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ABSTRACT OF THE DISSERTATION

Using Crypto-currencies to Measure Financial Activities
and Uncover Potential Identities of Actors Involved

by

Yuxing Huang
Doctor of Philosophy in Computer Science
University of California, San Diego, 2017

Doctor Kirill Levchenko, Co-Chair
Professor Alex C. Snoeren, Co-Chair

Bitcoin is a digital currency that has recently gathered significant interest. From e-
commerce sites to darkweb marketplaces, merchants accept Bitcoin as a form of payment.
Every day, millions of dollars are transacted across Bitcoin’s payment network. The
value of a single bitcoin has increased from $500 to $3,000 in a one-year period since
July 2016.

A part of the interest may stem from the decentralized design of Bitcoin. A

peer-to-peer network collectively generates new coins and maintains the distributed
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transaction ledger, also known as the blockchain. The blockchain records transactions
between public keys, rather than between real-world identities. This detachment from
real-world identities makes it hard to measure financial activities and identify actors on
the network, such as four cases that we study: (i) botnets stealing computational cycles,
(i1) speculatively investing in digital currencies, (iii) delaying the processing of Bitcoin
payments, and (iv) purchasing ads with illegal contents.

Despite this challenge, the decentralized design of Bitcoin and similar digital
currencies offers public information on every transaction and the associated identities.
This dissertation demonstrates that, using the four cases as examples, we can leverage
this public information to analyze financial activities — e.g. measuring the cost and
revenue — and to potentially uncover the identities of the actors involved.

In particular, we can measure the revenue and cost for Cases (i) through (ii1). For
(i), we show that botnets made a modest income of $118,000 between 2012 and 2013,
but for some botnets we estimate the cost to victims to be more than twice the botnets’
revenue. For (ii), we develop a new way to estimate the profitability of investing in digital
currency markets. By simulating multiple investment strategies, we show the drastic
variations in profitability and thus the extreme risks associated with digital currency
investment. For (iii), we show that an adversary delayed Bitcoin transaction processing
time from 0.33 to 2.67 hours, at a modest cost of $4,900 per day. Furthermore, we can
uncover the potential identities of the actors involved. For (i), we identify 10 distinct

botnet operations. For (iv), we identify ads paid for by potentially the same criminals.
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Introduction

Satoshi Nakamoto developed Bitcoin, an “electronic cash system”, in 2009 [49].
Since then, the popularity of Bitcoin has surged. Similar to Visa and PayPal, users can
pay for goods and services online with Bitcoin. Many online merchants accept Bitcoin as
one of the payment options alongside Visa and PayPal. Examples include Overstock [54],
which is an online retailer like Amazon, and Namecheap [50], which is sells domain
names online. Furthermore, Bitcoin is often accepted where mainstream payment options
are unavailable — for instance, on the darkweb. In fact, many underground marketplaces,
hosted on the Tor network, accept Bitcoin as the sole payment option. These marketplaces
typically sell contraband goods such as drugs and weapons. Whereas transactions via wire
transfers or credit cards are subject to government regulations and monitoring, Bitcoin
transactions are partially anonymous and difficult to trace as a result of its cryptographic
properties (more details in Chapter 1). Because of the cryptographic properties, Bitcoin
is also known as a crypto-currency.

In addition to being a payment system, bitcoins themselves are tradable assets.
One can buy or sell bitcoins at Bitcoin exchanges, just like one can buy and sell gold,
US dollars, or oil.! The US Dollar to Bitcoin exchange rate soared above $1,000 for the
first time in November 2013, and in June 2017, it almost reached the $3,000 mark [17].
Furthermore, there is a significant flow of cash in Bitcoin markets. According to estimates

by blockchain.info, a website that tracks all trades against Bitcoin, at least $100 million

By convention, we refer to “Bitcoin” as the digital currency, and “bitcoin” as unit of the currency.



US Dollars were traded against bitcoin every day in July 2017 [18]. In comparison,
Alphabet Inc. Class C Capital Stock (GOOG) has a daily volume of less than $10
million? in the same period [53].

Bitcoin is created through an energy-intensive process. Whereas only the Federal
Reserve can issue new US Dollar bills, anyone, known as a miner, can generate new
bitcoins in a process known as mining, where computational devices, such as CPUs,
GPUs, or even dedicated hardware, are used to solve special cryptographic puzzles
(details in Chapter 1). Finding the solution requires significant electricity to power the
devices, but as a reward the miners create new bitcoins for themselves, which they can
use in commerce or sell at exchanges. Based on some estimates, Bitcoin mining is a
billion dollar global industry [34]. This industry includes manufacturers that produce
dedicated bitcoin-mining hardware (i.e ASICs). The industry also includes miners who
set up mining farms that are filled with such hardware [63].

In short, there is significant interest in Bitcoin: using it for commerce, trading
bitcoins, and mining bitcoins. Part of the interest may lie in Bitcoin’s decentralized
design. Unlike Visa or the US Dollar, Bitcoin was designed to not depend upon any
centralized entities for payment processing or money supply. Instead, a peer-to-peer net-
work of volunteer devices collectively maintains the transaction ledger, also known as the
blockchain, and generates new units of the currency. In contrast to Visa/PayPal’s ability to
decline transactions, for instance, Bitcoin is designed to prevent transactions from being
disrupted. In theory, no single entity can decline transactions. Also, whereas central
banks can influence the monetary policies in a country, such as tightening/loosening
the money supply to regulate inflation, new bitcoins are generated at a predetermined
rate through mining. As such, the decentralized nature poses significant barriers for any

single parties to influence Bitcoin.

2Unless otherwise stated, all dollar values in this dissertation refers to US Dollars.



In fact, Bitcoin is not the only decentralized crypto-currency. Thousands of
similar crypto-currencies, developed after Bitcoin, share Bitcoin’s open-source code base.
Together, these crypto-currencies are involved in a wide range of use cases. Below are

four examples that we study in this dissertation.

e Use cases that involve crypto-currencies’ decentralized money supply (i.e. mining):

— Case (i): During 2012-2013, botnets mined bitcoins and other crypto-

currencies, converting electricity from compromised computers into money.

— Case (ii): Speculative investors mine and trade crypto-currencies (typically

non-Bitcoin).

e Use cases that involve crypto-currencies’ decentralized payment processing:

— Case (iii): Miscreants sent spam transactions in Bitcoin and slowed down
payment processing, presumably to disrupt the Bitcoin payment network and

highlight Bitcoin’s fragility.

— Case (iv): Human traffickers paid bitcoins for ads on a popular prostitution

portal, where Bitcoin was the only form of payment accepted.

All four cases have significant implications in both legal and financial terms. In
particular, Cases (i) and (iv) involve illegal activities, and Cases (i) through (iii) are
associated with financial gains/losses. As such, one might be motivated to measure the
activities behind the four cases and potentially identify the individuals involved. However,
there are challenges. The identities involved in these transactions are not necessarily tied
to anyone’s personally identifiable information; rather, they are represented as public

keys. Linking these public keys to real-world identities is thus not a trivial task. In



other words, the partial anonymity of crypto-currencies makes it difficult for us to track
activities and identify the actors involved.

The decentralized design of Bitcoin and other crypto-currencies can help us tackle
this challenge, as crypto-currencies provide a wealth of public information: transaction
history, the identities (albeit partially anonymous) of actors in each transaction, and
relationship among these actors (e.g. who sent bitcoins to whom). This dissertation
demonstrates that, using the four cases above as examples, we can leverage this public
information to analyze financial activities — e.g. measuring the revenue and cost — and

to potentially uncover the identities of actors involved.

e Measuring revenue and cost: Using the public transaction history, we answer the

following questions:

— Case (i) / Chapter 2: How botnets mined bitcoins, how much money they

made, and what was the cost to infected victims.

— Case (ii) / Chapter 3: What are some of the investment strategies in crypto-
currencies, how to estimate the revenue and cost, and what is the potential

profitability behind these strategies across different crypto-currencies.

— Case (i11) / Chapter 4: How to identify disruptive attempts to delay transaction
processing across the Bitcoin network, what is the cost associated with
launching these disruptive activities, and what is the time and financial loss

related to such disruptions.

o Potentially identifying actors: The use of public keys in crypto-currency trans-
actions can, to some extent, hide real-world identities, but we can potentially
de-anonymize some of these identities by using the public transaction history and
by inferring the relationships among the actors involved. In particular, our analysis

answers the following questions:



— Case (1) / Chapter 2: How many botnet operations were involved, and what

botnet/criminal organizations they were associated with.

— Case (iv) / Chapter 5: How to link ads back to the payers, and which ads were
potentially paid for by the same actors. The answer may help law enforcement

agencies identify human traffickers.

In summary, this dissertation introduces four use cases of crypto-currencies. For
each case, the dissertation shows how we can leverage the public information of crypto-
currencies, such as the transaction history and the identities of actors in transactions, to
measure financial activities and potentially identify the actors involved.

Understanding such activities and the actors involved is important. Some of
the actors are criminals (e.g. botnet and human trafficking), while some activities may
cause disruption to typical commercial activities (e.g. Bitcoin spam transactions). Our
analysis offers insight for future researchers to potentially stop these malicious behaviors.
Furthermore, some activities are associated with potentially significant financial gains
or losses (e.g. speculative investment in crypto-currencies). Our analysis can inform

investors of the risks involved before they enter the market.



Chapter 1

Background

The goal of this dissertation is to show how we can leverage aspects of Bitcoin’s
structure (as well as that of similar crypto-currencies) to measure financial activities. To
this end, we take advantage of various features of crypto-currencies. Primarily using Bit-
coin as an example, we explain the decentralized features of crypto-currencies, and how
these features help us achieve our goal. In particular, Section 1.1 provides an overview
of the key concepts in Bitcoin. Then we focus on the technical details of how Bitcoin
works as a decentralized payment system, from transaction processing (Section 1.2) to
money supply (Section 1.3). Finally, we describe the conversion between Bitcoin and fiat
currencies, such as US Dollar, in Section 1.4. For a complete background on Bitcoin,
we refer to the original Bitcoin paper by Satoshi Nakamoto [49] and Princeton’s Bitcoin

textbook [52].

1.1 Overview of How Bitcoin Works

Bitcoin is a decentralized digital currency. Many merchants accept Bitcoin as a
form of payment, much like Visa or PayPal. However, unlike Visa or PayPal, there is no
central authority that manages Bitcoin, In this section, we offer an overview of the key
concepts of Bitcoin — in particular, how Bitcoin processes transactions without a central

ledger, and how Bitcoin generates new units of the currency without a central entity like
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Figure 1.1. Overview of Bitcoin blockchain and transactions

the Federal Reserve.

Decentralized transaction processing: A peer-to-peer network collectively
processes Bitcoin transactions — payments from one party to another. The network
keeps track of these transactions across a distributed ledger, known as the blockchain.
Figure 1.1 shows an example of a Bitcoin network, which consists of three interconnected
nodes. The human operator behind each of these nodes is known as miners. Each miner
runs the Bitcoin client software on the device. A new miner can join the network as
long as it runs the client software. All instances of this software have identical copies
of the blockchain on disk. The figure shows the blockchain on one of the clients. The

blockchain is a singly linked list of blocks, each of which consists of transactions. Blocks



are chronologically ordered. Block (i + 1) is created later than Block i. Whenever a new
block is created, all miners in the network are notified. The block at the end (i.e. with the
most recent timestamp) of the blockchain linked list is also known as the latest block.

Transactions are essentially records of payments. Suppose Alice is to send a
unit of Bitcoin to Bob. First, Bob tells Alice his wallet address at which he expects to
receive Alice’s payment. Alice then creates a transaction which moves a bitcoin from
Alice’s wallet address into Bob’s wallet address, along with a transaction fee. Note that
wallet addresses are simply public keys that are not necessarily tied to any personally
identifiable information of individuals involved in transactions. Furthermore, anyone can
create an unlimited number of independent wallet addresses. In case one of the wallet
addresses is tied back to identities in the real-world, the wallet address can always be
discarded, and a fresh wallet address can be created.

After creating the transaction, Alice broadcasts it over the peer-to-peer network.
At this point, the transaction is not in the blockchain yet. It merely exists in the temporary
holding area in each client’s memory, also known as the mempool.

Currently, suppose the last block in the blockchain is Block B; (as illustrated
in Figure 1.1). Per Bitcoin’s protocol, a new block is expected to be created every
ten minutes. Suppose the new block, B;1, includes Alice’s transaction, along with
other transactions (e.g. Charlie sending bitcoins to Daniel) that were previously in the
mempool. The new block is then appended to the blockchain, pointing to the previous
block B;. At this point, Alice’s transaction is in the blockchain, stored on the disks of all
the clients in the peer-to-peer network. Alice’s transaction is said to be confirmed. Due to
cryptographic properties that we will explain in Section 1.3, the transaction can no longer
be modified or rolled back. If Alice is paying Bob for some service, Bob, knowing that

Alice’s transaction is confirmed, is likely to perform the service.!

Note that there are exceptions. As we will discuss in Chapter 5, Bob might ship the product before



Any new transactions, likewise, will be first broadcast over the network, stored in
the mempool of individual miners, and added to block B;,, which will be appended to
the blockchain after B;;.;. We will discuss how Bitcoin processes transactions in detail in

Section 1.2.

Decentralized money supply: The peer-to-peer network is also responsible for
collectively generating new units of Bitcoin. In a process known as mining, every miner at-
tempts to find a nonce value, N, such that H = SHA-256(SHA-256(N, (other values))) <
T, where T 1s known as the target value, which the Bitcoin protocol automatically sets.

Using the example in Figure 1.1, suppose that the currently latest block is Block
i, and all three miners are mining. Suppose Miner 1 manages to find an N such that
H < T. In other words, Miner 1 successfully mines a new block, Block (i + 1), which
includes some of the transactions in Miner 1’s mempool (including Alice’s transaction to
Bob and Charlie’s transaction to Daniel). Miner 1 verifies these constituent transactions
and broadcasts the new block. All other miners stop their attempts to find N. Every
miner, including Miner 1, appends Block (i + 1) to its respective blockchain. In this way,
every miner has exactly the same blocks and same transactions in the blockchain. The
blockchain, as a distributed ledger, reaches a consistent state across the network.

Mining is a computationally intensive process, as SHA-256 essentially returns a
random value, and every miner has to iterate through different N values with brute force
before he finally finds the right N (or before another miner does). To incentivize this effort,
every new block created also includes an extra transaction that pays whomever that has
found the right N. Before they start mining, every miner has to set up his wallet address
in advance. When Miner 1 finds the right N, Block (i + 1) will include a transaction

that rewards Miner 1 (along with Alice’s transaction and Charlie’s transaction). In this

Alice’s tranasaction is confirmed. In general, it is entirely up to Bob when to ship. This decision is
independent of Bitcoin’s protocol.
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Figure 1.2. Details of data in blockchain and transactions

transaction, new coins are created and, along with the fees collected from Block (i + 1)’s
transactions, moved into Miner 1’s wallet address, as illustrated in Figure 1.1. In this
way, Miner 1 is paid for his energy input in the mining process. At the same time, because
Miner 1 has already mined Block (i + 1), all other miners stop their current search for
the right N, and their effort is basically wasted. We will discuss how to mine bitcoins in

detail in Section 1.3.

1.2 Decentralized Transaction Processing

In contrast to PayPal or Visa, which has a logically centralized entity that pro-
cesses all transactions, Bitcoin processes transactions in a peer-to-peer network of vol-
unteer devices. In this section, we will describe how transactions are processed, from
creating transactions, to distributing them across the network, to finally securing them in
the global ledger. We will also explain how we can follow transactions and attempt to

de-anonymize the identities involved in the transactions.



11

1.2.1 Transaction

Each transaction is essentially a transfer of bitcoin ownership from one wallet
address to another. Take transaction #; ; (in Block B;) in Figure 1.2 as an example, where
one wallet address is sending bitcoins to two wallet addresses (e.g. Alice paying Bob and

Charlie). The transaction consists of the following components:

e The output wallet addresses, which are associated with the payment receivers. In
this example, there are two output wallet addresses, one for each receiver: wallet
address wy, which is to receive an output value of v4 bitcoins, and wallet address

ws, which is to receive vs bitcoins.

e The input wallet addresses, which are associated with the payment senders. In this
example, there is only one input wallet address w3, which is willing to pay an input
value of v3. Each input is actually the output of a previously confirmed transaction.
Thus, the v3 in transaction 7, ; is in fact the output of #; 1, where w3 receives v3

bitcoins.

e An optional transaction fee f. In this example, f = vz —vq4 —vs. As we will
discuss in Section 1.2.2, each block can include a limited number of transactions.
Transactions that pay higher fees are typically confirmed in the next block with a

higher probability.

Each transaction is signed with the private key of the input wallet address (which
is the corresponding public key) if there is only one input wallet address. In the example,
the sender’s wallet address is w3, which is equivalently the sender’s public key. The
sender uses the corresponding private key to sign #, ;. If there are multiple input wallet
addresses (i.e. multiple public keys), such as in ¢ 1, then the private key of each of the

input wallet addresses (i.e. wi and wy) needs to sign the transaction.
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Figure 1.3. Bitcoin mempool

For 1, 1, the signature proves that v3 bitcoins were under w3’s control, and that w3
intends to hand over control to w4 and ws. In this way, w4 and ws can send the bitcoins
to any wallet addresses of their choice.

A transaction must fully transfer the ownership of a coin. Suppose Alice has
1 bitcoin and she is about to send 0.8 bitcoins to Bob. She would need to create a
transaction that takes the 1 bitcoin from Alice as the input, and sends 0.8 bitcoin to Bob
and 0.2 bitcoins back to Alice. An example of such a transaction has w3 in the input, and

both w3 and w4 in the output, where wy is the intended receiver.

1.2.2 Mempool

To send bitcoins, a sender must first create a transaction and broadcast it to
Bitcoin’s peer-to-peer network. At some point, a new block is mined that includes this

transaction. The transaction is now a part of the blockchain and finally confirmed.
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To illustrate this process, we refer to Figure 1.3. It depicts n Bitcoin clients, their
mempool state (gray box), and the latest block in the blockchain (white box). Initially,
at time;, the latest block in the blockchain is Block &, which includes two confirmed
transactions #; and ;. In the mempool of each miner are two transactions 73 and 74,
waiting to be confirmed at some point.

Attime,, a new transaction #s is created and immediately broadcast to the network.
Within a few seconds, at times, t5 appears in the mempool of every miner. There are no
changes in the blockchain.

Suppose a new Block &+ 1 is mined at time4. The miner which mined this block
has decided to include #3 and 75 in the new block. Here, 74 is not included. One possible
reason is that 74 might be paying a smaller transaction fee, which we will discuss later in
the section. As a result, at times, only #4 remains in the mempool, while both #3 and #5
have been removed from the mempool and included into the latest Block k + 1. At this
point, neither 73 nor #5, being in the blockchain, can be modified or reversed; Section 1.3
will discuss the cryptographic principles behind mining that leads to the integrity of the
transactions.

Each miner makes independent decisions on what mempool transactions to be
included in the next block. Typically, if a miner runs the default Bitcoin client, it makes

decisions based on a transaction’s fees or its priority, P, computed as:

1 n
P=—-) (vixA 1.1
3 ,-zzé( i X At;) (1.1)
where S is the transaction’s size in KB, 7 is the number of inputs to the transaction, v; is
the value of bitcoins in input i, and Az; is the age of input i. The age of an input is the

time difference between the previous output and input i itself. Using Figure 1.2 as an

example, suppose 1, ; is created now; it is still in the mempool and not confirmed yet.
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Then Az for the input of 7, | is the time since 71 ; was confirmed into block By, since the
input of #, 1 is the output of 77 ;.

Each Bitcoin miner needs to make a decision on which transaction to include,
because each new block can hold at most 1 MB of transactions. According to one
study, the average transaction size is around 600 bytes in October 2015.2 Thus, a block
typically can hold thousands of transactions. Even so, at a high transaction volume,
not every transaction can be included into the next block. Some would have to wait
for multiple blocks to pass before being confirmed. A typical Bitcoin miner, using the
default Bitcoin client, prioritizes transactions in the following ways (although the Bitcoin

protocol requires none of the following):

e Case (i): Each block has a 50 KB section for transactions that do not need to pay

any fees. Such transactions must satisfy the following conditions:

— The transaction size, S, is less than 1 KB.
— Each of the outputs is at least 0.01 bitcoins.

— P is higher than other Case (i) transactions. In other words, a typical miner
sorts all Case (i) transactions in descending order of P. The miner picks the
top transactions until the 50 KB section of the next block is full. The other

transactions remain in the mempool.

e Case (ii): Otherwise, a transaction has to pay fees. Priority is based on the per-KB
fee (i.e. f/S). In other words, a typical miner sorts all Case (ii) transactions in
descending order of f/S. The miner picks the top transactions until the next block

is full. The other transactions remain in the mempool.

Zhttps://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends


https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
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Prioritizing transactions based on P or the per-KB fee, as illustrated above, is
a commonly accepted practice that the default Bitcoin protocol follows. There is no
guarantee, however, that a miner will adhere to this practice. We have seen evidence of
miners who included no-fee transactions into their blocks, even though the transaction
size was more than 1 KB. We have also seen miners who simply removed transactions
from the mempool possibly due to low fees.?

Until a transaction is included in a block, it remains unconfirmed and is subject
to change — for instance, through double-spending attacks. Suppose Alice is to send
a bitcoin to Bob. She creates Transaction 1, where the output is Bob’s wallet address,
and the input wallet address has a bitcoin that Adam had previously sent to Alice (i.e.
previous output). While this transaction is in the mempool, Alice creates Transaction 2,
which has exactly the same input as Transaction 1. The only difference is that Transaction
2’s output is Alice’s wallet address. If Transaction 2 is confirmed into the blockchain
before Transaction 1 (e.g. by paying a higher fee in Transaction 1), then no miner would
include Transaction 1 into the blockchain, because its input, i.e. Adam’s coin to Alice, is
already spent in Transaction 2. Transaction 1 is effectively nullified. Because of the risk
of double-spending, if Alice is paying Bob for a service, Bob is likely to wait until the
transaction is confirmed before performing the service. There are exceptions, such as
what we will discuss in Chapter 5.

The wait time for confirmation to occur can vary from several minutes to hours.

The exact timing depends on two factors:

e Transaction backlog. Per Bitcoin’s protocol, a block can hold at most 1 MB of
transactions. At a high transaction volume, miners will be unable to include all

transactions in the mempool into the next block. Thus, transactions are prioritized

3This observation is based on anecdotal evidence collected by the author, rather than scientific publica-
tions.
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based on P (Case (i)) or the per-KB fee (Case (ii)).

e New blocks. On average, a new block is mined every ten minutes. If a transaction
enters the mempool shortly after a new block is mined, then the expected wait time
for confirmation will be about ten minutes if the new block includes the transaction.
Conversely, if a transaction enters the mempool and a newly mined block includes
it shortly afterwards, then the wait time will be significantly shorter. The expected
wait time for a transaction is therefore five minutes in the absence of transaction

backlog.

Chapters 4 and 5 extensively use the mempool data in the analysis. While transac-
tions in the mempool are unconfirmed, they provide useful insight on when transactions
are created and confirmed. Other work in this space includes using the mempool data
to measure confirmation delays and transaction fees in the Bitcoin network [48]. The
research community recognizes that confirmation delay is a significant problem with
regard to Bitcoin’s stability and scalability, as outlined in the a recent study [19]. In one
specific example, Becker et al. [12] discuss a hypothetical scenario where opponents of
Bitcoin collectively sent spam transactions to the network, using up valuable space in the

blockchain and driving normal Bitcoin users away.

1.2.3 Clustering Bitcoin Transactions

Even though identities in Bitcoin are represented as wallet addresses, which can
be easily created or changed, Bitcoin is not fully anonymous. We can cluster wallet
addresses for which the same entity has control over the private keys. If we can link one
of the wallet addresses to a real-world identity, then all the wallet addresses in the cluster
are likely to belong to the identity [47].

Specifically, here is how the technique works. First, we examine the inputs of
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a given transaction. Recall that a transaction with multiple inputs needs to be signed
with every private key that is associated with the input wallet addresses. In the absence
of CoinJoin — a technique that allows multiple input private keys to sign the same
transaction without revealing the private keys — we assume that the entity which creates
the transaction must have access to all the private keys. If having the private key implies
ownership, then it follows that all the input wallet addresses belong to the same entity.
These input wallet addresses are known as co-spent addresses. In Figure 1.2, w; and
wy are co-spent addresses in # 1. By iterating through all Bitcoin transactions and
discovering co-spent addresses, we construct clusters of wallet addresses that belong to
the same entities.*

At this point, however, we still do not know the real-world identities of these
clusters. To this end, we discover at least one wallet address that we can link to real-world
identities. For instance, let us suppose we want to find all addresses that belong to Eve.
First, we ask Eve to provide us with a wallet address of hers to which we send our
payments. Eve can create a new wallet address, wy, just for us, but it is possible that this
address may be co-spent with other addresses of hers, {w,,w3,...,w,} — for example,
to aggregate bitcoins that she has collected from us as well as other sources. In this way,
we can infer that all the w;’s for i = 1,...,n belong to Eve. By repeatedly asking Eve to
generate a new wallet address to which we send bitcoins, we can discover a subset of
Eve’s wallet addresses to which we did not send bitcoins. This technique also applies
if we ask Eve to send us bitcoins. Each new wallet address from which she sends us

bitcoins can potentially be co-spent with other addresses of hers. In this way, we can

4CoinJoin breaks this technique. Basically, CoinJoin obfuscates the bitcoin movement trail. Suppose
there are n wallet addresses with a total of v bitcoins in balance. Together, the owners of these n wallet
addresses can construct a CoinJoin transaction that takes these n wallet addresses as the input and sends
the v bitcoins to n different wallets addresses. The owner of each of the original n addresses does not need
to have the private keys of the other addresses to sign the transaction. This type of transaction invalidates
our assumption that owners of co-spent wallet addresses have access to all the private keys. As a result, our
clustering technique will no longer valid [19].
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identify wallet addresses that belong to organizations, such as mining pools (Section 1.3)
or exchanges (Section 1.4).

Chapters 2 and 5 use the clustering technique above to de-anonymize organiza-
tions (such as mining pools and exchanges). As an aside, a recent study examined the
graph structure of Bitcoin’s transaction graph for de-anonymization [61]. We do not use

this technique in the dissertation.

1.3 Decentralized Money Supply

For a fiat currency such as the US Dollar, a logically centralized entity such
as the US Federal Reserve is responsible for issuing the currency. This central entity
has the power to loosen or tighten the money supply, thereby adjusting inflation and
regulating the country’s economy. In contrast, no such central body exists for Bitcoin. A
peer-to-peer network of volunteer devices collectively supplies new units of Bitcoin at a
pre-determined rate according to Bitcoin’s protocol, in a process known as mining. In

this section, we explain how mining generates new bitcoins and secures the blockchain.

1.3.1 How Mining Works

Anyone can participate in the creation of new bitcoins through the mining process.
Using computational devices such as CPUs, GPUs, or dedicated hardware, miners
attempt to find a special type of hash collision with brute force. The miner who first finds
the hash collision is rewarded with new bitcoins, along with the fees from confirmed
transactions. This process is computationally intensive and it consumes a significant
amount of electricity. Effectively, mining converts energy into bitcoins.

To illustrate the mining process, we use Figure 1.2 as an example. Here, we
assume that Block Bj is the latest block, and B, has not been mined yet. In other words,

transactions 1 1,22, . .. exist only in the mempool at this stage.
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1. A miner downloads and executes the Bitcoin client, a piece of software which

connects the miner to Bitcoin’s peer-to-peer network.

2. The miner specifies a wallet address, W, at the client software. W is used to receive

mining reward later.
3. The client initializes an empty set M5.

4. For transactions in the mempool that pay fees, the client adds them to M, prior-
itized by their per-KB fees (i.e. Case (i) in Section 1.2.2). For transactions that
do not need to pay fees, the client adds those to M based on the P values (i.e.
Case (ii) in Section 1.2.2). By default, the Bitcoin client follows the practice as
outlined in Section 1.2.2, but a miner has the liberty to modify the client and add

any transactions to M.

5. Using the CPU, graphics card, or even dedicated mining hardware (e.g. ASICs),
the client computes the SHA-256 function twice on a concatenated string, which

includes (but not limited to):

e N>, an 32-bit nonce.
e The hash of a subset of transactions in M.

e The hash of the latest block, B;.

6. Let H(B,) be the result of the double SHA-256 hash function. The client repeatedly

computes H, and one of the following might happen:

e H > T, where T is the global target value. In this case, the client repeats
Steps 3, 4, 5 and 6 using a different N, value. M, may be different at every

iteration, as new transactions are constantly added to the mempool.
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e H <T. In this case, the client is considered to have found the special hash
collision. A new block, B, is created, with H being the block hash. All
transactions in M, are removed from the mempool and included in Block B.
This new block also includes a special coinbase transaction that pays bitcoins
to W. The coinbase transaction does not have any inputs, and W is the sole
output. Effectively, bitcoins are created out of thin air to reward the miner’s
effort. The client announces Block B» to the entire network, and B, becomes

the latest block.

e Another client announces that it has mined B; . This client stops computing
H, removes from the mempool all transactions in B; 1, and goes back to Step

3. Effectively, all computations so far have gone to waste.

The algorithm outlined above is also known as the proof-of-work algorithm (PoW).
Finding the right N so that H < T requires brute force, but it is trivial to verify N results
in H < T. The implication of PoW is that it is extremely difficult for transactions, once
confirmed into blocks, to be changed or reversed. Recall that computing H depends on
all the transactions in M. Any changes in the transactions will result in a different H
value for which H < T may no longer be true.

The random nature of finding hash collisions makes mining competitive. Every
miner’s chance of discovering a valid block is proportional to both the number of SHA-
256 calculations (the hash rate) it can perform per second (usually measured in millions
of hashes per second (MH/s), billions (GH/s), or trillions (TH/s)) and the hash rate of
the Bitcoin network as a whole. An average desktop PC can perform anywhere from
2 to 10 MH/s, while a dedicated ASIC mining system can reach 13 TH/s or more [14].
On November 30, 2013, the Bitcoin network’s hash rate was approximately 6,000 TH/s,

which implies that a single 10-MH/s PC would have expected to receive less than
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Figure 1.4. Forking of the blockchain.

0.0000002% of all Bitcoins produced globally during the period it mined [16].

As the speed of hardware increases, finding the right N such that H < T takes a
shorter time. To counter this effect, for every 1,204 mined blocks, the Bitcoin network
automatically adjusts the difficulty D, defined as D = 232T~!, such that on average a
block is mined every ten minutes. In other words, as the network mines blocks faster, D
is increased, thus lowering 7 and subsequently the probability of mining a block. This
feedback mechanism ensures that the rate of block generation and the rate of bitcoin
rewards remain relatively constant, regardless of the total computational power in the
network.

In general, there are two benefits associated with mining:

e Miners are rewarded. A miner is rewarded for mining a block. In the example of
Figure 1.1, Miner 1, which has successfully mined block B; | receives a reward.
In the reward transaction, new coins are created and transferred to Miner 1’s
wallet address, along with fees collected from transactions confirmed in B;; 1. As
of August 2017, a miner receives 12.5 bitcoins per block, which can be sold at

$50,000.

e Difficult to reverse transactions. Once confirmed in the blockchain, it is ex-
tremely difficult to reverse a transaction. For example, suppose the latest block

in the blockchain is B;;1, which points to the previous block B;, as shown in
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Figure 1.4. Suppose B; | contains a transaction ¢t where some wallets w; sends
v bitcoins to wy. Suppose the owner of wy decides to roll back ¢, such that the v

bitcoins will remain in w;. The owner would need to do the following:

1. Mine a new block B’

i1 1> Which points to B;.

2. At this moment, two blocks, B and B; +1» point to B;. The blockchain is
now forked (i.e. bifurcates). Subsequent new blocks will point to B; 1 and

B, ; with 50% probability respectively.

3. To make sure that his fork of the chain will be recognized by the Bitcoin
network, the owner of wy (i.e. the miner of B;; ), must ensure that his chain is

at least a block longer, as the Bitcoin network, by default, accepts the longest

/

/
i+2° j

;.1 — before the rest of

chain. So he mines block B;, ,, which points to B
the network mines B;,, which points to B;; . Basically, he is competing
against the computational power of the entire network, which is typically
much higher than his own computational power. As such, it is unlikely that

his fork will be longer, and that he can reverse ¢.

Note that forking this blockchain in this manner is just one way that an adversarial
miner can potentially tamper with confirmed transactions. There are other techniques,
as illustrated in four recent studies [28, 46, 42, 29], such that an appropriately powerful

adversary can game the mining process.

1.3.2 Pooled Mining

At the difficulty level in August 2017, a desktop PC mining at 10 MH/s can
expect to mine more than 100,000 centuries before finding a winning block. Even with
top-of-the-line dedicated mining hardware capable of 13 TH/s, or one block every 9

years, at this difficulty level, mining becomes a lottery. To overcome the uncertainty of
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such solo mining, a miner can join a mining pool, which combines the mining power
of a large number of individual miners and pays a small amount for each unit of work
performed toward mining a block. Essentially, by parallelizing the search for a winning
block, a pool can be thought of as buying multiple lottery tickets for any given drawing.
With a typical mining pool, each miner is paid in proportion to his hashing power, but
the income is significantly steadier due to the decrease in variance in the expected time
required (for some member of the pool) to successfully mine a block.

In pooled mining, the pool server runs the Bitcoin client and manages the mem-
pool. A miner joins the pool by first creating an account on the pool’s website. Instead of
directly connecting to the Bitcoin client, the miner, known as the worker, communicates
with the pool server, using a simple HTTP-based RPC protocol, known as getwork.
Similar to solo mining, the miner needs to repeatedly compute SHA-256 twice on some
concatenated string until finding the resultant hash is no larger than the target value. The

main difference is the following.

e The pool provides the miner with the hash of transactions in M. Effectively, the

miner has no knowledge of individual transactions in M.

e The pool also provides the miner with a new target 7/, which is typically much
larger than the actual global target T'. A larger target value increases the probability

of finding N such that HleqT .

e The miner computes H and wins a share when H < T'. The pool subsequently
gives the miner another hash of transactions in M, and the miner repeats Steps 1
and 2 to gain more shares. As T’ < T, a miner typically wins a share every few

minutes.>

51n the case a miner computes H < T, he cannot assemble the full block himself, as he has no knowledge
of the full set of transactions in M.
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A share is a record of the miner’s effort. When the mining pool later mines an
actual block, the pool will divide the block reward across the contributing miners in a
way that is commensurate with individual shares. Most pools require miners to register a
user name, password, and associate a payout wallet address where the pool server sends
the user’s share of bitcoins, as the pool will periodically pay the miners based on the
miner’s contribution (often using a pool-specific payment formula). Some pools also
support pseudonymous mining. In this case, the worker provides a wallet address rather
than a user name to the pool server, and all earnings are directly sent to the specified

address.

1.4 Trading

A mined bitcoin has value because miners can sell it at public marketplaces
known as exchanges. There are at least a hundred known exchanges that anyone can join
to convert bitcoins into other assets, such as US Dollar or Euros [25]. Notable examples
include Coinbase (based in the US) and BTC-e (based in Europe) [24, 21].

For a miner to sell this bitcoins, he does the following.

1. The miner sets up an account at an exchange, which is typically free.
2. The exchange provides the miner with a deposit wallet address.

3. The miner sends his bitcoins to the deposit wallet address. This transfer is recorded

in the blockchain.

4. Now the bitcoins are under the control of the exchange. The miner simply has
to trust that the exchange will take good care of his bitcoins, although there is

evidence that some exchanges lost bitcoins due to attacks [10].



25

5. The exchange lists all current trades, where the miner can see how many coins

others are buying/selling and at what price.

6. The miner sets a price for his bitcoins and lists them on the exchange. The miner

can set any price.

7. If a buyer agrees to the price, the buyer purchases the bitcoins, and the correspond-
ing fiat currencies (e.g. dollars) will be credited to the miner’s account on the
exchange. This exchange of assets happens entirely within the exchange, since the
exchange is in control of both the bitcoins and the fiat currencies that the buyer had

deposited earlier. The event is not recorded in the blockchain.

8. To withdraw these credits (i.e. cash-out), the miner provides the exchange with his

banking information.

9. The exchange sends the corresponding fiat currencies to the miner’s bank, minus

some processing fees.

In this way, a miner can convert his bitcoins, obtained computationally by ex-
pending energy, into fiat currencies.

In addition, exchanges allow anyone, not just miners, to buy and sell bitcoins. An
investor can make money through speculation — purchasing bitcoins (or similar crypto-
currencies) at one price and selling them later when the price rises. In fact, speculation
is not new. There is existing literature on penny stocks trading [31, 20]. In many ways,
crypto-currency markets are similar to penny stock markets in terms of volatility and size.
Many of the speculative behaviors in the penny stocks literature can also be observed in

the world of crypto-currency. Chapter 3 will discuss in detail.



26

1.5 Summary

In this chapter, we show how Bitcoin processes transactions over a peer-to-peer
network, how mining is a decentralized process, and how one can sell mined bitcoins
at exchanges. In the next chapter, we focus on Bitcoin mining — a computationally
intensive activity that converts electricity into bitcoins. We show how botnets took
advantage of CPU cycles on compromised computers, mined bitcoins without paying
for the energy bill, and made money from this operation. More importantly, using
features discussed in this chapter, we track bitcoins into and out of these botnets to better

understand their business model.



Chapter 2

Tracking botnets that monetized stolen
computation

As described in Chapter 1, mining essentially converts electricity into money.
While typically miners pay for electricity costs during the process, in this chapter we
discuss a new type of miner that does not pay for electricity — botnets that possess a large
number of compromised computers. In particular, we focus on botnets that mined bitcoins
between 2012 and 2013. We use Bitcoin’s blockchain, along with malware-related data,
to examine the business model and profitability of mining botnets. In particular, we
discover 10 such botnet operations with a total mining revenue of at least $118,000.
This revenue to the botnets was at a cost of hundreds of thousands of compromised
hosts; for some botnets, we estimate that the energy cost to the compromised hosts was
at least twice the botnets’ revenue. Still, the revenue was small, compared with the
multi-million dollar spam industry in which botnets typically participated. We show
that as dedicated Bitcoin-mining hardware gained popularity, botnets suffered from an
exponentially decreasing revenue per unit computation, to a point where bitcoin mining
on botnets was unlikely to be profitable. Nevertheless, this phenomenon is the start of
a new trend in which miscreants can convert computational power into money, using

whatever crypto-currencies that are profitable for mining.
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2.1 Introduction

Mining crypto-currencies is tantamount to converting electricity into money. As
shown in Chapter 1, a miner looks for hash collisions via brute force. Typically, this
process fully utilizes computational resources such as CPUs or graphics cards, consuming
dozens to even hundreds of watts per device, potentially over a prolonged period of time,
thus incurring significant energy cost. Successful miners are rewarded with newly minted
crypto-currencies. Miners can keep the reward or sell them later in exchange for fiat
currencies such as US dollars.

One special type of miner does not need to pay for the energy cost: botnets [37].
They possess a large number of compromised computers, whose computational capabili-
ties can be used for mining while infected victims themselves pay for the energy cost.
In this chapter, we study a particular instance of this phenomenon: botnets that mined
bitcoins between 2012 and 2013. The first Bitcoin mining malware was observed in the
wild in June 2011 [51]; since then, numerous families of malware have taken up Bitcoin
mining. The first family we identified with mining capability was NGRBot, a malware
kit that has been available for several years. NGRBot is a generic malware platform with
many different capabilities, such as stealing personal information, automatic spreading
on USB and network disks, and launching distributed denial-of-service (DDoS) attacks.
Instances of NGRBot have continued to mine, and recently an NGRBot variant spread
through Skype messages was seen mining [13]. In mid-2012 several news stories docu-
mented ZeroAccess performing both bitcoin mining and click fraud at large scale [65].
Shortly after ZeroAccess and NGRBot, many other families of malware began to appear
that installed (or dropped) bitcoin mining functionality.

To botnets, bitcoin mining offers an additional revenue stream with little extra

infrastructure. When Bitcoin gained popularity, some botnets started tapping into the pre-
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viously under-utilized computational capabilities and began mining bitcoins, in parallel
with existing monetization schemes, such as stealing personal information and launch-
ing DDoS attacks. Effectively, botnets gains a new revenue stream by using existing
infrastructure.

While bitcoin mining increases botnets’ revenue, infected hosts experience higher
energy costs as a result of the computationally intensive nature of mining. In one instance,
as we will show later in the chapter, a botnet that made $8,000 of revenue from mining
incurred an estimated energy cost of $20,000. Furthermore, users of infected hosts
may notice degraded performance, as presumably some of the computational cycles are
devoted to mining, rather than for users’ productivity purposes.

Our goal is to show that, by tracking the movement of bitcoins on the blockchain
and correlating with malware-related data, we can identify bitcoin-mining botnet opera-
tions and measure their economic activities: how much revenue and cost, and using what
business model.

To this end, we first collect bitcoin-mining malware samples from multiple
sources, such as security industry malware databases ThreatExpert and Emerging Threats.
For each executable, we identify how it mines bitcoins — using both sandboxed execution
and binary analysis — and extract the wallet addresses associated with botnet operators.

In order to estimate botnets’ mining revenue, we track bitcoins moving into these
addresses, only focusing on bitcoins that have previously come from mining, so that we
exclude bitcoins that were associated with non-mining activities. Furthermore, using the
blockchain data, we track the difficulty of mining over time, in an attempt to estimate the
energy cost to the infected hosts and the per-CPU revenue to the botnets.

In addition, we combine our blockchain-based analysis with other data sources,
such as communication with mining pool operators, passive DNS, and malware databases.

We identify, where possible, the infrastructure that each botnet operation used and when
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each operation was active, thus providing a comprehensive view of existing botnet
bitcoin-mining activity over botnets.

In brief, our main contributions are:

e We identify a new monetization scheme for botnets to tap into compromised

computational resources through mining.

e We analyze the blockchain to identify clusters of wallet addresses that belong to

individual botnet operations.

e By examining these wallet addresses against the blockchain, we compute the total

revenue of Bitcoin-mining botnets to be around 4,5000 bitcoins or $118,000.

e Combining the blockchain analysis with external data from mining pools, we show
that, for some botnets, the estimated energy cost to the victims is twice the botnets’

revenue.

e By analyzing the difficulty of mining on the blockchain, we show that botnets are

likely to suffer from an exponential decreasing profitability from mining.

The rest of this chapter is organized as follows. We first describe how botnets
mine bitcoins in Section 2.2. In Sections 2.3 and 2.4 we describe our measurement
methodology before presenting our results in Section 2.5. We discuss the economics of

malware mining in Section 2.6 before concluding in Section 2.7.

2.2 How Botnets Mine Bitcoins

Botnets typically mine bitcoins using mining pools. Recall from Section 1.3.2
that mining pools allow miners to receive incremental payouts with significantly lower
variance than solo mining. We observe three distinct botnet mining pool structures in the

wild, summarized in Figure 2.1.
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Figure 2.1. Different ways in which mining malware connects to mining pools: (a)
directly to a pool, (b) via an HTTP proxy, (c) via a smart proxy, and (d) directly to a dark
pool.

Direct pool mining: At its simplest, mining with a botnet is no different from
mining using one’s own hardware. One of the more popular techniques for botnet-based
Bitcoin mining is to simply distribute a mining executable (such as cgminer.exe or
bfgminer.exe) inside a wrapper script that specifies all the parameters required to mine.
This removes any cost associated with developing or modifying botnet software and
is popular with Trojans distributed as pirated software. An example is the FeodalCash
family of botnets (Section 2.5.4) that mine directly at Eligius, a public pool.

A botmaster simply needs to specifying a mining pool and provide his own
credentials. Each compromised PC will connect directly to the mining pool as a worker
and start doing work on behalf of the pool; the pool will direct payments to the botmaster’s
account. We call this approach direct pool mining or simply direct mining.

Mining pool operators can easily detect direct mining, as it involves a large
number of hosts, all using the same account, with each host providing very little CPU
power for the mining task. Once detected, most pool operators will ban such users.!

Once banned, the botnet becomes useless if there is no way to change the mining pool or

credentials used by the bot.

!One pool operator reported having to relent after his pool servers came under DDoS attack from the
botnet.
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Proxied pool mining: To overcome some of the drawbacks of mining directly,
a botmaster can proxy connections to the pool through a server he controls, a mode
we call proxied pool mining or simply proxied mining. Since the getwork protocol
(Section 1.3.2) uses HTTP as a transport, a botmaster can simply employ an HTTP proxy
(e.g., nginx). Using a proxy has two advantages. First, it hides the IP addresses of the
bots: all connections appear to come from the proxy itself, making the botnet seem
more like a single, powerful miner?. Using a proxy also provides a level of indirection,
allowing the botmaster to switch to new credentials or mining pools if banned.

Alternatively, the botmaster can design a more sophisticated smart proxy that
does more than blindly pass through getwork requests. In this configuration, a proxy
operated by the botmaster requests work from a pool as a normal worker, but then splits
the work into smaller units provided to the bots. This architecture requires modifying
existing mining pool software to support such operation, an additional investment. The
Fareit botnet, however, uses a form of smart proxying. The server to which the bots
connect operates as a mining pool server for the bots, but appears as a single worker to a
P2Pool mining pool; more detail is provided in Section 2.5.5.

The downside of either form of proxy mining is that it requires additional infras-
tructure — the proxy. Several mining operations we observe use this mechanism, such as

DLoad.asia and ZeroAccess (Sections 2.5.1 and 2.5.2).

Dark pool mining: The final option is for the botmaster to maintain his own
pool server. In this mode, which we call dark pool mining or simply dark mining,
bots connect to a mining pool controlled by the botmaster. In this configuration, the

botmaster’s dark pool must participate in the Bitcoin peer-to-peer network. In addition to

’It is still possibly detectable, as the time between sending a getwork request and providing a corre-
sponding proof of work could be longer than then the gap produced by a single miner. The number of
getwork calls is also unchanged.
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the infrastructure investment in the pool server, the botmaster loses the consistency of
payouts provided by a (larger) pool. The botnet now only generates revenue if it finds
a block itself. A botnet of 10,000 compromised desktop PCs each capable of 10 MH/s

running continuously mines one block every 16 days on average, as of August 2013.

2.3 Using Blockchain to Estimate Botnet Revenue

In this section, we show how to use the blockchain to estimate botnets’ revenue
from mining bitcoins. In particular, we first identify wallet addresses that botnets used
(Section 2.3.1). Then we identify income to these addresses from mining pools, so
that we consider revenue exclusively from mining, rather than other botnet activities
(Section 2.3.2). Finally, we analyze the mining revenue as received by botnets’ other

wallet addresses (Section 2.3.3).

2.3.1 Identifying Botnets’ Wallet Addresses

Recall, from Chapter 1, that mining pools generally require registration to mine
with the pool. When mining, the worker supplies the user name created at registration; all
earnings are credited to that user and periodically transferred to a wallet address specified
at registration. (The exception are pools that support so-called pseudonymous mining, in
which the worker specifies the payout wallet address — rather than a user name — when
connecting; in this case, no mapping is necessary.)

Pools do not normally list miner wallet addresses publicly, making it difficult to
connect mining activity to payouts. To obtain this information, we resort to non-technical
means, contacting the pool operators directly to ask for information about specific
accounts. Some operators kindly provided us with this information, either sharing with
us the payout address or the total amount paid out to it. Operators are sensitive about

privacy and only provided information about users they themselves had identified as
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botnet miners.
When a botnet does not use mining pools, we extract the botnet’s wallet addresses

using steps described in Section 2.4.2.

2.3.2 Estimating Revenue From Mining Only

Because all transactions are visible, knowing the addresses to which mining
payments are sent allows us to estimate the earnings of a specific miner via examination
of the blockchain. We use the payout addresses provided to us by various pool operators.
Given these addresses, we first need to isolate mining payouts from other types of
transactions. To identify mining pool payouts, we use the technique of Meiklejohn et
al. [47] to identify the payout transactions of five major mining pools: 50 BTC, BTC
Guild, Deepbit, Eligius, and P2Pool. Briefly, this technique relies upon knowledge of
patterns or addresses specific to each pool. For instance, a Deepbit payout transaction
always uses the same address as the sender, and BTC Guild always sends its initial
mining reward to the same address (at which point it pays each miner in an identifiable
chain of transactions).

Once we have a collection of transactions representing the mining payouts to
the address, we then consider all mining revenue to be derived from botnet mining.
This number forms a lower bound on the actual mining revenue, as the techniques of
Meiklejohn et al. [47] may fail to identify certain payout transactions in order to avoid
false positives. While one might argue that it is possible for a botmaster to re-use this
same address for legitimate mining operations, we view this possibility as unlikely. First,
re-using the same Bitcoin address for multiple purposes has the potentially negative
effects that it confuses bookkeeping for the owner and serves to de-anonymize her (as
two users now know her by the same pseudonym). Second, re-using the same address has

essentially no positive effect, as generating a new Bitcoin address requires generating only
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a signing keypair, and thus has virtually no computational cost. Finally, and perhaps most
importantly, re-using the same payout address jeopardizes legitimate mining revenue, as
botnet miners are routinely banned by pool operators.

In addition to using the blockchain to estimate revenue, some mining pools offer
public statistics on the earnings of individual miners. One pool, Bitclockers, provides
a leader board, showing total user earnings, and work contribution for each solved
block. We use this information to determine the earnings of 38 users (Section 2.5.10).
In addition, the Eligius and 50 BTC pools provide public statistics about users mining
pseudonymously. For malware mining operations using these pools, we obtain earnings
and other information directly from these public statistics. Finally, our source of infor-
mation about the Fareit botnet is the botnet itself (Section 2.5.5). This botnet operates
its own mining pool servers, operating as a dark pool (Section 2.2). The mining server
software is a fork of the P2Pool mining server code base.> This particular mining server

provides miner statistics, which we are able to obtain directly from the dark pool servers.

2.3.3 Clustering Wallet Addresses

While re-using a single Bitcoin address might be unattractive to a botmaster, there
are a number of reasons why one might use multiple addresses. For example, using
different pool credentials for each malware distribution campaign would allow her to
track earnings for each campaign separately. Using separate addresses also offers some
protection against detection by a pool operator, as it spreads the activity across several
accounts; even if one address were blocked by a pool operator, only those bots mining to
that banned address would be affected.

To identify addresses belonging to the same botmaster, we rely on the observation

— due to Satoshi Nakamoto himself [49] — that addresses used as inputs to the same

3http://github.com/forrestv/p2pool
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transaction are controlled by the same user, as described in Section 1.2.3. This technique
is employed frequently in studies of anonymity within the Bitcoin network [47, 60, 61],
and we use it to cluster otherwise distinct malware. This clustering is especially useful for
smaller mining operations: e.g., in the case of the BMControl malware, we first identified
the family using this technique, and later confirmed the clustering by identifying and
decoding its Pastebin-based command-and-control channel.

Clustering also allows us to identify other wallet addresses used by the botmaster.
We refer to wallet addresses directly associated with malware mining as primary wallet
addresses. We refer to wallet addresses in the same cluster as a primary wallet address,
but which are not themselves primary addresses, as secondary wallet addresses. The
income received by secondary wallet addresses may include mining income from other
malware mining operations of the same botmaster that are unknown to us. It may also
include, however, other sources of income, including some that may be legitimate. For

this reason, we report the included income of secondary wallet addresses separately.

2.4 Discovering Botnet Operations

In this section, we describe our methodology to understand the modus operandi
of botnets, from identifying mining malware, extracting mining credentials, identifying

pool proxies, to estimating the infection population.

2.4.1 Identifying Mining Malware

To our knowledge, all malware engaged in Bitcoin mining uses the HTTP-based
getwork protocol supported by existing mining pools (as of 2013). We therefore rely on
this signal as our primary means of identifying mining malware: we use mining protocol
traffic in network traces of a malware binary’s execution as evidence that it is engaged in

Bitcoin mining.
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To obtain network traffic of various malware, we execute the binaries in our own
malware execution environment or rely upon data from public and private sandboxes,
including ThreatExpert* and Emerging Threats>. Some environments also provide OS-
level monitoring such as logs of registry keys changed and files modified. We manually
assess if a sample is performing Bitcoin mining by inspecting the traffic and looking for
evidence that a particular sample is requesting work from a Bitcoin pool server. Then,
using traffic and OS-level logs we construct queries to identify additional samples with
similar characteristics. In total we identify over 2,000 executables that connect to pools

and mine bitcoins.

2.4.2 Extracting Mining Credentials

Most mining malware relies on generic, off-the-shelf mining clients to do the
actual mining. The malware executes the client and provides the pool name and worker
user name — mining credentials passed as parameters to the miner — on the command

line.

Command-line arguments: In many cases, we can extract these command-line
arguments directly from the packaged binary statically. In other cases, we extract the
mining credentials from the process execution environment; an example is the BMControl

malware (Section 2.5.3), from which we extract the usernames from the memory dump.

HTTP basic authentication: We can also extract the pool name and miner user
name from the network trace of the malware. The getwork protocol relies on HTTP
basic access authentication to provide the miner user name to the pool.® With HTTP

basic authentication, a Base64-encoded user name and password are submitted in an

“http://www.threatexpert.com

Shttp://www.emergingthreats.net

The password is ignored by all pools of which we are aware, since there is no benefit to doing work in
another miner’s name, nor is there any obvious harm to the miner in whose name the work is submitted.
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HTTP header, making them easy to extract from a network trace. We use this method of

extracting miner identifiers for binaries executed in third-party sandboxes.

Command-and-control channel: Some malware does not embed the pool
or worker name into the binary. Instead, the mining credentials are obtained through
a custom command-and-control channel. The Fareit botnet (Section 2.5.5) uses the
Dropbox and Pastebin Web services to disseminate mining credentials to bots. The
contents of the Dropbox or Pastebin document are usually obfuscated using algorithms
ranging from simple Base64 encoding to custom encoding schemes.

We manually reverse-engineer the malware to determine the technique used to
obfuscate the data received through the command-and-control channel. For simple
obfuscations, we can recreate the de-obfuscation algorithm and use it to continually
retrieve the pool information and worker credentials. One example of this is the first
version of the BMControl botnet that uses Pastebin to host Base64-encoded configuration
information. The configuration includes the command-line parameters for the mining
executable (in this case bfgminer’) as well as a list of the pools and worker credentials to
use.

More complex obfuscation can be difficult to reverse-engineer; in this case we
run the malware and take a memory snapshot after the malware has de-obfuscated the
payload. An update to the BMControl botnet included a change in the obfuscation
technique, so we use memory snapshots to capture the decoded payloads. The Fareit
malware family also uses more substantial obfuscation, making memory snapshots a
prudent technique for automatically decoding the configuration.

These techniques allow us to identify the mining credentials for all the samples of

malware we find mining bitcoins. Based on the pools we observe the malware accessing,

"http://bfgminer.org/
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we find that 74% of the samples connect to well-known public pools (light pools), while

the remaining 26% connect to unknown private pools (dark pools).

Pool operators: Finally, some user names and wallet addresses were provided to
us by public pool operators as miners they believed to be using a botnet. We confirm their
claims by locating the corresponding malware MDS5 hashes (e.g. the gamer-targeting

botnets in Section 2.5.10).

2.4.3 Identifying Pool Proxies

The techniques described above work for malware engaged in direct public pool
mining; that is, where the malware connects directly to a public pool, or for malware
where the dark pool provides information, as in the case of the Fareit botnet. In some
cases, however, the pool server to which the malware connects is not a known public
pool nor does it report any useful information via a statistics Web page. These types
of malware mining operations are the hardest to measure. If the server is no longer in
operation, our options are limited still further. Here we describe the techniques we use to

glean what information we could about such mining operations.

Cross-login test: Since the getwork protocol uses HTTP as a transport, it can
be proxied by an HTTP proxy such as nginx without modification. In the simplest case,
incoming connections are transparently proxied to a public mining pool. Such a proxy
passes through all HTTP headers unchanged, including the Authorization header used
by HTTP basic access authentication. In this configuration, bots must use credentials
that are valid for the destination pool. To detect this form of proxying, we create miner
accounts at several major mining pools and attempt to connect via the suspected proxy
using the registered user names, as well as one randomly-generated name we confirmed

did not correspond to an exist user name at any of the major pools. If the suspected



40

proxy proxies to one of the major pools, then exactly one user name should succeed in
authenticating — the user registered with the public pool to which to proxy is pointed.
We identify one transparent proxy: domain-crawlers.com transparently proxies all
connections to the 50 BTC public pool.

We also test whether pool credentials found in malware could successfully au-
thenticate to a public mining pool. We find this to be the case for a number of worker
user names; however this test is not conclusive so we draw no conclusions from this test
alone. Rather, we use this information to engage with pool operators; in cases where the
pool operator independently confirms that the miner was suspected of mining using a

botnet, we include the miner in the analysis.

Passive DNS: The lifetime of a dark mining pool is usually indicative of the
lifetime of the corresponding botnet. To determine when such pools were first and last
seen, we use the passive DNS data from the ISC Security Information Exchange.® The
passive DNS dataset contains DNS lookups issued by recursive resolvers at several
vantage points, including a major US consumer ISP. We use this dataset for the purpose
of discovering the DNS A-records historically returned for domain names of interest
between October 2011 and April 2013. In addition to showing the first- and last-seen
dates of dark pools, this data set also illustrates the overlap of A-records across different
domains. For instance, two dark pools, dload.asia and aquarium-stanakny.org,
pointed to the same IP addresses in the past. This coincidence suggests that the same

botnet operation may be behind both domains.

Block reversal: In some cases, we can attribute a successfully mined block to
a particular mining pool. The getwork call needs to provide different work for each

worker, but if there are no new transactions added between getwork requests, subsequent

8https://sie.isc.org/
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Figure 2.2. Two stacked line graphs showing the amount of mining payouts that botnets
received over time, in BTC and in USD. The aggregate mining of all the operations never
exceeds 0.4% of the bitcoins generated each day.
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calls would produce the same value. Pool servers counter this problem by changing the
coinbase value for each call to getwork, using it as an additional nonce. Here, we use
it as a signature of a particular pool: while the pool clearly will not provide the same
coinbase to two different workers, many pools provide similar coinbases across workers.

We repeatedly poll all known pool servers several times a second for a period
of three weeks. Then, for every block published during our monitoring, we perform a
brute-force search modifying the coinbase of the published block (based on changing
only the bits which change when examining the most-similar coinbase in the blockchain
at the time) and checking whether the modified coinbase corresponds to one of our
recorded getwork requests. A match indicates that the monitored pool is likely to have
mined that particular block.

Although this approach is only effective against pools with low coinbase entropy,
we are able to attribute blocks to both the Deepbit and 50 BTC pools. It also confirms that
domain-crawlers.com was proxying to 50 BTC, as we discover multiple blocks where
getwork calls to both a 50 BTC pool server and the domain-crawlers.com server corre-
spond to the blocks published in the blockchain, suggesting that domain-crawlers.com

simply forwards the getwork request on to 50 BTC.

Leaked data: In one case, we could glean information about a Bitcoin botnet
mining operation from leaked data. Specifically, information about FeodalCash, an
affiliate-based program that pays botnet operators to install their Bitcoin mining malware,
was publicly posted on the Internet. This data enables us to identify earnings from the

entire operation as well as earnings from individual affiliates of the program.

2.4.4 Estimating Infected Population

We contacted a top anti-virus software vendor (with an install base of millions

across the world) with the MD5 hashes of the mining malware, and obtained from
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them, for each of our 976 samples, an aggregate list of countries from which the mining
malware was seen to be operating along with the count of unique machine infections
detected, over a period of about one and a half months around July 2013. The vendor also
provided us with the count of their install base per country. Based on this information and
the distribution of computers across the world, we can extrapolate the total population of
malware infections per malware family as follows.

Let /; be the number of infections observed by the vendor in country i, and M; be
the number of machines in that country that subscribe to the vendor’s monitoring service.
Using an approximate number of computers 7; for country i, the estimated bot population
E; can be computed as

Ei = (Il'/M,') X Tl

The CIA factbook [23] reports the number of Internet users for 2009; we assume one
computer per Internet user for 7;. In practice, this assumption holds for known data points
(e.g. Worldwide PCs deployment is projected® to be 1.9 billion in 2013, while the CIA
factbook estimates the total Internet population as 1.8 billion).

We expect the estimates here to be lower bounds for the following reasons:
first, computers that do not have anti-virus protection from the vendor are not counted,
including computers with no anti-virus protection at all — such computers are likely to
be infected with malware over the long term, contributing to more mining. Second, the
estimates are only for the specific binaries we collect. Many of the malware families
involved in mining are polymorphic, so we expect many more samples that are not

considered here.

° According to the Computer Industry Almanac, Worldwide PC use executive summary
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Table 2.1. Bitcoin mining operations covered by our study.

Family Sec. EXEs Wits Active period BTC USD
DLoad.asia  2.5.1 322 — Dec’ll -Jun’13 10,000? 10,0007
ZeroAccess  2.5.2 976 3 Dec’ll —Nov ’13 486 8,291
BMControl  2.5.3 54 47 May’12-May’13 3,097 46,301
FeodalCash 2.54 — 238 May’13-Nov’13 168 15,941
Fareit 2.5.5 5 1 Apr’13-Nov’13 265 30,448
Zenica 2.5.6 67 — — 170? —
HitmanUK 2.5.7 5 1 Mar’13-Nov’13 4 362
Xfthp.ru 2.5.8 42  — — — —
Skype Miner 2.5.9 17 — — 2507 —
Misc. 2.5.10 — — Dec’11 -Nov’13 539 17,166

2.5 Analysis

Recall that our goal is to identify major Bitcoin mining operations, their scope,
and revenue. In this section we describe nine major mining operations, including a
Bitcoin mining affiliate program (Section 2.5.4), as well as 80 smaller mining operations,
most represented by a single executable found in the wild.

Table 2.1 summarizes our findings. The EXEs column shows the number of
executables we observe engaged in mining. Several families of malware — ZeroAccess
especially — are very aggressive about repacking binaries; it is likely that our sample
does not represent the entire set of binaries in the wild. (Recall that our main means
of identifying mining malware are reports by ThreatExpert, VirusTotal, and Emerging
Threats.)

The Wits column gives the number of wallet addresses known to us that receive
payouts. FeodalCash, an affiliate program, has the largest number of wallet addresses
(238) because each affiliate mines to a unique wallet, allowing earnings to be credited
properly. BMControl also has a large number of wallets (47); we suspect it is also an

affiliate program.
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Figure 2.3. Delay in transfer to exchanges for different botnets.

The Active period column shows the period when the mining operation was active,
based on mining data and malware distribution activity.

The BTC column shows our estimate of each operation’s total earnings. In most
cases, earnings are measured directly, either from mining pool statistics (ZeroAccess,
Fareit, BMControl, and FeodalCash), or from the blockchain based on payout address
(DarkSons and HitmanUK), based on earnings reported by the pool (Skype Miner and
Zenica), and finally based on order-of-magnitude estimates by the pool operator (Redem).
Small mining operations covered in the miscellaneous section (Section 2.5.10) use all
four of the above types of estimates.

The USD column provides an estimate of the earnings in US dollars, using the
exchange rate at the time of payout. Thus, although earlier mining operations (e.g.,
DLoad.asia) earned over 10 million dollars’ worth of bitcoins at the exchange rates in
effect on November 30, 2013, at the time of mining a bitcoin was worth considerably
less. In two cases — Skype Miner and Zenica — we do not have accurate information
about when the bitcoins were earned, so cannot estimate the equivalent US dollar value

accurately. We plot our estimate of the daily earnings of the five largest operations
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(in terms of revenue) in Figure 2.2, and their cumulative earnings in Figure 2.4. The
latter further breaks down the earnings into just those transferred from the primary
wallet addresses (i.e., the address(es) associated with the mining credentials used by the
malware) as well as transfers from associated wallet addresses (see Section 2.3.3).

Our estimates notwithstanding, the true “takehome” earnings in terms of USD (or
any other fiat currency) depend entirely on how — and when — the bitcoins are “cashed
out”, typically by transferring them to an exchange. Hence, transfers to exchanges are of
particular interest, as they serve — with very few exceptions — as a necessary precursor
to cashing out of the Bitcoin economy. Unfortunately, because most exchanges double
as online banks we cannot claim definitively when — or if — all these earnings were
converted to fiat currency.

Moreover, in some cases, the mining profits might travel through several interme-
diate addresses before arriving at an exchange. For simplicity, we consider only cases
with no intermediate addresses; i.e., cases where the bitcoins earned from mining are
spent immediately at an exchange. We define the transfer time as the interval between the
mining payout and the actual transfer. We use the techniques of Meiklejohn et al. [47] to
identify wallet addresses associated with exchanges. Figure 2.3 shows the delay between
when a botnet receives payment for mining and when it transfers its earnings to an
exchange. In most cases, botmasters liquidated their bitcoins shortly after mining.

In the remainder of this section, we describe each of the mining operations listed

in Table 2.1 in greater detail.

2.5.1 DLoad.asia (Redem and DarkSons)

The DLoad.asia operation is one of the earliest major mining operations we en-
countered. More properly, the DLoad.asia operation consists of several mining operations

using shared infrastructure. At least two individuals are behind the operation, known by
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the handles Redem (a.k.a. Mpower) and DarkSons (a.k.a. MrDD).

Operation: Based on information provided by one public mining pool operator,
these individuals began mining in 2011, initially connecting to the pool directly and later
via a proxy. These botnets continued mining using the same pool user names (variations
of “Redem” and “DarkSons”) even when connecting through a proxy. Later generations
of malware used different miner user names and proxy domain names. Despite this, the
server [P addresses and domain names were not changed in unison, making it possible to
track the infrastructure as it evolved. Most recently, the DLoad.asia infrastructure was
used as a mining proxy and NGRBot command-and-control channel. As documented by
the “Inside Your Botnet” blog, the Redem and DarkSons names continued to appear in
IRC channel and user names [35, 36, 37, 38, 39, 40], as well as in domain registration

records.

Earnings: The pool operator shared with us the wallet address that DarkSons
used. The wallet address was last active in November 2012, at which point it had amassed
2,403 BTC. The techniques of Meiklejohn et al. [47] are unable however, to identify any
direct payments from mining pools. The blockchain does reveal a number of transactions
in which the DarkSons wallet received block rewards through an intermediate wallet.
The botnet received a total of 1,681 BTC through these transactions.

We are unable to locate a payout address for Redem. However, the pool operator
recalls that the botnet connected to the pool using over 100,000 unique IP addresses and
had a peak mining rate of over 100 GH/s. The operator estimates that the bot earned
at least 10,000 BTC. During that time period, however, a bitcoin was worth only about
$1. Our estimate of Redem’s portion of DLoad.asia earnings in US dollars shown in

Table 2.1 is therefore based on a 1:1 exchange rate.
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Table 2.2. Distribution of DLoad.asia infections by country.

Country Share Est.
Brazil 16.0% 10,600
Malaysia 9.5% 19,300
Indonesia 87% 11,700
Russia 5.9% 4,200
South Korea  5.8% 7,100
Others 54.1% 71,800

Population: Although the DLoad.asia infrastructure is no longer active, infected
hosts can still be found in the wild. Table 2.2 presents our estimation of the geographic
distribution of infections based upon the data provided to us by a major anti-virus software
vendor. The Share column shows the ratio of the number of infected hosts to the total
number of hosts with the vendor’s product in a given country. Based on this percentage
and the number of computers in the country, we estimate the infection population. Brazil
accounts for the largest share of infections; the vendor’s coverage is smaller in Brazil than

in Malaysia, however, so the estimated number of infected hosts is larger in Malaysia.

2.5.2 ZeroAccess

As of November 2013, the ZeroAccess botnet was one of the largest botnets, with
estimated 9 million infected PCs of which one million are online at a given time [65].
ZeroAccess uses drive-by downloads and other methods to infect victims [33]. The core
of the botnet is a rootkit and peer-to-peer command-and-control (C&C) protocol. Using
the C&C protocol, bots can fetch modules that enable the bot to carry out tasks such as
mining bitcoins or committing click fraud. Bots can be configured to perform only one

task. It is possible to update the modules as necessary through the same C&C protocol.

Operation: ZeroAccess began mining via a proxy server, tang0-hotel.com,

and changed proxy servers several times to domains such as google-updaete.com and
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great-Oportunity.com. According to our passive DNS data, these domains were first
active in December 2011. As of November 2013, they were not active; as of mid-June
2013 ZeroAccess was mining directly through Eligius, a public mining pool that offers
detailed hash-rate graphs for every user. Using credentials embedded in the ZeroAccess
malware, we find one wallet address, 1ASNjJ, that it uses to mine at Eligius. Figure 2.5
presents the daily mining rates for ZeroAccess and two other operations that also use

Eligius (discussed in subsequent sections).

Earnings: Our analysis of the earnings of ZeroAccess is limited to the most
recent version that mines directly through Eligius. So far, the botnet has received more
than 400 BTC from mining payouts (Figure 2.4a). As of November 2013, the botnet was
mining at less than 1 GH/s, although the peak in February 2013 was close to 20 GH/s
(Figure 2.5a).

Population: Based on information provided by the security vendor, most of
the Bitcoin-mining bots were located in Europe, with over 25 countries in Europe
accounting for about 50% of all observed infections. On the other hand, the malware
itself is widespread, with infections detected in more than 60 countries. Table 2.3 shows
distribution of the observed bot population for 976 binaries for the top five infected
countries, as a percentage of total infections observed in the Share column, while the Est.
column gives the number of infections extrapolated as described in Section 2.4.4.

The population estimate is much lower than previously published estimates [62,
65], which suggest the ZeroAccess bot population is between 1.2 to 9 million. However,
our estimates are only for the 976 binaries we obtained and know to engage in Bitcoin
mining for specific wallets. ZeroAccess is known to be polymorphic, so a large number
of binaries are expected. Anti-virus vendors we checked with had well over a hundred

thousand binaries labeled as ZeroAccess. Hence, we do not claim that our estimate
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Table 2.3. Distribution of ZeroAccess infections by country.

Country Share Est.
United States 149 % 2,600
France 12.2 % 1,800
Russia 8.2 % 800
Czech Republic 5.1 % 900
Canada 4.8 % 817
Others 54.8 % 10,600

represents the overall ZeroAccess bot population or its potential mining profits, only the
subset we observe in action.

Another way to localize the botnet is to use the diurnal pattern of its operation [26].
To analyze the periodicity, we find the hours of each day (in UTC) at which the botnet’s
hashing rate reaches a local minimum. Then we compute the probability distribution of
these relatively dormant hours, a histogram of which is shown in the leftmost portion
of Figure 2.6. As shown in the graph for ZeroAccess, the botnet is the slowest around
midnight UTC, suggesting that the majority of infected hosts that mine with the 1ASNjJ
wallet address are located in Asia [26]. However, Table 2.3 suggests that the US has the
largest bot population. It is likely that the botnet uses multiple wallet addresses in its

binaries, of which we are able to find only one.

Energy cost to infected hosts: Figure 2.5, if we assume the mean hash rate is
about 3 GH/s per day for a year (during which the botnet was active), we can estimate the
total energy cost per victim. We further assume that a standard 30-Watt CPU can mine at
4 MH/s, and that electricity costs $0.10/KWh. Then the total energy cost is: 3 GH/s /
4 MH/s x 30 Watt x 365 days / 1000 KWh = $19,710. Compared with the $8,000 of
total revenue, the energy cost to the victim is more than twice of mining revenue for the

botnet.

Transfers to exchanges: The ZeroAccess line in Figure 2.3 shows the distribu-
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Figure 2.6. The distribution of times (in UTC) at which Eligius-based botnets achieve
minimal mining rate.

tion of mining revenue that was transferred (within a single hop) to an exchange. The
botnet transferred to an exchange more than 90% of the mining revenue that its primary
wallet addresses received, using BTC-e as the primary exchange. The median time to
do so is about a week. The botnet moved the remainder of its revenue to wallet ad-
dresses that we cannot identify as exchanges. These earnings might have been reinvested
within the Bitcoin economy, or they might have been transferred to an exchange through

intermediate wallet addresses.

2.5.3 BMControl

Another botnet that mines at Eligius is one we call BMControl, which can be
identified by its command-and-control channel that uses specific PasteBin URLs to
distribute configuration data to bots. We name this family of malware based upon
the PasteBin user that uploaded the configuration data, BMControl. Upon startup, the
malware retrieves and decodes the data contained in the PasteBin URL, and executes the

mining binary. The configuration is a Base64-encoded string that includes the parameters
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to run the mining executable and credentials for logging into the pool servers. The

BMControl botnet was documented online in September 2012 [66].

Operation: BMControl has mined through proxies as well as directly through
several pools. The configuration file at PasteBin contains a list of worker credentials
for pools. When we first began monitoring this botnet, the configuration included only
Bitcoin mining pools and used wallet addresses as worker names (a common feature of
several Bitcoin pools). The primary pools that were used for Bitcoin mining were Eligius,
50 BTC and EclipseMC. Subsequent versions of the configuration file do not use Bitcoin
wallet addresses as worker names, instead preferring to list usernames and passwords
for the pools. The most recent configuration files for BMControl have included Litecoin

pools and new worker credentials.

Earnings: For each distinct PasteBin URL, there is a counter of unique visitors
that attempts to identify new visits based on cookies and IP addresses. For the two
primary BMControl PasteBin URLs, there are over 8 million unique visits. This number

increases between 200 and 1,000 every hour. The rate that the counter increases for one
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week at the beginning of August, 2013 is shown in Figure 2.7. Since this PasteBin post
is only useful if one can decode the contents and it requires knowledge of the URL to
find it, we can reasonably estimate that increases in the counter are due to new infections
and daily check-ins by the malware. Using this, we estimate that there are around 16,000
bots online each day.

As seen in Figure 2.4b and Figure 2.5b we no longer see the BMControl bot-
net mining bitcoins. Instead, the botnet has changed to mining litecoins through
litecoinpool.org. We have confirmed this by decoding the configuration file as
well as through contacting the 1itecoinpool.org administrators who have acknowl-
edged that the workers used by BMControl are earning litecoins. We discuss Litecoin
mining further in the Epilogue.

Using the last known mining rates (Figure 2.5b) and the estimate of 16,000 bots
active per day from the PasteBin counter increases, we estimate that the average mining

rate per bot is 3.75MH/sec.

Population: Eastern European countries account for more than 80% of the
BMControl infections, with Bulgaria dominating the list shown in Table 2.4. This
matches well with the diurnal cycle of the mining rate shown in Figure 2.6. The minimum
mining rate happens around 3:00 UTC and Bulgaria is on Eastern European Time (UTC

+2 or +3).

Energy cost to infected hosts: Using the same technique to estimate the energy
cost as Section 2.5.2, if we assume the mean hash rate is about 10 GH/s per day for a year
(during which the botnet was active), we can estimate the total energy cost per victim as
$65,043. Compared with the $46,000 of total revenue, the energy cost to the victim is

roughly 1.5 times of mining revenue for the botnet.
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Table 2.4. Distribution of BMControl infections by country.

Country Share Est.

Bulgaria 50.6% 99,900
Turkey 28.8% 40,000
Macedonia  2.7% 7,000

Brazil 1.4% 2,200
Slovenia 1.4% 3,300
Others 15.0% 52,000

Transfers to exchanges: Using the same methodology as for ZeroAccess, we
examine how BMControl transferred its mining revenue — which it received in its
primary wallet addresses — to exchanges. According to Figure 2.3, the botnet transferred
around 30% of the revenue, with a median transfer time of around two weeks. Most of

the transfers took place at the Bitcoin-24 exchange.

2.5.4 FeodalCash

Details about FeodalCash, the last of the major botnet operations we see mining
at Eligius, were leaked and publicly posted onto the Internet [44]. From this leaked
data, we can see that FeodalCash is an affiliate program that provides (GPU-capable)
Bitcoin mining malware that affiliates install on their bots. In turn, FeodalCash then
pays affiliates a fraction of the revenue earned by their bots. This type of labor division
enables the affiliates to focus on gaining more bots while the affiliate program can focus

on maintaining the malware and infrastructure.

Operation: According to the leaked data, the botnet started operating in May
2013 and there were 238 active affiliates at the time of the data leak. The Bitcoin mining
malware was configured to directly mine with the Eligius Bitcoin mining pool and each

affiliate was assigned an individual wallet.

Earnings: Since this botnet used Eligius, we can gather a complete profile of
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Figure 2.8. Fareit hash rate and stale share rate as reported by the proxy pool server
coonefix.ru.

their earnings and hash rate over time, as shown in Figures 2.4c and 2.5c. The botnet
did not start earning much until more affiliates joined the program around the end of
June 2013. At this point the botnet reached a peak of almost 250 GH/s and has since
experienced a steady decline in earnings as the difficulty level has increased while its
hashing rate has fallen. As of November 2013, the botnet has earned 168 BTC, which

translates to approximately 15,941 USD.

Population: If an average PC can mine at about 4 MH/s, we estimate that the
bot consisted of 62,500 hosts at its peak hashing rate. In addition, we analyze the diurnal
patterns in the hash rate graph. We focus on the hours at which the hashing rate is the
lowest every day. As shown in the rightmost portion of Figure 2.6, the botnet reaches
minimal activity around midnight UTC. This suggests that the majority of the infected

hosts are in Asia.

Transfers to exchanges: As shown in Figure 2.3, the botnet transferred more
than 60% of the mining revenue to exchanges. The botnet almost exclusively used

WebMoney as the exchange service. The median transfer time is less than five days.
2.5.5 Fareit Bots

The Fareit botnet originally focused on stealing passwords and DDoS attacks.

However, on April 9th, 2013 it began distributing Bitcoin mining malware [64].
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Distribution: This botnet uses the popular Black Hole exploit kit to install a
small executable that contacts kgtxdu. info to download an open source Bitcoin mining
client called CGMiner'? onto the victim’s system. CGMiner is disguised as a Flash.exe
and once downloaded, a Visual Basic script is used to invoke the miner program with
a predetermined command line string. The Visual Basic script is then copied onto the
Startup directory of a windows system so that the miner will be persistent even when the

victim reboots their computer.

Operation: The Bitcoin mining malware contacts a proxy server, coonefix.ru,
which proxies connections to the public pool p2pool.org.!! It is an example of a smart
proxy, as shown in Figure 2.1. The proxy server reports fine-grained data, such as mean
payout values, current hashing and stale share rates, which we plot in Figure 2.8. All of
this information provides us with deeper insights into the inner workings of their botnet

mining operation.

Earnings: To identify the botmaster’s wallet address, we look for a wallet that
receives payouts from P2Pool, such that the payout rate is consistent with the pool’s
hash rate, and that the first payout occurred on the same day (April 9th 2013) when
the malware started mining. As of November 7th 2013, the Fareit botnet’s wallet has
received at least 265 BTC of mining revenue. As the global Bitcoin difficulty increases,

Fareit has been receiving mining payouts at a slower rate (Figure 2.4d).

Population: We leverage the stale share rate to estimate the botnet’s population.
A share is the proof-of-work that miners submit to the mining pool. The share becomes
stale when the another mining pool has mined the block. Whatever work the mining pool,

along with its miners, has put in so far is essentially wasted. If a total hash rate of a pool

10https://github.com/ckolivas/cgminer
"'"The pool server code on coonefix.ru is a fork of the original P2Pool open source software available
at https://github.com/forrestv/p2pool


https://github.com/ckolivas/cgminer
https://github.com/forrestv/p2pool
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is high, it is less likely that another pool will have mined the block first. The stale share
rate will thus be lower.

To estimate the number of infected hosts based on the stale share rate, we perform
the following experiment. We mine for P2Pool with a standard desktop computer,
which was capable of mining at 4.6 MH/s. We observe that our stale share rate is 24%.
Meanwhile, the Fareit proxy reports a stale share rate of 34%. Since the stale share
rate goes up as hashing rate goes down!? , at this point in time the average hashing rate
of a bot is less than 4.6 MH/s. If we assume a compromised host mines at 4 MH/s, a
low standard deviation in the hashing rate of bot and a total hashing rate of 50 GH/s (a
long-term average of the mining rate shown in Figure 2.8), we can estimate there are

about 12,500 bots mining in this botnet.

2.5.6 Zenica

Zenica is a botnet that mines at a major public pool. It appears to be operated by
one person. Unlike the other major botnets, there are few activity reports of this botnet
on anti-virus websites, security blogs or online forums. We are not sure how the malware
is distributed or how the botnet operates. However, its sheer size and large earnings merit

close scrutiny.

Earnings: We find 67 malware binaries that connected to the mining pool via
the username zenica@gmail . com. We contacted the pool operator about this user. The
operator claimed that the account “had 312,000+ active IPs” and was “paid out about

170 BTC in 3 months.”

Population: Zenica bots are most prevalent in Southeast Asia (Table 2.5), with

Vietnam and Thailand accounting for over 70% of the sampled infections.

12We confirm that a higher hashing rate results in lower stale-share rates by mining with a CPU capable
of 18 MH/s and observing a stale-share rate of 14%.
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Table 2.5. Distribution of Zenica infections by country.

Country Share Est.
Vietnam 61.0% 119,800
Thailand 9.2% 16,000
Romania 4.3% 5,200
Taiwan 3.2% 5,100
United states  2.3% 3,300
Others 20.0% 32,200

2.5.7 HitmanUK

HitmanUK is a botnet that mines at a major public pool. It has a relatively small
mining income: 4 BTC to date. Even so, it makes an interesting case study, because the

botmaster launched a DDoS attack on the pool when the pool first blacklisted the botnet.

Operation: We find five malware binaries with the username ‘“hitmanuk.” Ac-
cording to the pool operator, the account is associated with the wallet address 1ARHrS.
The binaries and the wallet address were first seen in February 2013. It appears that the
botnet has remained active since; the wallet is still receiving mining payouts.

At some point, the pool operator blacklisted the botnet’s account, possibly due to
reports of malware. The botnet immediately retaliated by launching a DDoS attack on the
pool’s mining server, paralyzing the entire pool and preventing other users from mining
for a few hours. In the end, the pool operator gave in and unfroze HitmanUK’s account.

This incident suggests that the botnet was — at least at the time — of considerable size.

Earnings: HitmanUK'’s wallet is active to this day. At the time of this writing, it

has received 4 BTC, worth $362 at the time of payout.
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Table 2.6. Distribution of infections by country for Xfhp.ru.

Country Share Est.

Indonesia 10.9% 3,200
Mexico 7.3% 1,200

Peru 6.1% 1,900
Thailand 5.5% 1,800
Brazil 4.8% 700

Others 65.5% 28,000

2.5.8 Xfthp.ru Miner

This botnet uses ZBot, also known as Zeus, which connects to xfhp.ru. At the
time of writing the domain is still active and runs a stratum proxy pool server. ZBot then

downloads a plugin that does Bitcoin mining.

Population: Most of the infections for this malware come from Southeast Asia
and South American countries, perhaps indicating that the botmaster chose to buy cheaper
hosts. Table 2.6 shows the distribution by country and extrapolated population.

Although the estimated infected population of the instance is rather modest, this
is another example of a major malware family incorporating Bitcoin mining in addition

to other activities.

2.5.9 Skype Miner

We name this botnet “Skype Miner” because at one point it used a combination
of Skype and social engineering to distribute the malware. To carry out the attack, the
bot sent a Skype Instant message from a compromised Skype account by the name of
“Carolina Chapparo” [13]. If the victim clicked on the link in the message, she would
be taken to a webpage that contained a drive-by-download exploit pack. The executable

would attempt to install the Bitcoin mining malware.
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Operation: The initial samples of this malware that was distributed beginning in
July 2012 used the same credentials as the version that was distributed via Skype during
April 2013. The original malware sample uses keep.husting4life.biz as its pool
domain and the newer version uses suppp.cantvenlinea.biz. Information included
in the Stratum headers indicates that both of these domains are proxying connections
to the same public pool. In private conversations the pool operators confirmed that this

botnet was proxying to their pool.

Earnings: According to the mining pool operators, the user received about 250

BTC. However, they did not provide a wallet for us to confirm these earnings.

2.5.10 Miscellaneous

In addition to the mining operations above, we also find numerous smaller mining
operations, many of which mine directly using a fixed set of credentials embedded into

the malware binary.

Mining at registration-based public pools: Bitclockers is the only registration-
based mining pool that publishes each user’s earnings. From malware reports, we extract
all usernames that were associated with Bitclockers. We look up all 38 of them in
Bitclocker’s public records and examine their earnings. After summing up the individual
payouts, we find that they have earned close to 30 BTC in total. The biggest earner
accumulated 9.6 BTC between November 2012 to January 2013.

In contrast, most major registration-based mining pools do not publish user
statistics. We have to manually contact the pool operators, via email or IRC, for user
information. One pool operator reports to us a botnet that specifically targeted gamers
(we therefore refer to it as Gamers). He provided us with four usernames and their wallet

addresses. According to a forum post — purportedly written by an infected user — the



Table 2.7. Miscellanous mining operations.

Worker BTC USD
ophelion (Gamers 1) 67.45  4,552.64
1HUVG8 65.03 532.35
1ES11K 45.59 600.93
13CnZa 37.99 494.35
19zKyp 37.80 629.74
18G7T7 3523  4,016.90
1H1xab 29.14 357.54
1PbPiV 24.74 208.31
1AfBS5 24.37 323.08
1FiPR4 23.96 163.29
17F8N9 19.92 468.02
1ByFLx 17.70 208.87
1AFVcM 14.54 135.53
12W29H 11.51 839.97
sarajevo 9.56 119.02
15p86j 7.80 923.78
boywonder 7.67 103.71
1a3dpd 7.03 79.85
1PwfoA 6.82 828.91
processl 5.39 72.86
17pdMw 5.37 326.07
15LuUP 4.85 58.09
archy10 4.10 48.57
1PyoNm 2.08 250.61
1Kjvxd 2.03 25.17
ridetohell (Gamers 2) 0.55 50.57
Others 21.58 798.14
Total 539.24 17,166.30

63
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malware disguised itself as a game executable, which connected to the mining pool via
one of the four wallet addresses.!?

We analyze the mining payouts for the primary and secondary wallets for the
Gamers botnet and present their earnings in Figure 2.4e. It shows that the botnet first
became active in January 2013. Mining activities have waned since mid-June, possibly
after a crackdown by the pool’s operator or anti-virus companies.

We are able to trace how two of the botnet’s wallets transferred the mining
revenue to exchanges, as shown in Figure 2.3. The first wallet (Gamers 1) took a median
of three weeks before transferring more than 90% of the mining revenue. The second
wallet (Gamers 2), by contrast, transferred a little more than 55%. Both of the transfers
happened at the Bitstamp exchange.

The first wallet was also associated with Eligius, another public mining pool. Its
hash rate graph displays a typical diurnal pattern that is strongly suggestive of botnet
activity. Moreover, the average hash rate is around 4 GH/s in the last two months, with
a total of 70 BTC paid out by Eligius. Assuming that an infected host can range from
an average CPU-only computer (4 MH/s) to a typical gamer’s PC (50 MH/s), we can
estimate the size of the botnet as somewhere between 80 to 1,000 infected computers.

In addition to the Gamers botnet, the pool operator also gave us four more
malware wallet addresses. We do not know their mode of operation. The four wallet
addresses alone have only earned 7.7 BTC from mining since December 2011. However,
they are associated with more than 40,000 secondary wallet addresses. We believe that
not all of them are involved in receiving mining payouts. One common practice is to have
a small number of wallets for mining, while the rest are used for “mixers” — services
that attempt to obfuscate the trail of transactions before cashing out, making it difficult,

but not impossible, to trace the transactions. Using the techniques in [47], we identify

Bhttps://bitcointalk.org/index.php?topic=159307.0
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the transactions for mining payouts. We find that both the primary and secondary wallets

have received 886 BTC of mining revenue.

Bots for no-registration public pools: We find four additional wallet addresses
that mining malware uses to connect to 50 BTC, a public pool that supports both conven-
tional registration-based and no-registration mining. Since receiving their first mining
payouts in December 2012, these four addresses have only received 2.6 BTC from mining.
If we are to examine all the secondary wallets — all 24 of them — the total revenue from
mining amounts to 242 BTC.

At Eligius, we find 29 wallets that do not belong to any of the major botnet
operations we study. These wallets alone have yielded an income of 332 BTC from
mining since their initial mining payouts in March 2012. They are associated with
more than 600,000 secondary wallet addresses. Again, we believe only a small fraction
is directly involved in mining. Even so, the total mining revenue for these secondary
addresses amounts to more than 30,000 BTC. Some major botnet operations may be

behind this, but we leave it to other researchers to analyze.

Bots for proxies to light pools: Recall that we identify domain-crawlers. com,
a dark pool, as a proxy to 50 BTC, as described in Section 2.4. We find a total of three
usernames associated with mining malware at domain-crawlers.com. The operators
of 50 BTC confirm them as pool users, but tell us only that the accounts have a total
balance of 0.1 BTC. This small amount suggests that the botnet may have already cashed

out their mining earnings, but the exact revenue remains a mystery.

2.6 Discussion

Bitcoin mining, as evidenced by the operations we examine, can generate non-

trivial revenue for a botnet operator (see Tables 2.1 and 2.7). Still, these numbers are
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nothing like the spectacular earnings — millions of US dollars — estimated for spamming
and click fraud [41]. Bitcoin mining as a botnet monetization activity is ultimately judged

by its profitability, that is, the expected revenue from Bitcoin mining minus costs.

Mining revenue: Mining revenue — whether from a botnet or a legitimate
mining operation — depends on two factors: hashing power and network difficulty. For
revenue measured in US dollars, the BTC-to-USD exchange rate is a factor as well. Daily

revenue is thus given by:

USD sec MH BTC USD
day day sec MH BTC’

Here BTC/MH is the expected revenue, in bitcoins, per million SHA-256 computations.
At the difficulty level as of November 30, 2013, this is 8.22 X 10~ 12MH /sec.

Denote D = BTC/MH for short. Denote the exchange rate U = USD/BTC,
which was slightly over $1,100 per bitcoin on November 30, 2013. Let R be aggregate
hash rate in million hashes per second; R = MH/s. A low-end PC without a GPU is
capable of about 4 MH/s, a newer PC without a GPU of about 20 MH/s, and a top of the
line AMD Radeon 7970 GPU is capable of about 500 MH/s.

A botmaster’s revenue per bot per day is thus given 