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Abstract

We present a new idea for image filtering in computer vision. Thinking of edges as disconti-
nuities in the image necessitates the use of specialized discretizations of partial differential
operators that are consistent with the presence of such discontinuities. We discretize the
partial differential operators based on upwinding on the gradient of an edge-indicator. Since
this gradient points towards edges, no differences are computed across edges, explicitly in-
troducing jumps in the image at the edges, while still allowing diffusion in the direction
perpendicular to the edée. The explicit treatment of discontinuities leads to rapidly emerg-
ing edges and also allows the use of an absolute stopping criterion based only on the energy
in smooth regions of the image.



1 Introduction

An image is given as a non-negative gray-level function I, : @ — Ryo, where the image
domain 2 is a rectangle. The image is noisy so that VI, need not exist at any point
(z,y) € Q. The imaging device creates images with a finite range of gray values, and since
) is bounded this implies that I, € L%(Q).

The edge enhancement problem (EEP)! consists of computing a decomposition {£2;}
of the domain Q = Q;U. ..Uy and computing an enhanced image I, so that I, “is similar to
I,”, varies smoothly and slowly within each €2; and discontinuously on (part of) the boundary

of the ;. Boundaries of the homogeneous regions 2; that are not part of the boundary of
Q are called edges.

The image segmentation problem (ISP)*! consists of computing a decomposition {£2;}
of the domain = €; U ... U Qy and computing a segmented image I, so that I, “is
similar to I,”, constant within each 2; and discontinuous on the boundary of the ;. A
segmentation is a piecewise constant edge enhancement, but an edge enhancement is usually
not a segmentation.

An enhanced image I, may be viewed as the image of I, under a map that takes functions
without derivatives and maps them into “nearby” functions that have derivatives almost
everywhere, i.e. from L%(Q) — H'(Q). The non-differentiability in the enhanced image
occurs exactly across the edges. Our view is inspired by previous work on introducing
discontinuities into solutions of elliptic boundary value problems in [13, 12], and similar to
ideas presented in [3]. Liang and Wang [3] observed that a binary diffusion coefficient results
in a method that “is simple to implement and analyze, and avoids difficulties and problems
asscociated with nonlinear diffusion”. We agree with this view, but wish to point out that
the main difficulty with their, our as well as with all previous approaches is to decide where
to suppress the diffusion. Once this is decided, [3] and our own work indicate that it is
possible to avoid nonlinear diffusion and compute enhanced images much more quickly than
previously\ possible. Our approach differs from [3] in how we decide the locations where to
completely disable diffusion, and keeping linearized anisotropic diffusion in the sense of [1] in
regions where we are not sure about the edge-detection. Ih particular, our diffusion coefficient
is not binary as in [3], but does take on the value zero, different from [9]. Previous spatial

difference operators, [9, 1, 7, 4, 5], implied the smoothness of the enhanced image across edges

1Definitions adapted from Mumford and Shah [6].



because differences were taken across the edges, which resulted in slow convergence to the
desired goal of sharp edges. We will show by a simple example algorithm how it is possible
to rapidly compute enhanced images with truly discontinuous edges by introducing explicit—
jump differential operators. In particular, we will demonstrate on real examples
that our method is 10 times faster than shock filtering [7] and how it helps
with edge detection.

Besides the implied smoothness of the enhanced images, earlier methods
also have the difficulty of determining when to stop the diffusion process
[9, 1, 7]. In [4] a denoising method with a defined stop criterion has been
proposed.

Our explicit treatment of discontinuities allows the use of an absolute
stopping criterion that is independent of the amount of noise in the original
image I,. Our criterion is related to the total variation of the image; see
e.g. Vogel and Oman, [11]. But instead of computing the total variation
everywhere, by using our discretization we only compute the variation on
smooth portions of the image.

In the next sections we define what we mean by an explicit—jump mul-
tiscale analysis, give the details of the implementation of the explicit jump
differential operators and examples of enhanced images under a simple algo-

rithm.

2 The method

Following earlier work [1] (add more references here!), we use
_ 1
L+ (¢/8)”

Here (3 is a parameter that selects the contrast, ¢ is the variance of the

9(&) Iy = (Go x L), and G(z,y) = g([IVL]).

Gaussian
_exp(—(z* +9%)/0?)

G, =
o/




(o is also called the scale), I; a smoothed version of I, (computed via heat-
flow, an idea usually attributed to Koenderink [2]; see also next section) and
G an edge indicator for I,. G has small positive values for large gradients and
values close to 1 for small gradients. This behavior is reversed from other
edge indicators as for example in [15]. The negative gradient of our edge
indicator, —V§, points toward edges.

Suppose that K is the set of edges determined? by —VG and let

fro(l) = /Q gIvipa (1)

We call (fxg(! ))1/ P the p-energy of I with respect to K and G. Usually, we
consider p = 1 or p = 2. An image with reduced energy, i.e. frg(I) < fx.g(lo)
is called edge enhanced, an image with zero energy, i.e. fxg(I) = 0 is called
a segmentation® of I,. In this paper, we focus on (EEP), while [14] deals
with (ISP). Edge enhanced images may be discontinuous on the edge set K,
independent of p.

We call the reduction of (1), starting from I, and preserving the integral?
of the image on each {2;, an ezplicit—jump multiscale analysis.

We use the energy fx 1(I) as an absolute stopping criterion for the explicit—
jump multiscale analysis. It takes into account only the variation of an image
in smooth regions, and we will give an example showing that this can be
explored to devise a method that automatically adjusts to the amount of noise
in an image. The following results show that decreasing fx ¢ also reduces the

energy fka.

Lemma 1 For any G > 0, the only local minimizers of (1) are the global
manimizers of (1). These global minimizers are the edge-conforming segmen-

tations 1., i.e. 1mages that are constant on each of the ;.

2We make this determination precise for the discretization of the problem in the next section.
3K induces a decomposition = ; U... U N, and fx g(I) = 0 implies ||VI|| = 0 on each of the ;.
4This property is often referred to as conservation. It is necessary for causality of the method.



Proof. The edge-conforming segmentations are global minimizers, because
frg(I) > 0for any K,G and I, and fxg(I.) = 0 if I, is a segmentation that
conforms with the edge set K.

Suppose that I is a minimizer of fx g, but not constant on at least one of
the €2;. Then

/ GIV(I — eI)|PdA = (1 — ) / gIVIrdA < [ GIvI|PdA.
K K O\K

Since we can choose € arbitrarily small, in any neighborhood of I we can find

an image (I —el) that has a smaller energy, which contradicts the minimality
of I. [

Corollary 1 To reduce the energy fx 1 belowe, it suffices to reduce fx g below

G, where G is a lower, positive bound for G.

Corollary 2 The limit of any explicit—jump multiscale analysis is the unique
segmentation that preserves the integral on each of the €;.

A strength of our method lies in preserving edges in two ways. Wherever
we have detected an edge and placed it in K, the enhanced image will be
discontinuous. But even if we have missed to put an edge in K, if G is
small near this edge, the enhanced image will be fairly sharp because the
minimization favors images with more smoothing in areas where G is large
than in areas where G is small. This latter effect is called anisotropic diffusion
and was introduced in the case p = 2 by Perona and Malik; see for example
[9]. For p =1 it was later used as “image selective smoothing” by Alvarez,
Lions and Morel, [1].

The explicit—jump multiscale analysis behaves very similarly for p = 1 and
p = 2 (images are smooth inside €2;, but not across K). This stems directly
from our explicit introduction of discontinuous edges. Without discontinuous
edges the behavior is very different as outlined in [8]. The benefit is that for
p = 2 the Euler-Lagrangian of (1) is a linear equation. Fast methods for that
particular case will be described elsewhere, in the case of segmentations in
[14].



3 Discretization

We introduce a variable for every pixel in the (m x n) pixel image I,. The
variables are ordered from left to right then top to bottom into the vector
Ip = {In;}": where l = (i—1)n+jfori=1,... , mand j=1,...,n. See
also Figure 16 a) for an example.

3.1 The edge indicator

The computation of the edge indicator G requires a smoothed image I;. We
find I, as follows:

I, = (T + dtA)* 1,

where 7 is the identity, dt is the time step, k the number of time steps, A
is a centered difference approximation® of the Laplacian with zero Neumann
boundary conditions (see Appendix A), I, is the image with pixels ordered
in the above sense and o = 2v/kd?. Then

Gi=g (\ﬁDfIS)Z + (Dgfls)2> ,

where D* and DY are centered differences with zero Neumann boundary

conditions in the z and y directions respectively. Subscript [ indicates the
pixel where a variable lives or where an operator is to be evaluated, for a

matrix this means the row.

3.2 Upwind discretization of the gradient

We discretize VI in (1) by upwinding (borrowed from level set methods and
ultimately from hyperbolic conservation laws, see [10]) on —VG = — (G;, Gy),
which is found by applying centered differences. Let D™*, D™Y be backward

differences in the x and y directions with zero Neumann boundary conditions,

5All difference approximations of differential operators need to comply with our pixel ordering. As linear
operators on vectors, they can be realized as sparse matrices of dimension mn x mn.



respectively, and D** DY forward differences in the z and y directions with

zero Neumann boundary conditions. Define the upwind gradient
VI, = (D*P[,, DY*PT})
where®
D** = diag(X(-00,0(F2)) D™ + diag(X(0,00)(Gz)) D,
DY = diag(X(-c0,0)(Gy)) D™ + diag(x(0,00)(Gy)) D™.

Here diag(V') is the mn X mn matrix with the elements of the mn vector V

on its diagonal and xgq is a characteristic function, i.e.

_J 1 for (e
XQ(Q"{O for ¢ & Q.

The above definitions introduce an arbitrary preference for backward differ-
ences where GG is constant. This could be avoided by using centered differ-
ences in that case, but centered differences have the drawback of widening
the stencil and decoupling the center point.

3.3 . Discretization of the energy

The integral in (1) is discretized with:
F(In) = 6A)  fila) =64 ) GIV/"Li|" (2)
! !

Here 0 A is the area of a single pixel. We ususally assume 64 = 1.
For a descent method for (2) we need the gradient with respect to the
discrete variables

V]Fzzvlfly (3)
l

Vi= {a(i» }:n ‘

6

where
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Figure 1: Upwind scheme for the function f;. Arrows represent the vector field —VG, *
indicates the location where f lives and < marks the stencil of f;.

t—1 ) t+1

- \ &o \ °
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Figure 2: Stencil of the discrete gradient (4) away from edges. () is the point of computation
of the gradient, % is the location of the f; that depend on the value of I at (). < indicate
the stencils of the f;. The stencil of the gradient is the union of <.



j+1 \0\0

Figure 3: Stencil of the discrete gradient close to an edge (bold line). The notation is the
same as in Figure 2.

1 \°

Figure 4: Stencil of the discrete gradiéent close to a corner (bold line). The notation is the
same as in Figure 2.



Each nonlinear discrete function f; depends only on the value of the Ith

pixel and its 4 spatial neighbors, that allows to rewrite (3) as local conditions

Ofiv1;  Ofic1y  Ofij+1 . Ofij—1 . Ofi;
‘v zF — a.] 1 aJ 7’7]+ 7'1.7 7".7 4
1t =g T 7aL. a1, ' oI, ' oL, (4)
fori e {1,2,... ,m}andj € {1,2,... ,n} where we have written the formulas

in 2D pixel coordinates for clarity. Each derivative is evaluated analytically

(see Appendix A) or approximated by finite differences as

0fe  folliy +€) — fulliy)
BIM € .

The approximation has the benefit of being fast and automatic, indepen-
dently of the choice of p in (1). The loss of accuracy using the above approx-
imation compared to the analytic derivatives in Appendix B was negligible.

Upwinding deals with the edge set K in an automatic way. Since no
difference is taken across K, we do not require any smoothness across K;
jumps are explicitly allowed and discontinuous edges are possible. Figure 1
shows the stencil for f; at the pixel . Recall that f; = ||V,*I;||” and note
that the ¢ symbols indicate the stencil for the upwind gradient and hence for
fi. In Figure 2, the (O symbol marks the location where we compute V F.
The * symbols mark the pixels such that f; at these pixels depends on the
value of I at () and the ¢ symbols indicate the union of the stencils for
these f, i.e. the stencil for V;F' in (4) at the point (0. In Figure 3 and
Figure 4, the notation is the same. The value of V;,;F' depends on fewer
pixels, because fewer f; depend on the (O pixel. Discontinuous edges are
possible because by construction the computation of V;;F' does not

involve pixels on the other side of an edge.

5The upwind direction needs to be computed slightly differently at the left and upper image boundaries.

~



3.4 Numerical Scheme

As the simplest example of an explicit—jump multiscale analysis of (1) we
flow (4), which correponds to the steepest descent method for (2)

OL; _ (afi+1,j N Ofi-1; | Ofijn i Ofij-1 L afi,j) - (5)

ot 8[,-,j 8Ii,j i alz’,j 8Iz',j al’i,j

-

The stencil of (5) is space-variant (but not time-variant) and depends on the
upwinding direction —V G, as explained before.
The formulation of (1) as a discrete minimization problem allows flexibility

and many choices of optimization method different from (5).

4 Examples

All examples are computed based on (5) with p = 1 unless otherwise noted.

At and k in the calculation of the smoothed image I vary between examples.

4.1 Deblurring

Figure 5 a) shows a piecewise constant gray-scale image after strong blur-
ring. Figure 5 b) shows the effect of 15 iterations of explicit—jump multiscale
filtering. Two effects are noticable. Edges are mostly sharp and pixelized,
but a little more blurred where edges intersect. The first effect is created by
the fact that edges exist between pixels and hence are always horizontal or
vertical. The second effect demonstrates that even when we “miss” an edge,
the small values of G lead to “slow leaking” (using anisotropic difusion) across
the edge. Figure 6 shows the edge—indicating vector field computed from a
section of the image in Figure 5 a), but shown on the original (unblurred)

image. Arrows correctly point towards edges in the original.

10



a) b)

Figure 5: a) A pleccwise constant image after

strong blurring. bh) The image from a) after
L5 alerations eaplicit Jump multiscale fitltering.

=S — T .
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- T e
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¥ g g o
80 ’/'/,//,H
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FE e
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TS LR
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Figwre 6: 71, {(///(‘—/7////(':'/1///_// vector ficld —VG (arrows) is computed from G based on the

blurred image, but shown on the original (unblurred) image. Arrows correcily point towards

cdges in the original.
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a) b

Figure 7: a) The same piecewise constant image as in Figure § a), but in the presence
of zero-mean Gauissian noise instead of blurring. The image from a) after explicit—jump

multiscale filtering.

4.2 Noise removal

Figure 7 a) shows the same piecewise constant gray-scale image with addi-
tive zero-mean Gaussian noise. Explicit—jump multiscale filtering produces
Figure 7 b). The image is very similar to the one obtained from the blurred
image. This is quite intuitive, since the filtering smoothes the noisy image
with a heat equation (“blurs”) first, before computing the edge map, so that
the edge maps are similar except for edges induced by noise in region interiors.

Figure 8 shows how the p-energy with respect to K and G is decreased
during the filtering from Figure 7 a) to Figure 7 b). We see a typical steepest

descent behavior, with vast initial improvements and slow convergence later.

4.3 An absolute stopping criterion

The explicit jump discretization allows to separately measure the energy in

smooth regions and the energy contained on the edges. As an example,




Figure 8: The decrease of the L-cnergy with re spect to K and G for the 15 steps of explicit

Jump multiscale filte ring from Figure 7a) io b).
consider

0.5(z — 0.5) +0. 8(y —0.5)+ 0.5 (x =05,y —0 5)[l2 < 0.3

[(r.y) = ’ - \ o el
0 otherwise .
defined in the unit square (. y) € [0, 1] x 0. [j as shu\\‘n m Figure 9. The
image has edge cnergy U.5m 2 0.9425 and interior \ K-cnergy /025 = 0.64
70.09 ~ 0.2667 (on |(x — 0.5,y — 5)|[o 3). We discretize the unit

square with 128 pixels in each (_Hr(:(‘ti(m. SO Ihc‘ width and height of each
pixel is i = 1/128. For this diseretization, the caleulation of [ IVI]ldA
via Z/__ | (e f ),_,- 2 yields 0.2670. which is correct to three digits.

Next. we show how this may be used to determine a stoppmg criterion in
the presence of noise, without a priori knowledge. Figure 10 a) and h) show
WO noise-Iree images with different geometric bt same texture properties.
The Q\ K-energics are approximately 4.58 (a) and 5.29 (b).

Figure 11 a) and I lgure 12 a) show HOISy images where the clean inmage has
the same statistical pr()pm‘li(\s as the previous clean images. The differenc
the variance of the zero- mean Gaussian noise (0, versus 0.2). which means
that the peak noise o peak signal ratio

max( noise ) — min( noise )

max( signal ) — min( signal )



20 40 60 80 100 120

Figure 9: A piecewise linear gray-level function with edge-energy 0.9425 and 2\ K energy
0.2667, see text for details.

20F ; : 1 20F
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Figure 10: Noise-free images with different geometric but same tewture properties. The
average of their Q\ K energies is used as an absolute stopping criterion for the examples in

Figure 11 a) and Figure 12 a)




60 80 100 120

Figure 11: ) Noisy image with 30% p(:a/.:—n0'/‘5(_—'-f()—pm/;—,s'/‘(/ua/ ratio. b) Image after explicit
Jump multiscale filtering. stopping when the € \ K energy is close to the energy of the clean

tmages in Figure 10,

—

[‘~ TN T

P

Figure 12: q) Noisy image with 609 /m/l.'»//m',w-~/’/»~]/ff//’,'»,w'»(///(// ratio. b) Image after caplicit

Jumnp multiscale Siltering, stopping when the Q\ K cnergy s close to the encigy of the elean

images in Figure (),



a) b)

Figure 13: a) High quality angiography (an artery). b) The image in a) after 500 iterations
of shock filtering.

is 30% and 60%, respectively.

The noise increases the €2\ K energy, where of course G and hence K is
computed based on the noisy image. We reduce the energy to the average
of the energies of the clean images in Figure 10 and recover the images in
Figure 11 b) and Figure 12 b), respectively.

Independent of the amount of noise in the two examples we use the same,
absolute, stopping criterion, which only depends on “statistical” properties,

i.e. a priori information that we have deduced from similar, clean images.

4.4 Shock filtering, L' and L? explicit—jump multiscale filtering.

Figure 13 a) shows a high quality angiography, Figure 13 b) the results of 500
iterations of shock filtering ([1]) with largest stable time-step. Figure 14 a)
and b) show the results of 30 iterations of explicit—jump multiscale filtering in
L' (p=1)and L? (p = 2). The edges are even sharper and found much more
quickly than for the shock filtering, while the results are fairly independent

of p.

16




o b)

Figure 14: a) The tmage from Figure 19 q) after 30 iterations of explicit-jump multiscalr
Jiltering with p = 1. b) The mmr/( from Figure 13 q) after 30 iterations of cxplicit- jump

mulliscale filtering with By =
4.5 Future Improvements

The reason slightly blurry regions oceur for example in Figure 5 D) lies in the
unreliability of VG near cdge crossings, usually referred 1o as T-junctions.
The vector field near a T-junction is shown as arrows 1 Figure 15 and is
seen to be pointing correctly towards the edges away from the T-junction.
but is not exact at the T-junction. Possible approaches to improve this nmay
lic in using gradient, vector Aow ([15]) or subpixel resolution to mprove the
(uality of the vector field.

Another improvement lies iy using the magnitude and not Just the diree-
tion of —=VG. lor example in Figure 10 a) and b), edges are detected not
Just on the boundary of the disk. but also between stripes. The magnitucle
ol =V @G could be used in this case to exclude the edges.

Based on p = 2. an extre mely fast segemtation algorithimn is in preparation

[14].



Figure 15: The edge-indicating vector field =V G (arrows) near the intersection of two edges.

Arrows correctly point towards edges, except close to the intersection.
5 Conclusions

We introduced a method to perform image filtering by considering edges as
image discontinuities. Spatially varying difference operators explicitly allow
jumps in the image. This yields enhanced images with extremely sharp edges
after very few iterations. The separation of energy into edges and smooth
regions allows the use of an absolute stopping criterion, independent of the
amount of noise in the original image.

We believe that explicit jumps can be built into many image processing
schemes and may be important in the future in devising fast pde based meth-

ods.

18
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A Finite differences as sparse matrices

We implement a finite difference approximation of a differential operator
acting on an image as the application of a matrix to a vector. In addition to
the stencil, we need to know the ordering of the entries of the image into the
vector and the boundary conditions. For example, consider the image from
Figure 16. The entries are ordered in the convention of the C programming

language. Let h denote the mesh spacing, usually 1.
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a)

Figure 16: o) 3 x 4 gray-value image with preel ordering. b) Edges (black
vanishing portions of —v

mnoa).

lines) and non-

G (white arrows) computed with almost no smoothing for the image

a) Implement Al /0 by lorward differences. with Newmann boundary con-
ditions affect ing the diseretization at the right boundary:

-1 1 0 0
, B 0 0
0 —1 1 0 o
B = D™"==—10 B 0
0 0 =1 /
0O 0 B
0O 0 0 0

In general. for an m x n Image B is an n x n mat

rix with —1 on the
diagonal. 1 above the diagonal

and zero last row. [t

1S an 1mn X mn
maltrix and has m blocks B on the d

lagonal.
b) Implement ¢/, dy by backward differences. with Newmann boundary

conditions affecting the discretization at the top boundary:

L 00 0 _
(0 () ()
O 1 00 o 1 , \
B, = DY = ~B, B, 0
00 1 0 h )
0 —B B
00 0 1



In general, for an m x n image B is the n-dimensional identity matrix.
DY is an mn x mn matrix with n rows of zeros, m — 1 blocks B; on the

diagonal and m — 1 blocks —B; below the diagonal.

Backward differences in x and forward differences in y are analoguous. These
differences can be combined into higher order differences, for example (D~*)T D=2+
(D=Y)TD~Y = A (all difference operators discretize differential operators as
well as first order zero Neumann boundary conditions).

The discretization of the upwind operators for the simple image in Fig-
ure 16 a), based on G obtained with minimal smoothing and —(G;,G,) as
shown as white arrows’ in Figure 16 b) is given below. Some features are
notable: Rows 1,5 and 9 of D**? (rows 1,2 and 4 of D¥*P) use forward differ-
ences instead of backward differences even though G; =0 ( G, = 0). This is
due to the modification of the upwind operator at the boundaries. At the 8

and 12 pixels, no difference in x is taken. No difference in y is taken at the

3 pixel.
(-11 00 0 000 0 000)
~11 00 0 000 0 000
00-11 0 000 0 000
00-11 0 000 0 00O
00 00 -1 100 0 000
e 00 00 -1 100 0 000
00 00 0-110 0 000
00 00 O 000 O 00O
00 00 O 000 -1 100
00 00 O 000 -1 100"
00 00 O 000 O0-110
\ 00 00 0 000 0 000)

7"We use zero Neumann conditions in the calculation of —VG.
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(-1 00 0 1 0 0 00000)
0-10 0 0 1 0 00000
0 00 0 0 0 0 00000
0 00-1 0 0 0 100700
-1 00 0 1 0 0 00000
Cpme_| 0-10 0 0 1 0 00000
| 000 0 0 0-1 00010:
0 00-1 0 0 0 10000
0 00 0-1 0 0 01000
0 00 0 0-1 0 00100
0 00 0 0 0-1 00010
\ 0 00 0 0 0 0-1000T1)

B Analytic derivatives

The analytic derivatives below can be used quite efficiently using sparse ma-

trix techniques. .

B.1 The gradient for p = 2

froll / GV I|2dA,

SO

= > a{op*n® + (o
l
Hence

| 8Ik Zgl o, {DW’I) +.(D;’“p1)2}

=2 Z G {(D‘”“pl) Dy® + (DY*PI) Dy"‘p ,
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SO ,
ViF(I) = 24,(D)¥g, (6).

with . |
An(I) = diag(D*¥PI) D™ + diag(DY*PI) DYV*P,

Suppose there are no edges and we set G = 1. Then G; = G, = 0 and
D = D=2 D¥* = D7¥. We have diag(D2I)TG = diag(D~*I)G = D*I,
diag(DYI)TG = diag(D~Y1)G = D~¥I and s0 24,(I)TG = 2((D‘$)T D%+ (DY) I
which is a discretization of —2AI. In that case, our method reduces to image

processing via the heat equation, as expected from (1).
B.2 The gradient for p =1

fral / GIVI|tda,

SO
Zgz\/ DP**I)? + (DY*PI)*:
Hence |
' TUp 7\2 yup 1\2
8Ik Zglaz V@Dt + (oD
_ Z g, (PU"D) Di? + (DI**D) Dg/,;‘f’,
V(DF?1)? + (D)
S0
VIF(D) = A1) ((ding(Ad1)) G, (7)
where \

An(I) = diag(D™I) D™ + diag(D¥**I) D¥**

as in the p = 2 case and
mn

{\f (DPP1)? 4 (DY*7]) } — ||v*I].

I=1
We deal separately with the case when the denominator Ag is zero.
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