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The cerebral cortex is connected to various subcortical structures such as the thalamus and the 

basal ganglia (BG). The diffuse yet specific patterns of structural connectivity of the thalamus 

with the cortex suggest thalamocortical connectivity could play an important role in addressing 

the binding problem. Previous research has established the presence of BG oscillations and their 

link to functional and pathological connectivity states to the cortical structures. Considering the 

topographically organized connections between thalamus, BG and the cortex it has been 

proposed that disruptions to normal oscillatory activity within the cortico-BG-thalamocortical 

circuits may partly account for the pathophysiology of Parkinson’s disease (PD) . Using 

simultaneous invasive recordings of cortical and thalamic electrophysiological activity in two 

awake and spontaneously behaving human subjects, we provide direct evidence of thalamic 
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regulation of cortical activity through a mechanism of phase-amplitude coupling (PAC). 

Specifically, we show that cortical PAC between the θ phase and β amplitude is spatially 

dependent on and time variant with the magnitude of thalamocortical θ coherence. Moreover, 

using causality analysis and MR diffusion tractrography, we provide evidence that thalamic θ 

activity drives cortical θ oscillations and PAC across structures via structurally constrained 

pathways..In PD, pathologic oscillatory activity, particularly in the β band, is present in BG and 

motor cortex. The role of these β oscillations in modulating activity at a network level have not 

been thoroughly characterized. Using simultaneously recorded cortical and pallidal local field 

potentials in 20 patients with PD undergoing deep brain stimulation surgery, we confirm 

increased β activity and β-γ PAC in motor cortical areas. The cortical β band is highly coherent 

with β activity in the motor region of the GPi where local β-γ and β-(200-300Hz) PAC  and 

cross-site pallido-cortical PAC were observed. Contralateral movement significantly decreased 

pallido-cortical coherence and PAC as well as local cortical PAC, but did not completely 

eliminate this coupling, possibly manifesting a deficiency in the diseased BG to disentrain the 

motor network during action. These results shed light on the dynamic nature of pallidocortical 

coupling, suggesting β oscillations reverberate through the motor network and modulate activity 

at a network level.   
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1. Introduction 

1.1. Human Brain Connectivity 

Mapping the structural and active functional properties of brain networks is a key goal of 

basic and clinical neuroscience and medicine. 

The novelty and importance of this transformative research was emphasized by the U.S. 

National Institute of Health in their 2010 announcement for the Human Connectome 

Project: 

Understanding neural connectivity in model organisms has made possible an 

integrated understanding of the interplay of genes, molecules, cells, neural 

systems, and behavior.  Such understanding, in turn, provides the basis for 

detailed models from which hypotheses about brain function in health and illness 

can be generated.  Without connectivity data, this kind of understanding is not 

possible for human brain function and dysfunction.  Knowledge of human brain 

connectivity will transform human neuroscience by providing not only a 

qualitatively novel class of data, but also by providing the basic framework 

necessary to synthesize diverse data and, ultimately, elucidate how our brains 

work in health, illness, youth, and old age (2009). 

Importantly, elucidating brain connectivity can lend insight into how the brain functions. 

Brain connectivity can be investigated in 2 manners (Sakkalis 2011) : 

1.1.1. Structural connectivity 
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For the sake of simplicity, structural connectivity may be considered as fiber pathways 

tracking over extended regions of the brain, which are in accordance with general 

anatomical knowledge (Koch, Norris et al. 2002). By searching for structural connectivity 

we focus on identifying anatomical links between distinct brain regions. In other words, 

we investigate how these brain structures (regions) are physically connected to each other 

via direct/indirect fiber pathways containing axonal connections. 

The primary noninvasive tool for this analysis is MRI based diffusion weighted imaging 

(DWI), including both Diffusion Tractography Imaging (DTI) and Diffusion Spectrum 

Imaging (DSI). DTI works by estimating the diffusion process of water molecules (both 

the rate of the diffusion and its directionality) in each voxel and reconstructing fiber 

pathways based on the directionality information. A 3D modeling technique called 

tractography is then used to represent neural tracts using this data (Hagmann, Jonasson et 

al. 2006). These methodologies can be used to examine structural connectivity and 

convey information concerning the white matter fiber tracts. 

1.1.2. Functional connectivity 

Functional connectivity is defined as the temporal correlation (in terms of statistically 

significant dependence between distant brain regions) between the activity of different 

neural ensembles (Fingelkurts, Fingelkurts et al. 2005). In functional connectivity we 

primarily investigate symmetrical correlations in activity between two (or more) brain 

regions during either rest or a behavioral task.  



3 

 

Many neurophysiologic signals can be used to assess functional connectivity, including 

signals derived from single unit and local field potential (LFP) recordings, 

electroenchaphalography (EEG), magnetoencephalography (MEG), and Functional 

Magnetic Resonance Imaging (fMRI). Functional connectivity analysis can be done using 

a variety of methods including pairwise correlation analysis in fMRI activity or Cross 

Frequency Analysis of electrophyiological signals (EEG, ECoG). 

1.1.3. Effective connectivity 

As opposed to functional connectivity which simply identify non-directional relationships 

between different areas of the brain, Effective Connectivity analyses seek to identify 

asymmetric or causal dependencies between brain regions and can be used as a tool to 

investigate which brain region is causally influencing other regions during a stage of 

information processing (Horwitz 2003). The term “information flow” is often used to 

describe directionally specific effective connectivity. More explicitly, effective 

connectivity refers to the influence that one neural system exerts over another, either at a 

synaptic or population level (Friston 2011). Aertsen and Preisl  proposed that “effective 

connectivity should be understood as the experiment and time-dependent, simplest 

possible circuit diagram that would replicate the observed timing relationships between 

the recorded neurons.’’ This speaks to two important points: effective connectivity is 

dynamic (activity-dependent), and depends on a model of interactions or coupling 

(Aertsen and Preissl 1991). The key aspect of effective connectivity analysis is that it 

ultimately rests on model comparison or optimization. This contrasts with analysis of 

functional connectivity, which is essentially descriptive in nature. 
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Modern research on building a human ‘connectome’ (complete map of human brain 

connectivity) has typically focused on structural connectivity using MRI and diffusion 

weighted imaging (DWI) and/or on functional connectivity using fMRI (Delorme, 

Mullen et al. 2011). However, the brain is a highly dynamic system, with networks 

constantly adapting and responding to environmental influences so as to best suit the 

needs of the individual. Therefore a complete description of the human connectome 

requires accurate mapping and modeling of transient directed information flow or causal 

dynamics within distributed anatomical networks. 

Some of popular methods of effective connectivity analysis include: 

Dynamic causal modeling (DCM) (Kiebel, Garrido et al. 2008), structural equation 

modeling (Schlosser, Wagner et al. 2006), transfer entropy and Granger-Causal method 

which all can be applied to fMRI and/or electrophysiological data (EEG, ECoG, MEG) 

(Vicente, Wibral et al. 2011). Some of these techniques (such as DCM) require assuming 

a special model for the system, however time-series causality measures such as transfer 

entropy are generally model-free. These methods have different effectiveness. Nonlinear 

methods such as transfer entropy has poorer performance relative to Granger-Causality 

method  in the presence of noise and since these methods are usually bivariate which in 

case of presence of inter-relation between signal channels might produce misleading 

results (Blinowska, Kus et al. 2004; Kus, Kaminski et al. 2004). 
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1.2. Data and levels of functional connectivity 

Different types of data are available to study functional connectivity in human brain. 

These techniques are divided into two groups of direct (electrophysiological) recordings 

such as single-unit recordings, EEG, ECoG and MEG and indirect (hemodynamic) 

measures of electrophysiological activity which are based on assumption of 

neurovascular coupling. Hemodynamic methods include positron emission tomography 

(PET) and Blood oxygen level dependent (BOLD) fMRI, (Shibasaki 2008). Different 

methods have different advantages. For example, MEG measures brain activity with high 

temporal resolution but has limited ability to localize that activity. fMRI has greater 

spatial resolution, but lower temporal resolution.  

At the neuron level, Gerstein, Perkel, Aertsen and their collaborators established the 

analysis of electrophysiological data (Gerstein and Perkel 1969; Gerstein and Aertsen 

1985; Aertsen, Gerstein et al. 1989; Aertsen and Preissl 1991; Aertsen, Erb et al. 1994).  

These series of work resulted in discovering the Hebbian cell groups in the effort to 

describe a mechanism for neuronal plasticity (Hebb 1949; Doidge 2007). Moreover, 

concepts of “functional” and “effective” connectivity appeared for the first time by 

(Aertsen, Gerstein et al. 1989).   

At the macroscopic level, EEG was the first non-invasive method to examine human 

brain activity. The use of these data to attempt to examine the functional interactivity 

between different cortical regions has a long history (Barlow and Brazier 1954; Livanov 

1979; Gevins, Cutillo et al. 1989) and a variety of techniques have been used, all of 

which evaluate the cross-correlation of the signals between pairs of scalp electrodes. 
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Prior to positron emission tomography (PET) and fMRI, the non-tomographic xenon-133 

inhalation technique was used to image functional brain activity in humans, and 

correlations between pairs of surface detectors were evaluated (Prohovnik, Hakansson et 

al. 1980). Once PET studies of glucose metabolism began to be performed, several 

groups used region of interest methods to examine interregional correlations (Clark, 

Kessler et al. 1984; Horwitz, Duara et al. 1984; Metter, Riege et al. 1984; Bartlett, Brown 

et al. 1987). In the mid-late 1980s, studies of cognitive function began to be performed 

with PET, in which regional cerebral blood flow (rCBF) was measured and analyses soon 

were undertaken to assess functional connectivity either using regions of interest  

(Horwitz, Grady et al. 1992), or a voxel-based approach (Zeki, Watson et al. 1991; 

Friston, Frith et al. 1993; Horwitz, McIntosh et al. 1995). Later, as fMRI became an 

established functional brain imaging tool, a number of studies of interregional functional 

interactivity using fMRI data acquired from humans at rest (Biswal, Yetkin et al. 1995; 

Lowe, Mock et al. 1998), or while performing particular tasks (Buchel and Friston 1997; 

Pfurtscheller and Andrew 1999; Bullmore, Horwitz et al. 2000; Bokde, Tagamets et al. 

2001; Hampson, Peterson et al. 2002; Mechelli, Penny et al. 2002). Although different 

investigators used different terminology to indicate the distinction between the correlated 

activities of PET/fMRI data and the strengths of the linkages in a causal model, the 

community eventually converged on Friston’ s use of the terms functional and effective 

connectivity to designate these two notions. 
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1.2.1. Electrophysiology 

Direct electrophysiological methods involve recording of electrical currents or magnetic 

fields resulting from activity of single units or population of neurons.  

Single-unit recordings measure electrical response from a single neuron using a 

microelectrode recording system. Recordings are both intracellular and extracellular. This 

method, although highly invasive, allows for exquisite spatial and temporal resolution 

recordings from brain electrophysiological activity. An example study reported by 

(Boraud, Bezard et al. 2002) in which they used single-unit recordings to explain the 

structural organization of the basal ganglia in patients with Parkinson's disease. 

Electroencephalography (EEG) refers to the recording of brain electrical activity from the 

surface of scalp. Brain EEG signals mostly originate from cerebral cortex. Because of 

presence of skull in the pathway of electrical activity measured by EEG, signal-to-noise 

ratio (SNR) is relatively low in EEG recordings. 

Magnetoencephalography (MEG) is a method of recording magnetic fields produced by 

electrical currents resulting from brain neuronal activity, using very sensitive 

magnetometers. Although EEG and MEG signals originate from the same 

neurophysiological processes, there are important differences. Magnetic fields are less 

distorted than electric fields by the skull and scalp, which results in a better spatial 

resolution of the MEG. Whereas scalp EEG is sensitive to both tangential and radial 

components of a current source in a spherical volume conductor, MEG detects only its 

tangential components. EEG is, therefore, sensitive to activity in more brain areas, but 

activity that is visible in MEG can also be localized with more accuracy. 
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Electrocorticography (ECoG) is the practice of using electrodes placed directly on the 

exposed surface of the brain to record electrical activity from the cerebral cortex.  Unlike 

EEG which is completely invasive, ECoG requires direct exposure of surface of brain. 

ECoG may be performed either in the operating room during surgery (intraoperative 

ECoG) or outside of surgery (extraoperative ECoG), in patients who have leads 

implanted for the medical indication of monitoring for epilpesy. It is currently considered 

to be the “gold standard” for defining epileptogenic zones in clinical practice and 

provides an accessible means by which to measure local field potentials (LFPs) in human 

brain. The power of using ECoG to map brain activity was first described and advocated 

by Dr. Nathan Crone in 1998 who noticed that the topography of γ band maps was 

consistent with traditional (and fMRI) maps of eloquent cortices (Crone, Miglioretti et al. 

1998). Given the unique spatial and temporal profile of the various LFP frequency bands, 

it is likely that each represents distinct underlying electrophysiological processes.  In 

humans, regular oscillations have largely been observed in the form of local field 

potentials (LFPs) recorded through ECoG or deep brain stimulation (DBS) leads 

implanted for diagnostic or therapeutic purposes, respectively. 

1.2.2. Hemodynamic data 

Hemodynamic methods can measure localized changes in cerebral blood flow related to 

neural activity.  

PET can detect active brain areas either hemodynamically or metabolically through 

glucose intake. The areas that are activated by increased blood flow and/or increased 

glucose intake are visualized in increased signal in the PET image (Shibasaki 2008). This 
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method indirectly measures the flow of blood to different parts of the brain which is 

believed to be correlated to brain activity. PET works by measuring emissions from 

radioactively labeled metabolically active molecules injected into the bloodstream. These 

data are then computer-processed to generate multi-dimensional images of the 

distribution of the activity throughout the brain. PET scans were superior to all other 

metabolic imaging methods in terms of resolution and speed of completion. The biggest 

drawback of PET scanning is that because the radioactivity decays rapidly, it is limited to 

monitoring short tasks (Otte and Halsband 2006). 

Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) 

detects perfusion-related changes by measuring small changes in magnetic susceptibility 

due to shifts in the relative abundance of deoxygenated hemoglobin (Barbier, Lamalle et 

al. 2001). The BOLD signal is considered to be temporally integrated (unable to 

differentiate between responses separated by milliseconds) but relatively spatially 

segregated. Instead of directly measuring neural activity, BOLD fMRI maps the brain by 

detecting perfusion-dependent signals that are “coupled” to neuronal activity. Although 

studies have described close spatial coupling of neuronal activity and perfusion-related 

mapping signals (Kim, Ronen et al. 2004), several reports have reported exceptions to 

this assumption. For example, perfusion-related signals can be influenced by recent 

activity, activation frequency, simultaneous activation of adjacent cortices, and 

attentional state (Hanslmayr, Volberg et al. 2011; Scheeringa, Fries et al. 2011) 

Uncertainty also persists with respect to the statistical determination of the spatial extent 

of activation, which is at least in part attributable to an incomplete understanding of the 

electrophysiologic and anatomic basis of these signals. 
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Studies that provide information about spatio-temporal dynamics and electrophysiologic 

and anatomic basis of BOLD signals are essential to improve our understanding and 

interpretation of these signals. 

fMRI can be employed using two distinct approaches to map the function of the human 

brain: task-related and resting state. In standard task-activation fMRI, an experimental 

task of interest is presented alternately with a control task and the BOLD signal during 

the experimental task is compared to the BOLD signal during the control task (Barbier, 

Lamalle et al. 2001). Resting-state fMRI approach focuses on spontaneous, rather than 

task-induced, fluctuations in the blood oxygenation level-dependent (BOLD) signal and 

identifying correlations of these spontaneous BOLD activations across space and time. 

1.3. Directional connectivity 

The investigation of brain connectivity can broadly be broken down into two main 

subcategories: 

1.3.1. Cortico-cortical connectivity 

The cerebral cortex consists of structurally distinct areas, as defined by location and the 

cytoarchitecture of the cortex. These cortical areas are interconnected through fiber tracts 

of the white matters. Each cortical area receives projections from and sends projections to 

other cortical areas in complex networks via cortico-cortical and callosal axons. The 

majority of inputs onto cortical neurons arise from other cortical neurons.  
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1.3.2. Cortico –subcortical connectivity 

Oscillatory activity throughout the brain has long been proposed to mediate or facilitate 

behavioral, perceptual and cognitive functions in humans. The cerebral cortex is 

connected to various subcortical structures such as the thalamus and the basal ganglia, 

sending information to them along efferent connections and receiving information from 

them via afferent connections.  

1.3.2.1. Thalamocortical connectivity 

Just like a conductor works reciprocally with an orchestra to receive, integrate, and 

coordinate components, the brain can be hypothesized to require a conductor to 

coordinate multiple inputs and outputs, cognitive processes, and attentional factors. Most 

sensory information is routed to the cerebral cortex via the thalamus (Steriade and Llinas 

1988). In particular, every sensory system (with the exception of the olfactory system) 

includes a thalamic nucleus that receives sensory signals and sends them to the associated 

primary cortical area. The thalamus is believed to both process sensory information as 

well as relay and/or modulate it; each of the primary sensory relay areas in thalamus 

receives strong "back projections" from the cerebral cortex (Steriade and Llinas 1988). 

Another major role of the thalamus is devoted to "motor" systems. This has also been and 

continues to be a subject of interest for investigators. Although historically the thalamus 

was thought of as a "relay" that simply forwards signals to the cerebral cortex, 

contemporary research suggests that thalamic function is more selective and modulatory 

(Zou, Long et al. 2009). 
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The diffuse yet specific patterns of structural connectivity of the thalamus with 

the cerebral cortex suggest that thalamocortical connectivity could play an important role 

in regulating cortical activity. A regulatory role of the thalamus is strongly suggested by 

the coherence of cortical sleep spindles and alpha activity with thalamocortical interplay 

activity and intrathalamic feedback (McCormick and Huguenard 1992; Golomb, Wang et 

al. 1994; Contreras, Destexhe et al. 1996; Bazhenov, Timofeev et al. 1999; Goncalves, de 

Munck et al. 2006; Liu, de Zwart et al. 2012). In particular, studies using EEG–fMRI and 

fMRI–fMRI resting state correlation analyses have implicated the pulvinar nucleus of the 

thalamus in generating and modulating alpha rhythms in the occipital lobe, between 

which there are extensive reciprocal thalamocortical connections (Goncalves, de Munck 

et al. 2006; Liu, de Zwart et al. 2012). Other studies (McCormick and Huguenard 1992; 

Destexhe, McCormick et al. 1993; Golomb, Wang et al. 1994; Contreras, Destexhe et al. 

1996; Bazhenov, Timofeev et al. 1999) have utilized theoretical methods to indicate the 

presence of specific alpha rhythm generators at the thalamic level. The role of the 

pulvinar in regulating cortical function was further elucidated in a nonhuman primate 

study (Saalmann, Pinsk et al. 2012) demonstrating that the pulvinar synchronizes activity 

between interconnected cortical areas according to attentional allocation, suggesting a 

critical role for the thalamus not only in attentional selection but more generally in 

regulating information transmission across visual cortices.  (Staudigl, Zaehle et al. 2012) 

investigated thalamocortical communication during human long-term episodic memory 

retrieval and observed the impact of such thalamocortical communication on local frontal 

networks is expressed via a modulation of γ power by the thalamic β (∼20–23 Hz) phase. 

Thalamocortical regulation, however, is not limited to the pulvinar. For example, the 
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ventrolateral and mediodorsal nuclei of the thalamus are believed to be important 

components of the frontal cortical-basal ganglia–thalamic circuits mediating motivation 

and emotional drive, planning, and the expression of goal-directed behaviors (Haber and 

Calzavara 2009). And in a more recent study (FitzGerald, Valentin et al. 2013) used data 

from epileptic patients undergoing thalamic deep brain stimulation and reported existence 

of PAC both within thalamus and prefrontal cortex (PFC) and between them. 

Multimodality analyses including both structural and functional data within subjects 

provide unique opportunities to elucidate the nature of thalamocortical relationships. 

These analyses, however, hinge on the assumption that structural connectivity analyses, 

especially that of thalamocortical relationships, are functionally valid. While 

electrophysiological activity and functional relationships should theoretically correspond 

well with structural connectivity, complex neuronal interactions may occur via 

polysynaptic pathways and the strength or robustness of an anatomical connection is not 

always reflective of its functional significance. This is particularly true when 

investigating the potential role of one region in modulating or regulating another.  

Therefore in considering thalamo-cortical connectivity, functional and effective 

connectivity are as important as structural connectivity.  Some studies have previously 

investigated the structural and functional connectivity of the thalamo-cortical system 

(Behrens, Johansen-Berg et al. 2003; Behrens, Woolrich et al. 2003; Behrens, Berg et al. 

2007; Zhang, Snyder et al. 2008; Klein, Rushworth et al. 2010; Zhang, Snyder et al. 

2010; Pouratian, Zheng et al. 2011; Elias, Zheng et al. 2012). In a seminal study using 

magnetic resonance diffusion tensor imaging (DTI) and probabilistic tractography, 

Johansen-Berg and colleagues (Behrens, Johansen-Berg et al. 2003) reported 
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anatomically specific and histologically concordant segmentation of the human thalamus 

based on each thalamic subregion (or nucleus) having a distinct pattern of cortical 

connectivity. Subsequent studies (Behrens, Berg et al. 2007) functionally validated this 

approach, demonstrating that thalamic functional activations during a motor task 

(detected using functional magnetic resonance imaging) co-localize with the thalamic 

regions with the highest probability of connectivity with motor and prefrontal cortical 

areas, respectively. Direct comparisons between structure and function within subjects 

however provide much stronger validation. This opportunity is uniquely afforded by 

neurosurgical procedures that provide access to invasive local field potential (LFP) 

recordings from multiple sites within the brain in patients who have also undergone DTI. 

Using this approach, we (Pouratian, Zheng et al. 2011) showed that probabilistic 

tractography can be used to segment the thalamus and identify specific thalamic 

subregions (most likely corresponding to thalamic nuclei (Behrens, Berg et al. 2007)) to 

be targeted for deep brain stimulation that will result in tremor suppression, suggesting 

that using this method to segment brain structures is in fact functionally meaningful and 

reliable across subjects. In a separate study (Elias, Zheng et al. 2012) of patients 

undergoing intracranial EEG monitoring with intrathalamic depth and subdural cortical 

strip electrodes, we validated thalamocortical tractography by tracking somatosensory 

evoked potentials (SSEP) through the thalamus and to the cortex in a manner that was 

concordant with predictions based on tractography.  

Prior to the work described here, no distinct analysis on effective connectivity in 

thalamo-cortical network has been published. One main reason for this lack of 

investigation is activity dependent nature of effective connectivity, which requires 
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specific experimental designs that cannot be captured by the limited temporal resolution 

of MR imaging techniques. 

1.3.2.2. PallidoCortical connectivity 

The basal ganglia (BG) is a collection of interconnected subcortical nuclei (including the 

striatum, globus pallidus, substantia nigra, and subthalamic nucleus (STN) that have 

inputs and outputs to virtually all areas of the neocortex (Rosin, Nevet et al. 2007). 

Traditionally thought of only being involved in motor control, BG structures are now 

considered to be implicated in both expression of goal-directed movement and also 

emotions or motivation leading to the movement process itself. It has been shown that 

BG and cortex interact through parallel, segregated circuits (Smith, Raju et al. 2009). 

Each functional area in the frontal cortex is connected to BG through specific 

connections (Haber and Calzavara 2009). Cortical inputs enter the BG through the STN 

and striatum and then sent to substantia nigra and globus pallidus internus (GPi) (DeLong 

and Wichmann 2010).These specific BG zones are then topographically connected to 

specific portions of the thalamus which then projects back to the same areas of the cortex 

from which the circuit initiates (DeLong and Wichmann 2007).  

1.4.  Parkinson’s disease and role of BG 

Parkinson’s disease (PD), a progressive neurodegenerative disease, is the second most 

common neurodegenerative disease after Alzheimer’s disease (Wirdefeldt, Adami et al. 

2011). The principal patholophysiologic mechanism in Parkinson’s disease is often 

described as the loss of dopaminergic neurons with the substantia nigra resulting in loss 
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of dopamine in the striatum (Wirdefeldt, Adami et al. 2011), accounting, at least in part, 

for symptomatic motor deficits such as resting tremor, stiffness and slowness in 

movement (bradykinesia), postural instability and cognitive and emotional impairments 

and is usually classified as a movement disorder (Jankovic 2008). The Unified 

Parkinson’s Disease Rating Scale [UPDRS] is used to follow the progression of PD 

(Ramaker, Marinus et al. 2002). Symptoms can be managed through medications 

(levodopa) or deep brain stimulation of BG nuclei (GPi and STN) or Ventral Intermediate 

Nucleus (ViM) nucleus of thalamus in advanced stages (Brown 2007; Bronstein, Tagliati 

et al. 2011). Deep brain stimulation (DBS) is a surgical procedure of implanting a 

battery-operated medical device (neurostimulator) to deliver high frequency electrical 

pulses to the targeted areas of BG or thalamus to alleviate debilitating motor symptoms of 

PD (Apetauerova, Ryan et al. 2006). Despite the long history of DBS (Gildenberg 2005), 

its direct effect on the physiology of brain cells and neurotransmitters and also exact role 

of BG in pathophysiology of the disease are still not completely understood (Moro and 

Lang 2006). DBS electrodes provide the unique opportunity of having access to electrical 

oscillations in BG. Understanding these oscillations, especially at the network level, may 

lead to better treatment of movement disorders such as Parkinson’s disease (PD). 

Although incompletely understood about PD, considering physiological role of BG 

oscillations in regulating network level activity, it is proposed that irregular oscillatory 

activity within the cortico-basal ganglia-thalamocortical circuits may account at least in 

part for the pathophysiology of Parkinson’s disease (Brown 2003; Jenkinson and Brown 

2011).  Loss of dopamine in the BG is associated with a prominent amplification of 

power in β frequency band (13-35 Hz) throughout the motor system including both the 



17 

 

cortex and the basal ganglia (Mallet, Pogosyan et al. 2008; Cruz, Mallet et al. 2009). 

These amplified β oscillations are suppressed by movement, medication (levodopa) and 

DBS (Priori, Foffani et al. 2004; Kuhn, Kupsch et al. 2006; Hammond, Bergman et al. 

2007; Eusebio, Thevathasan et al. 2011). A number of studies also reported correlation 

between degree of local β power suppression and severity of the disease as measured by 

UPDRS (Little and Brown 2012). Oscillatory activity in γ frequency band within the 

subthalamo-pallidal-thalamo-cortical circuit was also found to be of functional 

significance and showed evidence of dynamic modulation both by movement (Foffani, 

Ardolino et al. 2005) and dopaminergic medication (Brown 2003). Study of single unit 

recordings (Soares, Kliem et al. 2004) suggest that aberrant LFP synchronization reflects 

abnormal neuronal bursting activity and firing rate among nearby and distant neuronal 

populations (Levy, Hutchison et al. 2002).  

Studies of cortical activity have also shown that β activity in cortex is correlated with the 

severity of the disease and reduction in this synchrony with DBS and medication has 

been found to be correlated with clinical improvement (Silberstein, Pogosyan et al. 2005; 

de Hemptinne, Ryapolova-Webb et al. 2013). The literature to date has been rich in 

characterizing the effect of movement or treatment (medication or stimulation) on 

activity in specific loci within narrow frequency bands. Only few studies have begun to 

investigate the relationship of signals between nodes within the motor network and more 

importantly, across frequencies. In addition to the local oscillations in BG or cortex, the 

work described here aims to establish the role of functional connectivity between these 

spatially segregated brain areas in the pathophysiology of the disease (Fogelson, 

Williams et al. 2006; Marreiros, Cagnan et al. 2013).  
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Besides its pathophysiologic significance, the oscillatory patterns described above may 

be a biomarker that can be used to study and track disease. Such biomarkers could 

theoretically be used in development of a DBS system with feedback control. 

1.5. Dissertation Goals And Organization 

Goal of this dissertation is to discuss two studies to investigate thalamo-cortical network 

and pallido-cortical network. In both cases simultaneous invasive-recordings from cortex 

and subcortical structure are used to examine possible mechanisms of regulation. PAC 

was of particular interest due to the existence of extensive interest and its unique power 

in explaining non-linear interactions between different frequency rhythms that are 

claimed to be functional and/or pathological. 

This dissertation is divided to 4 chapters including the introduction. 

Chapter 2 describes the thalamo-cortical coupling we found in patients with medication-

refractory epilepsy who have simultaneous electrophysiological recordings from their 

thalamus and cerebral cortex. We explored the spatial specificity and time variability of 

coupling between different frequency bands within and between these structures in an 

effort to explain functional connectivity in such a network. We also confirmed that these 

thalamocortical functional relationships are structurally constrained by anatomic 

pathways. 

In Chapter 3 pallidocortical study of 20 patients with Parkinson’s disease undergoing 

deep brain stimulation is investigated. Evidence of pathological functionality of some of 
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the proposed biomarkers of the PD and their movement-induced modulations are 

explored and the results are portrayed.  

Chapter 4 includes a discussion of the results presented in chapters 2 and 3 as well as 

suggestions for future works in order to complete the understating of cortico-basal 

ganglia thalamocortical circuit and specially its involvement in pathophysiology of 

movement disorders.  
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2. Thalamic regulation of cortical activity 

 

During past decade more effort has been devoted to explain how oscillations in different 

frequency bands are interacting with each other mostly through non-linear mechanisms. 

In particular, the phase of lower frequency oscillations modulate the amplitude of higher 

frequency rhythms (Canolty, Edwards et al. 2006; Tort, Kramer et al. 2008; Lopez-

Azcarate, Tainta et al. 2010). A putative electrophysiological mechanism for subcortico-

cortical regulation is cross-frequency coupling (CFC), and more specifically phase-

amplitude coupling (PAC), in which the phase of a low frequency rhythm from one 

signal regulates the power of higher frequency activity (either from the same or another 

signal). PAC has been described extensively as an inherent property of cortical 

electrophysiology and is postulated to play a role in regulation of an array of neural 

networks, including memory and learning, attention, and in sensory and motor processing 

(Bhattacharya 2001; Fries 2005; Lakatos, Shah et al. 2005). PAC provides a plausible 

physiological explanation for such subcortico-cortical mechanisms that require dynamic 

coordination of different frequencies with different spatial properties such as lower 

frequencies like θ or alpha rhythms (from subcortical region) and higher frequencies like 

β or γ rhythms (cortical sites) (Canolty and Knight 2010).While many works describe the 

existence of PAC within a cortical region, the literature has rarely described the spatial 

specificity of this phenomenon, the time variant nature of these complex relationships, 

nor the factors that may regulate such variation (Lakatos, Shah et al. 2005; Henriksson, 

Hyvarinen et al. 2009; Tort, Komorowski et al. 2009; Axmacher, Henseler et al. 2010; 

Canolty and Knight 2010; Lopez-Azcarate, Tainta et al. 2010; Pienkowski and 

Eggermont 2010). Specifically, the origin of the phase encoding frequency remains 
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speculative. Miller and colleagues (Miller, Hermes et al. 2010) provide a comprehensive 

report of temporal modulation of cortical PAC that is behaviorally-dependent. They 

identify the thalamus as a putative synchronizing locus that could provide the phase-

encoding low frequency rhythms that modulate cortical activity. Given differences in the 

spatio-temporal profiles of lower and higher frequency electrophysiological rhythms (for 

example, it has been suggested that lower frequencies like θ modulate activity over large 

spatial regions and in long temporal windows while higher frequencies modulate activity 

over small spatial regions and short temporal windows activity) (Canolty and Knight 

2010), the possibility of distinct sources for these signals is plausible and in fact probable. 

Changes in thalamic neuronal activity between tonic (Henning Proske, Jeanmonod et al. 

2011) and bursting (Llinas and Jahnsen 1982; McCormick and Huguenard 1992) modes 

of activity are thought to create electrophysiologic oscillations that spread widely through 

both intrathalamic and thalamo-cortical connections, creating characteristic 

thalamocortical rhythms that could modulate cortical activity. Pathological 

thalamocortical rhythms, or thalamo-cortical dysrhythmia (TCD), have been 

hypothesized to be central to electrophysiological changes in some functional brain 

disorders (Llinas, Ribary et al. 1999; Sarnthein, Morel et al. 2005; Sarnthein, Stern et al. 

2006; Walton and Llinas 2010). TCD posits that abnormal internally generated low 

frequency oscillations (mainly in θ range) in the thalamocortical network disrupts the 

normal state dependent flow between thalamus and cortex resulting in a broad range of 

functional disorders, including Parkinson’s disease, depression, and chronic pain 

(depending on the thalamocortical network involved) (Llinas, Ribary et al. 1999; Llinas 

and Steriade 2006; Kane, Hutchison et al. 2009; Jones 2010). Still, direct evidence for a 
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subcortical source for low frequency rhythms is lacking to date and therefore remains 

speculatory. 

To better elucidate the putative role of PAC as a mechanism of thalamocortical 

regulation, we analyzed and compared simultaneous cortical and thalamic 

electrophysiological recordings in two awake and spontaneously behaving human 

subjects who were undergoing invasive neurophysiological monitoring for medically 

refractory epilepsy who had had preoperative diffusion tensor imaging. We first 

extensively characterized cortical PAC to illustrate the time variant nature and spatial 

specificity of these signals. The time and spatial variance of cortical PAC are compared 

with simultaneously recorded thalamic LFP power spectra to evaluate the relationship 

between PAC and thalamocortical coherence of the phase-encoding rhythm. We 

subsequently used causality analysis and probabilistic tractography analyses to assess the 

thalamocortical flow of phase encoding rhythms and the structurally constraints on this 

flow of information.   

2.1. Signals and recording 

We studied two subjects with intractable epilepsy who underwent invasive 

monitoring to identify epileptogenic foci. Subdural ECoG strips, each containing four to 

eight 6 mm diameter contacts with 10 mm spacing (AD-Tech, Racine, WI), were 

implanted through standard frontal and parietal burr holes, per clinical protocol. After 

obtaining informed consent from the study participants, depth electrodes were 

stereotactically implanted subacutely in the thalamus based on a research protocol 

approved by the University of Virginia Institutional Review Board originally intended to 
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understand the role of thalamus in seizure propagation (Bertram, Mangan et al. 2001). 

Each depth electrode consisted of tubing (1.1 mm outer diameter) with 10 cylindrical 

platinum contacts of 2.3 mm length with an interelectrode distance of 5 mm (AD-Tech). 

All recordings were done with 200 Hz sampling rate with patients spontaneously 

behaving (based on simultaneous video recordings). One hour epochs of data were 

sampled from each subject. Data were extracted from seizure free periods (based on 

expert neurologist interpretation). Episodes with noise contamination were identified by 

visual inspection of their power spectra, and periods during which the power spectra had 

abnormally high values were spliced out of the data. To minimize effects of volume 

conduction, the data were used in a bipolar montage, with the time courses from adjacent 

electrodes subtracted from one another. 

2.2. Methods  

2.2.1. Power spectral analysis 

Before further processing 60 Hz line noise was removed from the data and all 

following steps were done using a moving window of 10 seconds length and 50% 

overlap. To estimate the power spectral density of both cortical and thalamic signals, we 

used the multi-taper method implemented in Chronux (Bokil, Andrews et al. 2010). To 

circumvent the limitations of conventional Fourier analysis in estimation of power 

spectra (which introduces undesirable bias in its estimate in the setting of noise), the 

multi-taper method uses mutually orthogonal tapers (which are multiplied element-wise 

by signals) providing multiple independent estimates of spectra (called tapered spectra). 

The final spectrum is obtained by averaging these tapered spectra.  
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2.2.2. Phase Amplitude Coupling 

PAC we estimated using Tort’s relative entropy method (Tort, Komorowski et al. 

2010), which we refer to as Modulation Index (MI). Given signals ����,�(
) and 

����,�(
) containing phase and amplitude components of interest, respectively, we used 

wavelet transform (Morlet packet with width 7) to extract the instantaneous phase and 

amplitude signals respectively, providing φ��(t) and ����(
). ���(
) phases are then 

binned and the mean of amplitude (����(
)) over each bin is calculated and normalized 

and referred to as �(�) (for � = 1,2, … , � where � is number of bins). � has the 

characteristics of a probability density function and can be referred to as an “amplitude 

distribution” when plotted as a function of the phase bins. When there is strong 

coupling/modulation between phase and amplitude signals this distribution deviates from 

the uniform distribution. Therefore we define modulation index (MI) to be the distance 

between uniform distribution and. �. Mathematical formulation for MI would be as 

follow: 

�(�, �) =  ! �(�)log %�(�)�(�)&'
()�

* 

Where � is the uniform distribution defined over the same phase bins. �(�, �) is the KL 

distance between � and uniform distribution. Because  

�(�, �) =  +,-(�) + /0 �(�)log1�2(�)3'
()� 4 
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Based on the definition of Shannon entropy we can define 5(�) to be: 

5(�) = − /0 �(�)log1�2(�)3'
()� 4 

Therefore �(�, �) can be rewritten as: 

�(�, �) = log(�) − 5(�) 

And finally we put: 

78 = �(�, �)log(�) = 1 − 5(�)log(�) 

Because 5(�) = log(�), when there is no coupling and � is in fact a uniform 

distribution, 5(�) would be equal to log(�) and 78 = 0. 

Where there is stronger coupling 5(�) becomes smaller than log(�) and MI increases. 

We calculated MI using frequencies ranging 1-70 Hz in 1 Hz steps for the phase-

encoding signals and 2 Hz steps for amplitude (power) signal. 

2.2.3. Surrogate data analysis 

A surrogate data analysis using a shuffling procedure was used to evaluate the 

significance of derived MI values. For each signal pair (���(
), ����(
)), we generated 

100 temporally shuffled versions of amplitude signals and calculated MI values for each. 

We then compared the true MI relative to the 100 surrogate MI values and obtained a Z-

score. Only MI values with corresponding Z-scores above 1.96 (corresponding to a p-
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value < 0.05) were maintained for subsequent consideration. MI values that were non-

significant (i.e., Z-value less than 1.96) were not included in MI maps. 

2.2.4. Cross coherence analysis 

After obtaining power spectra (:;(<) and :=(<)) and also cross spectra (:;=(<) 

which is a measure of joint power of two signals > and ? per unit frequency) using the 

multi-taper method, we estimated cross coherence @;=(<) as: 

@;=(<) = |:;=(<)|
B:;(<):=(<) 

We calculated the coherence for pairs of signals in thalamocortical network and derived 

cross coherence as a measure of frequency, which describes degree of co-variability 

between the two signals over different frequency ranges. To find the time-frequency 

representation of coherence for the same pair of signals we used a moving window 

approach to find the coherence at each frequency over time. This form of time-frequency 

representation allows for observing pattern of change in coherence over time. 

2.2.5. Granger causality and directed transfer function analysis 

Directional transfer function (DTF) is a derivation of Granger causality (GC), 

which is a data-driven approach to assess the causal relationship (directional causal 

interaction) between two time series (Kaminski and Blinowska 1991). This method has 

been widely used in the analysis of both LFP and intracranial recordings (Brovelli, Ding 

et al. 2004; Chen, Bressler et al. 2006; Bressler, Richter et al. 2007; Wang, Chen et al. 

2007; Bollimunta, Chen et al. 2008; Wang, Chen et al. 2008; Gow, Keller et al. 2009; 



27 

 

Tass, Smirnov et al. 2010; Ding, Mo et al. 2011; Zhang, Chen et al. 2012). However, GC 

limits analysis to two time series. We therefore used the adapted multivariate version of 

it, the directed transfer function to further characterize thalamocortical functional 

relationship. Causality was evaluated using eConnectome (Electrophysiological 

Connectome)  (He, Dai et al. 2011) toolbox an open source Matlab software package that 

has been specially developed to investigate directional interactions between multiple 

electrophysiologic signals. DTF takes into account all signals simultaneously and makes 

possible estimation of activity flow in a given direction as a function of frequency. DTF 

is robust in respect to noise and constant phase disturbances; in particular it discriminates 

against volume conduction, which propagates with zero phase (Kaminski, Ding et al. 

2001). Normalized version of DTF (which has been used here) is calculated as 

(Kaminski, Ding et al. 2001): 

�CD�→F� (<) = |5F�(<)|�∑ |5FH(<)|�IJH)�  

In which 5F�(<) is the (K, L) element in the MultiVariate AutoRegressive (MVAR) 

model Matrix for the system of signals and �CD�→F� (<)DTF�→P� (f) is a number between 0 

and 1 producing the ratio between inflow from channel K to channel L to all the inflows 

to channel L. 

2.2.6. Diffusion Tractography probabilistic segmentation 

Probabilistic diffusion tractography was used to define patterns of structural 

connectivity between regions of interest, using methods previously described in detail 

using FSL tools (FMRIB’s Diffusion toolbox (FDT); http://www.fmrib.ox.ac.uk/fsl) 
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(Johansen-Berg, Behrens et al. 2005). FDT (BEDPOSTX) uses Bayesian techniques to 

estimate a probability distribution function (PDF) on the principal fiber direction at each 

voxel, accounting for the possibility of crossing fibers within each voxel. Two fibers 

modeled per voxel, a multiplicative factor (i.e., weight) of 1 for the prior on the 

additional modeled fibers, and 1000 iterations before sampling (Behrens et al., 2007). 

Eddy current correction was used to apply affine registrations to each volume in the 

diffusion dataset to register it with the initial reference B0 volume prior to performing 

tractogrpahy. Skull stripping was performed using the brain extraction tool (BET). Using 

these PDFs and PROBTRACKX, we could then determine the probability of connection 

between seed voxels (in the desired cortical strip) and the predefined thalamic targets 

chosen to cover the inter-space between adjacent thalamic contacts (using 5000 samples, 

a 0.2 curvature threshold, and loopcheck termination). The cortical seed (corresponding 

to the location of ECoG recordings) was then segmented into distinct regions on a voxel-

by-voxel basis based on the thalamic target with which each cortical voxel was most 

dominantly connected. 

2.3. Results 

Simultaneously acquired ECoG and thalamic depth recordings of LFP in two awake and 

spontaneously behaving patients undergoing invasive electrophysiological monitoring for 

medication-refractory epilepsy were evaluated. Multiple thalamocortical pairs were 

evaluated in each subject with similar patterns observed for each thalamocortical pair 

studied. For descriptive and analytic purposes, detailed results are provided for a single 

thalamocortical pair in one subject. Results of the other subjects are provided in Figure 

6-7. 
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Figure 1 (A) Time Frequency representation of power spectral density for the cortical contact 4 

from Fig. 2A. Color bar represents power in dB. (B) Time-dependent variability of distinct 

frequency bands, demonstrating variability in theta power. (C, D) Assessment of phase-amplitude 

coupling within cortical contacts consistently revealed significant PAC between the phase of theta 

frequencies and the amplitude of β rhythms (color bar represents Modulation Index (unit-less)), 

with peak β amplitudes occurring contemporaneously with theta troughs (E). Theta-β PAC, like 

theta power, was temporally dynamic, with as much as 3.54 × 10-4 ± 3.62 × 10-4 variability over 

time.  
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2.3.1. Temporal Dynamics and Spatial Variability of Cortical Power Spectra and 

PAC 

Cortical ECoG signals demonstrated time-variant spectral power (Figure 1A) with 

pronounced variability occurring in the θ band (19.92 ± 3.54 dB, Figure 1B). In some 

contacts (see discussion of spatial variability below), significant PAC between the phase 

of θ frequencies and the amplitude of β rhythms was noted (p < 0.05, Figure 1C and 1D). 

The phase encoding frequency corresponded to the band containing the most time-

dependent variability in power and the peak frequency within this band. At contacts with 

significant θ-β PAC, the magnitude of the PAC was temporally dynamic (3.54 × 10-4 ± 

3.62 × 10-4, Figure 1E). While PAC was noted in several cortical contacts, it was not 

uniformly observed across all contacts (Figure 2). In fact, the presence of PAC was 

related to the presence of a θ peak in the PSD of the ECoG signals at each contact (Figure 

2A-C, contacts 3-5). 

2.3.2. Temporally Dynamic and Spatially Specific Thalamocortical PAC 

To elucidate relationships between thalamocortical activity and cortical 

electrophysiological dynamics, we initially evaluated thalamocortical coherence as a 

measure of thalamocortical functional connectivity between the cortical contacts showing 

or being adjacent to those with strong PAC and simultaneously recorded LFP from 

throughout the thalamus. Indeed, inspection of the data suggested cortical contacts 

demonstrating θ peaks (Figure 2B) and intracortical PAC (Figure 2C, contacts 3-5) 

seemed to demonstrate increased thalamocortical θ coherence with certain thalamic 

contacts, suggesting a link between thalamic and cortical θ activity.  
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Figure 2  (A) From left to right: electrode placement for thalamic and cortical contacts (B) Power 

Spectral density for cortical contacts placed according to panel A. (presence of theta peak is indicated 

by the downward arrow)  (C) Intracortical PAC within same cortical contacts as in panel B in which 

theta-β PAC is observed in cortical signals with theta peak in their power spectral density (as in panel 

B). (D) coherence between thalamic (columns) and cortical (rows) pairs. (E) PAC between phase of 

thalamic signals and amplitude of cortical signals. Note the peak of coherence in theta frequency range 

between thalamic signals and cortical signals with significant theta-β PAC (red box) (using the same 

scale as panel (C) for PAC) 
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The relationship between thalamocortical θ coherence and cortical θ power and 

intracortical PAC is analyzed more quantitatively in subsequent analyses (see next 

paragraph and Figure 3). Furthermore, thalamocortical pairs demonstrating significant 

thalamocortical PAC (Figure 2E, red box), in which the phase of the θ frequency band 

from thalamic signals modulates the amplitude of the β band activity recorded from 

cortical contacts were also found to have strong θ band coherence (corresponding to the 

same contacts in which we observed intracortical PAC previously described in Figures 1 

and 2C).  To quantify this correspondence we measured the correlation between 

thalamocortical θ coherence and thalamocortical PAC over the thalamocortical signal 

pairs and found R2 = 0.4544 with P-value = 2.2x10-4. 

Like cortical θ power and PAC (Figure 1B and 1E), the spatially specific and 

concordant thalamocortical θ coherence and θ-β PAC were temporally dynamic (Figure 

3A and 3E) and significantly correlated in time with one another (Figure 3C, with R2 = 

0.4138 and P-Value = 3.9989×10-19). Thalamocortical θ coherence was also highly 

correlated with cortical θ power (Figures 3A, 3B, 3D, R2 = 0.3379, P-Value = 4.0898×10-

15), which itself was highly correlated with intracortical θ-β PAC (Figure 3D and 3H, 

with R2 = 0.4988 and P-Value = 2.8901×10-24). Finally, thalamocortical and intracortical 

θ-β PAC were likewise highly correlated (Figure 3G, with R2 = 0.3209 and P-Value = 

8.4968×10-14).  
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Figure 3 (A) Average theta band thalamo-cortical coherence over time. (B) Scatter plot between average 

theta coherence and average cortical theta power (R2 = 0.3379, P-Value = 4.0898×10-15). (C) Scatter 

plot between thalamo-cortical theta coherence and thalamo-cortical PAC (R2 = 0.4138, P-Value = 

3.9989×10-19). (D) Average cortical theta power over time. (E) Average Thalamo-cortical PAC over 

time. (F) Scatter plot between average cortical theta power and cortico-cortical PAC (R2 = 0.4988, P-

Value = 2.8901×10-24). (G) Scatter plot between thalamo-cortical and cortico-cortical PAC (R2 = 

0.4138, P-Value = 8.4986×10-14). (H) Average cortico-cortical PAC over time 
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2.3.3. Θ Rhythms Flow from Thalamus to Cortex 

We used causality to evaluate which area is driving (causing) activity in the other 

one, with a particular focus on the phase encoding θ band in order to understand if in fact 

thalamic signals are driving cortical PAC patterns. Causality analysis between thalamic 

and cortical contacts found to have high θ flow during a 1 minute period of high PAC 

demonstrated temporally dynamic patterns as illustrated in Figure 4A-F with cortico-

cortical, thalamo-thalamic, and thalamo-cortical influences but little to no cortico-

thalamic flow of signals in the θ band. On average (Figure 4G), while there is flow of θ 

signals within thalamus and within cortex, the direction of flow of θ signals between 

thalamic and cortical signals is from the thalamus to the cortex.  

 

 

 

Figure 4(A-F) Average theta DTF for thalamocortical grid every 10 seconds during a 1 minute period of 

high PAC (C indicates cortical and T indicates thalamic). G) Average theta DTF of panels A-F, 

demonstrating flow of theta signals within thalamic and within cortical contacts, but only from thalamus 

to cortex. 
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2.3.4. Thalamocortical Dynamics are Constrained by Structural Connectivity 

The variability of θ power across cortical contacts (Figure 2A) as well as the 

variability of coherence and PAC across thalamocortical pairs (Figure 3A and 3B) 

suggest a spatial specificity to the observed variance. Further analyses were therefore 

done to elucidate the potential contributions of structural connectivity to the observed 

thalamocortical functional phenomena.  

In order to confirm the tight relationship between functional and structural 

thalamocortical connectivity, we performed probabilistic tractography to determine the 

relative strength of connectivity between cortical and thalamic recording sites (Figure 4). 

The strongest probabilistic structural connectivity was identified between the thalamic 

and ECoG contacts displaying thalamocortical coherence and PAC (Figure 4). 

Specifically, using the entire ECoG strip as a seed mask, we found that the part of ECoG 

strip that is most strongly structurally connected to the thalamic contacts of interest 

(defined as the thalamic contacts that demonstrated thalamocortical coherence and PAC 

[see Figure 2], as indicated by the target mask as in panels A and B,) corresponds to the 

three cortical contacts demonstrating the time-variant thalamocortical θ coherence and 

thalamocortical θ-β PAC detailed in Figures 2 and 3.  We calculated the average number 

of probabilistic tractography “hits” within spherical masks around cortical LFP contacts 

seeded from thalamic contacts indicated in Fig 5-A and used this as a measure of strength 

of connectivity to those thalamic contacts. Fig 5-F shows that the strength of 

thalamocortical connectivity between the thalamic contacts of interest and each cortical 

contact strongly correlated with average thalamocortical θ-β PAC (R2 = 0.9166, p=0.01). 
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2.3.5. Generalizabilty to other Thalamocortical Pairs in Same and Other Subjects 

Identical thalamocortical functional and structural connectivity patterns were observed 

for other pairs of thalamic and cortical electrodes in this same subject (Figure 6). 

Likewise, consistent patterns of time variant, spatially specific, and structurally 

constrained thalamocortical functional coupling and modulation were found in the second 

subject (Figure 7). 

 

Figure 5 (A-F) Average theta DTF for thalamocortical grid every 10 seconds during a 1 minute period 

of high PAC (C indicates cortical and T indicates thalamic). G) Average theta DTF of panels A-F, 

demonstrating flow of theta signals within thalamic and within cortical contacts, but only from 

thalamus to cortex. 
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Figure 6 (A) (from left to right) location of thalamic and cortical electrodes B) top row: Power Spectral 

Denisty for cortical contacts, bottom row: PAC within same cortical contacts as in panel A. C) 

coherence between thalamic (columns) and cortical (rows) pairs. D) PAC between phase of thalamic 

signals and amplitude of cortical signals (using the same scale as panel (B) for PAC). E) sagittal and 

transverse views of probabilistic tractography maps showing the cortical area in the cortical strip most 

connected to the thalamic target mask F) Average theta DTF for thalamocortical grid Average theta 

DTF for thalamocortical grid highlighted in panels C and D. 
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Figure 7 (A) (from left to right) location of thalamic and cortical electrodes B) top row: Power Spectral 

Denisty for cortical contacts, bottom row: PAC within same cortical contacts as in panel A. C) 

coherence between thalamic (columns) and cortical (rows) pairs. D) PAC between phase of thalamic 

signals and amplitude of cortical signals (using the same scale as panel (B) for PAC). E) Results of 

probabilistic tractography maps showing the cortical area in the cortical strip most connected to the 

thalamic target mask. F) Average theta DTF for thalamocortical grid Average theta DTF for 

thalamocortical grid highlighted in panels C and D. 
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2.4. Disscussion 

We sought to use this unique and difficult to acquire dataset of simultaneously 

recorded ECoG and thalamic LFP recordings in humans to provide new evidence of 

thalamic modulation of cortical eletrophysiological activity via phase-amplitude 

coupling. In order to do this, we first highlight the rarely discussed point that cortical 

PAC is in fact not a universal phenomenon, but a spatially specific and temporally 

dynamic one. The variable nature of PAC across time and across cortical recording sites 

and thalamocortical pairs is an essential prerequisite to positing that PAC serves as a 

dynamic regulatory mechanism of cortical activity. This is consistent with the 

hypothesized function of PAC in regulation of cortical activity, as it pertains to memory, 

attention, sensory and motor programming (Bhattacharya 2001; Fries 2005; Lakatos, 

Shah et al. 2005). While PAC has been recognized as a putative regulation mechanism by 

which subcortical structures may regulate cortical activity (Tort, Komorowski et al. 2009; 

Lopez-Azcarate, Tainta et al. 2010; Pienkowski and Eggermont 2010), the etiology and 

regulation of the phase encoding frequency has remained theoretical. Our analyses 

provide the first direct electrophysiological evidence of thalamocortical coupling with 

causality analysis that implicates thalamic contributions to the modulation of spontaneous 

cortical activity. This study supports the central role of the thalamus, at least in part, in 

regulating cortical activity and affirms conclusions of other studies based on indirect 

evidence that thalamus is in fact modulating cortical activity. While the results of the 

current address the exact purpose or function of PAC, one can hypothesize that PAC 

could mediate the binding problem, by coordinating activity in distinct cortical areas in 

order to both integrate information across cortical areas (addressing the combination 
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problem) as well as to dynamically segregate distinct information processing streams. 

Studies in nonhuman primates in fact support the potential role of the thalamus in 

regulating activity across distinct visual cortices, showing that the pulvinar coordinates 

activity between interconnected cortical areas in an attention-dependent manner 

(Saalmann, Pinsk et al. 2012). Further task-specific studies in humans are necessary to 

further characterize the function of PAC. 

As would be predicted, thalamic modulation of ongoing spontaneous cortical 

activity is regulated by structural constraints imposed by direct anatomic connectivity, as 

defined by MR diffusion connectivity analyses. We did not observe any cases of 

modulation by second order connections implying the regulatory role of the thalamus is 

limited to first order connections. This is in fact similar to what Saalmann et al found in 

nonhuman primates indicating pulvinar synchronizing attentional activity between 

interconnected cortical regions that are also directly connected to the pulvinar thalamus 

(Saalmann, Pinsk et al. 2012). The thalamus and its subregions are therefore most likely 

only regulating and coordinating between cortical regions with which there is direct 

anatomic connectivity and not exerting a regulatory role via distant synapses. 

Coordination of distant functional cortices may in fact be mediated by intrathalamic 

connectivity and interplay. 

The coordinated dynamic nature of thalamic and cortical signals and the causality 

analysis presented are strongly suggestive of a regulatory role of thalamocortical PAC. In 

these spontaneously behaving subjects, significant time-dependent variability is seen in θ 

power, β power, thalamocortical θ coherence, intracortical PAC, and thalamocortical 

PAC. Despite the significant time dependent variability, these measures demonstrate 
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remarkable co-variance and a consistent relationship, suggesting a uniform process of 

regulation and modulation. Failure of such coupling may account for pathophysiology of 

various diseases, as has been suggested by the concept of thalamocortical dysrhythmia in 

which disruption of the normal flow between thalamus and cortex has been contributed to 

different functional disorders (Henning Proske, Jeanmonod et al. 2011); (Llinas, Ribary 

et al. 1999; Llinas and Steriade 2006; Kane, Hutchison et al. 2009; Jones 2010). 

While these studies have provided significant insight, there are limitations to the 

current dataset and analyses. As data was primarily acquired for clinical purposes, 

sampling frequency was limited to 200 Hz which precludes assessment of coupling of 

high γ band frequencies, which are an area of increasing interest. With the current insight, 

future studies should further investigate cortical-subcortical coupling phenomenon using 

very high sampling rates to better assess high γ (>70Hz) and very high γ (>200Hz) 

activity. Moreover, as a consequence of using data primarily acquired for clinical 

purposes, current analyses are done in awake and spontaneous behaving patients with 

epilepsy, rather than with specific tasks. While this limits the extensibility of the 

conclusions, it does provide insight into normal brain function in an unconstrained 

system. Task-based analyses will enable investigators to tease out the components of 

coupling and better understand causality of thalamocortical relationships in a more 

controlled setting. Because of the need for invasive recordings, there is no foreseeable 

way to circumvent recordings in diseases patients; these limitations must always be 

considered in interpreting the generalizability of the current results. 

Nevertheless, having established and provided direct evidence for the first time of 

thalamocortical regulation in spontaneously behaving humans, future studies must further 
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elucidate the regulatory role and dynamic nature of thalamocortical PAC. Questions 

remain as to the precise role of this regulation. Drawing from studies of PAC in 

Parkinson’s disease (PD), it seems that PAC and therefore thalamocortical PAC and 

modulation is likely inhibitory in nature, with studies suggesting excess PAC in the motor 

cortex of patients with PD that improves with therapeutic intervention (de Hemptinne, 

Ryapolova-Webb et al. 2013). Moreover, the role of intrathalamic connectivity in 

coordinating regulation across remote brain regions remains to be better elucidated. 
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3. Network analysis of GPi and motor cortex in patients with Parkinson’s 

disease 

 

Alterations in the functional connectivity between the basal ganglia (BG) and cortex are 

likely a pathophysiological cornerstone of Parkinson’s disease. Phase-amplitude coupling 

(PAC) plays a pivotal role in information processing throughout the motor network and is 

considered to be closely related to the pathophysiology. PAC in the motor cortex (M1) is 

exaggerated in PD patients compared to patients with epilepsy without movement 

disorder (de Hemptinne, Ryapolova-Webb et al. 2013). Furthermore, treatment (both 

medication and stimulation) changes this pattern of coupling. For instance subthalamic 

(STN) stimulation reduces the magnitude of PAC between phase of β and amplitude of γ 

in motor cortex (M1) (de Hemptinne, Ryapolova-Webb et al. 2013). Likewise, PAC 

within the STN between the phase of β and amplitude of very high γ frequencies (around 

300Hz) is suppressed with dopaminergic medication (Lopez-Azcarate, Tainta et al. 

2010).  

The goal of this chapter is to characterize presence and activity-related modulation of 

PAC in the cortical and subcortical (GPi) motor network and how measures of PAC in 

distinct nodes of this network are inter-related with respect to cross-site coherence. Using 

simultaneous cortical-subcortical LFP recordings in PD patients undergoing deep brain 

stimulation (DBS), we demonstrated the time co-variability of cortical-GPi CFC to local 

spectral power as well as β coherence between GPi and motor cortex. We found PAC to 

be co-variable with coherence between the motor cortex and GPi, suggesting it may be a 

key mechanism of information integration across the entire cortico-basal ganglia circuit.  
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3.1. Subjects and recordings 

We obtained deep brain LFP recordings from right GPi and simultaneous right 

frontoparietal electrocorticographic recordings (Figure 8) during rest and cued movement 

in 20 subjects (4 female and 16 male with age of 62.42 ± 11.71, Table 1) undergoing 

awake DBS implantation for Parkinson’s disease. All subjects signed an informed 

consent form approved by the institutional review board (IRB) at the University of 

California, Los Angeles.  

 

 

 

Figure 8 (A) Schematic showing electrode placement during DBS surgery ECoG strip extending 

frontoparietal through the burr hole  and 4-ring DBS lead inserted in the right GPi (B) CT-scan 

showing the electrodes inserted into the brain 
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Table 1Subjects' demographic and clinical information 

Subject ID Gender Age MDS-UPDRS PIII off MDS-UPDRS PIII on 

S1 M 63 32 11 

S2 F 78 35 NA 

S4 M 65 NA 18 

S5 M 66 35 18 

S6 M 64 51 25 

S7 F 76 39 22 

S8 M 59 30 21 

S9 M 72 43 9 

S10 M 52 58 3 

S11 M 60 21 4 

S12 M 70 42 14 

S13 M 69 52 14 

S14 F 63 52 27 

S15 F 69 33 9 

S16 M 64 NA 21 

S17 M 67 NA 17 

S18 M 40 56 42 

S19 M 72 46 9 

S20 M 63 38 15 

S21 M 51 59 40 
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3.1.1. Intraoperative electrophysiological recordings 

For all subjects pallidal local field potentials were recorded from the DBS lead’s four ring 

electrode contacts (DBS0-DBS3) (Medtronic, Model 3387, length 1.5mm, inter-contact 

distance 1.5mm) at their target coordinates for therapeutic stimulation. Data from 

additional locations along the last 24mm of the DBS lead trajectory were obtained in a 

subset, which were included in the analysis of a prior publication (Tsiokos, Hu et al. 

2013). Unilateral electrocorticographic (ECoG) recordings were obtained from the right 

frontoparietal region by advancing a subdural ECoG strip with eight 4 mm platinum 

contacts with 1 cm inter-contact spacing (ECoG0-ECoG7) posteriorly through the burr 

hole used for DBS implantation in all but two subjects in whom recordings were not 

possible due to clinical reasons. Signal acquisition was performed using BCI2000 v2 or 

v3 connected to an amplifier (g.Tec, g.USBamp 2.0) using a sampling rate of 2400 Hz 

with a 0.1Hz-1000Hz band-pass filter. A data glove (5DT data glove 5 Ultra) worn by the 

patient on the left hand contralateral to the ECoG strip provided concurrent recordings at 

a slower effective sampling rate which was oversampled at 2400 Hz by BCI2000 using 

stair step interpolation. Ground and reference connections to the scalp were used. In 

addition, an amplifier potential equalization ECG lead was attached to the patient’s left 

shoulder. A description of how the target coordinates for the GPi lead implantation were 

obtained is provided elsewhere (Tsiokos, Hu et al. 2013). Briefly, the DBS lead was 

targeted to the motor region of GPI, corresponding to the ventral posterolateral portion of 

GPi, usually 2 mm anterior, 19-24 mm lateral, and 4-6 mm inferior to the mid-

commissural point (depending on individual patient anatomy). All trajectories were 
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confirmed clinically with intraoperative microelectrode recordings and intraoperative 

awake macrostimulation testing of final lead position, but this clinical data was not 

recorded in a manner that could be used for direct comparison with the current results.  

3.1.2. Task and Timing 

Deep brain and cortical signals were recorded at the final electrode implant position, 

during a 6 minute trial of alternating 30 seconds periods of rest and contralateral hand 

movement. In a subset of patients, as described in a previous publication (Tsiokos, Hu et 

al. 2013), signals were recorded as the DBS lead was advanced towards target during an 

11 minute recording session which included 60 second intervals of rest, contralateral 

hand movement and transition (during which the lead was advanced). In these subjects, 

we have data recorded throughout a 24 mm span leading to the final DBS target location 

providing an opportunity to compare the signals in the target location and locations 

proximal to it in the trajectory. 

3.2. Methods 

3.2.1. Time series Preprocessing 

Recorded signals were preprocessed to exclude time segments contaminated with 

artifacts as described previously (Tsiokos, Hu et al. 2013). All time epochs with artifact 

in any contact were removed prior to analysis.  Visual inspection was used to remove 

segments with abnormal high spectral values or excessive noise harmonics. Bipolar (BIP) 

and Common Average Referenced (CAR) configurations were used for further analyses. 

To obtain bipolar signals, we subtracted each electrode time series from its immediate 
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neighboring electrode signal.  CAR signals from ECoG strip and DBS lead were 

calculated by subtracting the local average across ECoG and DBS leads, respectively. 

3.2.2. Spectral analysis 

Six seconds, non-overlapping windows were used to calculate power spectral density for 

all subjects for both rest and movement trials. Prior to further analyses 60 Hz line noise 

was removed from signals by fitting significant sine waves at the line frequency and its 

harmonics and removing them from original data. To calculate the power spectra we used 

multitapering method implemented in Chronux (http://chronux.org/). The average band 

power for the θ (4 – 8 Hz), α (8-12 Hz), low β (12 – 20 Hz), high β (20 – 35 Hz), low γ 

(35 – 80 Hz), high γ (80 – 150 Hz), and very high γ (150 – 300 Hz), were calculated for 

each time window. These values were used to examine the temporal covariabiliy between 

fluctuations in power and other metrics such as PAC. 

3.2.3. Cortical Movement Responsive Sites 

For cortical recordings, ECoG signals were analyzed to identify the contacts that showed 

the greatest movement-related changes in spectral power. High β band power was chosen 

to determine the movement-responsive-sites (MRSs) because its movement-related 

change was most consistent across subjects. While both low and high γ band power 

changes were seen, given the very focal nature of γ band activations (Pfurtscheller, 

Graimann et al. 2003) and the fact that only a strip of electrodes were used for this 

analysis, movement-related changes in γ spectral power were not consistently observed 

across all subjects. For each subject, the MRS was chosen to be the contact with maximal 

high β band power suppression.  
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3.2.4. Coherence 

We calculated the coherence for pairs of cortical and pallidal signals and derived cross 

coherence as a function of frequency for the range of frequencies 0 – 300 Hz to describe 

degree of co-variability between the signal pairs over different frequency ranges. To find 

the time-frequency representation of coherence for the same pair of signals, we emulated 

the moving window approach used in the spectral analyses described above, allowing 

evaluation of patterns of change in coherence over time. 

3.2.5. Phase-to-amplitude cross-frequency coupling (PAC) 

Phase amplitude coupling was calculated using the modulation index measure previously 

described (Canolty, Edwards et al. 2006; Tort, Kramer et al. 2008).  For the pair of 

signals being examined, band pass filtering (2 way least square FIR) and Hilbert 

transform was used to extract instantaneous phase and amplitude time series. Mean 

values for amplitude time series were binned based on their corresponding phase values 

from the phase time series (Allocated into 18 bins with equal width).  

After normalization (to the sum of mean values for all 18 bins) the mean values could be 

considered to have the characteristics of a probability density function referred to as 

“amplitude distribution”. When there is strong coupling/modulation between phase and 

amplitude signals, this distribution deviates from the uniform distribution. Therefore the 

Kullback_Liebler distance between amplitude distribution and uniform distribution was 

proposed as a reliable measure of coupling (mathematical derivation is provided in 

Chapter2). 
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To account for statistical significance for the MI values extracted an approach of 

surrogate data analysis has been used (Identical to Chapter 2) 

We used 50 surrogates for each phase and amplitude pair to derive a z-score 

approximation for the PAC in relation to the population of the surrogates.  We used the 

range of frequency components for phase signal between 2-35 Hz in 1 Hz steps with 4 Hz 

bandwidth, and for amplitude signal between 3 – 300 Hz in 1 Hz steps and 6 Hz 

bandwidth, usinglarger bandwidth for the amplitude signal to accommodate for the 

increased spectral leakage of the LFPs in faster oscillations. The computation of PAC 

over a range of IPS and IAS components yielded a map of z-scores. 

3.2.6. Statistical Analysis 

All statistical analyses were done in R. Inter-subject analyses were performed to compare 

different quantities across the group of subjects. Violin plots (A Tukey’s box plot with a 

rotated kernel density plot on each side) capable of adding information of local density 

estimates to the basic summary statistics (Hintze and Nelson 1998), guided us to use 

appropriate test to perform statistical comparisons between different variables. 

Oftentimes deviation of data distribution from normal distribution (skewness) precluded 

us from using two- sample t-test. For non-normal distributions assumption of 

independence between mean and variance of the sample data no longer holds and leads to 

poor performance of the t-test.  

Robust method of Yuen-Welch test working by trimming a percentage of the more 

extreme cases from the population and adjusting the skewness and kurtosis of the 
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distribution to bring it closer to the normal distributions, has been proposed to account for 

inadequacy of regular two sample t-test (Wilcox 2012).  

To examine the symmetry of coherence and PAC between GPi and morot cortex over 

time we derived each measure for blocks of rest and movement and rescaled them such 

that each measure has its maximum value to be equal to 1. We then found the sum of 

differences between corresponding points in time for each measure and used one-sample 

student t-test to compare the sum of differences for group of subjects with 0.  

3.3. Results 

3.3.1. Movement related changes in cortical signals 

Calculating power spectral density in cortical signals during rest revealed presence of 

spectral peak at high β frequencies with mean of 23.79 ± 3.73 Hz across subjects. 

Movement related changes in contralateral cortical power spectra were consistently 

observed across subjects, including a decrease in β power (both low and high) and 

increase in high γ power (Figure 9A and 9B). While movement related power changes 

were often seen across multiple contacts, the magnitude of movement modulation varied 

across the ECoG strip (Figure 10A shows how different cortical contacts show different 

power modulation by movement for a sample of subjects). The contact with the greatest 

high β power suppression was designated the movement-responsive sites (MRS) for 

subsequent analyses.  

Movement-related changes in power spectra were more comprehensively evaluated in 

MRS.  
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Figure 9 (A) Average power for movement and rest for the signal from a cortical contact (later 

identified as the MRS) for Subject S1. Dashed vertical lines are used to distinguish different 

frequency bands of low and high β and low and high γ (B) Time frequency power spectra for the 

same subject color coded - warmer colors indicate higher power. (C_D) show similar graphs as in 

(A-B) for the most ventral DBS contact for the same subject. (E) shows violin plots of different 

frequency bands for the group of subjects in their cortical MRS and how they change with 

movement. (F) is similar to (E) for pallidal signals in the group of subjects 
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Across subjects, significant movement-related modulation of high β power was observed 

at MRS (Yuen’s test, p = 5.18 ×  10ST), with an average high β suppression of 47.79% 

with movement at MRS. In contrast, while high β suppression was also observed at non-

MRS sites (Yuen’s test, p = 3.48 ×  10SU), the average high β suppression at these sites 

was 32% (Figure 10C high β power modulation in MRS was significantly greater than in 

non MRS with p = 0.0018) . Significant movement-related changes were observed within 

other frequency bands at MRS as well (Figure 9E), including low β (p = 1.27 ×  10SU, 

low, and high γ (p = 4.48 ×  10S�T and p = 0.024 respectively). This contrasts with non-

MRS, in which modulation of only low β (p = 2.43 × 10ST) and low γ (p = 4.84 ×
 10SU) were noted.  

 

 

Figure 10 (A) Black curves show how high β power during rest changes between different cortical 

contacts exhibiting a peak power change near the middle of the strip. Red Curves show similar 

tracks for high β power modulation induced movement over different cortical contacts (maximal β 

power suppression was used to identify cortical MRS as explained in the text) (B) Violin plots of 

baseline (rest) high β power between MRS and non-MRS for the group of subjects (C) Violin plots 

of high β power modulation caused by movement for MRS and non-MRS for the group of subjects. 
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Figure 11 (A) PACFC map (Z-scores) whitin cortical MRS averaged across the group of subjects for rest 

and movement episodes indicating presence of coupling between phase of high β and amplitude of high 

γ during rest, which is suppressed by finger movement. (B) PACFC map (Z-scores) within GPi-DBS0 

averaged across the group of subjects for rest and movement episodes indicating presence of coupling 

between phase of high β and amplitude of high γ  and also between phase of high β and amplitude of 

very high γ (250 Hz) during rest, which is suppressed by finger movement. (C) PACFC map (Z-scores) 

between phase of GPi-DBS0 and amplitude of ECoG-MRS averaged across the group of subjects for 

rest and movement episodes indicating presence of coupling between phase of high β and amplitude of 

high γ during rest, which is suppressed by finger movement. (D) shows the group difference between 

rest and movement PACFC for cortical, pallidal and pallidocortical (from left to right) patterns. ((**) 

indicates that difference is significant with p-value < 0.01 and (*) shows that the difference is significant 

with p-value < 0.05) 
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In addition to characterizing differences in movement related changes in power spectra, 

we explored whether there are differences in baseline (resting) power spectra between 

MRS and non-MRS. In particular we found that MRS had greater baseline high β power 

than non-MRS (paired t-test, p = 8.08 ×  10SV) Figure 10B. Further exploration revealed 

that the magnitude of movement related high β suppression (Measured as absolute 

suppression normalized to the total power) was related to the high β power at rest (Figure 

10A and C).  Similar modulation of baseline power spectral characteristics was not seen 

for other baseline spectral bands. We identified the cortical contact with maximal 

baseline high β power and confirmed that for all subjects MRS is the same contact with 

maximal baseline high β power (12 subjects) or its immediate neighbor (8 subjects). 

We also identified PAC between the phase of high β and amplitude of high γ bands for all 

subjects at MRS (Figure 11A). The sites of maximal coupling had either a one-to-one 

correspondence with MRSs (for 10 subjects), or their immediate neighbors (other 10 

subjects). β-γ PAC was significantly greater at MRS as opposed to non-MRS sites (paired 

t-test, p = 1.06 ×  10SU).  . At MRS, movement was associated with a significant decrease 

in the cortical PAC (Figure 11A and 11D Yuen t-test, p-value = 0.0022). We compared 

movement induced changes in β-γ PAC between MRS and non-MRS cortical signals 

across subjects and found that movement induced changes in cortical PAC were greatest 

at MRS in the group of subject (with p = 7.03 × 10SU) Figure 12B. Spatial correlation of 

PAC with baseline high β Coherence over the cortical contacts (Figure 12A) also were 

examined and sites of maximal baseline high β coherence were closely matched to the 

sites of maximal PAC modulation (10 subjects same contacts and 10 subjects their 

immediate neighbor) 
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3.3.2. Movement related changes in pallidal signals 

Spectral profiles with the GPi were similar to that seen in the cortex, but with a less 

prominent β peak and a distinct very high γ peak, centered at 230 Hz, as previously 

described (Figure 1 C and D, (Tsiokos, Hu et al. 2013)). The mean β peak across all 

subjects was 23.05±5.17 Hz.  

 

Figure 12 (A) Spatial correspondence between movement induced changes in cortical PACFC (high 

β to high γ) and average high β coherence between GPi-DBS0 and cortical contacts (ECoG0-

ECoG7) for 6 subjects (B) Violin plots of movement induced changes in cortical PACFC between 

MRS and non-MRS cortical contacts 
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Movement-related changes in spectral power were also observed in pallidal signals.  

Following a similar pattern to the cortical signals, high β power suppression and γ power 

increase were observed at the most ventral DBS contact in all subjects (Figure 9C-D). 

High β power suppression was statistically significant (p = 0.00139, paired Yuen t-test) 

between rest and movement for the group of subjects at this contact (Figure 1F), with a 

mean suppression of 34.57%. Low β and low γ power also showed significant changes 

with movement (p = 0.003 and p = 0.04). While high γ power also seemed to increase 

with movement, this change was not statistically significant (p = 0.07).  

We identified PAC within GPi between phase of high β and amplitude of low γ and also 

between phase of high β and amplitude of 250 Hz in 15 subjects (Figure 11B left panel). 

On average peak cortical PAC is stronger (higher z-scores peak cortical z-score is 20.52 

and peak pallidal z-score is 3.37) when compared to pallidal PAC (Figure 11A-B). 

Although movement seemed to suppress pallidal PAC (Figure 11B), this did not reach 

statistical significance (p = 0.26, Figure 11D)  

3.3.3. Relationship between pallidal and cortical signals 

3.3.3.1. High β coherence between GPi and Cortex 

During rest coherence between the GPi and MRS was observed in β frequencies (Figure 

13A). Average high β coherence was higher between pairs of GPi and MRS cortical 

signals (17 subjects) or their immediate neighbors (3 subjects) (with average value of 

0.38) as compared to pairs of GPi and non-MRS cortical signals (average of 0.22) and p = 

1.857 ×  10SU (Figure 14). For the subset of subjects with recordings along the DBS 

trajectory, the average β coherence increased as the DBS lead approached the final 



58 

 

(target) location in the GPi (Figure 13B). Movement results in a significant decrease in 

average low/high β coherence, reducing from 0.363 at rest to 0.331 during movement 

(p=0.003912, Figure 13C). An illustrative example is shown in Figure 13A (same subject 

as in Figure1) demonstrating modulation of pallidal-cortical coherence as a function of 

frequency.  

 

 

 

Figure 13 (A) Coherence as a function of freqeucny between DBS0 and cortical MRS for subject 

S1, which shows suppression in β coherence, caused by movement (B) For S14 β coherence during 

rest between cortical MRS (ECoG5) and DBS0 increases as lead is advanced toward the target 

location (C) Violin plots of average high β power change between rest and movement for group of 

subjects 
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3.3.3.2. PAC between GPi and MRS cortex 

PAC across the GPi and MRS in motor cortex was present between the phase of the GPi 

β band and the amplitude of the MRS γ band (Figure 11C). Notably, we observed lower 

z-scores for peak pallidocortical PAC as compared to cortical CFC (with peak z-score of 

3.18). Figure 11C shows the average PAC for rest and movement averaged for the group 

of subjects. Movement causes reduction in pallidocortical PAC and changes were 

statistically significant across group of subjects (p = 0.02875) (Figure 13D).  

 

3.3.4. Temporal correlation between PAC and β coherence 

Temporal correlations between pallidocortical β coherence, cortical β-γ PAC, and 

pallidocortical β-γ PAC were examined for the subset of subjects with 6 minutes of 

recordings at the final DBS position (providing sufficient temporal data for such 

analyses). The three metrics (coherence, cortical PAC, and pallidocortical PAC) were 

calculated for consecutive episodes of rest and movement (6 rest episodes and 6 

 

Figure 14 (A) Spatial correspondence between high β coherence during rest and movement induced 

modulation in high β power for 6 subjects (B) Violin plots of rest high β coherence between MRS 

and non-MRS cortical contacts 
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movement episodes resulting in 12 values). Nine subjects (out of 12) showed significant 

correlation between cortical and pallidocortical PAC (with p-value < 0.05). From those, 6 

subjects demonstrate significant correspondence between pallidocortical PAC and 

pallidocortical high β coherence. In addition, there is significant correlation between 

cortical PAC and pallidocortical high β coherence in 7 subjects. One subject also showed 

high correlation between cortical PAC and pallidocortical high β coherence but not a high 

correlation between cortical and pallidocortical PAC. 

In addition to the correlation as explained in the methods we explored symmetry between 

three measurements. One sample t-test couldn’t reject the null hypothesis and lead to 

presence of symmetry between Cortical PAC and Pallidocortical PAC (with p = 0.48) 

and also between cortical PAC and pallidocortical coherence (with p = 0.13). However 

symmetry between pallidocortical coherence and pallidocortical PAC couldn’t be 

confirmed as the t-test rejects the numm hypothesis of sum of differences between two 

curves to be differentiable from 0. 
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3.4. Discussion 

Phase amplitude coupling has been observed extensively in different cortical areas of 

humans and primates, including the human frontal (Schack, Vath et al. 2002) and 

temporal lobes (Canolty, Edwards et al. 2006), and the human motor cortex in 

Parkinson’s disease (de Hemptinne, Ryapolova-Webb et al. 2013). It has been suggested 

to serve as a pathophysiologic mechanism for Parkinson’s disease (de Hemptinne, 

Ryapolova-Webb et al. 2013; Yang, Vanegas et al. 2014). While other studies have 

examined the role of treatment on cortical PAC (including subthalamic nucleus (STN) 

both stimulation and medications), the effect of movement itself on cortical PAC has not 

been characterized. Moreover, the relationship of cortical PAC to subcortical signals, in 

particular those of the basal ganglia has not been extensively characterized. Given the 

phase encoding frequency in the β band and the preponderance of β throughout the motor 

network in Parkinson’s disease, we propose that understanding the movement modulation 

of PAC both at the local and network level are key investigations to piece together the 

complex pathophysiologic network underlying Parkinson’s disease.  

In this study, we verified the presence of β – γ PAC in patients with Parkinson’s disease 

and demonstrate that these signals are not only modulated by treatment (as reported by 

others) but that they are also modulated by movement (both locally and across nodes 

within the motor network). Moreover, we demonstrate a spatially specific and temporally 

dynamic relationship between subcortical and cortical β signals that are tied to cortical 

PAC dynamics. Finally, we report previously unreported PAC within the GPi between 

both β – γ and β – very high γ (250 Hz). Our results complement previous human studies 

on the STN (Yang, Vanegas et al. 2014). 
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3.4.1. PAC within the motor cortex 

Previous studies have reported increased β activity and PAC in the motor cortex in 

Parkinson’s disease (Cruz, Mallet et al. 2009; Crowell, Ryapolova-Webb et al. 2012; de 

Hemptinne, Ryapolova-Webb et al. 2013).The relationship between these signals 

however has not been characterized. Here, we demonstrate spatial correlations between 

these signals, suggesting a common underlying etiology interrelating these observations. 

In this study, MRS, which we use to electrophysiologically define motor cortex are 

characterized by the highest regional β power and β – γ PAC.  

3.4.2. PAC within the GPi 

The power spectral analysis of LFP signals from GPi showed presence of peaks in the 

power of the high β band similar to  the motor cortex which is involved in local PAC 

within the GPi. Uniquely, the GPi has a 200-300 Hz component, which is movement-

responsive, which we have previously characterized in great detail (Tsiokos, Hu et al. 

2013). De Hemptinne, et al. identified PAC within the STN (de Hemptinne, Ryapolova-

Webb et al. 2013), which has also been reported by Lopez-Azcarate, et al. (Lopez-

Azcarate, Tainta et al. 2010). Notably, in both studies, in the state when patients were off-

medication and stimulation, movement had a small effect on coupling. Such observation 

could underlie an inability of the diseased basal ganglia to suppress PAC. Similar to these 

other reports, while our results demonstrate qualitative reductions in pallidal PAC with 

movement, this did not reach statistical significance, suggesting an inability to suppress 

subcortical PAC may contribute, in part, to the pathophysiological manifestations of PD.  
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Furthermore, movement was reported to cause an increase in the magnitude of the peak at 

the 200-300 Hz frequency range (Tsiokos, Hu et al. 2013) in subjects included in the 

present study, while the current results suppression of PAC between the β band and 200-

300 Hz in some subjects. The findings suggest opposing actions for the two frequency 

bands (high β and 200-300 Hz band)indicating a “pro-kinetic” role for 200-300 Hz and an 

“anti-kinetic” role for high β band. This finding complements the previous finding  in 

STN suggesting a network-wide effect of the two frequency rhythms(Brown 2003). The 

failure to complete eliminate PAC with movement might be indicative of Parkinson’s 

disease related dysfunction. 

3.4.3. PAC between GPi and motor cortex 

In a previous study in epilepsy patients, we illustrated how low frequency thalamic 

signals can causally modulate cortical signals via thalamocortical PAC. While there are 

fundamental differences between the connectivity of the thalamus and cortex (single 

synapse) as opposed to GPi and cortex (two synapses with presumed intervening thalamic 

processing/integration), exploring the relationship between subcortical and cortical 

signals may provide insight into the pathophysiologic control mechanisms given the 

presence of increased β throughout the motor network in PD and the suggestion of PAC 

as a pathophysiologic mechanism of PD.  

In the majority of subjects, pallidocrotical coherence demonstrated significant temporal 

correlation with cortical β-γ PAC as well as pallidocortical β-γ PAC. A valid concern was 

due to small sample number (n = 12) affecting the correlation values. However we note 

that even between random time series observing a correlation of 0.3 or above indicating a 
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pattern of positive influence between the two time series is highly unusual Overall, these 

results strongly suggest a dynamic pathologic network structure underlying PD based on 

a coherent β oscillation rather than a disease node within the motor network. This has 

significant implications for the study of PD pathophysiology, which has traditionally 

focused on studying and characterizing the pathophysiology of a single area (cortical or 

subcortical).   
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4. Conclusions and Future Work 

 

Although the thalamus is believed to regulate and coordinate cortical activity both within and 

across functional regions, such as motor and visual cortices, direct evidence for such regulation 

and the mechanism of regulation remains poorly described. Using simultaneous invasive 

recordings of cortical and thalamic electrophysiological activity in two awake and spontaneously 

behaving human subjects, we provide direct evidence of thalamic regulation of cortical activity 

through a mechanism of phase-amplitude coupling (PAC), in which the phase of low frequency 

oscillations regulates the amplitude of higher frequency oscillations. We hypothesized that 

cortical PAC is intimately related to thalamocortical functional and structural connectivity. Our 

results indicate that cortical PAC is spatially specific and time variant and its variance is related 

to patterns of thalamocortical structural and coherent thalamocortical activity. 

Specifically, we show that cortical PAC between the theta phase and beta amplitude is spatially 

dependent on and time variant with the magnitude of thalamocortical theta coherence. Moreover, 

using causality analysis and MR diffusion tractrography, we provide evidence that thalamic theta 

activity drives cortical theta oscillations and PAC across structures and that these thalamocortical 

relationships are structurally constrained by anatomic pathways. This relationship allows for new 

evidence of thalamocortical PAC. Given the diffuse connectivity of the thalamus with the 

cerebral cortex, thalamocortical PAC may play an important role in addressing the binding 

problem, including both integration and segregation of information within and across cortical 

areas. In accordance with the diffuse connectivity of the thalamus with the cerebral cortex, the 

current work provides direct causal evidence that the thalamus exerts regulatory control over 

ongoing cortical activity, at least in part, through a mechanism of phase-amplitude coupling, in 
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which low frequency thalamic rhythms, such as theta, directly regulate higher frequency cortical 

activity in the beta range and possibly beyond, although that remains speculative based on the 

current data and analysis. Such modulation is spatially specific and structurally constrained, as 

evidenced by within subject diffusion tractography analysis. These results strongly suggest the 

thalamus is not a "relay" but that it actively modulates cortical activity in a time variant and 

structurally constrained manner. 

Alterations in the functional connectivity between the basal ganglia (BG) and cortex are likely a 

pathophysiological cornerstone of Parkinson’s disease (PD) (Fogelson et al. 2006; Marreiros et 

al. 2013), yet non-invasive imaging cannot assess these relationships with sufficient temporal 

and spatial resolution. Currently our understanding of the corticao-basla ganglia-thalamocortical 

is still incomplete and present models are not able to cover all aspects of activity in the motor 

system.  

Decades long research efforts have tried to establish the role of hierarchical relationships 

between normal and aberrant oscillations in the basal ganglia and their link to functional and 

pathophysiology of movement disorders. Phase-amplitude coupling (PAC), in particular, has 

been shown to be present both within and between the structures in human subthalamic nucleus 

(STN) and motor cortices. Given PD is likely a disease related to pathological networks, we 

hypothesized that cross-regional coupling of β band (13-35 Hz) local field potentials (LFP) may 

reflect PD associated changes in cortico-basal ganglia functional connectivity.  Using 

simultaneous cortical-subcortical LFP recordings in humans undergoing deep brain stimulation 

(DBS) implantation, we demonstrated the time co-variability of cortical-GPi CFC to local 

spectral power as well as β coherence between GPi and motor cortex. 
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In our study we identified presence of two types of PAC in the human GPi: β – γ and β – very 

high γ and confirmed that contralateral movement significantly decreases β power both within 

cortex and GPi and causes decrease in the coupling (coherence and CFC) between the two sites 

possibly manifesting a deficiency in the diseased BG. These changes are spatially specific and 

temporally dynamic, suggesting they may be related to dynamic and coherent motor-network-

wide β oscillations. Strong CFC might be a pathologic mechanism transcending the local sites, as 

evidenced by its correlation to coherence and CFC between the GPi and motor cortex. 

Exact characterization of PAC and its complete role in the pathophysiology of the Parkinson’s 

disease  and the disease severity as measured by standard system of UPDRS still remains to be 

studied in extensive details. Different patterns of movement and behavioral tasks and their 

effects on the power and PAC coupling pattern both within and between structures need to be 

further explored. Considering the mult-synaptic connections in the cortico-basl ganglia-

thalamocortical circuit, more nodes of the circuit should be studied simultaneously if possible.  

Also due to the limitations of recordings from diseased group and the fact that normal subjects 

cant udergo such invasive procedures there is a need to compare the results of this study on the 

group of control subjects such as epilepsy patients or dystonia or essential tremor patients to 

further expand the role of power and PAC in the pathophysiology of the disease. 

The findings then can be incorporated into extensive computational models to account for the 

differences between basal ganglia nuclei in terms of oscillatory activity. 
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