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Error Estimate and Convergence Analysis of
M oment-Preserving Discrete Approximations of Continuous
Distributions

Ken’ichiro Tanaka and Alexis Akira Toda

*School of Systems Information Science, Future Universalyoldate, Hokkaido, Japan
TDepartment of Economics, University of California San Die@500 Gilman Dr, La Jolla, CA 92093

Abstract. We propose a numerical method to approximate a given camisdistribution by a discrete distribution with
prescribed moments. The approximation is achieved by nimignthe Kullback-Leibler information of the unknown diste
distribution relative to the known continuous distributi¢evaluated at given discrete points) subject to some mbmen
constraints. We study the theoretical error bound and theergence property of the method. The order of the theadetic
error bound of the expectation of any bounded measurabtgifumwith respect to the approximating discrete distiitouis
never worse than the integration formula we start with, &ieddfore the approximating discrete distribution weakijnerges

to the given continuous distribution. Moreover, we presamhe numerical examples that show the advantage of our thetho

Keywords: probability distribution, discrete approximation, gesemed moment, integration formula, Kullback-Leibler anfnation,
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INTRODUCTION

In various fields, it is often necessary to numerically cotefan expectation [g(X)] for a functiong : R — R and
a random variablX with a given continuous distribution. Lét: RK — R be the probability density function of the
given distribution. If the functiow is explicitly known, it suffices to use some integration foien

M
E[g(X)] = ok g(x) f(x)dx ~ l;Wi,M a(xi,m) f(Xim) (1)

for the computation, wher# is the number of integration points amg v is the weight on poink; . However,
especially in economics, the functi@noften contains some unknown parametérasg = g(-,6) and we want
to determine the parameter val® from some given conditions for [§(X, 8)], say 8" = argmax E[g(X, 0)].
Furthermore, the valueg(x, 8) or f(x) may be available only on some prescribed discrete s&spgayD C RX.
Such a restriction may arise wheyi-,0) or f is obtained by some statistical estimate from real data, leenv
the application requireB to be a particular set, say lattice points. As a concrete pia@ifior the situation above,
consider an optimal portfolio problem in economics. Thebfem is to determine the portfolié = (64,...,6;) that
maximizes the expectatiogﬁ—y E[R(6)}"] subject to the constrairgle 0 = 1, wherey > 0 is the relative risk

aversion coefficientR(8) = Z]]:l R;6; is the return on portfolio, anR;’s are random variables expressing the gross
returns of financial assets. In such a situation, we needrtpate Bg(X, 8)] many times for differené’s using only
thex'sin D. Then, itis desirable to use a highly accurate integratiomtila with light computing load, say, sm#lin
(1). Some popular formulas, such as the Newton-Cotes tyfieedbauss type formulas, are suitable for such a purpose.
These formulas, however, are not necessarily availableifritegration points; u's are restricted agxim} C D. In
that case we need some recipes for the approximation in ¢t that such an approximation is equivalent to finding
a discrete distributiogwi m f (% m)} approximating the given distribution in the sense of thekntegology.

Several methods for discrete approximations of continudiggibutions have been proposed in the literature
[1, 2, 3, 4]. Tauchen [1] and Adda and Cooper [2] adopt simpleitions of the domain of the distribution function
of a given distribution and assign the true probability tepresentative point of each partitioned domain. Although
their methods are intuitive, simple, and work in any dimenstheir methods are not so accurate, in particular, they
generate discrete distributions with only approximate raots. Miller and Rice [3] and Devuyst and Preckel [4]
discretize the density function of a given distributionngsthe weights and the points of the Gaussian integration and



its generalization to multi-dimensions, respectivelythdlugh their methods are often more accurate and can match
prescribed polynomial moments exactly, they do not allowtf@ restriction{x;»} C D and cannot be applied to
non-polynomial moments. Furthermore, the multi-dimenalanethod by Devuyst and Preckel [4] is computationally
intensive and does not have a theoretical guarantee foxisterce of the discretization, error bounds, or convergen

As a remedy for these methods, in Tanaka and Toda [5], we pegpan approximation method based on Jaynes
[6]'s maximum entropy principle (MaxEnt) that matches prédsed moments exactly. Starting from any integration
formula, we “fine-tuned” the given probabilities by miniririg the Kullback-Leibler information (relative entropyf o
the unknown probabilities relative to the given probailgifitsubject to the prescribed moment constraints. Furtbierm
we proved the existence and the uniqueness of the solutiireafhinimization problem and that the solution can be
easily computed by solving the dual problem. Our method mematationally very simple and works on any discrete
setD of any dimension with any prescribed moments (not necdggeaiynomials).

This paper has three contributions. First, we evaluatehtberetical error of our method. We show that the order of
the theoretical error estimate is at most that of the initisdgration formula. Thus our method does not compromise
the order of the error at the expense of matching momentan8eas a theoretical consequence of the estimate, we
show the weak convergence of the discrete distribution rgéee by our method to the given continuous distribution.
This means that, for any bounded measurable funajiotihe expectation off with respect to the approximating
discrete distribution converges to the exact one with retsfpethe given distribution. This convergence property is
also practically important because it guarantees that @ihod never generates a pathological discrete distributio
with exact moments which has extremely different probgbfliom the given distribution on some domain, at least
when the discrete set is large enough. Third, we present samerical examples that show the advantage of our
method.

THE APPROXIMATION METHOD

In this section, we review the approximation method prodaséfanaka and Toda [5]. Ldtbe a probability density
function onRX and assume that some generalized moments

T= » f(x) T (x) dx 2)

are given, wherel : R — R is a continuous function. Moreover, for each positive ietel, assume that a
finite discrete seby = {xim |i=1,...,M} C RK is given. As an example dDy, for a real numbeh > 0 and a
positive integeiN, we can consider the lattidey = {(nih,nzh,...,nkh) | ny,nz...,nk = 0,+1,...,£N}, in which
caseM = (2N + 1)X. Our aim is to determine a discrete probability distribatRy = {p(xim) | Xim € Dw} on Dy
with exact moment$ which approximates.

To match the momentB with By = {p(Xi,m) | Xi,m € Dm}, it suffices to assigm(xim)’s such that

M _
Zi POGM) T (Xim) =T 3)

Note that this equation is often ill-posed because in gétleeanumber of unknownp(x m)’s, namelyM, is much
larger than the number of equations (momerits), 1. To obtainRy with (3) approximatingf, we first choose a
numerical integration formula by setting positive weightg (i=1,2,...,M):

M
f(X) g(x) dx ~ .;Wi.M f(xim) 9(Xim), (4)

RK

whereg is an arbitrary function whose expectation with respechmdensityf we want to compute. For instance,
if K=1andDy = {nh|k=0,£1,...,£N} for h > 0, we can choose th&N + 1)-point trapezoidal formula
for a univariate function oiR by settingw; y = h. Then, we obtaiPy = {p(Xxim) | Xim € Dm} by the following

! The “+1” comes from accounting the probabilitigs" ; p(xim) = 1.



optimization problem:

u p(Xim) , € N o ,
{p@ﬂ)}; P(Xim) Iogm subject togl pxim)T(xim) =T, i; p(xim) =1, p(xim) >0.  (P)

The problem (P) is equivalent to the minimization problentha Kullback-Leibler information oBy relative to the
discrete distribution proportional tow(xim)f (X m) | Xim € Dm}. Note that the problem (P) has a unique solution if
T € convT (Dwm), where conT (Dy) is the convex hull off (D), because in that case the constraint set is nonempty,
compact, convex, and the objective function is continubysgopting the convention 0log90) and strictly convex.

To characterize the solution of (P), we consider the Feraixef of (P), which can be written as

Am = argmin
AeRL

—(A,T) +log (iwi’M f(xi7M)e<’\~T(>q-M>>>] , (D)

where(-,-) denotes the inner product R-. Note the simplicity of the dual problem (D) compared to thianal

problem (P); the dual (D) is annconstrainecptimization problem with typically a small number of unkws L

whereas the primal problem (P) icanstrainedoptimization problem with typically a large number of unkntsM.
The following theorem in [5] shows that the solution of (P¢ ine-tuned values afi(xi m) f (X m).

Theorem 1 (Tanaka and Toda [5])Suppose thal e convT (Dwm). Then the solution ofP) is given by [pxim) =
Cwip f(xm) e T} where C> 0iis a normalizing constant antly is determined byD).

Theorem 1 indicates that the solution of (P) can be explicbtained if a squtiorKM of (D) exists. Theorem 2
below guarantees the existence of a solutignof (D). Here, in order to guarantee the uniqueness of theisalu

as well, we adopt a stronger assumptiog int(convT (D)), where “int” denotes the set of the interior points of a
region.

Theorem 2 (Tanaka and Toda [5])Suppose thal € int(convT (Dm)). Then (i) the objective function i(D) is
continuous and strictly convex, and (ii) the solutity uniquely exists.

ERROR BOUND AND CONVERGENCE PROPERTY

In this section we give theoretical estimate for the acoucd@ur method. Ley : R — R be a bounded measurable
function. Under appropriate assumptions, we first estirtregerror

M
Egm = ‘/RK f(x)a(x) dX—; P(Xim)g(Xim)|, (5)

wherep(x; v )’s are determined by Theorem 1. Next, we show the weak coavesypoPy to f, i.e, Egm — 0 (M — o)
for anyg. Throughout this pape;, -) and|| -|| denote the inner product and the Euclidean nori'afrespectively.
Since f(x) is a probability density function, the moment condition iquivalent tofpk f(X)(T (x) — T)dx = 0.
Hence by redefining (x) — T asT(x), without loss of generality we may assue= 0. We keep this convention
throughout the remainder of this section.
We consider the error estimate and the convergence analysisr the following two assumptions. The first
assumption states that the moment defining funciidmas no degenerate components and the moment0 can
be expressed also as an expectation on the discreigset

Assumption 1. The components of the moment defining function T are affireperdtient as functions both on
RN suppf and Dy Nsuppf for any positive integer M. Namely, for afy# (A, u) € R- x R, there existsi € Du
such that(A, T(x m)) + 4 # 0. Furthermore, T and B satisfy0 € int(convT (Dy)) for any positive integer M.

2 See [7] for an application of the Fenchel duality to entrdikg-minimization problems.



The second assumption concerns the convergence propéity imtegration formula (4).
Assumption 2. For any bounded measurable function giely, we have

M
im. S o 1 05) g6 = [ F(000 0 ©

M%OOi:

Furthermore, the integration formula applies @ (x)|| as well:

M
A, 3 whan F0n) [T 06| = [ 100 T 0=l < o (7)

Since (6) merely states that the integration formula cage®to the true value, (7) is the only essential assumption.
The following theorem gives an error bound of the discref@axmation.

Theorem 3. Let Assumptions 1 and 2 be satisfied, g be a measurable faniib |g(x)| < G (x € RX), anda > 0
be large enough such that

i 2
/\GR'-,H/\H=1§ ok f(x) (max{0,min{(A, T(x)),a}})“dx> 0.

Then, for anye with 0 < € < Cq, there exists a positive integersMuch that for any M with M> M, we have

(a) @ . I+ Efm @

where %"’RA Eia,z/, Eﬁ,l and Eﬁ)HM are the errors of the integration formula for the given fuoos g,1, T, and||T||.

Proof. See the full paper [8]. O
Note thatEq v is bounded by a formula consisting Ega,\),l E@ . Eﬁ,l and E\(\'Ia)H.M' Since all of them converge to
zero asM — o, it follows from (8) thatEqy = O (max{ S Eﬁ,,}) asM — o, s0 the erroEgy is at most
of the same order as the error of the initial integration faolanThus our method does not compromise the order of the
error at the expense of matching moments.
Using Theorem 3, we immediately obtain our main result laaj — 0 (M — =), i.e,, the weak convergence of the
approximating discrete distributid® = {p(xim)} to f.

Theorem 4. Let Assumptions 1 and 2 be satisfied. Then, for any boundesimadde function g, we have

M
i, > Ps) G0 = [ 109 ©

M*)OOi

i.e., the discrete distributiony? weakly converges to the exact continuous distribution f.

NUMERICAL EXPERIMENTS

In this section, we present some numerical examples thgpamnthe accuracy of approximate expectations computed
by an initial integration formula and its modifications byrauethod. All computations in this section are done by
MATLAB programs with double precision floating point aritletic on a PC.



Gaussian and beta distributions

We choose the Gaussian and the beta distributions as exaaigentinuous distributions and adopt the trapezoidal
formula as an initial integration formula to compute the @sgation Eg(X)], whereg(x) = € 1;_191¢(X) for X ~
N(0,1) andg(x) = €* for X ~ Be(2,4). In the following, letM be an odd integer witM =2N+1(N=1,2,...,12).

For the Gaussian distribution, we shéi) =1/VN,

2
w9 = —ep( - ) (e (o),

1) i
1 _ Jhy (#LM), @ _ . O
W\ = v =({1—N-=1)h i=1,...,M=2N+1),
.M {h,(vll)/z (i=1,M), Xim = ( Y ( )
which means that we |&® = {n h,(v,l) |n=0,£1,...,+N} and approximate the integrfil’, by f_“\%. Then Bg(X)] =
(erf(9/+/2) +erf(11/+/2))./€/2 for X ~ N(0,1).

For the beta distribution, we set
f2(x) =x(1-%)°/B(2,4) (x€[0,1]),

W2 AL,
LM h(2) P
v /2 (i=1,M),

whereB( -, -) is the beta function anlufvzl) =1/(M—1). Then Bg(X)] = 20(49— 18¢) for X ~ Be(2,4).
For numerical experiments, we computg(E)] using five formulas; the trapezoidal formula

M
Elg(X)] ~ ;wf.k& o) (k=1,2), (10)

its modifications by our method with exact polynomial monsaeE{lX'] up to 2nd orderl = 1,2), 4th order(l =
1,...,4), and 6th orderl = 1,...,6), and Simpson’s formula with the number of grid poiMs= 2N+ 1 (N =
1,2,...,12). (See [9] for more details on quadrature formulas.) Here,imend to observe the relative errors of
the computed values for small’'s. We do not compare to other more sophisticated methods asithe Gaussian
guadrature since for such cases we cannot freely choosetdggation points.

In order for (P) to have a solution, it is necessary that theeeat least as many unknown variablp&(m)’s, so in
total M) as the number of constraintsimpoment constraints angl for probabilities to add up to 1, 40+ 1). Thus we
needM > L + 1.3 A sufficient condition for the existence of a solutiorilisc convT (D) (Theorem 1), which we can
easily verify in the current application. We numericalljve&the dual problem (D) by the Newton-Raphson algorithm
starting fromA = 0.

The results are shown in Figure 1. Our method excels thezoag@ and Simpson’s formulas in the accuracy, at
least when the number of grid points is not too small. The errors basically decrease as the ofdéleanoment
increases.

Optimal portfolio problem

In this section we numerically solve the optimal portfolimplem briefly discussed in the introduction (see [5] for
more details). Suppose that there are two assets, stockoamld\with gross returnR;, Ry. Asset 1 (stock) is stochastic
and lognormally distributed: 108, ~ N(u, 0?), wherey is the expected return amdis the volatility. Asset 2 (bond) is
risk-free and lodr, = r, wherer is the (continuously compounded) interest rate. The optoefolio 6 is determined
by the optimization

U= mgaxrly E[(R16 +Ra(1-6))*, (11)

3 Since the beta density is zeroxat 0,1, which are included iufi}l 's, we necessarily havp(xfi}l) = 0fori = 1,M. Thus, the number of unknown
variables isM — 2, sowe neetl —2> L+ 1 <= M > L+ 3 in the case of the beta distribution.
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FIGURE 1. Relative errors of the computed values gg)], whereg(x) = €1;_11g/(x) for X ~ N(0,1) andg(x) = €* for

X ~ Be(2,4). The legend “Trapezoidal” and “Simpson” represent thetirgdeerrors by the trapezoidal and Simpson’s formulas,
and “2nd order”, “4th order”, and “6th order” represent thdixy our method with exact polynomial momem&(E up to 2nd order
(1=1,2), 4th order(l =1,....4), and 6th ordefl = 1,...,6), respectively.

wherey > 0 is the relative risk aversion coefficient. We set the patarsesuch ay = 3, u = 0.07,0 = 0.2, and

r = 0.01. We numerically solve the optimal portfolio problem (b¥)applying the trapezoidal and Simpson formulas
and our method. To approximate the lognormal distributieniM = 2N + 1 be the number of grid pointd(is the
number of positive grid points) arld = {nh|n=0,+1,...,+N}, whereh = 1/4/N is the grid size. Lep(x) be the
approximating discrete distribution 80, 1) as in the previous subsection (trapezoidal, Simpson, ometinod with
various moments). Then we put probabiljtgx) on the point €+°* for eachx € D to obtain the approximate stock
returnRy.

Table 1 shows the optimal portfol@and its relative error for various momeitand number of pointisl = 2N+ 1.
The result is somewhat surprising. Even with 3 approxinggpioints (N = 1), our method derives an optimal portfolio
that is off by only 0.5% to the true value, whereas the trajget@nd Simpson methods are off by 127% and 220%,
respectively. While our method virtually obtains the tradue with 9 pointsil = 4, especially when the 4th moment
is matched), the trapezoidal and Simpson’s method stikmaere than 20% of error.

TABLE 1. Optimal portfolio and relative error for the trapezoidain®son’s, and our methodl: number of positive grid points,
M = 2N + 1: total number of grid pointd,: maximum order of moments matched.

| Number of grid points | L = 0 (Trapezoidal)| Simpson | L=2 | L=4 |
| N M=2N+1| 6 Error (%) | 6 Error (%) | 6 Error (%) | 6 Error (%) |
12=1 3 1.5155 127 2.1377 220 0.6717 0.54 - -
2=4 9 0.8246 23.4 | 0.8192 22.6 | 0.6694 0.20 | 0.6680 —0.015
?=9 19 0.6830 2.24 0.6821 2.11 0.6684 0.044 | 0.6681 0
4 =16 33 0.6687 0.088 | 0.6687 0.088 | 0.6682 0.015 | 0.6681 0
52 =25 51 0.6681 0 0.6681 0 0.6681 0 0.6681 0

The reason why the trapezoidal and Simpson’s methods gige rsults when the number of approximating
points are small is because the moments are not matchedeThisgetaking the first-order condition for the optimal
portfolio problem (11), we obtain[E9X + R;) " ¥X] = 0, whereX = R; — Ry is the excess return on the stock. Taylor
expanding 6X + Rz) Y around EOX + Ry] and solving forf, after some algebra we gét= %} Therefore
the (approximate) optimal portfolio depends on the first second moments of the excess retd{rrOur method is
accurate precisely because we match the moments. In coegeomic problem, oftentimes we cannot afford to use
many integration points, in which case our method might f&uls$o obtain accurate results.
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