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Error Estimate and Convergence Analysis of
Moment-Preserving Discrete Approximations of Continuous

Distributions

Ken’ichiro Tanaka∗ and Alexis Akira Toda†

∗School of Systems Information Science, Future University Hakodate, Hokkaido, Japan
†Department of Economics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093

Abstract. We propose a numerical method to approximate a given continuous distribution by a discrete distribution with
prescribed moments. The approximation is achieved by minimizing the Kullback-Leibler information of the unknown discrete
distribution relative to the known continuous distribution (evaluated at given discrete points) subject to some moment
constraints. We study the theoretical error bound and the convergence property of the method. The order of the theoretical
error bound of the expectation of any bounded measurable function with respect to the approximating discrete distribution is
never worse than the integration formula we start with, and therefore the approximating discrete distribution weakly converges
to the given continuous distribution. Moreover, we presentsome numerical examples that show the advantage of our method.

Keywords: probability distribution, discrete approximation, generalized moment, integration formula, Kullback-Leibler information,
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INTRODUCTION

In various fields, it is often necessary to numerically compute an expectation E[g(X)] for a functiong : RK → R and
a random variableX with a given continuous distribution. Letf : RK → R be the probability density function of the
given distribution. If the functiong is explicitly known, it suffices to use some integration formula

E[g(X)] =

∫

RK
g(x) f (x)dx≈

M

∑
i=1

wi,M g(xi,M) f (xi,M) (1)

for the computation, whereM is the number of integration points andwi,M is the weight on pointxi,M. However,
especially in economics, the functiong often contains some unknown parametersθ as g = g( · ,θ ) and we want
to determine the parameter valueθ ∗ from some given conditions for E[g(X,θ )], say θ ∗ = argmaxθ E[g(X,θ )].
Furthermore, the valuesg(x,θ ) or f (x) may be available only on some prescribed discrete set ofx’s, sayD ⊂ R

K .
Such a restriction may arise wheng( · ,θ ) or f is obtained by some statistical estimate from real data, or when
the application requiresD to be a particular set, say lattice points. As a concrete example for the situation above,
consider an optimal portfolio problem in economics. The problem is to determine the portfolioθ = (θ1, . . . ,θJ) that
maximizes the expectation1

1−γ E[R(θ )1−γ ] subject to the constraint∑J
j=1 θ j = 1, whereγ > 0 is the relative risk

aversion coefficient,R(θ ) = ∑J
j=1Rjθ j is the return on portfolio, andRj ’s are random variables expressing the gross

returns of financial assets. In such a situation, we need to compute E[g(X,θ )] many times for differentθ ’s using only
thex’s in D. Then, it is desirable to use a highly accurate integration formula with light computing load, say, smallM in
(1). Some popular formulas, such as the Newton-Cotes type orthe Gauss type formulas, are suitable for such a purpose.
These formulas, however, are not necessarily available if the integration pointsxi,M ’s are restricted as{xi,M} ⊂ D. In
that case we need some recipes for the approximation in (1). Note that such an approximation is equivalent to finding
a discrete distribution{wi,M f (xi,M)} approximating the given distribution in the sense of the weak topology.

Several methods for discrete approximations of continuousdistributions have been proposed in the literature
[1, 2, 3, 4]. Tauchen [1] and Adda and Cooper [2] adopt simple partitions of the domain of the distribution function
of a given distribution and assign the true probability to a representative point of each partitioned domain. Although
their methods are intuitive, simple, and work in any dimension, their methods are not so accurate, in particular, they
generate discrete distributions with only approximate moments. Miller and Rice [3] and Devuyst and Preckel [4]
discretize the density function of a given distribution using the weights and the points of the Gaussian integration and



its generalization to multi-dimensions, respectively. Although their methods are often more accurate and can match
prescribed polynomial moments exactly, they do not allow for the restriction{xi,M} ⊂ D and cannot be applied to
non-polynomial moments. Furthermore, the multi-dimensional method by Devuyst and Preckel [4] is computationally
intensive and does not have a theoretical guarantee for the existence of the discretization, error bounds, or convergence.

As a remedy for these methods, in Tanaka and Toda [5], we proposed an approximation method based on Jaynes
[6]’s maximum entropy principle (MaxEnt) that matches prescribed moments exactly. Starting from any integration
formula, we “fine-tuned” the given probabilities by minimizing the Kullback-Leibler information (relative entropy) of
the unknown probabilities relative to the given probabilities subject to the prescribed moment constraints. Furthermore,
we proved the existence and the uniqueness of the solution ofthe minimization problem and that the solution can be
easily computed by solving the dual problem. Our method is computationally very simple and works on any discrete
setD of any dimension with any prescribed moments (not necessarily polynomials).

This paper has three contributions. First, we evaluate the theoretical error of our method. We show that the order of
the theoretical error estimate is at most that of the initialintegration formula. Thus our method does not compromise
the order of the error at the expense of matching moments. Second, as a theoretical consequence of the estimate, we
show the weak convergence of the discrete distribution generated by our method to the given continuous distribution.
This means that, for any bounded measurable functiong, the expectation ofg with respect to the approximating
discrete distribution converges to the exact one with respect to the given distribution. This convergence property is
also practically important because it guarantees that our method never generates a pathological discrete distribution
with exact moments which has extremely different probability from the given distribution on some domain, at least
when the discrete set is large enough. Third, we present somenumerical examples that show the advantage of our
method.

THE APPROXIMATION METHOD

In this section, we review the approximation method proposed in Tanaka and Toda [5]. Letf be a probability density
function onRK and assume that some generalized moments

T̄ =

∫

RK
f (x)T(x)dx (2)

are given, whereT : RK → R
L is a continuous function. Moreover, for each positive integer M, assume that a

finite discrete setDM = {xi,M | i = 1, . . . ,M} ⊂ R
K is given. As an example ofDM, for a real numberh > 0 and a

positive integerN, we can consider the latticeDM = {(n1h,n2h, . . . ,nKh) | n1,n2 . . . ,nK = 0,±1, . . . ,±N}, in which
caseM = (2N+1)K . Our aim is to determine a discrete probability distribution PM = {p(xi,M) | xi,M ∈ DM} on DM
with exact moments̄T which approximatesf .

To match the moments̄T with PM = {p(xi,M) | xi,M ∈ DM}, it suffices to assignp(xi,M)’s such that

M

∑
i=1

p(xi,M)T(xi,M) = T̄. (3)

Note that this equation is often ill-posed because in general the number of unknownsp(xi,M)’s, namelyM, is much
larger than the number of equations (moments),L+ 1.1 To obtainPM with (3) approximatingf , we first choose a
numerical integration formula by setting positive weightswi,M (i = 1,2, . . . ,M):

∫

RK
f (x)g(x)dx≈

M

∑
i=1

wi,M f (xi,M)g(xi,M), (4)

whereg is an arbitrary function whose expectation with respect to the densityf we want to compute. For instance,
if K = 1 and DM = {nh | k= 0,±1, . . . ,±N} for h > 0, we can choose the(2N + 1)-point trapezoidal formula
for a univariate function onR by settingwi,M = h. Then, we obtainPM = {p(xi,M) | xi,M ∈ DM} by the following

1 The “+1” comes from accounting the probabilities∑M
i=1 p(xi,M) = 1.



optimization problem:

min
{p(xi,M)}

M

∑
i=1

p(xi,M) log
p(xi,M)

w(xi,M) f (xi,M)
subject to

M

∑
i=1

p(xi,M)T(xi,M) = T̄, ∑
i=1

p(xi,M) = 1, p(xi,M)≥ 0. (P)

The problem (P) is equivalent to the minimization problem ofthe Kullback-Leibler information ofPM relative to the
discrete distribution proportional to{w(xi,M) f (xi,M) | xi,M ∈ DM}. Note that the problem (P) has a unique solution if
T̄ ∈ convT(DM), where convT(DM) is the convex hull ofT(DM), because in that case the constraint set is nonempty,
compact, convex, and the objective function is continuous (by adopting the convention 0 log0= 0) and strictly convex.

To characterize the solution of (P), we consider the Fencheldual2 of (P), which can be written as

λ̄M = argmin
λ∈RL

[

−〈λ , T̄〉+ log

(

M

∑
i=1

wi,M f (xi,M)e〈λ ,T(xi,M)〉
)]

, (D)

where〈·, ·〉 denotes the inner product inRL. Note the simplicity of the dual problem (D) compared to the primal
problem (P); the dual (D) is anunconstrainedoptimization problem with typically a small number of unknownsL
whereas the primal problem (P) is aconstrainedoptimization problem with typically a large number of unknownsM.

The following theorem in [5] shows that the solution of (P) are fine-tuned values ofw(xi,M) f (xi,M).

Theorem 1 (Tanaka and Toda [5]). Suppose that̄T ∈ convT(DM). Then the solution of(P) is given by p(xi,M) =

Cwi,M f (xi,M)e〈λ̄M ,T(xi,M)〉, where C> 0 is a normalizing constant and̄λM is determined by(D).

Theorem 1 indicates that the solution of (P) can be explicitly obtained if a solution̄λM of (D) exists. Theorem 2
below guarantees the existence of a solutionλ̄M of (D). Here, in order to guarantee the uniqueness of the solution
as well, we adopt a stronger assumptionT̄ ∈ int(convT(DM)), where “int” denotes the set of the interior points of a
region.

Theorem 2 (Tanaka and Toda [5]). Suppose that̄T ∈ int(convT(DM)). Then (i) the objective function in(D) is
continuous and strictly convex, and (ii) the solutionλ̄M uniquely exists.

ERROR BOUND AND CONVERGENCE PROPERTY

In this section we give theoretical estimate for the accuracy of our method. Letg : RK → R be a bounded measurable
function. Under appropriate assumptions, we first estimatethe error

Eg,M =

∣

∣

∣

∣

∣

∫

RK
f (x)g(x)dx−

M

∑
i=1

p(xi,M)g(xi,M)

∣

∣

∣

∣

∣

, (5)

wherep(xi,M)’s are determined by Theorem 1. Next, we show the weak convergence ofPM to f , i.e., Eg,M → 0 (M →∞)
for anyg. Throughout this paper,〈 ·, · 〉 and‖·‖ denote the inner product and the Euclidean norm ofR

L, respectively.
Since f (x) is a probability density function, the moment condition (2)is equivalent to

∫

RK f (x)(T(x)− T̄)dx = 0.
Hence by redefiningT(x)− T̄ asT(x), without loss of generality we may assumēT = 0. We keep this convention
throughout the remainder of this section.

We consider the error estimate and the convergence analysisunder the following two assumptions. The first
assumption states that the moment defining functionT has no degenerate components and the momentT̄ = 0 can
be expressed also as an expectation on the discrete setDM.

Assumption 1. The components of the moment defining function T are affine independent as functions both on
R

L ∩suppf and DM ∩suppf for any positive integer M. Namely, for any0 6= (λ ,µ) ∈R
L ×R, there exists xi,M ∈ DM

such that〈λ , T(xi,M)〉+ µ 6= 0. Furthermore, T and DM satisfy0∈ int(convT(DM)) for any positive integer M.

2 See [7] for an application of the Fenchel duality to entropy-like minimization problems.



The second assumption concerns the convergence property ofthe integration formula (4).

Assumption 2. For any bounded measurable function g onR
K , we have

lim
M→∞

M

∑
i=1

wi,M f (xi,M)g(xi,M) =

∫

RK
f (x)g(x)dx. (6)

Furthermore, the integration formula applies to‖T(x)‖ as well:

lim
M→∞

M

∑
i=1

wi,M f (xi,M) ‖T(xi,M)‖=
∫

RK
f (x) ‖T(x)‖ dx=: I‖T‖ < ∞. (7)

Since (6) merely states that the integration formula converges to the true value, (7) is the only essential assumption.
The following theorem gives an error bound of the discrete approximation.

Theorem 3. Let Assumptions 1 and 2 be satisfied, g be a measurable function with |g(x)| ≤ G (x∈ R
K), andα > 0

be large enough such that

Cα := inf
λ∈RL,‖λ‖=1

1
2

∫

RK
f (x)(max{0,min{〈λ , T(x)〉 ,α}})2dx> 0.

Then, for anyε with 0< ε <Cα , there exists a positive integer Mε such that for any M with M≥ Mε , we have

Eg,M ≤ E(a)
g,M +G



E(a)
1,M +6

I‖T‖+E(a)
‖T‖,M

Cα − ε
E(a)

T,M



 , (8)

where E(a)g,M, E(a)
1,M, E(a)

T,M and E(a)‖T‖,M are the errors of the integration formula for the given functions g,1, T , and‖T‖.

Proof. See the full paper [8].

Note thatEg,M is bounded by a formula consisting ofE(a)
g,M, E(a)

1,M, E(a)
T,M andE(a)

‖T‖,M. Since all of them converge to

zero asM → ∞, it follows from (8) thatEg,M = O
(

max
{

E(a)
g,M,E(a)

1,M,E(a)
T,M

})

asM → ∞, so the errorEg,M is at most

of the same order as the error of the initial integration formula. Thus our method does not compromise the order of the
error at the expense of matching moments.

Using Theorem 3, we immediately obtain our main result thatEg,M → 0 (M → ∞), i.e., the weak convergence of the
approximating discrete distributionPM = {p(xi,M)} to f .

Theorem 4. Let Assumptions 1 and 2 be satisfied. Then, for any bounded measurable function g, we have

lim
M→∞

M

∑
i=1

p(xi,M)g(xi,M) =

∫

RK
f (x)g(x)dx, (9)

i.e., the discrete distribution PM weakly converges to the exact continuous distribution f .

NUMERICAL EXPERIMENTS

In this section, we present some numerical examples that compare the accuracy of approximate expectations computed
by an initial integration formula and its modifications by our method. All computations in this section are done by
MATLAB programs with double precision floating point arithmetic on a PC.



Gaussian and beta distributions

We choose the Gaussian and the beta distributions as examples of continuous distributions and adopt the trapezoidal
formula as an initial integration formula to compute the expectation E[g(X)], whereg(x) = ex 1[−10,10](x) for X ∼
N(0,1) andg(x) = ex for X ∼ Be(2,4). In the following, letM be an odd integer withM = 2N+1 (N = 1,2, . . . ,12).

For the Gaussian distribution, we seth(1)M = 1/
√

N,

f1(x) =
1√
2π

exp

(

−x2

2

)

(x∈ (−∞,∞)),

w(1)
i,M =

{

h(1)M (i 6= 1,M),

h(1)M /2 (i = 1,M),
x(1)i,M = (i −N−1)h(1)M (i = 1, . . . ,M = 2N+1),

which means that we letD = {nh(1)M | n= 0,±1, . . . ,±N} and approximate the integral
∫ ∞
−∞ by

∫

√
N

−
√

N
. Then E[g(X)] =

(erf(9/
√

2)+erf(11/
√

2))
√

e/2 for X ∼ N(0,1).
For the beta distribution, we set

f2(x) = x(1− x)3/B(2,4) (x∈ [0,1]),

w(2)
i,M =

{

h(2)M (i 6= 1,M),

h(2)M /2 (i = 1,M),
x(2)i,M = (i −1)h(2)M (i = 1, . . . ,M),

whereB( · , ·) is the beta function andh(2)M = 1/(M−1). Then E[g(X)] = 20(49−18e) for X ∼ Be(2,4).
For numerical experiments, we compute E[g(X)] using five formulas; the trapezoidal formula

E[g(X)]≈
M

∑
i=1

w(k)
i,M fk(x

(k)
i,M)g(x(k)i,M) (k= 1,2), (10)

its modifications by our method with exact polynomial moments E[Xl ] up to 2nd order(l = 1,2), 4th order(l =
1, . . . ,4), and 6th order(l = 1, . . . ,6), and Simpson’s formula with the number of grid pointsM = 2N+ 1 (N =
1,2, . . . ,12). (See [9] for more details on quadrature formulas.) Here, weintend to observe the relative errors of
the computed values for smallM’s. We do not compare to other more sophisticated methods such as the Gaussian
quadrature since for such cases we cannot freely choose the integration points.

In order for (P) to have a solution, it is necessary that thereare at least as many unknown variables (p(xi,M)’s, so in
totalM) as the number of constraints (L moment constraints and+1 for probabilities to add up to 1, soL+1). Thus we
needM ≥ L+1.3 A sufficient condition for the existence of a solution is̄T ∈ convT(D) (Theorem 1), which we can
easily verify in the current application. We numerically solve the dual problem (D) by the Newton-Raphson algorithm
starting fromλ = 0.

The results are shown in Figure 1. Our method excels the trapezoidal and Simpson’s formulas in the accuracy, at
least when the number of grid pointsM is not too small. The errors basically decrease as the order of the moment
increases.

Optimal portfolio problem

In this section we numerically solve the optimal portfolio problem briefly discussed in the introduction (see [5] for
more details). Suppose that there are two assets, stock and bond, with gross returnsR1,R2. Asset 1 (stock) is stochastic
and lognormally distributed: logR1 ∼N(µ ,σ2), whereµ is the expected return andσ is the volatility. Asset 2 (bond) is
risk-free and logR2 = r, wherer is the (continuously compounded) interest rate. The optimal portfolio θ is determined
by the optimization

U = max
θ

1
1− γ

E[(R1θ +R2(1−θ ))1−γ ], (11)

3 Since the beta density is zero atx= 0,1, which are included inx(2)i,M ’s, we necessarily havep(x(2)i,M) = 0 for i = 1,M. Thus, the number of unknown
variables isM−2, so we needM−2≥ L+1 ⇐⇒ M ≥ L+3 in the case of the beta distribution.
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FIGURE 1. Relative errors of the computed values of E[g(X)], whereg(x) = ex1[−10,10](x) for X ∼ N(0,1) andg(x) = ex for
X ∼ Be(2,4). The legend “Trapezoidal” and “Simpson” represent the relative errors by the trapezoidal and Simpson’s formulas,
and “2nd order”, “4th order”, and “6th order” represent those by our method with exact polynomial moments E[Xl ] up to 2nd order
(l = 1,2), 4th order(l = 1, . . . ,4), and 6th order(l = 1, . . . ,6), respectively.

whereγ > 0 is the relative risk aversion coefficient. We set the parameters such asγ = 3, µ = 0.07, σ = 0.2, and
r = 0.01. We numerically solve the optimal portfolio problem (11)by applying the trapezoidal and Simpson formulas
and our method. To approximate the lognormal distribution,let M = 2N+ 1 be the number of grid points (N is the
number of positive grid points) andD = {nh|n= 0,±1, . . . ,±N}, whereh= 1/

√
N is the grid size. Letp(x) be the

approximating discrete distribution ofN(0,1) as in the previous subsection (trapezoidal, Simpson, or ourmethod with
various moments). Then we put probabilityp(x) on the point eµ+σx for eachx ∈ D to obtain the approximate stock
returnR1.

Table 1 shows the optimal portfolioθ and its relative error for various momentsL and number of pointsM = 2N+1.
The result is somewhat surprising. Even with 3 approximating points (N= 1), our method derives an optimal portfolio
that is off by only 0.5% to the true value, whereas the trapezoidal and Simpson methods are off by 127% and 220%,
respectively. While our method virtually obtains the true value with 9 points (N = 4, especially when the 4th moment
is matched), the trapezoidal and Simpson’s method still have more than 20% of error.

TABLE 1. Optimal portfolio and relative error for the trapezoidal, Simpson’s, and our method.N: number of positive grid points,
M = 2N+1: total number of grid points,L: maximum order of moments matched.

Number of grid points L = 0 (Trapezoidal) Simpson L = 2 L = 4

N M = 2N+1 θ Error (%) θ Error (%) θ Error (%) θ Error (%)

12 = 1 3 1.5155 127 2.1377 220 0.6717 0.54 - -
22 = 4 9 0.8246 23.4 0.8192 22.6 0.6694 0.20 0.6680 −0.015
32 = 9 19 0.6830 2.24 0.6821 2.11 0.6684 0.044 0.6681 0
42 = 16 33 0.6687 0.088 0.6687 0.088 0.6682 0.015 0.6681 0
52 = 25 51 0.6681 0 0.6681 0 0.6681 0 0.6681 0

The reason why the trapezoidal and Simpson’s methods give poor results when the number of approximating
points are small is because the moments are not matched. To see this, taking the first-order condition for the optimal
portfolio problem (11), we obtain E[(θX+R2)

−γ X] = 0, whereX = R1−R2 is the excess return on the stock. Taylor

expanding(θX+R2)
−γ around E[θX+R2] and solving forθ , after some algebra we getθ = R2 E[X]

γ Var[X]−E[X]2
. Therefore

the (approximate) optimal portfolio depends on the first andsecond moments of the excess returnX. Our method is
accurate precisely because we match the moments. In complexeconomic problem, oftentimes we cannot afford to use
many integration points, in which case our method might be useful to obtain accurate results.
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