accelerated drawing and rasterization can offer substantially better performance, especially

to render web pages that require frequently updated portions of screen. As a result, the Chromium

Project’s GPU Architecture Roadmap [25] seeks to enable GPU accelerated rasterization by

default in Chrome in the near future. For our attacks we assume that hardware rasterization is

enabled but we also report the experimental results without enabling GPU rasterization.

Launching the Attack: In this attack, a spy has to be active while the GPU is being used

as a user is browsing the Internet. In the most likely attack scenario, a user application uses

OpenGL from a malicious user level App on a desktop, to create a spy to infer the behavior

of a browser process as it uses the GPU. However, a CUDA (or OpenCL) spy is also possible

assuming the corresponding driver and software environment is installed on the system, enabling

Graphics-CUDA side channel attack described in Section 5.3.

Probing GPU Memory Allocation: The spy probes the memory API to obtain a trace of the

memory allocation operations carried out by the victim as it renders different objects on a

webpage visited by the user.

We observe that every website has a unique trace in terms of GPU memory utilization

due to the different number of objects and different sizes of objects being rendered. This signal

is consistent across loading the same website several times and is unaffected by caching. To

illustrate the side channel signal, Figure 5.2 shows the GPU memory allocation trace when

Google and Amazon websites are being rendered. The x-axis shows the allocation events on the

GPU and the y-axis shows the size of each allocation.

We evaluate the memory API attack on the front pages of top 200 websites ranked by

Alexa [21]. We collect data by running a spy as a background process, automatically browsing

each website 10 times and recording the GPU memory utilization trace for each run.
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(a) (b)

Figure 5.2: Website memory allocation on GPU (a) Google; (b) Amazon

Classification We leverage machine learning algorithms to classify the traces to infer which

websites the victim is likely to have visited. We first experimented with using time-series

classification through dynamic time warping, but the training and classification complexity was

high. Instead, we construct features from the full time series signal and use traditional machine

learning classification, which also achieved better accuracy. In particular, we compute several

statistical features, including minimum, maximum, mean, standard deviation, slope, skew and

kurtosis, for the series of memory allocations collected through the side channel when a website

is loading. We selected these features because they are easy to compute and capture the essence

of the distribution of the time series values. The skew and kurtosis capture the shape of the

distribution of the time series. Skew characterizes the degree of asymmetry of values, while

the Kurtosis measures the relative peakness or flatness of the distribution relative to a normal

distribution [163]. We computed these features separately for the first and the second half of

the time series recorded for each website. We further divided the data in each half into 3 equal

segments, and measured the slope and the average of each segment. We also added the number

of memory allocations for each website, referred as “memallocated”, into the feature vector

representing a website. This process resulted in the feature set consisting of 37 features.
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We then used these features to build the classification models based on three standard

machine learning algorithms, namely, K Nearest Neighbor with 3 neighbors (KNN-3), Gaussian

Naive Bayes (NB), and Random Forest with 100 estimators (RF). We evaluate the performance

of these models to identify the best performing classifier for our dataset. For this and all

classification experiments we validated the classification models using standard 10-fold cross-

validation method (which separates the training and testing data in every instance).

As performance measures of these classifiers, we computed the precision (Prec), recall

(Rec), and F-measure (FM) for machine learning classification models. Prec refers to the

accuracy of the system in rejecting the negative classes while the Rec is the accuracy of the

system in accepting positive classes. Low recall leads to high rejection of positive instances (false

negatives) while low precision leads to high acceptance of negative instances (false positives).

FM represents a balance between precision and recall.

Table 5.2: Memory API based website fingerprinting performance (200 Alexa top websites):
F-measure (%), Precision (%), and Recall (%)

FM Prec Rec
µ (σ ) µ (σ ) µ (σ )

NB 83.1 (13.5) 86.7(20.0) 81.4 (13.5)
KNN3 84.6 (14.6) 85.7 (15.7) 84.6(14.6)
RF 89.9 (11.1) 90.4 (11.4) 90.0 (12.5)

Table 5.2 shows the classification results. The random forest classifier achieves around

90% accuracy for the front pages of Alexa 200 top websites. Note that if we launch our memory

API attack on browsers with default configuration (we do not enable GPU rasterization on

browser), we still obtain a precision of 59%.

User Activity Tracking We follow up on the website fingerprinting attack with a side

channel to track the user activity on the web. We define user activity as the navigation to sub-level

webpages after a user accesses the main page of a website. For example, a user may sign in or
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sign up from the main page, or a user may browse through the savings or checking account after

logging into the banking webpage. Figure 5.3 shows two examples of user activity signatures.

We test this attack on two websites: facebook.com and bankofamerica.com. In the

facebook website, our goal is to detect whether the user is signing in or signing up (creating

account). In the bankofamerica website, besides detecting signing in/opening an account, we

track several user activities to detect which type of account the user intends to open, and other

interactions with the website.

The intuition is that depending on the what buttons/links are clicked on the homepage,

different subsequent pages (signing in or signing up) will be reached, creating a distinguishable

time series signal. Using the same features as the fingerprinting attack, we show the classification

performance for these two websites in Table 5.3. The Random Forest classifier could identify

the users’ web activities accurately with the precision of 94.8%. The higher accuracy is to be

expected since the number of possible activities is small.

Table 5.3: Memory API based user activity detection performance: F-measure (%), Precision
(%), and Recall (%)

FM Prec Rec
µ (σ ) µ (σ ) µ (σ )

NB 93.5(7.9) 93.9 (9.9) 93.3 (7.0)
KNN3 90.8 (12.6) 92.6 (12.1) 91.1 (16.9)
RF 94.4 (8.6) 94.8 (8.8) 94.4 (10.1)

(a) (b)

Figure 5.3: User activity memory trace on Bank of America website (a) sign-in ; (b) Open
account: Checking & Saving
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5.2.2 Attack II: Password Textbox Identification and Keystroke Monitoring

After detecting the victim’s visited website and a specific page on the website, we can

extract additional finer-grained information on the user activity. By probing the GPU memory

allocation repeatedly, we can detect the pattern of user typing (which typically causes re-rending

of the textbox). More specifically, from the same signal, it contains (1) the size of memory

allocation by the victim, which we use to identify whether it is a username/password textbox

(e.g., versus a bigger search textbox); (2) the inter-keystroke time which allows us to extract the

number of characters typed and even infer the characters using timing analysis.

As an example, we describe the process to infer whether a user is logging in by

typing on the password textbox on facebook, as well as to extract the inter-keystroke time of

the password input. Since the GPU is not used to render text in the current default options,

each time the user types a character, the character itself is rendered by the CPU but the whole

password textbox is uploaded to GPU as a texture to be rasterized and composited. In this case,

the monitored available memory will decrease with a step of 1024KB (the amount of GPU

memory needed to render the password textbox on facebook), leaking the fact that a user is

attempting to sign in instead of signing up (where the sign-up textboxes are bigger and require

more GPU memory to render). Next, by monitoring the exact time of available memory changes,

we infer inter-keystroke time. The observation is that while the sign-in box is active on the

website, waiting for user to input username and password, the box is re-rendered at a refresh

rate of around 600 ms. However, if a new character is typed, the box is immediately re-rendered

(resulting in a smaller interval). This effect is shown in Figure 5.4, where the X-axis shows

the observed nth memory allocation events while the Y-axis shows the time interval between

the current allocation event and the previous one (most of which are 600ms when a user is not
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typing). We can clearly see six dips in the figure corresponding to the 6 user keystrokes, and the

time corresponding to these dips can be used to calculate inter-keystroke time.

Figure 5.4: Timing memory allocations: 6-character password

Figure 5.5: Error distribution of inter-keystroke time

Prior work has shown that inter-arrival times of keystrokes can leak information about

the actually characters being typed by the user [192]. To demonstrate that our attack can measure

time with sufficient precision to allow such timing analysis, we compare the measured inter-

keystroke time to the ground truth by instrumenting the browser code to capture the true time of

the key presses. We compute the normalized error as the difference between the GPU measured

interval and the ground truth measured on the CPU side. Figure 5.5 shows the probability density
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of the normalized measurement error in an inter-keystroke timing measurement with 250 key

presses/timing samples. We observe that the timing is extremely accurate, with mean of the

observed error at less than 0.1% of the measurement period, with a standard deviation of 3.1%

(the standard deviation translates to about 6ms of absolute error on average, with over 70% of the

measurements having an error of less than 4ms). Figure 5.6 shows the inter-keystroke timing for

25 pairs of characters being typed on the facebook password bar (the character a followed by

each of b to z), measured through the side channel as well as the ground truth. The side channel

measurements (each of which represents the average of 5 experiments) track the ground truth

accurately.

Figure 5.6: Keystroke timing: Ground Truth vs. GPU

5.2.3 Robustness to window sizes

In attacks on the graphics stack, the size of the window being rendered affects the side channel

signal leaked to the attacker. We checked the robustness of the classification on the website

fingerprinting attack described earlier, which was evaluated under the assumption that the browser

used the full screen. However, users may browse websites in the browser of different screen sizes.
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Hence, to make our website fingerprinting attack robust, we have to generalize the attack across

various window sizes.

Robustness analysis: We discover that changing the window size results in a similar signal with

different amplitude for a few websites, and for the responsive websites that have dynamic content

or do not scale with window size, there is some variance in the memory allocation signal (e.g.,

some objects missing due to a smaller window). We collected data for seven different window

sizes, including some standard sizes of iPhone, iPad, Laptop and Desktop. These window sizes

are 320*568, 600*800, 800*600, 1024*768, 1440*900, 1680*1050 and full screen (1920*1080).

To measure the robustness of our classification model on different window sizes, we , first,

trained the model on full-screen window dataset and tested on other window sizes. We observed

a decrease in the precision of a Random Forest classifier to less than 10% for top 100 Alexa

websites. Thus, the attack described thusfar is not robust to change in the window size.

To make our attack robust to a size of a window, we introduce a new attack that

estimates the size of the browser window. The intuition is that the intensity of the signal increases

with the size of the window as more objects that are larger are drawn. After detecting the window

size, the correct classifier (trained at that window size) is used for website fingerprinting. We

describe this attack in the remainder of this section.

Detecting window sizes: We computed several features, including minimum, maximum, slope,

variation, kurtosis, and skew from the memory allocations associated with the Alexa top 100

websites loaded in the given browser window size. We then trained a model with Random

Forest classifier on these features to detect the size of the browser window. We evaluated the

performance of our model using 10-fold cross-validation. The performance metrics, viz., f-

measure, precision, and recall, of the model, are listed in Table 5.4. To identify the prominent

features in the memory allocations representing the window sizes, we computed the information
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gain on each feature. We observe the maximum, the variation, and the skew of the memory

allocations as the top-three features representing different window sizes.

Table 5.4: Window size prediction performance: F-measure (%), Precision (%), and Recall (%)

FM Prec Rec
µ µ µ

320 568 94 96 95
600 800 95 96 96
800 600 93 94 93
1024 768 95 97 96
1440 900 96 98 97
1680 1050 97 92 95
FullScreen 99 97 98

Website Fingerprinting: Similar to the implementation of website fingerprinting on the full-

screen browser, we trained a Random Forest classifier to model websites browsed in a specific

window size. We evaluate performance with 10-fold cross validation. The classification results

are presented in Table 5.5. With this improvement, we believe that the attacks become robust to

changes in window size.

Table 5.5: Website fingerprinting performance on different window sizes (100 Alexa top websites):
F-measure (%), Precision (%), and Recall (%)

FM Prec Rec
µ (σ ) µ (σ ) µ (σ )

320 568 93 (0.07) 93 (0.07) 93 (0.06)
600 800 92 (0.09) 92 (0.09) 91 (0.08)
800 600 93 (0.07) 92 (0.08) 92 (0.05)
1024 768 95 (0.06) 94 (0.07) 94 (0.05)
1440 900 94 (0.07) 94 (0.09) 94 (0.07)
1680 1050 94 (0.06) 94 (0.08) 94 (0.05)
Full Screen 94 (0.07) 94 (0.09) 93 (0.06)

5.3 Attack Model II: CUDA Spy on a Graphics Victim

In this section, we demonstrate the attack model II, where a spy from the computational

stack attacks a victim carrying out graphics operations. This attack is possible on a desktop or

mobile device that has CUDA or openCL installed, and requires only user privileges.
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5.3.1 Reverse Engineering the Colocation

We conduct a number of experiments to reverse engineer the GPU schedulers when

there are both graphics and computing applications. In the first experiment, we launch a CUDA

process and an OpenGL process concurrently on the GPU. On the CUDA side, we write an

application to launch a very long CUDA kernel doing some texture memory load operations in a

loop and size the application such that there is at least one thread block executing on each SM.

We measure the start time and stop time of the CUDA kernel, the start and stop time of each

iteration of operations for each thread, and report the SM-ID on which the thread is executing.

On the OpenGL side, we launch a very long application and probe the execution time

and the SM-ID at each pixel (thread) as described in Section 5.2. From the experiment above,

we observed that when the CUDA kernel starts execution, the graphics rendering application is

frozen until the CUDA kernel is terminated. So there is no true concurrency between CUDA

and OpenGL applications on the GPU SMs. This behavior is different than multiple CUDA

applications (or multiple OpenGL applications) which we found to concurrently share the GPU

when the resources are sufficient.

In the next experiment, we launch many short CUDA kernels from one application

and keep the long running graphics rendering application. We use the previous methodology to

extract the ThreadID, WarpID and timing information on both sides. We observe interleaving

execution (not concurrent execution) of CUDA kernels and graphics operations on the GPU. For

short CUDA kernels, we achieve fine-grained interleaving (even at the granularity of a single

frame), enabling us to sample the performance counters or memory API after every frame.

Although the same Graphics-Graphics attacks through the memory API can also be

implemented through a CUDA spy, we demonstrate a different attack that uses the performance

counters. Our attack strategy is that we launch a CUDA spy application including many consec-
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utive short CUDA kernels, in which the threads access the texture memory addresses that are

mapped to different sets of texture caches (e.g. each SM on GTX 745 has a 12KB L1 texture

cache with 4 sets and 24 ways). To make our attack fast and to optimize the length of each

CUDA kernel, we leverage the inherent GPU parallelism to have each thread (or warp) access

a unique cache set, so all cache sets are accessed in parallel. Note that number of launched

CUDA kernels is selected such that the spy execution time equals to the average rendering time

of different websites. The spy kernels collect GPU performance counter values. Although the

spy can only see its own performance counter events, the victim execution affects these values

due to contention; for example, texture cache hits/misses and global memory events are affected

by contention.

5.3.2 Website Fingerprinting from CUDA Spy Using Performance Counters

On a CUDA spy application, we launch a large number of consecutive CUDA kernels,

each of which accesses different sets of the texture cache using different warps simultaneously at

each SM. The intuition is to create contention for these cache sets which are also used by the

graphics rendering process. We run our spy and collect performance counter values with each

kernel using the Nvidia profiling tools (which are user accessible) while the victim is browsing

webpages. Again, we use machine learning to identify the fingerprint of each website using the

different signatures observed in the performance counters. We evaluate this attack on 200 top

websites on Alexa, and collect 10 samples for each website.

Classification: Among all performance counters, we started with those related to global mem-

ory and L2 cache: through these resources, a graphics application can affect the spy as textures

are fetched from GPU memory and composited/rasterized on the screen. We used information
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gain of each feature to sort them according to importance and selected the top 22 features to build

a classifier (shown in Table 5.6).

We summarized the time series of each feature as before by capturing the same

statistical characteristics (min, max, slope, average, skew and kurtosis independently on two

halves of the signal). Again, we trained three different machine learning algorithms (NB, KNN3,

and RF) and use 10-fold cross-validation.

Table 5.7 reports the classification model based on the random forest classifier has the

highest precision among all the tested classifiers. The average precision of the model on correctly

classifying the websites is 93.0% (f-measure of 92.7%), which represents excellent accuracy in

website fingerprinting. We also ranked the features based on their information gain and validated

the capability of the random forest based machine learning model and observed prediction

accuracy of 93.1% (with f-measure of 92.8%). This proves the feasibility of the program counter

based machine learning models on identifying the websites running on the system. We obtained

similar classification performance both with and without the GPU rasterization option. The

classification precision on the default browser configuration (without GPU rasterization) is about

91%. Since still the texture should be fetched from memory and has effect on the texture cache

and memory performance counters, while the GPU is only used for composition.

Table 5.6: Top ranked performance counter features

GPU Performance Counter Features
Fb subp0/1 read sectors2 slope
Device memory read transactions slope, mean
L2 subp0/1/2/3 read sector misses3 slope, sd
L2 subp0/1/2/3 total read sector queries4 slope, sd
Instruction issued skew, kurtosis

2Number of read requests sent to sub-partition 0/1 of all the DRAM units
3Accumulated read sectors misses from L2 cache for slice 0/1/2/3 for all the L2 cache units
4Accumulated read sector queries from L1 to L2 cache for slice 0/1/2/3 of all the L2 cache units
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Table 5.7: Performance counter based website fingerprinting performance: F-measure (%),
Precision (%), and Recall (%)

FM Prec Rec
µ (σ ) µ (σ ) µ (σ )

NB 89.1 (10.8) 90.0 (10.8) 89.2 (11.3)
KNN3 90.6 (6.6) 91.0 (7.6) 90.6 (8.2)
RF 92.7 (5.9) 93.0 (6.1) 92.7 (8.4)

5.4 Attack Model III: CUDA Spy on a CUDA Victim

To construct the side channel between two computing applications, multiprogramming

(the ability to run multiple programs at the same time) on the GPUs is needed to enable the spy to

run alongside the victim. As discussed in Chapter 2, modern GPUs support multiprogramming

through multiple hardware streams with multi-kernel execution using a multi-process service

(MPS) [167], which allows execution of concurrent kernels from different processes on the GPU

and is supported in Kepler and newer microarchitecture generations from Nvidia. Multi-process

execution eliminates the overhead of GPU context switching and improves the performance,

especially when the GPU is underutilized by a single process. The trends in newer generations

of GPUs is to expand support for multiprogramming; for example, the recent Volta architecture

provides hardware support for 32-concurrent address spaces/page tables on the GPU. All three

Nvidia GPUs we tested support MPS.

We assume that the two applications are launched to the same GPU. Co-location of

attacker and victim VMs on the same cloud node is an orthogonal problem investigated in prior

works [187, 53]. Although the model for sharing of GPUs for computational workloads on cloud

computing systems is still evolving, it can currently be supported by enabling the MPS control

daemon which start-ups and shut-downs the MPS server. The CUDA contexts (MPS clients) will

be connected to the MPS server by MPS control daemon and funnel their work through the MPS

server which issues the kernels concurrently to the GPU provided there is sufficient hardware

resources to support them.
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Once colocation of the CUDA spy with the victim application is established, similar to

graphics-computing channel, a spy CUDA application can measure contention from the victim

application. For example, it may use the GPU performance counters to extract some information

about concurrent computational workloads running on GPU.

5.4.1 Attack III: Neural Network Model Recovery:

In this attack model, a spy computational application, perhaps on a cloud, seeks to

co-locate on the same GPU as another application to infer its behavior. For the victim, we choose

a CUDA-implemented back-propagation algorithm from the Rodinia application benchmark [64];

in such an application, the internal structure of the neural network can be a critical trade secret

and the target of model extraction attacks. This attack is a proof of concept attack, and we believe

that we can extend the same principles to explore general model extraction on arbitrary machine

learning models.

We use prior results of reverse engineering the hardware schedulers on GPUs [161] to

enable a CUDA spy to co-locate with a CUDA victim on each SM. We launch several hundred

consecutive kernels in spy to make sure we cover one whole victim kernel execution. These

numbers can be scaled up with the length of the victim. To create contention in features tracked

by hardware performance counters, the spy accesses different sets of the cache and performs

different types of operations on functional units. When a victim is running concurrently on the

GPU and utilizing the shared resources, depending on number of input layer size, the intensity

and pattern of contention on the cache, memory and functional units is different over time,

creating measurable leakage in the spy performance counter measurements. We collect one

vector of performance counter values from each spy kernel.

Data Collection and Classification: We collect profiling traces of the CUDA based spy over

100 kernel executions (at the end of each, we measure the performance counter readings) while
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the victim CUDA application performs the back-propagation algorithm with different size of

neural network input layer. We run the victim with input layer size varying in the range between

64 and 65536 neurons collecting 10 samples for each input size.

As before, we segment the time-series signal and create a super-feature based on the

minimum, maximum, slope, average, standard deviation, skew and kurtosis of each signal, and

train classifiers (with 10-fold cross validation to identify the best classifiers for our data set).

Feature selection: We used information gain of each feature to sort them according to the

importance and selected the top 20 features to build a classifier. Table 5.8 summarizes the most

top ranked features selected in the classification and Figure 5.7 shows the information gain of

the top features. We expected that cache and memory related features are most affected by

concurrently running kernels. ”Issue stall” is also important as it measures contention from the

victim on functional units and memory.

Table 5.8: Top ranked counters for classification

GPU Performance Counter Features
Device memory write transactions skew, sd, mean, kurtosis
Fb subp0/1 read sector5 skew, kurtosis
Unified cache throughput(bytes/sec) skew, sd
Issue Stall skew, sd
L2 subp0/1/2/3 read/write misses6 kurtosis

Figure 5.7: Information gain of top features
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Table 5.9: Neural Network Detection Performance

FM % Prec % Rec %
µ (σ ) µ (σ ) µ (σ )

NB 80.0 (18.5) 81.0 (16.1) 80.0 (21.6)
KNN3 86.6 (6.6) 88.6 13.1) 86.3 (7.8)
RF 85.5 (9.2) 87.3 (16.3) 85.0 (5.3)

Table 5.9 reports the classification results for identifying the number of neurons through

the side channel attack. Using KNN3, we are able to identify the correct number of neurons

with high accuracy (precision of 88.6% and f-measure 86.6%), demonstrating that side channel

attacks on CUDA applications are possible.

Attack in interleaved kernel execution model: In case that MPS is not activated on Desktop

GPUs or is not the multiprogramming model on the cloud for concurrent running of spy and

victim, kernels from two applications are scheduled based on time-sliced scheduling and context

switching. We studied this scenario for machine learning models that launch several sequential

GPU kernels and we launch a large number of very short spy kernels (each doing some memory

and functional units operations) to make sure that spy and victim kernels are interleaving. We

observed that per kernel performance counters read by spy kernels are affected by victim model

parameters, since this context switching causes performance penalty (specifically on cache and

memory related features) on the following kernel, enabling the spy to extract information from

victim application.

5.5 Mitigation

The attack may be mitigated completely by removing the shared resource APIs such

as the memory API and the performance counters. Since legitimate applications need these

APIs, rather than removing them, our goal is to weaken the signal that the attacker gets. In the

5Number of read requests sent to sub-partition 0/1 of all the DRAM units
6Accumulated read/write misses from L2 cache for slice 0/1/2/3 for all the L2 cache units
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future, GPU scheduling algorithms may be developed to create separation between workloads

or to decorrelate the observed contention from the sensitive data operated on by the application.

In Chapter 6, we propose a GPU-specific intra-SM partitioning scheme to isolate contention

between victim and spy and eliminate contention based channels after detection.

We evaluate reducing the leakage by either (1) Rate limiting: reducing the frequency

that an application can use an API such as the memory API or the performance counters; and (2)

Precision limiting: limit the granularity of the reported information.

(a) (b) (c)

Figure 5.8: Classification precision with (a) Rate limiting; (b) Granularity limiting; (c) Rate
limiting at 4MB granularity

We retrain the machine learning model with the leakage data obtained with the defenses

in place on the Alexa top 50 websites. The classification precision decreases with rate limiting

defense as shown in Figure 5.8a, and with reducing the granularity in Figure 5.8b. Reducing

the query rate to two queries per second reduces precision but retains classification success of

around 40%. In contrast, decreasing the granularity to 8192KB, the accuracy will be significantly

decreased to about 7%. By combining the two mentioned approaches, using 4096KB granularity

and limiting the query rate we can further decrease the precision to almost 4%, as demonstrated

in Figure 5.8c. While reducing precision, we believe these mitigations retain some information

for legitimate applications to measure their performance, while preventing side channel leakage

across applications.
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Although we evaluate the defense only for the website fingerprinting attack, we believe

the effect will be similar for the other attacks, since they are also based on the same leakage

sources. We also believe similar defenses can mitigate performance counter side channels.

Finding the right balance between utility and side channel leakage for general applica-

tions is an interesting tradeoff to study for this class of mitigations.
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Chapter 6

Mitigation: GPUGuard

In Chapter 4 and 5, we demonstrated that GPUs are vulnerable to microarchitectural

covert and side-channel attacks. GPU manufacturers are offering increasing support for multi-

programming on GPUs to fully utilize the growing resource availability in GPU – wider data

paths and more streaming multiprocessors (SMs). GPUs are now offered as a resource in cloud

computing systems. A malicious VM can now spy on other applications that share a GPU (a side

channel attack) or collude with another to covertly communicate sensitive information to bypass

information isolation boundaries.

In this chapter, we provide a comprehensive solution to mitigate contention based

covert- and side-channel attacks between two kernels co-executing on a GPU. At the core of these

attacks an adversary/spy exploits contention in hardware resources to indirectly infer information

about a victim kernel in the case of side channel attacks, or a colluding trojan kernel in the

case of covert channel attacks. While solutions for such attacks in CPUs have been proposed,

GPUs have a substantially different execution model with massive parallelism, internal hardware

schedulers that impact colocation and contention, as well as several unique (micro)architectural
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structures such as constant cache, which provide a varied range of paths for contention based

channel formation.

Our attack detection relies on the increased resource contention that is exhibited when a

GPU is facing a covert or side-channel attack. In the context of CPUs, Hunger et al. have already

shown that resource contention is one of the most quantifiable impact of an attack [106]. As such,

GPUGuard non-intrusively monitors resource contention across kernels through a set of well

defined features and resource utilization metrics. It then uses these features and metrics to classify

kernel interaction behaviors, and to identify covert and side-channel formation. Once an attack

is identified, the second component of our solution separates contending kernels into separate

security domains, uniquely possible in GPUs due to the inherent spatial parallelism available, to

close the identified contention channels. We use security domains at different hierarchy levels

to maximize sharing (and performance) when it is safe, but to close contention based channels

when there is a possibility for the existence of such a channel.

One simple solution to mitigate any information leakage through shared resources is

to temporally partition the resources. But it has been shown in many recent studies that GPUs

benefit greatly from fine-grain sharing, including intra-SM sharing [176, 230, 219, 220, 70]. As

we show in Section 6.7, temporal partitioning alone results in nearly 2X performance penalty

compared to our proposed scheme.

6.1 Threat Model: Covert and Side Channel Attacks on GPUs

We consider two threat models: covert channel and side channel attacks. For a covert

channel attack we assume two colluding kernels that concurrently share the same GPU and desire

to communicate sensitive data across protection boundaries (Chapter 4). Contention channels

exploit differences in observed behavior caused by the presence or absence of contention on
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microarchitectural resources. They are able to measure contention by timing their operations, or

by inspecting the hardware performance counters which are available in user mode in the current

generation of GPU drivers. In a side channel attack context, one kernel (the attacker) is observing

contention to infer secret information about a victim if its resource access pattern is dependent

on sensitive data, as shown in Chapter 5.

As an example covert channel scenario, a Trojan application can create contention on

shared resource by replacing the contents of a cache set to encode ’1’ and leave the resource

idle to encode ’0’. The Spy application, on the other side accesses the cache and measures its

access time to decode the transferred bit. Similarly, a Trojan application can create contention by

excessively using execution units, warp scheduler, and instruction fetch units to encode ’1’ and

leave those resource idle to encode ’0’, which spy can then decode.

6.2 GPUGuard Key Idea: Hierarchical Security Domains

We propose GPUGuard, a holistic protection framework for GPUs to detect and defend

against contention-based attacks. Figure 6.2a presents an illustrative example of GPUGuard.

In this example, we assume that there are four applications concurrently running on the GPU,

including two regular applications, a Trojan application, and a Spy application. Each application

launches kernels to the shared GPU, which may be assigned to execute on the same SM. A

GPUGuard classifier is designed to detect collusion between two kernels. Our defense mechanism

will reschedule the suspected kernels into isolated security domains. For example, in Figure 6.2a,

the GPUGuard identified that Kernel 3 and 4 are suspicious. The GPU now creates three isolated

security domains (SD1-3) and issues Kernel 1 and 2 to SD1, Kernel 3 to SD2, and Kernel 4 to

SD3. In this way, the timing channel between Kernel 3 and 4 is closed.
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6.2.1 Security Domains

It is critical to define the scope of a security domain to minimize the performance

overheads. Rather than using a one-size-fits-all approach GPUGuard uses a hierarchy of security

domains with varying scopes. Depending on the type of attack detected GPUGGuard employs a

security domain that encompasses only those resources that are being used in channel formation.

K1

K2

K3

K4

K5

t1 t2

Spy Trojan

K1

K2

K3

Preempt K1

Resume K1

Time

Kernels

(a) Temporal Partitioning

K1

Spy Trojan

Time

SM #

K3 K5

K2 K4

Idle

0

8

16

(b) Spatial Partitioning

Figure 6.1: Existing partitioning techniques on GPUs

Coarse-grain security domain using temporal partitioning. At a coarse grain level,

GPUGuard uses temporal partitioning which is essentially time division multiplexing. As shown

in Figure 6.1a, using temporal partitioning each kernel can only execute in its assigned time

slots. Note that in this example the Spy kernel K1 (blue) can only execute in the odd time slots,

while the Trojan kernel K2 (yellow) can only execute in the even time slots. In this case, the

execution of the kernels are completely isolated. As shown, the kernel waiting time ∆t1 and ∆t2

are independent of the execution time of the other kernel.

GPUs rely on kernel level preemption (essentially context switch-es) to enforce tempo-

ral partitioning: when K1 reaches the end of its assigned slot, the GPU needs to save the kernel

context, preempt the kernel and then schedule the next kernel K2 to run on the GPU. After K2

uses up its time slot, K1 must reload its context and then resume execution. Context switching

on GPUs is more expensive than on CPUs [178, 219]. On the Pascal architecture which supports

optimized preemption, kernel preemption takes 100 micro seconds – a 100K cycle penalty even
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Figure 6.2: An illustrative example of a GPU system with GPUGuard (a) monitor and detect
timing attacks; (b) select a security domain level based on specific attack type (our contributions
are highlighted)

when using a 1GHz GPU. Thus temporal partitioning alone is an expensive solution for providing

isolation.

Finer-Grain Security Domains Using Spatial Partitioning. The next level of iso-

lation can be achieved through a hierarchy of spatial partitioning approaches. Adriaens et al.

proposed spatial partitioning at the granularity of SM to partition GPU resources across multiple

kernels, primarily to improve resource utilization [48] . This technique can be easily adapted to

create multiple security domains on the same GPU. Figure 6.1b shows an example with 16 SMs

and with spatial partitioning the Trojan kernel K1 occupies SMs 0-7 while the Spy kernel K2

occupies SMs 8-15. Because the kernels are separated on different SMs, no contention can be

established through intra-SM resources, such as execution units or L1 caches. However, spatial

partitioning at the granularity of an SM does not protect against attacks through globally shared

resources such as the L2 cache, memory channels, and interconnection network.

Spatial partitioning is a heavy handed solution: the entire resources are strictly parti-

tioned leading to significant performance hit when there are no attacks. A finer grain isolation

can be provided using intra-SM partitioning. It has been demonstrated that sharing a single SM

(intra-SM sharing) across multiple kernels can provide higher system throughput and better uti-

lization of GPU resources compared to spatial partitioning [230, 219, 220, 70]. Hence, we argue
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that the benefits of intra-SM sharing must be delivered to the end user, without compromising the

potential security risks.

Putting it all together. Figure 6.2b summarizes how GPUGuard may use both tempo-

ral and spatial partitioning at various granularities to achieve the required isolation with minimum

performance overhead. As shown in Figure 6.2b, we can partition the four SMs into two security

domain SD1 and SD2, each containing two SMs. GPUGuard may also use intra-SM partitioning

of parallel execution lanes or utilizing other underutilized resources inside an SM to create multi-

ple security domains. For example, assuming that there are four execution lanes in the special

functional units inside an SM, GPUGuard can assign the first two lanes to SD1 and the remaining

two lanes to SD2. This partitioning can be achieved through security aware warp folding which

we will introduce shortly. Note that many GPU workloads have shown significant warp level

divergence [229, 112], and lane level partitioning in many cases improves the resource utilization.

Through this hierarchy GPUGuard activates the right amount of isolation for preventing collusion

while still maximizing the benefits of fine-grain intra-SM resource sharing across kernels.

6.3 Attack Types

We assume a conventional covert communication scenario with a Trojan and Spy

kernels from two different applications that are co-executing on the same GPU and wish to

communicate covertly. The attack benchmarks we used in this work are intra-SM and inter-SM

microarchitectural covert channels on GPUs, categorized into five groups modeled on attacks in

Chapter 4 and summarized in Table 6.1. Based on current generation GPU microarchitectural

details that are publicly known, we believe these five attacks cover a wide range of information

leakage through shared resources.
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In our experiments, we couldn’t reliably measure timing variance through shared

memory bank conflicts to construct a covert communication, hence, we do not consider such

attacks in this work. It is possible with careful reverse engineering that such an attack can be

constructed, but we will leave it for future work. We also do not directly address L2 cache attacks,

where the L2 cache may be shared across multiple SMs. In this case we believe that GPUGuard

can simply switch to coarse grain temporal partitioning to mitigate L2 cache attacks. Finally, we

believe that our decision tree classification approach is general enough to tackle new intra-SM

attacks by including such attacks into the training set to retrain the classifier and reprogram the

detection units.

6.4 Attack Detection

To detect such covert channel attacks, GPUGuard continuously monitors the activation

and resource usages of running kernels. GPUGuard employs a decision tree classifier that reads

readily available performance counter metrics to track kernel behaviours and identify suspicious

contentions. We elected to use decision tree, a machine learning model, as it is robust to noise

that can fool deterministic threshold based detectors.

The attack detector continuously monitors the execution status, resource utilization

and various other performance counters (e.g. cache miss rates) for different active kernels. A

selection of features is extracted periodically (once every 1000 cycles in our setup) from the

collected performance counter statistics and are used by a machine learning classifier to detect

whether there are suspect timing channels between any two concurrent kernels. The output of

the classifier is a label we assigned to different attacks and normal application. We develop a

multi-class classifier that not only detects suspected timing channel presence, but also determines

the target shared resources that are used to communicate covertly.
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Table 6.1: Description of attacks in our dataset.
L1 Cache Attack: Trojan accesses one or multiple cache set(s) to send ”1”
and Spy accesses the same set(s) and measures the access time.
Attacks can target L1 constant, instruction, data or texture caches.
Execution Unit Attack: Trojan threads do a number of double or single
precision ops to create contention on INT/FP units to send ”1”.
Spy threads do the same ops and measure the execution time.
SFU Attack: Trojan threads do a number of special function operations
(like sinf) to create contention on SFUs to send ”1”. Spy threads
do the same operations and measure the execution time.
Scheduler Attack: These are timing channels created as a side effect of a primary
EU and SFU attack, typically leaking information by observing warp scheduler contention.
Atomic Attack: Trojan threads do atomic ops on global memory
addresses (one particular address or strided addresses to achieve
coalesced or uncoalesced accesses) to send ”1”. Spy accesses the
same pattern and measures the access time.
**In all attack scenarios, high measured latency by the Spy
is decoded as ”1” and low latency is decoded as ”0”.

Decision Tree Classifier. Without loss of generality, we use a decision tree based

classification algorithm to classify the attack type. Decision trees are a supervised learning

algorithm in which the classification model is built by breaking down a dataset into progressively

smaller subsets based on a feature value at every decision point. This classification may be

viewed as a tree structure where each level progressively refines the classification of an input.

The two most important advantages of decision trees over other classification models are: (1)

small hardware overhead (see Section 6.7.3); and (2) direct isolation of relevant feature elements

through an estimate of information gain. We use the ID3 algorithm to build the tree [184],

which uses entropy and information gain to identify appropriate decision points, and employs a

top-down greedy search through the space of possible branches with no backtracking. Once the

tree is constructed based on the training data, a new instance is classified by starting at the root

node of the tree, testing the attributes (or feature elements) specified by this node, then moving

down the tree branch corresponding to the value of the attribute. This process is then repeated to

reach a leaf node [155].
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As with any classification algorithm there are two issues that we must address. First,

the classifier may have both false-positive and false-negative classifications. We show later in our

results that 0% of the malicious kernels were classified as benign and only 8% of benign kernels

were classified as malign. Hence, we believe misclassification is not a concern. The second

challenge is that an attacker may design Trojan/Spy pairs that continuously shifts between benign

behavior and malicious behavior that may cause the decision tree to lower its threshold. But to

alter such a behavior the attacker must first observe the information leakage to adapt, but such

covert channel bandwidth is going to be drastically reduced in the first place using GPUGuard.

Hence, the time to adapt will be extended significantly which we believe is the primary deterrent

in covert and side-channel attacks.

Feature Selection. The decision tree model is built using a training input set consisting

a large collection of features that correspond to various resource utilization indicators, covering

different types of covert channels. Table 6.2 lists all the features that were collected as inputs for

the decision tree model.

The feature vectors were divided based on whether they came from the training or

testing data set benchmarks. The data in each of the sets was obtained from running the

benchmarks and attacks that belong to that set only. The decision tree model is trained using the

training input set. Once the training is complete, we obtain the decision tree model parameters

Table 6.2: All collected features to create dataset.
Instruction features: # of SP-INT, SP-FP, SFU and LD/ST issued
# of decoded ALU, SFU, ALU-SFU, INT, FP, Load & Store ops,
# of decoded Branch, Barrier, Memory barrier, Call, Ret, Atomic ops,
# of decoded INT MUL/DIV, FP MUL/DIV, FP sqrt/log/sin/exp,
SP-FP, INT/FP/SFU/MEM instructions processed in decode stage)
# of decoded Tex/non-Tex ops,
some cache related instruction opcodes such as LD OP, LDU OP,
Total stall: # of cycles warp scheduler issues no warp to execute
Total issue: # of cycles warp scheduler issues a warp to execute
FU features: SP-INT, SP-FP, SFU and LDST util. at execute stage
Mem features:# of cycles warp scheduler stalled by long memory latency
L1D accesses/misses/evictions, L1C accesses/misses/evictions
L1I accesses/misses/evictions, L1T accesses/misses/evictions
L2 accesses/misses/evictions, L1C, L1D, L1I and L1T accesses per set
L1D read hit/miss per set, L1D write hit/miss per set
L2 read hit/miss per bank, L2 write hit/miss per bank
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which include the weight of each of the features in determining the attack type. We then optimize

the tree by pruning unimportant features. To identify the most important feature elements, we

use the decision tree model for multiclass classification to compute the importance factor of each

feature element based on the training subset. Through this selection, we were able to reduce

the 234 features to a set of 24 that are identified as the most important features. As a result our

trained decision tree classifier takes as input a select set of microarchitecture features collected at

runtime, which are listed in bold font in Table 6.2.

Pruning the feature set allows us to reduce the complexity of the classifier, without

sacrificing detection accuracy. The identified important features are related to the resources that

are used by our attack benchmarks to create contention; intuitively, the decision tree checks the

utilization of each resource to identify the presence and type of contention. We then classify the

test set based on our decision tree model using two-fold cross validation. Section 6.7 evaluates

the accuracy of our online detection, based on classification results for each instance in the test

set.

Feature Collection. The 24 selected features are sampled for each active kernel

periodically (every 1000 cycles) and then fed to the classifier. An effective online detector needs

to filter out occasional false classifications and quickly signal true malicious behavior. Ozsoy

et al. [173] adopted an Exponentially Weighted Moving Average (EWMA) approach for their

binary classification. For the same reason, we design a voting algorithm that first considers

classification results from the decision tree classifier (making the time-series consist of 0’s for

benign application and 1-5’s for five attack types.) We then use a window of 10 of these decisions

and pick the majority decision as the correct answer and output whether an attack is in progress

and, if so, which of the five attack types is being used. Synthesis results show that the extra

hardware overhead of the classifier is not high (shown in Section 6.7.3).
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Detector Adaptation. Although we believe the attacks in our training set cover

exploitable shared resources, if in the future new contention channels are encountered due to

microarchitectural enhancements to SMs, they can be addressed by retraining the model with

new training data. Since classification is implemented in hardware we need to provide the ability

to adapt the detector at runtime if new attack vectors are identified during in-field operation.

To make this adjustment feasible we expect the boot loader to essentially re-program the node

weights in the tree, which are implemented using registers.

6.5 Tangram: Attack Mitigation

The second component of GPUGuard is a defense against covert channel attacks once

an attack is detected. We refer to the GPUGuard’s defense mechanism alone as the Tangram

(shown in Figure 6.3). Tangram uses a hierarchy of resource slicing to prevent the attack types

that are detected. The approach to partition resources is similar to a dissection puzzle called

Tangram. Tangram uses hierarchical security domains to separate colluding kernels, starting with

fine grain intra-SM slicing and then gradually moving towards coarser-grain inter-SM slicing,

depending on the attack type. In particular, GPUGuard uses intra-SM spatial partitioning of

resources to mitigate L1 cache attack, execution unit, and SFU attacks. For Atomic attack,

GPUGuard uses temporal partitioning. The only partitioning that is not used in GPUGuard is

partitioning of SMs into clusters of security domains, since all attacks can be mitigated with

either intra-SM spatial partitioning or temporal partitioning.

As shown in Figure 6.3, and described in more details below, security domain are

created using sliced data pipelines (1), controlled memory request traffic within memory units (2),

rate limited scheduling in the warp scheduler (3), and L1 fetch arbiter (4). The maximum number

of security domains for each resource is set as four. Hence, at most four suspicious kernels can
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be isolated in a given SM. This is a reasonable limitation since more than four concurrent kernels

inside the same SM have diminishing returns in performance benefits [219].

Mitigating Execution Units and SFU Attack: Datapath Slicing. As in our baseline

GPU, we assume 32 execution lanes within a single SM. Datapath slicing splits the 32 execution

lanes into four slices, each with eight lanes. Note that GPUs already treat the 32 execution lanes

as a collection of clustered lanes that are operated semi-independently of others. For instance,

AMD’s subwarp execution model allows multiple warps to share the same set of datapaths. No

matter if they are from different kernels or protection domains subwarp execution requires the

same control logic for each of the sub datapaths.

GPUGuard relies on the subwarp execution model where each slice is allocated to a

single kernel thereby preventing one kernel from observing the SFU and execution unit usage of

another kernel. Note that datapath slicing does not change the number of threads inside a warp

or the number of register file banks in the SM. Datapath slicing folds the 32 threads in a warp

into four quarter-warps, which are then issued in succession. The threads in a warp are shifted in

successive cycles to align with the slice in a linear fashion: threads 0-7 are mapped to lane 0-7 in

the first cycle, threads 8-15 are mapped to lane 0-7 in the second cycle, and so on.

Datapath slicing allows for concurrent warps from different security domains to be

executed simultaneously on isolated datapath slices. With four slices each warp executing on a

slice needs to be executed in four consecutive cycles, incurring a three cycle delay for a given

warp. While a sliced pipeline delays the execution of each warp, the total throughput of the GPU

is similar to, or in some cases even better than, a unified 32-lane pipeline. When there are control

divergence, a sliced pipeline can help fill out the idle resources more effectively and improves

the performance.

Tangram relies on some additional hardware support for executing multiple sub-warps

concurrently. Tangram adds a set of 32 registers immediately before and after each data pipeline
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Figure 6.3: Tangram overview (black units are modifications)

slice (shown in Figure 6.3), so that the registers can be consumed and updated in multiple

successive cycles. However, the proposed design does not require any modification to the

interconnection network between the register banks and the data pipeline. The interconnection

still forwards the registers into the same original 32-wide registers of the pipeline. Then a 1-to-4

channel de-multiplexer is added to shift the register to the add-on 32-wide register of a particular

slice. The write-back process follows a similar path: the results of a slice will be stored locally in

the add-on registers and shifted out to the original 32-wide write-back register through the 4-to-1

channel multiplexer. After each sub-warp finishes, the caching register shifts left by 8 words to

feed into the next sub-warp.

Cache partitioning is a reasonable mechanism in CPUs to create separation and remove

contention channels. Since GPUs have multiple cache types, we use a novel cache redirection

approach instead of partitioning. To mitigate covert channels from constant cache accesses,
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Tangram dynamically re-routes traffic from constant cache to use the L1-D cache. For this

purpose, Tangram relies on the decision tree classifier to categorize the attack type as the constant

data cache attack, and in which case the constant values accessed by one malicious kernel are

moved to the L1-D cache. Once an attack is detected, Tangram monitors constant data load

operations from one of the malicious kernel. The load address is first looked up in the constant

cache. If there is a hit in the constant cache, Tangram marks it as a miss and evicts the data

from constant cache and places a miss fill request to bring the data back into the L1-D cache.

For this purpose, Tangram uses the constant data address to lookup the L1D cache to find a

victim cache line. The victim cache line is evicted and constant data is then stored in that

line. Thus, the channel through the constant cache is eliminated. If the attacker detects the

protection and then changes to use L1 data cache, Tangram will eliminate the covert channel

formed through L1 data cache using cache bypassing. Previous studies show that the GPU L1D

cache miss rate is so high so that the performance is not harmed when the GPU L1-D cache

is bypassed [134, 228, 201, 66, 113, 133]. Therefore, Tangram selectively bypasses the L1-D

cache requests if the attacks are detected on the L1D cache instead. Since it is not possible to

re-purpose the read-only constant cache for potentially read/write operations from a regular L1-D

cache, our approach simply picks either the Spy or Trojan kernel and mark all its load/store

operations as non-cacheable.

Mitigating Scheduler Attacks. When a kernel modulates Execution Units/SFU/Cache

accesses, in addition to the contention on one specific unit, the attack often creates weaker side

attack contention on other shared resources, including shared warp scheduler and instruction

fetch units. Thus we add the following techniques to mitigate those side attack channels.

Rate Limiting Warp Scheduler. The GPU warp scheduler selects which warps will be

issued to execute in the next cycle from a pool of all the active warps in the SM. The warps from

multiple security domains can compete for the scheduling bandwidth and issue timing attacks.
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Our baseline warp scheduler selects the next available warps to issue based on the last issued

first and then the oldest order. When all the warps from a kernel are stalled, all the scheduling

cycles will be given to the next kernel. On the other hand, if the warps from a kernel are always

ready to execute, it will consume all the scheduling bandwidth and starve the other kernel. This

interference in scheduling can be manipulated for timing attacks. Therefore, we enhance the warp

scheduler with a rate limiter, so that scheduling cycles will be fairly distributed. For example, if

one warp scheduler can issue up to two warps in each cycle, and there are two security domains,

we will ensure that only one warp from each security domain can be issued. In the case of four

security domains, one warp from each security domain can only be issued every other cycle.

Instruction Fetch Arbitration. Tangram prevents contention on the instruction cache

using instruction fetch arbitration. A malicious kernel may intentionally saturate the instruction

fetch bandwidth. Tangram alters the control unit in the L1 fetch arbiter so that it will successively

fetch from different security domains in a round-robin manner. Therefore, each security domain

gets fair access while simultaneously preventing resource hogging by a single kernel.
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Figure 6.4: Logical View of Tangram Security Unit

Mitigating Atomic Attack: Temporal Partitioning Global memory attacks are pri-

marily carried through atomic operations to measure contention in memory channel. When

such an attack is detected by our classifier we fall back on temporal partitioning of the SM. In
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particular, we context switch the two malicious kernels (without perturbing the normal kernels).

Since context switching is an expensive operation, we only use this option for tackling covert

channels formed through atomic operations. The associated performance penalty is primarily paid

by the colluding kernels, and only in very rare cases by regular kernels if they were misclassified

as colluding kernels.

6.5.1 Security Unit Implementation.

The various schemes described above defend against different types of attacks. Based

on the attack classification, the coordination across various schemes is handled using the Tangram

Security Unit (TSU), shown in Figure 6.4. When all the kernels are executing normally, TSU

keeps all kernels in a single security domain and none of the resource partitioning schemes

described above are activated. However, when the classification algorithm detects an attack, the

warp ids of the two colluding warps are sent to the TSU. TSU then activates the resource splitting

across security domains. Each kernel is assigned a security domain id and all warps in that kernel

execute within that security domain.

TSU maps warp IDs to security domain IDs using the Security Domain Table (SDT).

The obtained security domain ID is used as the index of Tangram Table, which tracks the

resources assigned to each security domain. In this way, TSU guarantees kernels are executed in

isolated security domains.

Each Tangram table entry consists of a 3-bit instruction fetch token, a 3-bit warp

scheduling token, a 4-bit datapath slice mask, and a 16-bit cache utilization mode indicator. The

instruction fetch token and warp scheduling token are used to determine a warp’s scheduling

slots out of the total scheduling cycles during a given observation window. For example, if the

warp scheduling token for SD1, SD2, and SD3 are one, one, and two, respectively, and the warp

scheduler can issue two warps in each cycle, then in a two cycles window, the number of warps
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can be issued by each of them is one warp for SD1, one warp for SD2, and two warps for SD3.

To ensure fair access for different security domains, all the tokens will be initially set to one.

The datapath slice mask has 4 bits, each corresponding to a datapath slice (Recall that

we have four datapath slices). If bit 1 of the datapath slice is cleared (set to 0) for a warp then

that warp cannot be issued to datapath slice 1. Thus each warp is restricted to execute only on

those slices whose corresponding bits in the datapath slice number are set to 1.

The last field in the Tangram entry is the 16-bit cache redirection mode, which is used

to provide fine grained security protection while accessing caches. In our baseline GPU there

are four caches (shared memory, L1 D-Cache, constant cache, and texture cache). Each of the

above four caches has a corresponding 4-bit cache redirection mask (so a total of 16-bits). When

an incoming memory request is bound for a given cache type, Tangram looks up the 4-bit mask

associated with that cache to determine if the request need to redirected to another cache type.

For instance, if a constant cache access request from a security domain is isolated to use L1

D-cache then all requests to the constant cache will use the corresponding 4-bit mask in Tangram

to initiate that redirection. Similarly if all the four bits associated with a given cache type are

zero, the request traffic control logic will redirect all requests from that cache type to go to the

global memory (in response to a detected atomic attack). In this way, the access to caches are

always going to be re-directed to the other under-utilized resources or the global memory to

guarantee the execution isolation.

The TSU access latency is smaller than a clock cycle, and is off the critical path: the

instruction fetch token is obtained one instruction in-advance; the warp scheduling token is

retrieved in parallel with accessing the SIMT stack; the datapath slice mask and cache access

mode are collected by the operand collector with other operands. The average power and area

overhead of TSU are negligible compared to the entire system. Detailed analysis is presented in

Section 6.7.3.
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6.6 Experimental Setup

In this section, we discuss the experimental methodology.

6.6.1 Architecture

We use GPGPU-Sim v3.2.2 [55], a cycle accurate timing simulator, in our evaluation.

Our configuration parameters are described in Table 6.3. For Volta architecture, the parameters are

set based on NVIDIA’s white paper [20], and HBM2 timing is set based on previous work [169].

The simulator was extended to run multiple applications concurrently, and we abide by the

GPGPU-Sim model to assume that all the data fed into a kernel fits in the GPU device memory.

We used the same set of attack benchmarks from Chapter 4. Those attacks are fully validated

in GPGPU-Sim against real GPU hardware, and hence our results using the GPUGPU-Sim

simulation infrastructure accurately model the attacks observed in hardware.

Table 6.3: Configurations of Fermi, Kepler and Volta architecture.

Fermi (GTX580) Kepler (K40) Volta (Titan V)
Compute Units (SIMD width 32) 16x2 SP, 16x1 SFU, 700 MHz 16x6 SP, 16x1 SFU, 745 MHz 84x2 SP, 84x1 SFU, 600 MHz

Regs / Shmem / Max # CTA 32768 / 48 KB / 8 32768 / 48 KB / 8 262144 / 96 KB / 32
Warp Schedulers (1 per SM) max issue 2 warps per cycle, default gto max issue 4 warps per cycle, default gto

L1 Cache 16KB 4-way L1D, 4KB 4-way L1C 16KB 4-way L1D, 8KB 4-way L1C
L2 Cache 768 KB 768KB 4608KB

Memory Model
6MCs, GDDR5: tCL=12, tRP=12,
tRC=40, tRAS=28, tRCD=12, tRRD=6

64MCs, HBM2: tCL=12, tRP=12,
tRC=40, tRAS=28, tRCD=12, tRRD=6

We evaluated the performance impact of multiple defense schemes: temporal partition-

ing (labeled as TP in all our results), spatial partitioning through clustered SMs (labeled as SP in

all our results), and GPUGuard against having Trojan and Spy kernels insecurely sharing an SM

without protection. In temporal partitioning, each kernel is assigned an execution window of 50K

cycles in a round robin manner. At the end of the 50K cycle window, we will preempt the current

kernel and switch to the kernels in the next security domain. In clustered SM approach SMs are

evenly allocated to Trojan and Spy kernels. In GPUGuard, datapath slicing, fair warp scheduling
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and instruction fetch are turned on for all benchmarks and for Atomic attacks GPUGuard falls

back on temporal partitioning as we described earlier.

6.6.2 Workloads

We selected 40 readily available applications as benign samples from a collection

of benchmark suites [64, 55, 197, 165]. We then extended the GPU covert channel attack

applications based on attacks from Chapter 4 and hand-coded 250 different pairs (Spy and

Trojan) of malicious applications, which cover atomic operation attacks (Atomic), constant

cache attacks (Cache A and Cache B), attacks on execution units (ADD and MUL), and special

functional units (SFU). These different attacks create orthogonal types of channels between

Trojan and Spy by using different resources. They also differ with respect to implemented

optimizations (e.g., Synchronization via handshaking through different cache sets [161] and

Multi-bit communication), as well as the communication rate and the communicated data. Thus,

the attack variants exhibit substantially different contention behavior. We also implemented

prime-and-probe style side-channel attacks on constant cache which is run with different normal

programs.

We split both the benign applications and attacks into separate training and testing

sets, so that 60% of the benchmarks are used as training set and other benchmarks as testing

set. The benchmarks are run on the GPGPU-Sim simulator [55] to collect a 24-entry feature

vector for each kernel at each sampling window. Nvidia nvprof report GPU performance counter

values only after each kernel termination, that is too coarse grain for our scheme. We empirically

set the default window size to 1000 cycles, while providing a comparison of window sizes in

Section 6.7.1. These feature vectors are the input to the decision tree classifier. The output is a

label we assign: (0) normal application, (1) L1 cache attacks, (2) global memory attacks with

atomics, (3) execution units attacks, and (4) SFU attacks.
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To reduce the simulation time, a subset of the covert channel attacks is used for system

evaluation: four versions for each type of attack, with various inputs, programming styles, and

implemented optimization. For constant cache attacks, we evaluated both the base attacks that

contend using one fixed set (Cache A) and the improved attacks that continues to probe all the

cache sets to communicate (Cache B). To quantify the performance impact of control divergence,

half of the execution unit benchmarks have little divergence, while the other half have 25% -

50% of control divergence. We further run the defense schemes on 34 randomly selected, normal

application pairs from the detection sets to study the performance penalty of FP predictions. The

application parameters follow the benchmark sets used in [230].

6.6.3 Synthesis

The decision tree based classifier and control logic of GPUGuard were designed

and verified in Verilog RTL, and synthesized with the FreePDK 45nm library [195] using the

Synopsys Design Compiler [198]. FabMem [67] is used to model the security domain table

and the Tangram table within the Tangram Security Unit, and also register buffers. The latency,

energy, and area overheads were all taken into account.

6.7 Evaluation

In this section, we evaluate and discuss the accuracy of the attack classifier, and analyze

the performance and energy impact of the proposed defense scheme to the entire system. We

also report the latency, area, and power overheads of the components in the proposed GPUGuard

technique.
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6.7.1 Detection Accuracy

Figure 6.5a shows the confusion matrix. The first column indicates the actual attack

type and the last row shows the predicted attack type; attack types are numbered to match

description of attacks shown in Table 6.1. As shown by the strong diagonal matrix the predicted

and actual attacks are close in most cases. The classification accuracy is measured to be 93.8%

with window size of 1000 cycles. The detection accuracy with window size of 5000 cycles was

even higher at 97% for this experiment, but we selected 1000 cycles for faster detection.

The accuracy is also measured using true positive (TP), false negative (FN), true nega-

tive (TN), and false positive (FP). In our results, 8.5% of regular applications were misclassified

as malicious applications (FP), but 0% malicious applications were misclassified as regular appli-

cations (FN). FP cases cause the system to react unnecessarily (performance penalty) while FN

evades detection which represents a security concern. Note that the TP rate of the classification is

91.5% and TN rate is 100%, indicating that our detection can reliably signal a malicious behavior,

and if not, the running applications are truly benign.

Covert channel attacks rely on contention on shared resources to communicate encoded

messages, and the decision tree classifier takes into account many features that are related to such

contention, including resource utilization, cache misses and many others. The model trains a

decision tree predictor by optimally setting the thresholds of the features to detect the contention

level. The structure of the decision tree model fits very well with the problem we are solving,

and therefore, yields a high accuracy. It must also be noted that the data set we used to build the

decision tree is disjoint from the data set of benchmarks used for evaluation.

Multiple Channel Attack. Training and evaluation described above are performed

using applications communicating over a single channel. Since we monitor performance counters

that capture the contention for all cache, memory, and execution units, if the attacker changes
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its behavior to communicate over a different hardware resource or attempts a multiple channel

attack, the contention is also detected. To get more accurate classification, we need to add those

samples to our training set with the correct label. We hand crafted a multiple channel attack that

combines all four attacks listed in Table 6.1. The existing scheme successfully classified the

application as an attack. To support concurrent multiple channels on different resources, one

straightforward solution is to enable temporal partitioning, once a multiple channel attack is

detected.

Comparison to Neural Network Model Detection. We implemented a multi-layer

perceptron (MLP) artificial neural network model to compare the classification results to our

decision tree based detection. In our MLP implementation the input layer contains neurons

equal to the number of features (24 important features in our case), and the output layer contains

neurons equal to the number of classes (five in our case). The data is fed to the input layer of the

network, and after the feed-forward propagation, the output layer of the network contains a vector

of values. The neuron containing maximum value determines the class of the data. The error in

prediction is calculated and using this error the weights of the network are modified by gradient

descent algorithm. The MLP based classification accuracy is measured at 87%. Figure 6.5b shows

the total confusion matrix which visualizes the performance of MLP classification. Decision tree

based classification outperforms MLP in our dataset.

Robustness. We also evaluated the detector accuracy when attack kernels (Spy and

Trojan) are running with normal kernels at the same time. In this situation, it is harder for the

detector to accurately classify attacks due to the contention noise introduced by normal kernels.

Our results show that the classification accuracy for decision tree based and MLP based detection

are 91.5% (95% with a window size of 5000) and 85.1% respectively. Figure 6.6 shows the total

confusion matrix for these two detection schemes.

104



(a) Decision tree classification (b) MLP based classification

Figure 6.5: Confusion matrix for decision tree and MLP

(a) Decision tree classification (b) MLP based classification

Figure 6.6: Confusion matrix for decision tree and MLP based classification under higher
contention noise.

To further evaluate the detection robustness, we consider the attack benchmarks that

are intentionally designed to avoid detection by lowering the communication bandwidth. Specifi-

cally, we change the Spy and Trojan codes by adding extra delay between communicating two

consecutive bits, to reduce the channel bandwidth by 2x, 10x up to 105x. 105x slow down reduces

the absolute BW from 30kbps to 0.3bps for constant cache attacks. Based on our experiments,

our detector accurately detects the contention when Trojan tries to send a ’1’ to Spy (with the

same accuracy of the attacks without slowdown). On the other hand, the classifier will not detect

applications as attacks in the longer idle periods (no communication), since there is no contention.

6.7.2 Performance Impact

Figures 6.7a to 6.7c show the performance of all the defense schemes compared to

intra-SM slicing without protection on NVIDIA Fermi, Kepler, and Volta architecture. For

constant cache attacks, temporal partitioning (labeled TP) alone slows down program execution
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Figure 6.7: Performance impact of GPUGuard on (a) Fermi; (b) Kepler; (c) Volta; (d) Benign
Apps on Volta, grouped by M M (two memory bound apps), M C (one memory + one compute
bound app) and C C (two compute bound apps). Measured by normalizing the execution time
over intra-SM sharing without protection. (SP: Spatial Partitioning, TP: Temporal Partitioning)

by at least 2.1x, while GPUGuard has significantly lower overhead. Clustered SM partitioning

alone (labeled as SP) improves performance over temporal partitioning by 42% on average across

three architectures, since it avoids kernel preemption. GPUGuard further reduces the overhead

by 18% and 30% for ADD and SFU attacks over spatial partitioning. In our baseline Fermi

configuration, the initiation interval of MUL application is as long as 16 cycles, and the longer

latency caused by warp folding leads to some performance penalty. However, recent generations

of GPUs greatly improved the latency of matrix multiply operation, which is likely to amortize

this performance penalty. Overall, GPUGuard provides robust defense across multiple attacks

and incurs less than 15% overhead, only when actively defending against an ongoing attack.

Considering the mitigation techniques in GPUGuard almost only turned on when there is an

attack detected, the performance overhead is much smaller than simply clustering SMs all the

time.

In the attack on Atomic primitives, the Trojan kernel chooses to perform Atomic

operations or not to encode ’1’s and ’0’s. The Spy kernel, on the other hand, will always issue

Atomic operations. The back-pressure in memory system leaks whether the Trojan kernel is
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sending the ’1’ or ’0’. The Spy kernel measures the Atomic instruction latency to decode this

fluctuation. While concurrently executing a Trojan and Spy kernel in the same GPU amortizes

the memory pressure, sharing the same SM can further reduce the congestion in load and store

units. However, GPUGuard and spatial partitioning cannot close global memory channels.

Since GPUGuard falls back on temporal partitioning for global memory attacks, GPUGuard’s

performance is the same as temporal partitioning in Figures 6.7a to 6.7c for Atomic attacks.

Overall, the geometric mean of GPUGuard’s performance is 94%, 96%, and 69% faster

than of temporal partitioning, and 14%, 22%, and 10% faster than spatial partitioning in Fermi,

Kerpler, and Volta architecture, showing that it is possible to benefit from multiprogramming

while maintaining protection against covert-channel attacks. Volta architecture has much higher

HBM bandwidth, that reduces the number of warps stalled by long latency memory accesses. As

we have more ready warps to schedule to execute, the protection schemes see less performance

overhead. It’s worth to note that, GPUGuard only incurs 8% of performance overhead against a

baseline with no protection in Volta. Thus, another key benefit of intra-SM protection is system

robustness. A mitigation technique with high performance penalty provides opportunity for

Denial of Service attacks. By minimizing the performance slowdown, GPUGuard also minimizes

such potential security risks. Moreover both temporal partitioning and spatial partitioning require

preempting the running Trojan or Spy kernel. GPUGuard partitions the resources within a core,

and does not incur preemption overhead. Finally, GPUGuard triggers defense only when attack

is detected, thus has no overhead when there are no attacks detected.

Impact of False Positives. FP cases are rare. Nonetheless, we further study the

performance impact of those cases when normal kernels are inaccurately classified as malicious in

Volta. As shown in Figure 6.7d, temporal partitioning incurs 77% slowdown, spatial partitioning

incurs 42% slowdown, while GPUGuard reduces that to only 15%. GPUGuard benefits the most

for kernels that are memory + compute case, when complimentary sharing inside one SM is
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favored, and the least for compute + compute case, when datapath slicing reduced the opportunity

for complimentary compute operation to share pipeline cycles.

6.7.3 Hardware Overhead

GPUGuard requires 24 performance counters for sampling the selected features for

threat detection (each 10 bits), once every 1000 cycles. Among those, 10 counters, including the

SP− INT , SP−FP, SFU issued counters, the SP−FP, SFU , and LD/ST utilization counters,

L1C and L2 accesses and misses counters, are already provided in the modern GPUs [29]. The

V100 clock rate is 1.53GHz and the required sampling bandwidth is 45.9MB/s, negligible

compared to the 900GB/s off-chip memory bandwidth.

The data collected by the counters are fed into the decision tree classifier. Synthesis

results show that the classifier consumes 0.21mW per detection with 0.62ns latency. Since the

classification is not on the performance critical path, the one cycle latency does not affect the

overall system performance. The area overhead of the classifier is 0.001mm2, which is small

compared to the die area.

Table 6.4: Extra hardware overhead per SM at 45nm.
Latency

(ns)
Power
(mW )

Area
(mm2)

RegBuffers 0.21 95.5 0.09
DEMUXs 0.06 0.28 0.002
MUXs 0.06 0.45 0.004
TangramUnit 0.57 1.08 0.001

Tangram security units require 22.5B RAM for keeping track of the security domain

IDs and scheduling information. As described in Section 6.5, our datapath slicing design simply

folds a warp and has low hardware overhead. Different from a full-blown variable sized warp

architecture, proposed by Rogers et al. [188], our design does not require any modification to

the interconnection network between the register banks and the data pipeline. To support our

datapath slicing, 128B register buffers and four multiplexers/de-multiplexers (32-bit width) are

108



required per SM. The latency, power, and area overheads are broken down in Table 6.4. The area

overhead is 0.1mm2 per SM. Based on the activity factors collected by the timing simulator, the

average power of the added hardware is 8.3mW per SM. We extract area and average power of

16 SMs from GPU-Wattch [132], which are 704mm2 and 73W , respectively. GPUGuard results

in 0.2% area overhead for GPUs with 16 SMs. The total power consumption was 0.18% of the

overall system power.

6.8 Mitigating Side Channel Attacks

Similar to covert channel scenario, in contention based side channel, a malicious

application (Spy) accesses to different hardware resources and either measures the access time or

its own performance counters to extract some information about concurrent workloads (victim)

running on GPU. Due to the large number of active threads, and the relatively small cache

structures, it is hard to achieve high-precision prime-probe or similar timing attacks on GPUs.

In Chapter 5 we demonstrated that GPU side channels are feasible by aggregate measures of

contention through available GPU performance counters. To the best of our knowledge, this

work is the only proposed side channel between two concurrent applications on GPU. In this

subsection, we intend to evaluate our defense on this contention-based side channel.

We re-implemented the CUDA-CUDA side channel attack in Chapter 5 on GPGPU-

Sim. In this attack, a Spy application runs concurrently with a back-propagation workload from

Rodinia benchmark and extracts the number of neurons in the input layer of neural network

through side channel. We collected runtime per kernel performance counters for Spy application

when it is concurrently running with back-propagation algorithm with input layer size varying

in the range between 64 and 65536 neurons. We trained a Random Forest classifier with 10-

fold cross validation and achieved accuracy of about 70% recovering the input layer size. The
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performance counter set available on real GPUs through NVIDIA tools are a bit different than

those collected on GPGPU-sim during runtime, leading to lower side channel accuracy using

the simulator. Since the Spy accesses different hardware resources to create contention, similar

to the Spy and Trojan in the detection benchmarks, can be classified correctly as attack by our

threshold-based classifier. Once the Spy has been detected as an attack, Tangram will be enabled

promptly to separate the malicious Spy from other normal concurrent applications into different

security domains. By our intra-SM isolation between two concurrent applications, we observed

that the accuracy of attack significantly decreased obtaining essentially a random guess accuracy:

Tangram was able to mitigate the attack by isolating contention between victim and spy.
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Chapter 7

Microarchitectural Attacks in

Integrated CPU-GPU systems

Modern computing platforms are heterogeneous, combining latency (CPU) and through-

put (Accelerators) oriented processors to gain both performance and energy efficiency for a variety

of computational tasks. These new computing architectures add security vulnerability to the

systems and lead to new attacks. GPUs as accelerators/co-processors in such systems can be

either the target of attacks themselves, or serve as a vector for launching or amplifying attacks

that compromise the main processor or the whole system, bypassing existing mitigations already

in place.

In previous chapters, we studied the security of discrete GPUs in heterogeneous

systems in terms of microarchitectural covert and side channel attacks and defenses. These

attacks have been widely studied on CPUs, as well. All prior attacks create contentions from

identical components with identical pathways to a shared resource (e.g., two CPU processes,

or two GPU kernels). In this chapter, we study the microarchitectural attacks between two

asymmetric components.
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In contrast to discrete GPUs which have a dedicated graphics memory, integrated

GPUs (iGPUs) are tightly integrated on the same die with the CPU and share resources such

as the last level cache and memory subsystem with the CPU. This integration opens up the

potential of new attacks that exploit use of common resources to create interference between

these components, leading to cross-component micro-architectural attacks. Specifically, in

this Chapter, we investigate micro-architectural covert and side channel attacks on integrated

heterogeneous systems in which two applications, located on two different components (CPU

and iGPU) transfer or extract secret information via shared hardware resources. We develop two

instances of cross-component attacks: covert channel in native code (OpenCL) and side channel

in JavaScript (WebGL).

These iGPUs are extensively used in portable electronic devices to provide graphics,

compute, media, and display capabilities. Understanding microarchitectural vulnerabilities

in such environments is essential to the security of these widely used systems. Moreover,

iGPUs exemplify a trend to gradually increase the level of heterogeneity in modern computing

systems, as further scaling of fabrication technologies allows formerly discrete components to

become integrated parts of a system-on-chip, and provides for integration of specialized hardware

accelerators for important workloads. Thus, these attacks help illuminate potential threats to

general heterogeneous computing systems.

7.1 Integrated CPU-GPU Systems

We target Intel integrated GPUs for our attacks, as the most widely used integrated

systems. In this section, we introduce the organization of Intel’s integrated GPU systems, to

provide background necessary to understand our threat model and attacks.
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Starting in 2010, Intel’s CPUs have iGPU incorporated on the same die with the

conventional CPU, to support increasingly multi-media heavy workloads without the need for a

separate (bulky and power hungry) GPU. This GPU support has continued to evolve with every

generation providing more performance and features; for example the current generation of Intel

Graphics (Iris Plus on Gen11 Intel Graphics Technology [108]) offers up to 64 execution units

(similar to CUDA cores in Nvidia terminology) and at the highest end, over 1 Teraflops of GPU

performance. Thus, modern processors already use complex System-on-Chip (SoC) designs.

The architectural features and programming interface for the iGPU are similar to those

of discrete GPUs in many aspects. For general purpose computing on integrated GPUs, the

programmer uses OpenCL [31] (equivalent to CUDA programming model on Nvidia discrete

GPUs [24]). Based on the application, programmers launch the required number of threads that

are grouped together into work groups (similar to thread blocks in Nvidia terminology). Work

groups are divided into groups of threads executing Single Instruction Multiple Data (SIMD)

style in lock step manner (called wavefronts, analogous to warps in Nvidia terminology). In

the context of Nvidia GPUs, this group of threads is called warp (typically, 32 in number). In

integrated GPUs the SIMD width is variable; it changes depending on the register requirements

of the kernel.
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Figure 7.1: Intel SoC architecture
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iGPUs reside on the same chip and share the system RAM and connect to the same

memory hierarchy as the CPU (typically at the LLC level). For both CPU cores and for GPU,

LLC seeks to reduce apparent latency to system DRAM and to provide higher effective bandwidth.

Figure 7.1 shows the architecture of an Intel SoC processor, integrating several CPU cores and

an iGPU [108]. The iGPU is connected with CPUs and the rest of the system through a ring

interconnect: a 32 byte wide bidirectional data bus. The GPU shares the Last Level Cache (LLC)

with the CPU, which much like the CPU, serves as the last level of the GPUs cache hierarchy. The

whole LLC is accessible by the GPU through the ring interconnect with a typical implementation

of address ranges hashing to different slices of the LLC. The GPU and CPU can access the LLC

simultaneously. However, there is an impact on the access latency if the GPU and CPU contend

for accessing, due to factors such as delays in accessing the bus and access limitations on the

LLC ports. The GPU and CPU share other components such as the display controller, the PCIe

controller, the optional eDRAM controller and the memory controller.

The architecture of the iGPU is shown in Figure 7.2. The computational units in the

integrated GPUs are called Execution Units (EU) (similar to CUDA core in Nvidia terminology).

A group of 8 EUs (analogous to CUDA cores) are consolidated into a single unit which is called

a Subslice (similar to SM in Nvidia terminology) and typically 3 subslices create a Slice. The

number of slices varies with the particular SoC model even within the same generation, as the

slices are designed in a modular fashion allowing different GPU configurations to be created.

Experimentally, we discovered that multiple work groups are allocated to different subslices in a

round robin manner. The global thread dispatcher launches the work groups to different subslices.

A single SIMD width equivalent number of threads in a single subslice is launched to EUs in

a round robin manner as well. A fixed functional pipeline in the slice is dedicated for graphics

processing.
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The iGPU uses three levels of cache (in addition to the LLC). The first two levels, L1

and L2, are called sampler caches and are used solely for graphics. The third level cache, L3,

is universal and can be used for both graphics and computational applications. The L3 cache

is common to all the subslices in a single slice. The L3 cache fabric in different slices is also

interconnected, giving a consolidated L3 architecture shared by all the EUs in all slices. In each

slice, there is also a shared local memory (SLM), a structure within the L3 complex that supports

programmer managed data sharing among threads within the same work group [108].

7.2 Cross-Component Covert and Side Channels

In this chapter, we explore microarchitectural attacks from one component to another

within a heterogeneous system, more specifically, CPU-GPU systems. First, we investigate

the possibility of covert channels, then we show how we can use the knowledge from cross-

component covert channel to develop attacks in more dangerous setup, which is remote side
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channel attacks in web browsers. In order to develop this new type of channels , we have to solve

a number of new challenges, including:

• Synchronization across heterogeneous components with frequency disparity

• Reconciling asymmetric computational models and memory hierarchies

• Creating reliable fine-grained timing mechanisms

7.2.1 Covert Channel in Native Code

In collaboration with Sankha Dutta1 and Pacific Northwest National Lab., we developed

two covert channels between CPU and iGPU: a Prime+Probe channel targeting the LLC, and a

contention based channel exploiting contention on the shared access pathway to the LLC. Next,

we briefly present our key contributions and results in this work.

Although at a high level this attack strategy is similar to other covert channel attacks,

there are a number of unique challenges that occur when we try to implement the channel

between the CPU and GPU. The challenges generally arise from the heterogeneous nature of the

computational models on the two components, as well as the different memory hierarchies they

have before the shared LLC. We overview these challenges next.

• Absence of a GPU timer: Prime+Probe attacks rely on the ability to time the difference

between a cache hit and a cache miss to implement communication. Usually, a user level

hardware counter is available on the system to measure the access latency. While this is

true on the CPU side, unfortunately OpenCL on iGPUs does not provide any such means

to the programmer. We leverage GPU parallelism and hardware shared local memory to

build the custom timer. The details are provided in the next section.

1sdutt004@ucr.edu
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• Reverse Engineering the LLC viewed from the GPU To be able to target specific sets

in the LLC for covert communication, we require the knowledge of the physical addresses

mapping to cache addresses from both CPU and GPU side (the LLC is physically indexed).

Modern GPUs come with their own page tables and paging mechanisms. We use the

mechanism of shared virtual memory [107] and zero copy memory to maintain the same

physical and virtual addresses across the device. When a CPU process initializes and

launches the GPU kernel, the CPU page table is shared with the GPU in this scenario.

This sharing allows us to reverse engineer the cache from the CPU using established

techniques [238] and use these results on the GPU.

• Reverse engineering the GPU cache hierarchy: While the Intel CPU cache hierarchy

is well understood, the GPU cache hierarchy details are not published. It is critical to

understand the cache hierarchy since it determines how memory accesses spill over to the

LLC where the covert channel is being implemented. Since L1 and L2 cache are not used

by OpenCL, we need to reverse engineer the GPU L3 to understand how to control the

memory references that are evicted from it. First, we needed to understand whether the

LLC is inclusive of the L3 which would make simplify eviction from the L3 from the CPU

side. However, we discover that it is not inclusive, which requires us to understand the L3

in detail in order to control evictions from it.

• Optimization around heterogeneous components: Since the spy and the trojan use

completely different computation models operating at substantially different clock rates,

determining how to best implement the channel to improve bandwidth and reduce noise is

tricky. For example, the CPU we are using operates at the 4.2 GHz and GPU operates at

1.1 GHz. This frequency imbalance imposes an unique challenge as the prime and probe
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would take place at different frequency. We also take advantage of GPU parallelism by

launching multiple threads to overcome this frequency imbalance.

By addressing all the challenges, we developed two reliable covert channels, a shared

LLC cache based channel and a contention based channel targeting the ring bus connecting the

CPU and iGPU. The LLC based channel achieves a bandwidth of 120 kbps with a low error rate

of 2%, while the contention based channel delivers up to 400 kbps with a 0.8% error rate.

7.2.2 Side Channel in JavaScript

In previous section, we showed possibility of cross-component covert channel in native

environment (OpenCL applications). The presence of a covert channel is a prerequisite for

side-channel attacks. The integrated GPU is available through APIs such as WebGL for remote

JavaScript programs making this threat vector extremely dangerous. In this section, we investigate

remote side channel attack in JavaScript from iGPU, spying on CPU.

WebGL: WebGL (Web Graphics Library) is a JavaScript API to accelerate interactive

3D and 2D graphics within any compatible web browser without the use of plug-ins. WebGL API

closely conforms to OpenGL ES 2.0 and can take advantage of hardware graphics acceleration

provided by the user’s device [38]. Based on [40], 97% of computing devices support WebGL

version 1.0 and 54% support WebGL version 2.0 (conforms to OpenGL ES 3.1 API).

WebGL Compute Shader: Although WebGL is primarily designed to improve the

rendering performance of web browsers, it provides an extension called Compute Shader [45]

which supports the use of general-purpose compute functionality within the web browsers.

Currently, this extension can be enabled by some flags in experimental versions of Google

Chrome browser (Chrome Canary). We use this interface to launch our GPU-based side channel

within the web browser.
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WebGPU: GPU based general purpose computation on the web, is being more widely

developed through other interfaces. WebGPU [46, 57] is an emerging Javascript API which

provides access to the hardware accelerated graphics and computing capabilities on the web. It is

being developed by all major browser vendors. WebGPU uses its own shading language called

WGSL. Currently, WebGPU can be accessed in Safari as an experimental feature.

As discussed in Chapter 3, several work studied microarchitectural attacks in browsers,

with the use of JavaScript timers or crafting customized high resolution timers. However, major

browser vendors disabled all the interfaces on which the timers were built. We believe that our

WebGL based attack, launched on GPU will bypass all mitigations which are in place to prevent

remote JavaScript side channel attacks.

The main steps of our PRIME+PROBE side channel attack from iGPU to CPU are as

follows:

• Building a high resolution timer on the iGPU to track the LLC hits and misses to conduct

a timing side channel, since there is no clock() function or similar instructions to measure

the time on compute shader.

• Identify the eviction sets on the GPU corresponding to interesting cache regions on CPU.

The eviction set is a set of physical addresses that mapped onto the same cache set [207].

Once the attacker acquires the addresses that are in the same cache set, she can monitor

the victim’s activity by manipulating the cache set (PRIME+PROBE).

• Finding the interesting cache regions from the CPU side to attack a victim application. The

attacker needs to induce the victim to perform an action, and then examine which cache

sets were touched by this action. Machine learning methods can be employed to monitor

the cache behaviour, as presented in [143, 241].
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• Conduct the PRIME+PROBE on the eviction set and synchronize the spy with the victim,

by using the iGPU parallelism. A possible attack is tracking user activity on the CPU,

either within a native or a web-based application.

In addition to challenges unique to asymmetric heterogeneous systems that we ad-

dressed in previous section for the covert channel, developing a last-level cache attack in

JavaScript brings new challenges into the scenario, making the attack development quite chal-

lenging. Two of the most important challenges are crafting the high resolution timer in WebGL

and identifying the LLC eviction set without any system or kernel support on JavaScript. Next,

we overview our approach to overcome these challenges:

Crafting a high resolution Timer on iGPU: Access to a high-resolution timer is

essential to the ability to carry out cache based covert channels; without it we are unable

to discriminate a cache hit from a cache miss, which is the primary phenomena used in the

communication. Therefore, we need to come up with an alternative approach to measure the

access latency within the GPU application. We followed the same idea from our OpenCL based

covert channel to create the timer in WebGL compute shader.

We leverage GPU parallelism and hardware shared local memory to build the custom

timer. Shared local memory in Intel based iGPUs is a memory structure, shared across all EUs in

a subslice. 64 Kbytes of shared local memory is available per subslice and is private to all the

threads from a single work-group. We launch a work-group for which certain number of threads

are used to conduct the attack and the rest of the threads are used to increment a counter value

stored in shared memory. The threads that are responsible for carrying out the attack read the

shared value as timestamps before and after the access to measure the access time (the principle

of this technique was used in CPU attacks on the ARM where the hardware time is not available

in user mode [139] and also in JavaScript between two web workers [93, 190]). Rather than
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shared buffers between two threads in these work, we build our timer on GPU hardware shared

memory. Shared memory uses a separate data path than that used for accessing L3, which makes

sure that there is no resource contention that can lead to erratic counter updates. We use atomic

addition to increment the counter value to ensure that the variable is accessed and incremented

properly. Due to branch divergence within the wavefronts (SIMD width of threads), the execution

of two groups of threads in a single wavefront gets serialized. So the number of threads that are

used for counter increment start at a wavefront boundary till the end of the workgroup.

To conduct a PRIME+PROBE attack, the attacker needs to distinguish 3 levels of

access time, i.e. system memory, LLC and L3. The average measured values while accessing

the three level of hierarchy using our crafted timer are 510, 390, and 215. Although the timer

works perfectly to distinguish the cache hits or misses, as a standalone, when it is embedded in

the real attack code, there is a high level of noise, which we believe it mostly is stemmed from

the instability of our experiment environment.

Creating an LLC eviction set on the iGPU side: Although the reverse engineering

results from our cross component covert channel in native code, enable us to understand the

memory hierarchy of both CPU and GPU, it can not be directly used to identify the eviction sets

in JavaScript. In JavaScript, there is no access to system or kernel level support, for example

large pages(2MB) in which the lower 21 bits of the physical and virtual addresses are identical,

and by the additional use of an iterative algorithm, the unknown upper (slice) bits of the cache set

index are resolved. In addition, JavaScript has no notion of pointers, so even the virtual addresses

of our own variables are unknown to us. This makes it very difficult to provide a deterministic

mapping of memory address to cache sets.

To overcome these challenges, we need to use heuristic algorithm to identify the

eviction sets on LLC to conduct PRIME+PROBE attack. We implemented the same methodology

as presented in [172] in compute shader for creating the eviction set. To avoid thread level
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parallelism on GPU and ensure the in-order execution of critical code part, we used some

dummy dependent instructions to the critical memory access instruction and making the timing

measurement code artificially dependent on the eviction set iteration code. We accessed the

eviction set addresses in the form of a linked list and we randomly permute the order of elements

in the eviction set.

Due to instability of our experiment environment (compute shader is not released yet,

we had to use the experimental version on Chrome Canary) and also the timing jitter in compute

shader, we were not able to identify the exact eviction sets on the GPU side for some interesting

cache regions on CPU side (the victim application accesses). As our future work, we will

implement this attack on a stable and final version of GPU based general purpose computation

interface (WebGPU), when it is released in major web browser.

Depending on the success of threats in such environments, we will also study the

development of both hardware and software mitigations to these attacks.
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Chapter 8

Conclusion and Future Work

In this dissertation, we demonstrated for the first time that GPUs are vulnerable to

microarchitectural covert and side channel attacks. Over last several years, such attacks have

been demonstrated on a variety of CPU microarchitectural structures such as the caches and

branch predictors. Graphics Processing Units (GPU) have become an integral part of modern

computing platforms, present from end-user devices to large scale high performance clusters and

data centers. It is critical to understand whether this type of vulnerability can manifest in GPUs

as well.

At the same time, the success of GPUs is part of a trend of increasingly heterogeneous

computing systems that integrate a combination of latency oriented processors (CPU), throughput

oriented accelerators (GPUs), and potentially application specific or reconfirgurable accelerators

to gain both performance and energy efficiency for a variety of computational tasks. Thus, our

work is also a first step towards recognizing that microarchitectural attacks commonly studied in

the context of CPUs are also possible on other components within heterogeneous systems.

In this chapter, I will summarize the primary conclusions of the dissertation and discuss

potential follow-up future work.
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8.1 Security of Discrete GPUs

This dissertation explored the security of GPUs in end-user devices and computational

clouds where multiple applications are running simultaneously. We demonstrated the vulnerabil-

ity of GPUs to both covert and side channel attacks and proposed secure architecture for future

GPUs to prevent these attacks.

Covert Channel Attacks: First, we reverse engineered the scheduling of multiple applica-

tions on GPUs and based on co-location options, we identified the shared hardware resources and

constructed high quality and bandwidth microarchitectural covert channels on three generations

of Nvidia GPGPUs through different intra-SM and inter-SM shared resources: cache, global

memory and functional units. We optimized the channel by synchronizing the communication

and remove the noise from other concurrent applications. We achieved the error-free bandwidth

of over 4Mbps on Nvidia Kepler GPUs (Chapter 4).

Side Channel Attacks: Then we demonstrated side channel attacks that can be launched within

both the computational and graphics software stacks, as well as across them (Chapter 5). Both

computational and graphics applications process sensitive data and these attacks represent a novel

and dangerous attack vector. GPUs have a radically different execution model from CPUs, with

massive parallelism and internal hardware schedulers; this makes attacking them substantially

different from CPU attacks. We reverse engineered GPU scheduling in both the graphics and

the computational stacks of Nvidia GPUs, and characterized the co-location opportunities for

concurrent applications. Armed with the co-location knowledge, we explored available leakage

vectors in each situation and demonstrated a family of end-to-end attacks where the spy can

interleave execution with the victim to extract side channel information.
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The first attack implements website fingerprinting through GPU memory utilization

API or GPU performance counters. The spy probes the memory API to obtain a trace of the

memory allocation operations carried out by the victim as it renders different objects on a

webpage visited by the user. The second attack tracks user activities as they interact with a

website or type characters on a keyboard. We can accurately track re-rendering events on GPU

and measure the timing of keystrokes as they type characters in a textbox (e.g., a password box

in Facebook website), making it possible to carry out keystroke timing analysis to infer the

characters being typed by the user. The proposed side channel contributes a new vector for these

well-known attacks through the GPU where state-of-the-art mitigations are ineffective.

A third attack uses a CUDA spy on computational stack of GPU to infer the internal

structure of a neural network application, which is often a trade secret (a model extraction attack).

When a victim is running concurrently on the GPU and utilizing the shared resources, depending

on number of input layer size or other parameters of neural network model, the intensity and

pattern of contention on the cache, memory and functional units is different over time, which we

demonstrated creates measurable leakage in the spy enabling the model to be extracted.

GPUs are now offered as a resource in virtualized cloud environments including Google

cloud, Amazon AWS cloud and Microsoft Azure. Despite their improving performance and

increasing range of applications, the security vulnerabilities of GPUs in such multi-tenancy

environments have not been addressed. Using our proposed computational based side channel, a

malicious VM can now spy on other applications that share a GPU (even if they are not co-located

on a CPU), and bypass information isolation boundaries.

As more sensitive applications are accelerated by GPUs, we will need to investigate

their security implications. There is a trend to accelerate DNN using GPUs, publicly accessible

in major cloud platforms. In our future work, we will investigate model extraction attack to

steal all the hyper-parameters of a victim user’s model and expose the internal structure of deep
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learning model which is a critical trade secret, violating the privacy of cloud clients. In addition,

Both software and hardware are increasingly evolving to support the trend. As an example,

Nvidia released some software frameworks, such as cuDNN library [19] and there are specialized

cores in new generations of Nvidia, called tensor core to operate the DNN operations more

efficiently [20]. Leveraging the knowledge of reverse engineering and attack implementation

in our work, we will study new microarchitectural attacks that can be established through these

optimization infrastructures, exposing sensitive information on the clouds.

Given the growing number of accelerators being used in safety-critical applications

that require secure execution, these attacks stress the need to address security implications in

GPU hardware design, GPU sharing models and task scheduling on the clouds.

Mitigations: To mitigate contention based covert and side channel attacks on GPUs, we pro-

posed GPUGuard, a dynamic detection and defense mechanism (Chapter 6). The detection uses

a decision tree based design that is able to accurately detect covert and side-channel attacks

(100% sensitivity in our experiments). The detection algorithm feeds the classiication results

to Tangram, a GPU-speciic covert channel elimination scheme. Tangram uses a combination

of warp folding, pipeline slicing, and cache remapping mechanisms to close the channels with

8%-23% performance overhead when there are active attacks, and 15% for normal benchmarks

categorized as attacks with only a small (8.5%) false positive rate. In all other cases GPUGuard

pays nearly zero performance overhead. Our proposed GPUDuard shows that it is possible to

gain substantial performance from executing concurrent kernels on a single SM while securing

GPUs against these attacks.
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8.2 Cross-Component Attacks in Integrated Heterogeneous Systems

As systems are increasingly heterogeneous, integrating CPUs with accelerators such as

GPUs on the same die and providing the opportunities for resource sharing, it is important to

understand the threat of microarchitectural attacks on these emerging systems. New computing

models are a combination of processors augmented by a variety of interconnect and memory

architectures. Accelerators as co-processors in such systems can be either the target of attacks

themselves , or serve as a vector for launching or amplifying attacks that compromise the main

processor or the whole system.

In addition to the study the vulnerabilities of standalone GPUs (as we demonstrated in

Chapters 4, 5, and 6), we explored attacks that spill over from the GPU to CPU or vice versa or

more generally, from one component to another within a heterogeneous system (Chapter 7).

First, we developed covert channels (secret communication channels that exploit

contention) on integrated heterogeneous systems in which two malicious applications, located

on two different components (CPU and iGPU) transfer secret information via shared hardware

resources. This is the first asymmetric covert channel where the two sides of the channel are

completely different in their computational model, organization, and view of the shared resource.

Then, we explored an extremely dangerous threat vector in the integrated CPU-GPU systems.

GPU accelerated general purpose computation is being developed in major web browsers. By

leveraging this interface, we studied the possibility of GPU based side channel attacks in

JavaScript to spy on the CPU through the shared last level cache.

Although we demonstrated two instances of cross-component attacks (specifically, an

integrated GPU and CPU) in heterogeneous systems, the threat model can be extended to include

any other accelerator or components, sharing resources with CPUs. Having experience with these

channels improves our understanding of the threats posed of microarchitectural attacks beyond
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a single component which is a threat model increasing in importance as we move increasingly

towards heterogeneous computing platforms.

In our future work, we will investigate all threat surfaces in heterogeneous system ar-

chitectures in end user devices and computational clouds, as well as high performance computing

(HPC) clusters. Each of these computing environments has a unique architecture to connect

dierent components based on performance and eciency of the system, leading to special security

concerns and challenges.

We will study characterizing the threat surface of attacks that will arise in such comput-

ing environments; including denial of service attacks, cross component side channels and fault

injection attacks (e.g. Rowhammer). With the assessment of the threats discussed above, we will

work on extending the CPU-based hardware isolation primitives to the heterogeneous accelerator

components, including GPUs and FPGAs.
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