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1. INTRODUCTION
The last threeryears héVe»seen considerable intgrést.in the'
*development of.semiclaésiéal ﬁetﬁods forvtréétiné;éomplex.ﬁolecular
cdllisions, ilé;; tﬁoée_wﬁiéﬁiiﬁvblﬁe inelastic or réaétivé proce§ses.
.Oné‘of.tﬁe reasoné:for thié.éctiviti is that the recent work;iprimarily
that of'Millerl and:thét_bf‘Méﬁcus;z'ﬁas sho@n h§W‘numerically com—
éuted classical trajectoriés éan Bé uéga a;~iﬁput té thévsemiclassica;
theory; so fhat;iﬁ.ié nét necessarf t0‘méké éﬁy dyﬁaﬁical apéroiimati;ns.
when applying these semiclassical approaches té compléi édlliéion
_ prodéssés; Théré is thﬁé the pbssiBility §f Being able to aﬁgment- 
.purely classical (i;e.MthE;Cario) trajectoryncalculétions,3,4 whiCh.

. have proved extremely powerful apd ﬁséful in their own right, with
‘maﬁy of the quantum effects that may be impbrtaﬁt in moiecular collisioﬁ
vphenomena;_ |
Anotherbmotivation for pursuing‘these.semiclassicalIapprpaches
Ito_inelastic and reactive.scéttering is the-weil?known succesévﬁﬁét.
éemiélassical theéry has had in describing éuantum'effecté iﬁ siméier’
elastiC'(potentiél) scattering.5’6 Here one now knows that essenﬁially '
“all quantum effects can be adequately described in a'semiciassical .
frameﬁork; | T‘
This paper-reviews-thié”glassical S—matrii" fhéOry; i:e;, the
| semiclassical theory of inelastic and reactive éééttering which
combineé éxact'classical mechénics (i.e. numerically.computed tfajeétofieé)
with the quantum principié of superposition. It is always.poésible,
and.in some applications may even.bevdesifable, to apply the basic

semiclassical model with approximate dynamics; Cross has discussed

Vi
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the simplifications that result in classical S-matrix theory if one.

treats*fhe,dynamics;withinﬂthe'sudden approximation,. for example,

: . ' ! . . 8 oL
. and shown how this relates to some of his earlier work on inelastic

scattering. For the'most paft, however, this review will»emﬁhasize
the use of exact classical dynamics and.avoid discﬁssioﬁ éf.varipus.
dynamical‘mddels_and approximations, the iéason being to focﬁé on
the.néture and validity of the basic semiclassical idea itself, -
i.e., élassical'@ynamics plus qﬁantuﬁ‘Superpbsitioﬁ. Acfually; 511 .
quantum effects - being a direct resuit of thé superposition of  .

probability amplitudes - are contained (at least qualitatively)

within the semiclassical model, and the primary question to be '

~ answered regards the quantitative accuracy of the description.

Since I have reviewed certain aspects of semiclassical, or
classical~limit quantum mechanics only a year ago,” this presentation

will summarize the general theory only briefly~and concentrate more

. on specific applications., The results of various calculations-

utilizing classicalAS;matrix‘theo;y are reviewed,'ana the semiélaésicai
description of severai different physical processes — scattering fesof
nanceéa scatteriﬁg of atoms from surfaces, and photoaiésociationlbf
polyatoﬁié molecules.; is developed to illustrate more fully how one

can translate betWeeﬁ classical, semiclassical, and quantum mechanical
versions of a theory; The semiclassical theory of elastic scattering
itéelf'will not be discussed exfliéi;ly since this has Béen.tﬁé éub-v
jecf'of a'recent review by Berry and Mouh$.10 An ﬁnderétanding of the
semiclassical techniques used in elastic scattering'ha35 of course; been

essential in extending semiclassical ideas to more general collision

-processes.



.

1t should be noted that there are a number of other
treatments of inelastic scattering, which will not be reviewed here,’

to which the term “semiclassical” is also applied. The oldest and

' ) ' 11 .
most common of these is the "classical path model': here a traj-

ectory is assumed for the translational motion, this causing a time-
dependént perturbation on the internal degrees of freedom which are
treated quantum mechanically, i.e., via the time—dependent Schrodinger

equation. ' The simplest version of thisAapproachll assumes a straight

line, constant velocity trajectory and applies first ofder»perturbation'b7

_ theory to solve the time~dependent Schrddinger equation for. the internal

degrees of freedom; neither of these assumptions is necessary, however,

and there have been applications that invoke neither of them.12 The

‘fundamental distinction between this class of approximations and class-

“ical S-matrix theory is that in the former some degrees of freedom,

namely translation, are treated classically and the otliers quantum

.mechanically, while classical S-matrix theory tfeétS‘all'degrees of

freedom classically, superposition being the oniy element of quantum

mechanics contained in the model. 1In classical S-matrix theory,
therefore, it is completély straight-forward to include the full

dynamics exactly — by calculation of classical trajectories - while

classical path models have inherent dynamical approximéfiohs embedded

in them.

" The remarks in the previous'paragraph.épply, of course, only to

' the case of electronically adiabatic molecular collisions'ﬁbr which

~

all'degrees of freedom refer to the motion of nuclei (i.e., trans—

lation, rotation, and yibration); if transitions between different
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- electronic states are also involved, then there is no way to avoid

dealing with ah'expiicit'mixture of a_quantum descriptionzéf-some

 degreés,of:freeddﬁ-(electronié)’gnd'a.classical describtion 9f the -

7 3 -

o g L s s T
others.” - The description of such non-adiabatic electronic transi-. - .

*tions within the framework of classical S-matrix theory has begn:” .51_H

discussed at lemgth in the earl'ier.review9 and is not included here.’

N
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principle of superposition is iﬁcorporated in the description, and

IT. FUNDAMENTAL CORRESPONDENCE RELATIONS.

The basic semiclassical idea is that one uses a quantum mechanical.

description of the process of interest but then invokes classical

mechanics to détermine all dynamical relationships. A transition

from initial state i to final state f, for example, is thus de-

the

scribed by a transition amplitude, or S-matrix element Sfi’

square produlus of which is-the transition probability: Pfi'= '

|Sfi|2.’ The semiclassical approach uses classical mechanics to

construct the classical-limit approximation for the transitidn_;
amplitude, i.e., the "classical S—matrix"; the fact that classical

mechanics is used to construct an amplitude means that the quantum

this is the only element of quantum mechanics in the model.  The

_completely classical approach would be to use classical mechanics

to construct the transition prébability difectly; nevef allﬁdiﬁg
to an amplitude. | |
One thus needs a prescription for cbnstrﬁcting:thé claséical—b’

limif approximation to quantum mechanica1 amplitudes, of'transfofmation
elements.- This is given most generaily by establishing the corre-
spondence. of canonical transformations between ﬁarious.coordinates
and-momenta in classical mechaﬁics to unitary transformations.ﬁetWeen
various sets of states iﬁ quantum mechanics. vThese éorfespondence;‘

v . ?9 .

relations have been derived earlier and are summarized below.

A. Summary of General Formulae. &

Let (p, 9) be one set of canonically'conjﬁgate coordinates

and momenta (the "o0ld" variables) and (P, Q) be another such set (the



"new" var:'Lablesv.)l'3 (P-'Q; py and q are'NFdimensional vectors for a
system w1th.N degrees of freedom, but for the sake of clarlty multi~
dlmenSIOnal notation will not bBe used' the exp11c1tly'multldlmen51onal
expressions are in‘noet easeS‘oﬁvious.) In claeSical'mechanics P and
Q may be con31dered as funetlons of p and q, or 1nversely; P and Q
may be chosen as the independent varlaEles w1th.p and q belng functlons
. of them. To carry out’ the cenenlcalktreneformatlon Eetween these two
“sets of variables; ﬁowever:.one;nuet-tather choose one "old" variable'
" .and one "new" veriable a; the independentbﬁeriebles; the_renaininév
two variables-thendbeing.eensidered'es fﬁnctiene of them. The
veanonical tranefdrnatidn is then eatried ont nithvthe'eid.of a
_ generating funetion; 5; éenetator; nﬁichiie seﬁeifunctien ofdthe
two‘independent variables; and two eduations which.exptess the
dependent variables in tefms of tﬁe independent.variebles.13
1f, for eiample; the "old"’coordine¢e q and the "new"

coordinate Q are chosen as the independent nariablee, and if.Fv(q;Q) .

is- the generator, ‘ther- the two.. equatlons thlch deflne p and P, are*

: AR (@) o

p(q,Q) = P (2.1a)
.. 9F; (4,Q) : S , '

P(p,Q) = -~ —— . A o (2.1D)

0Q

To express P and Q exp11c1tly in terms of p and q it would be necessary

to solve Eq.- (2 1a), i.e.:



L@ o
= __?;alll_ . - . 4 | (2.1a )‘
for Q(p,q) and then Substitufe this into Eq; (2;15) to obtain é(p,o):
There are clearly~fhfee other eombinafions of "one.old_variable and
one neW‘variaBle":_‘(o,P); (p;Q); and (plP). Equlvalently, the
, generators F, (q,P) F Cp,Q), or F (p,P)'may Be used in a srmllar
manner, along with the approprlate palr of dlfferentlal equatlons
analogous to Eq.~(2.l), to effect the transformatlon.

Quantum mecﬁanlcally, the oBJects of interest are.the elements
of the.unltary transformatlon frcm the "old"'states !q>.and ]p> to
the hew" states . |Q> and ]P>’ [The unltary transtrmatlon elements

relatlng any canonlcally conjugate pair is always given by

<q|p> = (Zﬁin)fl/z exp(ipq/h)v ' P B (2.2a)
{Q[P> = (2mih) ~ exp (iPQ/H) o] _ _ _ (2.2b)
There are, justbas in classical mechanics, four ways of choosing." ne

old varlable and one new varlable , S0 there are four equlvalent sets

- of unltary transformatlon elements connectlng the "old" and "new'"

representations: <q|Q>, <q|P>, <pJQ>; and <p]P>. The fundamental
correspondence relations express the classical limit of these unitary
transformation elements in terms of the classical generating functions

for the related classical canonical transformation:
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1/2:

BEE A CR N R A U
—— / 21iH] exp 14F,(q,R) /] - (2.3b)

<qlP>l% L Ban

| B G T L
.<p_|Q> = '[W/ 2mifi] exp TiF,(p,Q) /0] | .30
" 12

BEE AR T
— [ 27if] exp IiFa(p,?)fﬁ) . (2.3d)

B[P = [

In aPPlicatiens'it is usually convenient to_makevuse of the'aerivative'
:relatioﬁe of the generator13 to express the Dre—eXponented factors
above in a less symmetrlcal but more useful form..-Tf use 15 made of .
' Eq. (2. lb) for example, it is easy to show that Fq. (2 3a) cae be
.written as o | : -
-1/2 : R C v T
<qlQ> = [ZWIK(%%> Q]' exp [iﬁl(q,Q)/h] o N O (2.3aM)
The derivation of these fundamental correséendence relations,
Eq. (2.3); has'beenvgiven éreviously,gﬂaﬁd aﬁe should see reference
9 for a more detailed discussion. To obtain ﬁhe resulte-it is necF '
’ essary-ﬁo aéeume enly Eq. (2.2) (which is esgsentially a statement of
,fhe uncertainfy priﬁciple), make use of classical'mechanics itself;
and inveke the sfetionary phasevapp"ro'ximationl4 to evaluatefelln
‘integrals for which.the bhase of the integrand is pfoportional tO‘hfl.
Since the statlonary phase appraxxmatlon14 is an asymptotlc approxxmatlon
which becomes exact aS'h.*-o, this is the nature of the classxcal—llmlt
approx1mat10ns in Eq. (2.35. In a very~prec13e sense; therefore;_cla351cal—

limit ~quantum mechanlcs 1S'the statlonary~pﬁase approxlmatlon to quantum

mechanics.



B. Example: Franck—-Condon Factors.

Several examples of the basic qorrespondénée'relationé [Eq.
(2;3)] have.been worked out in.reference 9, and here éno%héf Qne'is
- considered. For Ergvity'the_following discussion aséumeé some |
-familiariﬁy of Section II of referenéé 9.

Let V (x) and V (x) be two one-dimensional potentlal wells with
'_éigenstates (labeled by their v1brat10na; quantum numbers) [na> and  v
nb>; reSbectively. A Frénck—andQnIfactor is the.squarélmodulusboff
~the amﬁlitude <nb|na>; i.e., l<nb|né>|2. Thinking semiclassicélly,
one ﬁotesrthat na'iévthe generalized momeﬁtum.of.the acfion—angle.
variablesl5 (na;qa) for the potential Ya; nb.is simila?ily the
generalized momen?um of the action-angle variables (nb,qb) that are

n > is thus. a matrix

defined with respect to V The amplitude. <n

b’ bI7g

element betweern momentum states of different representatlons, so

that its classical limit is given by Eq. (2.3d):

Py ey M
‘<nﬂb|na> = [~ —-—-W/ 2mih] exp [iFll-(:n.b,na)/ﬁi’ K v(2.4)7

bi vhere F (nb,n ) is the F4 - type generator of the (n 24, ) <> (nb,qb)
cla531cal canonlcal transformatlon. | ‘

To discover the apprqpriéte Fé‘genefator for Eq. (2-4) it is
useful'first.to considef the canonical'ﬁransformation from (na,qa) to
ordinary cartesian variables (p,x), and then from (p,%) to ﬁhe canonical

set' (n ~As shown befofe,9 the F, - type generator for the (na,qa)

b,qb).

«> (p,x) transformation is
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CF2Gn) = faxlmle () - v N s

a,) <> (p,x) transformation:

and of a similar form for the (nb’*b

F2b<g,n5> - fax(zmle () - v, GOIFE Qe

where Ea(na)land eb(nb) are the WKEB eigenvalue functions. Since -
<hb|na>_ = [fdx <nblx><x|na> s ,} SR S en

" use of Eq. (2.3b) for the matrix elements on the integrand of Eq.
(2.7) and stationary phase evaluation of the integral'over x shows

that
F, (n An ) = F a(x n)-F b(x n, ) - | R .(2 8)
T4 b’ a 2 "7a 2 L ' ST

where x = x(nb,na) is defined implicitly by the statiohary phase

condition

a, | b,
BFZ (x,na) ) 3F2 (x,nb)
ox - ox

0= 2.9)

Because of the following derivation relation for an F2 - type

aan(x,n)
e = p(x,n) s
x .

Eq. (2.9) may also be written as
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0=pGun) - plon) . | o eao

E Franck Condon — transition

occurs is the one (or_ones) for which the Cartesian momentum is

- Thus tﬁe’position x at which the o <> n

conserved; this is, of course, a statement of the Franck Condon

principle;16 Since
vp(_X',.n)v‘—'? {nlet) - V6011 2 | ,.
k(nb;na)'is equivaleﬁtlybdefined as.the soiutioﬁ af
.Sé(na).— V;(x) = eggégj - Vb(x) | . N . ".k (2}{}?_
The pre-exponential factor in Eq;.(2ﬁ4)“can Be évaiuatéd

explicitly by making use of Egs. (2.8) and_ (2.9). Differentiation -

- of Eq. (2.8) gives

v 3F4(nb,na) *,[Brz‘(x,na) ;.BFZ.(x,nb{].ax(nb,na)
Bna B ax ox Bna

  §?§?(x,n;).

a
and by virtue of Eq.'(2.9) the fiist term vanishes. Differentiation

of Eq. (2.12) with respect to n_ thus gives

b

9 N TPV
LR, (mg,m ) L 3TE, TG Sox(ag,n )

(2.13)

| 3nbﬁna ?, Gxﬁna | o BnB_ | >
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and from Eq. (2.5) one can .show that

A2 eon)  w g @)

Bxana = P > (2'l4) ”

it

where p = p(x n ) p(x,nB). Furthermore, differentiation of Eq. (2.11)

with respect to nb givesf

) Bx(nB,n ) I
[v.. (x) -V (x)] I =5 (ng) o
vor
Bx (nb’na) y N ,. v. " : e
T, %y AV (2.15)

where AV(x) = Vb(x) - Va(x) . Egs. (2.13) - (2.15) thus give the

pre—exponential factor as

_ 32F4(ﬁb';.1la) _ a‘(n ) € (n )
T, N ER O @29

If ﬁhere‘is one value of x whi¢h.satisfies Eq. (2.11), theﬁ
there will be two terms contributing to Eq; 2. 4), one corresponding
to p > o and oné to ? < 0. . Uith.Eqs. 2.8) and . ]6), Eq 2.4)

flnally gives the Franck Condon amplltude as

N 1 '(n e r(' )
<nElna>v=[ rLB]
onelp| |AVH )|

1/2
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X 2 cds‘-l +.F a(k n)-F b(x n, ) ' e ' ‘.' (2 l7j
4 2 ’“a 2 b 3 o :

. where the F - generatbrs are given by Eq. (2.5) and  (2.6) and x is

2
evaluated at the "crossing poiﬁt" [the root of Eq. (2.11)]. This _
-result‘has been obtained'beforeljnlggfrdm other more traditidnal_
approaches, But it is intefesting td see that it results directly
from the gene;al correspondence relations. If tﬁere'is more than -
one value of x which satisfies Eq. (2.11), then Eq. (2.17) is a
sum of similar térms, 6ne'for each such Value of X.

If one discards the interference term between the two terms

that contribute to Eq. (2.17), then the classical Franck-Condon

" factor is obtained:

) m Ea'(na) €b1(nb).
|<?b|na>|. =2 2 [pT [avr(x) | - >

(2.18)

the factor of 2 apbearing becauéévof the fwo terﬁs thatbcontribute _
equally. It is interesting (and useful) to show that thisvéurely
classical éxpreésion'cén also be obtéined from simpler phaée spaée_
considerations. The Franck—Condonvfactor.in Eq.r(2;18) is the joint
probability.théf ha and n, '

be written as the following phase .space integral:

have certain specific values; it can thus

P(nb,né) =:(2Wﬁ)_l farfdog S[nb - nb(P?Q)]

X8, - m Q)L N CR.E)
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where P and Q are any set of canonically conjugate variables (since
phase space integrals are invariant to'a canonical transformation),
and nb(P,Q) and né(P,Q) are these variables expressed in terms of

P and Q. Choosing (P,Q) to be the variables (h;,qa), for example,

leads to
o ..41,' | o
Py,n) = Qmh) Jdq,6Ing - n.(n_,q )] N
= (vt (,—a—nl’-> -
q n '
o al a
= @mt -‘"‘anB 4 | O (2.20)
oy . : : , ‘
Since one of the derivative relations for an'FA'r‘type géneratof
. 13 '
is
: C0F, (n,.,n )
q (o, ,n ) = _4"B° a .
favb’a on o :
one sees that
..Bqa(nb,né) ;.3:F4(nb,na) | » ) . . 21).
. — ’ . -
e |
so that Eq. (2.20) thus becomes.
EZFM(thnA) v
P(nb’na) = —ffgggﬁgz—— [ 27 ) : _ (2.22).

which is the same pre-exponential factor as in Eq. (2.4) and thus the

same classical Franck-Condon factor as Eq. (2.18).- -
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C."Matrix'Elementsf'

The correspondenée'relatioﬁé.summarizéd in Section iIA show
how>any-unitéry-trénsformation element caﬁ be evaluated within Fhé
classicél limit. Sometiﬁes; ﬁowever; bne is intérésﬁed iﬁ métrii
eleménts of operators.wﬁich.are not unitary; FConsider; fof e#ample;
thé 6ﬁe;diﬁensioﬁal sysﬁem discusséd in the previouS'section; if A
is some operator;_thé question is how does one pbtain'thévciéssiCal
limit of the métrix element ;nblAlna>: '

Let |E> be some yet unspecified set of states; then .~ - = .
7<‘n'b|.AIna>.-v= Jdgfag! <nb|g'> <g'|alE> <g]na> e (‘2.»23)

To evaluate this.semiclassically one should choose the basis  . i

|[&€> so that the representation of A is local and multiplicative,

<Etlale =S a0 @ae
and whé;e A(E) is nén—singular asft+ o. If A is anvoperator with a
simgle;claséical analog, as is usually the case, then the choice of
the ‘basis |§> is obvious. - If A is the_kinetic energy, A = p2/2m, for
éxample, the basis shouid be chiosen ﬁo be the cartesian momentum stétes
jb>; .If.A.is a éimple’funCtion of the cartesién'coordinates; A - A(x){
» théﬁ one should use a éartesian'coofdinate representation;

In this latter caée, for example, Eq. (2.23) becomes

<nb|A|na> = fax <ng |x> A@m;) <x|na> ‘ , o | (.2‘.‘25)



 vphotodiss6ciatioh:in Se¢tion'III'E_below,3  7/}5*3“;"'H

L _15-

.. stationary phase'eValuation'of-which_clearly»gives xf:'(

j j;fg§b1AJ§a$f= A(xjf§aB|né§;f; '%‘ :‘liflf;ff(zaégj; ;; |

:i whére’x_='x(nb,ﬁé),éﬁd?§n51ﬁ5>vis thé FfahckaQnddﬁ fécFof'disCusséd:fff ?"
:uih'fhe‘prévibus{ééction. :Probabiy thé'mdst;éommon;example of this
' result is the case the A is the dipbie operator, A(x) = eX,'e beingf   f

'Hﬂ'the élettron.ghargé; thisvis.the:applicatiOn'made iﬁ discussiﬁgf{ ?;f”Wf*“*”*:~
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IIT. CLASSICAL S-MATRIX: -CLASSICALLY ALLOWED PROCESSES.

In a collision system such as an atom A collidiﬁg with a diatomic.
ﬁolecule BC, one is interested in the fransition amplitudes, or S-matrix
eiements, which;describe transitions between specific quaﬁtum stafes of
the molecuie BC. From the_S—matrix elements one caﬁ.constru¢t scatter-
ing amplitudeé for any<cbllision process résulting ffom Av+ BC, the
séuare médulﬁsof the amplitqdes being the cross séctions. -

Several derivations of the classical limit of the S-matrix, the
"classical Siﬁatrixv, for complex collisions (i.e. thoéé'for whiéh‘the
-collision partnérs havé internal degrees of freedom) have been.given;l’z’9
the results follow_almdst difectly ffomvthevfundaméntal éorréspondencg
: relatibns; Eq. (2.3), the onlyvmodifications being those reqﬁired'to
factof out an energy-conserving delta function. This.section first ©

summarizes the general expression and then discusses their application.

A. Basic Formulae.

For ease of presentation a non-reactive collision is considered
first; the modifications required to include reactive processes are

} The general system consists of N

straight—forward.énd‘simple.
degrees of freédom, oné being'relati&e translation éf the collision
partﬁers and the other (N-1) being,infernal degrees Qf freedom which
‘are quantized in the asymptotic regibns. The traﬁélational degfee df
freedom is described by fhe center 6f mass coordinate R and momentum P,
while the internal Aegrees of freedom are described by their.action
angle.variables (E,g) E‘(Ei,gi), i = 1,2,.f.,, N-1. The aétioh variableé
_{ni} are the classical counterpart of the quantum_numbers for_fhese

degrees of freedom and will thus be referred to simply as the "quantum
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pumbers" although classically, of cou?se,.they are continuous functions
of time iike any other (generalized) momenfa; in the.asjmptotic regions
(R + ) befére and aftér collision they are.réquifed torbe intégers.

" The classical ﬁamiltonian function for thevsystém is given inv

terms of these variables by'
. ) . . 2 . ) . : - N . .
H(P,R,n,q) = P"/2u + €(n) + V(R,n,q)  , - G

where u is fhe reduced maés'of relatiye motidn,_e(g) ié_the.WKB

_ eigeﬁvalue function for the infernaivdegfeeé of freédom; and V_isvaﬁ |
interaction which vanishes as R + ®. It is therdepenaeﬁcé of \Y on.

R and q which"preﬁents P ana n from being ;onstants.qf the motion;
since_V - O_as R » o, P and n are conservéd.asymptbtically, aﬁd‘as .
noted above the asymptotitally constant valuéé of n ﬁuét‘be integérs.

" The quantities of interest are the on-shell S-matrix elements,
@
b il g
which'ére the probability amplitudes for the n, - n, transition. Their
classical-limit approximafion, the classical S-matrix, is comstructed

: ‘ ’ . . s .. 21
from the classical trajectory (or trajectories) with initial conditions

at ti@e ty (tl +'—w)

Il

n(ti) n, (a spécific set of integers) o ' (3.2a)

R(t,) = large o B D)



_lgs

P(tl) = ~{2u[E - e(nl)]}l/z. _ o - (3.20)
e - I

q(t)) = g + =5 WR(t,)/P(t)) 5 o (3.2d)

- - ~1 LT e S |

and with final conditions at time t, (fz +v+w)

n(tz) =n, (anothef set of 1ntegers) - L (3.3a)
R(t,) = large S BT ‘»  o (3;3b)
P(t,) = +{2u[E - efn, 12 .' N o ?f.‘  _ n '_;"(3.3c)
q(t,) = anything | S @

For a system witﬁ sevéfal degrees of freedom fhe'trajectories must, of

' course,:be determined byrnumerical intsgration of Hamilton's equations”
suep by step in time. To‘find.thevtrajectory.(or tréjéctoriés) which
obey'thebboundary conditions in Eq..(3.25 and (3.3) it is convenient

to introduce the function n (ql,n E),'the final value of the quantum

13
numbers that result from a trajectory with theuinitial conditions of
"Eq. (3.2); in general, of course, n, (al,nl;E) is:ndn—integral.'vFor
- a glven total energy E and a given set of initial 1nte9ral quantum
numbers o, the task 1s to find the particular values of the angle
varlables ql for whlch n (ql,nl,E) turn nut to be tne specific set

“of integers n2,1 €.y suppressing the arguments'n and E, one must

solve the equations

~

n,(3) = o R G4
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where n, on ‘the RES is a glven set of integers. This is a set of
(N=1) equatlons in N-l unknowns.
The class1cal S—matrlx element for the nl > n, transition is

then given by 2

. 1/2 T

Nel ~2(q—|’nlsE) S

S (E) = [(-2mi)” —Re— exp[i@(nz,nl;E)ﬁﬁJ,(B.S)
2’~1 4 S e -

where Snz/aal is the determinant of the N-1 Jacobian,_al is evaluated-

at the root of Eq.-(3.4), ahd ® is the classical action integral
®(n,,m 3E) = - AL[R(E) P(E) + q(8) - A(D)] 3.8

evaluated along the trajectory which satisfies ﬁhe above double—enaéd B
boundary conditions. TIf there is moretthan one frajectory at this |
energy corrésponding to the same initial and_final quantum numbersb

n, and n,, Eq. (3.5) is a sum of simiiar tefms,bbne for each.sgch
trajectory.

Befofe proceeding to:discuss more substaﬁtive.examples.it is
interesting to see that the above expressions do reproduce the stan- -
dard WKB resultsvfor one—dimensional.dynamical systems. For a system
Qitﬂ oniy a translational degree of freedom, i.e. no internal degrees

of freedom, the pre-exponential factor in Eq. (3.5) is unity and the

phase ¢ is

: £, IR
CO(E) = =[7 dt R(t) P(t)
¢ _
1
. t2 . .
= —(RZ}.?2 RlPl) + i dt P(t) R(t) . . (3.7)

1
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“If the interaction potential V(R) has a repulsivé core and R< is

the classical turning point,.then Eq. (3.7) becomes

R

3(E) = -28P +7 dR' P(R') . - 3.8
R . S
<
where R = R ZR, >e®, PZI-P =P, = (isz)vl/2 andﬁ P(R)v.=' {2n{E - :
SR ER T PE TR ’ temlh -
vy 1y2,
The S-matrix is thus
S(E) = exp [i@(El)/'ﬁ.] _ ,
- exp [2i0(®)] S B C X )

where the phase shift n(E) is given by the usual WKB expressionﬁ

R

n(E) = lim  [<R + [ &' kK@®D]  , | (3.10)
R &> o R . . .
, xR
where k = (ZmE%ﬁz)l/z and

k(R) ="{2n[E - V(R)] M2} 2

For a single particle moving in three dimensions under the

influence of a spherically symmetric potential V(R), the classical

Hamiltonian is

CHELR,Zqpm,q) =@ @ - D) s Y@, (3.11)

~and one sees that the quantum numbers £ (orbital angular momentum) and

m - (its z-componant) for the two "internal" degrees of freedom are’

conserved since their conjugate variables 99 and 9, do not appear in
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the Hamiltonian. The dynamical system thus reduces to a one-

dimensional one with a Hamiltoniaﬁ
i ST 9 v.2 2 | ' ‘ ” BT
B (B,R) =@t + 2°/R%) +ve) (3.12)

that depends parametrically én 2.. Because of the géntrifugai térm
QZ/ZﬂRz, however, the-Hamilﬁonian in Eq. (3.12) is not precisely of
 the.form in.Eq. (3;1). To remedy this one transférms from variables
P and R to the new variables P and ﬁ; where

52 = 22 + 22/R% ) | : L (6.1

The classical generator which effects this canonical transformation
is

far (B2 - 22 rEL2

It

FZ(R.,ﬁ)‘

1/2

0

R@2 - 222

- L cosTTQ/BR) o | (3.14)

By invoking the derivation relations for an ¥, - type génerator}

AF,(R,B) _ | o \ B
_ an(R,ﬁ)" .
= (3.15b)

o7 o
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|  6ﬂé Canuéasily:vérify‘that Eq (3 13) is fulfllled and that R is glven

R 1! terms of the new varlables by

' The Hamiltonian thus takes'the'dgsired form in terms of the new -

"fva:iables.f

@R - P+ V(R + 2 ]1/ B ey

* and the S-matrix in this angular momentumffepreSentatipﬁ haégthe> ‘

- one-dimensional form . ¢

" jSz(E).%.é*p FiQQ(E)kﬁJT;' ';>   ff' ]?“?&5?§ﬂ*iffijfiif1?3;<3§ié>ftf[a'""”

" where

%, (E), -f dt R(t) dP(t)

S

:2';Uééj6f,E§; (3.15) ‘shows thét 3

e 1332(R,§)';'”'ar2(R,§) K

i

 so that the'bhasefiﬁ'ﬁq;'(3.19)vis equiVélenfly giVen by Ll

Cean

PRERE o, D (320
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o - t, t
e BY[2 ap 2

o,(E) = -F, (R,P)|“ +/
ARt B

at p(t) R(E) . | - (3.21).
l l ’ . .

By eliminating t in favor of R in the usual way it is then easy to

show that
i.e.,
S® = e zing® Se

where the phase shift is given by the standard WKB e?préssion

o R | T
n,(E) = 48 — kR + [ dB' k,(R") , . | (3.23)
% 2 R -

| o 2, 2. 1/2 | 6 .
where R - ® and kQ(R) = {2u[E - V(R)] - &7/R"}  /4; in practice the

replacément_2 > 04172 is usually made.

B. Applications.

The first calcﬁlations using the theory descfibéd in the

‘ preceeding section were carried out by Millerz3 for the non—reactive
coilinear A + BC collision system for which Secrest and JohnsonZQhad' A
earlier obtained.accufate quantum mechanical transition probabilities.
Since this is a systém.of two degrees of freedom, and thné only one
intefnal degree of freedom, Eq. (3.1) - (3.6) épply With,tﬁe vector
designation removed from the pair of action-angle variables (n;q).

Thué the n., » n

1 9 vibrational transition is constructed from those

trajectories which satisfy
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nz(ql) = n2 f _ | o ‘ _ (3.24)

l'and E suppressed) is the final

vibrational quantum ﬁumber,'not necessarily integral, which result

vhere nz(al) (with the arguments n

~fromvthe‘tréjectory with the initial conditions in Eq. (3.2). TFigure

1 shows this function for the case n

1= 1, E = 10tw, and for the

potential parameters>choseﬁ to éorrespond to a HE + H2 collision;
IF ié clear from the figure that‘theré afe two roots to Eqg. (3.24)
for.the case n, = 2, for example, i.e., there are two:classicgl
trajectories that contribute to the'i > 2vvibrationa1 transition}

The classical, S-matrix element [Eq. (3.5)] for it is thus the sum

of two terms

- L =12 : ’
: Snz,nl(E) = [27]n, (g 1 .eXP(i% + 10, /%)
+ [2w[;12-,(q11)|] L oem(-ip ke /A, (3:25)

- where qr and qrp are the two roots of Eq. (3.24), and @I and,@II are
the action integrals for these two trajectories. The transition'

probability,

Payon, B 2 18

2° n,,0

(E)IZ ] - | : (3-26)

1

is therefore the sum of the probabilities associated with the two

trajectories plus an interference between the two:
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o | 2
F (E) = pp *+pyp * 2(pppp)

sy s;n[(®II - @I)/h], o (3.27)

where
L - -1
py = L2mlny "G
K = I,I1I. The situation is quite analogous to the usual discussion2
of the "two‘slit experiment', and just as theré,.it_is not proper to
say that the n, - n, transition takes place via trajectory I or

1 2
trajectory II, for logic would then demand that the probabilities

add; rather there is aiprobability amplitude for the trajectory being
I or II, and these amplitudes add.zs

23,2 ' . . T .
3,26 shéw the semiclassical results to be in

The calculatiohs
excellent agreement with the accurate quantum mechanical values..

Furthermore, the interference term in Eq. (3.27) is quite significant

in that the completely classical tramsition probability,

Pon @ EPrten . e
gives poor results for individual transition prbbabilities. ‘On the
average, however, the cléssicalvtransition probébility 1Eq. (3;28)]‘13
correct, as seén in Figure.Z, so.that the purely classical treatment is
adequate if ome is intefested in collision properties that involve an
average over some initial and/or final.quaﬂtum étates.

The atom-rigid rotor collision in'three—dimensions has also been

treated by Miller 7, and the comparison with accurate quantum mechanical
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values ié‘similar to the collinear résults diécussed abéve: _iﬁdividual
SFmatfix-elements are described accurately oniy by'pfoper inclusion28
of interference between the Various_trajectﬁries which confribute to
‘the transition.. If the transition pfobabilities are-summed over
severai quantum.statés, however,.the iﬁferference effects are quenched
~and the purely élassicél-probability gives éccurate results.

.The coﬁclusion which seemé to be emerging'from»these examples,
the;efore, is that inddividual S—matfii elements, and thus the tran-
sition probability between a complete set of initial aﬁd,final 
guantum numﬁers,;canﬁot be described acquratelvaithout proper
inclusion28 of the iﬁterféreﬁce tefms proviaed by tEevciassical

‘S-matrix approach. If the transition probabilities or cross sec-

tions of interest are summed and/or averaged 6ver some of the final
or initial quantum numbers,'hoﬁever; the ihterference.tefms tend
to average ‘to zéro so that the completeiy-élassical treatﬁent becomesv
adeéuate. | |

The fact which makes interference effects so "fragile" is that
there can bevintefference oniy*between those processeé which\are:iﬁ |
25 |

principle indistinguishible. This means that only the transition

probability, or cross section, for a completely state-selected

quantity is given by the square modulus of an amplitude; an averaged
cross section is not given by the squére modulus of an average am-
plitude but rather'by the average of the 5quare-modﬁlﬁs~of the

completely state-selected amplitude -- i.e,

<> = <|g] %

L |<f>|2
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With regard to simple potential (elastic) Scattering, for example,
since there are no internal degrees of freedom the "completely

state-selected" quantity is the differential cross section; thus

@ - lg@ e

36,29 from the trajectories

" and fE(G) is constructed semiclassically
which satisfy the appropriate double-ended btoundary conditions (i.e.,
that the energy be E and that the scattering angle be 0). Interference

-structure is thus readily observed in GE(G), whereas it is usually

quenched in the total cross section:

. T ‘
o(E) = 27 fd® :5inb o_(8)
. ' E
: G
g - 2 _
=i 2 (28 + 1) |s,(8) - 1] ;. (3.30)
=0 - , ,
‘i.e., even though the individual ”tfansition’probabilities"»
2 2 : o -
|8y (B) -1]7 = 4 sin”[n, (B)] | (3.31)

.
~show prominent interference between the scattered patticle and its.
"shadow", the sum overrk.quenches it. j(Uﬁder certain conditions a
residual oscillatory term in g(E) .does surViVe the average over %;

this is the ﬁglory" effect.6) . | "

For three-dimensional A + BC collisionsl the completely state-

selected quantity is the differential cross section from a given
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> c ) - e - T >: ; 4 ._.‘
i to a specific flnal.stgte }nzjzmz ; it . is

‘thus” given. by the square modulus of an amplitude'

initial state Inljfn

®) = |t @, (3.32)

o . . =
Dydoly © Ry3qmy Bodyfy € MyJymy

where the "classical amplitude" is qonstruétéd from the trajectories
with the appropriate initial and final boundary conditions..l’9 There
should undoubtedly be signifiqant interference effects in these .
complétely state—éelectedvdifferential cTross éectiqns; but ény less -
detailed quantity, being an average of Eq:'(3;32);.wili ﬁaVevthe
interference more or less queﬁéhed. | |
.Although.tﬁe pfacticél difficulty<of Qbsefving'qpantum
iﬁterfeience effects on complex collisions is discouraéing_from fﬁ
one point’bfvview (Because a cémpletely-state—selected e%perimént
is clearly éuite difficult); it is encouraginé to one who desires
- a relatively easy way of calculating observed scattering'properfies,
for if interference is neglected the semiclassical gkpressioné
degeneraﬁe to purely classical, ones. For élassicaliy allowe&
processes whichvinvolve an average over some of the imitial or
final quantuﬁ numbers, and/or the'scattering anglé,:opé.therefofe.‘
expects a purely classical (e.g. Monte Carlo) treatment to be

adequate. This conclusion has been one of the reasons that most

of the recent semiclassical work has dealt’witﬁ;cléssic311Y“fcrbidden
processes (see'Section IV) for which.purely'élassical treatments are

inapplicaBle.
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With regard to reactive processes, there have been several

attempts at applying classical S-matrix theory to the

H+H, (n, = 0) > H

5 (ny ) (n2 =0) +H : : 3 (3.32)

reacfion in the.energy region above the classical threshold.30
" Bowman and Kuﬁpermann3; and Wu apd Levine32 have tfeated'it'
within tﬁe cqllineaf modei,.and Tyson, Saxon, and Light33 have
considered the coplanar model._ (George and Miller34 and Doil,,
George, ahd Miilér35 have treated this same prdcess witﬁin.a
coilinéar'and_fully_threé—dimensionél models, respectively,:iﬁ

thé énergy'region below the classical Fhreshbld for reactién,'

but this "classicallf‘forbidaen"Acase Will‘bé discussed iﬁ‘Secfiéh
IV;) For thé éoilinearvmodel theAQuantity of interest is ﬁhe
réaction probability as a function of collision energy; both

31,32

. groups of workers find rough agreement between the semi-

classical transition probability and their quantum mechanical
results (apart from a resonance. structure which is not reproduced
semiclassically) for energies not too close to the classical
threshold, with the semiclassical wvalues beéoming poor as the
energy decreases to the classical threshold. The coplanar
calculations of Tyson et al ~ are at one collision energy, for

j1 = j2 = 0, and the differential, as well as total cross section

has been considered; they also find rough agreement between the

- "primitive" semiclassical and quantum mechanical cross sections.
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In neifher the collinear nof the coplenar cases, however,

- is the_egreement es quantitative_ae for the non-reactive appli—

- cations discussedvabove. The difficulty liee.in apﬁlying the
appropfiate'uniform semiclassical expression, fervthe small
differences between eetion integrals‘of the-verious trajectories
which contribute to the 0 > O transition makes the "primitiveﬁ’.
semiclassical expressions_inaceurate. For»the collineer case,
for example, Figure 3 shows the feective quantum nﬁmber_functiee‘
né(al) of Wu and Levine32 for the case n, = Ovand a.tetal energy

of 14.7 kcal/mole. Because the function is so "flat", i.e.,
. o - ‘<
|n2(ql) - n, | <1

for all 51’ the uniform semiclassical expression based on Airy
e .23 ) o i 31 -
functions (which. was used by Bowman and Kuppermann™ and Wu
and Levine32) is not applicable. (This is also true for an '
elastic non-reactive transition when all inelastic transitions
‘are classically forbidden; this is of little concern, however,
'since one is usually not interested in the elastic tramsition
probability in such cases.) A uniform semiclassical expression

>3

' : . 3 . " . ' .
based on. Bessel functions is the appropriate one for this

case, and one would expect it to give much more satisfactory
| o 31,32 | |
results than those reported. >3

- [Briefly, the Bessel function uniform expression'is generated

from the primitive semiclassical expression



31—

o 2
P - 1/2 /2,7 .2 m A .
nz,nl = (pI‘ S Pry ) sin (4 + .2) o
Y 1722 2 m, 00 S o
+ o e ) cos’ G+ | | (3.33)..‘
by the feplaéement
sin?(® 4+ 8, T2 _ 2 1/2 3, (z) = .. (3.3%a)
4 2 2 ‘ L
27rv"A<I'> 'TTIZ 21/2 2 C ‘
cos (Z‘+ *2-)“* -2—(2‘ D) . (Z) /(1 - "‘) > - (3.34b)
where n =_|n2 - nll and z is defined by the equation
: /2 o S . .
_(z2 - nz) - n cos }(n/zQ ?'%? . N ’ (3.35) .

See reference 37 for a derivation. 1In cases wherévthé”Airyifunction7 
expression is valid, the twd‘unifarﬁ‘sémicléssical éxpreséiqns are
essentially equivalent. For tﬁe case of préSent interest, ni‘
= hz ; 0, and Eqs; (3;33) and (3.34) become

2 2
. N T 1/2 1/2.° _ AD
Pnz,nl =z 80 L " e ) »Jo( 2)
- 2 5 2 .
2 S |
oM - &Y, 3ae
where the fact has been used that Jo'<2? = —Jl(Z).]

Figure 4 shows another example of the collinear reactive

quantum number function nz(al) from the paper of Wu and Levine?2



~32-=

this one also for ny = 0 and for a total eﬁergf Qf.13.7 kecal.
Here_tﬁe function is considerably more ccmpliﬁated-thén those
of Figure 1 or Figure 3, there being four trajectoriés tbat
coﬁtribﬁte to the 0 + O reaction. At firstvglance one might
expect no‘semiciéssiCal.treaﬁmenf to bevpossible;-Connor,
however, Hasudeveloped more genefai uniform semiclassicai
formulae which take account of four terms, and_it would
clearly be desirable to see if these éxpreésioné’give more
vacéuraté résults for.tﬁis apélicatioﬁ;

In highly quaﬁtum;iike situations such as.these; therefore,
it is necessary ﬁo use the apprapriate ﬁniform éemicléssical -
expressioné tO'bbpain quantitative resﬁltS‘for transitions
‘between individual,qﬁantﬁm sté;es; Thera will,:tdo, un;-
doubtedly be cases.for'whicﬁ‘tﬁé quéntum ﬁumEer function is
too.highly strucfured for any sémiclaséical treatﬁent to be
- quantitatively useful. |

_Finally, I would liké to discussvbfiefly the bi—médal
structure that has been observed recently in product vibra-
.tioﬁal state,distfibutions‘in three-dimensional classical
trajectory calculations.39 It is illustrative to see how :
“this ariées'éven in the simplest situation, the non-reactive
_collinear model. Within a éompléteiy classical framework,
.ﬁeglecting semiclaésical interference térms,vthe‘nl:+ n,

‘vibrational transition probability of Eq. (3.28) is
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' . A
P CL _ 2n "In?_"" (qI)I]

. -1 , |
+ 02 o) a1, o (3.3D)

where EI and.aII aré the roots of Eq. (3;24). Considéfing n,
for the moment to.bé a confinuous variable, as n, approaches
the maximum or the minimum of nz(al)v(See Figure l) it is
clear that the transitibn brobabiiit& in Eq. (3.37) becomes
infinite (becaﬁse nZS(al) > 0.) As a conﬁinuous function of
n2,bthe hi > n2 transitién prdbabiiity will.thus have thev
. qualitative shape sketched in Figpre 5 (which aléo shows
the-éeﬁicléssical interferehce);

In a Monte Cérlo calculation the classical probability.
of Eq. (3.37) is actuall& not the quantity calculated, but

rather this transition probability averagéd over the final

‘quantum number:

n2+1/2 .
N AV = ran, po, ©(3.38)
277" n,cyz 2T o - _ A

and one can easily see that this gives

_ AV
n, < n

where Aql is the increment of the 51 interval for which

n, - Ty () <n, e . o U (3.40)

2 2< 1 2 2
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This averaging procedure rounds off the two classical infinites,

leaving finite peaks; for the case ny

= 0 the two peaks usually.
overlap so that there is jﬁst one peak, but this need notvalWajs 
be the case. |

The.bimodal structure of the vibratiohai state aistribution'.
is thus simp;y a result of the fact thgt nz(al) has one maximum
and oné minimum. The.effect is entirely analogous to the
classical rainbow5’6_in élastic scatteriﬁg which fesults
- because the deflection functién O(b) has a ﬁinimum._ It is
possible, too,vthat nz(al)_gquld_have‘mgre than one reiative
-maximum and minimum, hence the classical'vibrationél state
v‘distribution.wbuld have mofe than two maxima.  1£ seﬁiclassicél
interference is t;ken éccount of;‘thén there can of course be J

- any number of peaks in the vibrational state distribution even

though ﬁz(al)vhas just&one'maximum and one minimum (cf.-Figure 2).

As no£ed in the Introduction,‘all quanfum effects are
a direct reéult of the supefpdsition principle and muétvthéfev
fore be contéinedg at ieast qﬁalitatiyely~within the semiclassical
model. This section discusses more.eiﬁiicitly Eoﬁ"scattering :
resonances arise semicléssically. | |
. Consider first tﬁé case of a potenﬁial, or "sinéle pafticleﬁ
resonance which results from one—diﬁensional tuﬁneiing'through

a potential barrier (see Figure 6). T, the probability of



"j_R :Ii—T,kthe probébilitybbf féflection ffom'the bartiér;tis_f w

.tdnneling throuéh the bérriérg’isjgiven by "

o -=. e_ze/ @+ »e-fge) , : (341)

whefe:Q:isiﬁﬁe:bérfiér.penétratidﬁ-iﬁtegréli'
A.Ar3 o R ;:2 i/z_f. .i”QLffﬁ"‘l:_:'f"3f.v oo ij:l¥< o
6 = /7 dr {2w[V()-E]A"} 5 o s T (3u42)y

’;TThe one—dlmen51onal’ —matrlxlls glven by a éum of,amplltudes
'.oﬁe for eagh\possiﬁle tréJectqry.. (Ther¢ 1s morerth;n‘oﬁe: F}ﬁ‘i ij,f;}f
vtrajectory.ﬁécéﬁge tunneiiﬁg'isiﬁeing aliowed'fér.5F fHe.simpieét:iijﬂf
-p0551ble traJectory 1s one that comes 1n from large.r and 15

"jreflected at r 3, the amplltude assoc1ateé w1th thls is

: ,3'+iﬂ;ﬂ‘"
1/2 T2

TR (3.43)

. where

SRR o T PRI A N P
le [~kr + S dr Ck(e)1 ~~ci3,ﬁ,j*_f,;>*gi*; T (3.44)
ki(r_“) = {Zm[E' = V()15

o k(éj.  :l_f ”'_-' '
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'.Thevpre—exponential factor is the squaré roqt of the probability for
this trajectory (a reflection at the barrie;), the phase-ﬁg.reéuits
ény time a.refleétion occurs, and the phaée no.isvthe uspal semi-
classical phase shift for motion from r“= © to r.='r3 andwback>to
Another'bossibie trajectory.is éne that coﬁes in'from'infinity,
travels thrdﬁgh the barrier, moveé across the.poteﬁtial ﬁell and |
" back, and then tuﬁnels back‘out through the barrier. The amplitude
associated with this trajectory is

2. _ : -
(Tl/2) e Tim e21¢ .e21n0 - B o (3.45)

- where ¢ ié the>phase integral across the potential well . o

I, o '
¢ = [ dr k(x) 3

ry :
the probability fagtdr-corresponds to‘fhevfact'fhét t@oitunnelings
’are.required. A third possible trajéctofy is similar»to the previous
opé except that instead of funneling back out of the péténtiél well,
vit is feflected.at the barrier and mékeé an additional passage baék
and forth across the well beforé tﬁpneling out. This trajectory.
involves two funnelings, one barfier reflection, and two reflections_

at r = r,, so that the amplitude associated with it is

l’

2 i e o o o .
: (Tl/Z) 1/2 (e 13) e41¢ e?lno - v~ (3.46)
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: TThese three trajectories are depicted schemaﬁicallyrin.figure
7. Cleaflyvthere are an'infinifé number of poséible trajectories
afiéing'from the various number of éscillatibns the particle.may
make béck and forth acroéé thé_well before it tunnels back out
. thrbuéh the barrier. The amplitude.for the trajécfory that
makeé N fdund trips across the well is v |

2 N-1- LT 2N-1

a2 @2y i o21N0 g Gun

The S-matrix, being the sum of the amplitudes for all possible

trajeétories, is thus'given by

N-1

' #r . 1y 2 5 ®
s=rY2 e 2 2o 4 (p}/2) 2oy gl/Z)
' N=l -
. 2N-1 . : :
" A C(3.48)
and this geoﬁetric series can be summed to give
N 2 7 S H
s = ~1e2iMo |pl/2 e ] S o (3.49)
‘ - 1+ rY/Z G210 ’
_ ;o200 [xt/2. 27 . C o (3.50)
© Furthermore, it is not difficult to show that
Cgll2 0 24p . . :
R +'e = 3211’.11. s ) . . (3.51)

1+ Rl/zezﬁ)
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where

-t
N = tan ‘ltane |EFe ) - , (3.52)
' T+e™)  +1
so that the net phase shift is
n=n +n . » . ' (3.53)

Egs. (3.52) and (3.53) are the semiclassical result that has been
' , ) - 5,41,42 ’
obtained previously by a number of other approaches.”

‘A “"resonance" thus occurs from the constructive interference
of the many trajectories which contribute to the process (elastic

scattering in this case). To see'this more explicitly, suppose

the energy E is far below the top of the barrier so that

R=1

T << 1 - '1;

the sum of multiply reflected terms in Eq. (3.48) is- then given

approximately by
2in, & 24N -9 - .. o (3.54)
IT e ©° X e 2 o . .
N=1 o
Each. term contriﬁuteS“yeryxlittié (since T << 1), but there are -

many of them. If ¢ = ¢(F) iéisucﬁ"tﬁat

¢ (E) é-%‘ﬁ o ; ' L | (3.55),.
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n being an integer, then

RECEE I 7» o (3.56)

for all N, and the sum in Eq.'(3.545 is infinite. Eq. (3.55) ié thus
the condition that all tﬁe_termé in Eq. (3.54) add up‘in_phasé and
cause a‘resonance; it is also recognized as the WKBV(Bohf—Sommerfeld)
quantﬁm conditi’on43 forvthe potenfiél well.

Progéedipg more formal»ly,l}-4 thevdefidition.of a résqnahcé is
.that the S—matrix, éonsidered aé a.function of the_(complex—valuéd).
energy, have a éoie; the real part of this complek pole is fhe |
_energy at which the resonance occurs, and itsvimaginary part is
the width of the resqnance; or reciﬁrqcal lifetime of»the'éollisibﬁ
compleﬁ. Rgferring to Eg. (3;505; the égmiclassical S-matrix has

‘a pole if

14 rME Y Lo

or |
| a v+v e_—ze)l/Z + e 2o )
or . . |
b =% o [-a+ e T
or o |
6@ = @+ br - Eamn e PO Gy

where it has been emphacized that ¢ and 6 are both functions of E.

For the case that the energy is far below the top of the barrier,
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and one can write

E = Er - iT/2

with
T << E :
_ T
thus
. _ . L T
6E) = 0, - iz)
) - i 9T (E)
T 2 r
and v
-26 -28

n(l +e 77) =z e : R _ _ _ o

so that from these approximations and Eq. (3.57) onme identifies Er

as determined by the quantum conditién of Eq. (3.55) with T given

R T T: | X '
P=5e /0" E) . . | (3.58)

The potential resonances discussed above‘are-"cléssiéally’.
forbidden" processesb(See Section IV) in that tthiﬁvolvé tunneling.
"Classicaily allowed" comblex formatién-is possiblé only for systems
that have internal degrees of freedom in addition to translation;‘
i.e., claéSically allowed resonances must bé "multiparticie
lresonanéés", These inte;hal ekcitation; or Feshbach resonances

" - result from an energy transfer mechanism: . if the interaction
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between A and BC is attractive, when they éollide more emnergy may
be traééfefred into excitation ofvfhe internal degfees of freedom
than is energétically'possible'wﬁen A and BC are infinitely
iéeparated.'vAs A and BC atteﬁpt fo sépafate;‘thefefore; a
transiatiénal turﬁing point is encéuntered so tﬁath aﬁd BC

suffer another colliSion, and so forth,:untilrthe internalv
degrees of f?eedom loése sufficient energy fbr A and EC (or

AB and C, for exémple, ifvreactive proéeéses are possible) to.
. separate. |

| Classical complex férmation such assoutlinéd above has been
KoEServed in a number of classical‘Monte Caflo trajectofy studies»,-4
and Brumer and Karplu546 have recently fepgrtéd an exténéive |
'stqdy of alkali halide - alkali.halide'reacfions_which_involﬁe
’ long—livea collision complexes. =~ These purely claséicallyvsﬁudieé
cannot, of cbufée, describp ﬁﬁé fesonance sfrﬁctﬁre in>th¢ énergy:.
dependence of scattering properties,vbut rather giveban‘average ‘
energy dépendence;>the resonance struéture,»a Quantum“éffect;'is..
deéCribed only by a theory which contains the quaﬁtum_principle |
. of superposition.

To see how Feshbach resonances appear in classical S-matrix

2

theory, consider the éollinéar H + CL collision.aébstudied By '

Rankin and Miller.47 Figufé,S shdws the quantum number funcfion
nz(ai);-for_one region ofal the functioh‘is smooth, these trajectories
being."diréct“. The remaining interval pf al leads to cpmﬁlex

trajectories, thosé which spend a number of additional vibrational

- periods in the interaction region; for this region of 51 values
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the final vibrational quantum number changes dramatically with ’
small changes in 51’ The S-matrix for the particular transition

indicated in Figure 8 thus has the form
s=sy+s, . B ER)

where SD is the "direct" contribution which is constructed in the
usual semiclassical fashion from the two direct trajectories; the
"complex" contribution is the sum of many terms

-1/2

‘Sk = %;{QWi.nZ“(EK)] ' exp(i@Kfﬁ)_v P v:v' - (3.60).

Analogous to Eq. (3.54)'15 the discussion of potentiel resonance;,
each term in Eq. (3.60) makes a small contribution (because n '(qK)
is Qery large), but there are many such.terms. Since the various '
complex trajectories differ from one another essentially‘byvthe
number of osc1llat10ns of the colllslon complex before it decomposes,
the actlon integrals @ differ roughly by integer multloles of the
'aotron 1ntegral for an oscillation of the-complex. Thus if the

" energy is such.ther

@K - @K, = 21 X integer,
~ the terms in Eq. (3:60) will add up in phase to cause a resonance
in the scattering; at other energies the interference is destructive

~and S = 0. The Yverage" resonance contribution to the transition
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probability—-i.e., the quantity obtained in classical Monte Carlo

,46

' . 45 e 1 . .
trajectory calculations ——results if one discards interference

‘terms in ISRIZ_(sinceithey are quehched by averaging over an energy
interval larger than the resonance widths) and averages over the
final vibrational quantum number (cf. the discussion related to

Eqs. (3.38) - (3.40)):

o, +1 | -
[dny 35 [2m|n, (q]1.

ol
Ty T2

1
2
|

12

i

Aql/Zﬁ o,
: Aql being the increment of the al'interval for which‘nz(al)_iéiin
‘the interval (n2 - %3 n, + %). This avérage probability is also

the quantity for which statistical approximations are often good.46’47
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The reader will recognize that the'sémiciassical origin of:
the resonance, namely the»constructiﬁe interference of the
amplitudes associated wifh the many tfajéctories that arise
from a colliéion complex,-is the same for Feshbach (multi—
particle) resonances as for potentiél (singienparticle)
resonances; The éhysical mechahism causing the collision
complex is quite different, however, being barrier tunneling -
for the case of a single degree of freedom and aﬁ energy
transfer befween-degfees of freedoﬁvfor the Feshbach case.

‘From fhe point of ﬁiewiéf numerical calcﬁlatioﬁs it WOﬁld
appear that thé semiclassical treatment of Feshbach resonances
is quite impractical. By looking at Eigufe 8 it is clear the
diffiéulty one woul& have in finding all the roots of ﬁhe-'

semiclassical relation
nzﬁql) =,

which are needed to construct the rescnance contribution to the
' . . : 48 .
S-matrix [Eq. (3.60)]. Recently Marcus has developed a semi-
¢ lassical treatment. of Feshbach resonances that attempts to go
beyond the "primitivev semiclassical description outlined above.

\

It may be that this could turn out to have some practical utility.

D. Atom-Surface Scattering.

As another application of classical S-matrix theory it

is interesting to see how the scattering of atoms from a solid

surface is described. (The extension to scattéring of molecules



o

v{__?‘

bv”"should al

='the problem

BY

v;for the partlcle.ls-

49

80 be clear ) Thls has been worked out by Doll dojf*';

solld surface one means that the surface 1s belng i

| lrepresented by a potentlal V(r), so that the Hamlltonlan'x

H(E’E)'.:_ P.z_/2u_+'v.(_r;)' SRITREPN &

"where.r

(x,y,z) and p = p D 5D ),_3giishthe directioh perpendichlar:?.}]':”

Y

to thetsurface,_i.e;;

~Lim

e _rllm

ZH>=o0

"~ and the surface periodicity is

':>V(x,y;z) =.V(X + mak,y +.na§;z2” rl]{a_315,f~

I k
f ~1-

V('xr_,y,_z) =

S

| S

C~

1s the 1nlt1al'momentun, then the quantlty of 1nterest 1s"dy

is the lnltlal ‘wave Vector of the partlcle, 1 e.,%k:

| "clos ly parallels Wolken s50.quantum mechanlcal formnlatlon of;:;re”h*'“

@

jwnere m and n are 1ntegers of (a 5a ) are the unlt cell dlmen51ons. -
Y- S . R
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the probability that the final wave vector is ké; quantum mechanically,
this is given by the square modulus of a probability amplitude, or

S-matrix element -

2
JSEQ © 51'

Pk'

Ky < k&

Since internal degrees of freedom of the surface are being neglected,

the scattering of the atom must be elastic, i.e.

so that only two components of the wave vector can change indépéndently,
kX and ky, say. Thus one actually seeks theVS—matriX on the "enéégy.

_shellﬁ
o (3.64)

Since the desired S-matrix element is in a cartesian momentun
representation, it is clear from the general prescription outlined in

Sectioﬁ IIT A that the ¢ldagsical S-matrix is given by
_ Bk, k) P -
o 1% 5 _ . . .
Bk, K k, ® =c y=anerel B exp[10(k, k) /]
; . Lo ) ' : -
2” 2 141 1 » 1. (3.65)

where the action integral ¢ is
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aGky,k) = 1% ae (¢ -

- ar Gp + yhy +zp) (3.66)
t v v _ .
The meaning of Eq. (3.65) is analogous to Eq. (3.5); the initial’

: ' c s 51
conditions for a trajectory are specified as”

p. =-k
*1 *1
= ik
ST
: ' 1/2
.2 2
p, = ~(2mE -~ P, — P )
g1 S B
zl = large and positive
TN + Py, Zi/le
*1 =X1+Px1 'Zl/pzl . S BRSO

K, (x ,y ) and K (xl,yl) are the final values of k_ and k that
result from this traJectory, and the S-matrix element in Eq. (3.65)

is constructed from the trajectory (or trajectories) which satisfies

i
o

K (x,y)?
21l *2
X (Xl’yl) "k, T C R

The constant C in Eq. (3.65) is a normaljization factor that will be
specified below. As usual, if there is more than one root to Eq.

(3§8),“Eq; (3165) is a sum of terms, one for each such trajectory.
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K c kK (E) 'be-thevs4matr1x Qf Eq. (3.65)
1 1 ‘
that is constructed from all roots of.Eq. (3.68) for which §l

and §l lie in one unit cell:

0% ¥.< a | o (3.69)

If il and §i satisfy Eq. (3.68), then it is clear from the symmetry
of the potential energy function [Eq. (3.62)] that a root to

Eq.'(3.68) will also result if one makes the replacement

1 1 tomag

§1+§lﬁ-nayr , o A . (3.70) -

where m and n are integers. The resulting trajectory is identical
to the original one,simply shifted an integral.number of unit cell

dimension parallel to the surface:

x(t) » x(t) + ma_
y(&) » y-(t) +‘na"y‘: ~
z(t) » z(t)

o) +'13 ()

for all t. The pre—exporential factor in Eq.(3.65) is the same for the

L4



' The contribution to the S-matrix from this new trajectory is

 : therefore given b§- ~ j

__whéie‘Aki #Hk’“ -k .,iAk_v='k Sk '77:5,:}“5'

Co48-

two syﬁmetrically'related_tfajectories, but_tﬁé phase,”defined BY Fv€;,fa&sz~

’f.j_Eq,‘(3.66),_is'changed according to}?”

7% aellx(t) + mag] b+ [y(e) +nay T o
B A I SR

":‘ff.z(t) ﬁ;}: ;;':,“'x;v

T olypky) mmagle, s ) mmayey mpg ). GID

Kk <k ok .(E) ?3? (flmaxgki
,_,Xz‘Yzy XYy L S T

'

- ina Ak ;"7; 1‘.f,:f11* . 3.12Af'kf¢ -

‘X2 _. Xl>v>‘yl.:,y2. v.yl

S e

‘Since the above arguments are Valid'for any integers m and n,ftheh“' S

'“S—matrixvglement'that results from all rodts,’»'?'2 7 '“

Lee

sy s

e < x

Cdis o
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.

)y = g0 ' 5 [
ok, etk B TS g ex B ewlimadic
X909, "1 %1 X9 ¥y F V1™
~ina: Ak ]
A 4
o 0 _ :
= Sk k cx K (E).<Z=-wexp(—1maxAkxi)
S ¥ Yy K N : .
x[3  exp(-ina Ak )} - . (3.73
. <n=—m XP(‘ nay y)> ( )
If
, ;XAkX = 27 x(integer) v s

then the sum over m will be infinite (since all the terms are ﬁnfty);
it vanishes otherwise. Stated more precisely, the Poisson sum - °

formula implies that

and similarly for the sum over n:

in_m?xP(,lnayAky) E;_mﬁ(n —§E4Z ) S (3_75)

The interference of all symmetrically related'trajeétories, i.e.,
‘the quantum principle of superposition, thus leads to the Bragg
diffraction law which allows only certain discrete changes in the

‘ C oy e o . .
x and y components of momentum. The S-matrix element S, which is
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constructed from those trajectories with initial values §1 and ;1

v

restricted to one cell, is the S-matrix on the "diffraction spot

"~ shell".

-

To summarize in more convenient notatiom,, let E be the:
initial translational energy and (Gi,¢i) the polar and azimuthal
angles of incidence. The initial conditions for a trajectory

are specified by ”

pxl = -hk slneivcos¢i'
v._pyl = 4k 31nei 31n¢i
igl =»vﬁkfcosQi‘ 5 R v o ' o K3:76) N
X /2 . | . . oy
wheré -k = (2mE) , and with (xl,yl,zl) given as in Eq. (3.67).

From the final values of the x and y components of momentum one

defines the "diffraction order" functions

M(x ) = (kX -k, ) ax[2n

.
171 ) |
N(Xl,yl) = (k —_kyl) ay/Zﬂ_ | . | o (3.77)

Y2

The relative intensity of the (m,n) diffraction spot is then given

by o .

e, ) ' _ - _
o (E) =:[Smn(E)| ' E D , - (3.78)
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where

s jn T2

]
~

s (B)

a_ a_ exp(i® /fm, (3.79)
mn . X y.a(xl’yl) mn L :

with ;l and §l determined by the "quantum conditions"

and where an is given by Eq. (3.66); the sum in Eq. (3.79) is over

all the roots x

1 ‘and yl in the 1ntervals ((La ) and Q,a ), respecn' '
, v .

tively. The proper constants have been supplied 1n.Eq. (3. 79) SO..
that the relative intensities are normalized to unityfwithin-the ‘

usual classical limit:

2

™
e
K

fdmfdn |S__|
- Tmn!

R

JdmSdn (a a ) -1 IB(N N)
: Xy’

-1 3, - @ v -
(axay) gdxlg kdyl‘ (1)

With a semiclassical description such as this it is possible to
discuss rainbow phenomena” in a manner parallel to the treatment in

. . 5,6 49 . 14 . . ll‘ :
elastic scattering.”’ Doll ~ has also discussed the “quenching  of

the diffraction spots which results when imperfect periodicities of

the lattice are taken into account.
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E. Photodissociation.

Thé final application.of classical S—matrii tﬁeory to
be dis;ussed is the description of photodissﬁciation of a‘cbmélex
(efg., triatomic) molecﬁle; The completely classicai deséription,-
essentially the "half—collision" modeliof Holdy, Klutz, and
Wilson,54 is discussed. first, and then the semiclassicalﬂversioﬁ
of the theory is presented. A completely quantum mechanicél |
description of the‘précess has béen dé&eloped_in detéil recenily ‘i
by Shapiro.55

"The quantity of‘interest is the tramsition dipole,

<Ey Ezl“lﬁf g . S R

-

which describes the procéss
ABC (N,) + hv > A+ BC (n,)  , = S (3.82)

where the total energy of the final (dissociated) state, EZ’ is
related to the photon's energy by

E, - ;1 (yl) = hv ; o " S - (3.83)
from this dipole matrix element the absorption coefficient is given

by standard formulae.56 The classical Hamiltonian for the ground

electronic state is of the form
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Hy (p,1) = p’/2m + 176 BN | - (3.84)

where'(p,r) are the cartesian coordinates and momenta of the system.
To define the initial statejlgl> semiclassically, however, it is
necessary to introduce the action-angle variables (N,Q) for the

~ground state potential energy surface V.; this requires that V (r)

13
v‘be separable; and in most applications one wbuldvprobably go
further and assume it to be harménic. A bartié#laf‘set pf integérv
values of tﬁe aétién vériables g, ﬁl’ is the élassical;”or_semi— '
classical equivaient of'the quaﬁtum state |§l>, and the'eﬁe?gy.

El(Nl) is simply the Hamiltonian H, expressed in terms of the

action~angle variables:

1l

ey . o )

(Mote that rotational effeété are being_neglectéd in thié simplified

- discussion; if one assumes that rotation and viﬁrétion afe separable,
then it is.a trivial matter to incorpbrate;rotation eXplicitly;) The
state ]E2n2 in Eq. (3;81) is anscatterihg.stﬁtevon the excited elec-
tronlc potentlal surface V (r), the state correspondlng to total"

energy E2 and to BC belng asymntotlcally in state ln since the

2 ’

quantum numbers n 'refer to the diatomic fragment BC with A infinitely

separated, no assumptions about the potential surface szr) are

-

required.
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It is simplestvfirst to uee the phaseuspace approach discessedv
in Section II B to construct the purely classical eipression for
the‘square medulus.of_the dipole matrix element in Eq. (3.81).

Thus if M denotes the total~number of'degrees of ffeeddﬁ, one
has

L2 ! 2
S - _ o
empn,lily, > = @) Jdp Sapy uGGyay))

* Ol = Nppod)d Syq[n(ey08y) - 2pl OIFp = By(y.01.(3.86)

where (éi,gl) is aﬁ.arbitrary set of canonical variables (since

) phase space integrals‘are invariant to a canoﬁical trensformation),
'Q (pl,ql) is the set of h—l quantum numbers of BC that result from

a (dlssoc1at1ve) traJect01y that beglns on the exc1ted potentlal
surface VZ(EQ with initial conditions (Ei’ﬂl)’ and g(gl,gl) is the
set of M vibrational quantum numbers of the ground etate potential
sﬁrface expressed in terms of the variables (él,él); the subscripts
on the delta functione denote their dimensionaiity. Hz(él,él)vis“ 
_the classical Hamiltonian for. the excited potential surface express—
ed in terms of (Bl’ﬂl)’ and p(r) is the transition dipole fenctlon.57
In terms of carte51an coordlnates’and momenta the Famlltonlan H.

2

~no

Hy(por) = p/2m + V,(0) o | (.3.v87)

but in order to evaluate:Eq. (3.86) it is most convenient to choose

(g,a) to be the aetion—angle variables (N,Q); Eq. (3.86) then becomes
~ o~ . ~LT .
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I<E2?2|U!§l>| = (2mh) _fdgi p(g(%&’gi))

x ‘SM~1[3@1’91) - n,l ‘é{E‘Z —‘H2(£\Tl,g-,l_)] e (3.8g)

Since

2. _
| 32 = 2 /2m + Vz(g)
=p /2m+V, () +V,() Vl(l:),
= H + AV (x)
= E (W) + AV (x(;9,)) s
where AV = V, - V,, Eq. (3.88) becomes

IR 2 =Y 2
]<E232]p[§_l>| = (2m) fdQ; m(xy)

a0 = Bg) 8L, - By -] G

. where ¥, = r(N Because of the M delta function factors in

31 NpsQy)-

" Eq. (3.89), the M-fold integral over Q1 can be carried out, giving

the final result

2 -1
|<En I]JIN >| = 1(g;) l:(ZTﬁ‘i) IMI} . (3.90)

-where the'Mndimensiohal Jacobian determinant is evaluated at the
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'vélues of Ql-EE {Qi(tl)} determined by the M equétidns

(3.91a)
n(Ul,Ql) |
ML) =E -E ) s (3.91D)
n(Nl,Ql) is the set of M-l asymptotic quantum'numbers of BC that

result from a dissociative trajectory beginning on poténtial

surface VZ(:) with initial conditiomns

31 r(Nl’Ql) | o . Gu2)

~

Py = p(Nla»l) . - . . | ,(3'?2§?

If there is more than one réot to Eq. (3.91), then Eq. (3.90).is a
sum of such terms over all roots. | h

| The physical picture whichhma?~be attached'fo.Eq. (3.90) and
(3. 91) is as fOllOWS'54 up'until time ﬁl’ say, the system is in .
state.lN >, i.e., the actlon variables have these partlcular 1ntegerv
vaiues énd the conjugate angle variables at time tl’gl’ have random
values in the internal (O;ZW); the corresponding values of tﬁe, -
carteéian coordinates and ﬁomenta at tl-aré rl = r(Nl,Ql), Pl _

2(§ ;gl).' A photon is absorbed at time t ,'whlch changes the

1

botential function from Vl(r) to Vz(p), but which conserves the

instantaneous values of the cartesian coordinates and momenta.

Since the absorption;process conserves the cartesian variables, the
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kinetic energy, p2/2m, cannot change, so that the photon's energy

hv = E2 - Elvmust be matched exactly by the instantaneous change

in the potentlal energy [Eq. (3. 91 b)]. A classical trajéctofy
beglns at time ty on the exc1ted potentlal surface with 1n1t1al

: conditinns Cr ’El)’ leadlng to dlssoc1atlon of ABC into A + BC(n)

In order for the M~1 quantum numbers of BC to turn out to be the

specific 1nteger values n2, and for the potential energyvdlfference_

AV to be exactly hv, the M varlables Q A{Q.(t )},ei.;bl, ceenl,
must be chosen to be certain spec1f1c values IE q; (3.91)]; Ine
intensity of the transition is the square modulus'of;the transi-
tion dipole fnnetion at {i; weighted by the Jacnbian which nans“’
the initial random'variables‘gi Qnto-specifiC'final_valnes of
o and v, : : . :

| _It would not Bé practical or even desirable, howeVer,.tO'
carry out a elassical calculation-in’the:abnve.fremewofk. - The -
practical difficulty would be related tobfinding the-rnots.of

Eq. (3.91), the usual multi—dimensional root~search problem, end

the result would be undesirable because{é%%égiinthe.Jacobian‘
‘deﬁerminant cause singularities, classical-"nainbows", in the -
classical probability distributinn in Eq.:(3.90).> To_remedy,’ 
“both of these features one averages the'ciaSSical expression.'n'

over a quantum number increment.about n, and over some increment

about E2: ,
1
~ Bty E o, t3 |
Sy 2201 el e Ly 2
L T

(3}93)
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: ”viénd‘fromLEq-ﬁ(3F8851this i$ seénvto give f f "i:

| -"5?2“«2!.‘%'12151 C (zm)'«j g fdQ .él . "X:(’gl’lg.-]__’EZ’EZ)_’,j (394) Ll

" where | T T T e e AT

CAf

SR R |

and o

‘s;;and'x' O otherWLSe. A Monte Cario proce&ure wbuld'probabiy:be-theﬁj ;;] e

_most eff1c1ent way to carry out such a calculatlon,:’ tbus-w1th '

1"¢N flxed Ql would be chosen at random

)) and n(k

)

*'.;Where}f?i}&gte:randém §uqber§‘in (Q,l? AV(r(Nl,Q1 1’Ql
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are then determined and.the value of p(El)Z/e added to the
appropriete'quangum numbe; and eﬁergy Vboi", wiﬁh the procedure
repeated many times.

The semiclassical versionvef the above classical descripfion
is fairiy obvious;.the matrix>element itself-(i.e. ehe amplitude)
is constructed fifst and then fhe squarevmodulus formed. The
~ classical limit of the amplitude_is the squére'root‘of the classfj'
ieal expression in Eq. (3;90) times a phase faetor, and enalogoue
to the discussion in SectionviI>B‘one can see that the eppropriate
phase is °
(2 (x

- (1)

Fa 1’“2 B (3.95)

where Fé(l) is the Fz—fype generator for potential surface i,

Since I and El refer to the same time, ti, and gince Vl(z) is

‘separable, the first term in Eq. (3.95) is eimply the sum of one
diﬁensional generators of the form in Eq;‘(Z.S) for each vibrational -

mode. In the second term of Eq. (3.95), however rl and n2E2 refer

to different times, so it is convenient'to think first of a canonical

transformation from pi to r2, the carte31an coordinates at time tys
and then a transformation from pz to,(nz,Ez) by the general

. . ; . 1,
prescription for combining successive canonical transformations,

one has

(3.96)

cmz)cfl’ﬁzEz) =% (2)(r1’r ) +F (2)(3 3 2) B >
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and the first term here;sthe generator of the dynamical transformation

, 58 o - -
from r1 to rz, is known™ - to be the action integral along the trajectory

), N ),
Fyigsry) = =Fp (rpry)

]
1
-
A
(a3
o]
p¥int

(3.97)

in the second term of Eq. (3.96)tzé and (pz,Ez) both refer to time'tz,
so that it is simply the F2~generator.for'potential surface V,(r) at
time t2, i.e.,

(2) M-1

(rz,anz) = P R + f (EQ 22) R B : ﬁ3:98)

‘Wﬁere f BC is the F,-type generator for diatomic molecule BC.
The sem1c1a531cal expression for the dlpole matrix element is
therefore given by

o y 3G,am ] 2
<Epmy 1> = 1 Gy) 2”1) |

3%1
X exp [104mE,) N )/H] -, IR DY
where |
t,
@(J Z,N ) = [ dt p- -E (1) (r )
tl ’ .

@, . _ S
Ty Gty - ~ (3.100)
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There will typically be more thaﬁ one trajectory that obeys the
appropriate double—ended boundary conditions, i.e., more fhan
one root to Eq. (3.91), so that Eq. (3.99)‘wiil'be the sum of
several such terms. | | | |
If the eﬁcited_stéte potential surface is repulsive; sé
that the“dis§ociative trajectoriec are "direct", the dipole
matrix élement will be a smoothnfunction of EZ’ i.e., the
aBsorption spectrum is "continuous". If, on thé otﬂer hand,
V,(r) is attractive so that the com?lei ABC liVeé azlong time
before dissociating into A-and BC, the quantum_number:function
ECE&,gl) will be highly structured (cf. Figure 8) and thus a
large number of terms will contribute to Eq. (3.99);. Aﬁalogqus'
' to the semiclassical discussion of resonances invSectionviI D,
these many;tefms wiil iﬁterfére ﬁesfruétively at_ailvbut certain

specific values of E, at which the interference is constructive

2 .
and the matrix element extremely large. In such cases, therefore,

there will be a "line spectrum', with the width of the absorption

lines related to the time the excited state lives before dissociating.
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IV. - CLASSICAL S-MATRIX: CLASSICALLY FORBIDDEN PROCESSES.

Classically forbidden processes are those that do not takev
place via ordinary ciassical dynamicé. _The:simplest(eﬁample éf
such a'progess is oﬁe—dimensionai tunneling through a potential
barrier, and the "classically.forbidden" concept is essentially
a generélization of tunneling to dynamical éystems of mofe tﬁan
one degree of freedom. In addition to béing one of the'moét -
intrinsically interesting éspects of classical S-matrix thebfy,
the ability to describe classically forbidden processes - for.
vﬁhich a compietely ciassiéal theory is obviouély inadequate -
provides an extenSion of élassicai trajectory methods that may
have practical utility; particularly the "partial aﬁeraging" mpd?

of calculation discﬁssed in Section IV C.

A, "Introductory Discussion.

The essential idea is that classical forbidden transitions

are treated by analytic c¢ontinudtion. To motivate the approach,

cansider - evaluation of the definite iﬂtegral

‘I = [ dt g(t) exp [if(r)/A] - (4.1)
-0 ' ) . 8
by the method S L . o
y the method of stationary phase; this is an asymptotic approxi-
mation which becomes éxact as‘ﬁi+'d and which is the basié semi-
- ¢ lassical approximation. ‘If'to.is the point of stationary phase,

i.e., the root of the equation

f!:1::(t)‘=0_ ’ v ' o ' o “(4,2)
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then this approximation gives
[y ] 172 - S | -
., 2mif . -
I= g(ttg {%TTTE;i] exp[lf(to)/ﬁ] B ,.(4.3)

If theré is more than one point of statiénary phase;_i.é.; mofe.
than one root to Eq. - (4.2), then Eq. (4.3) ié a sum of similarvt
terms, one for each such root. |

If ;ﬁere are no foots to Eq.\(4.25; then the "primitiQe"

.stationary phase approximation implies

although it is true that in such cases the value of the integféi
is.sméll; one often Wisﬁes to kﬁoW“Egﬁ:small - lOTz;:say, or 1Of4.
To determiné the asymptgtic'approgimation to the integrai.in such
cases one analytigally continues Eq. (4,3); the méthématical
apparatus for which is the "method of éteepest descent".59 This
approach notes that although there are no real values of t which:'
satisfy Eq. (4.2),_there will in-general.be complex Qalues which
do so - provided, of‘courSe, that it is possible to analyticall&

v coﬁtinue the_funétion £(t) into.the complex t-plane. Tﬁe meﬁhod

of steépesf descent then deforms tﬁe path of integration in Eq.

(4.1) from the real t-axis,

I = fdt g(t) explif (t) /] , R Y
¢ o

-~
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where C is a contour in the complex t-plane which pases through
the "complex point of stationary phase" ts. The resulting ap-

proximatiori59 for the integral is exactly the same as Eq. (4.3),

the only difference being that tos the root of Eq. (4.2), is

now complex, and g(to) and f(to) are the (unique) analytic
continuations of g(t) and f(t). Sinc'e-to is complex, g(to)

and f(to) are in general also complex,sotthat'the.squéré;quulﬁs of
the integrél;.whighiisnuspallyjthevquantity of interest, is giveﬁ by'

2 2 ' , :
. 274 L o o
|I| - .lg'(t‘o)l‘ val(to)l .eXp[—ZIIrff(to)/’ﬁ].- .‘ (4.5)

'The'qriginal integréi;in Eq. (4.1) requifés the functions f(t),.»
vand g(t) only at_réal vqiues_of't, and it is the asymptotic
Vappfoximation to the integral whichjintroducés their ?nalyfic'
continuation_to\complex t.

To illustrate how classically forbidden pfocesses>are described
with this type'of approxima%ion? caﬁsider tunneling through'a
one—dimensignal’potential barrier as sketched in Figure 9. Apart
~ from some irrelevant constants,‘the amplitude fbf the particle
 vgoing from.tﬁe left to the'right of the barfier at fiked energy E
is a matrix element of thé green's fuﬁction, which in turi is
é Fourier transform of the propagator:

o

<x, | G(E)Lxl> = amty at e

iEt/ﬁ’<X2|ef;Ht/ﬁ1xlS (4.6)
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r o : .=1/2
—1 o ¢(X?’Xl;t) '
= (i8) — [dt P ‘Bx [ (=2t
% eipUg% [Et“+ ¢(x2,xl;t)]} | s o R CN

. where the classicalélimit propagator has been invoked in_Eq. “. 7).
Conéistént With.classical—limit quaﬁtum mecﬁaﬁicé,? thé‘infegral
over t is eﬁaluéted by'stationary phasé, tﬁe fime of stationary
.phése being determined by

- .,S¢(x;,xlff)
. Q0= E + - 5t e

(4.8)

But classical mechanics impliés'that.the time derivative of the .
. action integral.alpng a trajectory is the negativé of the energy“

of the trajebtory:

89Ge,x ) . S
e S EepEe o Ge

v Esz,xl;t) being the energy of the trajectory that:goes from Xy

to x, in time t. It is clear intuitively (and can be shown

rigorously) that the»trajectory which connects %y and X, in a

very short time must correspond to a very high energy, and the .

one that takes a long time to go from.x__,1

to x, corresponds to an

ene?gy just slightly aﬁove Vmak; i.e.,

gim E(xy,%p5t) = %o | | | (4.10a)
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£im E(xz,xl;t) = Vmax . | : s =v : : ~(4.10b) .
>0

Thus for any value of E on the range

.V < E < ®»
max

there is a real value of t, 0 < t < «, which satisfies the

stationary phase condition, Eq. (4.8); this corresponds to °

1 2

if E>V . TFor E X v :, however, it is clear from Eq. (4.10)
. max max’ ST _ ¢

the Jordinary classical trajectory which goes from # to i
-that no real value ofvf satisfies Eq. (4;85; andrthe transition
is thus classically erbidden; i;e.; tﬁere is nﬁ-real—valued .E
trajectory~at this énergy‘whicﬁ;oﬁeys the approériate.double—

~ ended bqundarybconditions. It is possible to.anafyticaliy
§9ntinue ¢C$2;xl;t);.however, and find a complei value 6f t which
satisfies Eq. (4;8); the stationary»phasehépproXimatiénvthen |
proceedé in the manner discuséed abové, and'the_resuiting e
expression fromvthe transitidn»amplitude-is the'same as if

the fransition were classically allowed.
<x2]G(E)]xl>‘~vexp£ﬁiEto + ¢(x2,xl,to)]} S (4.11)
except that the time ts the root of Eq. (4.8), is complex.

_The action integral ¢(x2,xl;t)_i5'the time integral of the

Lagrangian
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DGeyx ) = Jar' Sy k@D - vaen| . a2
A |

where k(t') is the trajectory determined'by solfing tﬁé equatiéns
of motion with the boundary conditipns #((D = kl, x(t) = XZ'
In order to analyfically continue ¢ to compiei‘time, thgrefore,
it is necéssar? to analyticaily continue the trajectory‘k(f')
itself to complex time. For systems withAmore_than one deg;eé
of freedom trajectories must of céurse be determined by nﬁﬁerical
integration of the classical equations of ﬁoﬁioﬁ step'by7sﬁep in
time, so that thezanélyfiéfcontinuation of é tréjeétéry (and
tﬁerefofe the action iﬁtegral) fo cémple# values of time in
‘ generai procéédS'as fdllows: rather than incrementing the -
time variable along théreéi_teaxis; ohe'incremehts it éldng the i
desired éontour in the complex t plane. Since'numerical_infegra—
tion of thg equations-of motion3vam6unts to appfoximétiﬁg the
coordinates and momenta aI;eaéhJ integration step by polynomials
int - a manifestly-analytic.re?resentatibn'w it_ié clear that
numerical integration step by step along a complex time contouf
does indeed'generate the:analytic céntinuétion of the coordinatés
and momenta; and thus the action integral, from wﬁiéh the classical.
S~matrik is coﬁstructed: The expreséion‘for tﬁé classicalAS—matrik
elemeﬁt for a classically forbidden.process is the same as for a
classically allowed one [Eq. (3.5)1, the oﬁly difference being
that the appropriate trajectdry is‘complei—valued.

Anélogous té the present use of com?le# time to construct

‘amplitudes which refer to a definite energy is the more familiar
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use of complex energy to describe time dependence. The most
common ekample_of this occurs when considering the‘decéy?of a
prepared state:60 'The.probability~amblitude that the syéfém'
has not decayed ffom its initialvstate 1¢> is-a diagonal matfix
element of the propagator, which is conveniently written as a |
transform of thevgreen's function [essentially the inverse of

Eq. (4.6)1;

[>e]

[ aB

00

e—lEtﬁH

_'<¢|e"iHI/ﬁ1¢>_5 (=2miﬁ)fl <¢1G+(E)[¢$ ' C(4.13)

Clearly only real values of E appear in this expression, but

. e . . . +
since the analytic continuation of the green's function G (E)

into the lower half E-plane often has a pole in that region,

‘?~1Htﬁﬁ'

<9] lp> = A/ E - E_ + il/2) , - ‘ (4.14)

it is convenient to-convert the above real integral into a

S o 60 . |
contour integral enclosing the lower half E-plane. If there
is only the one such pole, then evaluation of this contour
integral is triyial, giving

oT1E rt//ﬁ. e-r;/ Yol

,' . | “.15)

_ the square modulus of which gives the probability that the system

bas not yet left its initial state:
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|_<¢|e—;Ht/ﬁ|¢>.| = IA] e Tt/ﬁ L (4.;[6)

Thus although energy and time are obviously real pﬁyéical
quantitiés;_it is a useful mathematiéal.devise'to invokethe.ideai
of complek enérgy (a "complex :réigenvalue™ or cdmplei pole of tﬁé
: greepfs function) when considering time evolution, and convérsely;
‘the notion of cqﬁplex time when_constfucting amplitudeé that
refef to'pfoéesses'at a definite enérgy.

B. Applications.

a Classicai.S—métrix theory has been applied tq.classically '
 forBidden processés in‘A + BC collisién systems; both collinear
and three;dimenéional models, feactive as well as non—reactive -
procgsées having been studied..-This section discﬁsses some of
.these_results.

Consider first the simplest céSe, thé non-reactive collinear

system, for which there is just one internal degree of freedom.

To construct the classical S-matrix for the nl -+ n, transition
one must find the roots of the équation
np{gg) = my ) ' R o an

vhere the meaning of the quantities is the same as discussed in

Section III B. ¥Figure 10 shows the function nz(al) for ni.=.l

and for an energy such that all inelastic transitions are
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probabilities; this is actually the typical situation for
vibrationally inelastic processes in thefmalvenergy kinetics.

For n, + n, there are thus no real values of ql which satlsfy

1
Eq, (4 l7) there are, however, complex Values of ql which do
so = provided of oourse that one can aoalytlcally continue the
function-né(al) to find them._. |

. .To evoluate nz(ﬁl) for complex values of al onle must
iﬁtegrate fhe classical equafions of motioﬁ:wlthloomplek—'
.'yaluedAinitial conditions; During the course of suoh.él'
,trajoctory, all coordinates and moménta.become complek—.
Valuedé6l but this causes no difficulties slnoe the oﬁjéots
of ph&sical'meaning, the quantum numbers in the ésyﬁptotic
regions, are réal«valnedAfor thé.trajectoriés which satisfy -
the appropriate double-ended boundary conditions;‘SectionvIV B
of reference 9 discussés thesé poinfs in some detail. The |
classical S~matr1x is still given by Eq. (3. 25) but tﬁere is

nOW‘typlcally Just one complex root of Eq. (4 17) for which

Im ® > @ so that the vibrational transition probability is

E)/ﬁ] (4.18)

» nl(E) - 127 [n,' @ 17T expl-2mm0 (g0,

where ® is the action integral of Eq. (3.6). The exponential
damping factor which multiplies the "classical" probability
" factor (the reciprocal Jacobiaﬁ) is the multidimensional

~ generalization of the tunneling probability for one-dimensional
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barrief benetration, i.e.; élassically forbidden pfoéesses are
esSeﬁtiallyva_generaiized kind of tunneling.v |
The first calculations of the type Qutlined.abdvé were
carriéd out by Miller and George;ez‘simiiarwgélcﬁléfions were
carried out.independently by Stine and MarCus.63  These reéultév
'aré in excellent agréement (a few 7) with the.ac;urate‘qﬁantum '
meéhénical values o£taiﬁed by Secrest and J‘ohnsonz4 eﬁeﬁ.for
. : . : 11

extremely weak transitions with.é.ﬁrobabiiity as>émall as.loP

It is.thﬁs epcouraging;thaf the semiclassical model is ablg

tovdesdribe sﬁch quantﬁm—like fhenomena for whiéh.ordiﬁaryb';

(i;éﬁ, real;Vaiued) classicalmtrajectory'methgdsvwould clearly

be inépplicable. | |
It shoula'bé'noted iﬂ passing»that fdf thié.honrreactivei

collineaf system a completély quantum‘meéhanicai (i.e.?wéoupled

channel) calculation'may actﬁally be nb mofe difficult -~ i.e.

require ﬁo more computer time - thah thesé_éemiciaésical cal-

culatioﬁs{ Whether.this is true.or'not'is Eeside fhe‘Point,

'6f-coufse, fér fhe obvious .interest in the,ééﬁiciassicai'model

is fhaF it can be app1ied to.physically_reél@stic three~dimén_

sional systemsv(seg Section v C).fér.which coupled chanﬁel'ﬁ-

:calculafionsrate usuéllyumréasonablétﬁhlgss sjwplifyiég;ayﬁrpéimatiohs are

int;oduéed.v The purpose for cérrYing out semiclassical cal-

cﬁlatiogs fof collinéar sféteﬁé is.to obtéin definitiﬁe

comparis§nsﬂwith reliable Quantum mechanicai Véiues (which

exist only for collinear systems).



-T2~

Doll64 hasvapplied'classical S—matrix théory to the
collinear A+ EC collision whére.atom.A and B interact‘via.
a hard sphere coilisién; this is the model stﬁdied quantﬁm
mechanically by Shuler and Zwﬁnzig.65 Doll treats classi-
cally aliowed and forbidden processeé and finds‘good agfee—
menf'between'semiclassical and quantum mechénical tfansition
probabilifies; This is évremarkabievachievement for the |
semiclassical.thebry, for the hard sphere.intefacfion is
far from the "smooth" potential that one #ormally assumes
to be necessary for tﬁe dynamiés to be classical—iike;'.

George and Miller34 have also treatéd clasSicallyv
forbidden traﬁsitions.ih the collinear reacti?é‘gystem B
H+ H,(n, = Oj > H,(n, = 0) + H'at'colliéion énergies
below the claésical'threshold for reaction. 'The reactién
probability is given by Eq. (4.18) for this case also,‘andv~
fhe_only new feature of the calculation is that,thevébmplex
time'pafh must be éhosen to insure that the reaétion does‘
oécur; choice of a purely real time path wouldIOflqourse lead

to a non-reactive trajectory at these energies. éection IV D
aiscgsses some of tﬁese aspects of the caicﬁlation in more
detail,

"Since this_galculatién by Geofge and Miller34 there
haVe been several extensive quantum_mechanicél célculatipns

. of the reaction probability in this energy region on the:

» Porter—Karplus66 potential surfaéé; the results of Schatz
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and 1Kupperuwuu§7 and Duff and Truhlar68 are in excellent
agreement and can be considered to be the numerically exact
quantum mechanical values. Figure 11 shows the comparison

67,68

, . .34 : .
of the semiclassical™  and quantum mechanical values

from an energy just below the classi;;lrthreshéld down to

where the transition probability has dropped to belowIlO—lO.:

- The agreéﬁent over the entiré rénge of ten orders of magni~

" tude, for this éfocess which shduld be as highly quantum?like N

as any encountered in molecular dynamics, is impressive. The

rélative error ih the semiclassical values, 35-507%, howe;ef,

, is.greater than thét for the non-reactive collinear'éxamples

discussed above (typically a few % relative error). Whether

this is due to inherent limiﬁations of the‘semiciassical

model or to some semiclaséical effect which has been over- .

-looked, is not clear ét present. The direction of thé error

is mystifying éinéé argumeﬁts basea an tﬁe.analogy to one-

dimensional tunneling imply that'theVSemiciassical result

should err by being ﬁoo large, the opposite of what is seen

in Figure 11. : ' B - .
'With.régard to three dimensional A + BC collisionbsystems,

Doll and Miller69 have calculated a few specific S-matrix

elements for classically forbidden vibrational.excitation in‘f
1$Hg+-H2 collisions. Agreement with quantum mechanical values
is good, within the uncertainty of the correct quantum mechanical

values, A number of S-matrix elements have also been calculated

by Doll, George, and Miller35 for reactive collisions of
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H+ H,(n = 0,0) ~ H, (n 0,1) + & .

1°31 2’32
in three dimensions on the POrtef—Kafﬁlus66 potentialvsurface,
agéin in thg tunneling region. .Agreement with the quantum
mechénical Calculatiﬁns of Wolken andearplus7O is ‘quite
‘ reasonable (within‘a factor of 2), butAhere again the quantum_:
mecﬁanical values, alfhough the most serious treatment thus
far, are:prébably not the numeficélly exa¢t éuaﬁtum results
for this potential surface;

In the three aimensional A } BC examples discuésed ébové

" the S-matrix elements

s ILE) | (419
23222,n132( ) ’ . R ( )

vere calculated semiclassically. Thus with the initial quantum

numbers n &, - and tﬁe total angular momentum J_and total

103107
energy E - held fixed,'the conjugate. angle variables an s EJ s
' ’ 1 1
62 must be chosen iteratively so that the final quantum numbers
1 . :

take on their desired integer values; i.e.,.one must solve the

three equations

‘n,(q ,q, ,4, ) =n
2 0,73 21 2
3.03 59, s4, ) =3
‘2 nl iy 'Ql 2

"
o

0@ 2T, 55, ) ¢ - . O (4.20)
2% %0 T | T
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: simultaneously. (See Section III E of.reference 9 for more
discussion of‘the semicléésical descriﬁtion'of three diﬁgn_
sional A‘+ABC.collision systeﬁs.) Because of the difficulty‘_
of findingvthe roots of Eq. (4.20), a multi-dimensional root-

. search problem, it.is not practical fo calculate £he large
number of individual S-matrix eiements that would Be'neces;aryb

- in order to construct actual cross sections. .(Although T&son,
Saxon,.and Light33 have, with,considérable efforfg-cérried out
'such.calcqlations for coplanar H + H, collisions{)»IThé Valuei
of tﬁeée th:eé dimensioﬁal calcﬁlatidﬁs has been td show that

_ the sémiclassical'model,to the extent thgt_it éan be applied, -
provides a #easonably accurate description of the éuanﬁum
effects in<molecular collision dynémiqs. As a practical means:
for carrying out calculations for three diménsionai A+ BC
cdllision processés the "partial averagiﬁg"_appfoach descfibed :f

in the following section is fortunately much more useful.

" When considefing three dimensionai collision éysfems'
one is of course not interested in individual.s—maﬁrix elements,
but rather‘éross sections_that involve sums over many of them.
»'Under realistic conditions, too, the cross sectionsVof iﬁtereét-
are a.sum and average over some of the final and initial quantum
states.'jfor Fhe_stiil quite idealized procesév

A '+‘ Bg’(nljl) >~ A+ BQ(hzjz)

> AB(m,i) +C
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for example, where the m-components of the rotational states are
. not observed, the integral cross éection is a.sum over three
quantum numbers:
T < g ) =—5—"— § - @I+1
2 2, 171 : kl (ZJlfl) J,ll,ﬁz ' :

ls

IR
% , @B . §4.21)

Dydg%aysmydyty

As discussed in Section III B, quantuﬁ interfeience strucfure
tends to be quenched by these sums, and if the tranéitidn is
classicaliy allowéd, the semiclassical theory then effeétively
degénerates to a completely classical result.

To see explicitly how the Monte:Carlo classical éfocedure ;
emergeé; note that if interferencé terms are &iscérded the.'
square modulus of.the classical.S;matrix [Eq. (3;5)] fér a

clagsically allowed transition is‘given:by'(settingﬂﬁ =-1)

o . 4
. 9,34 2.) -

Sn infln,n, gL (J,E) = (2ﬂ)3 I _2 E 2_ I . s (4.22)
23272 M1 9Cq, a; qp | |
= . | oM™

so that Eq. (4.21) becomes :

o . . (E)) = fdijag_rag., -
nydy €3yl k12(2j1+1) L2
. v . o 1 |

3 (n,3,%,) :

, .23 - = e .
(2m) olqa_q. q, )
_ SRR
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whefe it has been assumed thaf.enough guantum numbers cont:ibﬁte
to the sums in Eq. (4.21) to justify replacing them by iategrals.
If tﬁere are at least a few'values of nz'and jz'thatfare claesi—
cally allowed tran51t10ns from the initial values (nl, J ), tHenb

it is perm1851ble to average Eq (4.23) over a quantum number

width = about the integer values of n, and j2:
, 1 . 1
my e Ity S o
Oy« o B = fdn CJai, o), (h2s)
Padp ¥ My "1 N 1 My i
n,my 1273 '
and with Eq. (4.23) this becomes
o L . () = fdJfdL. fdn, fdj,fdR
n,j, < n.j 1 2,,. 172 2 2
2i2 7T ki) | |
ot C9(n, 3,8 ) -
27 4 1 22272 :
] L (ks
- (2m) 3(q . q/Q > '
- | J1 1

The advantageous feature of this averaging process is that Eq..(é.ZS)

now involves an integral over all the final quantum numbers nz,jz

and 22, so that a change of varlables of 1ntegrat10n from (nz,Jz,Q Y
to their conjugate initial values (ﬁn Q. ,q2 ) - i.e.,
. . 1 - .
A _ o ) o
fd fdv fag, - fag_ f "Effgigfgl__
. . - d -— el -
npldipfdk, = Jag, Jdq, Jaq, IB(q q q )
1 1 1 n,7j R

~ introduces a Jacobian factor which eéxactly cancels the one in

Eq. (4.25). The resulting expression for the cross section is

considerably simplified:
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' ' T 27 + 1
o . (B = = [d2,fdJ[dq Jdq, fdg 2L
nyJy €3l k12(2j1+1) 1 np 3y 2 (am?
S -
x plg - Inz(qnl,q ,ql 2|] h[ lJz(q l,q »,qz lel,
26)

(4.

where h(x) is the unit step function,

i.e., the product of the two step functions isl if

1. = = = !
n, - =< n,( q. +9, ) < n, +5=
2 — L WO | >
2 anl 5,°%,7 = "2 72
R R R
Iy D) < Jz(qn »4q . ,qz ) < Jo +'2— s

191 ™

and zero otherwise. To carry out such an integral in practice
one 51mply sweeps the 1ntegrat10n variables — now all initial
condltlons - tHrough their complete ranges and ass1gns the flnal

values nz(qnl,qjl,qzl)‘and Jz(q l,qu,qz ) Fo the appropriate

quantum number "boxes", thereby generating'in one éalculation

the cross sections from (n ) to all cla531cally allowed final

1’31

states.

. The limité of integration are & = Q > ® and J = ljl - 211

> (jl + Kl)'but Eq;'(4.26) is cast in a more obvious Monte Carlo



- and-replaciﬁg J by the variable %,

ft'where‘ ‘

'f.'form‘by_replégingvki by the impact parameter.b,'

rETIa gt O D (g L e

- for'which.thelintégration”limits_axe Z = Q’+ 1.}*It is aléo-#fflff.f‘”iﬁ“"

' customary to cut the impact parameter integration off at some : .

o value B beyond which there are no trajectories'whichnléad”to:igig“

" the transition of interest; since

B 1
wf db 26 = wBOSAE

“:_§ =_(b/B§2f5 1 o o v»l,:.p‘:  ?f_;iatiji;“.: :: }1.(4;29)F 

,‘changes of varlables 1mplled by Eqs. (4 27) (4;28),_éndffjj;f  vf&’

(4 29) 1ead to the de81red result"fajff' o

"'-f* h[“"‘ In (qn 24y ’qg, ) = ng[] hI - lJz(q Y ,qg ) - 32[]

(4 30)
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where

2 1/2

Pt Q) (25 + D7

. i .
- J Tty [(21 -3

The cross section which is summed over find rotational states,

q . (B
0y ¥ myly

ikl

Ing|
Q
~
t+
—r

0

= . q
2

fdj g .
T2 myd 1

is given by a_ similar expression:

1 1 1 1.1

. ’ 2 ) - - — ._
a . (E;) = 7wB" JdE Jdz fd(q_ [/2m) [fd(q, /2m) fd(q, /2w)
P Tmydy 0 0 0o " 0o 1 o *1
L | | - | |
% hLE - lnz(qnl,qji,qzl) f nzlj . - (4.31)

Since all five integrals in Eqs. (4.30) and (4.31) have limits

0 + 1, implementation of Monte Carlo integration procedures is

straight-forward.

If the n transition is classically forbidden, then

| 141 7 Pl
although the above development is obviously inapplicable as it
stands, it is still possgible to follow it to éome extent. Thus it

is still a good approximation to neglect interference between -

various trajectories which contribute to the same S-matrix element-
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 since they will be quenched by the sums:— so that Eq. (4.22) is

modified only by the addition of the expdnential‘damping factor:

| ; B(nzjz .
0] 272? 131%1 . B(qn q. qz-)
. . 1917 |
X exp(e2m®) . (4.32)

Since only a very few‘vibrationalistates.aré inﬁolved- Beééusé
the'transition is wéak - it is not bossiblé tobaverage‘over the
vibrationél §uahtum‘number és Qas'ﬁone above;].However there will
still typically be a reasonable numbef'of.fin;l roﬁational states'
that haVe compaf#ﬁle.transition»proBébilitieé; For fhe H + Hz.-.
0) reaction in three diménéions, for example, thé

’ Jl
72

clas51cal traJectory results of Karplus, Porter, and Sharma "

Cn = 0,

“show that flnal rotatlonal states j, = G ~+5 all have comparable

probablllty for energies just above the class1cal threshold even

2

The "partial averaging" procedure is thus to average over

though n, = 0 is the only energetically open v1brat10nal state.
the final rotational state but not the final vibrational state. -
(The reason one wishes to average over as many final Quantum
numbers as possible is that boundéry conditions for those degrees

of freedom can be'replaced by initial conditions, thereby

eliminating_the root-search problem.) Since

(5 2.)
Jar,fdj, = qu Jaq, |~——2—3~
. J l 1 S(q q ) n,,n;

. g 2771



—-82~

the partially averaged expression is

a . C(E) = e fagfdg, fd(q /Zw)fd(q J21)
n232 < nlJl 1 2(231+1) _ iy 21
1 , o - ..an,' —l . , :
v , n, L

© - wbere qn is not 1ntegrated over - in Eq. (4.30) but rather must be

chosen to be that speclf;c (complex) value for whlch

n,(q 3q, ,q ;2 »31;7,E.) = n . ._ o (4.34)
2%y 2% T T 2 B
The root-search problem has not been eliminated, but has been
reduced to a one dimensional one which must be carried out many
ti:mes.73
. The same changes of variables as introduced above in Egs. (4. 30)

and (4 31) can also be made in Eq. (4.33); so that the more useful

expression for the cross section, summed over 32, is

: 11 1 1
9) . (B)) = B2 defdzfd(q /ZW)fd(q /2wy - ‘ . B
.n2 + n]_Jl 1 0 0 0 1 2’ e T
X B (38,8, 4, 39ED 0 L sy
0,0y 171 i &l 1 o B o ( _‘_}
Wwhere e ‘ v",‘fmm
2’“ (jlzlq qll, D= [2w| [] _exp (-2Im2)  (4.36)

Dimensionally, P defined by Eq. (4.36) is a collinear—like
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vibrational transition probability [cf. Eq. (4.18)] ﬁhich depends
parametrically on the initial conditions of the other degreeé of
freedom. The analogy to a collinear collision is.purely formal,
however, for-there are ﬁo dynamical approximations Which_have_
Been int?dduce&; the oniy approiimationé inyolved, beyond that
- of classical S—matri# theory itself, arévthe'neglect of inter-
ference terms between differeht trajectories thaf contributé:to o
the samevSPmatrix element and the assumption that enough j2—values
bave comparable probaﬁlllty for a sum over them to Be replaced
by an 1ntegral |

The clasqlcally allowed version of Eq (4‘35), namely
' Eq; (4. 31}, can also be.wrltten in the form of Eq. (A 35) by

defining the classically allowed vibrational transition probability

- as

. 1 -
*n,,0, Gt A A e "(2“”‘1‘1 n, P77 In, @, 1’qjlq£ 1y 1JE Y

;-nz.lj (,4.37)
s Eqn {21 s
v my |

which is also recognized as the form of the averaged vibrational
transition proﬁability<for a éollinear;model Icf. Eq. (3;39)].
(For‘truly co1linear systems it is a poor.qpproﬁimation, of

_ course; to ignore the interferéncé terms; ﬁowever; éince there
are.no aveﬁages over aother variables to quencﬁ,them.)‘ In Botﬁﬁl
the allowed and forbidden cases the crass sectidn can.Ee4written.

in the phenomenological formboften.used iﬁ “energy transfer tﬁeory,]4
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“n, ;:nljl(El) - “Bz<<;92 = ﬁljl(Elz> - R (4.38)

wheré the "éverage transition ﬁréﬁability" is thevavérégé 6vér.ﬁhe

four initial cbﬁditions as in Eq. (4.355;'with the inﬁegrand gi&en

By Eq; (4.37)vand Eq. (4.36) fdr the‘classicaily éllowed and

_forbidden cases, reépectively. | | |
Althqugh,onlyrintegrai cross sections have been discussed;

it should be‘cleaf thét differential cross~Se;tions;_i:e:;'

'angular disfributions; can also be generated ﬁithinvthe Monte

Carlo framework; these are defined by

1

n, <n

e . (E)
Sy el

d (cos 8). . (cos 6,E ' 4.39
Jd (cos 9) 0n2<_lnljl(cos‘ )  ( .a)r

il

aj fd(cos 8) O . . o
f\JZ‘ (cos 0) n,i, +—nl31v(cos efEl}'. (4.39b)

-+ n, cross section differential in final rotational

Tp qbta}n the nlJl 2

state and in scatteringAangle - i.e., O (cos 0) - there-

T nyly < myly
fore, oné’simply;defines a set of ";z—boxes" and ";qs 0 - boxes",
and with the integration vériaﬂles in Eq. (4.35) chosen by Monte
Carlo the ﬁumeriéél.valpe of the.integraﬁd,i.e., the‘vibrétional
transition pfobébility,'is aséigned fo the j2._ andbcos.e'; Box

, which correqunds‘ﬁo the final vaues of jzvand cos é.for the 

trajectory which satisfies Eq. (4.34), i.e., the one from which.

the transition ?robability in Eq. (3.46) is constructed. The
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distributions in iy and cos 6 are thus obtained simultaneously

with the computation of the integral cross section © . s
~ - . P2 My
the only limitations being the usual Monte Carlo ones — that is,
the more differential the quantities desired, the more Monte
Carlo points required. Thus it might require oniy 50 Monte
‘Carlo points, for example, to evaluate the integral cross
section © ., to within 10% statistical error, but a
n, < n.j : .
2 I - ‘
larger number of points would be required to obtain the
‘distribution of final rotatiomal states, o, - - . , and
_ - : U242 171
"a still larger number of points to obtain the "doubly

differential" cross section, O (cos &), differential

Rodp € My .
in j, gnd cos 0, to within lOZ'statisti;al error. It sounds’
vvery.mucH like»the éxpérimentai sitﬁétion: The more detailed i -
vthe-information.desired, more»ié the effort.which is fequired.
Préliminary feéults of caiculations such as theéé‘have
been feported‘by Miiler and]&aczkowski75 for'tﬁe 0 +Il vib-'
-. ratiomal e#citation of szand Hf; Preliminary calcﬁlations
have also been made76 for Vibrational excitation ofVH2 by
Li+, and comparison with the coupied‘channel caiculationS’of
Lester77 are quite encouraging. Figure 12 shows thé cross .

sections O , for (nl,jl) = (1,0) and n, = 0, as a

Bpdy M3y | .
function of the final rotational state, for an initial
translational energy of 0.684 eV, Since there is a 10-207%

~ uncertainty in these preliminary semiclassical results, and

. probably a similar leVel'of uncertainty in the quantum’
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L : 78 - . » )
mechanical values, : the agreement is essentially exact at
this stdge. Also shown in Figure 12 is a phase space
distribution

@3, +1) [E, ¢

_é(.O,jz].v L R o  .(4.40)__
€(n2,j2).being the vibrational;rotational energy.levels'qf
HQ, which has ﬁeen.ﬁormalized tolfhe>tdtal éross'section of

.thg quantum and semiclassicélbcalculations.’ Thusvaltﬁoqgh
there is consiﬂeraﬁle rotatiohgl eﬁci;ation:in the 1> 0
vibrational deaéti?étion; it is not nearly‘SO'much.as a
completely random redistribution of the rotatlonal energy:

Numerlcal Integratlon of Complex—Valued TraJectorles.

: Althgugh.the,formalism of classical S-matrix theory
' deais Witﬁ.initial and finai.values>of action—angle‘variables;
it‘is-éctﬁallywmost,convehient to carronutbﬁhe'numerical
integration of Hamilton'S‘equations-in:cartesian coordinaﬁés.
and momenta. 'The‘?rocedure is that one specifies initial
condifions in Ferms of actiqn—angle variaﬁles (é.g., nl,qﬁ 5

1

Jl,q ’ Zl,ql . ), transforms these into initial conditions
. 1 -

J1 .
for the cartesian.VariaBles,'carries out the numerical integra-
tion of.the trajectory in cartesian variables, and aflthe end
of.ﬁhe trajéctory-transfroms the final values of ﬁhe cé?tesian

nvariablesﬁ into final values of thé'éction—angle yariables

(e 8-> n2,32,2 PR I Appendix C of referencev27 gives the

expresslons for the 1n1t1al values of the carteslan varlablesv



~87-

in terms of the action-angle variables (see also Section II B
:of reference 69).v Wigh.regard to the transformation at the
' endbof fhe trajectory;-the finai angula? mémentum variables

.jé anavﬁz'ére'easily3detefmined from the ;artesian vafiables

By using the classical relations

\ o L1720
Iy = [y Xp,) © oy Xpy)]
8= &R, xp) - ®, xp 1%
"2 2 2 M2 T R2 3
where (gz,pz) arévthevcartesian_variables of.the diatom and

......
~

(%;P) the cartesian variables for fhe‘atom—diatom;separation.»
The final vibrational Quantum ﬁumber is determined from the
cartesian.yariables'by first'cbmputing the total eﬁergy of ,
'the_diatom

€y = (p,+p,)/2m + va,) o, o | “»‘_v_;_l  '1 (4.41)

v (x) being the vibrational potential of the diatom, and then

solying the equation

for nzi(since j2 is known), where €(n,j) is the WKB energy

level formula for the diatom; it isg usuélly\kndwn.as a Dunham
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-expansion. Alternatively, with €, known from Eq. (4.41) n, can be

. computed directly from the WKB quantum condition:

L r>__~ A X :. 1/2 -
(nz + T = £ dr.{Zm[ez - v(x)] fvjz_/r?} e (4043)
: B o o ‘ ' ;

To a large extent the actual numerical integration ofvcompleX~

valued trajectories is the same as for ordinary real-valued ones;

~ this is possible by taking advantagé.of the complex arithmetic'cap—

abilities of FORTRAN IV. - Thus itvis only‘hecessary‘to declare alll

the coordinates and momenta, and the time increment; to be COMPLEX

yariables and use essentially the same numerical.intégratibn algori— -

thm79 —'e.g., Runge~Kutta, AdamééMoulton, etc, - as:used for real-

. yalued trajectories. Since it is often convenient, however, to

vary the direction in the complex. timeé plane of the complex time.

- increment, Miller and Geqrge62 developed a variable ste?—size

predictb:—éorrector algorithm; it'haé_the_variableis#ep—size énd
self—startingvaanntéges of Runge—Kptﬁa roptines with the'éfficiency_
of a prediétor~corre¢tor (e.g}, Adams—Moultoﬁ)méthod. Appendix C -
of reference 62 gives the preaictor.and correctéf'formulae for:thev
fifthigrder [error n 6(h§)] version of the algorithm; uSed'in'tﬁe.
PECE mode,79 tﬁe integrator has éxceilent stability charaétefistics.

v The priﬁcipal feature which distinguishes the numéricélA
integrafion of compléx-valued trajectories from real—ﬁélued’oneé
lies in the flexibiiity_one has in choosing the cohpléﬁ_timé path
_élong which time is incrémentéd. 'Althoﬁgh the quantities from which ‘

the classical S-matrix is constructed are analytic functions and thus
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: . _ . ) ]
independent of the particular time path,” there are practical
considerations that restrict the choice. Thus although trans-

lational coordinates behave as low order polynomials in time, -

o

S0 that'nothinggdrastic happens to them when t becomeslcomplex,

the vibrational coordinate is oscillatory -

r(t) - req n cos{wt f.n)

.=~ S0 that it can become exponentlally 1arge along a complex txme

path. The complex tlmeApathxmust be chosen, therefore, in order
to stabilize the vibrational motion.

There are a variety of ways of stabilizing the vibrational

 motionm, but the most satisfactory procedure we have found to date

is to head the oscillation always toward its next equilibrium
position. Thus at time t_the valuesr_, t , . Ir_ = r(t )}, etc.]
AR _ n n n’ n " Tn “n

are known, so that for t near t one has the approximation

' ' 2 : : L
r(.t)=-rn+f: (t—t) %—"(t—t) , o - (h.44)
-and one wishes to choose the next time, tn'+.l; so that
- x (tn + l)' = req H . S L - _(4'45)

solying Eqs. (4.44) and (4.45) gives"
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11
rt
1
ot

n+1 n
RGO R SR NN SISO ki SR (R

vith the * sign chosen to insuré Re(At).$.0.80 Actually one wishes
only to causé §(t)-to.head in the'direction of feq; thus the new

~ time increment is chosen to have the:Ehéég qf that in,Eq. (4.46)
but the_ﬁagnitude determinéd by the trunéation'e:ioruestimateuof
the integréter.62. If At is givenAby Eq. (4.46),_then tﬁe.new

time increment iS Chosen as
h(At) /|t )

where |At| is the complex absolute valug of At and h ié the

. magnitude of time incrementvallowéd by_thé intégrafer.‘

.‘ " The ébove algorithm forvchoosing the cdmplex'timé patﬁ.applies‘ .
to non—reéctivé A +.BC_collisions,'collinear or thfée-dimensional,
throughout the entire trajectory; It is currentl& being used, for
example, in the "partial averaging' calculations described>in the
'previqus‘éection._ |

: . o ” 34,35
To describe tunneling in reactive systems,” ’

A+BC>AB+C

The above procedure must be modified somewhat. If r, is the

vibrational coordinate of diatom Bc; then the above procedure



for chdésing the time path is followed with regard té the variable
' r, until A and BC reach their:distance of closest approach. At
this pqint the complex time path is.chosenvto cause the réaction'
to occ#r;'i.é., one wants rc(t), the Vibrgtionél éoordinaté of

AB, to head'toward its equilibrium value. Thus the same procedure
is used tb choose the time path but witﬁ,regard to rc; the vib-
rational coordinate of the new diatom.

The procedureé described above for chﬁosiﬁg the complé# time
path are the most generally satisfactory ones we have.found thus.
far, but they should nbt be considered the finélvanswer to the
Problem;, Vari&ﬁé different approache$ are still being actively
Pursued, and it.appears.thét there is still much to be learned

about analytically continued classiéal mechanics.
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V.  CONCLUDING »mfms

| One has at hand,.therefore, a cpﬁplefely’geﬁeral semiclaésiéal
.méchénicsvﬁhich aliows one to coﬁsfruct the éiassical—limit approxifv
mation‘to any quantuﬁ mechanical quéntity,_incorporating.the complete
classical dynamics with thé'quantum principle of superpééitién; As.
has Been empﬁasized, and illustrated by a number of exémples.in‘this'
review, all quantum effects——interference, ﬁunneling, fgsonénces;
selection rﬁles, diffractibn 1aws;,even quantization‘itselfé—arisé.
from tﬁe superpbsition of probability amplitudes and»are thus
contained at least qualitatively within the semiclassiéalfpres— :
cription; The'semiélassical picturé thus affordé a broad under- .
standing and.cléar-insigﬁt intobthe nature of'quaﬁfum effgcts in
molecular dynamics, :

In many.cases; too, the semiciassicgl model_prévides a quanti-

tatiwadescriptidn of the'quantqm effécté in-molecular systems;
although there willsurely be situations for wﬁich.if failsbquéntita—
 tively~or is at best awkward to app}y3.lFrom the numefical e%amples
which have been carried out thus far--and more are needed before a
definitive conciusion can be regéhed—ﬁit aPpeafslthét the most
pracfically-useful céntribution of classical S-matrix thed;f~is_‘
tﬁe:aBiiity to describe classically=f6f5idden processes;_i.e.;'
althqugh.completely\claésical (e.g; Monte Carlo)’methods‘séeﬁ‘to
be adéﬁuate for_t;eating classically»gilowed processes: fhey ére'
not'méaﬁingful.for élassically~for5idden ones..'(Purely‘cléssical

treatments will not of course describe quantum interference effects

¢
’

. which are present in classically allowed processes, but under most
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practical conditions these are ciuenched)7 The semiclassiéal
vapproach thus widens the class of phenomena:to which ciassical
trajectéry methods can be applied.

Two common examples of ciassically forbidden processes
have been discussed in Section 1V: :vibrétionally inelastic
transitions in at6m—diatom céilisions v-r1T energy'transfer)‘
‘and tunneling near the threshold of chemiéal reactioné.' Another
important example, which haévbeen diécussed in detail p;eviously,
is eléctronically nén—édiébatic transtions; i.e;, transitions from
one potential energy.surfaée to énothér.sl ‘Millér andiGeo_rgé82
have forﬁulated_this problem semiclassically in such a way that
vincorporates the exact élassical_dynamiés of Fhé héavy.partiéle
- motion (i:e.;ICIassiéal tréjectorieé) and fhé quantum principlef
of supérposition; tﬁe electronic transition is acéounted for.within
a Stﬁeckelberg—like model, i.é., by considering qomplei*?aluéd
_ classical trajectories which change from one adiabqtié surfagé
to anofher at a complei point of interSectioh;83' (Such.processes
are "classically-forbidden", therefore, since only compleiﬁvalued
classical trajectories can reach these Complék iﬁtersection pointé in
order.to ch@ﬁge adiabatic potential energyvsurfaceé;) ‘The princi-
ple physical requirement éf the ﬁodel isjtﬁat.thé electronic
transition be localized in space and time;_But if is important
‘to recognize that tﬁiS‘does'égé_require that the adiabatic
potential curves ér surfaces have'an."avpidei intéfséctigp”w'f;f}ﬁ"
for real coordinates; See Section V' of reference 9: Recent

calculations based on this theaory have been carried out by Lin,
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il George, and Morokuma (for H + D, > HD + D) and by Preston,

2

',Sloane, and Mlller | (for F( P3/2) + Xe F( Pl/2 |
i”.“lt seems. clear that there w111 be much,more act1v1ty in the_“ﬁf

;V'}follow1ng.years regard;ng the‘general toplg of“non—adlabatlcva

~ transitions in low energy molecular collisions. = ...

) +-Xe), and V"
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FICURE CAPTIONS

An exampie of the quantum number function nz(al,nl), here

for a‘collision of He and H, at a total ehergy E = 10trw

2

and with nl =1, The ordinate is the fiﬁal value_of'the

 vibrational quantum number as a function of the initial

phase El of the oscillator, along a classical trajectory

with the initial conditions in Eq. ( =332 ). The dashed

“line at n, = 2 indicates the graphical'solution for the

two roots of the equation nz(al,l) = 2,

Vibrational transition probabilities for collinear He +:
H2 at total energy E = 10w for an initial vibrational
state n, = 0 (top), 1, 2 (bottom). The dashed lines

connect results of the completely classical approximation,

' Eq. ( 3:28), and the solid lines. connect the uniform

semiclassical values (which on the scale of the drawing.are
essentially the same as the exact quantum mechanical values

of reference 24.)

The same quantity as in Figure 1, except for the reactive
process H + Hz(nl = 0) »> Hz(nél + H, for a total energy .
E = 14.7 kcal/mole,vas computed by Wu and Levine (fefefence

32 ). There are two roots of the equation nz(qi;O) = 0.
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The same astigure 3, except for a total enefgy E = 13.7

kecal/mole. Here there are four roots to the equation

.“z(ql’o)'= 0.

A qualitative'sketch of the classical (upper)-and-uniform'

semiclassical (lower) transition probability Pn. - as a

20

continuous function of n, (with n, fixed).

1

max min ; .. - .
2 and n, indicate the extrema of the function

n
n2(al’n1) as a function of 51 (as seen in Figure?l,for

examplé).-'i

A potential curve V(f) and collision enefgy E for which

potential (i.e., single-particle) resonances exist.

A schematic representation of three of the trajectories

which contribute to the elastic‘scatteriﬁg from the

- potential shown in Figure 6. There are an infinite ;

sequence of other trajectories which differ from (c) only

in the number of oscillations made between r, and r )

1 2

Thé saﬁe éﬁantity as in Figure: 1, excebt for reactive
(éolid line and solid points)_and non-reactive (opénv'
points) cbliisions bf.H.+'C12(n1 =0) > H + Cl2(n2);:
ﬁCl(nz) +5leb as galculated by Rgnkin and Miller
(reference 47 ). The total energy (referred to the.

saddle point) is 0.3 eV. The dashed line at n, = 5.
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indicates that two "direct" trajectores and many "snarled"

ones contribute to the 0 + 5 reactive transition.

A potential barrier and translational energy for which

tunneling occurs,

The same quantity as in Figure 1, except for a total

energy E = 3tw. Here all inelastic transitions are

classically forbidden.

The reaction probability for H + Hz(nl = 0) +~H2(n2 = 0)

' +4H in the region below the classical threshold:for

reaction; E_  is the initial translational emergy. The

semiclassical»(SC) results_are those of George and Miller

(reference 34 ) as given by Eq. (4.18 ), and the quantum

mechanical (QM) values are the results of Schatz and

Kuppermann (reference 67 ).

Cross sections for vibrational deactivation: Li -+ H2

(nl =1, iye= 0) St e Hz(n2= 0, j, = j), as a function

of final rotational state, for an initial translational

energy of 0.684 eV. The semiclassical and quantum mechanical

‘values are those of Miller and Raczkowski (reference 76 )

and Schaefer and Lester (reference 77 ), respectively, and
the "statistical" values are those given by Eq. (4.40)
(ndfmalizéd so that the cross section summed over j is equal

to the semiclassical and quantum value).
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