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Abstract

Background—Circulating lipids and insulin-like growth factor 1 (IGF-I) have been reliably 

associated with breast cancer (BCa). Observational studies suggest an interplay between lipids and 

IGF-I, however, whether these relationships are causal and if pathways from these phenotypes to 

BCa overlap is unclear.

Methods—Mendelian Randomisation (MR) was conducted to estimate the relationship between 

lipids or IGF-I and BCa risk using genetic summary statistics for lipids (low-density lipoprotein 

cholesterol,LDL-C; high-density lipoprotein cholesterol,HDL-C; triglycerides,TGs), IGF-I and 

BCa from GLGC/UKBB (N=239,119), CHARGE/UKBB (N=252,547) and BCAC (N=247,173), 

respectively. Cross-sectional observational and MR analyses were conducted to assess the bi-

directional relationship between lipids and IGF-I in SHIP (N=3,812) and UKBB (N=422,389), and 

using genetic summary statistics from GLGC (N=188,577) and CHARGE/UKBB (N=469,872).

Results—In multivariable MR (MVMR) analyses, the OR for BCa per 1-SD increase in HDL-C 

and TG was 1.08 (95%CI: 1.04,1.13) and 0.94 (95%CI: 0.89,0.98), respectively. The OR for BCa 

per 1-SD increase in IGF-I was 1.09 (95%CI: 1.04,1.15). MR analyses suggested a bi-directional 

TG-IGF-I relationship (TG-IGF-I beta per 1-SD: -0.13; 95%CI: -0.23,-0.04; and IGF-I-TG beta 

per 1-SD: -0.11; 95%CI: -0.18,-0.05). There was little evidence for a causal relationship between 

HDL-C and LDL-C with IGF-I. In MVMR analyses, associations of TG or IGF-I with BCa were 

robust to adjustment for IGF-I or TG, respectively.

Conclusions—Our findings suggest a causal role of HDL-C, TG and IGF-I in BCa. 

Observational and MR analyses support an interplay between IGF-I and TG, however, MVMR 

estimates suggest that TG and IGF-I may act independently to influence BCa.

Impact—Our findings should be considered in the development of prevention strategies for BCa, 

where interventions are known to modify circulating lipids and IGF-I.

Keywords

Breast cancer; Mendelian randomization; Insulin-like growth factors; lipids

Introduction

Breast cancer (BCa) is a leading cause of cancer-related death1,2, yet approximately 23% of 

cases in the UK are estimated to be preventable3. Circulating lipid and insulin-like growth 

factor (IGF) traits are frequently hypothesised to underlie the effect of modifiable factors 

such as obesity on cancer risk4, however, the extent to which circulating lipids and IGFs 

interact is unclear. It is necessary to determine the potential causal relationship between 

lipids, IGFs and BCa in order to prioritise intervention strategies for BCa prevention.

Observational studies investigating the relationship between lipid profile (low density 

lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and 

triglycerides (TG)) and BCa risk have found suggestive evidence that higher HDL-C and 

TG is associated with lower BCa risk5,6. Mendelian randomization (MR) studies, which use 

genetic variants as instruments for an exposure of interest, given their randomly allocated 
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and fixed nature7, support a causal role for HDL-C in reducing overall BCa risk, whereas 

effect estimates for LDL-C and TG have been less consistent8–11.

Insulin-like growth factor-1 (IGF-I) modulates cell growth, metabolism and survival, and 

is thought to be important in cancer initiation and progression12–14. Observationally, 

circulating IGF-I levels are associated with increased BCa risk in both pre and 

postmenopausal women13 and recent MR estimates further support causality between 

circulating IGF-I and BCa risk15. Several randomised control trials have reported decreased 

circulating IGF-I levels following LDL-C lowering statin use, suggesting that perturbation of 

circulating lipids can alter levels of IGF-I in circulation16–18. Intervention studies in patients 

with growth hormone disorders also suggest that modification of IGF-I can alter circulating 

lipid levels19–21. Population-based studies examining the relationship between circulating 

IGF-I and lipid profile have yielded conflicting results22–24, however, these studies may 

be limited by their cross-sectional design. Hence, the direction of association and whether 

causation exists between circulating lipids and IGF-I is still unclear.

Given evidence implicating lipids and IGF-I as potential modifiable risk factors for 

BCa25–27, there is motivation to assess the bi-directional relationship between circulating 

lipids and IGF-I and to test the hypothesis that pathways from these phenotypes to BCa 

overlap. We set out to examine the causal relationships between circulating lipid traits, IGF-I 

and BCa using genetic (two-step28 and multivariable MR (MVMR)) and cross-sectional 

observational study designs.

Materials and Methods

Study design

This study has four main components as outlined in Figure 1: (I) Estimation of the 

causal association between lipids and BCa using two-sample MR; (II) Estimation of the 

causal association between IGF-I and BCa using two-sample MR; (IIIA) Analysis of the 

observational association between lipids and IGF-I using individual level data from the 

Study of Health in Pomerania (SHIP) cohort and UK Biobank (UKBB); (IIIB) Estimation of 

the causal association between lipids and IGF-I using a bi-directional two-sample MR; (IV) 

MVMR analyses to estimate the independent causal effects of lipids and IGF-I on BCa

Genome-wide association study and two-sample Mendelian randomization analyses

Study populations and data sources— Table 1 shows the data sources used for the 

two-sample MR analyses. To estimate the causal relationship between lipids or IGF-I with 

BCa using two sample MR analyses (Figure 1, Part I, II and IV), we used summary genome 

wide association study (GWAS) statistics from: a female-specific GWAS of circulating 

lipids conducted using individual-level data from UKBB29 (under application #15825, N 

= 239,119), a female-specific meta-analysis of two IGF-I GWAS conducted by the IGF 

working group of the CHARGE consortium (N = 14,600)30 and using individual-level data 

from UKBB29 (under application #15825, N = 237,947) and a BCa GWAS conducted by 

Breast Cancer Association Consortium (BCAC, 133,384 breast cancer cases and 113,789 

controls)31,32. Analyses stratified by estrogen receptor (ER) status were also conducted 
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(ER-positive, 69,501 cases and 105,974 controls and ER-negative, 21,468 cases and 105,974 

controls). To estimate the bi-directional causal relationship between lipids and IGF-I (Figure 

1, Part IIIB), we used summary GWAS statistics from: a sex-combined GWAS of circulating 

lipids (LDL-C, HDL-C and TG), conducted by Global lipids Genetic Consortium (GLGC, 

N = 188,577)33, a sex-combined IGF-I GWAS meta-analysis conducted by the IGF working 

group of the CHARGE consortium (N= 30,884) and UKBB (under application #15825, 

N= 438,988). Details on the UKBB, including geographical regions, recruitment processes 

and other characteristics have been described previously34 (see Supplementary methods for 

details). All individual participant data used in this study were obtained from the UKBB 

study, who have obtained ethics approval from the Research Ethics Committee (REC; 

approval number: 11/NW/0382) and informed consent from all participants enrolled in 

UKBB.

Lipids GWAS in UKBB

LDL-C, HDL-C and TG were measured using enzymatic selective protection, enzyme 

immunoinhibition and GPO/POD methods, respectively. The lipid measures were 

standardised using inverse rank normalisation such that the mean was 0 and standard 

deviation was 1. Given that the summary estimates from BCAC described BCa in females 

only, we conducted female-specific GWAS of LDL-C (N = 238,861), HDL-C (N = 217,373) 

and TG (N = 239,119) in UKBB female participants of European descent on K-means 

clustering of genetic ancestry data (K=4) after standard exclusions including withdrawn 

consent, mismatch between genetic and reported sex and putative sex chromosome 

aneuploidy35,36. We identified single nucleotide polymorphisms (SNPs) associated with 

LDL-C, HDL-C and TG using the BOLT-LMM (linear mixed model) software37. Analyses 

were adjusted for age and a binary variable denoting the genotyping chip individuals were 

allocated to in UKBB (the UKBB Axiom array or the UK BiLEVE array).

IGF-I GWAS meta-analysis

IGF-I was measured in 468,384 individuals in UKBB using the chemiluminescent 

immunoassay (DiaSorin Ltd, UK). IGF-I measures were standardised using inverse rank 

normalisation such that the mean was 0 and standard deviation was 1. We conducted a 

sex-combined GWAS for IGF-I (N = 438,988) in UKBB participants of European descent 

using the same GWAS pipeline as the lipid GWAS as described above. Analyses were 

adjusted for age, sex and a binary variable denoting the genotyping chip individuals were 

allocated to in UKBB (the UKBB Axiom array or the UK BiLEVE array). SNP effect 

estimates and their standard errors from the IGF GWAS in UKBB were combined with those 

from the IGF-I GWAS (N = 30,884) conducted by IGF working group of the CHARGE 

consortium30 by inverse-weighted meta-analysis using GWAMA38. Given that the summary 

estimates from BCAC and UKBB described BCa in females only, we also conducted a 

female-specific GWAS of IGF-I (N = 237,947) in UKBB using BOLT-LMM. Analyses 

were adjusted for age and a binary variable denoting the genotyping chip individuals were 

allocated to in UKBB (the UKBB Axiom array or the UK BiLEVE array). SNP effect 

estimates and their standard errors were then combined with those from the female-specific 

IGF-I GWAS conducted by the IGF working group of the CHARGE consortium (N = 

14,600)30.
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Selection of genetic instruments for MR analyses

Lipid instruments: To investigate the causal association between lipids and BCa risk 

(Figure 1, Part I), we identified 135, 214 and 203 independent SNPs (clumped based on a 

linkage disequilibrium (LD) r2<0.001 and 1Mb window) associated with LDL-C, HDL-C 

and TG, respectively, at P<5e-08 from the female-specific lipid GWAS conducted in UKBB 

(described above). Due to the complex overlapping nature of the lipid traits, genetic variants 

are commonly associated with more than one lipid trait. To disentangle the roles of LDL-C, 

HDL-C and TG, we also used MVMR which was developed to estimate the direct effect 

of various correlated risk factors when conditioned on one another in a single model39 (see 

Supplementary methods for more details). For the MVMR methods, we included all female-

specific GWAS-associated SNPs for LDL-C, HDL-C and TG in the model (Supplementary 

Table 1).

For the bi-directional MR analyses investigating the causal relationship between lipids 

and IGF-I (Figure 1, Part IIIB), we selected 76, 86 and 51 independent SNPs associated 

with LDL-C, HDL-C and TG at P<5×10-8 from the sex-combined lipid GWAS by GLGC 

(N = 188,577)33. As effect estimates taken from overlapping datasets can be biased in 

the direction of the null for two-sample MR analyses, we chose to use results from the 

sex-combined lipid GWAS conducted by GLGC and not UKBB for this analysis as the 

IGF-I instruments were derived from a IGF-I GWAS meta-analysis which included data 

from UK Biobank (female-specific lipid GWAS was not available from GLGC and thus not 

used for this analysis). For the MVMR methods, we selected 185 SNPs (r2 <0.2) associated 

with LDL-C, HDL-C and TG (p<5x10-8) from the lipid GWAS by GLGC (N = 188,577)33 

(Supplementary Table 1).

IGF-I instruments: For the MR analyses investigating the causal association between 

IGF-I and BCa risk (Figure 1, Part II), we identified 278 independent (clumped based on a 

r2<0.001 within a 1Mb window) female-specific SNPs associated with the IGF-I at P<5e-08 

from the female-specific IGF-I GWAS meta-analysis (Supplementary Table 2) (described 

above).

To assess the causality and direction of association between lipids and IGF-I (Figure 1, Part 

IIIB), we identified 476 independent SNPs associated with IGF-I at the conventional GWAS 

threshold (p<5e-08), within 1MB and at r2<0.001 from the sex-combined IGF-I GWAS 

meta-analysis (Supplementary Table 2) (described above). Sex-combined estimates for IGF-I 

were used as sex-specific lipid GWAS was not conducted by GLGC.

Statistical analyses—We examined the association of lipids and IGF-I with overall, 

ER positive and ER negative BCa using SNP estimates from the female-specific GWAS 

of lipids, IGF-I and BCa (Figure 1, Part I and II). Details of the SNPs included in 

each analysis, and proxies used, are provided in Supplementary Table 1 and 2. Summary 

statistics were harmonised using the harmonise_data function within the TwoSample 

MR R package40. All GWAS were assumed to be coded on the forward strand and 

harmonization was confirmed as consistent using option 2 of the “action” argument. 

Univariable causal estimates were combined using the inverse-variance weighted (IVW) 
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method41. We performed the following sensitivity analyses, each robust to some form of 

potential unbalanced horizontal pleiotropy: 1) MR-Egger regression method42 to test overall 

directional pleiotropy and provide a valid causal estimate, taking into account the presence 

of pleiotropy and; 2) weighted median method43 which provides a consistent estimate of 

causal effect if at least 50% of the information in the analysis comes from variants that are 

valid instrumental variables. Due to the complex overlapping nature of the lipid traits, we 

also performed multivariable IVW MR and MVMR Egger analyses to disentangle the roles 

of LDL-C, HDL-C and TG in BCa. As each of these sensitivity analyses make differing 

pleiotropy assumptions, consistency of causal effect estimates was interpreted to strengthen 

conclusions.

We examined the bi-directional relationship between lipid and IGF-I (Figure 1, Part IIIB) 

using SNP estimates from the sex-combined GWAS of lipids conducted by GLGC and IGF-I 

GWAS meta-analysis (described above) and the MR models described above. We performed 

the MR Steiger directionality test44 to determine whether the observed observations were 

directionally causal based on the variance explained by the genetic instruments in the 

exposure and outcome and tests if the variance in the outcome is less than the exposure. 

We also performed LD score regression to look at the genetic correlation between lipids and 

IGF-I45.

MVMR was conducted as an extension of the IVW method to test the hypothesis that 

circulating IGF-I may act as an intermediate factor in any reported association between 

circulating lipids and BCa, or vice versa (Figure 1, Part IV). For the MVMR analyses, we 

fitted a model with LDL-C, HDL-C, TG and IGF-I. Two-sample conditional F-statistics 

were estimated to provide some assessment of instrument strength of each exposure when 

accounting for the prediction of other exposures in the multivariable model using the 

MVMR R package by Sanderson et al (http://github.com/WSpiller/MVMR)46,47.

In each instance, MR estimates are interpreted as the change in outcome per SD unit change 

in the exposure. Estimates for BCa outcomes reflect odds ratios (OR). All MR analyses were 

performed using the MR-Base “TwoSampleMR” package40. All other statistical analyses 

were performed using Stata version 14 (StataCorp, College Station, Texas, USA) or R 

version 3.2.4.

Observational analyses

Study Populations

Study of Health in Pomerania (SHIP) Participants: Observational analyses (Figure 

1, Part IIIA) of the relationship between lipids and IGF-I were examined in a cross-

sectional study within SHIP48, a population-based project conducted in Northeast Germany 

(see Supplemental Methods for details). All participants underwent standardized medical 

examination, blood sampling and extensive computer-aided personal interview. Data on 

socio-demographic characteristics and medical histories were collected. The present study 

includes unrelated individuals with both lipid and IGF-I measurements (N = 3812; these 

data are described in detail in the Supplementary methods). All participants gave written 

informed consent and the study conformed to the principles of the Declaration of Helsinki 
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as reflected by an a priori approval of the Ethics Committee of the University of Greifswald 

(Greifswald, Germany).

UK Biobank participants: Replication analyses to investigate the observational 

relationship between lipids and IGF-I were examined in a cross-sectional study within 

UKBB29 (under application # 16009) (described above and in the Supplementary methods). 

We included individuals with both lipid and IGF-I measurements in the present study.

Statistical analysis—Observational associations between lipids and IGF-I were assessed 

in the SHIP and UKBB using linear regression. Fully adjusted models included age, sex, 

smoking status, body mass index (BMI) and diabetes status. Associations of lipids and IGFs 

with potential confounders were estimated using linear regression.

Results

Part I: Two-sample MR analysis to estimate the causal effect of lipids on BCa

The univariable IVW analyses found little evidence that LDL-C was associated with BCa 

(OR: 1.01; 95%CI: 0.97, 1.06; p=0.59). There was evidence that HDL-C was associated 

with increased odds of overall BCa (OR: 1.08; 95%CI: 1.04, 1.13; p=0.0002) and TG was 

associated with decreased odds of overall BCa (OR: 0.94; 95%CI: 0.89, 0.98; p=0.01) 

(Figure 2). Estimates of all causal associations between lipids and overall BCa are shown 

in Figure 2. Sensitivity analyses using methods that take into account potential genetic 

pleiotropy did not result in substantive changes in the estimates.

When assessed together using MVMR, the estimated causal odds ratio from multivariable 

IVW for LDL-C, HDL-C and TG were 1.04 (95%CI: 1.00, 1.07; p=0.05), 1.07 (95%CI: 

1.03, 1.11; p=0.0002) and 0.95 (95%CI: 0.91, 0.99; p=0.01), respectively (Figure 2). 

The estimated causal odds ratios from the MVMR-Egger analyses was similar to the 

multivariable IVW analyses for LDL-C, HDL-C and TG, with little evidence of directional 

pleiotropy (LDL-C intercept: 0.001; se: 0.001; p=0.26; HDL-C intercept: -0.001; se: 0.001; 

p=0.31; TG intercept: 0.001, se: 0.001; p=0.28).

We also investigated the relationship between circulating lipids and BCa, stratified by ER 

status (Supplementary Figure 1). There was little evidence that LDL-C was associated 

with associated with ER-positive or ER-negative breast cancer from univariable IVW 

and multivariable IVW analyses. For HDL-C, the estimated causal odds ratios from 

univariable IVW (OR: 1.07; 95%CI: 1.01, 1.12; p=0.01) and multivariable IVW analyses 

(OR: 1.06; 95%CI: 1.01, 1.10; p=0.01) had similar direction and magnitude of association, 

with both analyses suggesting that HDL-C increases odds of ER-positive BCa. There 

was also evidence from both univariable IVW (OR: 1.10; 95%CI: 1.04, 1.17; p=0.002) 

and multivariable IVW analyses (OR: 1.08; 95%CI: 1.03, 1.14; p=0.004) that HDL-C 

increases odds of ER-negative BCa risk. For TG, the estimated causal odds ratios from 

univariable IVW (OR: 0.94; 95%CI: 0.89, 0.99; p=0.03) and multivariable IVW analyses 

(OR: 0.94; 95%CI: 0.90, 0.99; p=0.01) were consistent, with both analyses suggesting that 

TG decreases odds of ER-positive BCa. However, for TG, there was evidence of directional 

pleiotropy from MVMR-Egger analyses (intercept: 0.002; se: 0.001; p=0.01). Sensitivity 
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analyses using univariable MR-Egger, weighted median and MVMR-Egger did not result in 

substantive changes in the estimates.

Part 2: Two-sample MR analysis to estimate the causal effect of IGF-I on BCa

IGF-I was associated with increased odds of overall BCa (IVW OR: 1.09; 95%CI 1.04, 1.15; 

p=0.001) from IVW analyses. Estimates from MR-Egger and weighted median analyses 

were consistent with the IVW estimates (Table 2).

Using data from BCAC, we investigated the relationship between IGF-I and BCa by ER-

status. The odds of ER-positive BCa and ER-negative BCa was 1.09 (95%CI: 1.02, 1.15; 

p=0.01) and 1.04 (95% CI: 0.96, 1.12; p=0.37), respectively, from IVW analyses (Table 2).

Part IIIA: The observational association between lipids and IGFs

Study characteristics of the SHIP and UKBB study are shown in Supplementary Table 3. In 

SHIP, the mean (SD) LDL-C, HDL-C and TG levels were 3.57 (1.16) mmol/l, 1.45 (0.44) 

mmol/l and 1.82 (1.30) mmol/l, respectively. The mean (SD) IGF-I was 142.1 (57.6) ng/ml.

The observational associations between circulating lipids and IGF-I using data from SHIP 

are shown in Supplementary Table 4. In the unadjusted analyses, a SD unit increase in 

LDL-C, HDL-C and TG was associated with a -0.11 (95%CI -0.14, -0.08; p=2.27×10-12), 

0.02 (95%CI -0.01, 0.05; p=0.29), -0.16 (95%CI -0.19, -0.13; p=2.26×10-22) SD unit change 

in IGF-I levels, respectively. Circulating lipids and IGF-I were associated with potential 

confounders of a lipid-or IGF-BCa relationship, including age, sex, smoking status, diabetes 

status and body mass index (Supplementary Table 5). In the fully adjusted model, a SD 

unit increase in LDL-C, HDL-C and TG was associated with a 0.03 (95%CI 0.004, 0.06; 

p=0.03), -0.05 (95%CI -0.08, -0.02; p=0.001) and -0.06 (95%CI -0.09, -0.04; p=1.5×10-5) 

SD unit change in IGF-I levels, respectively (Supplementary Table 4).

We undertook observational analyses using data from UKBB (Supplementary Table 4). 

In unadjusted analyses in UKBB, a SD unit increase in LDL-C, HDL-C and TG was 

associated with a -0.01 (95%CI -0.014, -0.006; p=2.08×10-19), -0.03 (95%CI -0.032, -0.028; 

p=8.9×10-102) and -0.05 (95%CI -0.054, -0.046; p=9.37×10-204) SD unit change in IGF-I 

levels, respectively. The association between LDL-C and TG with IGF-I is directionally 

consistent but smaller in magnitude compared to the analyses in SHIP. In the fully adjusted 

model, a SD unit increase in LDL-C, HDL-C and TG was associated with a -0.001 (95%CI 

-0.005, 0.003; p=0.57), -0.04 (95%CI -0.044, -0.036; p=1.88×10-112) and -0.01 (95%CI 

-0.014, -0.006; p=5.05×10-20) SD unit change in IGF-I levels, respectively. For the adjusted 

analyses, the association between HDL-C and TG with IGF-I is directionally consistent but 

smaller in magnitude compared to the adjusted analyses in SHIP.

Part IIIB: Two-sample MR analysis to estimate the bi-directional causal association 
between lipids and IGF-I

We estimated the causal effect of LDL-C, HDL-C and TG on IGF-I levels using two-sample 

MR. There was weak evidence that LDL-C or HDL-C affect levels of IGF-I (Table 3). 

The univariable IVW analyses suggested that a SD unit increase in TG (approximately 
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81.8mg/dL) is associated with a -0.13 (95%CI: -0.23, -0.04; p=0.01) SD unit change in 

IGF-I. Estimates from sensitivity analyses using methods that take into account potential 

pleiotropy were in the same direction but differed in magnitude to univariable IVW 

estimates. Estimates from multivariable IVW (-0.12; 95%CI: -0.20, -0.05; p=0.002) and 

MVMR-Egger methods (-0.17; 95%CI: -0.26, -0.08; p=0.0003) were consistent with the 

univariable IVW estimates, with weak evidence of directional pleiotropy (intercept: 0.003; 

se: 0.001; p=0.054) (Table 3). The MR Steiger directionality test suggested that the observed 

association was directionally causal (Supplementary Table 6).

In the reverse direction (estimation of the causal effect of IGF-I on lipids), there was little 

evidence to suggest that IGF-I levels impact circulating LDL-C or HDL-C (Table 4). A 

SD unit increase in IGF-I (approximately 49.76ng/ml) was associated with a -0.11 (95%CI: 

-0.18, -0.05; p=0.001) SD unit change in TG, using the univariable IVW method. This 

estimate was larger in magnitude in the univariable MR-Egger analyses (-0.28; 95%CI: 

-0.42, -0.15; p=0.00004), with evidence of directional pleiotropy (intercept: 0.01; se:0.002; 

p=0.004). The estimate attenuated towards the null in the weighted median analyses (-0.02; 

95%CI: -0.07, 0.02; p=0.34). The MR Steiger directionality test suggested that the observed 

association was directionally causal (Supplementary Table 6).

Supplementary Table 7 shows the estimated genetic correlations between IGF-I with lipid 

traits. There was little evidence of genetic correlation between IGF-I with the circulating 

lipids except for HDL-C although the genetic correlation was low (genetic correlation (rG): 

0.04; se: 0.02; p=0.05).

Part IV: MVMR analyses to estimate the direct effect of lipids/IGF-I on BCa

Multivariable IVW analyses were conducted to investigate whether the effect of lipids on 

overall BCa was attenuated following adjustment for IGF-I, or vice versa (Table 5). Using 

data from BCAC, the MVMR OR for overall BCa per SD increase in TG, conditioned 

on HDL-C, LDL-C and IGF-I, was 0.95 (95%CI: 0.92, 0.99; p=0.03) (Table 5), which 

was comparable to the IGF-I unadjusted model (OR: 0.95; 95%CI: 0.91, 0.99; p=0.01) 

(Figure 2). The MVMR OR for overall BCa per SD increase in IGF-I, conditioned on 

LDL-C, HDL-C and TG, was 1.09 (95%CI: 1.05, 1.14; p=0.0001) (Table 5), which was 

comparable to the lipid unadjusted model (OR: 1.09; 95%CI: 1.04, 1.15; p=0.001) (Table 2). 

We assessed likely instrument strength in the MVMR models and found that the conditional 

F statistics for LDL-C, HDL-C and TG and IGF-I were 52.87, 40.83, 36.48 and 45.14, 

respectively, suggesting sufficient instrument strength (Table 5). Evaluation of horizontal 

pleiotropy using a modified form of Cochran’s Q-statistic with respect to the differences 

in MVMR estimates across the instruments found evidence of potential pleiotropy in the 

MVMR model (p<4.31×10-135).

Discussion

In this study, we explored the interplay between circulating lipids and IGF-I and the 

relevance to BCa risk. Using two-sample MR, there was strong evidence that HDL-C 

is positively associated with BCa risk, whereas TG is negatively associated with BCa 

risk. Results from observational and MR analyses highlight that TG decreases IGF-I and 
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that IGF-I decreases TG; providing evidence of a bi-directional relationship between TG 

and IGF-I. The LD score regression analysis contributed towards evidence of a causal 

relationship between TG and IGF-I, as opposed to shared heritability. Findings from our 

observational and MR analyses point to an interplay between TG and IGF-I, however, 

MVMR estimates suggest effects of TG and IGF-I on BCa are independent.

The effects of lipids on BCa risk have been investigated by several MR studies8–11, which 

found consistent evidence in support of HDL-C playing a causal role in the aetiology 

of BCa. Conversely, evidence in support of the causal role of LDL-C and TG on BCa 

risk has been less consistent. In agreement with two previous MR studies8,11, our study 

provides evidence that HDL-C is positively associated with overall and ER-positive BCa 

whereas TG is negatively associated with overall BCa and ER-positive BCa. Findings from 

our study build on prior investigations through the inclusion of a large female-specific 

GWAS of lipid traits in UKBB, thus expanding the number of robust female-specific genetic 

instruments for each lipid trait. As the BCa outcome was defined in females, we chose to 

use female-specific instruments for the lipid traits as sex-specific effects have been observed 

for these exposures49. This is in contrast to previous lipid-BCa MR studies8–11 which had 

used non-sex specific lipid instruments, resulting in reduced precision in their estimates in 

comparison to our results.

Given the high degree of inter-relatedness amongst the lipid traits, genetic variants 

associated with one lipid trait will also be associated with other lipid traits. The main 

challenge in investigating the association between lipids and BCa is addressing the potential 

for horizontal pleiotropy (violation of the exclusion restriction assumption) which can 

confound the MR estimates50. With this in mind, we applied MVMR to simultaneously 

estimate the direct causal effect of various correlated lipid traits on BCa when conditioned 

on one another in a single model. A MR study on lipid and BCa risk using MVMR was 

recently published10; the authors included potential confounders such as body mass index 

and age of menarche in their MVMR model and their primary findings was that both 

HDL-C and LDL-C were associated with increased BCa risk. We did not adjust for potential 

confounders in our MVMR model in order to maintain instrument strength (as indicated 

by the conditional F statistic), however, we conducted MVMR-Egger analyses which can 

provide reliable evidence regarding causation even in the presence confounding through 

unbalanced horizontal pleiotropy. Indeed, results from our MVMR-Egger analyses were 

consistent with our multivariable IVW analyses.

We investigated the relationship between IGF-I and BCa using female-specific instruments 

from a meta-analysis of two major IGF-I GWAS from UKBB and CHARGE. Our study 

found evidence that IGF-I increases overall BCa, likely driven by ER-positive BCa which is 

concordant with results from previous observational and MR studies15,51. Given that SNPs 

associated with IGF-I are also associated with other components of the IGF axis, there is a 

possibility that our results could be biased due to pleiotropy with other components of the 

IGF axis52. GWAS analyses for other components of the IGF axis have been conducted30,53. 

However, due to a lack of robust genetic instruments for these individual IGF traits, we 

were unable to use MVMR to investigate the direct effect of IGF-I conditioned on the 

other components of the IGF axis. Preclinical evidence suggests that IGF signalling is 
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mitogenic for both ER-positive and ER-negative BCa54. In contrast, our MR results suggest 

that circulating IGF-I is more influential in ER-positive BCa compared to ER-negative BCa. 

However, our MR analyses for ER-negative BCa could lack statistical power due to the 

smaller sample size compared to ER-positive BCa. As we have used genetic variants that 

predict circulating levels of IGF-I, we cannot rule out important aspects of tissue-specific 

regulation which may contribute to BCa.

Our finding that IGF-I associates with decreased TG is consistent with findings from 

previous observational24, interventional17,55–57 and candidate gene studies58,59. IGF-I can 

inhibit growth hormone secretion by negative feedback in the growth hormone (GH)-IGF 

axis. It has been suggested that the effect of circulating IGF-I on circulating TG levels is 

most likely due its effect on growth hormone or insulin secretion56,58,60. To the best of 

our best knowledge, this is the first study suggesting that TG levels causally reduce IGF-I 

levels. The mechanisms by which circulating TGs affect circulating IGF-I levels remain to 

be elucidated. The liver is the main source of circulating IGF-I (accounting for ~75% of 

circulating IGF-I) and many variables are known to control IGF-I synthesis and secretion, 

including nutrient intake, insulin and growth hormone levels61,62. It is possible that TGs 

could affect the hepatic synthesis of IGF-I.

Our observational and MR estimates support a bi-directional relationship between TG and 

IGF-I and suggest that the pathways from these phenotypes to BCa overlap. In the context 

of this, we applied MVMR approaches to investigate the direct effects of TG and IGF-I on 

BCa, independently of each other. The associations between TG or IGF-I with BCa from the 

MVMR analyses (wherein LDL-C, HDL-C, TG and IGF-I were included in the model) was 

not attenuated when compared to the univariable MR associations. This lack of attenuation 

is not likely due to weak instrument bias, which is a common problem in MVMR, however, 

we cannot rule out directional pleiotropy as a source of bias as a modified form of Cochran’s 

Q-statistic found evidence of potential horizontal pleiotropy in the MVMR model. To this 

end, further work is required to elucidate other potential modifiable risk factors that drive the 

putative causal relationship between lipids or IGF-I with BCa.

Our study has several limitations. First, despite the large sample size of the UK Biobank, 

this cohort is not representative of the general population due to the recruitment of generally 

healthier individuals with higher socioeconomic status. Hence, our findings might be prone 

to selection bias and cannot be generalised to the UK population. Second, our study was 

focused primarily on individuals of European ancestry. Although population homogeneity 

eliminates population admixture as a potential confounder in our analyses, the findings 

drawn from this study might not be generalisable to non-European populations.

Conclusion

In conclusion, our findings highlight a causal role for HDL-C, TG and IGF-I in BCa risk. 

Observational and bi-directional MR analyses support an interplay between IGF-I and TG, 

however, results from MVMR analyses suggest that TG and IGF-I may act independently to 

influence BCa. These relationships should be considered in the development of prevention 

strategies for BCa, where interventions are known to modify circulating lipid and IGF traits
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Figure 1. Overview of methods employed
I) Two-sample MR analysis of the effect of lipid traits on breast cancer risk; II) Two-sample 

MR analysis of the effect of IGF-I on breast cancer risk; III) Analysis of the observational 

association between lipid traits and IGF-I; and IV) Multivariable MR to estimate the direct 

effect of IGF-I or TG on BCa conditioned on each other. The solid lines represent analyses 

using female-specific instruments and dashed lines represent analyses using non-sex specific 

instruments.
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Figure 2. Estimates of the causal relationship between circulating lipid traits and overall breast 
cancer in BCAC and UK Biobank.
The forest plot shows the estimate of the causal effect of LDL-C, HDL-C and TG on 

overall breast cancer risk using summary data from the breast cancer association consortium 

(BCAC) (n=133,384 cases and 113,789 controls). Circles represent point estimates from 

individual analyses. Horizontal lines represent the 95% confidence intervals.
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