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ABSTRACT OF THE DISSERTATION 

 

Genetic Risk Factors of Tauopathies  

 

by 

 

Jason Andrew Chen 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2017 

Professor Giovanni Coppola, Chair 

 

The tauopathies are a group of neurodegenerative diseases characterized by abnormal 

tau neuropathology and include frontotemporal dementia (FTD), progressive supranuclear palsy 

(PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD), collectively with a 

heavy burden on the lives of patients and on public health. Uncertainty of the underlying disease 

mechanisms hinders the development of effective treatments and diagnostics. While most 

cases of each disease are sporadic, a strong genetic contribution has been identified and 

provides an opening for the discovery of clues to their pathophysiology.   

I led a series of genetic screens to systematically search for genetic contributors to the 

tauopathies. A genome-wide association study of PSP was performed to pinpoint common 

polymorphisms that contribute to disease risk. Aside from supporting associations at loci that 

had already been reported near MAPT, STX6, MOBP, and EIF2AK3, novel associations were 

discovered at genome-wide significance (near RUNX2 and SLCO1A2) and suggestive 

significance (near DUSP10, SP1, ASAP1, and WDR63). Furthermore, we identified genetic 

correlations between PSP, Parkinson's disease, and amyotrophic lateral sclerosis, indicating 

that the role of tau may extend to more neurodegenerative diseases than currently appreciated. 
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Leveraging the coverage of the genotyping array, copy number variants were also called in a 

subset of this disease cohort. A previously unreported duplication spanning part of the tau gene 

was found in two PSP patients, expanding the scope of mutations found in the disease. 

While the SNP genotyping array in the previous study provided genome-wide coverage 

of common polymorphisms, a newly designed exome array specifically typed rare exonic 

variants found in large population cohorts. We performed one of the first exome array studies 

aimed at uncovering causal genetic risk factors in AD, FTD, and PSP. We identified a 

contribution of exonic variants in the ABCA7 gene to AD, presaging a body of current literature 

focusing on protein-disrupting mutations of this gene. Additionally, we provided support for the 

candidate genes PAXIP1 and DYSF in AD. Whole genome sequencing studies outlined a 

contribution of rare protein-disrupting mutations in predicted damaging genes. The MAPT 

A152T variant was also confirmed as a risk factor in tauopathies, with our work expanding the 

phenotypic spectrum. 

We further established the downstream molecular effects of tauopathy risk alleles. The 

H1 haplotype of chromosome 17q21.31, a major risk factor for PSP and CBD that is also 

polymorphic in the general population, had a large influence on DNA methylation in the region 

and mRNA expression of nearby genes. This methylation pattern appeared to mediate some of 

the risk conferred from the H1 haplotype. We also identified another methylation signature on 

the promoter of the gene encoding IL-1β that was correlated with aging and methylation, with 

mechanistic support from mouse models of sirtuin 1 function. Finally, we linked rs242557 - a risk 

allele within MAPT - with plasma tau concentration, a potential biomarker of clinical utility. 

Future work will focus on improving statistical power by increasing the size of sample 

cohorts and integrating additional layers of genomic data, including those from public 

epigenomics and mRNA expression studies. I outline a path for the translation of the results 

from completed and future work to enabling precision medicine for patients suffering from 

tauopathies.
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Chapter 1: Introduction 
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The best application of the following beautiful dictum of Geoffroy Saint-Hilaire is 
in biology: "The infinite is always before us." And the same applies to Carnoy's 
no less graphic thought: "Science is a perpetual creative process." Not everyone 
is destined to venture into the forest and by sheer determination carve out a 
serviceable road. However, even the most humble among us can take advantage 
of the path opened by genius and by traveling along it extract one or another 
secret from the unknown. 

 
 
- Santiago Ramón y Cajal, Advice for a Young Investigator – translated by 

Swanson & Swanson (Ramón y Cajal, 1999) 

 

It is often asked of me, likely out of curiosity more than malicious insinuation, what is the 

significance of this work? And on the surface one might be hard-pressed to think of it. The quest 

to explain the genetics of dementia, when we struggle to find a genetic risk factor explaining 

perhaps 1% of a disease affecting only a handful of people in 100,000, seems perhaps a bit 

quixotic. Surely a crucial matter for those few people in that minority, but why is this one of the 

most pressing scientific issues of our time? My reason for believing so is rooted in the 

uncertainty cloaking the neurodegenerative diseases in general. To work to solve this problem, I 

keep in mind that scientific discovery, a political event, even a neurodegenerative disease – not 

just is, but came to be. Consider the brain; consciousness and cognition arise from the chaotic 

clusters of brainstem nuclei, the hegemony of the higher cortical regions; these in turn are 

derived from the simple neural tube and its subsequent folding and shaping and thickening 

throughout development. I learned from Prof. Lazareff that it is through this lens that disease 

entities like myelomeningoceles and Chiari malformations can be understood (Chen et al., 

2012). We have also explored the origin of ideas in about ventriculo-peritoneal (VP) shunting 

(Cheok et al., 2014) allowing us to evaluate their epistemological rigor. To understand the Chiari 

malformation we must turn toward the developmental anatomy that set those events into 

motion. To understand the concept of VP shunting we look to the literature from where the ideas 
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were developed. But where should we examine for a clearer understanding of the 

neurodegenerative diseases? 

 

Continuing to trace our capacity to learn and to love, to remember and to desire, through the 

neural structures, through the migrations of neurons and the flexing and folding of the neural 

tube, we ultimately arrive at the three billion As, Cs, Gs, and Ts of the human genome. We can 

now read (mostly) all of these base pairs; but as in the writings of mystics or obscurantists, the 

task of exegesis is much more daunting. The "genetic code" defines the amino acids encoded 

by these bases, and we have been able to identify amino acid encoding sequences within 

"genes" that create proteins, the sequence of which is known and the structures and functions 

of which are becoming more well-defined. The roughly 20,000 genes themselves, however, 

clearly fall far short of the lofty functions of the human brain. The remaining 98% of the genome 

likely accounts for the remainder, but these letters alone are more incomprehensible than the 

ramblings of Derrida. Metaphorically, but also somewhat literally, we can read the writing of 

God, but can only understand the nouns – and even among those, we do not know what they 

mean in most cases. Here, we apply the techniques of modern genetic analysis to the 

tauopathies – themselves mysterious diseases with intriguing commonalities and differences – 

ascending Mount Sinai so that we might receive wisdom regarding disease pathogenesis and 

treatment. 

 

What are tauopathies? 

Tau-related pathology can be found across a puzzlingly vast array of neurodegenerative 

diseases, including some variants of frontotemporal dementia (FTD), progressive supranuclear 

palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD). Several 

converging lines of evidence demonstrate that tau plays a causal role in disease pathogenesis: 

tau pathology often correlates with disease severity and neuronal loss, pathogenic variants in 
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tau have been found in FTD and PSP, and tau is required for the pathogenesis of many mouse 

models of Alzheimer's disease.  

 

Abnormal aggregation of tau is present in neurodegenerative diseases with multiple etiologies, 

including sporadic (PSP, CBD, AD, and argyrophilic grain disease - AGD), genetic (forms of 

FTD linked to pathogenic tau variants), environmental (chronic traumatic encephalopathy, and 

perhaps the Parkinson-dementia complex of Guam), and even infectious (the subacute 

sclerosing pan-encephalitis due to measles). Diseases associated with other pathological 

protein aggregates, such as AD (with beta amyloid plaques), Parkinson's disease and multiple 

system atrophy (with predominant Lewy body pathology) and Huntington's disease (with 

polyglutamine repeats) often have extensive tau pathology (Cairns et al., 1997; Duda et al., 

2002; Fernandez-Nogales et al., 2014). Here, we review diseases that have a large body of 

evidence supporting the central role of tau in their pathogenesis, and in which extensive studies 

of pathology and genetics have been performed, namely, FTD, PSP, CBD, and AD, focusing 

particular attention to their pathology at a gross, microscopic, molecular, and ultimately genetic 

level. 

 

Tauopathies: History and Epidemiology 

Frontotemporal Dementia. FTD is a relatively uncommon disease, with incidence estimated at 

3-4 per 100,000 person-years in people 45 - 64 years of age, and prevalence at about 15 per 

100,000 population (Onyike and Diehl-Schmid, 2013). Because FTD typically presents at an 

earlier age of onset (mean of about 58 years) in comparison to Alzheimer's disease, it is a 

common cause of early-onset dementia, with incidence comparable to Alzheimer's disease in 

the subset of patients under 65 years of age (Johnson et al., 2005; Mercy et al., 2008). In 1892, 

Pick initially described two cases of patients with fluent aphasia and psychiatric symptoms 

correlated with focal atrophy of the left temporal lobe, consistent with what is now classified as 
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FTD (Pick et al., 1994). FTD is a somewhat nebulous concept that includes diseases that may 

or may not show abnormal tau in neuropathology, and will almost certainly undergo revision as 

more clearly defined clinico-pathologic correlations are uncovered. Currently, three clinical 

presentations are considered, each with its characteristic epidemiology, genetic risk factors, and 

neuropathological features: a behavioral variant, or frontal variant frontotemporal dementia 

(bvFTD or simply FTD) comprising about 55% of cases, and two language-affecting variants 

grouped as primary progressive aphasia (PPA), semantic variant PPA (also known as semantic 

dementia or temporal variant FTD) and nonfluent variant PPA (also known as progressive 

nonfluent aphasia or agrammatic variant PPA) accounting for 20% and 25% of cases, 

respectively (Viskontas and Miller, 2007). A logopenic variant PPA is also observed, though it is 

usually classified as a form of Alzheimer's disease and is associated with Aβ1-42 pathology. 

Pick's original cases would today be categorized as semantic variant PPA.  

 

FTD presents a relatively loose clinical-neuropathological correlation. In general, tau pathology 

is characteristic in some cases of bvFTD and in most cases of nonfluent variant PPA (FTD-tau), 

the latter being closely associated with presentations of CBD and PSP (Josephs et al., 2006). In 

other cases of bvFTD and in most cases of semantic variant PPA, ubiquitin-positive, tau-

negative inclusions that include the protein TDP43 may be observed. 

 

Progressive Supranuclear Palsy. PSP is a relatively rare, rapidly progressing disease, with 

estimates of prevalence around 5-18 per 100,000 (Coyle-Gilchrist et al., 2016; Nath et al., 2001; 

Schrag et al., 1999; Takigawa et al., 2016). The disease rarely affects people under age 40, and 

its incidence ranges from about 1.7 per 100,000 at age 50-59 to 14.7 at age 80-99 years (Bower 

et al., 1997). PSP was described in nine cases by Clifford Richardson, a neurologist in Toronto, 

and his colleagues John Steele (then a resident) and Jerzy Olszewski (a neuropathologist) in 

1964 (Steele et al., 1964). The group recognized a series of nine cases, with age of onset 50 – 
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69. These patients exhibited personality changes, vision problems, unsteady gait, mild dementia 

and behavioral changes, without tremor. Curiously, ophthalmoplegia resulting in vertical gaze 

palsy was observed; lateral gaze was largely unaffected and full reflexive motion appeared 

when the head was passively flexed. This unusual sign indicated a supranuclear gaze palsy, in 

which the neural pathway from the nuclei that control eye movements to the muscles 

themselves was unaffected, hence leading to the disease's name. Neuropathology 

demonstrated neurofibrillary tangles, granulovacuolar degeneration, neuronal loss, gliosis, 

localized to the basal ganglia, brainstem nuclei, and dentate nucleus of the cerebellum.  

 

Even today, those distinctive clinical and pathological signs are still remarkably correlated and 

homogeneous; the genetics also show remarkable convergence, with almost all cases 

homozygous for the H1 allele at chromosome 17q21.31. Because the clinical signs are so 

suggestive of underlying neuropathology, PSP is one of the best "pure tauopathies" (in which 

tau appears to be the predominant driver of disease) to study the role of tau in 

neurodegeneration. However, the phenotypic spectrum of PSP is expanding. The classical 

presentation described by Steele is now termed the "Richardson syndrome"; other 

presentations include predominant parkinsonism, pure akinesia with gait freezing, corticobasal 

syndrome, progressive non-fluent aphasia, among others (Respondek and Höglinger, 2016).  

 

Corticobasal Degeneration. The epidemiology of CBD is poorly characterized, though one study 

has estimated the annual incidence at 0.62-0.92 per 100,000, and prevalence at 4.9-7.3 per 

100,000 (Mahapatra et al., 2004). In 1967, Rebeiz and colleagues described three cases with 

asymmetric "clumsiness", akinesia, ideomotor apraxia, involuntary movements, and upward 

gaze palsy, which they termed "corticodentatonigral degeneration with neuronal achromasia" 

(Rebeiz et al., 1968). Cognitive abilities were relatively spared. While the clinical presentation 

overlapped with PSP, the observations diverged at neuropathological findings of marked 
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frontoparietal cortical atrophy with swollen and achromatic cortical neurons. This disease entity 

became known as "corticobasal degeneration" when it was understood that dentate pathology 

was uncommon. While these pathological findings and the regional distribution of pathology 

may differ slightly from PSP, the genetics and clinical presentation are highly overlapping and 

these diseases may be alternative presentations of the same fundamental disease entity; they 

are often grouped together as so-called "four-repeat tauopathies" (Mailliot et al., 1998).  

 

Alzheimer's disease. AD is by far the most prevalent of the tauopathies, with prevalence in 2017 

estimated at 3% in the 65-74 age group, increasing to 16.9% at 75-84 years and 32.1% at 85 

years or older, in total affecting 5.3 million people in the United States (Hebert et al., 2013). 

Incident cases of Alzheimer's disease are expected to reach nearly 500,000 by 2020 (Hebert et 

al., 2001). In 1906, Alois Alzheimer, a German psychiatrist and neuropathologist, initially 

described a case of a 51-year old German woman with progressive cognitive impairment with 

brain atrophy and neurofibrillary tangles; these collective findings were elevated to a distinct 

disease entity by Kraepelin, which has been revised in the intervening years to what we now 

refer to as Alzheimer's disease (Berrios, 1990). In 1911, Alzheimer later described a series of 

cases with plaques and neurofibrillary tangles, further establishing the disease which now bears 

his name (Alzheimer et al., 1991).  

 

Neurofibrillary tangles were later shown to be composed of the tau protein, and plaques of the 

beta amyloid protein. However, amyloid pathology appears more central in the disease process, 

as highly penetrant mutations in amyloid-related proteins (including the amyloid precursor 

protein, APP, and components of amyloid processing complexes, PSEN1 and PSEN2) may 

cause early onset forms of Alzheimer's disease (Tanzi and Bertram, 2005). Occasionally, tau 

pathology can appear prior to appreciable amyloid deposition (Crary et al., 2014), although this 

may simply be a variation of the normal disease process. 
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The normal biology of tau 

Tau was first characterized as a microtubule-binding protein that promoted microtubule 

polymerization in 1975 (Weingarten et al., 1975); it was not until a decade later that a link with 

pathological aggregates in Alzheimer's disease was reported (Kosik et al., 1986). Since then, 

tau and its role in health and disease has been the topic of intense study. The tau protein is 

widely distributed and specifically expressed throughout the central nervous system. In the adult 

human brain, tau is expressed in six isoforms resulting from the alternative splicing of exon 10 

(one of four tubulin-binding domains) and exons 2 and 3 (the N-terminal inserts). Tau with or 

without the inclusion of exon 10, termed four-repeat (4R) and three-repeat (3R) tau, is 

expressed in an approximately 1:1 ratio in healthy adult brain (Hong et al., 1998). The longest of 

these isoforms (2N 4R) contains 441 amino acids and is used in the nomenclature of tau 

variants. In the peripheral nervous system, the 2N 4R isoform includes an additional exon, 

numbered 4a. In fetal brain, the shortest (0N 3R) isoform predominates (Goedert and Jakes, 

1990).  

 

Tau knockout mice have also provided insight into the normal function of tau. Surprisingly, initial 

reports found no overt phenotypes in tau knockout mice; microtubule function appeared slightly 

affected, and a potentially compensatory upregulation of the microtubule-binding protein MAP1A 

in early development was observed (Dawson et al., 2001; Fujio et al., 2007; Harada et al., 

1994). Mild motor and behavioral deficits have been occasionally observed (Ikegami et al., 

2000). 

 

Microtubule binding. Tau was originally described as a microtubule-binding protein, and its 

effects on microtubule function are well characterized. Exons 9-12 encode four microtubule-

binding repeats (18-amino acid sequences) that have high affinity for binding tubulin. Alternative 
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splicing of exon 10 results in tau isoforms with either three or four of these repeats, with 

functional differences in microtubule binding affinity. Tau binding promotes microtubule 

elongation by increasing the rate of polymerization and decreasing transitions to a shrinking 

state (Drechsel et al., 1992). Binding and unbinding of tau onto tubulin underlies the dynamic 

instability of microtubules, allowing for remodeling of the cytoskeleton in processes such as 

axonal growth and neuronal morphogenesis while maintaining microtubule stability. 

 

Neurogenesis. Although neurogenesis in young mice appears preserved, older mice exhibit 

impaired hippocampal neurogenesis. In one model, new neurons (marked by neuroD and 

doublecortin) were decreased in tau knockout mice (Hong et al., 2010); in another, the number 

of neurons were comparable but the localization differed in tau knockout mice (Fuster-Matanzo 

et al., 2009).  Additionally, proliferating neural progenitors in rodent neurogenesis express 

alternative isoforms of tau (Bullmann et al., 2007). A mouse model of tauopathy expressing 

human tau also showed deficits in neurogenesis, resulting from reduced proliferation (Komuro et 

al., 2015). As dynamic microtubule assembly is important for migration and forming projections 

over long distances (and indeed, key markers of proliferation such as doublecortin are also 

microtubule-binding proteins) it stands to reason that tau may play a role in neurogenesis, but 

so far results have been inconsistent and no clear mechanism has emerged. 

 

Axoplasmic transport. Dixit et al. demonstrate that tau binding to microtubules disrupts kinesin- 

(by detaching at relatively low concentrations) and dynein- (by reversal at higher concentations) 

mediated transport, and speculate that tau distribution along microtubules may be a mechanism 

to regulate axoplasmic transport (Dixit et al., 2008). Because of the increased sensitivity to 

disruption of anterograde transport, accumulation of tau may increase localization of cargoes to 

the cell body (Stamer et al., 2002). Tau knockout or overexpression mouse strains, however, do 

not show changes in axoplasmic transport, perhaps due to compensation by other microtubule-
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associated proteins (Yuan et al., 2008). Others have proposed alternative mechanisms of tau-

mediated disruption of axoplasmic transport (Wang and Mandelkow, 2016). 

 

Neuronal excitability. Tau knockout in mouse and Drosophila models of hyperexcitability 

appears to ameliorate seizure phenotypes (Holth et al., 2013; Roberson et al., 2007), and 

reduction by antisense oligonucleotides in chemically-induced seizure mouse models (DeVos et 

al., 2013). In an APP transgenic model of AD, tau knockout resulted in decreased targeting of 

the Fyn kinase to the dendrite, leading to reduced seizure susceptibility and improved memory 

and survival (Ittner et al., 2010). The mechanism may be explained by recruitment of Fyn by the 

projection domain of dendritic tau, resulting in stabilization of the NMDA receptor/PSD-95 

interaction, increasing excitability at the synapse. At the synaptic level, these findings may 

translate into a role of tau in promoting excitotoxicity at high levels. 

 

Protection from DNA damage. Although tau is primarily localized to axons, it is also found in 

dendrites and nuclei (Loomis et al., 1990), though it function at those locations is poorly 

characterized. Nuclear tau may have a role in protecting neuronal DNA and RNA integrity 

(Sultan et al., 2011; Violet et al., 2014). Nuclear tau aggregates have also been reported in 

disease (Fernandez-Nogales et al., 2014). 

 

Abnormal tau in disease 

Since the time of Alzheimer, filamentous aggregates (that were later revealed to be composed 

of abnormally hyper-phosphorylated tau) have been observed and correlated with neuronal 

death (Alzheimer et al., 1991). Tau accumulation in the somatodendritic compartment, as 

opposed to the axon, is also an early feature of tauopathies. Whether these fibrils represent the 

toxic species of tau or are simply bystanders reflecting underlying disease processes is still 

debated (Goedert, 2016). Recent thought-provoking work has clarified this issue in some 
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regard, mapping out the neuron-to-neuron transmission of tau pathology and the kinetics of tau 

aggregation.  

 

In its normal state, tau is an intrinsically unstructured and highly soluble protein (Mukrasch et al., 

2009; Schweers et al., 1994), though negatively charged compounds such as sulfated 

glucosaminoglycans (Goedert et al., 1996) have been found to seed filament assembly in vitro. 

Foci of local structure exist, notably at the beginning of repeats 2 and 3 (at the sequences 

275VQIINK280 and 306VQIVYK311); sequences at these regions have a propensity to form β-

structure and thereby promote aggregation (von Bergen et al., 2000). The aggregation of tau is 

thought to proceed by a seeding or nucleation step, followed by elongation. Recent evidence 

suggests that seeding by tau aggregates can result in spread of tau pathology, reminiscent of 

the mechanism of prion propagation. Brain extract from mutant P301S tau-expressing mice 

injected into the hippocampi of wild-type tau expressing mice induced tau pathology that spread 

to neighboring regions (Clavaguera et al., 2009). Filamentous tau pathology spread into 

neighboring areas, such as the fimbria, optic tract, and thalamus, and was composed of tau 

from the wild-type expressing mouse. The seed-competent fraction appears to be insoluble tau, 

specifically short fibrils, and not tau oligomers (Jackson et al., 2016). Tau-overexpressing mice 

can also form tau inclusions characteristic of the respective human diseases after inoculation 

with brain homogenates from patients with FTD, PSP, CBD, and AD (Clavaguera et al., 2013). 

Despite clear evidence that tau fibrils are the transmitted species, other work has implicated that 

tau oligomers may be the toxic form (Lasagna-Reeves et al., 2011; Rocher et al., 2010; 

SantaCruz et al., 2005). 

 

Spread of tau pathology appears to proceed trans-synaptically, because more spatially distant 

regions may be affected earlier if they are highly connected (Dujardin et al., 2014; Iba et al., 

2013; Liu et al., 2012). Tau may be released by exosomes or taken up in new cells by 
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endocytosis following cell death (Frost et al., 2009; Saman et al., 2012). Although the precise 

mechanisms remain to be clearly defined, extracellular tau has become an attractive target of 

therapeutic intervention in recent years.  

 

Pathology 

 

While the tauopathies are defined by pathological tau aggregation, the actual tau aggregation 

encompasses distinct regional distributions, microscopic appearances, and molecular 

differences that correlate with clinical features. The remarkable diversity of tau neuropathology 

findings provides hints at the pathogenesis of this group of diseases, yet their significance is still 

unclear.  

 

Selective regional vulnerability of brain regions 

Each of the tauopathies is classically associated with a particularly affected region. In fact, FTD 

is named after such a predilection, with the frontal and temporal cortex most affected. Tau 

pathology is often concentrated in limbic, paralimbic, and frontotemporal cortex (Zhukareva et 

al., 2002). PSP is known to target the midbrain and dentate nucleus of the cerebellum, and in 

fact on MRI the atrophic midbrain appears as a "hummingbird sign" (Graber and Staudinger, 

2009). Likewise, selectively vulnerable regions in CBD are also hinted by its nomenclature; 

neurofibrillary tangles and corresponding atrophy is found in the perirolandic cortex, striatum, 

globus pallidus, and substrantia nigra (Dickson et al., 2002). In AD, the initial site of pathology 

appears to be the transentorhinal region and subcortical nuclei, and spread into the 

hippocampus and cortical association areas (Braak and Braak, 1991). The pattern of atrophy in 

tauopathies (and other neurodegenerative diseases) appears to reflect functional human neural 

networks, perhaps a consequence of trans-synaptic spread of tau (Seeley et al., 2009).  
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Microscopic localization and morphology of tau. Tau pathology has typical specific 

characteristics on a microscopic level, depending on the disease entity. FTD, which has 

inconsistent correlation between the clinical presentation and neuropathology, manifests in 

approximately 40% of patients as Pick's disease (PiD). Large round tau inclusions known as 

"Pick bodies" and achromatic ballooned neurons known as "Pick cells" are hallmark findings 

(Zhukareva et al., 2002). 

 

PSP and CBD are characterized by filamentous glial and neuronal tau inclusions. The 

neuropathological presentation can be stereotyped with characteristic findings unique to each 

disease, though there is a great deal of overlap and intermediate presentations can be observed 

(Dickson et al., 2002). In oligodendrocytes, tau inclusions appear as "coiled bodies", and are 

typically more numerous in PSP. In astrocytes, PSP and CBD diverge with tau lesions 

described as "tufted astrocytes", in which tau reactivity extends to the cell body and "astrocytic 

plaques", which variably involve the cellular processes but not the cell body, respectively. In 

neurons, thread-like tau-immunoreactive cell processes in the neuropil are common (Dickson et 

al., 2007). A characteristic feature of CBD is the presence of achromatic, ballooned neurons, 

which lack visible Nissl substance and are immunoreactive for neurofilaments, α-B-crystallin, 

and variably, ubiquitin and tau. In addition, neurons in affected regions may show globose 

neurofibrillary tangles in PSP and skein-like inclusions and diffuse cytoplasmic tau 

immunoreactivity ("pre-tangles") in CBD (Dickson et al., 2007). 

 

AD is characterized neuropathologically by neuritic amyloid plaques composed of β-amyloid, 

neuronal and extracellular neurofibrillary tangles composed of hyperphosphorylated tau 

(oftentimes described as "flame-shaped"), neuropil threads, and dystrophic neurites, with 

characteristic spread through the brain in stages (Braak and Braak, 1991). Extracellular "ghost 
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tangles" composed of remnant neurofibrillary tangles after the death of the containing cell may 

be present, in contrast to PSP and CBD.  

 

Tau aggregates can also polymerize in variable configurations, and this morphology varies 

across the spectrum of tauopathies. In disease, tau filaments can wind around each other, 

crossing over every 80 nm, with a diameter of 10-20 nm (paired helical filaments); remain 

relatively straight with a diameter of 15 nm (straight filaments); or loosely twist with a periodicity 

of 100 nm, with a diameter of 15-30 nm (twisted filaments) (Murray et al., 2014). Paired helical 

filaments predominate in AD, while straight filaments are present in PSP, CBD, and PiD, with 

occasional twisted filaments. The structural subunits of paired helical filaments and straight 

filaments appear similar, and the cause of the structural differences remains poorly understood 

(Crowther, 1991). 

 

Molecular isoforms of tau. Alternative splicing of exon 10, encoding a microtubule-binding 

domain, can produce two forms of tau: 4R, with four repeated binding sites, or 3R, with three. In 

healthy brain, these isoforms exist in an approximately 1:1 ratio; however, this ratio may be 

disrupted in tauopathies, potentially in either direction (Hong et al., 1998). Some forms of FTD 

show inclusions of predominantly 3R tau (e.g., Pick bodies), whereas aggregates of PSP and 

CBD are composed of 4R tau. In Alzheimer's disease, a mix of 3R and 4R tau is present. With 

the addition of an additional tubulin-binding repeat, 4R tau is more effective at stabilizing 

microtubules and promoting microtubule polymerization but may also be more prone to 

aggregation (Goode et al., 2000; Panda et al., 2003). Nucleation and extension leading to tau 

aggregation was promoted by inclusion of exon 10 (Zhong et al., 2012). 

 

Phosphorylation. Aggregates of tau present in the neurofibrillary tangles of tauopathies are 

abnormally phosphorylated (Grundke-Iqbal et al., 1986). The tau protein has numerous residues 
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which can be potentially phosphorylated by a wide range of kinases, including glycogen 

synthase kinase-3 (GSK-3), cyclin-dependent kinase 5 (CDK5), calcium/calmodulin activated 

protein kinase II (CaMKII), microtubule affinity-regulated kinase 110 (MARK p110) as just a few 

examples (Dolan and Johnson, 2010; Iqbal et al., 2016). De-phopshorylation of tau is primarily 

driven by the activity of protein phosphatase 2A (PP2A) (Liu et al., 2005). In general, 

phosphorylation of tau (both in and out of the tubulin-binding repeats) decreases its affinity to 

bind to tubulin and reduces its effectiveness to promote polymerization of microtubules (Biernat 

et al., 1993; Bramblett et al., 1993; Ding et al., 2006). The liberation of tau from microtubules, in 

addition to direct effects of site-specific phosphorylation, also promotes aggregation. Hyper-

phosphorylation of tau may also affect trafficking and turnover (Litersky and Johnson, 1992; 

Rodríguez-Martín et al., 2013). Depending on the residue, tau phosphorylation may even have a 

protective function in Alzheimer's disease (Ittner et al., 2016), among other roles. 

 

O-GlcNAcylation. Some authors have reported that O-Linked β-N-acetylglucosamine (O-

GlcNAc) is decreased in tau from diseased brains, and nearly absent from insoluble aggregates 

(Liu et al., 2004). Addition of O-GlcNAc to the hydroxyl groups of serine and threonine competes 

with (and thus prevents) phosphorylation (Hart and Akimoto, 2009). It may also suppress or 

enhance transcription and translation, directly affect trafficking, and slow proteolytic turnover. 

Tau, along with other structural and microtubule-associated proteins, may be modified by O-

GlcNAc (Arnold et al., 1996; Liu et al., 2004), though a recent study has raised some skepticism 

about the true extent of O-GlcNAcylation (Morris et al., 2015). O-GlcNAcylation itself is 

regulated by the interplay of two proteins, an O-GlcNAc transferase (OGT) and a glycoside 

hydrolase (O-GlcNAcase, OGA).  

 

Acetylation. Tau appears to be hyper-acetylated at lysine residues of the microtubule-binding 

region in AD, PSP, and CBD, but not AGD (Grinberg et al., 2013; Irwin et al., 2012). Tau 
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present in some forms of FTD may have altered acetylation patterns as well (Cohen et al., 

2011). Acetylation of tau prevents its ubiquitination and subsequent degradation by the 

proteasome (Min et al., 2010) and impairs binding to microtubules, promoting aggregation 

(Cohen et al., 2011; Trzeciakiewicz et al., 2017). Acetylated tau may also be neurotoxic, 

disrupting neurotransmitter trafficking at the post-synaptic density (Tracy et al., 2016). Other 

post-translational modifications, such as methylation and ubiquitination, may compete with 

acetylation at lysine residues and coordinately participate in regulation of tau, though the 

mechanisms and functions are unclear (Morris et al., 2015). 

 

Genetics 

 

Pathogenic tau variants. Perhaps the strongest evidence of a direct causal role of tau in 

neurodegeneration is the discovery of pathogenic tau variants in FTD and Parkinsonism linked 

to Chromosome 17 (FTDP-17) (Hong et al., 1998; Hutton et al., 1998). Many pathogenic tau 

variants cause autosomal dominant forms of the disease, and have been implicated in 

phenotypes resembling bvFTD, PSP, CBD, and AD (Goedert and Jakes, 2005). The majority of 

are clustered in the repeat-binding domains and the splice sites surrounding the alternatively 

spliced exon 10 (exon 9, intron 9, exon 10, intron 10, exon 11, and exon 12), but have also been 

reported in exon 1, exon 2, and exon 13 (Spillantini and Goedert, 2013). Duplications of the tau 

gene have also been found to cause neurodegenerative tauopathies (Hooli et al., 2014; 

Rovelet-Lecrux et al., 2010). 

 

Numerous downstream mechanisms have been ascribed to these pathogenic tau variants. One 

of the earliest described consequences was the alternative splicing of exon 10. Intronic variants 

near the exon 10 5' splice site were among the earliest identified; RNA preparations from the 

brains of affected patients showed large increases in tau isoforms that included exon 10, and 



 17 

exon-trapping assays showed that splicing out of exon 10 was reduced in variant-carrying 

sequences (Hutton et al., 1998). Exonic variants, including N279K, ΔK280, and L284L, also 

disrupt splicing regulatory elements and affect exon 10 inclusion (D’Souza et al., 1999). 

Because pathogenic variants have been described that both increase and decrease the 

inclusion of tau exon 10, the balance between 3R and 4R tau is likely to maintain normal 

function.  

 

Another category of pathogenic tau variants results in a reduced ability of tau to bind to 

microtubules and promotes aggregation. Some of the earliest reported pathogenic variants, 

including ΔK280 and P301L (exon 10) and V337M (exon 12) and R406W (exon 13), fall into this 

category (Hasegawa et al., 1998; Hong et al., 1998). Many subsequently discovered pathogenic 

variants were also found to disrupt binding to microtubules, including R5H and R5L (exon 1) 

(Hayashi et al., 2002; Poorkaj et al., 2002), A152T (exon 7) (Coppola et al., 2012), K257T (exon 

9) (Pickering-Brown et al., 2000), and P332S (exon 11) (Deramecourt et al., 2012). While 

spread across the length of tau, the majority of these appear to cluster near the sequences 

275VQIINK280 and 306VQIVYK311, which have a propensity for β-structure and also play a crucial 

role in microtubule binding; indeed, even nearby variants that are not strictly within the 

sequences (e.g. P301L) may strengthen the tendency for this structure (Mandelkow and 

Mandelkow, 2012). The coupling of these functions may explain the close relationship between 

reduced microtubule binding and aggregation in pathogenic tau variants. Of particular interest is 

the A152T risk-associated variant appeared to decrease the propensity to form fibrillar tau 

aggregates but increased the formation of tau oligomers (Coppola et al., 2012), suggesting a 

potential de-coupling between the two. While the aggregates are widely assumed to spread 

abnormal tau pathology, reports that the oligomers may have greater toxicity suggests that 

promoting the formation of either species may have toxic downstream effects. The A152T 

variant is also unique because of its occurrence on exon 7, its occurrence in the healthy 
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population (suggesting it is a strong risk factor, but not sufficient to cause disease), and 

association with AD as well as PSP and bvFTD (Lopez et al., 2017).   

 

A number of other mechanisms have been proposed. Pathogenic tau variants may alter its 

phosphorylation by increasing the efficiency of brain protein kinases, as in the case of R406W 

(Alonso et al., 2004), or reduce the efficiency of phosphatases such as PP2A (Goedert et al., 

2000). Tau turnover may also be affected; for instance, the V337M and R406W tau variants 

may impair degradation by calpain I (Yen et al., 1999), while the G389R variant appears to have 

the opposite effect (Pickering-Brown et al., 2000). Recently, Lopez et al. have found that the 

A152T variant appears to impair proteasome activity, leading to the accumulation of tau and 

other proteins (Lopez et al., 2017). 

 

Tau haplotype. Conrad and colleagues identified a strong association of allele of a dinucleotide 

repeat sequence within the MAPT gene, which they termed "A0", with PSP (Conrad et al., 

1997). While A0/A0 was the major genotype in controls (57.4%), it was highly overrepresented 

in PSP (95.5%). Later studies reproduced this finding and identified an extended haplotype that 

explained the association with A0, spanning dozens of genes including MAPT. This haplotype 

resulted from a chromosomal inversion that precluded recombination between the two alleles; 

H1, tagged by A0, and H2 (Pittman et al., 2004; Steinberg et al., 2012). Aside from PSP, the H1 

haplotype is also overrepresented in other diseases, including CBD (Houlden et al., 2001), and 

curiously, Parkinson's disease (Nalls et al., 2014). While large-scale GWAS in Alzheimer's 

disease have not identified an association with H1, some large studies have uncovered a 

potential association with H1 or sub-haplotypes, though the evidence is weak (Allen et al., 2014; 

Myers et al., 2005; Pastor et al., 2016). 
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Genes outside of tau – rare variants. Most cases of FTD, PSP, CBD, and AD are sporadic; as 

previously described, variants in tau itself may occasionally cause tauopathies with overlapping 

phenotypes. While no gene outside of tau has yet been consistently linked with FTD-tau, PSP, 

and CBD, several genes have been implicated in familial forms of AD. Notably, APP, PSEN1, 

and PSEN2 are major causes of autosomal dominant, early-onset AD. These genes are each 

involved in processing β-amyloid, a defining feature of the neuropathology of AD, and may 

reflect the unique pathogenesis of Alzheimer's disease upstream of tau involvement (Tanzi and 

Bertram, 2005). The R47H variant of the microglial gene TREM2 has recently been linked to 

AD, and may also contribute to some cases of FTD (Guerreiro et al., 2013). Isolated reports of 

candidate genes abound; for example, pathogenic PSEN1 variants have been reported in 

patients with FTD-like tau pathology and without β-amyloid plaques (Dermaut et al., 2004), and 

an exome array study has highlighted DYSF and PAXIP1 variants in AD (Chen et al., 2015), but 

more evidence and well-powered sequencing studies are required to forge a definitive link.  

 

Genes outside of tau – common variants from GWAS. As with rare pathogenic variants in 

familial AD, many polymorphisms have been associated with late-onset AD, because its high 

prevalence enables the recruitment of large patient cohorts. The ApoE ε4 allele confers an 

approximately three-fold increase in AD risk for each copy, and is the strongest risk factor 

identified to date (and is among the strongest common risk factors for any disease) (Corder et 

al., 1993). Genome-wide association studies have identified variants at a number of loci, 

including near the genes CLU, CR1, MS4A6A, ABCA7, and BIN1, among others (Lambert et al., 

2013). However, because of primary amyloid pathology, the extent to which these genes 

participate in tau-related disease processes is difficult to determine. 

 

While the sample sizes are limited in other tauopathies, large-scale genetics studies are 

beginning to yield new insights. A GWAS of PSP identified robust associations near the genes 
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STX6, EIF2AK3, and MOBP, in addition to the H1 haplotype and an independent SNP within the 

MAPT gene, rs242557 (Hoglinger et al., 2011). The strength of these associations, despite the 

limited sample size, suggests that common variation at a small number of loci plays a relatively 

large role in the genetic architecture of the disease. The EIF2AK3 gene encodes PERK, a key 

component of the unfolded protein response that may play a role in tau metabolism. A GWAS of 

CBD was underpowered to detect independent associations, but did identify genetic overlap 

with PSP at the MOBP and MAPT associations (Kouri et al., 2015). Two GWAS of FTD have 

been performed, identifying TMEM106B (Van Deerlin et al., 2010) and the HLA locus (Ferrari et 

al., 2014), but these studies focused on FTD associated with TDP-43 (not tau) inclusions and 

clinical FTD, respectively. While interesting footholds have been established in the past decade, 

the genetics of tauopathies are just beginning to be explored. Understanding the interaction of 

tau and other genetic risk factors will reveal insights into disease pathways in the future. 

 

Tau-centered therapy in neurodegenerative diseases 

Therapeutic strategies to ameliorate tau pathology broadly fall into four categories: decreasing 

tau levels, altering the posttranslational modifications of tau, blocking the aggregation and 

spread of tau, or stabilizing microtubules to rescue the normal function of tau. However, despite 

many attempts at reducing tau pathology, none have so far yielded strong evidence of efficacy. 

As interest in tau has intensified, more tau-targeted therapeutics are entering the development 

pipeline, with some early signs of promise. Here, we review these mechanisms and examples of 

drugs in development falling into each category, with emphasis with the therapeutics that are 

currently in human trials (Alzforum, 2017). 

 

Decreasing tau levels. Demonstration of transmission of tau between cells in a prion-like 

mechanism (Clavaguera et al., 2009) suggests that clearance of extracellular or intracellular tau 

may be a straightforward avenue of treatment for tauopathies. Passive immunotherapy 
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(Boutajangout et al., 2011) and active vaccination (Asuni et al., 2007) against phosphorylated 

tau have shown efficacy in proof-of-concept studies of tau P301L mice, resulting in decreased 

tau pathology and improvements in behavioral tests. A key consideration in the design of 

immunotherapy against the tau protein is the selective targeting of pathological forms of tau, 

without mounting an immune response against the normal protein.  

 

Passive immunotherapy is a strategy in which antibodies are administered to directly mount an 

immune response without actively stimulating the patient's own production of antibodies. BMS-

986168 and C2N 8E12 are humanized monoclonal antibodies directed against extracellular 

forms of tau, which are thought to be involved in the propagation of pathological tau aggregation 

(Alzforum, 2017; Yanamandra et al., 2013). They are currently being studied in trials for the 

treatment of AD (ClinicalTrials.gov: NCT02880956) and PSP (ClinicalTrials.gov: NCT02294851, 

NCT02460094, NCT02494024, NCT02985879). Another example, RG7435 selectively targets 

tau phosphorylated at S422, which has been identified as a potentially pathogenic species 

(Laetitia et al., 2012). 

 

Active vaccination, in contrast, stimulates the immune system to mount an active response. For 

example, ACI-35, is a liposome-based vaccine targeted to tau phosphorylated at 

S396/S400/S404 (the targets of GSK-3), which showed preferential reduction of abnormally 

phosphorylated tau in the P301L tau transgenic mouse model (Theunis et al., 2013). Another 

example, AADvac1 consists of a tau peptide sequence derived from a domain that appears 

crucial to the oligomerization of tau conjugated to the keyhole limpet haemocyanin protein. Early 

animal studies showed stark reductions in hyperphosphorylated tau, decreased tau 

oligomerization and pathology, and improvements in sensorimotor function in transgenic rats 

expressing truncated human tau (Kontsekova et al., 2014); the vaccine is currently being 

studied in a Phase II trial in patients with mild AD (ClinicalTrials.gov: NCT02579252). 
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Tau post-translational modifications. Since phosphorylation and other posttranslational 

modifications appear to play a central role in the pathogenicity and aggregation of tau, drugs 

that regulate them may disrupt key disease processes. One of the main kinases involved in tau 

phosphorylation is GSK-3, and GSK-3 inhibitors have been pursued as a potential treatment for 

tauopathies. For example, lithium has been shown to inhibit GSK-3 and reduce tau 

phosphorylation in both in vitro and in vivo models (Hong et al., 1997; Munoz-Montano et al., 

1997). Treatment with lithium for bipolar disease appeared to correlate with decreased risk for 

Alzheimer's disease in a cross-sectional study (Nunes et al., 2007), and early human trials of 

lithium showed reductions in CSF phospho-tau and slight reductions in cognitive decline in 

patients with mild cognitive impairment (Forlenza et al., 2011). However, a subsequent study in 

PSP and CBD patients showed that lithium was poorly tolerated (Galpern, 2010). Another GSK-

3 inhibitor, tideglusib, showed decreased tau phosphorylation, decreased amyloid deposition, 

and rescue of memory deficits in a mutant APP/tau transgenic mouse model (Serenó et al., 

2009). However, trials in AD (Lovestone et al., 2015) and PSP (Tolosa et al., 2014) have missed 

their primary endpoints. 

 

Promoting a competing protein modification, O-GlcNAc, may also control tau phosphorylation. 

The O-GlcNAcase inhibitor thiamet-G increased O-GlcNAcylation and decreased 

phosphorylation of tau in cultured neurons in cultured PC-12 cells and in rat cortex and 

hippocampus (Yuzwa et al., 2008). Thiamet-G may also inhibit tau aggregation independent of 

effects on phosphorylation (Yuzwa et al., 2012). A more highly blood-brain barrier penetrant O-

GlcNAcase inhibitor, ASN-561, also showed reduction in insoluble tau in the P301S tau 

transgenic mouse model (Permanne et al., 2015). 
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Recently, controlling tau acetylation has emerged as a promising avenue of treatment. 

Administration of salsalate in the PS19 transgenic mouse model decreased tau acetylation at 

K174 and lowered total tau levels, resulting in decreased hippocampal atrophy and rescued 

memory deficits (Min et al., 2015). An early-stage trial of salsalate in PSP is currently recruiting 

patients (ClinicalTrials.gov: NCT02422485). 

 

Tau aggregation inhibitors. Methylene blue was identified as an inhibitor of tau aggregation in a 

solid-phase tau binding assay (Wischik et al., 1996). It was shown to inhibit tau-tau binding, but 

not tau-tubulin binding. Possible mechanisms for the anti-aggregation effect of methylene blue 

and its derivatives include induction of autophagy (Congdon et al., 2012), oxidation of tau 

cysteine residues resulting in a propensity for a monomeric state (Akoury et al., 2013; Crowe et 

al., 2013), and deacetylation of lysine 280 (Trzeciakiewicz et al., 2017). The latter two 

mechanisms are more likely responsible for the initially identified effect, as the assays were 

independent from the cellular context. Phase 2 trials on a formulation of methylene blue, 

branded as Rember, demonstrated a mild, but statistically significant effect at the 138 mg/day 

dose in moderate AD, but not at the 69 mg/day or 228 mg/day doses (Wischik et al., 2015). 

However, at high doses, potential issues with the formulated release of the drug and its 

absorption in the digestive system may have interfered with its efficacy (Baddeley et al., 2015). 

LMTX, a reduced derivative of methylene blue with superior solubility and absorption, was 

studied in a subsequent Phase 3 trial, which failed to meet its primary endpoints, but follow-up 

studies continue on these candidates (Gauthier et al., 2016). 

 

Microtubule stabilizers. Physiological tau plays a key role in microtubule stabilization and 

polymerization, and tau pathology may disrupt this process. Therefore, microtubule-stabilizing 

agents may ameliorate potential deficits in these pathways in tauopathies. Davunetide is the 

acetate salt of a short peptide (NAPVSIPQ, also known as NAP) identified as an active fragment 
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of activity-dependent neuroprotective protein (Bassan et al., 1999). It was initially shown to 

protect against various neurotoxic insults, such as NMDA toxicity and beta amyloid toxicity. 

Later work found that NAP stabilized microtubules, promoted microtubule assembly, and 

reduced tau phosphorylation, reducing tau pathology in rodent tauopathy models (Shiryaev et 

al., 2009). However, a Phase 2/3 trial of davunetide in PSP did not identify any disease-

modifying effect (Boxer et al., 2014). A microtubule stabilizing drug, Epothilone D, was found to 

be blood-brain barrier penetrant and reduced cognitive deficits in a tauopathy mouse model 

(Brunden et al., 2010), but development has been discontinued after a Phase I trial 

(ClinicalTrials.gov: NCT01492374). TPI-287, a blood-brain barrier penetrant taxane that binds 

tubulin and stabilizes microtubules, has been tested in Phase 1 studies of mild to moderate AD 

(ClinicalTrials.gov: NCT01966666) and PSP and CBD (ClinicalTrials.gov: NCT02133846). 

 

Rationale 

A convergence of evidence places tau as a necessary component of these diseases, including 

the fact that: pathogenic variants in MAPT (the gene encoding tau) have been found in familial 

forms of FTD linked to chromosome 17; haplotype variants at the 17q21.31 locus encompassing 

MAPT confer risk for PSP, CBD, and Parkinson's Disease; and tau-depleted neurons do not 

show degeneration after amyloid aggregation. The central role of tau in neurodegeneration has 

been demonstrated repeatedly, and is gaining even more steam with the widespread failure of 

alternative targets in Alzheimer's disease. However, the normal biology and its role in disease is 

still controversial. For example, it is not certain 1) what genetic variants at the 17q21.31 locus 

increase the risk for neurodegeneration (and how they do so), 2) how genetic variation outside 

the MAPT locus modulates the risk for tauopathy, and ultimately 3) how tau affects disease-

related pathways. These gaps in knowledge hinder the development of therapeutic agents that 

target tau-related pathways, a promising avenue of treatment for neurodegenerative diseases.  
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To bridge this divide, I investigated the genetic basis of tauopathies using systematic genetic 

studies and bioinformatics approaches, with the aim of mapping risk genes and understand their 

downstream consequences. I systematically searched the genome space, including common 

genetic variation, copy number variants, and rare variants for new disease genes. A genome-

wide association study for PSP (Chapter 2) identified novel risk factors and new pathogenic 

variants, providing a direct causal link to tauopathies. An exome array study for AD, FTD, and 

PSP (Chapter 3) provided a glimpse into previously uncharted regions of the genome, 

unearthing yet more candidate disease genes and forging the methods for the application of this 

new technology. For an ultimate look at (nearly) the entire genome, an ongoing genome 

sequencing study (Chapter 4) takes a step forward for the discovery of new disease genes. I 

also examined epigenetic modifications such as DNA methylation (Chapter 5), and described 

how they relate to genetic risk factors. In Chapter 7, I describe future directions and chart the 

translation of the work to drug discovery, envisioning how these findings might benefit patients 

suffering from this devastating group of diseases. 
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Introduction 

Tau pathology is a prominent hallmark of neurodegenerative diseases, including Alzheimer's 

Disease (AD) and Frontotemporal Dementia (FTD). PSP is a relatively pure tauopathy 

associated with parkinsonism - dementia, characterized by pathological tau aggregation and a 

clinical syndrome of postural instability, falls, and supranuclear opthalmoplegia (Respondek et 

al., 2013). It shares symptomatic and neuropathologic overlap with a large group of diseases, 

that are collectivity known as "tauopathies" due to characteristic tau deposits; however, 

compared to these diseases, PSP appears to be more clinically, neuropathologically, and 

genetically homogenous (Chen et al., 2015; Josephs et al., 2006; Williams et al., 2005). 

Notably, the clinical syndrome has high correlation with the neuropathology (Osaki et al., 2004).  

The major known genetic risk factor is an extended H1 haplotype on chromosome 17q21.31, 

which includes MAPT (the gene encoding the tau protein), and is homozygous in almost all PSP 

patients (Chen et al., 2015). Other risk factors identified include genome-wide significant 

associations at loci near MAPT, MOBP, STX6, and EIF2AK3, suggesting a strong contribution 

of common variation in its genetic architecture (Hoglinger et al., 2011). We reasoned that the 

inclusion of additional cases and controls could increase the statistical power for genome-wide 

association, potentially yielding novel loci that could provide insight into the molecular 

mechanisms of PSP and other more common tauopathies. 

 

GWAS Cohort 

We analyzed subjects from three GWAS cohorts, including 1) a multi-center cohort (Boxer et al., 

2014; Chen et al., 2015) in whom we performed genotyping using the Illumina HumanOmni2.5-8 

BeadChip and the Illumina HumanCore BeadChip ("UCLA"); 2) a cohort of autopsy-proven 

cases from previously published (Hoglinger et al., 2011) GWAS ("Hoglinger"); and 3) patients 

from centers in France, Germany, and the United Kingdom as part of the Neuroprotection and 
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Natural History in Parkinson Plus Syndromes (NNIPPS) study, a double-blind randomized 

placebo-controlled clinical trial of riluzole (Bensimon et al., 2009), genotyped with the Illumina 

HumanOmni2.5-8 BeadChip ("NNIPPS"). A more detailed description of the cohorts is provided 

in Supplementary Table A-1.  

 

To increase statistical power, we combined each cohort with platform-matched, out-of-sample 

controls from dbGAP (Supplementary Table A-1). Stringent quality control – excluding SNPs 

that had low genotype call rates (< 0.95) or did not follow Hardy-Weinberg equilibrium, and 

excluding subjects with low sample call rate (< 0.95), non-European ancestry, incompatible sex, 

cryptic relatedness, or duplication across cohorts (Supplementary Figure A-1) – was applied to 

each cohort (including platform-matched controls). We then imputed variants implementing 

IMPUTE2 (Howie et al., 2009) using the 1000 Genomes Phase 3 Reference Panel to estimate 

genotypes at more than 77,000,000 SNPs. Imputed variants with imputation quality scores (r2 < 

0.9) or low minor allele frequency (< 0.01) were filtered, and genotypes across all cohorts were 

combined in a joint analysis. In total, we examined 6,419,662 SNPs in 1,646 PSP cases and 

10,662 controls. We estimated that this cohort had 90% power to detect association of a variant 

with allele frequency of 0.5 and relative risk of 1.3. For a cohort of the sample size of that in a 

previous PSP GWAS from Hoglinger et al., the power to detect such an association was only 

33%. In the primary analysis, we assessed the genome-wide association between the genotype 

at each SNP and case-control status using a linear mixed model to correct for population 

stratification. The genomic inflation factor λ for the joint analysis was 1.05; for the UCLA-

Omni2.5, UCLA-HumanCore, NNIPPS, and Hoglinger cohorts, λ was 1.03, 1.02, 1.11, and 1.11, 

respectively (Figure 2-1, Supplementary Figure A-2, Supplementary Figure A-3). We considered 

the joint inflation factor to be acceptable in the setting of a relatively large joint analysis sample 

size (Yang et al., 2011b). Scaled for sample size, the adjusted genomic inflation factor λ1000 was 

1.02.  
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Copy-number variation analysis 

A total of 4,866 CNVs in 281 PSP patients and 1,084 controls passed quality control. Of these, 

2,769 CNVs including 1,205 deletions and 1,564 duplications were present at less than 

1% frequency (and therefore considered rare). We did not detect an increased burden of rare 

CNVs in PSP patients after adjusting for multiple comparisons, even when stratifying by CNV 

size (Supplementary Table A-2). A trend towards enrichment of 200 kb – 500 kb duplications 

was detected in PSP (mean of 0.34 segments in PSP patients versus mean of 0.26 segments in 

controls, unadjusted p = 0.02). To identify rare CNVs that might cause PSP, recurrent genic 

CNVs (found in two or more PSP cases but not in WTCCC controls) were identified. We found 

A 

D C B 

Figure 2-1: Genome-wide significant SNP associations in the joint analysis.  
A) P-values of SNPs measured and imputed in the study. The horizontal red line indicates the genome-wide 
significance threshold (P < 5 x 10-8). B) Quantile-quantile (QQ) plot showing the observed versus expected P-values 
for all SNPs typed in the study. C) QQ plot for SNPs, excluding chromosome 17. D) QQ plot for SNPs, excluding 
suggestive and genome-wide significant loci. 
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four recurrent duplications, located within 2q37.1, 4q31.21, 16p12.2, and 17q21.31 

(Supplementary Figure A-4). Each recurrent CNV was detected in two PSP patients.  

 

We focused on the two duplications in 17q21.31 (Figure 2-2). We identified a 40-year-old 

European French male patient with autopsy-confirmed PSP and an unusually early age of onset 

of 37, who carried a 460 kb duplication, copy number = 3, at chr17:43,728,377-44,189,068 

(hg19). A similar duplication (copy number = 3) was found in a 62-year-old European French 

woman with autopsy-confirmed PSP diagnosed at age 57, affecting 503 kb at 

chr17:43,685,926-44,189,068. These duplications spanned the entirety of the MAPT gene, as 

well as the last seven exons of CRHR1 and the first six exons of KANSL1.  

 

Figure 2-2: Recurrent rare CNVs within the 17q21.31 region.  
A CNV was identified in a 40-year old man with PSP within 17q21.31 based on signal intensity (A). A second CNV 
with similar breakpoints in chr17q21.31 was found in a 62-year old woman with PSP (B). These CNVs overlapped 
MAPT and neighboring genes, as demonstrated on the UCSC Genome Browser Track (C; arrowhead). Segmental 
duplications are also shown. 
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Figure 2-3: Meta-analysis of association for significant and suggestive SNPs. A total of eight genome-wide 
significant loci were identified, with representative SNPs (up to down, left to right): A) rs71920662 in 17q21.31, near 
MAPT; B) rs57113693 in 1q25.3, near STX6; C) rs10675541 in 3p22.1, near MOBP; D) rs35740963 in 6p21.1, near 
RUNX2; E) rs7966334 in 12p12.1, near SLCO1A2; F) rs12125383 in 1q41, near DUSP10 in an intergenic region; G) 
rs147124286 in 12q13.13, near SP1; H) rs2045091 in 8q24.21, near ASAP1; and I) rs114573015 in 1p22.3, near 
WDR63. I) Additionally, a previously reported GWAS SNP rs7571971 in 2p11.2, near EIF2AK3, was not identified as 
genome-wide significant in the joint analysis. 
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Genome-wide SNP association meta-analysis 

The results of the joint analysis genome-wide association are shown in Figure 2-1 and 

Supplementary Figure A-5. SNPs at 5 loci, in cytobands 17q21.31 (in an extended haplotype 

containing MAPT, lead SNP rs71920662, odds ratio OR = 0.19, p = 3.9x10-113), 3p22.1 (within 

MOBP, rs10675541, OR = 0.71, p = 7.2x10-19), 1q25.3 (within STX6, rs57113693, OR = 1.3, p = 

8.7x10-16), 6p21.1 (within RUNX2, rs35740963, OR = 0.77, p = 1.8x10-8), and 12p12.1 (within 

SLCO1A2, rs7966334, OR = 1.5, p = 3.2x10-8), reached genome-wide significance (p < 5x10-8) 

(Supplementary Figure A-6). An additional SNP reported in a previous GWAS (Hoglinger et al., 

2011), rs7571971, was also analyzed. Although this SNP did not reach genome-wide 

significance in the joint analysis (OR = 1.18, p = 2.7 x 10-5), the direction of the association was 

consistent with the previous association in each cohort. In order to decrease the likelihood that 

the results were influenced by population stratification, we assessed association at the loci in 

each of the study cohorts (Figure 2-3). Associations at the lead SNPs in each of the regions 

were consistent across the three most well-powered study cohorts (Hoglinger, NNIPPS, and 

UCLA Omni2.5) while in general, the HumanCore subset of the UCLA cohort was 

underpowered to detect association. An additional 4 loci demonstrated suggestive association 

(1x10-6 < P < 5x10-8), in 1q41 (intergenic, near DUSP10, rs12125383, OR = 1.28, p = 5.3x10-8), 

12q13.13 (within SP1, rs147124286, OR = 0.74, p = 4.1x10-7), 8q24.21 (within ASAP1, 

rs2045091, OR = 1.25, p = 4.7x10-7), and 1p22.3 (near WDR63 and MIR4423, rs114573015, 

OR = 2.1, p = 5.9x10-7). Overall, the genome-wide significant loci explained a combined 5.9% of 

the variance in heritable liability of PSP (Supplementary Table A-3). The locus tagging the 

chr17q21 haplotype surrounding MAPT contributed the majority (5.0%), while new loci 

contributed an additional 0.2% of the total liability. Using a polygenic model implemented in 

GCTA (ref), the entire set of genotyped SNPs explains 9.4±0.8% (estimate±standard error) of 

the variance on the liability scale, suggesting that many loci are yet to be found. 
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The association between PSP and the chr17q21 haplotype (H1/H2) has been widely 

characterized, but independent SNPs in the chr17q21 region may also contribute to disease 

susceptibility. To test this, we performed linear regression, taking haplotype as a covariate. 

Additionally, we identified subjects that were homozygous for the risk allele (H1/H1), and 

performed association in this subset of patients. Both approaches identified similar independent 

associations from the H1 haplotype in the 17q21.31 region, with the most significant SNPs at 

rs8078967 (P = 1.9 x 10-14) and rs9904290 (P = 8.9 x 10-12) in the haplotype-regressed and 

H1/H1 only datasets, respectively (Supplementary Figure A-6). These SNPs did not appear to 

be in strong linkage disequilibrium with a previously reported SNP association, 

rs242557(Hoglinger et al., 2011) (r2 = 0.008 and 0.007 in the 1000 Genomes Project data – 

EUR super-population, respectively) that was filtered from this dataset in variant QC; however, 

they were highly correlated with each other (r2 = 0.996). Additionally, both variants and 

rs242557 are within the first intron of the MAPT gene. 

 

Fine-mapping of associated loci 

To further understand how variation at each of the loci contributes to disease risk, we assessed 

the functional consequences of significant SNPs. We first identified a set of potential causal 

SNPs using the CAVIAR method, which identifies a "credible set" of SNPs that encompasses 

those likely to be causal (Hormozdiari et al., 2014). The 17q21.31 locus was excluded from the 

analysis because of its unusual, long-range linkage disequlibrium pattern. In some loci, 

potentially causal coding variants were identified (in genome-wide significant loci, at 6p21.1, in 

RUNX2, and at 12p12.1, in SLCO1A2; and in suggestive loci, at 8q24.21, in ASAP1, and at 

12q13.13, in AMHR2). Other SNPs in the credible set fell within regulatory regions; we identified 

the gene associated with each SNP using data from Hi-C experiments, mapping chromosome 

conformation patterns on a genome-wide scale from four human cell types (IMR-90 fetal lung 
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fibroblasts, embryonic stem cells, fetal brain, and fetal brain germinal zone). Each potential 

regulatory SNP in the credible set was then associated with genes in close proximity by 

chromosomal conformation, yielding potential downstream causal genes. 

 

To supplement the mapping information from HiC, we also identified the functional 

consequences of GWAS hits, we used the TWAS method to predict genes that may be affected 

by risk alleles (Gusev et al., 2016). TWAS estimates gene expression values using paired 

reference transcriptome/genotyping datasets (e.g., for expression quantitative trait loci - eQTL 

studies) and genotype information from summary statistics, and predicts differential expression 

between cases and controls. Using reference data from the GTEx Consortium, TWAS predicted 

the effect of gene expression from the risk haplotypes in multiple tissues. At a threshold of P < 

1x10-5, we identified a number of genes that were called as differentially expressed. As 

expected due to the length and lack of recombination in the region, most of these genes (17) 

clustered around the chromosome 17 haplotype. Notably, MAPT (within the associated 

17q21.31 locus) was among the genes predicted to be differentially expressed, as well as STX6 

(within the associated 1q24 locus), SP1 (within the suggestive 12q13.13 locus), SKIV2L (within 

6p21.33, nearby the associated 6p21.1 locus), and RPSA (within the associated 3p22.1 locus). 

Other genes that were pinpointed outside of association regions were CEP57 (in 11q21) and 

RPS6KL1 (in 14q24.3) 

 

Genetic overlap of PSP and other neurodegenerative diseases 

The strong neuropathological overlap of PSP with other tauopathies suggests that genetic 

overlap may exist. Using the LDSC software (Bulik-Sullivan et al., 2015), we assessed genetic 

overlap of PSP with other neurodegenerative diseases, including AD, behavioral variant FTD 

(bvFTD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), by using GWAS 

summary statistics. As controls, we included summary statistics from GWAS for heritable, non-
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neurodegenerative diseases of brain (schizophrenia and bipolar disorder), a quantitative trait 

(height), and a non-brain disease (type 2 diabetes) (for further details, refer to the 

Supplementary Methods). Each of these traits was shown to be heritable. Statistically significant 

genetic correlations were identified for PD (P = 9.7x10-5) and ALS (P = 1.8x10-3), but not for 

non-neurodegenerative disease control GWAS (Figure 2-4). 

 

Discussion 

As a prototypical tauopathy, insight into PSP susceptibility alleles can help to illuminate the 

downstream molecular effects of tau pathology, which is a major component of many common 

neurodegenerative diseases. Altogether, from a joint analysis of three disease cohorts, we have 

identified 2 novel genome-wide significant susceptibility loci in PSP and replicated 3 previously 

reported loci. Of the loci identified in this study, three (within MAPT, MOBP, and STX6) were 

reported significant in a previous GWAS (Hoglinger et al., 2011). An additional locus near the 

EIF2AK3 gene (encoding PERK, a key component of the unfolded protein response) was also 

previously identified; however, the reported SNP did not reach genome-wide significance in this 

joint analysis or in the new "Hoglinger" cohort (using different controls).  

 

We also identified 2 novel genome-wide significant susceptibility loci at 6p21.1 and 12p12.1 

(near RUNX2 and SLCO1A2, respectively). At 6p21.1, we identified a lead SNP as well as 

several coding SNPs in RUNX2 in the credible set within RUNX2, a gene thought to be a 

transcriptional factor involved in regulation of osteoblastic differentiation (Komori, 2009). While 

seemingly unrelated to PSP, a curious number of neurodegeneration-related genes are also 

involved in bone diseases (e.g. TREM2, which has been linked to AD and Nasu-Hakola disease 

(Guerreiro  et al., 2013; Jonsson  et al., 2013), and VCP, linked to amyotrophic lateral sclerosis 

and Paget's disease of bone (Johnson et al., 2010; Watts et al., 2004)). At 12p12.1, we 

identified a lead SNP and credible set coding SNPs within SLCO1A2, a transporter present 
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(among other places) at the blood-brain barrier, where it regulates solute trafficking (Urquhart 

and Kim, 2009). An additional four loci (near the genes DUSP10, SP1, ASAP1, and 

WDR63/MIR4423) were suggestive of association, but did not reach genome-wide significance. 

While this study raises the possibility of involvement of these genes in PSP pathogenesis, 

further fine-mapping and functional studies are needed to confirm their possible roles.  
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Figure 2-4: Coheritability based upon LD Score Regression for neurodegenerative diseases. Each cell 
contains the genetic correlation and p-value (in parentheses).  
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Our results also implicate possible alternative causal genes in previously reported genome-wide 

significant loci. At 3p22.1, the gene closest to the GWAS lead SNP was reported as MOBP. 

Using Hi-C, we have identified chromatin interactions with MYRIP and EIF1B that could also 

explain this association. Similarly, at 1q25.3, the gene closest to the GWAS lead SNP was 

STX6; by Hi-C, we have also identified XPR1 as a possible candidate gene. Interestingly, our 

group has previously demonstrated XPR1 mutations in primary familial brain calcification (Legati 

et al., 2015), though any mechanistic overlap with PSP is unclear. Analysis of eQTL datasets (in 

GTEx) suggests that RPSA at 3p22.1 and SKIV2L near 6p21.1 may also be the causal gene, 

but the tissue-relevant datasets were relatively underpowered. 

 

Aside from identifying additional associated loci and highlighting potential PSP susceptibility 

genes, we analyzed the polygenic overlap between neurodegenerative diseases, identifying 

shared heritability with PD and ALS. Curiously, these diseases do not have predominant tau 

neuropathology, as PSP and other tauopathies do. Typically, PD is associated with aggregation 

of α-synuclein, and ALS with aggregation of TDP43 and other proteins, while tau pathology is 

prominent in AD. However, there are known shared genetic risk factors among these diseases. 

The 17q21.31 haplotype is highly associated with PD, in the same direction as in PSP (Nalls et 

al., 2016), and SNPs near the MOBP gene have been recently associated with ALS (van 

Rheenen et al., 2016). Our results indicate the existence of common neurodegenerative disease 

pathways even across traditional protein aggregate-based subdivisions, and could potentially 

lead to effective treatment strategies. 

 

We also performed a scan for copy-number variants in one of the cohorts. We found two 

instances of CNV of MAPT in patients with PSP. Taken together with a copious body of 

evidence connecting MAPT with PSP genetically and neuropathologically, this finding suggests 

that duplication of MAPT is a significant, though relatively uncommon cause of PSP. 
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Duplications spanning the MAPT gene have been previously reported in twelve patients, 

including in children with mild learning difficulties, developmental delay, and variable 

dysmorphic features (Gregor et al., 2012); a patient with a presumed familial frontotemporal 

dementia phenotype (Rovelet-Lecrux et al., 2010) and three siblings with early-onset 

Alzheimer's disease (Hooli et al., 2014). Other studies have not detected MAPT duplications in 

their neurodegenerative disease cohorts (Llado et al., 2007; Skoglund et al., 2009), highlighting 

the duplication’s causal role in PSP.  

 

The localisation of the observed duplications also narrows the search space and provides 

additional mechanistic insight compared to GWAS SNPs alone. Although the CNVs span 

several genes, the region is much smaller than the approximated 1Mb MAPT haplotype on 

which previously identified duplications resulted in developmental anomalies. Furthermore, the 

putative effect on gene expression is much clearer, while the 17q21.31 haplotype does not 

seem to affect overall expression and probably alters splicing of the MAPT exon 3 (Trabzuni et 

al., 2012). Overall, the association of MAPT duplication with PSP for the first time provides 

direct genetic evidence that specific overexpression of tau can lead to PSP. This is consistent 

with data from models showing that human wild-type tau over-expression is sufficient to cause 

pathological tau deposition and neurodegeneration, even in the absence of mutations (Jackson 

et al., 2002).  

 

In addition to the two patients harbouring duplications of the entire tau locus, we found several 

additional genic regions with rare, recurrent CNVs in PSP patients, including duplications on 

2q37.1 (spanning ALPP, ECEL1P2, and ALPPL2), 4q31.21 (spanning RNF150, and ZNF330), 

and 16p12.2 (spanning METTL9, IGSF6, and OTOA). However, given our sample size and the 

rarity of these events, the pathogenicity of these variants is difficult to establish without prior 

evidence of involvement in PSP. Our finding of rare CNVs within MAPT in PSP strongly 
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suggests that CNVs can cause PSP in a highly penetrant fashion, and future work building on 

our results may yet identify additional PSP genetic contributors within these regions. 

 

Here, we have increased the number of significant genetic risk locus for PSP, an important 

advance for understanding its pathophysiology. The power of this study to identify novel loci at 

genome wide significance and a large unexplained heritability suggests that PSP may be highly 

amenable to genetic association studies in larger sample cohorts using next generation 

sequencing. Overall, by establishing the genetic correlations of PSP with PD and ALS and 

identifying novel genome-wide significant and suggestive associations, we shed insight into the 

mechanisms of neurodegenerative disease. 

 

Methods 

Cohort. Three cohorts of primarily European ancestry were included in the study – "UCLA", a 

combination of PSP patients and controls from the UCSF Memory and Aging Center (Chen et 

al., 2015; Li et al., 2014) and the Allon Therapeutics Davunetide trial (Boxer et al., 2014); 

"NNIPPS", a group of PSP patients from the Neuroprotection and Natural History in Parkinson 

Plus Syndromes (NNIPPS) trial (Bensimon et al., 2009); and "Hoglinger", PSP patients from a 

previously published GWAS (Hoglinger et al., 2011). The UCLA cohort was divided into two, 

because of differences in genotyping platform: "UCLA Omni 2.5" and "UCLA HumanCore". 

Further details are available in the Supplementary Methods. 

 

Genotyping. Genotyping in the UCLA study cohort was performed as a prelude to whole-

genome sequencing, and was performed by Illumina (using the Illumina HumanOmni 2.5 Array) 

and the New York Genome Center (using the Illumina HumanCore Array).  
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Public datasets. Genotypes from the Hoglinger et al. GWAS (2011) (cases only – no controls) 

were obtained from the NIAGADS database. Out-of-sample controls were obtained from dbGAP 

Authorized Access to match each genotyping platform. For the Illumina HumanQuad 660W 

Array (Hoglinger et al. study), we used phs000103.v1.p1 "Genome-Wide Association Studies of 

Prematurity and Its Complications", phs000289.v1.p1 "National Human Genome Research 

Institute (NHGRI) GENEVA Genome-Wide Association Study of Venous Thrombosis", 

phs000188.v1.p1 "Vanderbilt Genome-Electronic Records (VGER) Project: QRS Duration", 

phs000203.v1.p1 "A Genome-Wide Association Study of Peripheral Arterial Disease", 

phs000237.v1.p1 "Northwestern NUgene Project: Type 2 Diabetes", phs000243.v1.p1 "Group 

Health/UW Aging and Dementia eMERGE study", and phs000170.v1.p1 "A Genome-Wide 

Association Study on Cataract and HDL in the Personalized Medicine Research Project Cohort". 

For the Illumina HumanOmni 2.5 Array (UCLA – this study, and NNIPPS study), we used 

phs000371.v1.p1 "Genetic Modifiers of Huntington's Disease", phs000429.v1.p1 "NEI Age-

Related Eye Disease Study (AREDS) - Genetic Variation in Refractive Error Substudy", and 

phs000421.v1.p1 "A Genome-Wide Association Study of Fuchs' Endothelial Corneal Dystrophy 

(FECD)". For the Illumina HumanCore Array (UCLA – this study), we used the WTCCC2 cohort, 

which was typed on the related Illumina OmniExpress Array. Subjects with an ascertained 

phenotype (e.g., disease) were removed. More detailed information regarding these datasets is 

available in Supplementary Table A-1. 

 

Data preprocessing. Genotypes for all datasets were converted to the forward strand, and 

converted into coordinates based on the hg19 reference sequence using UCSC liftOver 

(Rosenbloom et al., 2015). The genotypes were then merged and pre-processed according to 

platform. Determination of cryptic relatedness (pairwise proportion IBD, PI-HAT > 0.2), sample 

missingness (> 0.05), genotype missingness (> 0.05), Hardy-Weinberg equilibrium p-value (< 

105), and sex-matching was performed in PLINK v1.90b3.28 (Chang et al., 2015) and used to 
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quality-control samples using standard parameters (Evangelou and Ioannidis, 2013). Ancestry 

was predicted by multidimensional scaling based on raw Hamming distances, implemented in 

PLINK. Only samples of presumed European ancestry that clustered with known Europeans 

from the HapMap3 cohort (The International HapMap 3 Consortium, 2010) were included. 

Preprocessing steps are further elaborated in Supplementary Figure A-1. 

 

Imputation. Imputation was performed separately for each genotyping platform using the 

IMPUTE v2.3.2 (Howie et al., 2009) algorithm. Prephasing of chromosomes using the 

Segmented HAPlotype Estimation & Imputation Tool (SHAPEIT) v2.r837 was performed as 

previously described (Delaneau et al., 2014; O'Connell et al., 2014). IMPUTE2 was run on the 

prephased haplotypes using the 1000 Genomes Project Phase 3 reference in non-overlapping 5 

megabase chunks with a 250 kilobase buffer and an effective population size of 20,000. 

Imputed variants with an imputation genotype probability < 0.9, missingness > 0.05, or minor 

allele frequency < 0.01 were removed, and genotypes across platforms were merged. Cryptic 

relatedness across cohorts was assessed, and related/duplicated samples were removed.  

 

Copy number variation analysis. CNVs were identified from genotyping data of patients with 

PSP and controls. Initially, sample reclustering was performed on each sample using Illumina 

GenomeStudio, for each array batch. Samples with low call rates (< 98%) were excluded. 

To compare CNVs between PSP cases and controls from the WTCCC_1958, only SNPs in 

common between the two array platforms were used for subsequent analysis (689,077 SNPs in 

total). PennCNV (Wang et al., 2007) was used to call CNVs, using custom PFB and GC model 

files and with genomic wave adjustment. Adjacent CNV calls were merged if their separation 

spanned < 20% their combined length. CNVs overlapping (> 50%) immunoglobulin, telomeric, 

and centromeric regions; called on < 10 array SNPs; spanning < 50,000 base pairs; and having 

confidence score < 10 were filtered. Subjects with LRR standard deviation > 0.285; BAF Drift < 
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0.01; Waviness Factor < 0.05; total called CNVs > 100; and maximum combined CNV size < 

10,000,000 base pairs were removed from further analysis. CNVs highlighted by downstream 

analyses were validated by manual examination of the signal intensity.  

 

Rare CNVs (frequency < 1%) were considered for downstream analysis. CNV burden and 

association testing was performed using PLINK v1.07 and the Bedtools package (Quinlan and 

Hall, 2010). Empirical p-values were calculated using the maxT test with 50,000 permutations, 

with statistical significance defined at corrected p < 0.05. 

 

 

Association. Association was performed using a linear mixed model to correct for population 

structure, using BOLT-LMM (Loh et al., 2015). The genotyping platform was used as a 

categorical covariate. The standard infinitesimal model p-values were chosen for downstream 

anaylsis. Odds ratios were calculated as exp(beta). Because some of the individual cohort sizes 

violate the large sample size assumptions of BOLT-LMM, odds ratios for association (for 

individual cohorts) were computed using a logistic regression model in PLINK, using the first 5 

eigenvectors, derived from Principal Components Analysis (PCA), as covariates. Power 

calculations were performed using the Genetic Power Calculator (Purcell et al., 2003), assuming 

a variant with risk allele frequency of 0.5 and relative risk of 1.3 in an additive genetic model, a 

disease with a prevalence of 10 in 100,000, and a p-value threshold of 5x10-8, using a 

genotypic, 2 df case-control test. QQ and Manhattan plots were constructed using the R 

package "qqman" (Turner, 2014). Forest plots were constructed using the R package "metafor" 

(Viechtbauer, 2010). The genomic inflation factor λ was computed with PLINK. Correction of the 

genomic inflation factor to an equivalent sample size of 1000 cases and 1000 controls was 

performed as previously described (Freedman et al., 2004). To control for the extended 

haplotype on chr17q21 and to identify independent association signals, we performed 
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association as before, but including the haplotype (tagged by the SNP rs1560310) (Coppola et 

al., 2012) as a covariate.  

 

Proportion variance in liability explained. The explained variance in liability at each of the 

genome-wide significant loci was calculated according to the method of So et al., which requires 

the allele frequency of the risk allele, the relative risk of the heterozygous genotype, the relative 

risk of the homozygous risk genotype, and the prevalence of the disease in the population (So 

et al., 2011). The allele frequencies were calculated from the control population of the joint 

genotyping cohort. Relative risks were approximated with the corresponding odds ratios, which 

convergence to relative risk when the prevalence of disease is rare. Genotypic odds ratios were 

estimated by assuming an additive model. The prevalence of PSP was estimated at 6.5 per 

100,000 in accordance with prior epidemiological studies (Nath et al., 2001; Schrag et al., 

1999). The genome-wide polygenic variance in liability explained was calculated using GCTA 

v1.24.7 (Yang et al., 2011a). The genetic relationship matrix was calculated chromosome-by-

chromosome and then re-combined. The first 5 principal components were calculated and used 

as covariates for restricted maximum likelihood (REML) analysis.  

 

Prediction of gene expression differences associated with PSP-associated SNPs. Genetic 

associations with PSP may be due to genetic control of gene expression.  We used TWAS to 

predict differential gene expression in PSP from the joint analysis summary statistics, integrating 

paired genotyping and gene expression data from the GTEx Consortium (Gusev et al., 2016). 

Correcting for approximately 5,000 effective independent tests per brain region (taking into 

account 5,483 genes with significantly heritable weights and the interdependence of gene 

expression, particularly across tissues), the significance threshold was set at P < 1 x 10-5. 
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Credible set of causal variants at PSP GWAS loci.  A credible set (potential causal variants) was 

identified at each of total of seven genome-wide significant loci identified in this study using the 

CAusal Variants Identification in Associated Regions (CAVIAR) software package (Hormozdiari 

et al., 2014). Because of the extended linkage disequilibrium patterns in the chromosome 

17q21.31 haplotype region, causal variants were not identified at this associated locus. Within 

each of the selected loci, the SNP with the minimum joint association p-value was chosen as 

the index SNP, and variants with p-value < 10-5 and in LD (r2 > 0.6) with the index SNP were 

input into CAVIAR.  The CAVIAR-identified credible set contains potential causal variants (with 

a confidence level of 95% under the statistical model) that could explain the association at each 

locus.  

 

Identification of genes linked to credible SNPs with chromatin interaction data. Genetic variation 

can result in changes to the coding sequence of a gene (e.g., nonsense and missense variants) 

or can regulate the gene's expression (e.g., by affecting transcription factor binding in promoter 

or enhancer regions). We first identified credible SNPs as "functional"  (stopgain variant, 

frameshift variant, splice donor variant, NMD transcript variant, or missense variant). Of the 

remaining credible SNPs, we identified those in the promoter region of a gene, defined as the 

range 2 kb upstream to 1 kb downstream relative to the transcription start site (TSS). Finally, the 

remaining credible SNPs were considered possible regulatory variants and tested for short- or 

long- range interaction with other regions of chromatin to identify potential downstream target 

genes. The interactions were determined by Hi-C experiments in IMR90 and embryonic stem 

cells from public data (Dixon et al., 2015; Dixon et al., 2012), and fetal brain germinal zone 

(ventricular and subventricular zone) and cortical plate (intermediate zone and marginal zone) 

from our group (Won et al., 2016). 
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Genetic correlation with neurodegenerative diseases. Genetic correlation was assessed from 

GWAS summary statistics using the Linkage Disequilibrium Score Regression method (LDSC) 

(Bulik-Sullivan et al., 2015). Summary statistics were filtered by only considering SNPs that 

overlap with the HapMap3 reference panel. Refer to the Supplementary Methods for further 

details.  
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Introduction 

Genetics studies have revealed a genetic contribution to susceptibility for common or sporadic 

forms of neurodegenerative disease, such as Alzheimer's disease (AD), frontotemporal 

dementia (FTD), and progressive supranuclear palsy (PSP – a syndrome characterized by 

oculomotor and gait abnormalities and usually associated with tau pathology). In Alzheimer's 

disease, early genetic mapping approaches have identified variants in genes such as APP, 

PSEN1, and PSEN2 that cause familial, early-onset forms of AD (Lendon et al., 1997). APOE 

was also pinpointed as a late-onset AD susceptibility gene (Pericak-Vance et al., 1991). 

Genome-wide association studies (GWAS) targeted toward common variants in primarily 

European populations have identified many variants associated with Alzheimer's disease (AD), 

mostly clearly near APOE but also consistently near ABCA7, BIN1, CLU, CR1, PICALM, 

SORL1, and other genes (Hollingworth et al., 2011; Lambert et al., 2013; Naj et al., 2011). Next-

generation sequencing approaches have also found rare variants with strong effect in genes 

such as MAPT (Coppola et al., 2012) and TREM2 (Guerreiro et al., 2013). 

 

In FTD, the most frequently observed mutations in familial cases occur in C9ORF72 (a 

hexanucleotide repeat expansion), GRN, MAPT (associated with parkinsonism and sometimes 

manifesting as a PSP syndrome), TARDBP, and other genes (Rademakers et al., 2012). In 

sporadic cases, a haplotype variant on the long arm of chromosome 17 has been repeatedly 

associated with PSP (Baker et al., 1999; Hoglinger et al., 2011; Pittman et al., 2005). GWAS 

have also been performed for sporadic cases of FTD, identifying associated SNPs near 

TMEM106B in cases with TDP-43 pathology (Van Deerlin et al., 2010), RAB38/CTSC in 

behavioral variant FTD, and BTNL2/HLA-DRA/HLA-DRB5 in clinically diagnosed FTD (Ferrari et 

al., 2014); and for PSP, identifying associated SNPs near MAPT, MOBP, EIF2AK3, and STX6 

(Hoglinger et al., 2011).  
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However, association studies are designed for linkage disequilibrium patterns among common 

polymorphisms, and next-generation sequencing and traditional genetic mapping approaches 

rely on the high penetrance of variants. Therefore, a hypothetical, moderately rare variant with 

moderate effect size would be too uncommon to be tagged by a standard genotyping array and 

have too small of an effect to be detected by linkage or genome sequencing in practical sample 

sizes. The exome array, or "exome chip", bridges this gap by efficiently genotyping more than 

200,000 coding variants identified through sequencing studies at low cost (Figure 3-1). The 

exome array has been applied to phenotypes such as insulin homeostasis (Huyghe et al., 

2013), bronchopulmonary dysplasia (Wang et al., 2013), and heart disease (Holmen et al., 

2014; Peloso et al., 2014). For AD, Chung et al. recently reported an exome array study in 

Korean subjects that found association with APOE, APOC1, and TOMM40 variants (near the 

SNP Genotyping Array! Exome Array! Exome Sequencing!

MECHANISM!

ASSAYED 
VARIANTS!

COST!

hybridization to 
microarray probes!

next-generation 
sequencing!

hybridization to 
microarray probes!

$! $! $$$!

.   .   .   

. 
    .   ..  
.. 

genomic DNA!

genomic DNA!
gene model!
typed positions!

Figure 3-1: Comparison of exome array and related genotyping/sequencing technologies. Exome array serves 
as a bridge between conventional SNP genotyping array and exome sequencing. The exome array assays primarily 
variants within exonic regions of the DNA, similar to exome sequencing; however, the location of the variants must be 
known a priori. The cost of exome array is typically similar to that of other genotyping arrays, and much less than that 
of exome sequencing.   
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APOE locus), but did not identify novel genetic variants (Chung et al.). Here, we report findings 

from the application of exome array to the multi-ethnic GIFT cohort to determine the contribution 

of low-frequency coding variants to susceptibility to sporadic AD, PSP, and FTD. 

 

Subject characteristics 

The initial discovery sample included 224 patients with AD, 168 patients with FTD, 8 patients 

with FTD with motor neuron disease (FTD/MND), 48 patients with PSP, and 224 healthy 

controls. Demographic characteristics are shown in Table 3-1. The ethnic makeup of this 

sample was predominantly Caucasian (80.7% overall). Consistent with their known roles in the 

respective diseases, subjects classified with AD showed high prevalence of the APOE ε4 allele 

(41.4% ε3/ε4, 9.4% ε4/ε4), and subjects classified with PSP showed high prevalence of the H1 

Table 3-1: Demographic Information for the Discovery Cohort 
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haplotype (89.6% H1/H1, 10.4% H1/H2). The replication cohort consisted of a more ethnically 

heterogeneous set of patients and controls (Table 3-2).  

 

 

Low-frequency exonic variants explain a fraction of the phenotypic variation in AD and 

FTD 

The GCTA software was applied to the dataset in order to estimate the variance explained by 

three different classes of variants (all variants, including non-exonic variants; exonic variants 

only; and low-frequency exonic variants, with minor allele frequency < 5%) for each of the three 

diseases (AD, FTD, and PSP). In each case, a substantial portion of the observed phenotypic 

variance could be explained by all of the typed variants; however, due to the small sample sizes 

Table 3-2: Demographic Information for the Replication Cohort 
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on which each of these estimates is based, the standard error of each measurement is high 

(Table 3-3). 

 

 

Variant-level association testing identifies significant associations with known and novel 

loci 

A logistic regression procedure was performed on our discovery cohort to test for association 

with AD, FTD, or PSP. Our method largely controlled for genomic inflation due to population 

stratification in each of the three disease categories (Supplementary Figure B-3), and agreed 

with an independent, linear mixed model method (data not shown). Two variants were 

suggestively associated with AD – rs769449 (p = 1.14 x 10-7, minor allele odds ratio = 3.0) and 

rs4420638 (p = 2.58 x 10-6, minor allele odds ratio = 2.3). Both of these variants are within the 

APOE/TOMM40/APOC1 region on chromosome 19 that had been identified in previous genetic 

studies. One variant was associated with FTD, exm2250002 (p = 2.08 x 10-6, minor allele odds 

ratio = 0.8) corresponding to a synonymous exonic variant in the olfactory receptor genes 

OR9G1 and OR9G9. No variants reached the suggestive p-value threshold (1x10-5) in the PSP 

cohort. Manhattan plots depicting associations in AD, FTD, and PSP are shown in Figure 3-2.  

 

Table 3-3: GCTA Explained Variance Analysis 
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Exome array genotyping replicates some previous associations found in AD, FTD, and 

PSP 

A total of 39 polymorphisms previously associated with AD and 9 polymorphisms associated 

with PSP (NHGRI GWAS Catalog, http://www.genome.gov/gwastudies/, accessed April 1, 2014) 

were typed by the exome array. Reported susceptibility loci for FTD were not typed on this 

platform. We tested the association between each of these variants and their respective disease 

Figure 3-2: Manhattan Plot of Associations in Alzheimer Disease, Frontotemporal Dementia, and Progressive 
Supranuclear Palsy. The association −log10P values calculated by logistic regression are presentd for for Alzheimer 
disease, frontotemporal dementia, and progressive supranuclear palsy. The horizontal line indicates the 
suggestive P value threshold of P  =  1  x  10−5. X refers to chromosome X. 
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in our cohort, as calculated by the logistic procedure described previously. For AD, the 

Bonferroni correction for 39 tests at a family-wise error rate of 0.05 yielded a p-value threshold 

at 0.0013. Two associations near APOE, rs2075650 (p = 2.05 x 10-5) and rs4420638 (p = 2.58 x 

10-6) surpassed this pre-defined p-value threshold. While the other tested GWAS variants were 

not significantly associated with AD, the overall direction of association was highly consistent 

with previously reported results, and 23 of 32 SNPs for which the risk allele was unambiguous 

showed the same direction of effect as previously reported (p = 0.010, using the binomial test). 

 

For PSP, the Bonferroni correction for 9 tests at a family-wise error rate of 0.05 yielded a p-

value threshold at 0.0056. A single variant exceeded this threshold, rs8070723 (p = 0.00043) on 

chromosome 17, near MAPT (Supplementary Table B-1). Similar to the AD cohort, the direction 

of association was highly consistent with previously reported results, with 8 of the 9 SNPs 

showing the same direction of effect (p = 0.019, using the binomial test).  

 

Gene-level testing suggests several AD candidate genes 

Gene-level hypothesis testing performed using the SKAT method calculated p-values for 17,141 

genes containing at least one variant that was typed by the exome array after quality control. 

Using a permutation procedure, an FDR of 50% was expected to be controlled at a SKAT-

derived p-value of 4.54 x 10-4 for AD, 5.06 x 10-4 for FTD, and 9.65 x 10-5 for PSP. For AD, six 

genes exceeded this threshold, DYSF, PAXIP1, TOP1MT, C3ORF1, SETDB1, and CRISPLD1. 

For FTD, eight genes exceeded the threshold, RAB21, AKR1B10, C9ORF6, CD5L, WDR38, 

OPHN1, ADORA3, and IKBKAP. For PSP, two genes exceeded the threshold, OR1Q1 and 

VWA3A. No genes were significant at an FDR threshold of 15% for any of the three diseases, 

AD, FTD, or PSP. 
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We additionally attempted to replicate the findings for AD in an additional, multi-ethnic cohort of 

240 cases and 240 controls. No further samples from patients with FTD or PSP were available, 

so those results could not be tested. Using the Bonferroni correction, a p-value threshold of 

0.0021 (considering 6 genes x 4 ethnicities for a total of 24 tests) was determined to control for 

a family-wise error rate of 0.05. None of the suggestive genes identified for AD were significant 

under this threshold in any ethnicity the replication cohort (Supplementary Table B-2). However, 

several genes trended toward significance in some cases, including DYSF in Caucasians (p = 

0.076), PAXIP1 in Latinos and East Asians (p = 0.016 and 0.037, respectively), and TOP1MT in 

African Americans (p = 0.0059). Because of previous reports of the involvement of DYSF and 

PAXIP1 in the AD literature (see Discussion), these genes were considered interesting 

candidate genes for AD susceptibility. Overall, we analyzed 84 variants in DYSF (including 3 

synonymous and 35 missense) and 5 variants in PAXIP1 (including 1 synonymous and 4 

missense) typed by the exome array, demonstrating variation in our cohort, and passing quality 

control criteria. 

 

We further identified 71 candidate genes previously implicated in genetics studies of AD as 

categorized in the Human Gene Mutation Database version 2014.1 (Stenson et al., 2014), and 

extracted the gene-wise association statistics in the initial discovery set and the four replication 

cohorts in order to determine whether low-frequency exonic variants in these genes could 

contribute to AD susceptibility. Only the ABCA7 gene (SKAT p = 0.0049) reached nominal 

significance. Notably, the SKAT p-value was also nominally significant in the Caucasian (p = 

0.041), African American (p = 0.043), and Asian (p = 0.027) replication cohorts, but not the 

Latino (p = 0.61) cohort.  

 

DYSF and PAXIP1 transcripts are differentially expressed in AD brain 
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To further solidify whether DYSF and PAXIP1 are involved in AD pathogenesis, we examined 

Figure 3-3: Differential Expression of DYSF and PAXIP1 in Alzheimer Disease (AD) Brain. Shown is the 
expression of DYSF (A) and PAXIP1 (B) in a public microarray data set of brain messenger RNA, grouped by brain 
region, in patients with AD (dark gray) vs healthy control subjects without dementia (light gray). The vertical axis 
represents the normalized expression residual, corrected for technical covariates. CB indicates cerebellum; PFC, 
prefrontal cortex; and VC, visual cortex. 
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their relative expression levels in patients with AD and non-demented controls in a microarray 

dataset described in Zhang et al. (Zhang et al., 2013). The expression of DYSF and PAXIP1 

was significantly different between cases and controls in each of the examined brain regions 

(Figure 3-3). Expression of DYSF in the prefrontal cortex, visual cortex and cerebellum was 

increased in AD patients (p < 2.2x10-16, p = 2.33x10-15, and p = 0.00080, respectively). These 

findings were corroborated by independent data (Webster et al., 2009), which also showed 

increased expression of DYSF in AD patients’ cerebral cortex (p = 0.00023). Similarly, 

expression of PAXIP1 in the prefrontal cortex, visual cortex and cerebellum was increased in 

AD patients (p = 3.6x10-14, 0.0034, and 0.00095, respectively). 

 

Discussion 

We evaluated the contribution of exonic variants to neurodegenerative disease susceptibility in 

a multi-ethnic cohort totaling 464 patients with AD, 168 patients with FTD, 48 patients with PSP, 

and 464 non-demented controls. We find that low-frequency (< 5% allele frequency) coding 

variants explain a sizeable proportion of the phenotypic variance in AD and FTD, although the 

confidence bounds for this estimate are large due to our sample size. While the well-known 

associations with the APOE locus for AD and chromosome 17q21.31 haplotype for PSP were 

replicated, a single novel susceptibility locus was identified: exm2250002 for FTD. Whether this 

variant is a true genetic signal is questionable, given that it was also the most significant signal 

in the PSP cohort (p = 2.03 x 10-5) and corresponds to a synonymous variant within 

OR9G1/OR9G9, members of the highly polymorphic olfactory receptor family. Gene-level 

testing identified suggestive signals from DYSF and PAXIP1 in AD, and a trend toward 

significance was observed in a replication cohort in several of the tested ethnicities. A possible 

contribution to disease risk from exonic variants in the AD susceptibility gene ABCA7 was also 

detected in multiple ethnic cohorts. We caution, however, that these results are merely 

suggestive and await validation in well-powered cohorts and in model systems. 
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The exome array's focus on coding variation, much of which has low frequency in the general 

population, means that large sample sizes are needed to observe statistically significant effects, 

unless the effect sizes are large, as is the case with the association of the APOE ε4 allele with 

AD. We estimate that a variant at 5% MAF must have over 4-fold odds ratio to achieve 80% 

power to identify in our AD discovery cohort. Our initial cohort of 672 patients with various forms 

of neurodegenerative disease and non-demented controls, and follow-up cohort of 480 patients 

with AD and non-demented controls, is therefore underpowered to detect associations with rare 

exonic variants of modest or intermediate effect sizes. Even more extreme effect sizes are 

required for association with FTD and PSP, which had smaller sample representation and no 

available replication cohort. Taken together with heritability estimates, our analyses indicate that 

rare variants of low or modest effect are playing a role in AD, FTD, and PSP, late onset 

diseases for which deleterious alleles are presumably under relatively weak selective pressure.  

 

Furthermore, while the GIFT samples enabled testing of association in multiple ethnic groups 

simultaneously, our results were limited by small sample sizes in some populations. Therefore, 

our results do not exclude the possibility that exonic variants with lower frequency or effect size 

are present in the general population. In fact, the strong association with ABCA7 (a GWAS-

implicated AD susceptibility gene) by the SKAT test in several ethnic populations strongly 

suggests that coding variants of modest effect size within this gene are associated with AD risk. 

Previous GWAS have reported maximal associations with intronic polymorphisms such as 

rs4147929 (Lambert et al., 2013), rs115550680 (Reitz et al., 2013), rs3764650 (Hollingworth et 

al., 2011), and the missense polymorphism rs3752246 (Naj et al., 2011); it is possible that these 

variants may tag haplotypes containing causal, exonic variants. It is therefore reasonable to 

attempt to identify novel candidate genes containing multiple, relatively low-frequency coding 

variants that may contribute to AD. 
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While not strictly genome-wide significant, gene-wise testing results reinforce prior findings that 

have implicated both DYSF and PAXIP1 in the pathogenesis of AD. DYSF encodes the protein 

dysferlin, and mutations in this gene are known to cause muscle diseases with an autosomal 

recessive pattern of inheritance, such as Miyoshi myopathy and limb-girdle muscular dystrophy 

type 2B, that are known as "dysferlinopathies" (Bashir et al., 1998; Liu et al., 1998). DYSF 

mRNA expression is highest in skeletal muscle, but present in other tissues such as brain, 

heart, and pancreas (Bashir et al., 1998; Liu et al., 1998). Dysferlin contains seven conserved 

C2 domains that bind Ca2+ and phospholipids and thereby associates with cell membranes 

(Abdullah et al., 2014). In skeletal muscle, dysferlin is thought play a role in Ca2+-dependent 

sarcolemma repair by mediating fusion of repair vesicles with the injured membrane (Bansal et 

al., 2003; Han and Campbell, 2007) and may participate in Ca2+ homeostasis during mechanical 

stress (Kerr et al., 2014). Although its function in the central nervous system has not been 

extensively elaborated, dysferlin has been shown to accumulate in endothelial cells near 

multiple sclerosis lesions (Hochmeister et al., 2006) and within Aβ plaques of patients with AD 

(Galvin et al., 2006). In the latter study, Galvin et al. examined cortical regions of twelve patients 

(aged 85 – 99 years) at various stages of AD progression. On immunohistochemistry, dysferlin 

accumulated in dystrophic neurites and largely localized to Aβ plaques. The co-localization of 

dysferlin and Aβ-42 aggregates was also demonstrated in sporadic inclusion body myositis, 

suggesting that Aβ may sequester dysferlin and interfere with its normal repair functions in 

skeletal muscle (Cacciottolo et al., 2013). 

 

The second highlighted gene, PAXIP1, encodes for a nuclear protein with six BRCT domains, 

hinting at its function in DNA repair pathways (Jowsey et al., 2004). PAXIP1 may participate in 

ATM-mediated activation of p53, demonstrated by binding with 53BP1 at sites of DNA damage 

(Jowsey et al., 2004; Munoz et al., 2007; Wu et al., 2009), sensitization to ionizing radiation-
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induced damage following in vitro knockdown (Jowsey et al., 2004), and involvement in cell 

cycle progression (Cho et al., 2003) and lymphocyte development (Daniel et al., 2010). Though 

variants in PAXIP1 have not been definitively associated with disease, Rademakers et al. 

identified a significant linkage peak at 7q36 in a large, three-generation Dutch pedigree with 

multiplex AD (Rademakers et al., 2005). The risk allele of the D7S798 marker also appeared to 

increase AD risk by 2.7 times in a Dutch population-based cohort. Follow-up sequencing of the 

coding exons of 29 candidate genes revealed only a single rare variant, a synonymous Ala626 

mutation in PAXIP1.  

 

Interestingly, to our knowledge the neuropathological findings of Galvin et al. (2006) and the 

linkage study of Rademakers et al. (2005) are currently the only publications that implicate 

DYSF and PAXIP1 in AD pathogenesis. Our analysis of published microarray studies indicated 

widespread increases in DYSF and PAXIP1 mRNA expression in brain regions of AD patients. 

However, these results do not provide direct evidence of the genes' roles in AD. The results 

presented here by exome array genotyping add additional support for the causal pathogenicity 

of DYSF and PAXIP1 in the general population. Although we could not ascertain whether any of 

the assayed variants directly affected expression of DYSF and PAXIP1, the fact that these 

genes were both identified by exome array analysis and by differential expression analysis 

provides convergent streams of evidence for their involvement in AD. Besides partial, nominal 

replication within our cohort, our findings are further corroborated by a recently published exome 

chip study in AD. Chung et al. (2014) found a strong (but not genome-wide significant) 

association for DYSF (p = 1.6x10-5) with AD using the SKAT-O test in a Korean cohort; the 

association with PAXIP1 was not reported. The overlap with our suggestive results indicates a 

high prior probability for the pathogenicity of variants in DYSF (and possibly also PAXIP1), and 

follow-up studies are warranted.  
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The overall genetic architecture of neurodegenerative diseases is complex and just beginning to 

be clearly defined. Our work has strengthened the case for two AD candidate genes and 

provides one of the first glimpses at this genetic variation that heretofore had not been widely 

studied. We hope that the results described herein will provide useful insight into the genetics of 

AD, FTD, and PSP; that the data will provide a valuable multi-ethnic cohort with exome array 

genotyping data for future studies and meta-analyses in each of the three diseases; and in the 

long term, that increased understanding of the genetic underpinnings will lead to improvements 

in diagnosis and management for patients suffering from neurodegenerative diseases. 

 

Methods 

Study cohort. Patients and healthy controls were enrolled as part of the Genetic Investigation in 

FrontoTemporal Dementia (GIFT), a study of the genetics of neurodegenerative disease at the 

UCSF Memory and Aging Center (Coppola et al., 2007; Li et al., 2014). An additional 32 DNA 

samples from patients with PSP were extracted from post-mortem brain tissue from the New 

York Brain Bank. A subset of these subjects were initially selected for genotyping for this study 

(Table 3-1). Patients diagnosed with FTD/MND were excluded from further analysis due to small 

sample size and potential genetic heterogeneity.  

 

Replication cohort. As part of the GIFT study, subjects were also enrolled from other sites, 

including Emory University, the University of Southern California, UC-Berkeley, UC-Davis, UC-

Irvine, and UCLA. This cohort was multi-ethnic, including individuals of self-identified 

Caucasian, African-American, Latino, and East Asian ancestry. Following initial data analysis, 

480 subjects from this additional group of patients, including 240 patients with AD and 240 non-

demented controls, were genotyped on the Illumina Infinium HumanExome BeadChip Kit as 

previously described (Table 3-2). These subjects were analyzed as above, but due to genetic 

heterogeneity, were divided into four general groups (Caucasian, African-American, Latino, and 
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East Asian) based on self-reported ancestry. To ensure proper classification and minimize the 

inclusion of misplated samples, ancestry was estimated by multidimensional scaling in PLINK, 

using the entire set of genotyped variants by exome array (Supplementary Figure B-2). 

Following this procedure, 44 samples were suspected of misclassification and were removed 

from further analysis.  

 

Exome array genotyping. Exonic and non-exonic variants were genotyped by the Illumina 

Infinium HumanExome BeadChip Kit. While mostly consisting of coding variants from prior 

sequencing studies, the exome arrays also included markers for previously described GWAS 

hits, ancestry-informative markers, randomly selected synonymous variants, HLA tag SNPs, 

and others (Huyghe et al., 2013), in total comprising 250,272 genotyped markers per sample. 

All data was processed using GRCh37/hg19 coordinates. Quality control procedures were 

enacted to remove suspect variants and minimize the effect of population structure on data 

analysis. See eAppendix and eFigure 1 for further details on genotyping and data pre-

processing procedures. 

 

Statistical analysis. The total phenotypic (disease) variance explained by the genotyped variants 

was determined using a restricted maximum likelihood model implemented in GCTA. Variant-

level association with AD, FTD, and PSP was tested using a logistic regression model that 

corrected for population structure. Association on the gene level was tested using the Sequence 

Kernel Association Test (Wu et al., 2011), a non-burden test that is sensitive in the presence of 

neutral genetic variants. Genes that showed suggestive associations with AD were also tested 

in previously described brain mRNA expression datasets (Webster et al., 2009; Zhang et al., 

2013). See Appendix Bfor a more detailed description of the statistical methods used. 
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Introduction 

Progressive supranuclear palsy (PSP) is a disease characterized by tau aggregates in 

neuropathology. PSP patients classically exhibit the eponymous supranuclear gaze palsy in the 

vertical plane, and suffer from parkinsonian symptoms such as frequent falls (Williams and 

Lees, 2009). In this regard, PSP is a prototypical tauopathy. Its clinical presentation is highly 

correlated with its characteristic neuropathology, prominent tau aggregation with absent 

involvement of other pathogenic proteins (e.g. amyloid plaques of Alzheimer's disease). A 

unique risk factor also implies high genetic homogeneity: nearly all PSP patients possess two 

copies of the H1 allele at the chromosome 17q21.31 inversion haplotype (Pittman et al., 2004). 

For this reason, it is the ideal disease to study the genetics of tauopathies. 

 

We previously reported GWAS and exome array studies in PSP (Chen et al., 2015). Whole-

genome sequencing (WGS) is currently the most detailed glimpse at rare and common variation 

available. Compared to exome sequencing, WGS provides more uniform and complete 

coverage over the exome, sequencing of non-coding regions, and the ability to resolve 

structural variation. Here, we describe preliminary findings in genome sequencing of PSP and 

outline a path for future characterization of the genetics of the disease. 

 

Subject characteristics 

Subjects were sequenced in two batches by Illumina ("Illumina cohort") and the New York 

Genome Center ("NYGC cohort") (Figure 4-1). Most of the downstream analyses were 

performed on the Illumina cohort only; because of slight differences in the sequencing batch, 

cross-platform results were not compatible for joint analysis. The Illumina cohort consisted of 

276 patients with PSP and 88 healthy elderly controls.  
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MAPT A152T: A rare, exonic variant associated with multiple neurodegenerative diseases 

The MAPT A152T mutation was one of the initial rare exonic mutations identified by our group 

as a risk factor in multiple neurodegenerative diseases, including PSP, AD, and FTD (Coppola 

et al., 2012). In the Illumina cohort, we identified a startling 2% allele frequency of MAPT A152T 

among PSP patients. We confirmed this result in a larger cohort of 3100 patients with 

neurodegenerative disease and 4351 controls recruited worldwide across collaborating centres, 

including: (i) University of California San Francisco and the multicentre Davunetide trial (Boxer 

et al., 2014) (Allon series); (ii) Gladstone Institute (Gladstone Turkish series); (iii) University of 

Brescia and San Raffaele Scientific Institute (Italian series); (iv) Northwestern University 

(Northwestern series); (v) Rush Alzheimer’s Disease Center (Religious Orders Study and Rush 

Memory and Aging Project); (vi) University of California Los Angeles (Small series); (vii) Instituto 

de Salud Carlos III, Madrid, Spain (Spanish series); (viii) University of Toronto Memory Clinic 

(Toronto series); (ix) School of Medicine, Yale University (Turkish series); (x) University of 

California San Francisco Memory and Aging Center (UCSF series); and (xi) other centres 

(Other series). All individuals gave authorization for genetic testing research in accordance with 

the local regulations. Each institution’s Committee on Human Research approved the study. 

Clinical diagnoses were rendered by expert neurologists at each institution. In this study, a 

diagnosis of FTD denotes clinically defined behavioural variant FTD or primary progressive 

aphasia. Participants or their surrogates provided informed consent before participation. 

Figure 4-1: Sequencing cohorts by batch. Left: Illumina cohort, sequenced on the Illumina HiSeq 2500 and with 
downstream analysis from a proprietary Illumina pipeline. Right: NYGC cohort, sequenced on the Illumina HiSeqX 
and with downstream analysis using the standard GATK pipeline. 
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Among 3100 patients with neurodegenerative disease, we identified 23 p.A152T carriers (Figure 

4-2): one carrier in 133 cases with corticobasal syndrome (0.75%); two carriers in 462 cases 

with mild cognitive impairment (0.43%); five carriers in 927 cases with Alzheimer’s disease 

(0.54%); seven carriers in 913 FTD cases (0.77%); and eight in 435 cases with PSP-S (1.84%). 

No carrier was identified among our cohorts of amyotrophic lateral sclerosis (n = 24) and 

Parkinson’s disease (n = 206) individuals. Ten in 4351 control individuals carried the p.A152T 

allele (0.23%). This frequency is similar to the one observed in over 60 000 unrelated individuals 

from the Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org/), with 159 

carriers (three of them homozygous) among 60 472 individuals (0.26%). 

 

A combined analysis performed on the 3100 patients placed the estimated OR at 3.24 (CI: 

1.48–7.65, Fisher’s exact test, P = 0.0013) for overall neurodegenerative diseases versus 

controls. Analyses on the different individual disease cohorts, revealed OR ranging between 

1.89 (in the MCI cohort) and 8.13 (in the PSP-S cohort) (Figure 4-2). However, the association 

Figure 4-2: MAPT p.A152T carrier frequencies and associated odds ratio for the different disease cohorts. 
The total number of individuals and p.A152T carriers for each of the disease cohorts and controls is shown in the 
table (left), with odds ratios and nominal P-values depicted in the forest plot (right). Overall refers to the combined 
neurological disease patient samples. In the forest plot, squares represent the estimate odds ratio and are drawn 
proportional to the weight of the sample and lines represent 95% confidence intervals. 
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was only significant for the PSP-S (OR = 8.13, CI: 2.77–22.99, Fisher’s exact test, P = 8.43 × 

10−5) cohort and nominally significant for the FTD (OR = 3.35, CI: 1.08–9.79, Fisher’s exact 

test, P = 0.0180) cohort. As this is a targeted replication study aiming to test a single 

variant, these P-values are sufficient support for the hypothesis, as they do not require 

correction for testing of multiple loci. 

 

Gene-wise Variant Analysis in PSP GWAS regions 

Because we lacked statistical power to detect variant burden in genes genome-wide, we 

focused the search space to genes identified in a prior genome-wide association study of PSP 

(Hoglinger et al., 2011). The genetic architecture of other neurodegenerative diseases, including 
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Figure 4-3: Sequence kernel association test (SKAT) p-value for variant classes within MAPT. The SKAT p-
value (blue line, left vertical axis) as a function of maximal minor allele frequency and the total number of variants 
falling in each class (grey line, right vertical axis) for each class of variants, exonic, intronic, and intergenic 
(promoter). A nominally significant p-value (p = 0.05) is demarcated by the red line. This analysis was performed for 
all samples (top) and H1/H1 samples only (bottom). 
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Parkinson's disease, includes causal rare variants that overlap GWAS signals (Singleton et al., 

2013). In PSP, rare variants in MAPT also overlap two independent associations with common 

variants (the chr17q21.31 haplotype and rs242557) (Hoglinger et al., 2011). We therefore 

reasoned that an abnormal distribution of variants might be detectable from genes implicated in 

PSP GWAS signals.  

 

Looking first at the MAPT gene, we subdivided variants into three categories: exonic, intronic, 

and near intergenic (i.e., promoter). At various levels of maximum minor allele frequency (e.g. 

ranging from rare variants only to all variants), we used the sequence kernel association test 

(SKAT) (Lee et al., 2012) to identify differences in distribution of variant classes between the 

PSP patients and controls. For both classes, a significantly increased burden of variants in tau 

was observed in PSP patients (Figure 4-3). However, this effect disappeared when restricting to 

H1/H1 subjects only, suggesting that the entire enrichment was due to the effect of the 

haplotype. The other GWAS genes showed similar distributions of variants in both cases and 

controls; we did not identify a statistically significant signal from any of the tested genes, even at 

nominal significance.  

 

Recurrent loss-of-function variants are enriched in PSP patients 

Turning our attention genome-wide, we attempted to stratify variants with the most deleterious 

functional effects. These variants should be highly enriched for downstream genomic 

consequences and provide the best opportunity to identify genetic enrichments. We further 

included two additional filters to improve the enrichment further: the haploinsufficiency score for 

each gene (Huang et al., 2010), a proxy for the likelihood that loss of the gene would be 

deleterious; and the number of recurrences of rare variants in the sample cohort. Strikingly, 

significant enrichment was observed for these highly selected variant classes, particularly those 

genes that are predicted to be highly deleterious by the haploinsufficiency score (Figure 4-4). 
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The genes in significant enriched categories were themselves enriched in neuronal-related 

Gene Ontology categories, further suggesting that these may represent disease-causal 

pathogenic variants. 

 

Discussion 

Whole genome sequencing is an incredibly rich dataset for identification of new genetic risk 

factors, but the interpretation is complicated by uncertainty in variant annotation and poor 

statistical power. Although we have not identified new risk genes in PSP, we find many 

suggestions that such a signal exists in the data. First, looking within the tau gene, we found a 

massive overrepresentation of the MAPT A152T allele that was previously identified by our 

group (Coppola et al., 2012). Expanding this confirmation study to a large, multinational cohort 

spanning multiple diseases, we attempted to clarify the situation with regard to FTD spectrum 

and other clinical syndromes known to be caused by FTLD-tau. In the present study, we find 

significant risk associations in our independent FTD and PSP-S cohorts with the p.A152T 

variant. The groups of Angeleen Fleming and David Rubinsztein further worked on the 

mechanism of the mutation, raising intriguing possibilities into tau biology (Lopez et al., 2017). 

 

PSP#
recur.#

Total# HI#>#0.1# HI#>#0.2# HI#>#0.3# HI#>#0.4# HI#>#0.5# HI#>#0.6# HI#>#0.7# HI#>#0.8# HI#>#0.9#

≥1# 1648%%
(p=0.027)%

1170%%
(p=0.047)%

653%%
(p=0.055)%

428%%
(p=0.162)%

307%%
(p=0.090)%

213%%
(p=0.110)%

161%%
(p=0.023)%

124%%
(p=0.004)%

79%%
(p=0.055)%

44%%
(p=0.090)%

≥2# 323%
(p=0.002)%

230%%
(p=0.007)%

131%%
(p=0.015)%

86%%
(p=0.045)%

60%%
(p=0.106)%

38%%
(p=0.205)%

28%%
(p=0.206)%

20%%
(p=0.069)%

15%%
(p=0.091)%

10%%
(p=0.057)%

≥3# 117%%
(p=3e204)%

89%%
(p=0.003)%

46%
(p=0.019)%

22%%
(p=0.450)%

15%%
(p=0.492)%

11%%
(p=0.337)%

7%%
(p=0.466)%

6%%
(p=0.287)%

5%%
(p=0.260)%

4%%
(p=0.093)%

≥4# 52%%
(p%=%0.001)%

43%%
(p=0.003)%

22%%
(p=0.055)%

9%%
(p=0.603)%

8%%
(p%=%0.365)%

5%%
(p%=%0.466)%

4%%
(p=0.444)%

3%%
(p=0.476)%

3%%
(p%=%0.275)%

3%%
(p=0.176)%

≥5# 22%%
(p=0.035)%

17%%
(p=0.086)%

9%%
(p=0.304)%

4%%
(p=0.739)%

4%%
(p=0.527)%

3%%
(p=0.424)%

2%%
(p=0.532)%

1%%
(p=0.698)%

1%%
(p=0.628)%

1%%
(p=0.483)%

%
Not Enriched 
1.2-fold 
1.4-fold 
1.6-fold 
1.8-fold 
2-fold 
  

 
 
 
 
 
 

Figure 4-4: Enrichment of loss-of-function variants in PSP patients. Loss-of-function variants were stratified by 
haploinsufficiency score (columns) and the number of recurrences within the dataset (horizontal axis). 
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Enrichment of multiple-hit deleterious variants in highly probable haploinsufficient genes in PSP 

patients yields yet more evidence that a signal exists. However, we did not identify individual 

genes harboring loss-of-function variants, even when focusing on the GWAS regions to 

increase statistical power. Other approaches may be required to identify potential candidate 

genes of interest; for example, the genes overlapping PSP loci may not be the ultimate endpoint 

of the association signal.  

 

Future work will extend the findings in the study by rigorously combining the sequenced sample 

cohorts to permit direct joint analysis. Furthermore, additional types of genetic variation, such as 

copy number variants, will be ascertained. New analysis methods may decipher the potential 

regulatory functions of non-coding variation and detect association with PSP risk, particularly 

focusing in the tau region. Finally, improvements in statistical power from increased sample 

cohorts may also improve the analysis. 

 

Methods 

Genome sequencing. Blood samples were obtained from the Allon davunetide trial (Boxer et al., 

2014), which featured deep clinical phenotyping of subjects diagnosed with PSP. Controls, and 

additional cases, were obtained from patients seen at the University of California, San Francisco 

Memory and Aging Center. Genome sequencing was performed in multiple batches at Illumina 

and the New York Genome Center.  

Variant discovery from whole genome sequencing. To minimize the effect of sequencing batch 

on variant calls, genomes were reprocessed from raw files. Variant re-calling was performed 

using a standard pipeline. Briefly, BAM files from each center (Illumina pipelines and New York 

Genome Center) were converted to the original FASTQ format. Realignment to the reference 

genome was performed with SNAP and ADAM (Zaharia et al., 2011). Single nucleotide variants 

and short indels were called using the Genome Analysis Toolkit (GATK). Structural variants 



 95 

were called using GenomeSTRiP; however, the results were preliminary and not included in this 

analysis. Variant annotation was performed using ANNOVAR (Wang et al., 2010). 

Confirmation of the MAPT A152T allele. Genotypes were obtained using TaqMan® SNP assays 

from Life Technologies on a LightCycler® 480 System. A custom assay (#AHHR7R6) was 

designed for MAPT p.A152T rs143624519. Forward primer sequence was 

CCAATGGTGAAAAACCCCTCTATCA and reverse primer sequence was 

TTGGCCTGGCCCTTCTG. Reporter sequences were AAAACGAAGATCACCACACC and 

ACGAAGATCGCCACACC. p.A152T carriers were confirmed using Sanger sequencing. 

Statistical analysis was performed in R (version 3.1.3, www.r-project.org). 
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Introduction 

Epigenetics is one of the most rapidly expanding fields in biology, and is uncovering additional 

levels of complexity in the human genome, including DNA methylation, histone modifications, 

and intra- and inter-chromosomal interactions mediated by chromatin proteins (Feinberg, 2010; 

Portela and Esteller, 2010). Changes in methylation represent a key area where environmental 

factors can modify or interact with inherited genetic factors (DNA sequence) to alter the 

functional output of the genome. Disease-causing genes involved in epigenetic modifications 

have been identified, most notably for neurodevelopmental disorders such as Rett syndrome 

(Zoghbi, 2009). A very limited number of studies have addressed specific epigenetic 

modifications relevant to neurological diseases and dementia (Akbarian et al., 2013; 

Jakovcevski and Akbarian, 2012; Lu et al., 2013; Urdinguio et al., 2009). Additionally, epigenetic 

signatures have been reported for different brain regions (Ladd-Acosta et al., 2007; van Eijk et 

al., 2012), for regional brain aging (Hernandez et al., 2011), and aging in general (Horvath, 

2013) further supporting epigenetic studies in patients with neurodegenerative diseases.  

Progressive supranuclear palsy (PSP) is a neurodegenerative disease typically characterized by 

parkinsonism, postural instability, and cognitive impairment (Steele et al., 1964). Pathologically, 

PSP is defined by the accumulation of tau protein in subcortical and cortical regions (Williams 

and Lees, 2009), showing substantial overlap with other neurodegenerative diseases 

characterized by tau accumulation and grouped under the generic name of tauopathies, 

including approximately one-half of all frontotemporal dementia (FTD) cases and Alzheimer's 

disease (Boeve, 2012). Both rare (Coppola et al., 2012; Hutton et al., 1998) and common 

(Hoglinger et al., 2011) genetic variation have been shown to mediate risk for tauopathies. The 

major common variant risk for PSP, a prototypical tauopathy, involves a region surrounding the 

tau locus (Conrad et al., 1997), but how such genetic variation might mediate risk is not known.  

We profiled the methylation status in peripheral blood from patients with two tau-related 

neurodegenerative conditions, PSP and FTD, using Illumina DNA methylation arrays. We then 
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integrated these methylation data with SNP and gene expression data to identify a mediating 

role for methylation in genetic risk for PSP. We replicate this finding in independent studies and 

show that it is conserved in brain, providing the first evidence for a role for DNA methylation in 

mediating the risk for neurodegenerative dementia.  

 

Sirtuin 1 (SIRT1), a member of the sirtuin family, plays an important role in key cellular 

processes, including senescence/aging and inflammation (Gan and Mucke, 2008; Libert and 

Guarente, 2013). SIRT1 deacetylates intracellular targets, including transcription factors, 

signaling molecules, and histones (Michan and Sinclair, 2007; Zhang et al., 2011). In a mouse 

model, Cho et al. demonstrated that SIRT1 deficiency contributes to the selective activation of 

IL-1β transcription through hypomethylation of the specific CpG sites on the IL-1β proximal 

promoter (Cho et al., 2015). We further apply these data to demonstrate an association between 

hypomethylation of the IL-1β promoter and IL-1β mRNA expression, aging, and 

neurodegenerative disease. 

 

Differential methylation analysis 

We first analyzed methylation profiles in 171 patients with FTD (n=128) and PSP (n=43) and 

compared them with 185 subjects with no evidence of dementia or other neurological conditions 

using Illumina HumanMethylation 450k arrays (Supplementary Table B-1). Two datasets were 

generated in two batches, samples were compared within each dataset to condition out a 

potential batch effect, and the resulting differentially methylated probes (DMPs) were combined 

(see Methods).  
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Differential methylation analysis identified a number of DMPs between affected subjects and 

controls, with partial overlap between PSP and FTD (Figure 5-1a-b, complete list of DMPs is in 

Supplementary Table C-2). DMPs were mostly clustered within CpG islands (defined according 

to the Illumina annotation), with most being hypermethylated in PSP vs. controls (Figure 5-1c, 

Table 5-1). Gene ontology analysis of DMPs in PSP vs. controls showed overrepresentation of 

genes involved in a number of pathways, including DNA binding and transcription factor binding 

(Supplementary Figure C-1). We then assessed the chromosomal distribution of the DMPs, and 

observed – only in PSP samples vs. controls – an overrepresentation of probes from 

chromosomes 19 (hypergeometric test p-value = 1.32 × 10-6), 22 (p = 8.63 × 10-6), and 17 (p = 

Figure 5-1: (a) Barplots representing the numbers of differentially methylated probes (DMPs) identified in each 
disease group vs. controls (Benjamini-Hochberg-adjusted p-value ≤0.05). The number of DMPs indicated in PSP vs. 
Control comparison is the union set of DMPs identified in dataset #1 and dataset #2. Red bars: hypermethylated 
DMPs, green bars: hypomethylated DMPs. (b) Venn diagram representing the overlap between DMPs in FTD vs. 
controls and PSP vs. controls. Red numbers: hypermethylated DMPs; green: hypomethylated DMPs. (c) Barplots 
representing DMPs classified by probe type. CpG island probes are overrepresented in both FTD vs. controls and 
PSP vs. controls. (d) Chromosome enrichment analysis: DMPs are significantly enriched in chromosomes 19, 22, 
and 17, only in PSP vs. controls (y axis: −log10 (p-value), hypergeometric test). (e) Circos plot of chromosomes 19, 
22, and 17 showing regional enrichment of DMPs (PSP vs. Control comparison, BH adjusted p-value ≤0.05, absolute 
average beta difference (aβD)>0.1) in one region on chromosome 17. Each chromosome was divided into 20 
regions, which contain the equal number of CpG probes. Regions were colored according to the DMP density. Blue: 
low DMP density, yellow: high density. Circles from inner to outer represent FTD, PSP vs. controls, respectively. 
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5.82 × 10-5, Figure 5-1d), with most top DMPs (after filtering for absolute average beta 

difference (abD) >0.1) located within the 17q21.31 region (Figure 5-1e). The most significant 

DMPs when comparing PSP vs. controls (n = 14, absolute abD  >0.1) are listed in Table 5-2. Of 

note, 4 DMPs (all hypomethylated in PSP) were located within the NFYA gene, encoding for a 

component of a nuclear transcription factor. Importantly, 3 of the 14 significant DMPs are 

located in 17q21.31 (Figure 5-1e, p = 2.23 × 10-7, hypergeometric test). Despite being located in 

a relatively limited genomic region, these 3 probes were both hypermethylated and 

hypomethylated in PSP vs. controls, suggesting complex disease-associated patterns of 

differential methylation in this region.  

 

17q21.31 haplotype and methylation 

The location of several DMPs in the 17q21.31 region was intriguing because the 17q21.31 locus 

contains an established risk factor for neurodegeneration, first reported in 1997 by Conrad et al. 

(Conrad et al., 1997) for PSP and then confirmed in multiple series (Wade-Martins, 2012). Two 

main haplotypes (H1 and H2) have been described at this locus. The more common H1 

haplotype is over-represented (95% vs. 57%) in PSP vs. normal controls (Conrad et al., 1997; 

Table 5-1: DMPs identified in disease vs. controls classified by probe type (Island, Shelf, and Shore). 
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Kalinderi et al., 2009; Wade-Martins, 2012). The H1/H2 locus spans at least 1.8 Mb and 

includes multiple genes (>40, many of which are actively transcribed in the brain), notably 

including MAPT, encoding for the microtubule-associated protein tau (Wade-Martins, 2012). 

Mutations in MAPT cause FTD and PSP, and hyperphosphorylated tau accumulation is a 

hallmark in a number of neurodegenerative conditions, including AD, PSP, FTD and others, 

collectively named ‘tauopathies’.  

 

Consistent with previous reports, the H1 haplotype was overrepresented in our PSP cohort, with 

a H1 allelic frequency of 97.1% vs. 80.4% in controls (p = 1.86 × 10-4, Fisher’s exact test, 

Supplementary Table C-1), further confirming – even in this relatively small data set – the H1 

haplotype as a risk factor for PSP. We hypothesized that the clustering of DMPs in 17q21.31 in 

PSP cases vs. controls might be related to the H1 haplotype risk factor. To detect an effect of 

the 17q21.31 haplotype on methylation levels, we compared samples based on their genotype 

at this region, independent of disease classification. As for previous analyses, we compared 

Table 5-2: Top DMPs identified in PSP vs. controls, after filtering for an adjusted p-value ≤0.05, and an 
absolute average beta difference (aβD)≥0.1. 
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samples within datasets to avoid potential batch effects. Genotype distribution across diseases 

and datasets is reported in Supplementary Table C-2.  

 

We compared carriers of the risk-associated H1 haplotype (H1/H1 and H1/H2 genotypes) to 

H2/H2 samples (dominant model) within each dataset and, after filtering DMPs for adjusted p ≤ 

0.05, identified two overlapping sets of 57 and 34 DMPs (Figure 5-2a,b), markedly clustered 

within the 17q21.31 region (Figure 5-2d). Similar results (Figure 5-2a,c) were obtained when 

comparing H1/H1 samples to H2 carriers (H1/H2 and H2/H2, recessive model), supporting the 

Figure 5-2: (a) Number of DMPs (Benjamini-Hochberg-adjusted p-value ≤0.05) identified in each comparison and 
each dataset. Dominant: dominant model (H1H1+H1/H2 vs. H2/H2); recessive: recessive model (H1H1 vs. 
H1/H2+H2/H2). (b) Overlap between datasets #1 and #2 (dominant model). (c) Overlap between datasets (recessive 
model). (d) Circos plot showing the physical density across the genome of DMPs. Each chromosome was divided in 
10 regions, and the proportion of DMPs was assessed. Regions were colored according to the DMP density. Blue: 
low DMP density, yellow: high density. Circles from inner to outer represent Dataset #2, recessive model; Dataset #1, 
recessive model; Dataset #2, dominant model; Dataset #1, dominant model. DMPs were mostly enriched in 
chr17q21.31. 
 



 105 

hypothesis of a strong cis effect of the H1/H2 locus on methylation levels in peripheral blood 

(Figure 5-2). After filtering for absolute aβD >0.1, 8 of the top 9 DMPs identified in both datasets 

were within 17q21.31 (Table 5-3) in the dominant model. As noted in PSP cases vs. controls, 

DMPs in this region are both hyper- and hypo-methylated, suggesting a complex cis-regulation 

of methylation levels (Figure 5-3a). Scatterplots of the methylation levels for the top DMPs 

shared between the dominant and recessive models indicate that the H1 haplotype influences 

methylation levels at these sites in a dose-dependent fashion (Figure 5-3b), accounting for a 

majority of methylation variability at these sites (e.g. R-squared = 0.835 and 0.866 in dataset #1 

and #2, respectively, for cg22968622). Similar results were obtained when comparing subjects 

based on their genotype at 17q21.31, but only within controls, FTD, or AD patients 

(Supplementary Material). The H1 haplotype can be further divided into sub-haplotypes (Pittman 

et al., 2005).  We obtained sub-haplotype information for 93 H1 carriers in our cohort using the 

SNPs described in Kauwe et al. (2008). Hierarchical clustering of the methylation signal in the 

17q21.31 region and principal component analysis did not reveal a particular clustering of H1 

sub-haplotypes (data not shown). These results – although based on a subset of our cohort – 

suggest that haplotype structure is not the major determinant of 17q21.31 methylation overall.  

To test the contribution of haplotype status on PSP-associated DMPs, we repeated the 

differential methylation analysis only on samples with the H1/H1 haplotype (n=31 PSP cases 

Table 5-3: DMPs identified when comparing 17q21.31 H1 carriers to non-carriers (dominant model, absolute 
average beta difference (aβD)>0.1, adjusted p-value ≤0.05). 
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and 59 unaffected controls). Of the resulting 341 significant DMPs (after application of the 
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Benjamini-Hochberg procedure, FDR = 0.05), 21 were located in chromosome 17 and 2 were 

Figure 5-3: Methylation-QTL at 17q21.31. 
(a) Physical position of top (BH adjusted p-value ≤0.05, absolute average beta difference (aβD)>0.1) DMPs identified 
when comparing samples based on 17q21.31 haplotype. Dominant: dominant model (H1H1+H1/H2 vs. H2/H2); 
recessive: recessive model (H1H1 vs. H1/H2+H2/H2); Shared: DMPs shared between the two previous comparisons. 
Red: hypermethylated, Green: hypomethylated. (b) Scatterplot of the methylation levels of 3 top DMPs identified from 
both H1 dominant and recessive model. (c) Methylation-QTL analysis performed in 226 individuals of European 
descent on 3 the top DMPs identified when comparing H1 vs. H2 haplotypes. Manhattan plot representing p-values 
by chromosome. At each genomic location the smaller −log10 p-value from two datasets was plotted. A single cluster 
at 17q21.31 was identified for all three DMPs. (d) Results of network edge orienting (NEO) analysis for the 
differentially methylated probe cg17117718 following the mediation model (GENO causes METH causes PSP). The 
arrow line thickness is proportional to the likelihood that the edge is oriented in the causal direction, found by 
calculating the relative probability of the model likelihoods determined by NEO. 
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located in the 17q21.31 band. Neither the chromosome nor the region were found to be 

significantly overrepresented by the hypergeometric test (p = 0.342 and 0.149, respectively). 

The lack of overrepresentation within 17q21.31 after conditioning on strata defined by the 

17q21.31 haplotype suggests that either the previously identified overrepresentation on 

chromosome 17 was due to the 17q21.31 haplotype effect on methylation levels, or that it could 

also reflect reduced power due to small sample size. To address the issue that the strata 

contained too few samples, we also carried out a multivariate regression model analysis that 

included 17q21.31 haplotype as covariate. Specifically, the methylation level of each of the 3 top 

PSP-related DMPs located in 17q21.31 (Table 5-2) was regressed on PSP status, 17q21.31 

haplotype, ethnicity, and age using a multivariate linear regression model. We found that, 

except for cg23758822, other PSP-related DMPs were no longer significant (p = 0.410 on 

average, Supplementary Table C-3) in a multivariate model once it included the H1 genotype. 

We also calculated the relative weight of each predictor using the R package relaimpo 

(Groemping, 2006) and determined that the H1 haplotype accounted for the majority of 

explained variance (78.2 ± 25.9%, Supplementary Figure C-2). Finally, we estimated relative 

cell count composition in peripheral blood using methylation data (Houseman et al., 2012; 

Koestler et al., 2013; Liu et al., 2013). Correction for inferred cell count did not significantly 

change our findings (Appendix C, Supplementary Table C-4, Supplementary Figure C-11).  

 

Taken together, these findings indicate 1) a strong effect of the 17q21.31 haplotype on 

methylation levels at 17q21.31, 2) that the risk-associated H1 determines most of the 

methylation changes observed with confidence in PSP patients vs. controls, and 3) that 

additional DMPs outside the 17q21.31 region may be at play in determining risk susceptibility for 

PSP in H1 carriers, though larger sample sizes will be needed to clarify their importance.  

 



 109 

Genome-wide methylation QTL analysis confirms a cis methQTL at 17q21.31 

Our findings strongly indicate a cis regulation of methylation levels at the 17q21.31 locus. To 

test whether there were additional potential genetic determinants of methylation levels at 

17q21.31 in our dataset, we performed a methylation QTL (methQTL) analysis in a subset of 

226 individuals of European descent for whom whole-genome SNP and methylation data were 

available (Supplementary Table C-5). We assessed association of genetic variants with 

methylation levels at 3 CpGs within 17q21.31 (cg22968622, cg17117718, cg19832721) in each 

dataset. We identified on average 110 genome-wide significant signals (Bonferroni-adjusted p ≤ 

0.05), all located within the 17q21.31 region (Figure 5-3c, Supplementary Table C-6). These 

variants accounted for a proportion of variability ranging between 25.5% and 98.2% (mean R-

squared = 0.701, Supplementary Figure C-3, Supplementary Table C-7) further confirming that 

genetic variants at 17q21.31 are controlling methylation levels in cis in the same region. We 

focused on Caucasian individuals because of the differences in frequency of the H2 haplotype 

across populations. In fact, consistent with previous reports (Evans et al., 2004), we observed 

that the H2 haplotype occurs more frequently in Caucasians (H2 allelic frequency = 19.2%, 

Table 4) than in other ethnic groups (H2 allelic frequency in Asians = 1.3%; p = 3.83 × 10-6, 

Fisher's exact test). However, similar results were observed when including all the 273 

individuals for whom SNP and methylation data were available (Appendix C, Supplementary 

Figure C-4, Supplementary Table C-6, Supplementary Table C-7).  

 

Cis methQTL effects at the 17q21.31 locus in additional datasets 

To confirm that the 17q21.31 haplotype regulates methylation in cis at this locus in an 

independent dataset, we downloaded and reanalyzed raw data from a previously published 

study, for which SNP and methylation data in peripheral blood from 12 samples were publicly 

available (Heyn et al., 2012). Using the rs1052553 SNP to call the H1/H2 haplotype and 

adopting the same statistical thresholds, we compared H1/H1 vs. H1/H2 subjects and identified 
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one hypomethylated probe (cg22968622, adjusted p-value = 2.37 × 10-8, aβD =-0.42) within 

17q21.31, which was also identified in our analysis. We also performed a methQTL analysis for 

cg22968622 in the same dataset. Of the 310 significant SNPs, 206 were located in the 

17q21.31 region (p = 0, hypergeometric test), further supporting the presence of a cis methQTL 

at this locus.  

 

To provide independent validation of the methylation array assay, we performed reduced 

representation bisulfite sequencing (RRBS) on a representative set of 7 samples from the study 

(2 H1/H1 controls, 1 H1/H1 PSP patient, 1 H1/H2 control, 1 H1/H2 PSP patient, and 2 H2/H2 

controls). As a sequencing-based approach, RRBS would not suffer from some of the technical 

biases present in arrays, e.g. due to hybridization. At CpG sites that were covered by both 

RRBS and array, the methylation measurements were highly correlated (Pearson r > 0.9) in all 

seven samples (Supplementary Figure C-5).  

 

To validate our findings from peripheral blood, we analyzed RRBS data from whole-blood DNA 

of a separate cohort of 80 healthy subjects (comprising 54 H1/H1, 24 H1/H2, and 2 H2/H2). On 

average, the methylation level computed from RRBS was highly correlated with the array in both 

dataset #1 (r = 0.965) and dataset #2 (r = 0.963) (Supplementary Figure C-6). Consistent with 

Table 5-4: Relative distribution of haplotypes at 17q21.31 in ethnic groups. 
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the array, we found differences in methylation that were significant even after strict Bonferroni 

correction for multiple testing, mostly localized to the 17q21.31 cytoband (Supplementary Table 

C-8). Since local methylation levels are often highly correlated, we would expect the 

differentially methylated CpGs identified by both the array and the sequencing method to be in 

close proximity. Indeed, the differentially methylated loci identified by RRBS in the 17q21.31 

region are nearby those identified by the Illumina Human Methylation array, overlapping the 

same genes MAPT and KIAA1267. This degree of overlap is striking, given the large extent of 

the haplotype inversion (Supplementary Figure C-7).  Methylated regions identified by the array 

but not by RRBS may be a result of the higher power (greater sample numbers) in the array, 

and differences in coverage. Therefore, we looked at probes that both demonstrated haplotype-

specific methylation in 17q21.31 on the Illumina array and were covered by RRBS reads in the 

additional cohort. One probe, cg08113562, met these criteria. The methylation pattern followed 

a statistically significant dose-dependent relationship with the H1 versus H2 haplotype, with 

mean methylation fractions of 0.001 in H1/H1 subjects, 0.022 in H1/H2 subjects, and 0.048 in 

H2/H2 subjects (two-sided p = 0.03, ANOVA), in the same direction as that reported by the 

array.  

 

To assess the relevance of our findings to brain tissue, we analyzed 2 published methylation 

QTL studies in brain involving 150 (Gibbs et al., 2010) and 153 (Zhang et al., 2010) subjects, 

respectively. Gibbs et al. (Gibbs et al., 2010) identified 9 SNP-CpG association pairs (out of 

52,345 significant methQTL, mean R-squared = 0.232) at the 17q21.31 locus in two (frontal 

cortex and cerebellum) of the four studied brain regions; Zhang et al. (Zhang et al., 2010) 

identified in cerebellar samples 122 SNP-CpG pairs (significant in at least one of the three 

thresholds they used) at the 17q21.31 locus (out of 12,117 significant methQTLs, mean R-

squared = 0.136). Together, these data demonstrate that the cis methQTL we identified in our 

study are present in independent studies in peripheral blood, and are preserved in brain.  
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Causal inference identifies three methylated regions that may mediate PSP risk 

The strong association between the haplotype at 17q21.31 and methylation status raises the 

question of whether methylation levels mediate the protective or pathogenic effects of haplotype 

variants. Recent developments in the field of causal inference have yielded quantitative 

methods to predict the hierarchy of causation given genetic variants (Pearl, 2009; Schadt et al., 

2005; Vansteelandt and Lange, 2012; Zhu et al., 2007). Network Edge Orienting (NEO), for 

example, uses structural equation models to choose the best fitting causal model, assuming that 

the genetic variation is fixed by meiosis and thus “anchors” each model (that is, genotype 

precedes phenotype) (Aten et al., 2008). NEO allows one to evaluate which of five testable 

causal models (Supplementary Figure C-8) best explains the relationship between genetic 

variants, methylation levels, and disease status. For instance, the genotype may lead to 

patterns of methylation that directly contribute to the disease phenotype (Supplementary Figure 

C-8b). Under this model, the DMPs within 17q21.31 would be the most interesting, as they 

would correspond to the epigenetic markers mediating the increased risk conferred by the H1 

haplotype. Alternatively, the genotype may independently give rise to the methylation and 

disease phenotype, with neither contributing to the other (Supplementary Figure C-8c). DMPs 

under this model are only associated with the disease because of the common source of 

variation due to the 17q21.31 locus. 

 

We applied NEO to calculate a relative fitting index of the “mediation model” for the 9 haplotype-

associated DMPs (Supplementary Table C-9) using 35 PSP cases and 184 unaffected controls 

for whom these data were available. The “mediation model” best explained the methylation 

pattern in three sites, one of which (cg17117718) was statistically significant (see Methods) 

(Figure 5-3d). These results support the hypothesis that methylation status at certain sites likely 

is a causal mediator of the major known genetic risk related to PSP pathogenesis. Taken 
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together, these results predict – for the first time – a link between epigenetic changes and 

tauopathies, and will need to be further validated with functional studies. 

 

Haplotype-associated differences in gene expression  

Methylation changes have been associated with changes in gene expression. We examined 

microarray expression data in peripheral blood available for 120 subjects, to test whether the 

methylation associated with the 17q21.31 haplotype had such an effect. Among 88 healthy 

subjects with H1H1 haplotype, 24 healthy subjects with the H1H2 haplotype, and 8 healthy 

subjects with the H2H2 haplotype, we identified three probes significantly differentially 

Figure 5-4: IL-1β CpG hypomethylation is associated with increased IL-1β expression. (a) Schematic diagram of the 
human IL-1β gene on chromosome 2 and 10 CpG sites covered by the Illumina HumanMethylation 450K array. 
Coordinates on chromosome 2 are based on hg19/GRCh37. Boxes represent exons, whereas the connecting lines 
represent introns; filled boxes correspond to coding sequence, and unfilled boxes correspond to UTR (untranslated 
region). (b), Illumina HumanMethylation 450K was used to assay methylation of DNA from peripheral whole blood. 
mRNA expression in peripheral whole blood was quantified with the Illumina HumanHT-12 v4.0 Gene Expression 
BeadChip. Methylation levels at cg01290568 and cg15836722 negatively correlated with expression of IL-1β in 167 
whole-blood samples. 
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expressed in peripheral blood, mapping to MAPK8IP1 (on chromosome 11), LRRC37A4 

(located within the 17q21.31 region), and MTFP1 (on chromosome 22, Benjamini-Hochberg 

adjusted p-values of 2.4 × 10-20, 8.4 × 10-5, and 4.0 × 10-2, respectively). The three probes 

demonstrated a log fold change of 0.69, -0.25, and 0.10, respectively, in H2 vs. H1 carriers.  

 

The strong haplotype-associated methylation changes identified in our study included DMPs 

within the MAPT, KIAA1267, ARHGAP27, and DND1 genes. We used linear regression to test 

whether the 17q21.31 haplotype was associated with differential expression of these genes, and 

found no correlation between haplotype and gene expression for these transcripts (adjusted R-

squared = 0.006, 0.000, -0.008, and -0.011, respectively). Thus, while haplotype was shown to 

affect mRNA expression of MAPK8IP1 and LRRC37A4 in peripheral blood, there was no 

detectable correlation between DMP-containing genes and their corresponding expression 

levels.  

 

IL-1β CpG hypomethylation is associated with increased IL-1β expression 

To validate the relationship between IL-1β hypomethylation with IL-1β expression in humans, 

we used the Illumina HumanMethylation 450K to assay methylation of human blood samples 

from 167 subjects, in which levels of IL-1β mRNA were obtained using Illumina HumanHT-12 

v4.0 Gene Expression BeadChip. Ten probes were found near the IL-1β gene ( a). Consistent 

with the finding that hypomethylation of IL-1β upregulates its expression in mouse myeloid cells, 

methylation of two CpGs (cg01290568 and cg15836722) negatively correlated with IL-1β 

expression in humans ( b). This suggests that, in humans, IL-1β transcript levels are regulated 

by methylation. 
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Two IL-1β CpG sites are hypomethylated in normal aging and in demented patients with 

tauopathy 

Because microglial SIRT1 was decreased with the aging of microglia and lack of SIRT1 

decreased DNA methylation in myeloid cells (Cho et al., 2015), we hypothesize that inverse 

relationship exists between IL-1β methylation and aging in humans. The Illumina 

HumanMethylation 450K was used to assay methylation in three batches of human blood 

samples. Methylation of cg01290568 and cg15836722 was inversely correlated with 

chronological age, after correction for multiple comparisons (Figure 5-5a). To account for a 

possible batch effect, samples were colored by array batch, and no confounding effect was 

observed. We compared IL-1β methylation in dementia patients and nondemented controls. To 

exclude the possible confounding effect of chronological age in this analysis, the residual of the 

methylation level after regression for age was used. Two CpG sites (cg01290568 and 

cg15836722) that were hypomethylated with normal aging were also hypomethylated in 

demented patients (Figure 5-5b). The hypomethylation appears to be highly selective as no 

other CpG sites were affected by aging or tau-mediated dementia (data not shown). 
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Discussion 

The goal of this study was to assess whether changes in DNA methylation in peripheral blood 

are observed in patients with neurodegenerative diseases. By performing microarray-based 

differential methylation analysis, we identified a methylation signature associated with disease 

status in PSP and, to a lesser extent, FTD. Using SNP data available in a subset of our series, 

we showed that a remarkable proportion of the observed changes in methylation status in PSP 

are associated with a common haplotype at the 17q21.31 locus, strongly suggesting the 

presence of a cis methylation QTL in this region. Although we included patients with 

neurodegenerative disorders in our analysis, the observed pattern seems to be related to the 

haplotype at 17q21.31, independent of disease status. Integrative analyses including SNP and 

Figure 5-5: Two IL-1β CpG sites are hypomethylated in normal aging and in demented patients with 
tauopathy. (a), Methylation at cg01290568 and cg15836722 correlated with chronological age of 335 
nondemented controls assayed by Illumina HumanMethylation 450K array. Data for each CpG were fitted to a 
linear model (red line). Samples were colored according to array batch. (b, c), Average methylation residual at 
cg01290568 or cg15836722 in nondemented controls (n = 335) and patients with FTD (n = 122), FTD/MND (n = 
9), and PSP (n = 43). Two-sided t test was used to compare dementia patients versus nondemented controls. 
Values are mean ± SEM. 
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gene expression data support a model whereby genetic variation at the 17q21.31 locus 

modulates the risk for neurodegenerative tauopathy at least partially via differential methylation. 

The H1 haplotype at 17q21.31, a large linkage disequilibrium block due to an inverted 

chromosomal sequence of ~970 kb, is the major known risk locus for PSP (Baker et al., 1999) 

and other neurodegenerative diseases. Although the genetic contribution of this locus to the risk 

for neurodegeneration is established and widely replicated, the mechanism by which risk is 

increased is largely unknown. This region spans from CRHR1 (corticotrophin) to IMP5 (a 

presenilin homologue) at the centromeric end of LD, while WNT3 and NSF (N-ethylmaleimide-

sensitive factor) are at the telomeric end of the LD block (Pittman et al., 2004); therefore it 

spans at least 1.8 Mb, including 48 RefSeq genes – many of which actively transcribed in the 

brain – and constitutes the largest haplotype block in the human genome. Stefansson et al. 

(2005) showed that the complete disequilibrium was due to an inversion occurring in the H2 

haplotype relative to the H1 human reference and subsequent absence of recombination 

between inverted and non-inverted chromosomes. The study of this region to understand 

susceptibility to neurodegeneration has been mostly focused on one gene, MAPT, encoding for 

the microtubule-associated protein tau. This focus on tau is well motivated, as 

hyperphosphorylated tau accumulates within neurofibrillary tangles – the pathological hallmark 

of AD – and because mutations in MAPT cause FTD, the second most common 

neurodegenerative dementia. Several in vitro studies have reported alterations of transcription 

levels in MAPT due to common variants in the region (Myers et al., 2007; Rademakers et al., 

2005), but this finding has not been consistently replicated (Hayesmoore et al., 2009; Trabzuni 

et al., 2012). More consistent evidence exists for a higher expression of exon 3 in brains from 

H2 carriers (Caffrey et al., 2008; Trabzuni et al., 2012) and of exon 10 in H1 carriers (Caffrey et 

al., 2006; Myers et al., 2007), suggesting that splicing abnormalities are involved in increasing 

risk.  



 118 

Recently, additional genetic evidence has been reported implicating this locus in other 

neurodegenerative diseases, such as Parkinson's disease (Simon-Sanchez et al., 2009), 

essential tremor, and multisystem atrophy (Vilariño-Güell et al., 2011). This is important, as 

these diseases are not typical tauopathies, suggesting that the effect of this risk-associated 

region may be complex and involve multiple genes (Hoglinger et al., 2011).  

 

Our results indicate a novel mechanism by which the H1/H2 locus may affect the risk for 

tauopathies: significant alterations in methylation mediating increased disease susceptibility. 

Importantly, these methylation changes are not at the MAPT locus only, but are consistently 

observed in at least 3 neighboring genes as well, suggesting that genes other than MAPT might 

be at play in increasing disease susceptibility. In addition, DMPs in the region were both hyper 

and hypo-methylated, suggesting a complex regulation of methylation levels at this locus. 

Further studies will be needed to understand whether the observed methylation signature at 

17q21.31 is increasing susceptibility through a MAPT-dependent or independent mechanism, or 

both. Interestingly, a recent study focused on rheumatoid arthritis (Liu et al., 2013) linked a 

genetic susceptibility region for the disease, the MHC locus, with methylation changes in the 

same region, supporting the notion that epigenetic changes might mediate complex disease 

susceptibility induced by genetic risk factors.  

 

This is the first study of DNA methylation levels in blood in PSP and FTD, disorders that mainly 

affect brain. Although methylation patterns may be tissue specific (Ghosh et al., 2010), 

comparative studies of blood and brain showed both methylation patterns that are tissue-

specific and conserved across tissues (Davies et al., 2012). We show that the particular H1 

haplotype-related methylation pattern identified in blood is at least partially conserved in brain. 

This is encouraging, since – in contrast to brain – blood is available from living patients, yielding 

a higher potential for future use as biomarker and the possibility of large-scale studies. We and 
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others have used gene expression in peripheral blood to gain insights into the biology of 

neurodegenerative disorders (Coppola et al., 2011; Coppola et al., 2008). This study supports 

the notion that a disease-related signature is present in methylation data as well. Finally, we 

decided to focus on the risk-associated 17q21.31 region as an initial step, but many interesting 

candidates for further study emerged from the differential methylation analysis in PSP patients 

vs. controls, namely the nuclear transcription factor NFYA. 

 

An additional follow-up study, driven by the hypothesis of SIRT1 deficiency contributing to aging 

by epigenetic regulation of specific genes, showed that SIRT1 levels in microglia exhibit an age-

dependent decline, and microglial SIRT1 deficiency is causative in cognitive decline in normal 

aging and in FTD-related neurodegenerative diseases. Two probes, cg01290568 and 

cg15836722, were found to be significantly anti-correlated with aging in non-demented subjects. 

This pattern contradicts the majority of CpG sites in the genome, which become 

hypermethylated with age. Even more strikingly, these two probes were hypomethylated in 

dementia patients (with AD, FTD, FTD/MND, and PSP) compared to non-demented controls, 

even after correcting for age. Both of these findings are remarkably consistent with a model in 

which SIRT1 deficiency inhibits DNMT activity and reduces methylation of the proximal 

promoter of IL-1β, leading to IL-1β transcriptional upregulation (Figure 5-6). This finding 

Figure 5-6: Potential mechanism of microglial SIRT1-mediated regulation of IL-1β transcript. With SIRT1, DNMT1 is 
deacetylated and activated. Activated DNMT1 methylates CpG at −215bp, recruits corepressor complex, and 
prevents the transcription factors (TFs) from binding to the promoter, and suppresses IL-1β transcription. Without 
SIRT1, DNMT1 remains acetylated and its activity is inhibited, leading to hypomethylation of IL-1β promoter at −215 
bp, allowing TF binding.  
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cements a central role for epigenetic regulation of gene expression in normal aging and 

neurodegenerative disease. 

 

Although our analysis of published datasets supports the presence of the 17q21.31-associated 

methylation signature in brain tissues, further studies focused on brain samples from patients 

will be needed to test whether methylation changes are contributing to tissue-specific gene 

expression abnormalities, and ultimately explain the mechanism of action of genetic 

susceptibility alleles, and the striking regional vulnerability of these disorders.  

 

Materials and Methods 

Ethics statement. All subjects and/or their proxies signed informed consents for genetic studies. 

The research protocol was approved by the University of California San Francisco (UCSF) and 

Los Angeles (UCLA) University Institutional Review Boards for human research. 

Sample description. Patients were enrolled as part of a large genetic study in 

neurodegenerative dementia (Genetic Investigation in Frontotemporal Dementia, GIFT) at the 

UCSF Memory and Aging Center (UCSF-MAC) (Coppola et al., 2007). 371 unrelated subjects 

were enrolled in the study (Supplementary Table C-1), including patients with 

neurodegenerative disorders (128 FTD, 43 PSP, and 15 AD), and 185 healthy controls.  

Sample preparation. DNA was extracted from peripheral blood using standard methods. No cell 

sorting or cell selection was conducted, therefore our data measure methylation levels in whole 

blood. Total RNA was extracted from the same individuals from peripheral blood using Paxgene 

Blood RNA tubes (Qiagen).  

Methylation arrays. Whole-genome methylation patterns were assayed by the Infinium Human 

Methylation450 BeadChip Kit (96 samples per chip). This work was performed in two stages 

(each including 2 chips), resulting in a total of 371 samples. Samples were hybridized as 
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follows: Dataset #1: PSP (n=40), FTD (n=55), Control (n=93); Dataset #2: FTD (n=73) AD 

(n=15), Control (n=92).  

Genotyping. Taqman genotyping: Genotype variants at APOE (rs429358 and rs7412) and 

MAPT H1/H2 (rs1560310) were obtained using Taqman assays. Genome-wide SNP data was 

obtained using the Illumina HumanOmni1-Quad BeadChip. 17q21.31 sub-haplotypes were 

obtained by genotyping 6 SNPs as previously reported (Kauwe et al., 2008) using Taqman 

assays.  

SNP arrays. High-throughput SNP genotyping data (Illumina HumanOmni1-Quad BeadChip) 

from a larger dataset containing 702 samples were available for 273 subjects (14 AD, 110 FTD, 

15 PSP, and 134 Controls) in this study. SNP genotypes were called and exported from Illumina 

GenomeStudio (versions 1.6.3 and 1.8.4). Quality control included filtering for 1) SNPs with < 

95% genotype call rates (n=157,121), 2) a minor allele frequency < 1% (n=126,502); and 3) with 

Hardy-Weinberg Equilibrium p-value < 1 × 10-6 in the control group (n=16,954). A total of 

788,694 SNPs were included in the final analysis.  

Ethnicity. We inferred ethnicity for 271 samples (out of the 273 for whom SNP data were 

available), by using SNP clustering compared to Hapmap data. Briefly, MDS analysis was 

applied on a merged dataset, including 702 samples from our data (273 of which were included 

in present study) and 1184 subjects from HapMap phase III. MDS plot shows that the first two 

principal components can cluster samples by ethnicity, and our data had good overlap with 

HapMap data (Figure S9). We used self-reported ethnicity for an additional 88 samples. For 12 

samples ethnicity remained unknown either because we were not able to call ethnicity with 

certainty using SNP data (n=2), or because of the lack of SNP data and self-reported ethnicity 

(n=10).  

Microarray-based gene expression analysis. Microarray expression data (Illumina HumanRef-8 

v3.0) were available in 120 subjects with H1/H1 or H1/H2 haplotypes at 17q21.31.  
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Reduced representation bisulfite sequencing. RRBS was performed on seven samples 

multiplexed in two lanes of the Illumina HiSeq. Library preparation was performed using the Msp 

I restriction enzyme as previously described (Gu et al., 2011). Read alignment and methylation 

level calls were performed using BS-Seeker2 (Guo et al., 2013) (parameters: --aligner=bowtie  -

m 5 -g hg18.fa -r --low=50 --up=500 -a adapter.txt). 

Published datasets. SNP data from Heyn et al. (2012) reporting the methylome analysis of 

newborns and centenarians, including 40 samples assayed by Illumina HumanMethylation450 

BeadChip and 14 genotyped by Illumina HumanOmni5-Quad BeadChip (both methylation and 

SNP genotyping data were available for 12 samples), were downloaded from the Gene 

Expression Omnibus Database (GEO, http://www.ncbi.nlm.nih.gov/geo/, GSE31438). H1/H2 

haplotypes were inferred from SNP rs1052553. For methylation data, beta and detection p-

values were downloaded from GSE30870, and 65 sites containing missing values were 

removed. 

 

Statistical Analysis 

Methylation Arrays. In order to avoid potential confounders from batch effects, the two datasets 

were processed separately. Raw data was processed using the Illumina GenomeStudio 

software (version 2010.3). Background correction and color normalization were performed using 

the R package minfi version 1.2.0, and normalization using Subset-quantile Within Array 

Normalization (SWAN) (Maksimovic et al., 2012). Probes were excluded from further analysis if 

>95% samples had detection p-value >0.01. In summary, 3,027 probes were removed from 

dataset #1, and 26,306 probes were removed from dataset #2. In order to avoid potential 

confounders, 66,877 SNP-containing probes were also excluded from further analysis (Chen et 

al., 2013). Beta values (ratio between methylated probe intensity and the overall intensity) were 

computed using the R package minfi. 
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Linear models and empirical Bayes methods as implemented in the limma package were used 

for differential methylation analysis (Smyth, 2005). P-values were adjusted by using the 

Benjamini-Hochberg (BH) false discovery rate method. Multi-dimensional scaling (MDS) did not 

show obvious biases between chips within each dataset, but a batch effect could be observed 

between datasets #1 and #2 (Figure S10), similar to what has been reported in the literature 

(Bell et al., 2012; Zhang et al., 2010). To avoid potential confounders due to this batch effect, 

we compared each disease category with the set of controls within the same batch (i.e. 

conditioning on batch effect). Similar differential methylation results were obtained when we 

performed a combined analysis across the entire dataset, after correcting for batch effects using 

ComBat (Johnson et al., 2007) (Supplementary Material). Two filters were applied to 

conservatively identify differentially methylated sites: 1) a p-value-based filter (BH-adjusted p ≤ 

0.05) and 2) an absolute average beta difference (aβD) filter (absolute aβD >0.1). Chromosomal 

enrichment analysis was performed by using the hypergeometric test as implemented in the R 

phyper function.  

The impact of relative cell counts in peripheral blood was estimated as previously described 

(Feinberg, 2010; Portela and Esteller, 2010) and based on a subset (n=385) of the 500 loci 

whose methylation levels reflect the relative proportions of immune cells in unfractionated whole 

blood. After estimating the blood cell type distribution for each sample using the methylation 

level of the 385 loci, we applied a linear mixed-effect model considering (1) main blood cell 

types distribution as dependent variables; (2) disease status (or 17q21.31 haplotype), age, 

ethnicity, and gender as fixed effects; and (3) chip number as a random effect (Supplementary 

Material). 

Raw and normalized methylation data were deposited in the Gene Expression Omnibus (GEO, 

www.ncbi.nlm.nih.gov/geo), accession number: GSE53740. 

Methylation QTL analysis (methQTL) was performed by regressing methylation level at select 

CpG sites of interest on SNP genotypes. Age and the first two principal component generated 
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from MDS analysis were also included in the multivariate regression model as covariates. Linear 

regression methQTL analysis was performed using PLINK (Purcell et al., 2007).  

Microarray-based expression analysis. Raw data were processed as previously described 

(Coppola, 2011). Briefly, after quantile normalization, batch effects were removed using ComBat 

(Johnson et al., 2007). Differential expression analysis was performed using the limma package 

(Smyth, 2005), applying a false discovery rate filter of ≤ 0.05 and an absolute log fold change 

filter of >0.1. 

Causality analysis was performed using the software package Network Edge Orienting (NEO) 

(Aten et al., 2008), a structural equation modeling software for determining the direction of 

causality among various phenotypes (e.g. clinical, molecular) given genotype data. Subjects 

from all batches were included (n = 219). The relative fitting index of the model is estimated by 

the Single Marker LEO.NB score, defined as the base-10 logarithm of the probability ratio 

between the mediation model and the next most likely causal model (i.e., a LEO.NB score of 1 

means that the fit of the mediation model is 10 times better than that of the next best alternative 

causal model). The genotype was encoded as the dosage of the minor allele (A) at rs1560310 

tagging H2 (i.e., 0 for H1/H1, 1 for H1/H2, and 2 for H2/H2). Gene expression levels were 

included for differentially expressed probes according to the 17q21.31 haplotype, and were 

encoded with the ComBat-corrected relative expression levels. Clinical phenotype was encoded 

as a binary variable (i.e., 0 for unaffected, 1 for affected with PSP). The Single-Marker analysis 

option was used, and results surpassing the thresholds of a LEO.NB score (a likelihood ratio of 

model fit) > 0.8 and RMSEA index < 0.05 were considered significant fits to the mediation model 

(Horvath, 2011). 
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Introduction  

Tau is a microtubule-associated protein (MAP) that promotes assembly and stabilization of 

cytoskeletal microtubules (Lee et al., 2001). Accumulation of insoluble deposits of tau has been 

linked to the pathogenesis of a number of neurodegenerative disorders, including Alzheimer’s 

disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), chronic 

traumatic encephalopathy, and some variants of frontotemporal lobar degeneration, which are 

collectively classified as tauopathies (Lee et al., 2001).  

 

Cerebrospinal fluid (CSF) tau concentrations are thought to reflect neuronal degeneration in AD, 

and CSF tau, either alone or in combination with beta-Amyloid peptide (Aβ42), has been 

confirmed as a useful biomarker for AD across the spectrum of disease severity (Jack and 

Holtzman, 2013). Based on this, CSF total tau (t-tau) and phosphorylated tau at residue 181 (p-

tau) concentrations have been used as endophenotypes in genome-wide association studies 

(GWAS) to detect risk variants for AD, with the APOE locus showing the strongest association 

with elevated CSF tau (Cruchaga et al., 2013; Kim et al., 2011). Enigmatically, despite strong 

genetic links to tau, CSF tau levels are normal or low in other tauopathies such as PSP and 

CBD, and some tau gene (MAPT) mutation carriers (Wagshal et al., 2015). The recent 

development of an ultra-sensitive assay for tau in peripheral blood makes it feasible to study the 

relationship between peripheral tau concentrations and tauopathies (Olivera et al., 2015). By 

comparison to CSF, plasma tau levels in aging and neurodegenerative disease have not been 

well studied.  

 

The use of quantitative traits in GWAS has been shown to increase statistical power over case-

control designs (Cruchaga et al., 2013; Kim et al., 2011). Here, we hypothesized that plasma 

tau, similar to CSF tau, may constitute a suitable endophenotype for a GWAS designed to 

identify genetic factors involved in tau metabolism and highlighting relevant tau-related 
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physiological and pathophysiological processes. Within this context, we conducted a GWAS for 

plasma tau level and identified a single nucleotide polymorphism (SNP) (rs242557) within the 

MAPT gene that showed a genome-wide significant association with plasma--but not CSF--tau 

levels. 

 

Correlations between plasma tau and CSF tau levels 

There were 316 (AD = 83, MCI = 149, HC = 84) subjects with both plasma and CSF tau levels. 

However, there was no correlation between tau levels in plasma and CSF in any diagnostic 

group [plasma tau versus CSF t-tau (Figure 6-1a): AD (r = 0.131, P = 0.234), MCI (r = 0.209, P 

= 0.066), HC (r = 0.002, P = 0.984); plasma tau versus CSF p-tau (Figure 6-1b): AD (r = 0.056, 

P = 0.611), MCI (r = 0.145, P = 0.077), HC (r = -0.027, P = 0.809)], indicating that plasma tau 

levels do not reflect CSF tau levels. 

Figure 6-1: Correlations between plasma tau and CSF tau levels. (a) There was no correlation between plasma 
tau levels and CSF total tau in any diagnostic group. (b) There was no correlation between plasma tau levels and 
CSF phosphorylated tau in any diagnostic group. AD = Alzheimer disease; HC = healthy controls; MCI = mild 
cognitive impairment. 
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MAPT but not APOE genotype is associated with plasma tau levels 

463 individuals (AD = 149, MCI = 163, HC = 151, at baseline) were identified for GWAS (Table 

6-1). Plasma tau concentrations were different between the three diagnostic groups (p = 0.006) 

(Table 6-1). Post hoc analysis after Bonferroni correction showed that only AD patients had 

higher plasma tau levels compared to controls (P = 0.004).  After adjusting for age, gender and 

diagnosis, a genome-wide significant association of rs242557 (in the MAPT region) with 

elevated plasma tau levels (P = 1.59 × 10-8) was detected (Table 6-2, Figure 6-2a). This locus 

survived both permutation-based and Bonferroni corrections for multiple testing (empirical P 

[EMP1]= 0.0002; permutation-based corrected empirical P [EMP2] =  0.005; Bonferroni 

corrected P  =  0.005). The minor risk allele (A) of rs242557 was associated with higher plasma 

tau levels in a dose-dependent effect within both combined and each diagnostic group (normal 

group, P  =  5.9× 10-4; MCI group, P  = 0.002; and AD group, P  = 0.001) (Figure 6-3a).  

 

There were no other genome-wide significant associations with plasma tau outside the MAPT 

region.  In the MAPT region, several SNPs in linkage disequilibrium (LD) with rs242557 showed 

p-values lower than 0.01 for plasma tau levels (Figure 6-2b). However, after controlling for 

rs242557 genotype (Figure 6-2c), no SNPs in this region showed association with plasma tau 

levels, indicating that all the association in this locus was driven by rs242557.   

 

Table 6-1: Demographic Information 
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The LD pattern between rs242557 and nearby SNPs was nearly identical in the ADNI cohort 

compared with 1000 Genomes European subjects (Supplementary Figure D-2) suggesting that 

the SNP genotypes from this study were accurate. Moreover, LD between rs242557 and an 

H1/H2 haplotype-defining SNP (rs1560310) was calculated using the 1000 Genomes Project 

EUR cohort (r2 = 0.197 and D' = 1), demonstrating that rs242557 is specific to the H1 clade.  

 

The analysis identified two other suggestive loci, IL2RA (rs7072793 and rs7073236) and 

PARK2 (rs2187213), where p-values reached the level of P < 10-6 (Table 6-2, Figure 6-2a). Both 

IL2RA and PARK2 minor alleles were associated with lower plasma tau levels in a dose-

dependent effect within both combined and each diagnostic group (Figure 6-3b and Figure 

6-3c). However, they did not survive after both permutation-based and Bonferroni corrections for 

multiple testing.  Other plasma tau associated SNPs that did not reach genome-wide 

significance and whose P values are between 10-6 and 10-5 are listed in Supplementary Table 

D-1.  

 

APOE but not MAPT locus affects CSF, but not plasma tau levels 

Among the 463 individuals analyzed in the plasma tau levels, there were 314 (AD = 82, MCI = 

148, HC = 84) subjects with CSF tau levels. We investigated whether top SNPs identified in the 

plasma tau concentration GWAS (rs242557 within MAPT) and previous CSF tau concentration 

GWAS (APOE) associated with CSF tau levels. After adjusting for age, gender and diagnosis, 

Table 6-2: Top SNPs associated with plasma tau 
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APOE ε4 showed significant associations with both CSF t-tau (P = 0.004) and CSF p-tau (P = 

0.028) after Bonferroni corrections.  However, rs242557 within MAPT was not associated with 

CSF t-tau (P = 0.988) or CSF p-tau (P = 0.835).  APOE ε4 was not associated with plasma tau 

levels (P = 0.312), nor were other SNPs in the APOE region.   

 

Discussion 

To our knowledge, the present study constitutes the first GWAS of plasma tau levels in a large 

sample. We identified a genome-wide significant association of a SNP in the tau gene (MAPT) 

region with plasma tau levels and two additional suggestive association loci (in IL2RA and 

PARK2). The minor allele (A) of MAPT H1c (rs242557) was associated with higher plasma tau 

Figure 6-2: Manhattan and regional plots for associations with plasma tau. (a) Genome-wide signal intensity 
(Manhattan) plots showing the -log10 (p value) for individual single nucleotide polymorphisms. b) Regional association 
results for the MAPT region of chromosome 17. (c) Association results for 17q21.31 controlling for rs242557. 
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levels in a dose-dependent fashion, whereas both IL2RA (rs7072793 and rs7073236) and 

PARK2 (rs2187213) minor alleles were associated with lower plasma tau levels.  

 

Genetic alterations in and around MAPT are strong risk factors for neurodegenerative 

tauopathies. The MAPT gene locus is located on chromosome 17q21 (Pittman et al., 2005; 

Pittman et al., 2004). It exists as two major haplotype groups, termed H1 and H2, with the 

majority of individuals having the H1/H1 haplotype.  Up to 25% of individuals in Western 

populations have a ~ 970 Kb sequence, including MAPT, oriented in the reverse orientation, 

inducing a larger 1.3-1.6 Mb region of linkage disequilibrium (LD) (Pittman et al., 2004; Zody et 

al., 2008). Genetic studies, including GWAS, have identified both the inversion polymorphism 

and haplotype-specific polymorphisms influencing the risk of 4-repeat (4R) tauopathies (PSP 

Figure 6-3: Plasma tau levels in a replication cohort as a function of rs242557 genotype. Plasma tau levels 
were compared across the GG, GA, and AA genotypes of rs242557 in an independent cohort of 387 participants to 
validate the initially observed association. A significant association of increasing plasma tau concentration with 
increasing minor allele (A) dose of rs242557 was observed (p = 1.0 × 10-5). 
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and CBD) (Baker et al., 1999; Conrad et al., 1997; Kouri et al., 2015; Pittman et al., 2005; 

Pittman et al., 2004; Rademakers et al., 2005; Williams et al., 2007). Moreover, the common 

sub-haplotype H1c (tagged by rs242557) on the background of the H1 has been consistently 

found to be associated with both PSP and CBD (Hoglinger et al., 2011; Kouri et al., 2015; 

Pittman et al., 2005; Williams et al., 2007). Previously published GWAS data with 

neuropathologically diagnosed cases showed that rs242557, representing the MAPT H1c 

haplotype, was one of the most common SNPs associated with PSP (odds ratio/OR = 1.96, P = 

4.2 × 10-70) and CBD (OR = 1.57, P = 7.91 × 10-6) (Table 6-2) (Hoglinger et al., 2011; Kouri et 

al., 2015). However, rs242557 was not associated with the risk of AD (P = 0.974) (Allen et al., 

2014), which is pathologically characterized by intracellular neurofibrillary tangles composed of 

equal ratios of 3R and 4R tau (Lee et al., 2001). 

 

The mechanism by which MAPT H1c haplotype could increase plasma tau levels is not clear.  

The SNP rs242557 falls into a 182-bp highly conserved region that was previously identified as 

a key regulatory polymorphism influencing MAPT expression (Figure 6-2b) (Caffrey et al., 2006; 

Majounie et al., 2013; Myers et al., 2007; Pittman et al., 2005; Rademakers et al., 2005; 

Trabzuni et al., 2012). In cultured cells, the rs242557 A allele with the H1 background promoter 

variant had 2.7-fold greater transcriptional activity than allele G (P < 0.01) with the H1 

background promoter variant and 4.2-fold greater than allele G (P < 0.01) with the H2 

background promoter variant (Myers et al., 2007). It has also been hypothesized that rs242557 

could affect MAPT splicing (Caffrey et al., 2006; Hoglinger et al., 2011). The MAPT H1c risk 

haplotype has been reported to be associated with increased mRNA expression of tau and 4 

repeat containing transcripts (Majounie et al., 2013; Myers et al., 2007). Consistent with these 

data, this risk allele has also been associated with higher MAPT expression levels in the 

cerebellum and temporal cortex from AD autopsy subjects (Allen et al., 2014). Our study 

included data from normal controls and patients with AD spectrum disorders, but interestingly 
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found a strong association with a genetic risk factor previously implicated in non-AD tauopathies 

(CBD and PSP).  Therefore, we cannot rule out an interaction between AD pathology and the 

H1c haplotype in our sample that may partially account for the association with plasma tau.  

However the subgroup analysis which showed that rs242557 was associated with plasma tau 

levels in a dose-dependent effect within each diagnostic group (normal controls, MCI and AD; 

Figure 6-2), suggests that the presence of AD pathology is not necessary to observe the plasma 

tau association.    

 

Elevated plasma tau was not explained by elevated CSF tau. No correlations between tau levels 

in plasma and CSF were identified (Figure 6-1) suggesting that different mechanisms are likely 

to regulate plasma tau concentrations.  Previous GWAS have determined that the APOE locus 

is the strongest association for CSF tau and ptau levels (Cruchaga et al., 2013; Kim et al., 

2011). Although rs242557 was associated with higher CSF tau protein levels in one small 

sample of AD patients (n =89) (Laws et al., 2007), both our data (n=314) and another study with 

313 individuals did not identified any association of this SNP with CSF tau protein levels (Kauwe 

et al., 2008). Multiple MAPT loci have been strongly associated with PSP and CBD, and some 

autosomal dominant MAPT mutations, particularly those in IVS10, are known to produce a PSP-

like syndrome (Morris et al., 2003). Together these data indicate that plasma tau levels might be 

a more useful endophenotype for identifying genetic risk for 4-repeat tauopathies (PSP and 

CBD), than for AD.  

 

The suggestive alleles that were identified in the plasma tau GWAS might also be associated 

with risk for tauopathies. Mutations in the PARK2 gene, which encodes the parkin RBR E3 

ubiquitin protein ligase, are the most common cause of early-onset parkinsonism (Lucking et al., 

2000; Schrag and Schott, 2006). Interestingly, a PARK2 polymorphism (Val380Leu) is 

associated with lower risk of PSP while another mutation (Cys212Tyr) produces clinical and 
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pathological features of PSP (Morales et al., 2002; Ros et al., 2008). IL2RA, which encodes the 

interleukin 2 (IL2) receptor alpha, is a multiple sclerosis susceptibility gene and plays an 

important role in regulating immune response (International Multiple Sclerosis Genetics et al., 

2007). Moreover, an IL2 SNP (rs6852535) (P = 1.3× 10-7) was identified as a suggestive locus 

for PSP risk in a previous GWAS study (Hoglinger et al., 2011). Recent data also suggest that 

microglia may play a role in tau related neurodegeneration, which would be consistent with this 

association between an immunological risk factor gene and plasma tau (Asai et al., 2015). 

Further studies will be required to identify the potential roles of PARK2 and IL2RA in 

tauopathies. 

 

A limitation of this report is the modest sample size for a GWAS, which precluded stratified 

analyses for each diagnostic group. We applied a more stringent MAF threshold (MAF > 0.20) 

and a stringent correction of individual P values (both permutation-based and Bonferroni 

corrections), which may have excluded less common SNPs associated with plasma tau levels. 

Moreover, the minor allele of rs242557 showed a dose-dependent effect specifically with 

plasma tau levels, which further indicates that the detected SNP within MAPT gene represents 

biological signal and not analysis artifacts or type 1 error.  

In summary, we detected a genome-wide significant SNP, rs242557 in MAPT, and two 

suggestive loci (in IL2RA and PARK2) associated with plasma tau levels measured in healthy 

elders and individuals with MCI or AD. Our study results suggest that plasma tau is a valid 

endophenotype in GWAS and can be used to characterize the metabolism and functions of tau. 

As rs242557 represents the MAPT H1c haplotype that has previously been identified as a major 

genetic risk factor for both PSP and CBD, our findings also suggest that plasma tau 

concentration could be a useful endophenotype for identifying risk for 4-repeat tauopathies. 

Replication studies with independent, larger datasets will be required to confirm these findings. 
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Methods 

Subjects. In this study, 463 (AD = 149, mild cognitive impairment, MCI = 163, healthy controls, 

HC = 151, at baseline) non-Hispanic Caucasian individuals whose data met all quality control 

(QC) criteria were included from the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI 1) 

cohort. Table 6-1 shows the demographic data and description of the plasma tau levels in each 

group.  Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu).  The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 

(AD). 

 

The full cohort with both plasma tau and GWAS data included 506 subjects. The analysis was 

restricted to non-Hispanic Caucasian participants (n = 468) to reduce the potential bias of 

population stratification in the GWAS. Cryptic relatedness and population substructure, which 

can confound GWAS, were checked with genomic identity-by-descent (IBD) and 

multidimensional scaling (MDS) components (Supplementary Figure D-1). This step removed 

two participants who seemed to be cryptically related and clustering separately from the other 

samples (Supplementary Figure D-1a), resulting in 466 valid samples. Finally, using the 

HapMap cohort, they showed tight clustering with individuals of European ancestry 

(Supplementary Figure D-1b).  

 

Plasma and CSF tau measurements and quality control. Plasma tau concentrations were 

determined using the Human Total Tau kit from Quanterix (Quanterix, Lexington, MA, USA), as 

described by the manufacturer.  Assays were run at the University of Gothenburg. Intra- and 
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inter-assay coefficients of variation were 10-15%. The lower limit of quantification was 1.22 

ng/L. The plasma tau concentrations could be downloaded from the ADNI1 database 

(http://adni.loni.usc.edu/). Detailed steps for measurements and QC using CSF t-tau and CSF p-

tau have been previously reported (Kim et al., 2011). Further QC was performed to reduce the 

potential influence of extreme outliers on statistical results. Mean and standard deviations (SD) 

baseline plasma tau measures were calculated, blind to diagnostic information and subjects 

who had a value greater or smaller than 4 SD from the mean value (7.7ng/L) were regarded as 

extreme outliers and removed from the analysis (Kim et al., 2011). This step removed three 

additional participants, resulting in 463 valid samples.  

 

Standard protocol approvals, registrations, and patient consents. The study was approved by 

institutional review boards of all participating institutions and written informed consent was 

obtained from all participants or authorized representatives. 

Genotyping and quality control. The ADNI 1 samples were genotyped with the Human 610-

Quad BeadChip (Illumina, Inc., San Diego, CA). Stringent QC assessment was performed using 

the PLINK software with the following criteria: minimum call rate for SNPs and individuals >98%, 

minimum minor allele frequencies (MAF) > 0.20, Hardy-Weinberg equilibrium test P > 0.001. 

The restriction to SNPs with a MAF greater than 20% served to reduce the likelihood of false-

positive results to enhance statistical power.  rs7412 and rs429358, which define the 

apolipoprotein E (APOE) alleles, were genotyped separately by an APOE genotyping kit (Kim et 

al., 2011). 

 

Statistical analyses. Spearman rank correlation coefficient was used to determine correlations of 

plasma tau concentrations with CSF tau concentrations. P < 0.05 was considered statistically 

significant after adjustment for multiple comparisons using Bonferroni correction. Association of 

plasma tau with the genetic variants was performed using PLINK with the additive genetic 
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model, i.e., dose-dependent effect of the minor allele. IBD and MDS were calculated in PLINK. 

The analysis included a total of 305,283 genotyped variants. Age, gender and diagnosis were 

included as covariates. We considered an association as genome-wide significant at a threshold 

of P = 5x10-8. To further exclude possible false-positive results, PLINK's max (T) permutation 

test with 5,000 permutations was used to generate empirical p-values and for multiple testing 

correction. The effects of genotypes on plasma tau levels were also examined with a multiple 

linear regression model.  
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Science is the captain and practice the soldiers. 
 
 
- Leonardo da Vinci, Notebooks – edited by Richter & Wells (da Vinci, 2008) 

 

The inchoate crisis of neurodegenerative disease burden (particularly Alzheimer's disease, AD) 

looms large over society; the thought of losing one's memories, mobility, and life strikes fear into 

the most stoic individuals. Despite intense research efforts, progress in therapeutics has not met 

the burgeoning need. Few genes (outside of tau) have been implicated in tauopathies, and 

theories regarding the disease mechanisms are still incomplete and controversial. Even the 

effects of the H1 haplotype of chr17q21.31, a well-established risk factor for progressive 

supranuclear palsy (PSP) and corticobasal degeneration (CBD), are still poorly characterized. 

My research attempted to clarify the genetics and thus the pathobiology of the tauopathies, with 

the ultimate objective to enable development of efficacious treatments.  

 

Discovery of new genes that cause tauopathy 

Genetic risk factors can take many forms: common variants that confer slight risk for disease; 

structural variants that cannot be typed by traditional means; rare variants that require large 

sample sizes to observe effects; variants that have not yet been found; and everything in 

between. Discovery of novel genetic risk factors in each category requires a specialized 

statistical approach. In a series of studies, I systematically dissected the genetics of tauopathies 

with particular attention to maximizing coverage of the types of variants interrogated.  

 

To cover common variants (typically of small effect), I performed a genome-wide association 

study. I established a genetic overlap between PSP, Parkinson's disease (PD), and amyotrophic 

lateral sclerosis (ALS), suggesting that some of the pathogenic mechanisms of tauopathies are 

shared between neurodegenerative diseases. Performing a joint analysis to combine our 
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genome-wide association studies with existing data, I identified novel associations with loci near 

the genes RUNX2, SLCO1A2, DUSP10, SP1, ASAP1, and WDR63. Further work was 

performed to fine-map and to predict which genes in these loci were true causal genes. From 

these arrays, I was also able to call copy number variation, and identified that copy number 

variants of tau may cause PSP.  

 

More "uncommon" variants, in particular those with facile interpretation in the exome, could be 

accessed with the newly-developed exome array. The exome array provides a middle ground 

between the coverage of rare variants in genome sequencing and the scalability and low cost of 

traditional array genotyping. Because of limited power for variant-wise analysis of the exome 

array. I employed and developed statistical methods to collapse variants for analysis at the gene 

level. Among known disease genes, I identified that functional exonic variants in ABCA7 may 

contribute to AD, a finding that has since been confirmed in multiple studies (Del-Aguila et al., 

2015; Le Guennec et al., 2016; Steinberg et al., 2015). I also identified the novel disease genes 

for AD, PAXIP1 and DYSF. 

 

The ultimate look at the genome comes from genome sequencing. While we have not identified 

novel disease genes, likely due to lack of statistical power, we have found hints of a signal and 

pinpoint the likely locations of disease-causing mutations. Furthermore, our sample cohort 

provided definitive confirmation of the role of a rare coding variant of tau in PSP, with one of the 

largest observed enrichments for the MAPT A152T allele observed to date. Work to call copy 

number variation is still ongoing, and a larger sample cohort with more statistical power is 

currently being assembled. 

 

As more of the disease mechanisms become known and as sample cohorts (and corresponding 

statistical power) increase, new avenues appear for discovering genetic risk factors. Future 
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work will leverage disease mechanisms, improved phenotypic and neuropathologic stratification 

of patients, and knowledge about the function of genetic variants to further increase statistical 

power to find new causal genes. We lay the groundwork here for a truly integrative framework to 

continue to expand the boundaries of knowledge.  

 

Elucidating the mechanisms of mutations in tau 

The role of even the few identified genetic risk factors in disease is unclear. In PSP, the mystery 

of the H1 haplotype in particular captivated my interest. This polymorphism is highly prevalent in 

the population and has been toggled multiple times through evolution, suggesting perhaps that it 

is selected for. And yet, it is somehow overrepresented in patients with PSP. The haplotype 

overlaps the gene encoding tau, yet is not associated with pathogenic protein coding mutations 

or drastic shifts in expression level (there are, however, slight changes in splicing, which we and 

others have identified for exon 3). 

 

To explain the risk conferred, we have identified a methylation signature correlated to the 

chromosome 17q21.31 risk haplotype. Applying the mathematics of causal inference using 

structural equation models, the most parsimonious explanation was that the methylation status 

(at some of the methylated sites) mediated the risk for the allele. This epigenetic marker, more 

so than even the measured expression levels, may provide clues as to the true role of the risk 

haplotype in disease. This role for methylation was not unique to the chromosome 17q21.31 

locus. In collaboration with Li Gan at the Gladstone Institutes, I looked at promoter methylation 

of the gene encoding IL-1β (IL1B) in this cohort. Her group had identified this regulatory marker 

as a downstream target of sirtuin 1 in mouse models. In agreement with those findings, I found 

in humans that the methylation (at sites homologous to those identified in mouse) decreased 

with age (and even more so with tauopathies). The extent of promoter methylation also 

appeared to control mRNA expression of IL1B. Methylation is an important regulatory marker 
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that may mediate drastic genetic influences on the course of disease, and future work in brain-

relevant cell types and additional epigenetic markers may even further illuminate the 

mechanisms of disease. 

 

Forging a path for drug discovery and precision medicine 

Translating the insights of genomics to drug discovery has flummoxed many on both sides of 

the science-industry divide. And it is a divide, each side with drastically divergent epistemology, 

traditions, and ultimate objectives. I believe in the inevitability that genomics will disrupt how we 

treat diseases and develop therapeutics, and even how we define diseases. As a foray into 

achieving these goals and potentially bridging that divide, I started Verge Genomics with a good 

friend and colleague in the Medical Scientist Training Program, Alice Zhang. We founded the 

company to identify the genomic changes correlated with disease, and discover ways to 

normalize them as treatment – guided by science and serving the patients. While 

straightforward in ideology, the challenge (and where many have failed) is to recognize that 

non-disease-causal factors drive the majority of variation in maps of gene expression, 

epigenetic markers, etc. To see behind these murky waters has proven highly non-trivial. 

 

In "The Innovator's Prescription", Christensen and colleagues describe a three-stage 

succession of the state of medical treatment (Christensen et al., 2008). The first stage 

subsumes treatments based upon a physician's intuition. As medical science advances, the field 

progresses into a second stage characterized by probabilistic guidelines based on empirical 

data, such as randomized controlled trials. Eventually, in the third stage, the causes of disease 

and methods for diagnosis of particular subgroups of each disease are established; as 

efficacious therapies can be targeted to disease mechanisms with precision, treatment 

outcomes can be streamlined and optimized. As the mechanisms of disease crystallize, 

physicians can apply the powerful methods of deduction to problems that previously could only 
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yield to induction. The current clinical management of tauopathies largely falls in the first two 

stages; progress hinges upon improvements in understanding the precise disease mechanisms 

and methods to classify patients. This work furthers the advance into the third stage in three 

ways: 1) discovery of new genes that cause tauopathies, laying the groundwork for identifying 

distinct biology behind similar clinical presentations; 2) elucidating the downstream pathogenic 

effects of genetic variants, particularly the chromosome 17q21.31 haplotype containing tau; and 

3) development of methods to bring to bear on drug discovery, some of which are already being 

applied to practice. 

 

To illustrate some of these points in greater depth, I relay the case of a patient of Dr. Adam 

Boxer that I was fortunate to observe at the University of California, San Francisco. A charming 

woman approaching the eighth decade of life reported frequent falls and weakness in her 

hands. On exam she was alert and oriented, her cognitive faculties completely intact. Her 

posture was somewhat awkward and her countenance had become gloomy, but she could not 

hide an irrepressible zeal for life. I noticed a striking vertical gaze palsy, rigidity, and left-sided 

ideomotor apraxia. Her gait was unsteady, and seemed unable to shift weight to her right foot. 

We felt that she had signs and history characteristic of CBD or PSP, which she had suspected 

as well. She cried at the thought of this potentially terminal diagnosis. The tenor of the situation 

changed, however, when Dr. Boxer adeptly noticed small patches of white matter 

hyperintensities on FLAIR, in a somewhat periventricular distribution. He postulated that multiple 

sclerosis (for which treatments are available) could be responsible for her symptoms, and 

additional studies confirmed the diagnosis. Without knowledge of disease mechanisms gained 

from the MRI, we would be unable to treat the patient correctly or even understand what 

disease processes are at work. While perhaps not as divergent as MS, the individual 

tauopathies are undoubtedly composed of even finer divisions of disease pathobiology. For 

example, even within FTD, the neuropathology often does not even include tau. In the future, 
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genomics screens based on findings like the ones presented here may be analogous to the 

transformative role of the MRI to precisely diagnose and treat diseases, and I am grateful to 

have had the opportunity to make contributions to this exciting area. 

 

I have been extraordinarily fortunate to work with Profs. Coppola, Geschwind, Lazareff, and 

Horvath in the vanguard of scientific discovery and medical research. While this dissertation 

punctuates a milestone in my education, it is merely a starting point for the field, and we march 

inexorably onward to improve the lives of our patients now and in the future.  
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Supplementary Figure A-1: Pre-processing steps to create each individual study cohort and the merged joint 
analysis cohort. 
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Supplementary Figure A-2: Quantile-Quantile (QQ) plots showing the potential for test statistic inflation in A) the 
UCLA Omni 2.5 cohort; B) the UCLA HumanCore cohort; C) the Hoglinger cohort; and D) the NNIPPS cohort. 
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Supplementary Figure A-3: Quantile-Quantile (QQ) plots, excluding chromosome 17, in A) the UCLA Omni 2.5 
cohort; B) the UCLA HumanCore cohort; C) the Hoglinger cohort; and D) the NNIPPS cohort. Because of the strong 
association with an extended haplotype region in 17q21, a disproportionate number of associated SNPs reside on 
chromosome 17. 
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Supplementary Figure A-4: Signal intensity of recurrent rare CNV calls in PSP cases. Log R Ratio and B Allele 
Frequency are shown for CNVs in 2q37.1 (A and B), 4q31.21 (C and D), 16p12.2 (E and F), and 17q21.31 (G and H). 
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Supplementary Figure A-5: Genome-wide association results by genomic position in A) the UCLA Omni 2.5 cohort; 
B) the UCLA HumanCore cohort; C) the Hoglinger cohort; and D) the NNIPPS cohort. Thresholds for genome-wide 
significance (p=5x10-8, red line) and suggestive association (p=1x10-5, blue line) are shown. The y-axis was truncated 
at p=10-30. 
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Supplementary Figure A-6: Local association results at genome-wide significant and suggestive loci: A) 17q21.31, 
near MAPT; B) 3p22.1, near MOBP; C) 1q25.3, near STX6; D) 6p21.1, near RUNX2; E) 12p12.1, near SLCO1A2; F) 
1q41, near DUSP10 in an intergenic region; G) 12q13.13, near SP1; H) 8q24.21, near ASAP1; and I) 1p22.3, near 
WDR63. J) The association at 17q21.31 corresponded with an extended haplotype with two non-recombining alleles, 
H1 and H2. Following regression of the haplotype status, haplotype-independent regional association was found in 
17q21.31. K) Similar results are found considering only H1/H1 individuals. Representative SNPs are highlighted. The 
plots were made with LocusZoom (http://locuszoom.sph.umich.edu/locuszoom/). 
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Supplementary Table A-1: Characteristics of the individual study cohorts. 
 
 
Cohort Study Array Genotyped 

SNPs 
Filtered 
Patients 

Filtered 
Controls 

Unfiltered 
Patients 

       

Joint 
Analysis 

TOTAL Combined (Imputed) 5,523,934 1,646 11,619 13,334 

 UCLA-Omni2.5 (Imputed) Illumina HumanOmni 2.5 8,494,997 249 1050  

 UCLA-HumanCore (Imputed) Illumina 
HumanCore/Omni 
Express 

6,754,310 66 888  

 NNIPPS (Imputed) Illumina HumanOmni 2.5 8,530,877 308 1,330  

 Hoglinger (Imputed) Illumina HumanQuad 
660W  

7,634,768 1,069 8,374  

       

UCLA-Omni 
2.5 

UCLA PSP and Controls - 
Illumina 

Illumina HumanOmni 2.5 2,197,833 271 89 399 

 *phs000371.v1.p1 "Genetic 
Modifiers of Huntington's 
Disease" 

Illumina HumanOmni 2.5 2,379,855 0 120 1,233 

 *phs000429.v1.p1 "NEI Age-
Related Eye Disease Study 
(AREDS) - Genetic Variation 
in Refractive Error Substudy" 

Illumina HumanOmni 2.5 2,182,680 0 678 1,667 

 *phs000421.v1.p1 "A 
Genome-Wide Association 
Study of Fuchs' Endothelial 
Corneal Dystrophy (FECD)" 

Illumina HumanOmni 2.5 2,443,177 0 199 3,537 

 * the NNIPPS and UCLAOmni2.5 groupings include non-overlapping controls from a 
shared cohort of combined Omni2.5 studies 

  

       

UCLA-
HumanCore 

UCLA PSP and Controls - 
NYGC 

Illumina HumanCore 547,644 78 41 221 

 WTCCC2 Controls Illumina OmniExpress 730,525 0 870 870 

       

NNIPPS NNIPPS study PSP - Ammar 
Al Chalabi 

Illumina HumanOmni 2.5 2,379,855 341 0 764 

 *phs000371.v1.p1 "Genetic 
Modifiers of Huntington's 
Disease" 

Illumina HumanOmni 2.5 2,379,855 0 155 1,233 

 *phs000429.v1.p1 "NEI Age-
Related Eye Disease Study 
(AREDS) - Genetic Variation 
in Refractive Error Substudy" 

Illumina HumanOmni 2.5 2,182,680 0 989 1,667 

 *phs000421.v1.p1 "A 
Genome-Wide Association 
Study of Fuchs' Endothelial 
Corneal Dystrophy (FECD)" 

Illumina HumanOmni 2.5 2,443,177 0 223 3,537 

 * the NNIPPS and UCLAOmni2.5 groupings include non-overlapping controls from a 
shared cohort of combined Omni2.5 studies 

  

       

Hoglinger Hoglinger et al. Cases Only 
from NIAGADS 

Illumina HumanQuad 
660W  

561,882 1,112 0 1,112 

 phs000103.v1.p1 "Genome-
Wide Association Studies of 
Prematurity and Its 
Complications" 

Illumina HumanQuad 
660W  

592,839 0 974 3,945 

 phs000289.v1.p1 "National 
Human Genome Research 

Illumina HumanQuad 
660W  

657,366 0 1,326 2,760 
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Institute (NHGRI) GENEVA 
Genome-Wide Association 
Study of Venous Thrombosis" 

 phs000188.v1.p1 "Vanderbilt 
Genome-Electronic Records 
(VGER) Project: QRS 
Duration" 

Illumina HumanQuad 
660W  

543,515 0 2,403 2,403 

 phs000203.v1.p1 "A Genome-
Wide Association Study of 
Peripheral Arterial Disease" 

Illumina HumanQuad 
660W  

657,366 0 1,666 3,432 

 phs000237.v1.p1 
"Northwestern NUgene 
Project: Type 2 Diabetes" 

Illumina HumanQuad 
660W  

657,366 0 239 607 

 phs000243.v1.p1 "Group 
Health/UW Aging and 
Dementia eMERGE study" 

Illumina HumanQuad 
660W  

657,366 0 884 1,618 

 phs000170.v1.p1 "A Genome-
Wide Association Study on 
Cataract and HDL in the 
Personalized Medicine 
Research Project Cohort" 

Illumina HumanQuad 
660W  

560,635 0 1,264 3,947 

 

  



 170 

Supplementary Table A-2: CNV burden in PSP cases vs. controls, stratified by CNV type (deletion vs. duplications) 
and CNV size. 
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Supplementary Table A-3: Variance explained by significant and suggestive SNPs. 
 
 
SNP Gene Previously 

Reported 
Minor Allele Odds Ratio 

(minor allele) 
Minor Allele 
Frequency 

Variance in 
Liability 
Explained 

rs71920662 MAPT Reported T 0.19 0.22 0.05 

rs10675541 MOBP Reported TAC 0.71 0.49 0.0035 

rs57113693 STX6 Reported C 1.35 0.4 0.0026 

rs35740963 RUNX2 Novel insT 0.77 0.35 0.0019 

rs7966334 SLCO1A2 Novel C 1.5 0.058 0.001 

Suggestive       

rs12125383 DUSP10 Novel A 1.28 0.19 0.0011 

rs147124286 SP1 Novel GA 0.74 0.18 0.0016 

rs2045091 ASAP1 Novel T 1.25 0.17 0.00086 

rs114573015 WDR63 Novel G 2.08 0.01 0.00067 
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Appendix B: Supplementary Material for Chapter 3 
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Supplementary Figure B-1: Flowchart for quality control procedures for the GIFT cohort and exome array variants. 
  

Initial Sample:!
672 individuals!
(224 AD, 168 FTD, 
8 FTD/MND, 48 
PSP, 224 control)!

Exome Array:!
250,272 variants!

Potential 
Relatedness: !
35 individuals!

Low genotyping 
rate / failed HWE:!
23,475 variants!

< 98% genotyping:!
2 individuals!

Exonic only:!
195,728 variants!

Analyzed Sample:!
635 individuals!
(216 AD, 163 FTD, 
48 PSP, 200 
control)!

Analyzed Variants:!
226,797 variants!
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Supplementary Figure B-2: Scatterplot demonstrating the population structure within the replication cohort 
evidenced from multidimensional scaling (MDS). The first two MDS components are shown. Clusters were defined 
manually using the displayed boxes; subjects with reported ethnicity that differed from the majority of the cluster were 
removed from further analysis. 
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Supplementary Figure B-3: Quantile-quantile plots for the variant-level association statistics calculated from the 
discovery cohort for a) Alzheimer's disease, b) frontotemporal dementia, and c) progressive supranuclear palsy. 
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Supplementary Table B-1: Replication of associations for progressive supranuclear palsy genome-wide association 
studies. 
 

 

* does not match literature risk allele 
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Supplementary Table B-2: Gene-level association statistics for Alzheimer's disease using the Sequence Kernel 
Association Test (SKAT) for genes with FDR < 50% in the discovery cohort. 
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Supplementary Methods 

Subject recruitment and diagnosis. Patients are referred to these research studies primary 

through referrals from clinicians in the community. All participants in these project underwent a 

standard multidisciplinary diagnostic assessment including neurological history and 

examination, nursing assessment, laboratory evaluation, and a previously described 

neuropsychological assessment of memory, executive function, visuospatial ability, language, 

and mood (Kramer et al., 2003). AD patients were diagnosed by applying NINCDS-ADRDA 

criteria for probable Alzheimer's disease based on neurological and neuropsychological 

examination, brain imaging and laboratory assessments to rule out other causes of dementia. 

All subjects and/or their proxies signed informed consents for genetic studies. 

 

Genotyping. Polymorphisms at APOE (rs429358 and rs7412) were genotyped using the pre-

designed TaqMan genotyping assays; a polymorphism tagging MAPT H1/H2 (rs1560310) was 

genotyped using a custom TaqMan genotyping assay. Exome array genotyping using the 

Illumina HumanExome arrays was performed by the UCLA Neuroscience Genomics Core using 

an Illumina iScan confocal laser scanner. For the discovery cohort, samples were randomly 

assigned to arrays (12 samples per array) and genotyped at the same time. For the replication 

cohort, samples were randomly assigned to arrays (12 samples per array) and genotyped at the 

same time, separate from the discovery cohort. 

 

Data pre-processing. First, known and cryptically related individuals were removed. Cryptic 

relatedness was determined by IBD estimation in PLINK version 1.07 (Purcell et al., 2007). The 

set of exome array variants was pruned to 18,250 SNPs in approximate linkage equilibrium 

based on pairwise genotypic correlation, using a window of 50 SNPs, a step size of 5 SNPs, 

and an r2 threshold of 0.5. A total of 32 samples with either self-reported familial relationships or 

with proportion of alleles IBD greater than 0.2 were removed from further analysis. Second, 
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23,475 variants with lower than a 98% genotyping rate (21,729 in total), or not in Hardy-

Weinberg equilibrium (a p-value threshold of 10-4; 2,308 in total) were excluded. Following 

quality control procedures, the initial discovery cohort was comprised of 226,797 variants 

genotyped in 216 patients with AD, 163 patients with FTD, 48 patients with PSP, and 200 non-

demented controls. Of these 627 patients, analysis of X-chromosome homozygosity using 

PLINK (--check-sex) identified that gender was consistent in 621 (99.0%) of them (3 cases in 

which gender could not be called, and 3 cases with discordant gender call). 

 

Heritability estimation. The variance explained by the subset of variants was determined using 

GCTA version 1.13 (Yang et al., 2011). A genetic relationship matrix (GRM) was computed for 

all of the subjects, using 1) all of the typed variants, 2) the exonic content of the chip, or 3) the 

exonic content of the chip with lower than 5% minor allele frequency within our total cohort. A 

principal components analysis was performed on the GRM using GCTA. Then, GCTA's REML 

analysis was used to determine the variance explained by each set of variants, using the first 

four principal components as a covariate to correct for genetic ancestry.  

 

Variant-level association testing. Variant-level association testing was performed using logistic 

regression implemented in PLINK (Purcell et al., 2007). In order to correct for population 

stratification, multidimensional scaling was performed within PLINK to extract the first four 

multidimensional scaling axes. These four dimensions were then taken as covariates in the 

logistic model. In order to confirm the validity of this approach, association was also performed 

using FaST-LMM, a linear mixed model method (Lippert et al., 2011) that has been shown to 

correct for test statistic inflation in the presence of population structure confounders and cryptic 

relatedness. To avoid problems of "proximal contamination", a subset of 18,875 polymorphisms 

with minor allele frequency (MAF) greater than 5%, genotyping rate greater than 99%, and in 

approximate linkage equilibrium based on pairwise genotypic correlation, using a window of 50 
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SNPs, a step size of 5 SNPs, and an r2 threshold of 0.5 was used to estimate the genetic 

similarity matrix. A suggestive p-value threshold of 1x10-5 was used for the initial screening 

stage, as described for previous association studies (Duggal et al., 2008). Power calculations 

mentioned in the text were performed using the QUANTO version 1.2.4 software (University of 

Southern California, Los Angeles, CA), assuming a log-additive genetic model. For power 

calculations and GCTA modeling, population prevalence of neurodegenerative disease in 

elderly individuals was estimated at 11% in AD (Hebert et al., 2013), 0.022% in FTD (Borroni et 

al., 2010), and 0.008% in PSP (Bower et al., 1997). 

 

Gene-level association testing. Gene-level association testing was performed using the 

Sequence Kernel Association Test (SKAT) (Wu et al., 2011) and implemented in the R package 

'SKAT', R version 2.15.1 (R Foundation for Statistical Computing, Vienna, Austria). To control 

for population structure, the first four principal components of the genotyping data were input as 

covariates into the SKAT program. The designed exonic content of the exome array, comprising 

a subset of 195,728 non-synonymous variants (missense and nonsense) and splice variants, 

were selected from the quality-controlled exome array content for gene-level testing. A false 

discovery rate (FDR) was estimated by generating B=100 permutations of the genotyping data 

by randomly shuffling the case and control status of each subject and performing the SKAT 

analysis, as previously described (Xie et al., 2005). Briefly, each SKAT p-value was tested as a 

potential threshold d for the test statistic. An estimate of the FDR controlled at each p-value 

threshold d was calculated as follows: 

 

FDR(𝑑) =
𝐹𝑃(𝑑)
𝑇𝑃(𝑑)

(1 − 𝑆) 

 

Here, FP(d) is an estimate of the number of false positive genes at the threshold d, given by 
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𝐹𝑃 𝑑 = 𝐼(𝑝!,! ≤ 𝑑)
!

!

!!!
𝐵 

 

where B is the total number of permutations (100), I is the indicator function, and pi,b is the p-

value of the ith gene in the bth permutation. Similarly, TP(d) is an estimate of the total number of 

positive genes (sum of true and false positives), calculated by 

 

𝑇𝑃 𝑑 = 𝐼(𝑝! ≤ 𝑑)
!

 

 

where pi is the p-value of the ith gene in the experimental dataset. The number of true positive 

genes (S) was conservatively assumed to be vanishingly small compared to the total number of 

genes. We selected an FDR threshold of 50% to prioritize genes for analysis in a follow-up 

replication cohort for Alzheimer's disease, and an FDR threshold of 15% for suggestive results 

for FTD and PSP (for which additional patients were not available). For the second stage of 

testing, the p-value threshold for a single gene was determined using Bonferroni correction, 

where the number of hypothesis tests was calculated as the product of the total number of 

genes that passed the first stage of testing and the number of ethnicities tested in the sample 

(4), at a family-wise error rate of 0.05. 

 

Expression analysis of publically available data. The expression of mRNA in the brains of 

patients with Alzheimer's disease and non-demented controls was described by Zhang et al. 

(2013), who measured gene expression (in each of prefrontal cortex, visual cortex, and 

cerebellum) in 415 cases and 171 controls using microarray. Data presented in the Zhang et al. 

manuscript was accessed from the Sage Bionetworks Synapse service (ID syn4505). 
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Expression data corresponding to DYSF (NM_003494) or PAXIP1 (NM_007349) was extracted. 

The expression data had been corrected for technical covariates such as age, gender, post-

mortem interval, RNA integrity, and others. Differential expression between patients with 

Alzheimer's disease and non-demented controls was assessed using the Welch two-sample t-

test implemented in R. An additional dataset of microarray expression data described by 

Webster et al. (2009) from various brain regions (frontal, temporal, parietal, and cerebellar 

cortices) of 176 Alzheimer's disease patients and 188 controls was similarly analyzed. Data 

presented in the Webster et al. manuscript was accessed from the NCBI Gene Expression 

Omnibus (GEO Accession GSE15222). This dataset contained a probe for DYSF expression, 

but did not measure the expression of PAXIP1. Expression data had been adjusted for technical 

covariates such as gender, age, APOE status, post-mortem interval, brain region, and others, 

and was rank invariant normalized.  
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Supplementary Figure C-1: Over-represented gene ontology (GO), molecular function, level 3 (MF_3) categories 
among DMPs in PSP versus controls (in green the proportion of hypomethylated DMPs; in red the proportion of 
hypermethylated DMPs) sorted by −log10 (p-value). A −log (p-value) of 1.3 corresponds to an over-representation p-
value of 0.05. 
 
 
  

GOTERM_MF_3

−Log (p−value)

0 1 2 3 4 5 6

protein kinase regulator activity (16)

specific transcriptional repressor activity (10)

histone demethylase activity (4)

diacylglycerol binding (16)

identical protein binding (95)

hydrolase activity, acting on ester bonds (103)

cation binding (523)

GTPase regulator activity (66)

GTPase activator activity (41)

transcription coactivator activity (42)

protein domain specific binding (59)

transcription corepressor activity (32)

hydrolase activity, acting on acid anhydrides (120)

enzyme binding (90)

purine nucleoside binding (236)

purine nucleotide binding (278)

transferase activity, transferring phosphorus−containing groups (157)

ribonucleotide binding (275)

transcription factor binding (98)

DNA binding (342)



 187 

 

 
Supplementary Figure C-2: Relative effect of covariates on methylation beta value variance. The H1 haplotype 
accounts for most of the explained variance. For the top 3 PSP-related DMPs, the relative importance of predictors in 
the multivariate linear regression model (including H1 frequency, diagnosis status, age, and ethnicity) was calculated 
using R package relaimpo. Error bars: 95% bootstrap confidence intervals. 
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Supplementary Figure C-3: Methylation QTL analysis in 226 individuals of European descent. (a) scatterplot 
representing the R-squared for each of the SNPs in the 17q21.31 region associated with at least one of the three 
DMPs. Gray: not significant SNPs. (b) corresponding genomic region at 17q21.31 (UCSC Genome Browser, hg19). 
Top significant SNPs controlling the three DMPs are highlighted in red. Age and the first two principal components 
generated from MDS analysis were added as covariates. 
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Supplementary Figure C-4: Methylation QTL analysis on the entire dataset (n = 273), performed on 3 top DMPs 
identified when comparing H1 vs. H2 haplotypes. (a) scatterplot representing the R-squared for each of the SNPs in 
the 17q21.31 region associated with at least one of the three DMPs. Gray: not significant SNPs. (b) Manhattan plot 
representing p-values by chromosome. At each genomic location the smaller −log10 p-value from two datasets was 
plotted. A single cluster at 17q21.31 was identified for all three DMPs. 
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Supplementary Figure C-5: Correlation between average methylation fraction (β) values at common CpGs covered 
by both the Illumina HumanMethylation 450 k BeadChip Array and reduced representation bisulfite sequencing 
(RRBS), in seven samples from the study. The light blue points represent CpGs within the 17q21.31 cytoband. 
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Supplementary Figure C-6: Correlation between average methylation fraction (β) values at common CpGs covered 
by both the Illumina HumanMethylation 450 k BeadChip Array and reduced representation bisulfite sequencing 
(RRBS), in two independent cohorts. The light blue points represent CpGs within the 17q21.31 cytoband. 
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Supplementary Figure C-7: UCSC Genome Browser graphic and ideogram for the 17q21.31 inversion region, and 1 
Mb of flanking sequencing on each side (which is also in linkage disequilibrium). Differentially methylated regions are 
depicted above the gene diagrams (blue: identified by Illumina HumanMethylation 450 k Array, and labeled with the 
Illumina Probe ID number; orange: identified by reduced representation bisulfite sequencing in an independent 
sample). 
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Supplementary Figure C-8: Causal models that explain the association between haplotype (HAPL), differentially 
methylated sites (METH), and PSP status (PSP). (a) Overview of the edges that are oriented by Network Edge 
Orienting (NEO) subroutine. The haplotype is anchored at the beginning of the causal diagram, as genotype 
precedes methylation and disease temporally (and thus, causally). NEO determines the most likely orientation of the 
remaining edges for each methylated region. (b) The “mediation model,” in which the haplotype-associated effect is 
mediated by the intermediate step of methylation of a particular site. (c) An alternative model, in which the haplotype 
causes differential patterns of methylation independently from conferring disease risk. (d–f) The remaining three 
alternative causal models considered by NEO. 
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Supplementary Figure C-9: MDS plot representing the clustering of overlap between the SNP data in 273 samples 
from this study and Hapmap data. Samples are coded based on self-reported ethnicity. 
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Supplementary Figure C-10: Multidimensional scaling plot of Illumina 450 K methylation data showing a batch effect 
between two datasets. No obvious batch effect was observed within each dataset. SNP-containing probes, low-
quality probes filtered out in each dataset, and sex chromosome probes were excluded from the analysis. The R 
function cmdscale was used for MDS analysis. 
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Supplementary Figure C-11: Volcano plots representing DMPs before and after cell type adjustment, in AD (a), PSP 
(b), FTD in dataset #1 (c), and FTD in dataset #2 (d).  
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Supplementary Table C-1: Demographic characteristics of the subjects enrolled in the study. 
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Dataset #1 Control FTD PSP 

Number of subjects 93 55 40 

Caucasian (%) 76.09 (n = 92) 79.63 (n = 54) 91.18 (n = 34) 

Female (%) 57.78 (n=90) 45.83 (n=48) 29.17 (n=24)* 

Age at onset ± SD             - 57.11±9.83 (n=46) 63.52 ± 7.00 (n=29) 

Age at study ± SD 69.09±10.22 (n=93) 65.60±10.16 (n=55)* 70.36±7.44 (n=39) 

APOE4 carriers (%) 20.65 (n=92) 25.45 (n=55)  11.76 (n=17) 

APOE4 frequency (%) 11.96 (n=92) 13.64 (n=55) 5.88 (n=17) 

17q21.31 H1 carriers 
(%) 

95.65 (n=92) 94.44 (n=54) 100.00 (n=33) 

17q21.31 H1 frequency 
(%) 

79.89 (n=92) 77.78 (n=54) 96.97 (n=33)** 

Dataset #2 Control FTD PSP 

Number of subjects 92 73 3 

Caucasian (%) 73.03 (n = 89) 80.82 (n = 73) 100 (n = 2) 

Female (%) 68.66 (n=67) 50.00 (n=28) 0.00 (n=1) 

Age at onset ± SD            - 60.49 ± 7.51 (n=41) 62.00 ± 1.41 (n=2) 

Age at study ± SD 70.13±9.20 (n=92) 65.23±7.89 (n=73)*** 65.33±5.03 (n=3) 

APOE4 carriers (%) 15.38 (n=91) 24.66 (n=73)  

APOE4 frequency (%) 9.34 (n=91)  13.70 (n=73)  

17q21.31 H1 carriers 
(%) 

91.30 (n=92) 97.18 (n=71) 100.00 (n=2) 

17q21.31 H1 frequency 
(%) 

80.98 (n=92) 86.62 (n=71) 100 (n=2) 

Total Control FTD PSP 

Number of subjects 185 128 43 

Caucasian (%) 74.59 (n = 181) 80.31 (n = 127) 91.67 (n = 36)* 

Female (%) 62.42 (n=157) 47.37 (n=76)* 28.00 (n=25)** 

Age at onset ± SD           - 58.70 ± 8.92 (n=87) 63.42±6.78 (n=31) 
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Age at study ± SD 69.61 ± 9.72(n=185) 65.39 ± 8.90 
(n=128)***  

70.00 ± 7.37 (n=42) 

APOE4 carriers (%) 18.03 (n=183) 25.00 (n=128) 11.76 (n=17) 

APOE4 frequency (%) 10.66 (n=183) 13.67 (n=128) 5.88 (n=17) 

17q21.31 H1 carriers 
(%) 

93.48 (n=184) 96.00 (n=125) 100.00 (n=35) 

17q21.31 H1 frequency 
(%) 

80.43 (n=184) 82.80 (n=125) 97.14 (n=35)** 
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Supplementary Table C-2: Breakdown of subjects by disease, and by H1/H2 genotype at the 17q21.31 locus. 
 
Dataset	  #1	   AD	   Control	   FTD	   PSP	  
H1H1	   -‐	   59	   33	   31	  
H1H2	   -‐	   29	   18	   2	  
H2H2	   -‐	   4	   3	   0	  
Dataset	  #2	   AD	   Control	   FTD	   PSP	  
H1H1	   9	   65	   54	   2	  
H1H2	   5	   19	   15	   0	  
H2H2	   1	   8	   2	   0	  
Total	   AD	   Control	   FTD	   PSP	  
H1H1	   9	   124	   87	   33	  
H1H2	   5	   48	   33	   2	  
H2H2	   1	   12	   5	   0	  
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Supplementary Table C-3: R-squared coefficients from multivariate linear regression model for 3 top PSP-related 
DMPs. 
 
	   cg23758822	   cg22968622	   cg12609785	  
Dx_Status	   0.080**	   0.009	   0.012	  
H1_freq	   0.081**	   0.844***	   0.602***	  
Ethnicity	   0.003	   0.001	   0.009*	  
AGE	   0.002	   0.001	   0.000	  

*	  p<	  0.05,	  **	  p	  <	  0.01,	  ***	  p	  <	  0.001	  
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Supplementary Table C-4: Significant p-value computed using double-bootstrap standard error. 1000 bootstrap 
iterations were used for each of the two bootstrap methods of standard error estimation. 
 

 Dataset #1 Dataset #2 
Cell 
type 

H1 
dominant 

H1 
recessive 

FTD PSP H1 
dominant 

H1 
recessive 

FTD AD 

CD8T 0.295 0.462 0.043 0.097 0.047 0.001 0.071 0.014 
CD4T 0.504 0.031 0.108 0.811 0.813 0.114 0.001 0.002 

NK 0.824 0.096 0.014 0.065 0.019 0.002 0.004 0.537 
B-cell 0.433 0.030 0.004 0.234 0.194 0.567 0.101 0.526 
Mono 0.010 0.637 0.740 0.847 0.685 0.520 0.669 0.577 
Gran 0.148 0.657 0.048 0.462 0.763 0.889 0.006 0.421 

 
NK: natural killer, Gran: granulocytes, Mono: monocytes 
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Supplementary Table C-5: Breakdown of the 273 samples for which SNP array data and methylation data are 
available. 
 
Dataset 
#1 

AD Control FTD PSP 

H1H1 0 50 (39) 32 (27) 8+ 6 rs1052335 
inferred (7) 

H1H2 0 24 (21) 17 (16) 1 (1) 
H2H2 0 3 (3) 3 (3) 0 
Dataset 
#2 

AD Control FTD PSP 

H1H1 9 (8) 38 (29) 41+ 2 rs1052553 inferred (34) 0 
H1H2 4 (4) 12 (12) 13 (13) 0 
H2H2 1 (1) 7 (6) 2 (2) 0 
Total AD Control FTD PSP 

H1H1 9 (8) 88 (68) 73 + 2 rs1052553 inferred (61) 8 + 6 rs1052335 
inferred (7) 

H1H2 4 (4) 36 (33) 30 (29) 1 (1) 
H2H2 1 (1) 10 (9) 5 (5) 0 
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Supplementary Table C-6: Methylation QTL analysis for 3 DMPs within 17q21.31 in in 226 individuals of European 
descent. 
 

Probe	   Number	   of	  
associated	  SNPs	  

R-‐squared	  	  
(mean	  ±	  SD,	  range)	  

%	   within	  
17q21.31	  

cg22968622	   113	   0.773	  ±	  0.159,	  0.255~0.982	   99.12	  

cg17117718	   113	   0.727±	  0.156,	  0.264	  ~	  0.8882	   99.12	  

cg19832721	   106	   0.605±	  0.087,	  0.258	  ~	  0.719	   99.06	  
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Supplementary Table C-7: Methylation QTL analysis for 3 DMPs within 17q21.31 in 273 individuals. 
 

Probe Number of 
associated SNPs 

R-squared (mean ± 
SD, range) 

% within 17q21.31 

cg22968622 117 0.745 ± 0.22, 
0.106~0.983 

99.15 

cg17117718 115 0.717± 0.198, 0.2 ~ 
0.893 

99.13 

cg19832721 111 0.572± 0.134, 0.18 ~ 
0.698 

99.1 
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Supplementary Table C-8: Differentially methylated CpGs by genotype, found by reduced representation bisulfite 
sequencing. 
 

Chromosome	   Base	   Position	  
(hg18)	  

Context	   p-‐value	  
(uncorrected)	  

nearest	  gene	  

chr10	   G	   74087808	   CG	   5.15E-‐12	   MICU1	  (intergenic)	  
chr17	   C	   41082844	   CG	   2.25E-‐12	   CRHR1	  (intronic)	  
chr17	   C	   41182407	   CG	   4.56E-‐12	   CRHR1	  (intronic)	  
chr17	   C	   41363555	   CG	   1.91E-‐12	   MAPT	  (intronic)	  
chr17	   G	   41641866	   CG	   1.77E-‐13	   KIAA1267	  (intronic)	  
chr17	   C	   52232615	   CG	   3.39E-‐09	   C17orf67	  (intronic)	  
chr17	   C	   52232671	   CG	   7.71E-‐09	   C17orf67	  (intronic)	  
chrX	   C	   107632332	   CG	   1.35E-‐11	   COL4A5	  (intronic)	  
chrX	   C	   107632359	   CG	   6.72E-‐11	   COL4A5	  (intronic)	  
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Supplementary Table C-9: NEO predictions for each identified haplotype-dependent DMP. 
 

Methylated 
Site 

Within 
Gene 

LEO.NB 
score 
(mediation 
model)† 

Predicted 
Causal Model‡ 

Predicted 
Model P 
value 

Model 
RMSEA 

cg00846647 MAPT -1.68 Meth<Hapl>PSP 0.019 0.143 
cg04703951 - -0.104 Meth<Hapl>PSP 0.089 0.0932 
cg07870213 DND1 0.378 Hapl>Meth>PSP 0.578 0 
cg16228356 - -2.44 Meth<Hapl>PSP 0.000 0.234 
cg17117718 - 0.85 Hapl>Meth>PSP 0.783 0 
cg18878992 MAPT -2.22 Meth<Hapl>PSP 0.001 0.211 
cg19832721 KIAA1267 -0.874 Meth<Hapl>PSP 0.089 0.0931 
cg22968622 - 1.51 Hapl>Meth>PSP 0.202 0.0537 
cg23955979 - -0.326 Meth<Hapl>PSP 0.081 0.0965 

 
† LEO.NB score is defined as the base 10 logarithm of the ratio of p values for the mediation 
model and the next most likely causal model 
‡	  NEO	  chooses	  between	  five	  causal	  models;	  here,	  the	  arrows	  indicate	  the	  direction	  of	  causality.	  
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Testing the 17q21.31 haplotype effect in patients and controls separately. We tested the 

dominant model (i.e. H1 carriers vs. H2/H2) in (1) controls and (2) FTD patients separately, and 

the recessive model (i.e. H1/H1 carriers vs. the remaining samples) in (3) AD patients, due to 

the small number of AD patients who were H2/H2 carriers. We were not able to perform a 

separate analysis for PSP subjects, as they were almost exclusively H1/H1 carriers.  

H1 carriers were compared vs. non-carriers in control samples only (92 samples in each 

dataset, table S3). 110 DMPs were identified in dataset #1, 9 of which were located in the 

17q21.31 region (p = 2.605 × 10-11, hypergeometric test). In dataset #2, 26 DMPs were 

identified, 10 of which were located within the 17q21.31 region (p = 2.243 × 10-20, 

hypergeometric test).  

We then compared H1 carriers vs. non-carriers in FTD samples only. Sixteen DMPs were 

identified in dataset #1 (n=55), 5 of which were within the 17q21.31 region (p = 2.697 × 10-11, 

hypergeometric test). Five were identified in dataset #2 (n=73), 2 of which were in 17q21.31 

region (p = 5.883 × 10-07, hypergeometric test).  

Finally, due to the small number of AD patients who were H2H2 carriers, we tested the 

recessive model on AD samples in dataset #2 (n=15). The only DMP (cg22968622) was located 

within the 17q21.31 region. 

In conclusion, in all cases we observed an overrepresentation of DMPs located within the 

17q21.31 region, further supporting the notion that the observed changes in methylation are 

mostly due to genotype differences rather than disease status.  

 

Impact of estimated relative cell counts in peripheral blood. The difference of cell type 

distribution between case and control were evaluated using the method developed by 

Houseman et al. and based on 500 loci whose methylation levels reflect the relative proportions 

of immune cells in unfractionated whole blood (Houseman et al., 2012; Koestler et al., 2013).  
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Briefly, we used methylation data available for 385 of the 500 loci (after quality control and 

probe removing). First, we estimated the blood cell type distribution for each sample using the 

methylation level of the 385 loci. Second, we applied a linear mixed-effect model considering (1) 

main blood cell types distribution as dependent variables; (2) disease status (or 17q21.31 

haplotype), age, ethnicity, and gender as fixed effects; and (3) chip number as a random effect. 

We did not observe association of disease status or 17q21.31 haplotype with specific blood cell 

types (Table S5). Volcano plots (Figure S11) also showed no major differences in the number of 

DMPs when comparing before and after cell type adjustment.  

 

Genome-wide methylation QTL analysis in the entire dataset (n=273). We performed a 

methylation QTL (methQTL) analysis in a subset of 273 individuals for whom whole-genome 

SNP data was available (Table S6). We assessed association of genetic variants with 

methylation levels at 3 CpGs within 17q21.31 (cg22968622, cg17117718, cg19832721) in each 

dataset. We identified on average 113 genome-wide significant signals (Bonferroni-adjusted p ≤ 

0.05), all located within the 17q21.31 region (Figure S4, Table S9). These variants accounted 

for a proportion of variability ranging between 10.6% and 98.3% (mean R-squared = 0.678, 

Figure S4, Table S10) further confirming that genetic variants at 17q21.31 are controlling 

methylation levels in cis in the same region. 

 

Differential methylation analysis using the combined dataset (n=371 samples). After combining 

datasets #1 and #2, probes filtered in at least one dataset were removed, and the ComBat 

algorithm (Johnson et al., 2007) was applied to remove batch effects. 66,877 SNP-containing 

probes were excluded from further analysis, resulting in 397,528 probes analyzed in 371 

samples. 

We first compared H1 carriers (genotypes H1/H1 and H1/H2) vs. H2/H2 (dominant model) and 

identified 34 differentially methylated probes (BH-adjusted p ≤ 0.05), 24 of which were located 
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within the 17q21.31 region (p = 4.22 × 10-53, hypergeometric test). Sixteen of these probes were 

also identified in both datasets when they were analyzed separately.  

Second, we compared H1/H1 subjects vs. H2 carriers (genotypes H1/H2 and H2/H2, recessive 

model) and identified 45 differentially methylated probes (BH-adjusted p ≤ 0.05), 36 of which 

were located within the 17q21.31 region (p = 2.19 × 10-81, hypergeometric test).  Twenty-three 

of these probes were also identified in both datasets when they were analyzed separately. The 

3 top DMPs (with an absolute aβD > = 0.1) identified in the two datasets when analyzed 

separately were also significantly differentially methylated in the combined analysis. 
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Appendix D: Supplementary Material for Chapter 6 
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                                      a                                                                     b 

Supplementary Figure D-1: Cryptic relatedness and population substructure were checked with genomic identity-by-
descent (IBD) and multidimensional scaling (MDS) components. (a) MDS plot of ADNI non-Hispanic Caucasian 
samples. Samples seemed to form loose clusters and two samples were outliers based on the second MDS 
component (at bottom of plot; 023_S_0058 and 023_S_0916), suggesting potential population substructure. To check 
for cryptic relatedness, which can confound GWAS studies, pairwise identity-by-descent fraction (π) between each 
pair of samples were calculated using PLINK. One related sample pair was identified (023_S_0058 and 023_S_0916, 
π = 0.51), which are probably first-degree relatives. No other cryptic relations were identified from the sample, at a 
threshold of π > 0.2. (b) MDS plot of ADNI samples overlaid on HapMap samples. The ancestry of the HapMap 
samples is shown by the point color. The outlying point represents Subject 116_S_1315 who is likely of mixed 
ancestry. Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; ASW, African ancestry in Southwest 
USA; CEU, Utah residents with Northern and Western European ancestry from the CEPH collection; CHB, Han 
Chinese individuals from Beijing, China; CHD, Chinese in Metropolitan Denver, Colorado; GIH, Gujarati Indians in 
Houston, Texas; JPT, Tokyo, Japan; LWK, Luhya in Webuye, Kenya; MEX, Mexican ancestry in Los Angeles, 
California; MKK, Maasai in Kinyawa, Kenya; TSI, Tuscans in Italy; YRI, Yoruba in Ibadan, Nigeria. 
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Supplementary Figure D-2: Linkage disequilibrium surrounding rs242557 in both the ADNI cohort and the 1000 
Genomes cohort. 
 

  

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●
●●●●●●
●
●●
●
●
●
●●●●●●●●●●●●
●
●●
●
●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●
●●
●●●●●●●●●
●●

●
●●
●●●●●●●●
●
●●

●

●●●
●
●●
●●●●
●
●●●●

●●●

●
●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●

●

●●

●●

●

●●

●●

●
●●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●●●

●●

●●

●

●

●

●

●●●

●●●

●●

●●

●

●●●

●
●

●●

●
●
●

●●●●●●●●●

●

●

●

●

●

●●●●●●

●●

●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

●

●●

●

●

●

●●

●

●●●●

●

●●●

●

●

●●●

●●

●●●

●

●●●

●●

●●●●

●

●●

●●

●

●●

●

●●

●●

●

●

●●●●

●

●
●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●●●

●

●●●●●

●

●

●

●

●●●●●●

●●●●●●●●●

●

●

●

●●●

●
●

●●●●●

●

●●●

●

●

●
●●

●●●
●●
●
●●
●

●

●●●
●

●

●●●

●

●●●

●

●

●

●
●

●

●●●
●
●
●

●
●
●

●●

●
●●●

●●

●

●
●

●

●

●

●●

●

●

●●

●●

●

●

●
●
●

●

●●●●

●●●●
●●●
●●

●

●●●●
●●●●

●

●●
●
●●●
●
●●
●●
●●●●●●●●●●

●●●

●

●●●●●●●●●

●

●●
●●●●
●

●

●
●●●

●●

●

●

●

●

●

●
●

●

●

●●
●
●●●●●
●
●●●●
●●●●●●●●●●●●●●●●
●●

●
●
●●●●●●

●

●
●
●

●

●

●

●
●
●●
●
●●
●

●
●

●
●
●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●
●
●●●●●

●

●

●●●●●●

●

●

●

●●●●●

●

●●●●●

●

●●●●

●

●●●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●

●●●

●●●●●●●●

●

●

●
●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●
●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●
●
●

●

●●●●●

●

●●

●

●●●●

●

●●●●●●●

●●

●

●

●●

●

●

●

●

●

●

●●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●

●

●●●●

●

●●●

●●

●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●
●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●●●●●

●

●●●

●

●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●

●

●
●

●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●●●●

●●

●

●

●

●●

●

●

●●●●●●●●

●

●●●●●●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●

●

●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●●●●●●●●●●●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●●●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●●

●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●

●

●

●●●●●

●

●●●●●●●●●

●

●●●●

●●

●●●●

●

●

●

●●●●

●

●●●●●●●

●

●●●

●

●●●●●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●●●●●●●●

●

●●
●
●●●
●●●
●

●

●●●

●

●●●●

●

●

●

●

●●

●●●●●●

●●

●●●

●

●
●●●●●●●●●●●●●

●

●●●●

●●

●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●
●
●●●●●●●●
●
●

●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●●●●
●
●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●●

●

●●

●

●

●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●
●
●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●

●

●

●

●●●●●●

●

●●

●

●

●●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●●●

●

●●●●●●

●

●

●

●

●●●

●

●●●●

●

●●

●

●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●
●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●●●●

●

●

●●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●●

●●●●●●●●●●

●

●●

●

●●

●

●●●●●
●
●●
●
●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●

●

●●●●●●●●●●●●

●

●

●●●

●

●●●

●

●●●●●

●

●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●●

●

●

●

●

●●●

●●●

●

●●

●

●●

●

●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●

●
●

●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●
●●
●
●●●●●●●●●●
●
●●

●

●●●●●●●●
●
●●●●●

●

●
●●

●

●●

●
●

●

●

●

●●●

●●

●●

●

●

●

●●●●●●●●●●●

●

●●

●

●

●

●●●
●●●
●●●●

●

●●●●●●●●

●

●●●●●

●●●

●●●●●●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●
●
●●

●

●

●●●

●
●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●
●

●

●
●

●

●

●

●●●●●●
●
●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●

●

●●

●

●●●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●

●

●●●●●●●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●●●●●

●●

●●

●

●●●●●●●

●

●●●

●
●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●

●

●

●●●●●●●●

●

●●●●

●

●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●
●●
●●●●●●●●●●
●
●●●

●

●
●

●

●
●

●

●●

●●●●●

●●

●●
●
●●

●

●
●●

●

●
●

●●
●
●

●●
●●

●

●●

●

●
●
●●●●●●
●
●
●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●
●
●●

●

●

●

●

●

●

●
●
●●

●●

●

●
●
●●

●

●●
●●
●●
●
●

●●

●

●
●●

●

●

●
●●
●

●●●●●
●
●●
●
●

●

●

●●

●

●●●
●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●●
●●

●●●

●●

●

●

●●

●●

●

●

●●

●

●●
●
●

●●●

●

●●●●●●

●
●
●
●●
●●

●

●

●

●
●
●●

●

●
●

●

●●

●

●●

●
●
●●

●●●

●

●

●

●

●

●

●

●●●●●●●●●

●●

●●

●

●

●●

●●

●

●

●

●●

●

●

●●
●●●

●
●
●
●
●●●

●

●

●

●●
●●●
●

●

●
●

●

●●●●●●

●

●●●

●●

●

●

●

●●

●●

●

●●●

●

●
●

●

●●●●●

●

●
●

●

●●●●●●●

●
●
●●
●●●

●
●
●

●●

●●

●●●

●

●●●●●●●

●●●●●
●

●

●●
●
●

●●
●
●●●

●

●●●●●

●

●

●
●●
●

●●●●

●

●●

●

●

●
●●

●

●

●●

●

●

●●

●

●●●
●
●

●

●●

●

●

●

●●●

●
●
●

●

●

●●●●

●

●
●

●

●
●
●

●
●
●●●
●
●●●●●●

●

●

●●●●●●●●

●

●

●

●●●
●
●●

●

●

●●●

●●●

●

●
●

●●

●

●●●●●

●

●

●

●●●●
●

●

●●
●
●

●
●●●
●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●
●

●
●

●

●●

●

●●●●
●

●

●

●

●●●

●
●
●●●

●

●●●
●●

●

●●●

●

●

●
●

●

●
●
●

●

●

●●
●●●●●●
●
●●●●
●
●●

●

●●●●●
●●●
●●●
●●●

●

●●●

●●

●

●

●●

●●

●●●●

●●

●●●●
●●
●●●●

●

●●
●●
●
●
●
●●

●

●

●

●

●

●

●●
●

●

●●

●●●●●●
●●●●●●●
●●●●●●●●

●

●
●●●

●

●●●●●●
●

●

●●

●

●●●
●●
●

●

●

●

●

●●●●●●
●●
●●●●

●

●
●
●
●
●●●
●●
●●

●

●●
●●●●
●
●●●●

●

●●●

●
●
●●●●●●●●
●
●●●

●

●●●●

●

●●

●

●●
●●
●●
●
●
●
●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●

●
●
●

●
●
●●
●
●●●●
●●●●●●

●●●●
●
●●●●
●
●
●●●●
●

●

●
●
●

●

●
●

●

●●

●
●
●

●●●

●●●●

●
●

●

●●
●●
●
●
●●●●●
●●●

●●

●●

●●
●

●●●

●

●●

●

●●
●

●

●●●

●

●●

●

●
●
●●
●●

●

●
●●●
●●
●●

●

●

●

●

●

●●
●

●

●●●
●

●
●

●

●
●
●●●

●
●

●
●●
●●●●

●

●●●●
●

●

●●
●

●

●●●
●
●
●●●
●
●●

●

●●

●●●
●
●●●●●●●

●
●
●

●●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●●

●
●

●

●
●●

●

●●

●
●

●

●

●●

●●
●
●●
●●
●●

●●

●●●●●
●
●
●
●●

●
●
●

●

●●
●●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●
●

●

●

●●●

●

●

●

●
●●
●●●●●●

●●

●

●

●
●

●

●

●●

●

●
●

●●●

●

●

●●

●
●
●

●
●

●
●
●
●●

●●

●●

●

●

●
●

●●

●●

●●●●●

●
●

●

●●

●

●

●

●●

●●

●●●●

●●●●
●

●

●

●
●
●

●●

●

●●●●●

●●●●●●●

●

●●●●●●●●●●
●●
●●
●
●

●●●
●
●●

●

●●●
●

●
●●
●●
●
●

●

●●●

●

●
●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●
●●●●●●
●●●
●●●●●●●
●●●
●
●
●●●
●●●●●
●
●
●●●●●
●●●●●●●●●●

●
●
●●●
●●●
●●●●●
●
●
●
●
●
●
●●
●●●
●
●●
●●●
●
●●
●●
●●●●●●●●●
●
●●
●●
●●
●
●
●●
●●●●
●
●●●●
●●
●●
●●
●

●
●●●
●
●
●
●
●●
●
●
●
●●
●●
●●●
●
●
●
●
●●
●
●●●●●
●
●
●●●●●●
●●
●●
●
●●●
●
●
●●●●●●
●●●
●
●●●●●
●●●●

●

●●
●
●
●
●●●
●
●●●●●
●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●
●●●●●●

●

●●●
●●●●●●
●
●

●

●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●●
●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

42 43 44 45 46

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Base Position (Mb, hg20)

lin
ka

ge
 d

is
eq

ui
lib

riu
m

 r2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●
●●●●●●
●
●
●
●●
●
●
●
●●●●●●●
●●●●●●●●
●●●●

●

●
●●
●
●
●●
●●
●

●
●
●●●●●
●●
●●●●●●

●●●

●

●

●
●

●

●

●

●

●

●●
●
●●

●

●
●

●

●

●

●●
●●●

●

●
●
●
●●●●
●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●●

●

●●●

●

●●

●

●●

●●

●

●
●●
●●
●
●●●●●●●●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

ADNI
1000 Genomes EUR



 215 

Supplementary Table D-1: SNPs associated with plasma tau at p-values between 10-5 and 10-6. 
 

 

Abbreviations: AD, Alzheimer’s disease; ATP8B1, ATPase, Aminophospholipid Transporter, 

Class I, Type 8B, Member 1; CACNA1A, calcium channel, voltage-dependent, P/Q type, alpha 

1A subunit; CHR, chromosome; ELAVL2, ELAV Like Neuron-Specific RNA Binding Protein 2; 

FGD3, FYVE, RhoGEF And PH Domain Containing 3; FOXL1, Forkhead Box L1; GOLGA2P6, 

Golgin A2 Pseudogene 6; LMO3, LIM Domain Only 3 (Rhombotin-Like 2); MAF, Minor allele 

frequency; MAPT, microtubule-associated protein tau; MAST4, Microtubule Associated 

Serine/Threonine Kinase Family Member 4; PACRG, PARK2 Co-Regulated; SNP, single 

nucleotide polymorphism; TGFBR3, Transforming Growth Factor, Beta Receptor III 

 




