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Abstract 

A unified statistical theory for bimolecular chemical reactions is 

developed. In the limit of a "direct" mechanism it becomes the usual 

transition state theory, which is correct for this situation, and if the 

reaction proceeds via a long-lived collision complex it reduces to the 

statistical model of Light and Nikitin. A general criterion for locating 

the "dividing surfaces" that are central to statistical theory is also 

discussed. This prescription (Keck's variational principle) is shown 

not only to locate the usual dividing surfaces that pass through saddle 

points and minima of the potential energy surface, but it also selects 

the critical surfaces relevant to the "~rbitting" and "non-adiabatic 

trapping" models of complex formation. 
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I. INTRODUCTION. 

1-5 6 Recent work on the transit.ion state theory of chemical reactions 

has exploited the fact that the fundamental dynamical assumption of transi-

tion state theory is that the reaction mechanism is "direct". Within the 

framework of classical mechanics this means that transition state theory 

is a·ctually exact if there exists a surface, that divides reactant and 

product configuration space, through which no classical trajectory passes 

7 more than once. Furthermore, for a simple reaction with a single saddle 

point separating reactants and products--such as the prototype H + Hz + 

Hz + H reaction--this assumption of direct dynamics is indeed true for 

energies not too far above threshold. 1
'
8 Progreso has also been made in 

constructing a fully quantum mechanical version of this model which, unlike 

the conventional quantum mechanical version of transition state theory, does 

' . 3-5 not require the Hamiltonian to be separable about the saddl'e po1nt. 

All reactions are not "direct", however; many of them proceed by 

9 "complex" mechanisms, i.e., they form long-lived collision complexes. 

Within the framework of classical mechanics this corresponds to classical 

trajectories that undergo a number of oscillations back and forth through 

the interaction region, and it is intuitively clear that in this situation 

there is no "dividing surface" through which all trajectories pass only 

once. The fundamental dynamical assumption of transition state theory is 

thus not valid. 

There do exist statistical theories which are designed especially for 

describing "complex" reactions, the best known of these being associated 

with the work of Light
10 

and Nikitin. 11 Because ~his approach explicitly 
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incorporates the assumption of a long-lived collision complex, however, 

it becomes inapplicable when the reaction dynamics is "direct". 

There are thus two kinds of statistical models for bimolecular 

reactions, transition state theory6 which is appropriate for "direct" 

10 11 
reaction dynamics, and the phase space theory ' for "complex" 

reactions. The purpose of this paper is to construct a unified statistical 

theory which includes both of these models in the appropriate limiting 

cases. 

This unified statistical theory is developed in Section II,and Section 

III discusses a general criterion for defining the "dividing surfaces" 

which separate reactants from products, or reactants and products from 

collision complexes. In addition to the simple case of a dividing surface 

through a saddle point or a minimum in the potential energy surface, the 

general criterion discussed in Section III is also shown to yield the 

dividing surfaces that are relevant to "orbitting" and "non-adiabatic" 

collision complexes, situations fo·r which there are no actual saddle points 

on the (static) potential surface. 
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II. UNIFIED STATISTICAL THEORY. 

For simplicity of presentation the initial development below (Sections 

Ila-lld) does not take explicit account of total angular momentum conserva-

tion; Section lie gives the modifications of the final expressions that are 

necessary to take this into account. Also for simplicity, the figures are 

all drawn for the case of a collinear A + BC ~ AB + C reaction for which 

there are only two degrees of freedom. Sections Ila and lib first summarize 

6 the usual transition state theory for "direct" reactions and the phase 

10 11 
space theory ' for "complex" reactions, respectively, and Section Ilc 

then constructs their synthesis. Classical mecha"flics is assumed throughout 

the paper although in most instances it is clear what the corresponding 

quantum mechanical expressions are. 

a. "Direct" Mechanism 

Figure 1 shows the sketch of a potential surface with a single saddle 

point separating reactants and products, the type for which the reaction 

mechanism will be "direct" at low energy. Transition state theory gives 

the rate constant for this reaction as12 

(2.1) 

where "a" and "b" denote reactants and products, respectively, Q is the a 

partition function per unit volume for non-interacting reactants, E is 

the total energy, and N (E) is (proportional to) the microcanonical 
0 

average of flux through the "dividing surface" S 'shown in Figure 1: 
0 
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(lf (lf 

N (E) 
0 

~·p/]J h(_E.•p) • (2. 2) 
oq - Clq -

In Eq. (2.2) H(£,~) is the total (classical) Hamiltonian function, f0 (~) 

is the function of coordinates which defines the dividing surface S
0 

via 

the equation 

s : f (q) 
0 0 -

0 

and h( ) is the unit step function, 

h(x) 1, x > 0 

0, X < 0 

( 2. 3) 

F is the number of degrees of freedom, and (p,q) = (p.,q.), i = 1, ... , F 
1 l.. 

are the cartesian coordinates of the system; for the collinear system 
Clf 

illustrated in Figure 
df 

. f 0 • expressJ..on or ~ 1n 

1 F = 2. The factor ~·p/]J in Eq. (2.2) is the 
oq -

terms'of the cartesian coordinates and momentum 

(p,q); if it should be more convenient to choose non-cartesian coordinates - -
and momenta in order to evaluate the phase space integral, then this factor 

is given more generally by 

Clf 
~ f ( ). o ClH{1a,g) 
dt 0 ~ = :f<l . Clp 

For interpretational reasons it is useful to multiply and divide the 

integrand of Eq. (2.1) by Na(E), so that it reads 

~+a (2. 4) 
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with 

Ph (E) - N (E)/N (E) 
+a o a: (2.5) 

where N (E) is the microcanonical flux through the surface S (cf. Fig. 1) 
a a 

which lies far out in the reactant region. N (E) is given by an expression a 

identical to Eq. (2.2) with f (q) replaced by f (q), the function which 
o - a -

defines surface S via the equation 
a 

s : f (q) = 0 
a a -

(2.6) 

Pb (E), defined by Eq. (2.5) as the ratio of reactive flux to incident 
+a 

fl h h . . f . b b "1. 13' 14 ux, as t e 1nterpretat1on o an average react1on pro a 1 1ty. 

It is useful to note that the flux integrals N and N introduced · o a 

above have an alternate, more common interpretation than that of micro-

canonical flux through surfaces S and S . Thus consider the generic 
o a 

expression for N or N , 
o a 

N(E) 
of 3f 

6[E-H(p, 9)J o[f(q)] --•p/~ h(--•p) 
-~ ~ - oq - aq - (2. 7) 

Let the coordinates q = {q.}, i = 1, •.• , F be chosen so that qF measures 
- 1 

distance away from the surface, and {q.}, i = 1, ... , F-1 measure displace-
1 

ments on the F-1 dimensional surface. The function f(q) is then given by 

f(q) = q (2.8) 
- F 

and in properly scaled coordinates the Hamiltonian is 

2 
PF 

H(p,q) =ZiJ+ (2.9) 
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so that Eq. (2.7) becomes 

N(E) h-(F-1) ~~~~~~~PF~qF I I 

o[E-HF-l (~ ,~ ) 

p 
x o(qF) <:) h(pF) (2.10) 

I I 

where (p ,q ).= (pi,qi)' i = 1, ..• , F-1 and HF-l is the Hamiltonian 

th with the F-- degree of freedom removed, i.e., the Hamiltonian on the 

surface: 

I I 

HF-1(~ ·~) 
2 

pi /2ll + V(ql' ••• ' qF-1' 0) (2.11) 

The integrals over qF and pF are trivial, and one obtains 

I I 

h[E-HF-l (£ ,~ )] (2.12) 

which is recognized as the microcanonical partition function--i.e., the 

number of quantum states with energy less than or equal to E--for the 

reduced system of F-1 degrees of freedom. This identification of the flux 

integral N(E) as the number of quantum states (in the .statistical mechanical 

sense) on the dividing surface--which is only rigorously valid within classical 

mechanics--is also the way in which these statistical theories are usually 

"quantized": Eq. (2.12) is replaced by counting discrete energy levels to 

determine the number of quantum states with energy below E. 

B. "Complex" Mechanism 

Figure 2 shows the sketch of a potential energy surface that has an 

attractive well in the A-B-C region of configuration space, corresponding 
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... 

to a stable triatomic molecule. In Fig. 2 this region of the collision 

complex is separated from reactants and products by two saddle points, 

but the following analysis also applies if there are no such saddle points, 

i.e., if the potential surface is monotonically "downhill" from reactants 

and products toward the well. 
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10 11 The "phase space theory" ' for describing collision complexes 

has the form of competing first order rate processes. The rate constant 

is given by an expression similar to Eq. (2.1) with the flux integral 

N replaced according to 
0 

N (E)--~ 
0 

N1 (E) N2(E) 

Nl (E)+N2 (E) 

where N
1 

and N2 are the flux integrals through surfaces s1 and s2 

(cf. Fig. 2), respectively; 

00 

(27rll Q ) -l l:dE 
a 0 

-E/kT 
e 

N1 (E) N2(E) 

N
1

(E)+N2 (E) 

(If there are no saddle point regions separating the well in the 

potential surface from the asymptotic regions, then the surfaces 

s1 and s2 are shifted to their asymptotic regions, i.e., s1 -+ Sa, 

s2 -+ Sb, so that in Eq. (2.14) N1 -+ Na, N2 -+ Nb.) It is customary 

in the statistical model of long-lived collision complexes to think 

(2 .13) 

(2.14) 

of N1 and N2 as the number of internal states on surfaces s
1 

and s2 , 

but as noted in the last paragraph of Section IIa, this is equivalent 

to their interpretation as fluxes. 

Again, for interpretational reasons, one multiplies and divides 

the integrand in Eq. (2 .14) by common factors, so that the rate constant 

in Eq. (2.4) is given by Eq. (2.4), but where the net reaction probability 

is now given by 

p p 
b+-x x+-a 

p +P 
b+x a+x 

(2.15) 
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where 

(2.16a) 

P a+x (E). N1 (E) /Nx (E) (2.16b) 

(2.16c) 

N
1

, N2 , and Nx being the flux integrals through surfaces s1 , s2 , and 

Sx' respectively, in Fig. 2. Px+a' Pa+x' and Pb+x have the inter­

pretations of the probability of reactants "a" forming a collision 

complex "x", the probability that the complex decays back to reactants, 

and the probability. that the complex decays to products "b", respectively. 

(Note that the flux integral N actually cancels out in the equation for 
X 

Pb+a') The net reaction probability Pb+a thus has the usual form
15 

of 

the probability that reactants from a collision complex, P.~ , times 
, ..1\.'a , 

the branching ratio Pb+x/(Pb+x+Pb+x) for the complex breaking up to 

give products. 

c. Unified Theory 

To summarize the results of Sections Ila and lib, the rate constant 

is in general given by 

(2nh Q )-l ldE e-E/kT P (E) N (E) 
a 

0 
b+a a 

(2. 4) ; 

where in the "direce• case one has 

pdirect = (N /N ) 
b+a o a (2.5) 



lJ u 

and in the "complex" case 

pcomplex = 
b+-a 

pb+-x p x+a 

pb +P +-x a+-x 

(N/Nx) (N1/Na) 

(N2/N)+(N1/Nx) 

I 
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(2.15) 

I 

(2.15 ) 

where the various ~lux integrals N(E) are all of the form of Eq. (2.7) 

for the various surfaces indicated in Figures 1 and 2. 

P~!~ect in Eq. (2.5) is clearly inapplicable to the "complex" 

situation, and Pcomplex in Eq. (2.15) is also incorrect in the "direct" 
b+-a 

limit. To see this, suppose the potential surface in Fig. 2 is distorted 

so that the well is raised and the saddle point through which s2 passes 

is diminished, so much so that the well and saddle point merge and disappear. 

In this limit the potential surface reverts to one with a single saddle 

point, i.e., the "direct" type in Fig. 1; surfaces s2 and Sx in Fig. 2 

merge so that N2 = Nx' and N
1

, the flux through the remaining saddle 

point, is what is designated N in Fig. 1. The reaction probability given 
0 

I 

by the "complex" prescription in Eq. (2.15 ) thus becomes 

Pcomplex 
b+-a 

(l)(N /N) 
-+ o a 

1 + (N /N ) 
o a 

which is not the correct result, Eq. (2.5), for the "direct" case. 

(2 .17) 

Ihe reason that Eq. (2.15
1

) fails in the "direct" limit is clear--the 

existence of a long-lived collision complex necessarily implies that 

pbJ.-r' p << 1 . .., a+-x (2 .18) 
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otherwise the collision complex would not be long-lived. In the "direct" 

limit considered above, however, Pb+x + 1, which is physically correct 

but which violates Eq. (2.18), an assumption implicit in Eq. (2.15). 

To construct a theory capable of describing both "direct" and "complex" 

limits, therefore, it is necessary to define a net reaction probability 

P that is valid for all values of P , P , and Pb between 0 and 1. b+-a x+-a a+x +x 

This is accomplished by using the probability branching analysis of 

16 
Hirschfelder and Wigner. A sketch of the branching picture is given 

·in Fig. 3, and the net reaction probability is the sum of the reaction 

probabilities for all the possible branches: 

00 

pb+-a 1t~ pb+-x (1-Pb+-x)n (1-Pa+-x)n px+-a (2.19) 

th . 
The n-- term in Eq. (2.19) corresponds to a collision complex that 

has survived n oscillations back and forth between surfaces s
1 

and 

s2 ; the probability of this branch is the product of the probability 

of forming the collision complex from reactants, Px+-a' the probability 

that the complex does not decay to reactants or products on n encounters 

n n 
at surfaces s1 and s2 , (1-Pb+-x) (1-Pa+-x) , and the probability that the 

complex decays to products, Pb+x" This geometric series is easily summed 

. 16 
to g1.ve 

pb+a = 
p p 

b+-x x+-a 
1~(1-P )(1-P ) b+x a+-x 

p p 
b+x x+-a 

p +P - p p 
b+-x a+-x b+-x a+-x 

(2.20a) 

(2.20b) 
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The Appendix shows that Eq. (2.20) also results from a WKB treatment of 

transmission through a double barrier potential. 

Eq. (2.20) is seen to differ from Eq. (2.15) only by the term in 

the denominator which is quadratic in probability. For a long-lived 

collision complex, for which Eq. (2.18) holds, this quadratic term 

will be neglible compared to the two linear terms, so that Eq. (2.15) 

is recovered in the "complex" limit. On the other hand, in the "direct" 

limit described above--for which N2 + Nx so that Pb+x + 1, and N1 = N
0
--

Eq. (2.20) gives 

(N /N ) o a 

which is Eq. (2.5), the correct result for the case of a "direct" reaction. 

Eq. (2.20), therefore, is the desired result; it reduces to the 

correct "direct" and "complex" expressions in the appropriate limits. 

Inserting Eq. (2.20) into Eq. (2.4) gives the following expression for 

the rate constant in this unified statistical theory: 

and one sees that, unlike Eq. (2.14), the flux integral N (E)--the flux 
X 

"out of" the collision complex--,does not cancel out in this more general 

expression. 
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d. Collinear Harmonic Case 

In many actual applications of these statistical expressions the 

flux integrals N(E) are evaluated by approximating the potential surface 

as quadratic about the saddle points (and minima). Thus it is interesting 

and illustrative to see the explicit form taken by the reaction probability 

in the simplest case, a collinear A + BC + AB + C reaction within the 

harmonic approximation. 

In this case the generic flux integral N(E) is 

N(E) = (E-V)/hw (2.22) 

where Vis the potential energy of the saddle point (or minimum), and 

w is the harmonic frequency for the direction along the relevant surface 

S, i.e., for the vibrational motion perpendicular to the reaction 

coordinate. 

For the case of a single barrier, as in Fig. 1, transition state 

theory, Eq. (2.5), thus gives 

w E-V 
a o 

w · E 
(2.23) 

0 

where w and w are the vibrational frequencies of the reactant molecule a o 

BC and the symmetric stretch of the "activated complex", respectively, 

V is the potential energy of the saddle point, and where the zero of 
0 

total energy is chosen as the bottom of the reactant valley. Eq. (2.23) 

is a well-known result. 13 ,l4 

For the potential surface sketched in Fig. 2, which has a stable 

collision complex separated from reactants and products by saddle points, 
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I 
the phase space model for a long-lived collision complex, Eq. (2.15 ) 

gives 

with 

w 
pcomplex = --~a--

b+a w
1

+w
2 

v -

(E-V l )(E-V 2) 

E(E-V) 

where v
1 

and w
1

, and v2 and w2, are the potential and frequency for 

saddle points 1 and 2, respectively. If the potential surface is 

symmetric--i.e., v2 

Pcomplex 
b+a 

1 
2 

v
1

, w2 = w1--then Eq. (2.24) simplifies the 

E-V 
1 

E 

1 
which is similar to Eq. (2.23) but with the additional factor of 2; 

this is the "transmission coefficient" implicit in the phase space 

(2.24a) 

(2.24b) 

(2.25) 

10 11 
theory ' since it assumes that the complex breaks up equally likely 

to give products or reactants. 

The unified statistical theory, Eq. (2.20), on the other hand, gives 

the reaction probability in the symmetrical case as 

E-V 
1 

E 
(2.26) 

where V and w are the potential energy and frequency for the minimum 
X X 

of the potential (cf. Fig. 2). This expression may be thought of as 

Eq. (2.25) with the addition of an energy-dependent"transmission coefficient" 
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For low energies and strongly bound complexes one has 

E-V
1 

E-V 
X 

so that 

2 

<< 1 

E-V 
1 

E-V 
X 

:::: 2 

(2. 27) 

and Eq. (2.26) thus reduces to Eq. (2.25) in this limit. In the "direct" 

limit that the well in the potential surface becomes shallow and 

disappears--i.e., v + vl' w + w --one has 
X X 1 

2 
E-V

1 
E-V 

X 

2 - 1 1 

so that Eq. (2.26) also reduces to the correct result, Eq. (2.23), in this 

limit. 

e. Reactions in Three Dimensions; Conservation 

of Total Angular Momentum 

To take explicit account of total angular momentum conservation, which 

is necessary when treating reactions in three dimensional space, Eq. (2.4) 

is replaced by 

' (2 .28) 
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where Pb+ (E,J) is the net reaction probability for total energy E and a 

total angular momentum J. Pb+a(E,J) is given in terms of flux integrals 

by precisely the same expressions as in Sections IIa-IIc but where the 

flux integrals are now for a specific value of total angular momentum as 

well as total energy and have the generic form 

N(E,J) 21lii h-F fi£fi~ o[E-H(p,q)] o[J-J(£,g)] 

af af 
x O[M-M(£,g)J o[f(g)J aq·£h1 h(aq"£) (2.29) 

- -
J(£,g) and M(£,g) in Eq. (2.29) are the total angular momentum and its 

component along a space-fixed axis, respectively, expressed in terms of 

the phase space integration variables (£,g); M may have any value between 

-J and J since the flux integrals are independent of it. 
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III. SPECIFICATION OF DIVIDING SURFACES. 

A central role is played in the expressions of the previous section 

by the "dividing surfaces" through which the various flux integrals are 

calculated. This section explores in more detail the precise way in 

which these surfaces can be defined. It is important that the general 

definition applies not only to the simple case that the potential energy 

surface has actual saddle points and minima, but also includes the 

dividing surfaces which define collision complexes within the "orbitting" 

and "non-adiabatic trapping" models, which are·unrelated to saddle points 

or minima of the (static) potential energy surface. 

The most general and rigorous way of defining the dividing surfaces 

17 is by Keck's variational principle, i.e., so that N (E) in Fig. 1, 
0 

and N
1 

and N2 in Fig. 2, are relative minima of flux in the reactive 

direction, i.e., so that they are the "bottlenecks" of the reaction. It 

is then also natural to define S in Fig. 2 so that N is a relative maximum 
X X 

of flux. 

To see this more clearly, consider the continuous family of dividing 

surfaces Sp' sketched in Fig. 4, which are parameterized by the "reaction 

coordinate" p, the arc length along the reaction path (curve C in Fig. 4). 

Sp is the dividing surface perpendicular to curve C at the distance p 

along C. 

Considering first the collinear A + BC -+ AB + C reaction, suppose the 

potential energy surface is harmonic in the degree of freedom perpendicular 

to the reaction path; in natural collision coordinates
18 

the potential 

surface is given within this harmonic approximation by 
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V(p,u) 
1 2 

v
0

(p) + -zk(p)u (3.1) 

where u is the vibrational coordinate, the degree of freedom perpendicular 

to the reaction path, and k(p) is the force constant for this vibrational 

mode at position p along the reaction path. As discussed in Section lid, 

the flux integral through surface Sp' Np(E), is then given by 

E-V(p) 
0 N (E) = _ _:____ 

p hw(p) 
(3.2) 

where w(p) is the vibrational frequency for the u-motion at position p 

w(p) =1k(p) 
·ll 

(3. 3) 

If it is first asswned that w(p) does not change significantly with p, 

then it is clear from Eq. (3.2) that N has a relative minimum (maximum) 
p 

of those values of p for which V (p) has a relative maximum (minimum). 
0 

For the potential surfaces sketched in Figures 1 and 2 N (E) has the form 
p 

sketched in Figures Sa and Sb respectively. The flux integrals N
0 

of Fig. 1, 

and N
1

, N2, and Nx of Fig. 2, are the values of Np at p
0 

(in Fig. Sa) and 

p
1

, p
2

, px (in Fig. Sb). As suggested above, therefore, N
0

, N
1

, and N2 

are relative minima ("bottlenecks") of the flux along the reaction path, 

and N is a relative maximum. 
X 

Eq. (3.2) can also be used to illustrate the phenomenon of "non-adiabatic 

19,20 
trapping" which results if w(p) varies strongly along the reaction path. 

Consider a potential surface of the type sketched in Fig. 1. Typically the 

vibrational mode "relaxes" in the region of the saddle point, i.e., w(p) 
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h . . 0 (F h H + H . ·zo (O) ~ l as a m1n~um at p = . or t e 2 react1on w - z w(oo).) Fig. 

6 shows a sketch of the two factors that contribute toN (E), 
p 

E-V (p) 
0 

1 clearly that if 1 /w(p) sufficiently and /w(p)' and one can see is 

sharply peaked, then N (E) will have the same qualitative shape as in p . 

Fig. Sb--i. e., there can be two bottleneck regions (minima in N p) on 

either side of the actual saddle point of the potential surface. This 

qualitative explanation of "non-adiabatic trapping" in terms of relaxation 

f d b h ddl . . 11 20' 21 b d o the vibrational mo e a out t e sa e po1nt 1s usua y ase on 

the assumption of vibrational adiabaticity. It is very interesting to 

see here that it also comes out of a purely statistical theory when the 

vibrational criterion is used to locate the relevant dividing surfaces. 

Finally, to show that the variational criterion also predicts the 

correct dividing surface for the "orbitting model" of collision complexes 

it is necessary to consider a three dimensional system, A + BC ~ AB + C 

for example. As discussed in Section lie, for reactions in three dimensions 

the flux integrals must be defined for a given value of total angular 

momentum J as well as total energy E. In the orbitting model the reaction 

coordinate is taken to be the radial coordinate R, the distance between A 

and the center of mass of BC, and the interaction potential between A + BC 

is assumed to be a function only of R (usually the van der Waals type -C/R
6
). 

The A + BC system in its overall center of mass has six degrees of freedom, 

and the 12-dimensional integral in Eq. (2.29) is most conveniently evaluated 

if the six pair of coordinates and momenta are chosen as the following 

. . 22' 23 
act1on-act1on variables: 

(P,R): radial motion of A - BC 

orbital angular momentum of A relative to BC 



6' 
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{j, q.): rotational angular momentum of BC 
J 

(n,q ): vibrational motion of BC 
n 

(J,qJ): total angular momentum 

(M,qM): projection of total angular momentum. 

The flux integral [Eq. (2.29)] through the dividing surface located at 

the value R of the radial coordinate is then given by (setting h = 1) 

X o(R-R
1

) f. h(P) 
'll 

' 
dM J.J ' 

23 
where the Hamiltonian in these variables is 

+ V(R) + £ (n 'j) 

J'+j 

I dR, 
(J' -j) 

(3 .4) 

(3. 5) 

e:(n,j) being the vibration/rotation energy of BC in terms of the "quantum 

numbers" (actually action variables) nand j. Since the integrand of 

Eq. (3.4) is independent of the five angle variables, the integral over 

them is trivial, and the delta functions allow one to do the integrals 

' ' over R, P, J , and M , yielding 

R-2 
h(E-V(R) - e: (n,j) - ·--) · 

2l.!R2 ' 
(3. 6) 
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the limits on the .R,.;..integral are the usual "triangle relation" involving 

the angular momenta .R., j, and J. 

In most applications of the orbitting model it is also assumed that 

most of the angular momentum is orbital, i.e., 

.R. >> j (3. 7a) 

so that 

(3. 7b) 

whereby Eq. (3.6) becomes 

NR(E,J) ~ Jrdn Jrdj 2j h[E-V(R) - 2~:2 - E(n,j)] (3. Sa) 

i - W(E-V(R) - -- ) 
2llR

2 (3. 8b) 

where the function W(E) is defined by 

00 00 

f:n J(dj 2j h[E-~(n,j)] (3. 9) 

W(E) is thus the number of quantum states of the diatomic molecule BC 

with energy below E, i.e., the microcanonical partition function of BC. 

W(E) is a strictly increasing function of E--if BC is approximated as a 

- -2 rigid rotor-harmonic oscillator, for example, W(E) ~ E --so that the value 

of R which makes NR(E,j) an extremum is 

(3.10) 



0 0 0 &~ 
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, J 2 a i 
- W (E-V(R) - 2l1R2) oR (V(R) + 2l1R2 ) 

' or since W > 0, the condition is 

0 i 
0 :::; ~R (V (R) + -- ) 

a 2l1R2 
(3 .11) 

i.e., the dividing surface which makes the elux a minimum is at that 

2 2 
value of R for which the "effective potential" V(R) + J /2l1R has a 

maximum, and this is the usual criterion of the orbitting model. It 

should be noted, though, that even when the approximations in Eq. (3.7) 

are not valid, Eq. (3.6) is still the correct expression for NR(E,J) 

15 
(although the integrals are somewhat messier to evaluate ) and the 

optimum choice for R can still be determined variationally, i.e., by 

Eq. (3.10). 

One thus sees that the variational criterion for choosing the 

dividing surface provides a unified prescription that correctly describes 

these several quite different physical situations. 



-22-

IV. SUMMARY AND CONCLUDING REMARKS. 

Section II has presented a unified statistical theory of bimolecular 

reactions that includes as special limiting cases the usual transition 

state theory, which is appropriate for a "direct" reaction mechanism, and 

the phase space theory of Light and Nikitin, which is appropriate for 

reactions that proceed via a long-lived collision complex. The theory is 

completely non-empirical, i.e., it involves the potential energy surface 

of the reacting system but has no empirical parameters. Since this unified 

theory is correct in the limit of a completely "direct" mechanism and that 

of a long-lived collision complex, one can perhaps reasonably hope that it 

will also be useful for intermediate situations. 

The variational criterion
17 

for choosing the relevant "dividing surfaces" 

which appear in the theory is discussed in Section III. In addition to 

yielding the usual dividing surfaces that are related to saddle points and 

miriima in the potential energy surface, this general criterion is seen also 

to produce the critical surfaces relevant to the "orbitting model" and also 

that which describes "non-adiabatic trapping". It thus appears that this 

unified statistical theory, together with the variational criterion for 

locating the dividing surfaces, is capable of describing a wide variety 

of different kinds of dynamical phenomena in chemical reactions. 
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APPENDIX: DERIVATION OF EQ. (2.20) VIA THE WKB APPROXIMATION 

It is interesting to see that the fundamental equation of the 

unified statistical model, Eq. (2.20), is also obtained by a WKB treat-

ment of transmission by a double barrier potential. 

Consider the one-dimensional potential sketched in Fig. 6, where 

E is the collision energy. e
1 

and e
2 

are the barrier penetration 

integrals through barriers 1 and 2, and <t> is the phase integral across 

the potential well: 

x4 

~2lJ[V(x)-E]/h 2 
e2 = f dx 

x3 

x3 

~2lJ [E-V(x)] /h 
2

' <t> = J dx 
x2 

The WKB approximation for the transmission probability has been considered 

by Child, 24 and the general result can be written in the following simple 

form 

P(E) (A.l) 

whe,re p1 and p2 are the WKB tunneling probabilities through barriers 1 

and 2: 
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1 p = ---:--
i 26. 

l+e 
1 

i = 1,2 (A.2) 

As a function of energy E, P(E) in Eq. (A.l) has a resonance 

structure that is uninteresting for purposes of determining an average 

transmission probability. This average transmission probability P(E)--which 

corresponds to averaging P(E) over an energy interval that contains many 

individual resonances but which is still small compared to the energy 

variation of P(E)--can be obtained by averaging Eq. (A.l) over ~: 

P(E) 
1 
7T 

and it is easy to show that this gives 

P(E) 

(A.3) 

(A.4) 

which is the form of Eq. (2.20). If p
1

,p
2 

<< 1, then Eq. (A.4) becomes 

corresponding to a long-lived collision complex, and if p. ~ 1, then it 
1 

becomes 

P(E) ~ p. 
J 

(j :j: i) 

the "direct'' limit. 
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FIGURE CAPTIONS 

Figure 1. Sketch of a potential energy surface for a collinear A + BC + 

AB + C reaction that has a single saddle point separating 

reactants and products. Curve C is the "reaction path"·, and 

S and S are "dividing surfaces" perpendicular to it, S 
o a o 

through the saddle point and S far out in the reactant region. 
a 

Figure 2. Sketch of a potential energy surface for a collinear A + BC + 

AB + C reaction that has an attractive well, corresponding to 

a stable ABC molecule, that is separated from reactants and 

produ~ts by saddle points. Curve C is the reaction path, and 

the dividing surfaces s
1 

and s
2 

cross it through the saddle 

points, S through the minimum of the potential well, and S x a 

and Sb in the reactant and product regions, respectively. 

Figure 3. Sketch of the flow of probability from reactants "a" through 

the complex "x" to products "b". P , P , and Pb are 
x+-a a+-x +-x 

the transition probabilities between the indicated regions for 

a given encounter at one of the "dividing surfaces", S and s
2

. 
1 . 

Figure 4. Sketch of a potential energy surface indicating the reaction 

Figure 5. 

path C and reaction coordinate p, the arc length along C. Sp 

is a "dividing surface" that crosses C at the.value p of the 

reaction coordinate. 

The flux integral N (E) through surface S , as a function of p, 
p p 

for a potential surface of the type in (a) Fig. 1 and (b) Fig. 2. 

Figure 6. Sketch of the two factors that contribute to Eq. (3.2), for a 

potential surface. of the type in Fig. 1. 
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Figure 7. A one-dimensional double barrier potential function; E is 

the collision energy. 
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...----------LEGAL NOTICE-----------, 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 
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