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COMPETITIVE MODEL SELECTION IN ALGORITHMIC TARGETING

ABSTRACT

We study how market competition influences the algorithmic design choices of
firms in the context of targeting. Firms face a general bias-variance trade-off
when choosing the design of a supervised learning algorithm in terms of model
complexity or the number of predictors. Each firm has a data analyst who
uses the chosen algorithm to estimate demand for multiple consumer segments,
based on which, it devises a targeting policy to maximize estimated profits. We
show that competition induces firms to strategically choose simpler algorithms
which involve more bias but lower variance. Therefore, more complex/flexible
algorithms may have higher value for firms with greater monopoly power. Key-

words: algorithmic competition, model selection, algorithmic bias, data analytics, tar-

geting



1 Introduction

The digital economy has made available unparalleled amount of consumer
data to firms. Over the past decade firms have increasingly delegated many
business decisions, such as pricing, advertising and targeting, to artificial intel-
ligence (Al) algorithms, which utilize large amount of data on consumer char-
acteristics and behaviors. One of the defining characteristics of big data envi-
ronments is the rich and high dimensional information on consumer charac-
teristics, attitudes, opinions and behaviors. Often the number of variables and
aspects of consumer behaviors that is present can be comparable to the size of
the dataset. Consequently, big-data environments can confront the firms with
the classic over-fitting problem in statistical learning: the algorithm may use a
large number of available consumer predictors and complex functions to map
the data onto predictions of consumer behaviors. However, this increases the
variance of the estimated predictions and thus reduces the precision of out-of-
sample predictions. Alternatively, the algorithm can be regularized wherein the
complex functions can be penalized leading to a selection of only the most rele-
vant variables. This would reduce the variance of the estimated predictions but
then may introduce biases in the estimates and thereby compromise prediction
accuracy. This is the general bias-variance trade-off that underlies the design of
any supervised learning algorithm. In this paper we examine this trade-off that
underlies the design of the algorithm under market competition.

In particular, we recognize that the function of an Al algorithm is to make
predictions (Agrawal et al. 2018) in order to facilitate decision making. In com-
petitive market settings, when firms make decisions based on algorithmic pre-
dictions, the degree of market competition should have implications for their
choice of the algorithmic design. In this paper we analyze how competition in-
fluences firms” algorithmic design choices that govern the bias variance trade-
off in model selection. Algorithms that are more complex and flexible tend to
have higher variance but lower bias, and therefore the bias variance trade-off
also implies the interpretability versus flexibility trade-off in algorithmic de-
sign. We choose the important context of targeting (or targeted advertising) to

study this trade-off. Targeting is a canonical business application of Al algo-



rithms that leverages big data on consumers.'

We model firms” algorithmic decision making process as involving two
stages. First, a firm chooses an algorithmic design in terms of a statistical model
and then fits the model to the available data. Second, it makes competitive tar-
geting decisions based on the model estimates. This two-stage setup is intended
to represent common industry practices and to ensure that the firms’ choices
of algorithmic designs will impact their strategic targeting decisions. However,
this setup also inevitably departs from the standard Bayesian approach, because
for Bayesian decision makers, data are informative signals that always update
their belief by Bayes’ rule, and consequently, there is no active role that an al-
gorithmic design could play. Nevertheless in practice firms use statistical algo-
rithms on data to target consumers. Our setup rationalizes the inconsistency
between observed practice with the Bayesian approach by considering delega-
tion of a firm’s data analytics process to an analyst in an incomplete contracting
framework. In other words, we view a data analytics algorithm as one way
of representing consumer data for the firms” decision making so that different
algorithmic designs amount to different representations of consumer informa-
tion, which induces the firms to make different decisions.

We operationalize the firms’ algorithmic design problem of model selec-
tion by using the example of a well-known supervised learning algorithm—the
Lasso regression, which selects variables via the penalization of variable coeffi-
cients (Tibshirani 1996). The penalization governs the extent of the prediction
accuracy and model interpretability. The Lasso regression is a natural choice
for our purpose because the bias-variance tradeoff is directly modulated by the
degree of penalization, or the choice of a hyperparameter. The model is relevant
for practical usage while at the same time allowing for analytical tractability.

Specifically, consider a market in which two firms compete by targeting
consumers who are heterogeneous in some characteristic. Targeting is costly
and acts as a form of informative advertising (Butters 1977). Firms observe con-

sumer characteristics from their data but are uncertain about the profitability of

!Using Al algorithms to automate targeting decisions has been the focus of several re-
cent empirical studies (e.g., Hitsch and Misra 2018; Simester et al. 2020; Rafieian and Yoga-
narasimhan 2021).



different consumer types. Firms can estimate this profitability via a statistical
algorithm. To this end, in the first stage the firms strategically choose the al-
gorithmic design which is operationalized as the degree of penalization or the
extent of complexity of a Lasso regression. Based on the design choice, the firms
in the second stage delegate the task of running predictive algorithm to a data
analyst who has the capability of running the chosen Lasso regression model on
the available data. Lastly, based on the model estimates reported by one’s ana-
lyst, each firm chooses the targeting strategy to maximize the estimated profit.
We first analyze the monopoly benchmark and show that it is optimal for
the firm to choose zero penalization. In other words, a monopoly firm prefers
a more complex or flexible algorithmic design which admits greater variance
but has lower bias. This enables the firm to achieve greater market coverage in
the sense that it allows it to target the more profitable consumer segment with
greater likelihood. We proceed to analyze the competitive market and find that
in equilibrium, at least one firm will choose positive penalization. This intro-
duces bias while reducing variance by selecting fewer variables for the predic-
tive model. In other words, competition favors simpler models for consumer
targeting in equilibrium. Under competition firms have two incentives: i) to
correctly target the more profitable segment, and ii) to avoid competition and
the overlap in targeting. Simpler models which involve bias while reducing
variance lead to more uniform targeting, which helps to reduce overlap and
soften competition. Overall, the suggestion of our analysis is that more flexible
and complex algorithms such as deep learning are likely to be of higher value

to firms with greater monopoly power.

2 Related Research

Our paper is broadly related to the emerging literature which examines
strategic interactions and incentives with algorithms. One strand of research
tackles the problem of algorithmic design for a principal when faced with strate-
gic agents who can manipulate the information that is provided to the algo-

rithm. For example, Eliaz and Spiegler (2019) examines a statistical algorithm



faced with an agent who strategically self-reports her personal data and high-
lights the role of model selection and the incentive-compatibility issues in truth-
ful reporting that it creates for the agent. In a similar vein, Bjorkegren et al.
(2020) considers individuals who may observe the rules of the machine learning
algorithms and strategically manipulate their behavior to get desired outcomes.
The paper derives an equilibrium estimator that is robust to manipulation given
the costs of manipulating different behaviors. Our paper examines the model
selection problem in a competitive market where firms choose the equilibrium
design of their consumer targeting algorithms. Thus here the extent to which
tirms choose more or less flexible algorithms and the associated bias-variance
trade-off is governed by the equilibrium consumer targeting incentives of com-
peting firms.

There is a stream of research on competitive interactions between multiple
algorithms. Salant and Cherry (2020) consider statistical inference in games,
where each player obtains a small random sample of other players” actions,
uses statistical inference to estimate their actions, and chooses an optimal action
based on the estimate. Liang (2020) considers games of incomplete information
in which the players have data and use algorithms to derive their beliefs. Olea
et al. (2022) study a game between agents competing to predict a common vari-
able, and where agents obtain the same data but differ in the algorithms they
utilize for prediction. In all these papers, the algorithms under consideration
are fixed exogenously. Here, in contrast, we focus on the strategic choice of
algorithms in competitive environments.

There is also recent research on how algorithmic decision making affects
market competition, a question complementary to ours. For example, Mikl6s-
Thal and Tucker (2019) and O’Connor and Wilson (2021) model the effect of
Al algorithms as better demand forecasting and show that algorithms could
impede or facilitate tacit price collusion. Calvano et al. (2020) examine firms
endowed with Q-learning algorithms in repeated interactions to show that they
can robustly learn to cooperate to charge supra-competitive prices without com-
municating with each other. Lastly, we contribute to the traditional literature on
competitive targeting strategies (e.g., Shaffer and Zhang 1995; Chen et al. 2001;
Iyer et al. 2005; Levin and Milgrom 2010; Bergemann and Bonatti 2011) by intro-
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ducing the algorithmic design and decisions on model selection to the consumer

targeting strategies of firms.

3 Model Setup

Consider a market consisting of consumers who are heterogeneous in a
characteristic x € {1,0}. A fraction ¢ of consumers have x = 1 and the remain-
ing 1 — ¢ fraction have x = 0, where ¢ € (0,1). For example, z; may represent
consumer 7's demographics (1 for men and 0 for women), or past consumer be-
haviors (1 for those who have visited some website and 0 otherwise), etc. This
case of a single characteristic offers the simplest setup for the development of
the idea.

There are two firms competing for consumers in the market, indexed by
j = 1,2. Firms can observe each consumer i’s characteristic z; and decide which
type(s) of consumers to target. Each firm has the ability to reach and target
6 € (0,1) fraction of the consumer population in the market. This targeting
can be also interpreted as a form of costly informative advertising that informs
consumers of the existence of the product (Butters 1977). If consumer ¢ is only
targeted by firm j, the consumer will only buy from the firm, and the firm earns
a monopolistic profit of 7;(z;); on the other hand, if the consumer is targeted
by both firms, she will randomly choose a firm to make a purchase, and thus
firm j’s expected profit is 7;(x;) /2. Lastly, if a consumer is not targeted by either
of the two firms, she will not make a purchase. To focus the exposition on the
effects of algorithmic targeting, we have abstracted away the firms” decisions
on prices.’

Given that z is binary;, it is without loss of generality to write down 7;(z) as

21f price discrimination based on targeting outcomes is allowed, we may endogenize prices
in a trivial way. If a consumer is targeted by only one firm, the firm sets the monopoly price
and still earns a monopoly profit; on the other hand, if a consumer is targeted by two firms,
they engage in a Bertrand competition, which drives the price to be the marginal cost and each
firm’s profit to be zero. This setting will generate qualitatively the same result as in the model
without explicit consideration of prices.



the following linear function,
Wj(l’) = C(j -+ ﬁj%.

Firm j does not know «;, 3; a priori. We assume a common prior for «;, 3;,
which follow differentiable distribution functions A and B respectively. A is
supported in [a, @], and B is a symmetric distribution around zero, supported
in [-3,8). ai, B1, @y and 3, are independently distributed. The firm is inter-
ested in estimating «; and 3; given the available data. It delegates the task of
estimation and prediction to a data analyst who is equipped with the prediction
algorithm. Specifically, assume that the analyst uses the technology of running
Lasso regressions and that a complete contract between the firm and the data
analyst is not possible. Rather, the firm can only specify the tuning parameter of
the Lasso regression. This is the algorithmic design decision. Given the tuning
parameter specified by the firm, the analyst runs the Lasso regression on the
data to generate an estimate of o; and ;.

It is assumed that each firm j and its data analyst have a private access to
a dataset with two observations. The I-th observation contains a pair of (z', /})
for! = 0,1, where, 2° =0, 2! =1 and

y; = 7Tj(£El) +€é = O{j —|—B]Z’l + E_lj.

The error term, 52- isi.i.d. across j and [ and follows a differentiable distribution
function G, which is symmetric around zero and supported in [—Z,|. Further
¢, which follows distribution function G, where G(e) =

Pr(ej — &) <e) = J7.G(¢' + €)dG(e). We make the following assumption.

define Ag; = ¢ — ¢

Assumption 1. G is a unimodal distribution; that is, G'(e) weakly decreases (in-
creases) with e for e > 0 (e < 0).

This is a regularity condition which ensures that the firms’ ex-ante expected
profit functions are well behaved. Note that the dataset that each firm uses for
targeting is assumed to be exogenous and independent of the ensuing mar-
ket competition. One interpretation of this setup is that each firm is able to

experiment/test-market with the data analytics algorithm on consumers in its
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monopolistic sub-markets (such as geographic regions or sales channels). This
would generate a monopolistic private dataset for each firm. In Section 6, we
will describe an alternative setting in which the dataset results from market
competition, and argue that it would nevertheless generate results that are qual-
itatively similar to that in the main model.

Based on the data, the analyst runs a Lasso regression, which is represented

by the following minimization problem:

1
(dj()\j), Bj@\j)) =argmin » (4} — a; — bia')” + Albsl. 1)
(aj,05) 1=

where ); > 0 is the tuning parameter specified by firm j that measures the de-
gree of penalization on (;();). The choice of ); indicates the model selection
decision of the firm: At the one extreme when \; = 0, this corresponds to the
case of a standard ordinary least square (OLS) regression and in this setup this
is equivalent to the firm deciding on the maximum model flexibility and choos-
ing all the available predictor variables. This will imply estimated parameters
which are unbiased but which will have maximum variance. In contrast, when
Aj is large and the penalization is large, then the model would shrink and have
lower flexibility with fewer admitted predictors. In this case the variance of the

estimated parameters would be lowered but at the cost of introducing bias.
From the corresponding first- and second-order optimality conditions, we

can solve the data analyst’s estimation problem in equation (1):

a;(Aj) = % (ygl +yy - Bj()\j)) : )

30 = max{y} —y? — X;,0}, ifyl — 19 >0,
’ min{yjl - ?J;-) + A;,0}, otherwise.

©)

The expression of &;(\;) in equation (2) is the same as the standard OLS
estimator, because there is no penalization on &;(\;). It is assumed that « is
large enough so that the realization of &;()\;) is always positive for any \; > 0.
Formally,

Assumption 2. o > 3/2 +E.



This guarantees that firm j always prefers to target as many consumers as
possible in the market. That is, the constraint of a total number of § consumers
to target will always be binding so that the firm'’s targeting decision boils down
to which type(s) of consumers to target. To understand the expression of 3;()\;)
intuitively, notice that if A; = 0, we have j3;(\) = y; — y3, which is the OLS
estimator. When 0 < )\; < |y} — 39|, then f;();) will have the same sign as
y; — y) but is penalized toward zero. Finally, if \; > |y; — 47|, the penalization
is so severe that 3;()\;) = 0.

We consider a simultaneous-move game between the two firms in two pe-
riods. First, each firm j chooses the tuning parameter )\;, which remains pri-
vate for the entire game. Second, each firm j gets a private dataset (z,}) for
[ = 0,1, based on which, firm j’s analyst generates the estimates &;(\;) and
B3,(\;) by employing a Lasso regression. Lastly, each firm devises the targeting
strategy to maximize the estimated profit. Figure 1 summarizes the timeline
of the game. Because each firm has a private dataset before deciding its tar-
geting decision, we are dealing with a Bayesian game. However, because the
two firms’ datasets are independent, one firm does not need to update its belief
about the other firm’s dataset based on the observation of its own dataset; in-
stead, it just uses the prior belief. Before we proceed to analyze the game, we

elaborate on the rationale and interpretation of our modeling choices.

Each firm chooses the Each firm delegates an analyst to estimate profit
tuning parameter. function by running a Lasso regression.

Each firm is endowed with a private Each firm devises the targeting strategy
dataset with two observations. to maximize estimated profit.

time

Figure 1: Timeline of the competitive algorithmic targeting game.

First, the reader may wonder that the simple setup above with a data set
of just two observations and a binary characteristic (z € (1,0)) is a far cry from
the big data situations confronting firms. Machine learning models are typi-
cally high dimensional and complex involving numerous dimensions available
in big data. Nevertheless, as also previously argued by Eliaz and Spiegler (2019)
the setup is designed to handle the crucial aspects of the “over-fitting” problem
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encountered in algorithmic decision making by firms, namely, that the poten-
tial number of explanatory variables may be large and comparable to the sam-
ple size. So unless there is a method for model selection and shrinkage of the
number of explanatory variables there is a risk of over-fitting. For example, an
unpenalized regression estimator may perfectly fit the dataset but would have
high variance and poor predictive performance compared to an estimator with
shrinkage. However, a model with shrinkage may be subject to the introduc-
tion of bias in the estimated coefficients. The model with the Lasso regression
with the endogenous choice of the tuning parameter \; helps to capture the
essence of the trade-offs underlying the over-fitting problem, and in doing so,
it endogenizes the model selection to the equilibrium incentives of the firms.

Second, the firms choose the tuning parameters before getting the dataset.
In other words, firms make the model selection choice in anticipation of the
possible dataset realizations. This may also be seen as consistent with the statis-
tical learning literature which prescribes that the tuning parameter should not
be determined based on the training data per se in order to avoid over-fitting.

Third, while we use the Lasso regression as a specific estimation procedure,
our results are more general in the sense that \; determines the general trade-off
between bias and variance in any supervised learning method, where higher
values of ); is associated with lower the variance but higher bias. Therefore,
firm j’s choice of \; can be interpreted as choosing between different statistical
learning models that differ in bias-variance trade-off. Thus the problem can
be viewed as the strategic choice of the bias-variance trade-off in algorithmic
design of the firm'’s targeted advertising strategy.

Furthermore, different statistical models differ in their flexibility and their
degree of interpretability, as shown by Figure 2. Typically, those with higher
flexibility (and lower interpretability) have lower bias but higher variance. Here
we will focus on the comparison between Lasso and OLS, where OLS has higher
flexibility and lower bias, while Lasso with some level of regularization has
lower flexibility and higher bias and may also be more easily interpretable when
compared to OLS. Therefore, the choice of \; may also represent the relative
complexity versus interpretability of the algorithm. Also by this understand-
ing, the Lasso regression does not necessarily need to represent a “machine-
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Figure 2: Tradeoff between flexibility and interpretability and tradeoff between
bias and variance across different statistical learning methods (excerpted from
James et al. (2013) page 25 and adapted).

learning” algorithm while OLS a traditional algorithm. In fact, in practice, a
tirm may decide whether to adopt a very flexible machine-learning algorithm
like neural networks compared with a less flexible benchmark algorithm, in
which case, the neural networks will correspond to OLS in our framework.

Finally, it has been assumed that the firms rely on data analysts for running
the estimation procedure on the data and that complete contracts are not avail-
able between a firm and its analyst. This assumption maps onto common prac-
tices in companies where managers rely on analysis by data analytics groups
for decision-making. This has two important implications:

1. In the last stage of the game, instead of performing a Bayesian update
based on the data to calculate the posterior belief of a; and §;, each firm
relies on the data analyst to run the Lasso regression on the data to get
point estimates of &;();) and §;();); correspondingly, instead of maximiz-
ing the expected profit based on the posterior belief, each firm makes the
targeting decision by maximizing the “estimated profit” based on the es-
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timate, &;()\;) and Bj()\j). The standard rational economic model for this
problem would involve fully Bayesian decision making with common pri-
ors for all agents. However, as argued below the reality of data based al-
gorithmic decision making in firms does not reconcile with the standard
approach as machine learning algorithms like Lasso which are based on
the minimization as in (1) are non-bayesian procedures. By separating the
estimation problems from the firms, and delegating it to analysts who are
agents, we are able to rationalize the reality of data-driven decision mak-
ing in firms. Methodologically this feature of our framework can be seen

as a representation of algorithmic decision making in firms.’?

. Our assumption that the data analyst performs the estimation procedure
implies the minimization of mean squared error instead of profit maxi-
mization as the objective in estimating the parameters in the second stage.
This assumption is made to reflect actual observed industry practices and
their implications. First, minimization of mean squared error is available
and used by companies in standard statistical packages. Second, infor-
mation pertaining to the profit function may be scattered in silos within
the organization so that even if the data analyst in charge of the estima-
tion task wants to use profit maximization as the objective, she may find
it hard to gather all relevant information. Finally, using standard statisti-
cal/algorithmic packages on the data may be seen as computationally and
cognitively easier for analysts in a firm than performing Bayesian updat-
ing based on the data to compute expected profits.

We begin with the analysis of the monopoly setting with only one firm in

3In an alternative setting in absence of the data analysts, we can assign a Laplace prior
distribution to each firm j’s prior belief of §;, with the probability density function f(8;) =
A;/2 - exp(=A;|35]). Then, based on the data (z!,4}) for I = 0,1 and assuming ¢, follows a
standard normal distribution, firm j forms a posterior belief of o; and 3; by Bayes’ rule, which
can be shown to be equivalent to running the Lasso regression in equation (1) (Tibshirani 1996).
But there are two caveats to this Bayesian approach. First, the tuning parameter ); is not firm
Jj’s choice but rather, a model primitive that is exogenously given. To endogenize the firm’s
choice of A; would be equivalent to let the firm choose its prior distribution. Second, the point
estimates generated by the Lasso regression, &();) and 5()\;) in equations (2) and (3) are mode
instead of mean of the posterior belief of «; and §; (Hastie et al. 2009). However, to calculate
expected profit, we will be mostly concerned with the posterior mean instead of the mode.

11



the market as the benchmark, and then proceed to study the main model with

competition.

4 Monopoly Benchmark

Given only one firm, we will drop the subscript j. We solve the game by
backward induction. Suppose the firm decides to target £ € [0, ¢| consumers
withz =1and 0 — k € [0,1 — ¢] consumers with z = 0, which imply that

max{0,0 + ¢ — 1} <k < min{0, ¢}.

Given a()\) and (()\), we have the estimated profit from a targeted consumer to
be 7t(x) = @&(\) + (\)z. The firm chooses k to maximize the estimated profit. If
B(\) > 0, it is optimal for the firm to target as many consumers with = = 1 as
possible, so we have the firm’s optimal choice of k as k* = min{#, ¢}. Similarly,
if B(\) < 0, it is optimal for to target as many consumers with = = 0 as possible,
and thus, k* = max{0,6 + ¢ — 1}. Lastly, if 3(\) = 0, the firm is indifferent
between the two types of consumers, and it is assumed that it will target & €
0, 0] consumers with x = 1.

A priori, before obtaining the dataset, the firm chooses A to maximize the

expected profit from all consumers:

II(\) =E[fa + k* ]

=0E[a] + min{0, ¢} Pr(3(\) > 0)E[B|B(\) > 0]
+max{f — (1 — ¢),0} Pr(B(\) < 0)E[B|B(\) < 0]
+kPr(B(\) = 0)E[3|6(\) = 0]

—0E[a] + min{f, ¢} Pr(8 + Ae > NE[B|3 + Ac > A]
+max{f — (1 — ¢),0} Pr(B + Ac < —NE[B|B + Ac < —)]

—0E[a] + min{6, ¢} 8 dG(e) / i bd B(b)

A

—2€ —e

2 _ —A—e
Fmax{0— (1—¢),0} | dC(e) / bdB(b)

-2 B

12



—0E[a] + min{0,1 —0,4,1 — ¢} /28 dG(e) /ﬁ bdB(b).
—2 A—e

To get the third equation above, notice that 3(\) > 0 < S+ Ae > ), B()) <
0< B84+ Ac < =) and B(\) = 0 < |3+ Ae| < A, which, combining with the
fact that B and G are symmetric distributions around zero, further implies that
E[3|3()\) = 0] = E[8]|8 + Ae| < ] = 0. Therefore, the choice of & has no impact
on firm profit and thus the tie-breaking rule has no bite on the result. To get the
last equation, we have again utilized the symmetry of G and B. We the have
the following proposition for a monopoly firm:

Proposition 1. A monopoly firm optimally chooses the tuning parameter A = 0.

Proof.

II'(\) = —min{0,1 —0,¢,1 — ¢} ) (A —e)B'(A —e)G'(e)de.

—2e
If A > 2, obviously, IT'(\) < 0. Otherwise, if A < 2g, we have

II'(\) o — ( _Q:E+ /2 :_2€+ A 25) (A —e)B'(A —e)G'(e)de
__ / OB 0)F (e)de

-0 /026_)\ 2B'(z) (CNJ’()\ —2) =G\ + Z)) dz

<0,
where, to get the second equality above, we have changed the variablee = A — =
for the second integral from 2\ — 2 to A, and e = A+ z for the third integral from
A to 28; moreover, we have utilized B'(z) = B'(—z). To get the last inequality,
notice that given the assumption G being unimodal and symmetric around zero,
we have é’(/\ —2z) > é’(/\ + z) for any z > 0 and A > 0. To summarize, we have
shown that IT'()\) < 0, so the optimal ) should be A\ = 0. O

Proposition 1 implies that a monopoly firm in this setup prefers the OLS
regression to a Lasso. The intuition is as follows: Given that the monopoly firm

13



chooses the tuning parameter in anticipation of the subsequent data realiza-
tions, the optimal model choice is the OLS estimator. This is because the OLS
estimator is the most unbiased choice and thus enables the firm to target the
more profitable segment correctly in expectation. The qualitative implication
is that a monopolist optimally prefers a more flexible/complex algorithmic de-
sign which accommodates all the variables (in our case one) and which may risk
over-fitting the data. In other words, the monopoly prefers low algorithmic bias
but this would come at the expense of increased variance. This result serves as
benchmark and motivates our analysis below of the competitive incentives for
algorithmic targeting.

We have utilized the unimodality of G in the proof. Notice that we do not
require B to be a unimodal distribution. If G were not unimodal either, it is
possible that a monopoly might want set a positive A that “estimates” /5 more
accurately by leveraging the non-unimodality of both B and G. (One can con-
struct examples by considering B and G close to two-point distributions.) But
then this behavior would be driven by the nature of the distributional charac-
teristics. Our assumption of unimodal @ serves to maintain a clean benchmark

that highlights the comparison between monopoly and competition.

5 Competitive Targeting

Now we analyze the main model with competition between two firms and
solve for the equilibrium by backward induction.

5.1 Targeting Decision

Given firm j’s choice of the tuning parameter as )\; and its private dataset,
the firm’s analyst’s estimates, &(),) and ((),) are given by equation (3). Sup-
pose firm j decides to target k; consumers with = 1 and 6 — k; consumers with
x = 0for j = 1,2. As before, we have max{0,0 + ¢ — 1} < k; < min{6, ¢}.

Firm j does not observe the rival’s choice of the tuning parameter nor its
dataset. Denote firm j’s expectation of the other firm’s choice of the tuning

parameter as A* ;. Furthermore, from firm j’s perspective, the other firm’s equi-
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librium choice of k* ; depends on the realization of its private dataset and thus
is a random variable, which is denoted as k* ;- Let’s calculate firm j’s estimated
profit:

b (LR o+ (12 K B;(A (4
+ k; maj(j)+ "% i(Aj) | - )

To understand the first equation above, notice that firm j targets k; consumers
with z = 1, each of whom is also targeted by the other firm —j with probability
Eij /¢. If this happens, firm j gets an estimated profit of (OAéj(Aj) + Bj()\j)) /2;
otherwise, with probability 1 — k* ;/ &, this consumer is not targeted by firm —j,
and firm j’s estimated profit is (&j()\j) + B ()\j)>. Similarly, we can perform the
same calculation to get firm j’s estimated profit from ¢ — k; consumers with
x = 0.

Firm j chooses k; € [max{0,60 + ¢ — 1}, min{0, ¢}| to maximize the expected
estimated profit, E[TT;(k;, k* ;)] = IT;(k;, E[k* ;]), where we have utilized the ob-
servation that I1 (k;, k* ;) is linear in k* ;-* Furthermore, notice that IT;(k;, E[k* D)

is linear in k; with

OM,(k;, E[k™,)) 66 —E[k*)] BRI 40
ok, ) a;(A) <1 "3 >ﬁj(>\j) =n;(A). )

~~ N J/

to avoid competition 4 targetthe more

profitable segment

Consider the expression for 9y I1;(k;, E[k* ;1) in equation (5): The second term

4Notice that as a1, 1, s and B are independently distributed, firm j’s private dataset
provides no information on a_; and ;. Therefore, E[k” ;|firm j’s dataset] = E[k* ].
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plays a similar role as the counterpart under the monopoly benchmark-the firm
wants to target consumers with = = 1 when 3;();) > 0, and z = 0 when
B;(\;) < 0. The first term introduces incentives for the two firms to coordi-
nate so as to avoid competition. Particularly, firm j wants to target consumers
with z = 1 when E[k* ;1/0 < ¢, thatis, when the other firm would target propor-
tionally more consumers with z = 0; similarly, firm j wants to target consumers
with z = 0 when E[k* ;1/0 > ¢, that is, when the other firm would target pro-
portionally more consumers with z = 1.

I1; (k;, E[%i]]) being linear in k; immediately implies that the firm’s opti-
mal targeting decision takes corner solutions. Specifically, if 7;(\;) > 0, firm j
should set k; = min{#, ¢} to target as many consumers with x = 1 as possible;
if n;(A;) < 0, the firm should set £} = max{0,6 + ¢ — 1} to target as many con-
sumers with x = 0 as possible. Lastly, from an ex-ante perspective before the
realization of firm j’s private dataset, &;();) follows a continuous distribution
and thus as long as E[k* i1 # #9, n;(\;) = 01is a knife-edge case that happens
with zero probability; consequently, the tie-breaking rule for which consumer
to target at 7;(\,;) = 0 has no consequence. On the other hand, if E[k* il =90,
we have 7;(\;) = 0 & §;();) = 0, at which, we have shown for the monopoly

case above, the tie-breaking rule has no consequence either.

5.2 Model Selection

Let’s first introduce the following notation. From firm, j’s perspective, the
probability that the other firm —j will set k* ; = min{0, ¢} is:

_;=Pr k* = min{6, gb})

o0 —Blk;) DAY
<2¢1— LSO+ (1— %)ﬁ_ju_jwo)

¢0 — (max{0,0 + ¢ — 1} + p; min{h,1 — 6, ¢, 1 gb})
20(1 - ¢)

N (1 max{0,0 +¢ — 1} +p2j;nm{9 1-0,¢,1- qb}) B—j(/\*—j> > O), (6)

(M%)
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where, to get the last equality in (6), we have utilized that

E[k?] = pjmin{6, ¢} + (1 — p;) max{0,0 + ¢ — 1}
= max{0,0 + ¢ — 1} +p;min{0,1 - 0,¢,1 — ¢},

which is firm j’s expectation of firm —j’s expectation of firm j’s equilibrium
choice of £}, and thus E[%j] depends on A! (via p;) instead of A;. By combining
equation (6) for j = 1,2, we should be able to solve p; and p,, which depend on
A} and Aj (but not on A; or \y).

Next, we determine )} by calculating firm j’s expected profit before obtain-
ing the private dataset, which takes the same form as the firm’s estimated profit
IT; (K3, Eij) in equation (4) except that we need to replace @;();) and 3;()\;) by
a; and B; respectively and then take expectation.

B 0k, 00—k, k*
Hj()\j) =E 01— m % + kj m&j + 11— 2¢ ﬁj

6 — E[k* ]
=0 (1 — w) Elay]

+ min{0, ¢} Pr (n;(A;) > 0)

e[ (B
201 —9) 20 )T
+ max{0,60 + ¢ — 1} Pr (n;(\;) <0)
(66 — Bk ] E[k* ] ]
x B -mQj -+ <1 — W) Bj 77]()‘j) < 0- . (7)

In the calculation, we have utilized the independence between «;, 3; and E* e

I;();) depends on A; via 7;();) and depends on \*; via Eij. That is, at the

model selection stage, firm j has an expectation of firm —j;’s choice of the tun-

ing parameter, \*,

which will influence firm —j’s targeting decision and thus

in turn influences firm j’s expected profit. In expectation, each firm’s choice
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should be consistent with the other firm’s expectation:
A = arg rr}\e;x II;()\;), for j =1,2. 8)

To summarize, the Bayesian Nash equilibrium will be pinned down by the two
sets of equations (6) and (8), where we have four equations to determine four

variables: p;, ps, A} and A\j. The main result of this paper is presented next.

5.3 Main Result

Proposition 2. If a pure-strateqy Bayesian Nash equilibrium exists, ¢ # 1/2,0 # 1/2,
and 2 is sufficiently high, then, we must have \; > 0 for at least one of j = 1, 2.

Proposition 2 does not provide an explicit condition on when a pure-strategy
equilibrium exists, which would require additional assumptions on the distri-
bution functions, A, B and G to ensure firm j’s profit function, II;(};) is quasi-
concave for j = 1, 2. Nevertheless, notice that if pure-strategy equilibria do not
exist, Nash’s celebrated theorem immediately implies that there must exist a
mixed-strategy equilibrium, where trivially, we must have Pr(\; > 0) > 0 for
at least one of j = 1,2 (otherwise, we have A} = 0 for j = 1,2, which is not
a mixed-strategy equilibrium). Therefore, even if a pure-strategy equilibrium
does not exist, we will end up with a result that is qualitatively similar in spirit
with Proposition 2. Let’s prove Proposition 2 next. Without loss of generality it
is assumed that ¢ € (0,1/2). The other case with ¢ € (1/2, 1) can be obtained by
symmetry.

Proof. Let’s first argue that given any A} and A}, there must exist a solution of
(p1,p2) to equation (6) for j = 1,2. In fact, the right-hand side of equation (6)
for j = 1,2 is a continuous map on a convex compact set [0, 1] on to itself, and
by Brouwer fixed-point theorem, a fixed point must exist. Next, we calculate
I1;(\;) in equation (7). There are three cases to consider.

(1) E[Z:i j} < ¢4, given which, there are two observations. First, Assumption
2 implies that &;(A;) > 0. This further implies that if 5,;()\;) > 0, we must have
n;();) > 0 by the definition of 7;();) in equation (5). Second, 3;()\,) < 0 implies
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that 5;(\;) = B; + Ae; + A and G;(\;) = a; + 9 — A\;/2 by equations (2) and (3),
based on which, we have

n;(\;) < 0 a; < —C\j + F(B;,Y,¢}), where

oo 200-9) ( E[k*,] ¢6—E[k]
|00 - B 20 do(1-9) )’
(1—)(26 — E[,))

F(ﬁj7€?7€jl‘) = -

660 — E[k" ] Pire=s) e

C is well defined given E[k* ;] # ¢0. Tt is easy to show that

E[k*] ¢ —E[k*]]

C>0&1-— 2% — 1001 — o)

>0 (1-20)+ (1—0)+E[k",] >0,

which always holds regardless of the comparison between E[k* ;] and ¢0.
Putting the two observations above together, we have
Pr (n;(A;) < 0) Elay[n;(A;) < 0]
= Pr (n(\) < 0and B;(A) < 0) E [ay ;) < 0and 3(;) < 0]
+Pr (n(A) < 0and B;(\5) > 0) E |ay|n;(A;) < 0and 3;(3;) > 0|
= Pr (aj < —C\; + F(p;, 52,5]1-)) E [aj‘aj < —C\; + F(p;, 82,8]1-)}

g e B min{max{—C/\j—l—F(ﬂj,8?,5]1-)@},6} o )
:/ / // a;dA(a;)dB(B3;)dG(e5)dG (g5),
—eJ—eJ-pJa

where to get the first equality above, we have used the definition of condi-
tional probabilities and the law of total probability. Moreover, we have argued
Pr(n;(A\;) = 0) = 0 above, which implies that,

Pr(n;(A;) > 0) E[ay[n;(A;) > 0] = Elay] = Pr (n;(};) < 0) Elay[n;(A;) < 0.
Similarly, we can write down the expressions for Pr(7;()\;) > 0)E[5;]|n;(A;) > 0]

and Pr(n;(A;) < 0)E[B;|n;(};) < 0]. By substituting these back to II;(};) in
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equation (7), we find:

I,() =0 (1 - Q‘L[“) Elo)

2(1 - ¢)
+min{f, ¢} (%E[%] + <1 - E[;;ﬂ) EWJ])

—min{6, 14 ¢’1_¢}/_5/_5/_ /m‘“{ma"{ CNFE () et}

¢0 — E[k* ] E[k" ]
(mag + (1 "% ) 5;) dA(a;)dB(B;)dG(9)dG (e}).

Let’s compute the derivative of I1,;();) at A; = 0:

I1;(0) =min{f,1 — 0,¢,1 — ¢}C

o0 Bk, CER)N
o <_2¢(1_¢) F(B.20,21) + ( - )a)

x A'(F(B;,e9, ]>> B(8;)dG(%)dG(e})

. o0 — E[k* ] Bk ] -
>min{f,1—0,¢,1 — ¢}C <mg— (1 — —2¢ > B)

X///agp(gj,so,el)< A'(F(Bj, €5, €5))dB(B;)dG (<) dG ().

When ¢ is sufficiently large, Assumption 2 implies that « is sufficiently large so

that _ _
60 ~E[F)] (. E[F]
21 -9) * (1 2 >5>0

moreover, F(f;,¢7,}) by definition is symmetrically distributed around zero

and when ¢ is sufficiently large, Pr(a < F(3;,€},¢j) < @) > 0. Therefore, we
have IT;(0) > 0, which implies that A} > 0.

(ii) E[k*,] > ¢0, given which, there are similarly two observations. First,
B;(A;) < 0implies 7;(A;) < 0. Second, 5;(A;) > 0 implies that 5;(\;) = 3; +
Agj — Ajand &;();) = o + €) + );/2 by equations (2) and (3), based on which,
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we have
nj(Aj) >0 & a; < —CA\; + F(p;, 5?,8}),

the same as that in case (i). Putting the two observations together, we have that

Pr (n;(A;) > 0) E[a;|n;(A;) > 0]
= Pr (=CX; + F(Bj,¢,;)) E [a;] = OXNj + F(B, ], ;)]

g g B pmin{max{-CX\+F(8;.0el)a}a}
:/_/_/_/3/ ajdA(a;)dB(B;)dG(2)dG (D),
Pr (n;(A;) < 0) Elay[n;(A;) < 0] = Elay] — Pr(n;(A;) > 0) Ele[n;(A;) > 0].

Similarly, we can write down IL;(\;):

I1;(A;) =0 (1 S Ewij]) Ela;]

2(1-¢)
+max{0,0 +¢ — 1} (M(—EUC;)]E[O@] + (1 — E[Z;]]> E[8;]
mm{max{ CXj+F(B 5 5 } }
—min{f,1 — 6¢,1—¢}/_/_/_/
(k2] — 90 B[]
<m Qj — (1_ 2¢ >BJ> dA(O‘J)dB(BJ)dG( )dG( )

Similarly, we can compute:

IT;(0) =min{0,1 - 0,¢,1 — ¢}C

w 0oy (4 @ |
" ///04<F(5j,5?,s;)<a< 20(1 — ¢) F(Bj,€j.¢j) (1 2% B

x A'(F(B;,€%, e1))dB(8;)dG (e9)dG ()

>min{0,1—60,6,1— ¢}C (%g - (1 _ E[Qk;j]> B)

A(F(B:. €% eNdB(8:)d 0Ny Ly
X ///QSF(B]"E?’E})SQ (F(Bj,¢€5,€5))dB(B;)dG (g5)dG (g;)
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The same argument as in Case (ii) shows that when £ is sufficiently large, A} > 0.

(iii) E[k*,] = ¢0. If A7 > 0, we have proved the proposition; otherwise,
suppose \i = 0. We have p/ = Pr(ﬁj()\;f) > 0) = Pr(B; +Ag; >0) = 1/2.
Correspondingly,

B[] = % (min{6, ¢} + max{0,0 + 6 — 1}) # 06,

In fact, for 0 < ¢ < 1/2, E[E;] = ¢ if and only if § = 0,1/2,1, which we have
excluded by assumption. Therefore, it must be that E[k}] < 0¢ or E[k]] > 0¢. In
either case, we can repeat the proof above with j and —j switched to conclude
that A*; > 0. O

In contrast to Proposition 1, Proposition 2 shows that competition drives
at least one firm to choose positive penalization. In other words, competition
favors a simpler algorithmic design that reduces variance but at the cost of in-
troducing bias. We provide below the economic intuition for this result.

Because the two consumer segments are of different sizes (by the assump-
tion that ¢ # 1/2), the one which is smaller will be ex-ante more competitive
because when both firms target this segment, there will be higher expected
overlap of the targeted consumers. Compared with the OLS estimator which
induces a firm to concentrate targeting in one consumer segment (the one with
higher estimated profitability), the penalization in the Lasso regression tends
to induce the firm to target consumers across the two segments more evenly.
When 6 = 1/2, the OLS and the Lasso will generate the same targeting outcome,
because it amounts to the same 50% targeting probability on every consumer re-
gardless of whether the firm targets the two consumer segments evenly or tar-
gets all the consumers evenly. Therefore, as long as 6 # 1/2, the penalization in
the Lasso regression that induces more uniform targeting across consumers will
reduce a firm’s concentration of targeting on one particular consumer segment,
which in turn reduces the expected overlap between the two firms’ targeted
consumers and thus softens competition. This can also be seen from equation
(5), where a higher )\, penalizes 3;();) towards zero and consequently, the com-

petition avoidance incentive as captured by (¢6 — E[Ei i1)/(2¢(1 — ¢)) has a rel-
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atively bigger impact on 7,(\;) which determines firm j’s targeting decision.

In fact, the competition avoidance incentive for firm j is present whenever
E[k* ;] # p—thatis, when the competitor does not target all consumers equally.
This provides firm j the strategic incentive to introduce bias to reduce the over-
lap in the targeting. In fact, as shown in the proof of Proposition 2 above, as long
as E[k* ;] # ¢0, firm j will choose A} > 0 in equilibrium to lessen competition.

It is worthwhile to reiterate that in our modeling approach, different choices
of \; by firm j determines different algorithmic designs, which amounts to dif-
ferent ways of representing consumer information for decision making on tar-
geting. Proposition 2 implies that competition favors a positive penalization
that leads to more precise but less accurate information about consumer prof-
itability. In fact, 3;()\,;) will be non-zero only if the profit difference between
two segments of consumers is big enough to compensate the profit loss from
more intense competition resulting from more concentrated targeting. In other
words, compared with the OLS estimator, the estimator of Bj()\j) will be not
very accurate when |3;] is close to zero but more precise.

Lastly, we also require € to be sufficiently high. With enough noise in the
data, the risk of over-fitting becomes consequential. Moreover, a higher £ also
implies a higher a by Assumption 2, which translates into a higher incentive to
avoid competition by equation (5). Both considerations make a positive penal-
ization in the Lasso regression and the equilibrium choice of algorithmic bias

more desirable.

54 Symmetric Equilibrium

Given our symmetric setup, it is natural to consider the symmetric equi-
librium with A} = A; = A*. The corollary below is obvious from Proposition
2.

Corollary 1. If a symmetric pure-strategy Bayesian Nash equilibrium exists, ¢ # 1/2,
0 # 1/2 and € is sufficiently high, then, we must have \* > 0.

Figure 3 provides some some numerical examples of the equilibrium under
uniform distributions and also examines the comparative statics. For all the

parameter settings in Figure 3 a pure-strategy symmetric equilibrium exists.
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Figure 3: Equilibrium \* and p* given A ~ Unif[2,4], B ~ Unif[-1,1], G ~
Unif[—2, 2]

There are several observations to make. First, notice that when 6 < 1/2 (as
in the left half of panel (a) as well as the entire region of panels (b) and (c)), p*
decreases with A\*. This is very intuitive—as the penalization gets higher, firms
tend to target more evenly across the two consumer segments, which means re-
ducing targeting probability in the more competitive segment—segment = = 1
in this case due to # < 1/2. On the other hand, when 6 > 1/2 (as in the right half
of panel (a)), segment z = 0 is more competitive, so as \* increases, the firms
allocate more targeting probability to the less competitive segment of z = 1,
which means raising p*. Second, we find that indeed for the two knife-edge
cases of # = 1/2 and ¢ = 1/2, \* = 0, as shown by panels (a) and (b); cor-
respondingly, p* = 1/2 in these cases. Thirdly, we find that the firms choose
the maximum penalization when § = ¢ or # = 1 — ¢, as shown by panels (b)
and (c). In fact, by calculation, one can show that these are the cases when the
firms achieve the maximum reduction in consumer overlap by switching from

targeting two segments evenly to targeting every consumer evenly. Therefore,
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these are the cases when the firms have the highest incentive to set a high pe-
nalization. Lastly, consistent with the standard statistical learning theory, as
¢ increases, the data gets noisier, and consequently, the firms choose a higher
penalization to avoid the over-fitting problem, as shown by panel (c).

6 Summary and Discussion

In this paper, we examine how competitive firms employ algorithms to es-
timate demand and based on the estimates, make strategic consumer targeting
decisions to maximize expected profit. Algorithmic design essentially implies
different model selection strategies, which involve different bias and variance
trade-offs under the general framework of supervised learning. Essentially we
can view model selection as the choice of the consumer information structure
that the firm strategically uses for targeting decisions. This bias-variance trade-
off also implies the extent of model flexibility that the firm would like to opti-
mally use for targeting. From this perspective, our paper studies firms’ compet-
itive model selection for algorithmic targeting and explores how competition
moderates individual firms’ bias-variance trade-off choices through the degree
of complexity of the algorithm that is adopted. The central finding is that target-
ing under competition favors simpler models that reduce variance but which in-
troduce bias. There is therefore the suggestion that more flexible algorithms like
deep learning are more likely to be valuable for firms with monopoly power.

We focus on a specific decision of the firms—targeting. Thanks to large
advertising platforms such as Facebook or Google, there is an ongoing trend of
advertising targeting decisions being automated by algorithms for real-time ad-
vertising deployment based on rich customer behavior data on browsing, pur-
chase, sharing, observed social connections, etc. Targeting is therefore a natural
context to study algorithmic competition and our model and payoff function
is designed to represent the classic competitive targeting problem. Within this
context, our result that competition favors algorithmic bias holds for quite gen-
eral distributional assumptions about the prior beliefs. In our current analysis,

we have used an overall payoff function without explicit consideration for pric-

25



ing or other decision variables. This helps us to highlight the targeting problem
and the link between competitive targeting incentives and model selection. As
next steps it would be interesting to explore a general class of oligopoly games
with strategic firm decisions such as pricing, advertising or product design. The
implications may depend on whether the firms” decisions are strategic substi-
tutes or complements (Bulow et al. 1985).

We can also consider generalizing some aspects of the model in this paper.
For example, we could analyze the impact of larger datasets with more observa-
tions. Larger datasets should reduce the variance of the estimated parameters
and the extent of the over-fitting problem. This could likely lead competitive
firms to have the incentive to choose lower penalization. In contrast, a model
with greater number of predictor variables may lead firms to impose higher
penalization. The results may also depend upon the extent of consumer infor-
mation available to the firms and the presence of horizontal firm differentiation.
Suppose firms can identify consumer types and suppose the profitability of the
segments are negatively correlated across firms. Then this could reduce the in-

centive for penalization by competing firms.

Endogenous Data

We conclude by describing a setup which allows the targeting dataset to be
generated from market competition. In the paper we have assumed that each
firm is endowed with an exogenous dataset. To allow for the datasets to be
endogenously generated from market interaction we should require the firms
to compete in the targeting decisions at least twice, where the first-time com-
petition generates the data, which is then utilized by the firms to devise their
subsequent targeting strategies. Specifically, suppose that the game analyzed
in the paper is modified through the following timeline. At time 0, the two
tirms simultaneously choose the tuning parameters. At time 1 when the first
period begins, each firm decides on the consumers to target, who upon being
targeted, decide whether to make a purchase. Each firm observes a noisy signal
of the profit from each consumer who made a purchase. That is, we interpret

7;(2) in the main model as firm j’s average profit from an z-type consumer, and
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the firm’s profit from an individual z-type consumer who made a purchase is
() plus some idiosyncratic error (analogous to } in the main model). Based
on the data, as before each firm delegates an analyst to estimate profit by run-
ning a Lasso regression. Based on the estimates, each firm devises the targeting
strategy to maximize the estimated profit in the second period.

In this modified game, each firm makes targeting decisions in the first pe-
riod based on its prior belief. Given that f3; is distributed symmetrically around
zero, it is optimal for each firm to target randomly. Notice that if a consumer is
targeted by both firms, she makes a random choice between the two. This im-
plies that observation of a targeted consumer’s purchase decision does not give
the firm any extra information for estimating the consumer profitability. Conse-
quently, each firm’s first-period actions result in a dataset of “7;(x;) plus some
idiosyncratic errors”, where i is the consumer index that spans across all con-
sumers who made a purchase from firm j in the first period. Even though this
dataset is generated from the first period market interaction, it is qualitatively
similar to that in the main model and could be equivalently seen as being gen-
erated from a monopoly market, with the one caveat that the size of the data is
less than 6, the size of the data for the monopoly market. Moreover, notice that
the firms’ choice in tuning parameters at time 0 has no impact on their profits
in the first period, so when choosing });, each firm j effectively only takes into
account the impact on its profit in the second period, which essentially is the
same decision problem as in the main model.

To summarize, this extended two-period model that allows for the datasets
to be endogenous to the first period interaction is almost identical to our main
model with exogenous datasets, except that i) for each dataset, the number and
types of consumers observed can be different; ii) compared with the monopoly
benchmark, each firm has a smaller dataset under competition. However, in-
tuitively the first difference would not qualitatively alter the main result per-
taining to the effect of competition on model selection; the second difference
could potentially strengthen the main result, because a smaller dataset implies
a higher level of noise, which would lead to a higher equilibrium choice of pe-

nalization in competition as compared with the monopoly benchmark.
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