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a b s t r a c t 

The extent to which the resolution varies within a three-dimensional (3-D) reconstruction, when the 

diameter of an object is large, is investigated computationally. Numerical simulation is used to model 

ideal three-dimensional point-spread functions at different radial positions within an object. It is shown 

that reconstructed density maps are affected less than might have been expected when particles are 

larger than the depth of field. This favorable outcome is attributed mainly to the fact that a point which 

lies outside the depth of field relative to the center, for some orientations of the object, will also lie 

within the depth of field for other orientations. We find, as a result, that the diameter of a particle can 

be as much as four times the depth of field (as defined by a 90 ° phase-error criterion) before curvature 

of the Ewald sphere becomes a limiting factor in determining the resolution that can be achieved. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

High-resolution electron microscopy of unstained biological

macromolecules (single-particle cryo-EM for short) has recently

made significant advances [14] . Three-dimensional density maps of

large macromolecules are now being obtained with a resolution in

the range from 3 to 4 Å, and in a few cases the resolution has al-

ready exceeded 2.5 Å [3,4,13] . A fundamental approximation used

in this method is that the image intensity is linear in the projected

Coulomb potential of the specimen – see, for example, Chapter 4

of [7] . Equivalently, when referring to Fourier space rather than

real space, the corresponding approximation is that curvature of

the Ewald sphere [6] can be neglected. 

Validity of the assumed “projection” approximation requires,

among other things, that all portions of the specimen are imaged

with the same amount of defocus. This only happens, of course, if

the size of the object (i.e. its thickness) is much less than the opti-

cal depth of field. As a result, the fundamental approximation, i.e.

that the image is a projection of the object, is not expected to be

useful if the size of the object is similar to, or much greater than,

the depth of field. 

This issue has been raised in the past, both in the context of

very large virus particles [10,17] and in the context of smaller par-

ticles that are randomly distributed within a certain range of Z -

heights, which is determined by the overall ice thickness [9] . It

seemed to be paradoxical, for example, that high-resolution, three-

dimensional reconstructions were obtained from images of icosa-
∗ Corresponding author. 
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edral virus particles whose diameters are larger than the corre-

ponding depth of field [8,12,16] . An often-mentioned resolution of

his paradox is that a large number of (symmetry-related) subunits

re located at the same Z -height as is the middle of the virus parti-

le. At the same time, it is suggested – reasonably so – that estima-

ion of the defocus value for the image of a virus particle is biased

owards the middle, i.e. its center of mass. Thus, if the contrast-

ransfer-function (CTF) correction for the region near to the mid-

le of a large virus particle is done correctly, a significant amount

f signal may be produced from the many subunits whose images

ave been properly corrected. The suggestion is that this signal can

verwhelm the (high-resolution) “noise” contributed by other sub-

nits that lie at Z -heights that are outside the depth of field. Be-

ause of this argument, it seemed plausible that the depth of field

ight be a greater limitation for asymmetric particles than it is

or icosahedral virus particles. It thus remains inconclusive that no

mprovement in the quality of density maps was obtained when

omputational algorithms were used to compensate for violation of

he projection approximation for images of large, icosahedral virus

articles [11,15] . 

We now reopen the question by using computational simula-

ions to better understand what limitations to expect when the

ize of a particle approaches, and even exceeds, the depth of

eld for a given resolution. The approach that we have taken is

o first calculate noise-free, three-dimensional (3-D) reconstruc-

ions of “single points” that are located at different distances from

he center of an object. The resulting 3-D point-spread functions

re then convoluted with high-resolution density maps for atomic

odels of two peptide structures found in tubulin, the sizes of

hich are both much smaller than the depth of field for 300 keV

http://dx.doi.org/10.1016/j.ultramic.2017.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ultramic
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2017.08.007&domain=pdf
mailto:rmglaeser@lbl.gov
http://dx.doi.org/10.1016/j.ultramic.2017.08.007
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Fig. 1. Schematic drawing that shows how points within an object are imaged with 

a constantly changing value of defocus as the object is rotated. It is assumed that 

the center of the object is the only exception, i.e. the central point is always imaged 

with the same amount of defocus. An asterisk indicates the position of one such 

voxel, located a distance R from the center of the object. Faint, dotted lines indicate 

the Z -height locations of the voxel in question and the center of the object, for a 

given radial position of the voxel and a given rotation of the object. 
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lectrons at a resolution of 2 Å. In the case of the larger polypep-

ide structure, the Fourier shell correlation (FSC) function is then

alculated between two versions of the map, one located at the

enter of a particle and the other located at a given distance from

he center, designated by the radius, R . The resolution at which

his FSC function falls to the commonly used value 0.143 is used

s a quantitative measure of the extent to which the resolution of

 single-particle cryo-EM structure will be limited solely because

f the depth of field. 

The results of these simulations suggest that the limitations im-

osed by the depth of field – ignoring all other factors – are essen-

ially identical to those estimated previously by DeRosier [6] when

onsidering the effect of curvature of the Ewald sphere. These limi-

ations are much less severe than might have been expected on the

asis of commonly used expressions for the depth of field. As an

xample, density maps obtained after 3-D reconstruction remain

imilar to the original object for particles whose diameter is four

imes the expression for the depth of field used in Eq. (2) , below.

e identify two factors that may contribute to this favorable out-

ome. (1) It is true that errors are introduced when applying a CTF

orrection that is appropriate only at the center of a particle. Even

o, phase-flipping compensation still produces the right correction

t many spatial frequencies where it might not have been recog-

ized to do so. (2) More importantly, because the object has to

e viewed in different orientations, every point within a particle

ust lie, in many of the views, at more or less the same Z -height

s does the center of the particle. In other words, every sub-region

f a particle will be defocused by the amount specified during CTF

orrection, for at least some of the images. We propose that both

f these effects may serve to mitigate the expected consequences

hen the diameter of the particle is as much as four times the

epth of field. 

. Theory 

The resolution at which the Fourier transform of an image re-

ains similar to that of a projection of the object depends upon

he object size and the electron wavelength, λ. More specifically,

q. (2) in [6] states that the square of the resolution, expressed

s a spatial frequency, is inversely proportional to the product of λ
nd the difference in Z -height from top to bottom, t in his notation

nd δZ in ours. The constant of proportionality, 2 p in DeRosier’s

otation, “depends upon the amount of error one is able to toler-

te.” Using the criterion that the average phase error should not

xceed 66 °, the value of p was found to vary between 0.60 and

.79 for spheres and cylinders 600 Å in diameter, with lower val-

es being found for thin-walled, hollow objects than for filled ones.

sing a value of p ∼= 

0.7, for example, a periodic feature of size “d ”

s expected to be imaged within acceptable error over a range of

 -heights – i.e. a depth of field – equal to 

Z = 1 . 4 

d 2 

λ
(1)

According to Eq. (1) , for 300 keV electrons a resolution limit

f d ∼= 

3.8 Å might be expected for a particle as large at 10 0 0 Å in

iameter. 

The reason that this estimate seems paradoxical is that it

reatly exceeds another estimate of the depth of field, given by 

Z = 0 . 5 

d 2 

λ
. (2)

Eq. (2) corresponds to the condition that points located at dif-

erent Z -heights, lying within the range δZ from top to bottom, are

maged with a phase shift (i.e. a wave aberration referred to the

ourier transform of the object) that is 90 ° or less. According to

q. (2) , a resolution limit of d ∼= 

3.8 Å for 300 keV electrons might

e expected only for particles smaller than 360 Å in diameter. 
. Methods 

Individual, three-dimensional (3-D) reconstructions were calcu- 

ated from simulated images of single voxels located at different

ositions within an extended object. The schematic drawing in

ig. 1 uses an asterisk to indicate the position of one such voxel,

magined to be located a distance R from the center of the object.

or each such voxel, a single-axis, tomographic series of images

as calculated with an evenly spaced angular step of 1 ° between

ach image. The axis of rotation in this drawing is perpendicular

o the page and passes through the center of the object. All im-

ges were assumed to be recorded with the center of the object

t the same value of defocus, �Z . As a result, the actual defocus

alues for a given voxel in the simulation varied from ( �Z – R ) to

 �Z + R ) as the object was rotated by 360 ° Tomographic volumes

ere calculated for points at radial positions ranging from 0.0 to

00 nm. These individual volumes represent different examples of

he 3-D point-spread function at various distances from the center

f an extended object. 

Scripts, written in DigitalMicrograph (Gatan, Inc.), were used to

imulate how images of a single voxel change as the entire ob-

ect is rotated about a single axis. The voxel size was taken to be

.05 nm, as was the corresponding pixel size in the images. The pa-

ameters used to model the contrast transfer function (CTF) were

Z = 500 nm and λ= 2 pm. In addition, an envelope function was

ncluded in these simulations to model the many factors that can

e expected to limit the signal beyond a resolution of ∼2 Å. For the

urposes of what we are interested to learn from the simulations,

e assumed that this envelope did not change with the changes in

efocus that occur between the top and the bottom of a particle. 

The Fourier transforms of all images in a given tomographic

eries were then modified by “phase flipping”, i.e. multiplying

he Fourier transform by −1 at all spatial frequencies where the

TF (contrast transfer function) is negative for a defocus value of

Z = 500 nm. This step simulates the usual operation of “CTF cor-

ection” that would be made, assuming that it is possible to accu-

ately estimate the value of defocus that corresponds to the center

f a particle. The error that is made when performing this “correc-

ion”, for images of a given voxel, depends on the radial position

f the voxel and the rotation angle for a given image. 

Using the simulated, “CTF corrected” images just described, to- 

ographic 3-D reconstructions were computed with the filtered

ack-projection algorithm provided in Tomo 3-D [2] . As indi-

ated previously, the resulting volumes represent 3-D point-spread
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Fig. 2. Worst-case examples to show how applying a CTF correction with an inappropriate value of defocus results in corruption of the Fourier transform. Shown here are 

the results of applying a “phase flipping” CTF correction, appropriate for a defocus of 50 0 0 ̊A, to the Fourier transforms of images recorded with defocus values ranging from 

50 0 0 to 550 0 ̊A. The radial locations for the respective points within the particle were (A) R = 0 ̊A, (B) R = 125 ̊A, (C) R = 250 ̊A, (D) R = 375 ̊A, and (E) R = 500 ̊A The Nyquist 

limit in this simulation was at a resolution of 1 ̊A 
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functions for those portions of a structure that are located at a ra-

dius “R ”. 

4. Results 

Fig. 2 shows how the CTF correction becomes progressively in-

appropriate as the Z -height of a given point increases relative to

the center of an object. CTF correction performed by phase flip-

ping, used here, is perfect (as is shown in panel A) for a point lo-

cated at the center of the object. When R is 250 Å, however, CTF

correction remains valid – in the worst case – only to a resolu-

tion of about 3 Å, as is seen in panel B. As R increases further,

phase flipping introduces a phase error of 180 ° over more and

more of the Fourier spectrum, as is shown in panel C. For values of

R greater than 250 Å, this phase error even begins to affect Fourier

components at a resolution as low as 4 to 5 Å, but at higher res-

olution (approaching 2 Å) a new band develops within which the

CTF correction is again appropriate, as is seen in panels D, and E.

The bands of spatial frequencies at which errors occur are charac-

terized by a slowly oscillating envelope, which depends upon the

Z -height within the object. The envelopes seen in the CTFs shown

in Figures S1 and S2 of the supplemental material, which are cal-

culated for different defocus conditions, are complementary to the

phase-flipped CTF curves shown in Fig. 2 . The magnitude of the

envelope provides a direct representation of the fraction of spatial

frequencies for which the sign of the structure factor is, or is not

correct after CTF “correction”. 

What is important, of course, is what effect such inappropri-

ate CTF corrections, when they do occur, have on the images in a

tomographic series. This question is addressed in Fig. 3 . The top

row shows the simulated images obtained at different values of Z-

height relative to the center of an object. Because there is already a

fairly large amount of defocus for a point at the center of an object,

not much difference is seen when the defocus is changed by rela-

tively small, additional amounts. Nevertheless, two effects become

immediately apparent when a CTF correction, which is appropri-

ate for a point at the center of the object, is applied to images for
oints at different Z heights. The width of the intense peak in an

mage, which is centered on the projected position of the voxel,

egins to grow, and the delocalization of the signal – which is so

pparent in the raw images, shown in the top row – is no longer

estored as effectively to the central peak. 

The unavoidable error that is made when applying a single CTF

orrection to images of points at different Z -heights, is necessarily

ropagated to the tomographic volume that is reconstructed from

hose images. As is shown in Fig. 4 , the 3-D volume reconstructed

or a single voxel – in effect, a 3-D point-spread function (PSF) –

s increasingly elongated in the Z direction, for points located at

n increasing distance, R , from the axis of rotation. In addition, the

ensity at the location of the voxel pinches off and eventually be-

omes negative, and the PSF becomes dominated by two lobes on

ither side of the central voxel. This is perhaps not surprising, since

he CTF “correction” applied to many of the images, as is seen in

ig. 3 , introduces one or more (depending upon the amount of de-

ocus) annular zones with many erroneous, negative values at high

patial frequencies. 

The elongated point-spread functions that are shown in

ig. 4 cause a progressive corruption of the 3-D reconstructions

f those portions of an object that lie at larger distances, R , from

he axis of rotation. As an example, Fig. 5 shows the maps pro-

uced when the density of a short oligopeptide is convoluted with

 different point-spread functions that were obtained for different

oints in an object, corresponding to radial positions up to 750 Å.

hese are presented only to give a qualitative sense of how the res-

lution of a map is bound to decrease, but the interpretability less

o, the farther a point is from the center. It is worth emphasizing

hat this example represents the best possible case, in which the

efocus value at the center of a particle is known very accurately,

nd there is no confounding effect from the long tails of the point

pread function when it is centered on adjacent atoms other than

hose of the oligopeptide in question. Figure S3 in the supplemen-

al material shows the maps produced when the density of a much

arger portion of the tubulin molecule (PDB ID; 1JFF) is convoluted

ith the same five point-spread functions. This example is shown
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Fig. 3. Examples to show that making a CTF correction with an inappropriate value of defocus results in imperfect restoration of the image. Upper row: images of a point 

(i.e. a single-voxel) that were simulated for values of defocus that are specified by the numbers below each column. Lower row: corresponding images obtained after applying 

the CTF correction that is appropriate for a defocus value of 50 0 0 ̊A. Scale bar = 10 ̊A. 

Fig. 4. Surface-rendered images of the 3-D point-spread functions that are located 

at increasing distances from the center of a particle. The examples shown here are 

for radial distances of 0, 125, 250, 500, and 750 ̊A, going from left to right, respec- 

tively. The outer, semitransparent surface is drawn at 1/3 the peak value, and the 

inner, solid surface is drawn at 2/3 the peak value. 
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nly for completeness, to document that the complexity of such a

arge map makes it difficult to draw quantitative conclusions just

y visual inspection. 

We have thus quantified the progressive corruption of the den-

ity for this larger portion of the structure of tubulin by com-

uting the Fourier Shell Correlation (FSC) for maps obtained af-

er convolution with various point-spread functions. The resulting

SC curves are shown in Fig. 6 . The FSC curve for a protein located

t R = 0 falls off with resolution because of the envelope that was
ig. 5. Examples illustrating the progressive degradation of the density map that occurs a

f a small portion of the polypeptide chain of tubulin (PDB ID: 1JFF), consisting of the se

ensity maps produced for the same portion of the structure after it has been convolute

50, 500, and 750 ̊A, going from left to right. 
ntentionally included in the image simulations. In addition, this

SC curve shows ripples due to zeros in the CTF, an effect that is

f no interest for this investigation. Apart from an amplification

f these ripples, the FSC changes very little when R = 125 Å, cor-

esponding to a particle size (diameter) which is more than twice

he value of the depth of field for a resolution of 2 Å. The FSC curve

or R = 500 Å falls off more rapidly, however. It now reaches a reso-

ution of only ∼3.5 Å at the point where it falls to a value of 0.143,

nd soon thereafter it becomes negative, indicating an anticorrela-

ion with the correct map at higher spatial frequencies. In addition,

he oscillations in the CTF continue to grow, which must be due

o the unwanted oscillation in sign that is made when “correcting”

he CTF, see Fig. 2 . When R = 750 Å, the CTF falls to a value of 0.143

t a resolution of ∼4 Å, and takes on increasingly negative values,

hich now become of some concern. 

The extent to which the depth of field limits the resolution

s summarized in Fig. 7 , which shows the resolution at which

SC = 0.143, as a function of the radial position within an extended

bject. For comparison, a curve is shown in Fig. 7 for the resolution

s depth of field calculated from Eq. (2) , where δZ was taken to be

he diameter, i.e. 2 R . This comparison emphasizes that the limit

f resolution due to the depth of field is actually much less se-

ere than would be estimated by simply using the value calculated

rom Eq. (2) . We also point out here that the resolution at which

SC = 0.143 in our simulations is perhaps too pessimistic when the

article radius is 125 Å. That is because the fall-off in FSC then
fter convolution with the 3-D point-spread functions shown in Fig. 4 . The structure 

quence Lys-Met- Ser-Ala-Thr-Phe-Ile, is shown on the left-hand side of this figure. 

d with the point-spread functions for points located at radial distances of 0, 125, 
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Fig. 6. FSC curves for simulations that compare the maps for (1) a larger portion of the structure of tubulin located at different values of the radius, R, with (2) the density 

calculated directly from the coordinates in PDB ID: 1JFF. Results shown here are for maps located at radii of 0, 250, 500, and 750 ̊A. The dashed horizontal line is drawn at 

FSC = 0.143. 

Fig. 7. Two different estimates for the expected resolution limit due to the finite 

depth of field for 300 keV electrons. The solid line shows values of the resolution 

at which the local mean-values of the FSC curves, shown in Fig. 6 , fall to 0.143. 

For comparison, the dotted curve shows the value of the resolution given by the 

expression d = 

√ 

2 λ( 2 R ) , where λ is the electron wavelength and d is the resolution 

at which all points within a slab of thickness equal to twice the radius, R, can be 

considered to be focused to the same degree. 
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becomes limited by the envelope function that we included in the

simulations. We are less interested in this detail, however, than in

what happens for larger particles. 

5. Discussion 

Our simulations assume that the value of defocus is known

at the center of an object, for all images in a data set. In prac-

tice, there will be experimental error in estimating this defocus

value. In addition, real images are very noisy, and our simulations

have not attempted to model that. Finally, it is widely known that

other factors, such as errors in the determination of angular ori-

entation as well as increased flexibility of outer features can cause

the resolution to decrease with increasing radial position within a

structure. As a result, the simulations are presented as a best-case
stimate of how well the density map of an object can be recov-

red from real data. In other words, these simulations are meant

nly to represent when, and by how much, the recovery of a den-

ity map is fundamentally limited by the size of a particle, due to

he resolution-dependent depth of field. 

Perhaps the most interesting result to emerge from these simu-

ations is that the 3-D density maps shown in Fig. 5 and Figure S3

emain “interpretable”, in terms of fitting a polypeptide chain into

he density, even when the particle radius, R , is as large as 75 nm.

he corresponding diameter of 150 nm is approximately the depth

f field, according to the criterion expressed in Eq. (2) , for a res-

lution of 7.8 Å. In fact, referring to Fig. 7 , our simulations show

hat the value of the FSC remains > 0.143 to a resolution of ∼4.0 Å

or the portion of the tomographic volume located at a radius of

5 nm, which is consistent with that part of the map remaining

nterpretable in terms of fitting the polypeptide chain. 

The results of our simulations thus contradict the expectation

hat an object must be smaller than the value of the depth of field,

efined as in Eq. (2) , in order for a 3-D reconstruction to be re-

overed at a corresponding resolution, d . One factor that no doubt

ontributes to this favorable result is that CTF correction, when the

alue of defocus is somewhat different from the correct one, con-

inues to produce correct phase flipping at some spatial frequen-

ies, even though errors are made with increasing frequency. This

oint is best shown in Fig. 2 and the companion figures, Figures S1

nd S2. 

More importantly, even those points that lie outside the depth

f field (as defined in Eq. (2) ) with respect to the center of the

article must lie within the depth of field for some other orien-

ations of the object. Put in another way, no point in an object is

LWAYS “out of focus”, with respect to the center of the particle,

ithin the entire data set. We believe that this aspect, inherent

o the requirement for a uniform distribution of Euler angles dur-

ng 3-D data collection, was also reflected in the simulations for

ylindrical and spherical objects reported by [6] . In these numeri-

al calculations, a given point thought to be outside the depth of

eld, for example one at the top or bottom of the object, was ac-

ompanied by other points at the same radius, but at a different

ector locations, for example ones lying in planes near the middle

f the object. As a result, there can be many structurally equivalent
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oints within a large object, but only a relatively small subset of

hem will contribute to a phase error, as calculated by DeRosier,

ue to curvature of the Ewald sphere. The same consideration ap-

lies when performing 3-D reconstructions for virus particles, in

hich icosahedral symmetry is enforced, or for asymmetric recon-

tructions from data sets of particles with a uniform distribution

f views. 

The fact that points located at larger radii are “out of focus”

ith respect to the center of a particle, in at least some of the

iews, still does have important consequences, of course. These are

eflected in a broadening of the point-spread function as the ra-

ial position increases, and in a corresponding loss of density at

he center of the point-spread function, as is shown in Fig. 4 . As

 result, the achievable resolution decreases at larger radius, as is

hown in Fig. 7 . 

Even though the entire map in our simulation remains “inter-

retable” for an object as large as 150 nm in diameter, the resolu-

ion achieved in different parts of the map does deteriorate signif-

cantly with increasing radius, as is shown by the curve of FSC vs

 in Fig. 6 . Thus, unless something is done to compensate for cur-

ature of the Ewald sphere at high resolution, the corresponding

nite value of the depth of field is expected to limit the resolu-

ion (but less so the interpretability) achievable as the particle size

ncreases. As has been mentioned in the Introduction, it has been

roposed that computational methods might further compensate

or curvature of the Ewald sphere [11,15] . Nevertheless, it is always

etter to start with the best possible experimental data, and to rely

s little as possible on computational correction of systematic er-

ors. 

Two experimental options have, in fact, been proposed to col-

ect data that are not limited by curvature of the Ewald sphere.

ne option is to use an aperture that blocks one half of the scat-

ered electron wave [1] , thereby avoiding that structure factors for

pposite values of the spatial frequency, but which are not re-

ated to one another by Friedel symmetry, get combined to form

 single Fourier component of the image intensity. A different op-

ion is to further increase the electron energy [5] , for example to

 MeV rather than 300 keV, in order to decrease the curvature of

he Ewald sphere and thereby maintain Friedel symmetry at all

patial frequencies. 
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