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Abstract 

We present a new idea for image filtering in computer vision. Thinking of edges as disconti­

nuities in the image necessitates the use of specialized discretizations of partial differential 

operators that are consistent with the presence of such discontinuities. We discretize the 

partial differential operators based on upwinding on the gradient of an edge-indicator. Since 

this gradient points towards edges, no differences are computed across edges, explicitly in­

troducing jumps in the image at the edges, while still allowing diffusion in the direction 

perpendicular to the edge. The explicit treatment of discontinuities leads to rapidly emerg­

ing edges and also allows the use of an absolute stopping criterion based only on the energy 

in smooth regions of the image. 



1 Introduction 

An image is given as a non-negative gray-level function ! 0 : 0 -----7 R2::0 , where the image 

domain 0 is a rectangle. The image is noisy so that V' ! 0 need not exist at any point 

(x, y) E 0. The imaging device creates images with a finite range of gray values, and since 

0 is bounded this implies that ! 0 E £ 2 (0). 

The edge enhancement problem (EEP) 1 consists of computing a decomposition {Oi} 

of the domain 0 = 01 U ... UON and computing an enhanced image Ie so that Ie "is similar to 

! 0 ", varies smoothly and slowly within each Oi and discontinuously on (part of) the boundary 

of the Oi. Boundaries of the homogeneous regions Oi that are not part of the boundary of 

0 are called edges. 

The image segmentation problem (ISP) 1 consists of computing a decomposition {Oi} 

of the domain 0 = 01 U ... U ON and computing a segmented image Ie so that Ie "is 

similar to Ia", constant within each Oi and discontinuous on the boundary of the Oi. A 

segmentation is a piecewise constant edge enhancement, but an edge enhancement is usually 

not a segmentation. 

An enhanced image Ie may be viewed as the image of ! 0 under a map that takes functions 

without derivatives and- maps them into "nearby" functions that have derivatives almost 

everywhere, i.e. from £ 2 (0) -----7 H 1 (0). The non-differentiability in the enhanced image 

occurs exactly across the edges. Our view is inspired by previous work on introducing 

discontinuities into solutions of elliptic boundary value problems in [13, 12], and similar to 

ideas presented in [3]. Liang and Wang [3] observed that a binary diffusion coefficient results 

in a method that "is simple to implement and analyze, and avoids difficulties and problems 

asscociated with nonlinear diffusion". We agree with this view, but wish to point out that 

the main difficulty with their, our as well as with all previous approaches is to decide where 

to suppress the diffusion. Once this is decided, [3] and our own work indicate that it is 

possible to avoid nonlinear diffusion and compute enhanced images much more quickly than 

previously possible. Our approach differs from [3] in how we decide the locations where to 

completely disable diffusion, and keeping linearized anisotropic diffusion in th~ sense of [1] in 

regions where we are not sure about the edge-detection. In particular, our diffusion coefficient 

is not binary as in [3], but does take on the value zero, different from [9]. Previous spatial 

difference operators, [9, 1, 7, 4, 5], implied the smoothness of the enhanced image across edges 

1Definitions adapted from Mumford and Shah [6]. 
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because differences were taken across the edges, which resulted in slow convergence to the 

desired goal of sharp edges. We will show by a simple example algorithm how it is possible 

to rapidly compute enhanced images with truly discontinuous edges by introducing explicit­

jump differential operators. In particular, we will demonstrate on real examples 

that our method is 10 times faster than shock filtering [7] and how it helps 

with edge detection. 

Besides the implied smoothness of the enhanced images, earlier methods 

also have the difficulty of determining when to stop the diffusion process 

[9, 1, 7]. In [4] a denoising method with a defined stop criterion has been 

proposed. 

Our explicit treatment of discontinuities allows the use of an absolute 

stopping criterion that is independent of the amount of noise in the original 

image ! 0 • Our criterion is related to the total variation of the image; see 

e.g. Vogel and Oman, [11]. But instead of computing the total variation 

everywhere, by using our discretization we only compute the variation on 

smooth portions of the image. 

In the next sections we define what we mean by an explicit-jump mul­

tiscale analysis, give the details of the implementation of the explicit jump 

differential operators and examples of enhanced images under a simple algo­

rithm. 

2 The method 

Following earlier work [1] (add more references here!), we use 

1 
g(t;)= 2 , ls=(Ga*Ia), and 9(x,y)=g(II\7Isll). 

1 + (t;/{3) 

Here {3 is a parameter that selects the contrast, a- is the variance of the 

Gaussian 
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( cr is also called the scale), Is a smoothed version of I a (computed via heat­

flow, an idea usually attributed to Koenderink [2); see also next section) and 

Q an edge indicator for I 0 • Q has small positive values for large gradients and 

values close to 1 for small gradients. This behavior is reversed from other 

edge indicators as for example in [15). The negative gradient of our edge 

indicator, -\7 Q, points toward edges. 

Suppose that K is the set of edges determined2 by - \7Q and let 

fK,g(I) = r 911\7 IIIPdA. 
Jn\K 

(1) 

We call (fK,g(I)) 1/P the p-energy of I with respect to K and Q. Usually, we 

consider p = 1 or p = 2. An image with reduced energy, i.e. fK,g(I) < fK,g(Ia) 

is called edge enhanced, an image with zero energy, i.e. f K,Q (I) = 0 is called 

a segmentation3 of I 0 • In this paper, we focus on (EEP), while [14) deals 

with (ISP). Edge enhanced images may be discontinuous on the edge set K, 

independent of p. 

We call the reduction of (1), starting from I 0 and preserving the integral4 

of the image on each ~i, an explicit-jump multiscale analysis. 

We use the energy fK,l (I) as an absolute stopping criterion fot the explicit­

jump multiscale analysis. It takes into account only the variation of an image 

in smooth regions, and we will give an example showing that this can be 

explored to devise a method that automatically adjusts to the amount of noise 

in an image. The following results show that decreasing fK,Q also reduces the 

energy fK,l· 

Lemma 1 For any Q > 0, the only local minimizers of (1) are the global 

minimizers of (1). These global minimizers are the edge-conforming segmen­

tations Ie, i.e. images that are constant on each of the ni. 
2We make this determination precise for the discretization of the problem in the next section. 
3 K induces a decomposition 0 = 01 U .. :u ON, and fK,g(I) = 0 implies li'V Ill = 0 on each of the Oi. 
4This property is often referred to as conservation. It is necessary for causality of the method. 
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Proof. The edge-conforming segmentations are global minimizers, because 

!K,g(I) > 0 for any K, Q and I, and !K,g(Ie) = 0 if Ie is a segmentation that 

conforms with the edge set K. 

Suppose that I is a minimizer of fK,g, but not constant on at least one of 

the ni. Then 

{ Qll\7(1- EJ) IIPdA = (1- E)P { Qll\7 IIIPdA < { . Qll\7 II!PdA. 
Jn\K Jn\K Jn\K 

Since we can choose E arbitrarily small, in any neighborhood of I we can find 

an image (I- EI) that has a smaller energy, which contradicts the minimality 

of I. 0 

Corollary 1 To reduce the energy !K,l below E, it suffices to reduce !K,Q below 
- -

EQ, where Q is a lower, positive bound for Q. 

Corollary 2 The limit of any explicit-jump multiscale analysis is the unique 

segmentation that preserves the integral on each of the ni. 

A strength of our method lies in preserving edges in two ways. Wherever 

we have detected an edge and placed it in K, the enhanced image will be 

discontinuous. But even if we have missed to put an edge in K, if Q is 

small near this edge, the enhanced image will be fairly sharp because the 

minimization favors images with more smoothing in areas where Q is large 

than in areas where Q is small. This latter effect is called anisotropic diffusion 

and was introduced in the case p = 2 by Perona and Malik; see for example 

[9]. For p = 1 it was later used as "image selective smoothing" by Alvarez, 

Lions and Morel, [1]. 

The explicit-jump multiscale analysis behaves very similarly for p = 1 and 

p = 2 (images are smooth inside ni, but not across K). This stems directly 

from our explicit introduction of discontinuous edges. Without discontinuous 

edges the behavior is very different as outlined in [8]. The benefit is that for 

p = 2 the Euler-Lagrangian of (1) is a linear equation. Fast methods for that 

particular case will be described elsewhere, in the case of segmentations in 

[14]. 
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3 Discretization 

We introduce a variable for every pixel in the ( m x n) pixel image I 0 • The 

variables are ordered from left to right then top to bottom into the vector 

Ih = {Ih,l}~1 where l = (i- 1)n + j fori= 1, ... , m and j = 1, ... , n. See 

also Figure 16 a) for an example. 

3.1 The edge indicator 

The computation of the edge indicator Q requires a smoothed image Is. We 

find Is as follows: 

where I is the identity, dt is the time step, k the number of time steps, ~ 

is a centered difference approximation5 of the Laplacian with zero Neumann 

boundary conditions (see Appendix A), I 0 is the image with pixels ordered 

in the above sense a~d a-= 2Jkdi. Then 

where Dx and DY are centered differences with zero Neumann boundary 

conditions in the x and y directions respectively. Subscript l indicates the 

pixel where a variable lives or where an operator is to be evaluated, for a 

matrix this means the row. 

3.2 Upwind discretization of the gradient 

We discretize \1 I in (1) by upwinding (borrowed from level set methods and 

ultimately from hyperbolic conservation laws, see [10]) on- \JQ = - (9x, Yy), 
which is found by applying centered differences. Let n-x, n-y be backward 

differences in the x andy directions with zero Neumann boundary conditions, 
5 All difference approximations of differential operators need to comply with our pixel ordering. As linear 

operators on vectors, they can be realized as sparse matrices of dimension mn x mn. 
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respectively, and D+x, D+Y forward differences in the x and y directions with 

zero Neumann boundary conditions. Define the upwind gradient 

Dxup = diag(X(-oo,oj(Yx))D-x + diag(X(O,oo)(Yx))D+x, 

Dyup = diag(X(-oo,oj(Yy))D-Y + diag(X(O,oo)(Yy))D+Y. 

Here diag(V) is the mn x mn matrix with the elements of the mn vector V 

on its diagonal and xn is a characteristic function, i.e. 

Xn(() = { 1 for ( E f2, 
0 for ( rf_ n. 

The above definitions introduce an arbitrary preference for backward differ­

ences where G is constant. This could be avoided by using centered differ­

ences in that case, but centered differences have the drawback of widening 

the stencil and decoupling the center point. 

3.3 Discretization of the energy 

The integral in (1) is discretized with: 

F(Ih) = 5A L fz(Ih) = 5A L 9zll\i7P IhiiP. (2) 
l 

Here 5A is the area of a single pixel. We ususally assume 5A = 1. 

For a descent method for (2) we need the gradient with respect to the 

discrete variables 

(3) 

where 

{ 
a }mn 

"VJ= 
8(h)z l=l · 
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i- 1 'l i+1 

j-1 \ \ \ 

\ \ <> \ <> 

J 

j+1 \ \ <> \ 

Figure 1: Upwind scheme for the function fz. Arrows represent the vector field -\7 Q, * 
indicates the location where fz lives and<> marks the stencil of fz. 

i-1 'l i+1 

\ \ <> \ <> 
j-1 

\ <> ~<> \ <> 

J 

\ <> \ <> \ 
. 

j+1 

Figure 2: Stencil of the discrete gradient ( 4) away from edges. 0 is the point of computation 

of the gradient, * is the location of the fz that depend on the value of I at Q. <> indicate 

the stencils of the fz. The stencil of the gradient is the union of<>. 
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i-1 ~ i+1 

j-1 
I I I 
\ <> ~<> \ <> 

J 

j+1 
\ <> \ <> \ 

Figure 3: Stencil of the discrete gradient close to an edge (bold line). The notation is the 

same as in Figure 2. 

i-1 ~ i+1 

j-1 
I I I 

~<> \ <> 
J \ 

j+1 
\ 

\ <> \ 

Figure 4: Stencil of the discrete gradient close to a corner (bold line). The notation is the 

same as in Figure 2. 
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Each nonlinear discrete function fz depends only on the value of the lth 

pixel and its 4 spatial neighbors, that allows to rewrite (3) as local conditions 

of· 1 · of· 1 · of· · 1 of· · 1 of· · '\1 I ijF = z+ ,J + 2- ,J + z,J+ + 2,J- + _3:..:1.. ( 4) 
' oL · oL · oL · oL · oL · ZJ ZJ 2J ZJ 2J 

fori E {1, 2, ... , m} and j E {1, 2, ... , n} where we have written the formulas 

in 2D pixel coordinates for clarity. Each derivative is evaluated analytically 

(see Appendix A) or approximated by finite differences as 

The approximation has the benefit of being fast and automatic, indepen­

dently of the choice of pin (1). The loss of accuracy using the above approx­

imation compared to the analytic derivatives in Appendix B was negligible. 

U pwinding deals with the edge set K in an automatic way. Since no 

difference is taken across K, we do not require any smoothness across K; 

jumps are explicitly allowed and discontinuous edges are possible. Figure 1 

shows the stencil for fz at the pixel *· Recall that fz = II"V? IhiiP and note 

that the <> symbols indicate the stencil for the upwind gradient and hence for 

fz. In Figure 2, the 0 symbol marks the location where we compute '\1 I,lF. 

The *symbols mark the pixels such that fz at these pixels depends on the 

value of Ih at 0 and the <> symbols indicate the union of the stencils for 

these fz, i.e. the stencil for '\1 I,lF in ( 4) at the point 0. In Figure 3 and 

Figure 4, the notation is the same. The value of '\1 I,zF depends on fewer 

pixels, because fewer fz depend on the 0 pixel. Discontinuous edges are 

possible because by construction the computation of '\1 I,zF does not 

involve pixels on the other side of an edge. 
6The upwind direction needs to be computed slightly differently at the left and upper image boundaries. 
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3.4 Numerical Scheme 

As the simplest example of an explicit-jump multiscale analysis of (1) we 

flow (4), which correponds to the steepest descent method for (2) 

8J. . (8!· 1 . 8f· 1 . . 8f· . 1 8f· . 1 8f· •) ___!:_:}_ = - ~+ ,J + ~- ,J + ~,J+ + ~,J- + ___!:_:}_ 
at aL . aL . aL . aJ. . aL . · IJ IJ IJ IJ IJ 

(5) 

~ 

The stencil of (5) is space-variant (but not time-variant) and depends on the 

upwinding direction -\7 g, as explained before. 

The formulation of (1) as a discrete minimization problem allows flexibility 

and many choices of optimization method different from (5). 

4 Examples 

All examples are computed based on (5) with p = 1 unless otherwise noted. 

!:it and k in the calculation of the smoothed image Is vary between examples. 

4.1 Deblurring 

Figure 5 a) shows a piecewise constant gray-scale image after strong blur­

ring. Figure 5 b) shows the effect of 15 iterations of explicit-jump multiscale 

filtering. Two effects are noticable. Edges are mostly sharp and pixelized, 

but a little more blurred where edges intersect. The first effect is created by 

the fact that edges exist between pixels and hence are always horizontal or 

vertical. The second effect demonstrates that even when we "miss" an edge, 

the small values of g lead to "slow leaking" (using anisotropic difusion) across 

the edge. Figure 6 shows the edge-indicating vector field computed from a 

section of the image in Figure 5 a), but shown on the original (unblurred) 

image. Arrows correctly point towards edges in the original. 
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50 100 150 200 250 50 100 150 200 250 

a) b) 

Figure 7: a) The same piecewise constant image as in Figure 5 a), but in the pTesence 

of zero-mean Gauissian noise instead of blurring. The image from a) a.fteT exp licit-Jump 

rnultis cale filtering. 

4.2 Noise removal 

Figure 7 a) shows the same piecewise constant gray-scale image with addi­

t ive zero-mean Gaussian noise. Explicit- jump multiscale filtering produces 

Figure 7 b). The image is very similar to the one obtained from the blurred 

i1nage. This is quite intuitive; since the filtering smoothes the noisy image 

with a heat equation ("blurs") first , before computing the edge map, so that 

the edge maps are similar except for edges induced by noise in region interiors. 

Figure 8 shows how t he p-energy with respect to K and Q is decreased 

during the filtering from Figure 7 a) to Figure 7 b). vVe sec a typical steepest 

descent behavior; with vast initial improvements and slow convergence later. 

4.3 An absolute stopping criterion 

The explicit jump discretization allows to separately measure the energy in 

smooth regwns and the energy contained on the edges. As an example , 
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20 40 60 80 100 120 

Figure 9: A piecewise linear gray-level function with edge-energy 0.9425 and D \ ]( energy 

0.2667, see text for details . 

20 20 

40 40 

60 60 

80 80 

100 100 

120 120 

' ' 
20 40 GO 80 100 120 20 40 60 80 100 120 

a) b) 

Figure 10: Noise - free images with d~fferent geometric but same text1Lre propertzes . The 

average of their D \ ]( ene1gies 7s used as an absolute stopping criterion for the e1:amples in 

Figure 11 a) and Figure 12 a) 

14 



20 -

20 

<10 

40 I 
Go 

1
-

60 

80-

80 

iOO 

100 

· 20r :;: 

l _______ -..l_._.._ __ --'--~---L-_ ___._--...l_j 
2c ll/'") ;;o ao too 1::'o 

120 

h) 

f''igun· I I: 11) _\'rJIS.If inwr;r u·ilh :i()/f l)('ak-lwtse- to -peuk-si<;lln( mt/o . IJ) !mar;< ofi< r up(~r·il 
)11 !1/j) multtc"r-cJ/r Jiltenn<; . stoppinq ll'flt /) tlu n \ ]( ( 1/i'lg,lj Is dose to tfte r 1/L/{jlj of tf,( (Iron 
11/IO.rJ! _,, in Fu;mr 10. 

20 <10 60 80 

a) 

100 

i 

j 
_..., ..... _ Jl 

··~ 

120 

~-­

/ 
201 

40[1 

6J 
I 
I 

QJ 
-, 

I 

20 ·iO 
120Lt ---'---~'---~---'-----"---~-

h) 
1-'i~lll'!' 12: 111 .\-ui.~y 11/liUJ! U'ii/, (/(}'1' fHn/,·-1/nl'l -!O-J!I u!.--su;nu! mtin. /;; Ii•wr;r n/7 1 1 .tpltol 

jlllllf' lllltltrsr·olr jill< 1 i/1(;, sluJifllll!J 11'11111 th1 \2 !\- r I!U:rfl! i' rlo.'r fu flu 1 111 n1.11 !Jf flu r-Ic 1111 

itl!ll!JI' Ill F'l!j/1/'( 10. 

].) 



50 100 150 200 250 50 100 150 200 250 

a) b) 

Figure 13: a) High quality angiography {an artery). b) The image in a) after 500 iterations 

of shock filtering . 

is 30% and 60% , respectively. 

The noise increases the n \ K energy, where of course Q and hence K is 

computed based on the noisy image. We reduce the energy to the average 

of the energies of the clean images in Figure 10 and recover the images in 

Figure 11 b) and Figure 12 b), respectively. 

Independent of the amount of noise in the two examples we use the same, 

absolute, stopping criterion, which only depends on "statistical" properties, 

i.e. a priori informat ion that \Ve have deduced from similar : clean images. 

4.4 Shock filtering, L1 and L2 explicit-jump multiscale filtering. 

Figure 13 a) shows a high quality angiography, Figure 13 b) the results of 500 

iterations of shock filtering ( [1]) with largest stable time-step . Figure 14 a) 

and b ) show the results of 30 iterat ions of explicit-jump multiscale filtering in 

L 1 (p = 1) and L 2 (p = 2). The edges are even sharper and found much more 

quickly than for the shock filtering, while the results are fairly independent 

of p. 
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111/tllisudr fi!tennrJ ll'ilh fJ = 2. 

4.5 Future Irnprovctncnts 

Tll(' n'a:-;rJtJ ~ligl11 h· blmtT H'giou:-; OC'C'llr for C'X<tlllplc in Fig1uc :) b ) lies itt I he 

llllr<'lictll ilit y or vc;; ]L('([]' C'dgc' C't'U~::-lillgs. l1Slldlh· rcfC'rn'd 1 () i'lS T-jtltJC't ions. 

Tit<' vc'c·rur field ncar a T-.inncJion is sbmnt <:lE-i arrm\·s iu Fignrc JS awl is 

~<'<'n to lw poi11ting C'onrci],, t.myarcls the edges <-lWi:l). from t Jte T-.iunct ion. 

Lnt i:-o not <'X<W1 at thC' T-.in11ct icm. Possible c1pprwlC'h<'s I o inqJJ'cl\'C' 1 his nt<l\. 

li e' in nsiug gnHlicnt \·c'ctor ficm· (~Fi:) or snllpix<'lrC'soluticm to iulplu\·c' ihC' 

r jlt;lli 1 Y of t l tc' \·eel or fiC'lc I. 

.\uot ltr'r illlprm·c 'llH'lll liC':-; iu w.;ing lltC' maguit ll<l<' and JJ01 .inst lite di]'('C­

lirltt of' -- \Q. hll <'X<llttplr' itt J:ignrr' l(J <1) dltcl b). edges <trr' clc'l<'C'(C'r] uot 

jllst ()ll tlJC' IJCJ1ll](lar.\· or (It(' disk. lmt also hct\\'('E'll stripe'S. Tlw lll<lgllitnclC' 

ol' - \lQ C'Onld lw nsccl iu ihis casC' to exclnrlt' the edges. 

13a:-;<'c1 on fJ = 2. <111 <'Xi H'lltc'l\' hlst scgC'lllt <ttinu <llgorit'lnu is in prc'p<ll'Mi<llt 
r I 1'. 
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Figure 15: The edge-indzcating vector field -\7Q (arrows) near the intersection of two edges. 

Arrows correctly point towards edges, except close to the inter-section. 

5 Conclusions 

We introduced a method to perform image filtering by considering edges as 

irnage discontinuities. Spatially varying difference operators explicitly allow 

junrps in the image. This yields enhanced images with extremely sharp edges 

after very few iterations. The separation of energy into edges and smooth 

regions allows the use of an absolute stopping criterion, independent of the 

amount of noise in the original image. 

vVe believe that explicit jumps can be built into many image processing 

schemes and may be important in the future in devising fast pde based meth­

ods. 
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A Finite differences as sparse matrices 

We implement a finite difference approximation of a differential operator 

acting on an image as the application of a matrix to a vector. In addition to 

the stencil 1 we need to know the ordering of the entries of the image into the 

vector and the boundary conditions. For example, consider the image from 

Figure 16. The entries are ordered in the convention of the C programming 

language. Let h denote the mesh spacing, usually 1. 
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In general, for an m x n image B1 is the n-dimensional identity matrix. 

n-y is an mn x mn matrix with n rows of zeros, m- 1 blocks B 1 on the 

diagonal and m - 1 blocks - B 1 below the diagonal. 

Backward differences in x and forward differences in yare analoguous. These 

differences can be combined into higher order differences, for example (n-x)T n-x+ 

(D-y)T n-y = ~ (all difference operators discretize differential operators as 

well as first order zero Neumann boundary conditions). 

The discretization of the upwind operators for the simple image in Fig­

ure 16 a), based on Q obtained with minimal smoothing and -(Qx, Yy) as 

shown as white arrows7 in Figure 16 b) is given below. Some features are 

notable: Rows 1,5 and 9 of nxup (rows 1,2 and 4 of DYUP) use forward differ­

ences instead of backward differences even though Yx = 0 ( Yy = 0). This is 

due to the modification of the upwind operator at the boundaries. At the 8 

and 12 pixels, no di~erence in x is taken. No difference in y is taken at the 

3 pixel. 

-1 1 0 0 0 0 0 0 0 0 0 0 

-1 1 0 0 0 0 0 D 0 0 0 0 

0 0 -1 1 0 0 0 0 0 0 0 0 

0 0 -1 1 0 0 0 0 0 0 0 0 

0 0 0 0 -1 1 0 0 0 0 0 0 

nxup = 0 0 0 0 -1 1 0 0 0 0 0 0 

0 0 0 0 0 -1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 -1 1 0 0 

0 0 0 0 0 0 0 0 -1 1 0 0 

0 0 0 0 0 0 0 0 0 -1 1 0 

0 0 o -o 0 0 0 0 0 0 0 0 

7We use zero Neumann conditions in the calculation of -'\lQ. 
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-1 0 0 0 1 0 0 0 0 0 0 0 

0 -1 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 -1 0 0 0 1 0 0 0 0 

-1 0 0 0 1 0 0 0 0 0 0 0 

DYUP = 0 -1 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 0 0 1 0 

0 0 0 -1 0 0 0 1 0 0 0 0 

0 0 0 0 -1 0 0 0 1 0 0 0 

0 0 0 0 0 -1 0 0 0 1 0 0 

0 0 0 0 0 0 -1 0 0 0 1 0 

0 0 0 0 0 0 0 -1 0 0 0 1 

B Analytic derivatives 

The analytic derivatives below can be used quite efficiently using sparse rna-

trix techniques. 

B.l The gradient for p = 2 

/K,g(I) . 1 gi[V Ill2dA, 
0\K 

so 

F(I) = L Qz { (Dfup !)2 + (Dfup 1)2} . 
l 

Hence 

. ;~(I)= Lg~a~k { (Df"PJ)2 +(Df"PI)2} 
l ' 

= 2 L Qz { ( Dfup I) D~up + ( nrup I) nr;p} ' 
l 

23 



so 

(6) 

with 

An (I) = diag( nxup I) nxup + diag( DYUP I) DYUP. 

Suppose there are no edges and we set g = 1. Then 9x = 9y = 0 and 

nxup = n-x, flYUP = n-Y. We have diag(n-xl)Tg = diag(D-XI)Q = n-xi, 

diag(D-Y I)Tg = diag(D-Y I)Q = n-y I and so 2An(I)Tg = 2 ( (n-x)T n-x + (D-y)T L 

which is a discretization of -2~I. In that case, our method reduces to image 

processing via the heat equation, as expected from ( 1 ). 

B.2 The gradient for p = 1 

so 

F(I) = L 9zV(Dtupi)2 + (Dfupi)2; 
l 

Hence 

so 

where 
An(I) = diag(Dxup I)Dxup + diag(Dyup I)Dyup 

as in the p = 2 case and 

Ad( I) = { -j(Dt"p 1)2 + (D["P !)
2

} :: = IIV"P Ill 

We deal separately with the case when the denominator Ad is zero. 

24 

(7) 



@t*'!l§f:.=tij' ~ ~;Jjj~IH:ij I=J:II*;i!j::iiY31"J 00!.®1l•l~mb ~ 

1§013 ~ ~ 0 f!lj#13:1UJ~o ~ ~ 
0 




