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Large data centers host thousands of tenants and services, and today’s data center

networks are no longer simple end-to-end transfer fabrics. Tenants desire more function-

ality like strong performance isolation, latency control, load balancing, middlebox place-

ment, and other services. As tenant performance requirements become more demanding,

data center providers wish to increase the set of services they offer in an attempt to meet

the demand and attract new customers. Critically, while the promise of cloud comput-

ing makes it straightforward to rent compute resources, there is no standard model for

tenants to pick and choose the network resources and services they require.
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Traditionally, a single procedure governs the allocation of resources to tenant ser-

vices. For efficiency, data center providers multiplex tenants across the physical infras-

tructure, leveraging end host virtualization to carve out well-specified units of isolated

CPU, memory, and storage. In contrast, tenants typically receive loose, qualitative de-

scriptions of network performance with a limited set of available features. This disparity

is problematic for today’s data centers, which need to satisfy services with a diverse and

non-uniform set of networking needs.

This dissertation proposes to resolve this contention by provisioning a custom

virtual network for each of the data center’s clients. It presents task switching, a frame-

work that redefines how tenants interact with and obtain resources from the network by

servicing their individual requests for virtual network tasks. It then describes a model

with two components, Blender and Omakase, that defines interfaces for the network

provider to implement differing features and resource allocation procedures that tenants

may choose to adopt for their tasks.

Blender focuses on performance isolation, eliminating the either/or balancing

act between resource efficiency and performance predictability by allowing data center

operators to run multiple performance isolation models simultaneously. Omakase aug-

ments the Blender model to incorporate general purpose features for tasks, including cus-

tomized in-network middlebox processing, failure resolution, and flow scheduling. We

evaluate the architecture with a prototype implementation that addresses its correctness,

scalability, and performance. We show that our SDN-based prototype can efficiently

express many recently proposed performance isolation models and network features.

xiv



Chapter 1

Introduction

In recent years, large Internet-based companies have raced to construct ever-

larger data centers to support Web search, e-mail, social networking, and other global

Internet services. A “perfect storm” of recent trends has fueled data center enthusiasm,

with several major innovations driving data center demand:

• The promise of infinitely available computing and storage in the cloud has moti-

vated the construction of Amazon’s EC2 [5] and Microsoft’s Windows Azure [57]

computing platforms. Traditional desktop applications like word processors and

spreadsheets have migrated to the Web under the “software as a service” model.

• Large interactive and data-intensive social media services such as Facebook, Twit-

ter, and Flickr have profoundly changed the way that users contact with friends

and family, conduct business, and interact with governments. Such services sup-

port an enormous number of concurrent user requests and require substantial com-

puting resources.

• Applications like MapReduce [22], Hadoop [29], and Dryad [43] provide power-

ful and readily available data processing architectures for large clusters of com-

modity machines.
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At the same time, these companies are responding to economic incentives to

build larger data centers to reduce their operational expenses. By establishing an econ-

omy of scale, they amortize the costs of managing infrastructure, cooling and powering

servers, and utilizing expensive high-speed Internet communication links. Another eco-

nomic trend in data centers is the movement towards “scale out rather than scale up”

architectures, meaning that data center administrators often forgo investing in expen-

sive, “enterprise-grade” server equipment and instead opt to purchase a larger quantity

of cheaper commodity hardware. Because single-thread CPU performance [90] and

single-link network performance [2] are plateauing, today’s data centers require tens to

hundreds of thousands of commodity servers to meet their performance demands.

Combined, these trends place a considerable strain on a crucial component of

the data center environment: the network. Despite being housed in a single physical

structure, a data center’s network infrastructure is shared by multiple tenants (i.e., users

who execute services and applications), and the architecture more closely resembles

the Internet than a conventional local area network. Data center networks constitute a

unique operating environment with two primary challenges:

• Topology and Routing: Conventional network topologies rely on hierarchical de-

signs that require increasingly high-performance network hardware at higher tiers.

Due to a lack of sufficiently powerful devices, these designs fail to supply ade-

quate capacity at data center scales. Instead, contemporary data center networks

exploit numerous parallel paths to achieve fault tolerance and meet performance

demands [2]. Unfortunately, relying on an abundance of parallel links spreads the

network’s resources across more devices and ports, which increases the complex-

ity of assigning resources to tenants.

As the level of redundancy increases, it becomes necessary to balance traffic over
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parallel links to fully utilize the network. In most data centers, Ethernet is the

preferred physical-layer technology for cost and compatibility, but its protocols

are designed for single spanning-tree environments where frequent broadcasting

is acceptable. The increasingly common solution [16, 32] of adopting IP routing

to divide the network into multiple subnetworks increases the cost of network

devices and limits the maximum size of the network due to hardware routing table

size limitations [62].

Data center networks must carefully control the placement of services and selec-

tion of paths to fully utilize the network without overflowing the limited capacity

of switch and router forwarding tables.

• Multi-tenancy: To leverage their economies of scale, data center administrators

place a diverse set of tenants across a shared network infrastructure. Sharing links

is problematic for conventional networks, which treat traffic equally, expect an

abundance of resources, and assume that the tenants sharing the network are not

adversarial. To maximize the return on their infrastructure investment, data center

administrators would prefer to differentiate between their tenants, customizing

tenant network resource allocations according to their resource demands, their

relative importance, and in the case of cloud computing, the amount that they pay

for service.

To effectively differentiate between tenants, the network must distinguish one ten-

ant’s traffic from another, determine a plan for allocating the network’s resources

to tenants, and enforce the plan’s resource assignment. For example, suppose a

cloud network provider is hosting two tenant tasks: a latency-sensitive Web ser-

vice that needs to quickly respond to customer requests and a bandwidth-hungry

bulk processing application. In this case, the network administrators (or a control
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platform running on their behalf) must answer: Which paths should each task be

permitted to use? On permitted paths, how much of the available capacity should

each task be assigned? How might the resource allocation change if a third task

arrives?

Finally, separating tenant traffic exacerbates switch forwarding table capacity lim-

itations. As the number of tenants increases, devices need multiple forwarding

table entries to delineate tenants’ tasks. Thus, data center networks need a control

platform to automate scalable resource allocation and enforcement for a diverse

collection of tenants.

Fortunately, the data center domain also represents a novel opportunity to forgo

traditional network designs. Unlike the public Internet, which requires a coalition of

support from standards committees and coordinated deployment from Internet service

providers, data centers are typically owned by a single entity. Exclusive ownership frees

the owner to make unilateral design decisions, allowing them to adopt unconventional

network architectures, protocols, and control platforms.

Due to recent developments towards open, programmable network devices [55],

network operators can rapidly develop and deploy new network protocols and manage-

ment infrastructure. Network devices are beginning to resemble general-purpose plat-

forms; they export standard abstractions, similar to end host hardware, with constructs

like flows, tables, rate limiters, and queues rather than CPU registers, memory, etc. On

end hosts, an operating system arbitrates access to these resources between applications.

This dissertation explores a new network architecture for similarly abstracting and man-

aging the network’s resources in an environment shared by multiple tenants.
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1.1 Hypothesis

Current network platforms take a tenant-agnostic approach to supporting data

center applications. The hypothesis of this dissertation is that data center networks

would improve tenant performance and enable critical management features by cus-

tomizing the network’s behavior according to tenant needs. Employing specialized con-

trol software would enable the network to independently provision resources and tailor

a virtual network environment for each of its tenants. Furthermore, the tenants’ services

would execute more effectively by composing disparate features such as performance

isolation, routing, failure recovery, and middlebox interposition.

This dissertation examines the design of a network resource allocation model

with two components, Blender and Omakase, in the context of an architecture that tunes

the network’s features and performance to match the needs of its tenants. Blender fo-

cuses specifically on network isolation – preventing the applications of one tenant from

interfering with those of another. Omakase extends Blender with a general model for

augmenting the network with composable support functionality.

1.2 Contributions

This dissertation makes four contributions for multiplexing tenants over a shared

data center network infrastructure:

• Task Switching: Task switching shields tenant applications from the details of the

physical network. Rather than individual links or devices, task switching allocates

resources to tenant applications as a whole, at the granularity of a task. Tasks need

only make a high-level request for resources, and the network’s centralized control

software will handle the details. Task switching, detailed in Chapter 3, is the
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design principle underlying the model subsequently presented in this dissertation.

We analyze the feasibility of task switching with simulations in Chapter 4.

• Composable Performance Isolation (Blender): Blender introduces a model for

mixing data center network isolation primitives. Blender allows network operators

to reserve resources on behalf of tasks while ensuring consistency across a shared

physical network infrastructure. Chapter 5 describes Blender’s modular, graph-

based abstractions and demonstrates their ability to express desirable performance

isolation strategies.

• Network Functionality “App Store” (Omakase): In Chapter 6, we augment

Blender’s abstractions with Omakase, a model for supporting dynamically execut-

ing applications within the network. Omakase defines a novel event processing

and network location interface for building and composing general network func-

tionality in support of network tasks.

• Prototypes and Evaluation To evaluate the Blender and Omakase abstractions,

we construct an SDN-based prototype implementation. In our evaluation of Blen-

der, we show that the prototype can express and extend proposed isolation models

on existing SDN hardware. Our experiments quantify Blender’s performance and

potential for deployment at scale. For Omakase, our prototype demonstrates the

effectiveness of several application classes, including dynamic path selection and

deadline-aware flow scheduling.



Chapter 2

Background and Related Work

The architecture presented in this dissertation takes its inspiration from a number

of previous projects. This chapter explores the relevant background material, related

work, and their relationship to Blender and Omakase, beginning with a characterization

of the data center operating environment.

2.1 Data Center Environment

As Chapter 1 described, many technology companies are rapidly increasing the

number and capacity of new data center installations. To quantify the growth trends,

a recent Facebook press release [65] describes the company’s plan to construct a new

476,000-square foot data center in Altoona, Iowa – a project that represents a $300+ mil-

lion capital investment. This announcement comes only two years after their completion

of a 300,000-square foot data center in Prineville, Oregon [25]. Google operates 13 data

centers worldwide [31], and Microsoft opened two new data centers in 2009 and one in

2011 [30], one of which was a 700,000-square foot, $500 million investment [58]. This

section provides context for the remainder of this dissertation with a description of the

actors, network device architecture, and virtualized end hosts commonly found in data

centers.

7
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2.1.1 Actors

Data center network architectures are rapidly evolving to accommodate the de-

mands of the “cloud computing” model, in which data centers dynamically provision

raw computing resources or application services on demand. The data center may be

public, where the resources are rented out to anyone willing to pay, or private, sup-

porting only the services of data center’s owner. In either case, we make a distinction

between two primary actors: the data center provider, who owns and manages the data

center’s resources, and service operators, who use those resources to support Web, so-

cial media, or other user-facing services1. Note that for a private data center, despite

both actors working for the same organization towards a similar goal, we maintain the

distinction between the provider (who controls the resources) and the service operator

(who requests to use them). Further, we classify resources as residing at end hosts or

within network devices (i.e. switches and routers).

2.1.2 End hosts

Data centers employ end hosts to execute their applications. To reduce costs,

end hosts are generally servers that house commodity CPUs, memory, and disks. To

meet the disparate needs of a diverse user base, data center providers virtualize server

hardware, meaning the physical resources are partitioned such that differing services

can utilize (and, if the data center is public, pay for) only the resources they request. On

each server, virtual machine management software known as a hypervisor carves up the

available physical resources and assigns them to one or more virtual machines, each of

which executes its own operating system and software stack. Critically, these platforms

enforce performance isolation between virtual machines – that is one virtual machine

1In the context of shared or public data center networks, we often refer to the data center provider as

the network provider and to service operators as tenants.
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will not negatively impact the performance of another, even when they share the same

physical host. End-host virtualization is a mature technology, with multiple commercial

products [67, 93] and open-source virtualization platforms [9, 48] available.

2.1.3 Network Hardware

Unlike end hosts, typical network devices are composed of domain-specific hard-

ware divided into two functions, or planes: a data plane and a control plane. The data

plane represents the packet forwarding path for the device. In today’s devices, data

plane hardware quickly classifies and forwards packets at line rates of 1, 10, or 40 Gbps.

Devices generally perform classification with a ternary content addressable memory

(TCAM) [68], which allows for parallel matching of packet headers that can option-

ally ignore sections of the header (via “don’t care” patterns). Matched entries trigger an

action, such as dropping the packet, forwarding it out a designated port, sending it to a

particular queue, or otherwise determining the packet’s fate. TCAMs are expensive and

power-hungry, and thus most devices have constrained TCAM capacities that require

careful management to avoid overflowing.

The control plane manages the data plane via a general purpose CPU over a rel-

atively low-performance interconnect [21]. Network devices access the control plane

infrequently, typically to reconfigure the data plane hardware in response to network

topology changes (e.g., failures) or administrative configuration changes. Traditional

network devices ship with vendor-supplied control plane software that allows for net-

work provider configuration but offers little opportunity for provider programmability

(i.e., the TCAM is not directly accessible by the network provider).

Only recently have things begun to change. Due to growing pressure from a

new movement gaining traction in the networking community, vendors have begun

to compromise in the form of software-defined networking (SDN). The premise of
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SDN eschews conventional distributed protocols, opting instead to employ a logically-

centralized network controller. Devices receive instructions directly from the controller,

which assumes authority over a standardized, high-level management interface rather

than directly manipulating hardware. In the leading SDN alternative, OpenFlow [55],

the data plane only modifies the data plane’s forwarding configuration in response to

explicit controller directives called rules. Our prototype makes extensive use of Open-

Flow’s features, and future chapters describe mechanisms for rule compilation, opti-

mization, and installation.

Critically, mature virtualization solutions do not exist for network devices. One

of the primary goals of the architecture described in this dissertation is to provide a net-

work control platform that enables similar virtualization functionality for data center net-

work hardware. The remainder of this chapter examines approaches for realizing high

throughput across redundant paths, followed by methods for virtualizing the network,

control platforms to simplify network programming, and other systems that improve

network virtualization functionality or efficiency.

2.2 Maximizing Throughput

Demand for increased capacity has outpaced the development of faster physical-

layer standards, and as a result, data center providers are turning to highly redundant

network topologies [1, 2, 35, 37, 87]. To be utilized effectively, the network must divide

its traffic across many parallel paths. Some techniques are traffic oblivious, favoring

simplicity and low overhead, while others collect detailed flow statistics in support of

intricate flow schedules.

Traffic-oblivious methods include equal-cost multi-path routing (ECMP) [42],

in which each device along a flow’s path pins it to a random output port when multiple,

equal-cost routing options are available. Another system, VL2 [32], combines ECMP
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with Valiant load balancing to cope with ECMP path count limitations and spread traffic

more uniformly across a large set of path choices. SPAIN [61] creates multiple spanning

trees, separated by virtual local-area networks (VLANs), to create multiple path choices.

To spread traffic across redundant paths, end hosts randomly assign flows to VLANs,

with periodic reassignment to avoid pathological flow collision scenarios. These traffic-

oblivious multi-path routing schemes randomly spread flows across redundant paths,

resulting in good average-case performance when flows are similarly sized, but their

performance suffers when flow sizes are non-uniform [3].

Traffic-aware systems take flow size and endpoints into consideration to pro-

duce a global placement schedule. Hedera [3] estimates flow demand in the network’s

switches, and a central controller periodically reassigns flows to separate competing

flows and reduce link contention. Mahout [20] also centrally computes a global sched-

ule, but it collects flow information from end host socket buffers rather than network

switches, reducing the overhead on the network.

Another class of traffic-aware systems strategically rearranges the network’s

physical capacity in response to link congestion. Helios [26] and c-Through [97] ap-

ply optics to increase the accessible bandwidth in targeted locations, relieving hot spots.

Flyways [38] similarly augment networks with positionable high-speed wireless links.

In general, these performance-maximizing mechanisms are attractive to data cen-

ter providers because they help the network, a significant investment, to operate at high

overall efficiency. They perform best when the data center supports a single, bandwidth-

hungry class of service, but they are ill-suited to multi-tenant environments where ser-

vices may be throughput and latency sensitive [12, 13, 38, 46]. In that case, services

benefit from provisioning resources on a per-tenant basis, at the expense of some link

utilization efficiency. We explore this trade-off in our discussion of multi-tenancy.
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2.3 Multi-tenancy

Due to the economic concerns outlined in Chapter 1 data center providers al-

low multiple service operators to share their physical network infrastructure. Sharing in

networks is not a new phenomenon – statistical multiplexing is a historical principle in

networking. However, data centers generally posses more stringent operational require-

ments than conventional local-area networks. Data center tenants often pay for a level of

performance governed by a contract known as a service-level agreement (SLA) [70]. In

particular, data center networks support an increasingly sophisticated environment that

includes storage, monitoring, data processing, and virtual machine management soft-

ware. These services place different performance, reliability, and management demands

on the underlying network. For example, while caching services (e.g., memcached [27])

or HPC workloads prize low-latency communication, data processing applications (e.g.,

MapReduce [22]) require high bisection bandwidth.

The common approach to virtualizing traditional networks is to segregate traffic

into multiple virtual local-area networks (VLANs), based on executing services or orga-

nizational units. Applying VLANs to the data center suffers from two key deficiencies:

1. VLAN separation fails to account for the diversity of tenant requirements. It pro-

vides only coarse control for assigning links to tenants, and the same underlying

network protocols choose the “best” route for each tenant. For example, tradi-

tional Ethernet routes across a single spanning tree, resulting in non-shortest paths,

idle alternative paths, and high link stress at the root of the network.

2. VLANs logically isolate tenant applications such that traffic is not visible between

them, but it makes no guarantee about performance. Ensuring the network meets

multiple SLAs in an environment where tenants are potentially adversarial (or
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at least non-cooperative) requires performance isolation, which VLANs do not

provide.

2.3.1 Performance Isolation

Network performance isolation is difficult to provide due to the distributed na-

ture of network hardware devices, which unlike end hosts, require substantial coordina-

tion. The necessity of tenant isolation forces data center providers to balance network

efficiency with performance guarantees for individual tenants. A large body of work

has focused on identifying isolation mechanisms that provide an appropriate degree of

multiplexing within this continuum, fundamentally trading off efficient utilization with

predictable performance [72]. This trade-off is complex to navigate, as no single point

in the spectrum appears to be suitable for all tenants.

We summarize several recent isolation systems in Table 2.1. To balance the

conflicting needs of isolation and sharing, these proposals group and isolate traffic at

granularities larger than individual flows. We categorize isolation approaches based

upon this distinction: those that group traffic by entity (most commonly all or a subset

of flows from a VM) and those that group by tenant (i.e., collection of VMs). We

term these entity and tenant-based models, respectively. Table 2.1 further classifies each

system based upon whether they provide absolute (“Fixed”) or relative (“Proportional”)

performance isolation between tenants. Fixed allocations provide bandwidth guarantees,

allowing the system to offer predictable performance at the expense of utilization.
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At one end of the spectrum, strict systems like Oktopus [8] and Proteus [101] per-

form admission control, causing them to reject new tenants when insufficient resources

are available to guarantee performance. Regardless of the physical reality, both sys-

tems export to tenants an abstraction of a single non-blocking switch to which all of the

tenant VMs are connected at a guaranteed rate. Oktopus also permits tenant requests

for multiple such virtual switches, organized into clusters, which is beneficial for ten-

ants whose services exhibit non-uniform communication locality. Oktopus connects a

tenant’s clusters via an additional top-level virtual switch whose rate is reduced by an

“oversubscription factor.” Proteus extends Oktopus’s model to account for the variance

in tenant bandwidth requirements over time, filling the gaps by allowing the network to

service more tenants simultaneously.

On the other end, proportional allocations avoid the need for admission control

and aim to provide fairness between tenants. Such systems generally achieve high over-

all network utilization by giving up predictable performance in favor of work conserva-

tion. In this category, Seawall [84] associates an administrator-defined weight value

with each network entity (typically VMs). A novel feedback loop enforces weight-

proportional bandwidth allocations across paths that carry traffic for multiple entities.

Another system, Netshare [49], uses a centralized bandwidth allocator to implement

weighted hierarchical max-min link sharing between tenants. Max-min sharing ensures

that every tenant will receive a fair portion of link capacity while maintaining high link

utilizations.

Other efforts occupy middle ground in the design space. Gatekeeper [76] ex-

ports an Oktopus-like non-blocking switch abstraction and enforces tenant minimum

rates with admission control but enables weighted fair sharing for tenants to exceed their

guaranteed rates when excess capacity is available. Faircloud [72] formally character-

izes the network isolation design space in the context of five desirable sharing properties:
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work conservation, strategy-proofness, utilization incentives, communication-pattern in-

dependence, and symmetry. They describe three isolation models and explicitly analyze

their implications for predictable performance and high utilization.

Finally, VINI [10] represents a vision of a virtualized network whose goal is to

provision a shared environment in which researchers can perform network experiments

that are both realistic and repeatable. To support experimentation, VINI targets execu-

tion on PlanetLab [71], an experimental wide-area research testbed, rather than data cen-

ter network environments. Others [75, 104] take an analytical approach, supported by

simulations, to design virtual network embedding algorithms that map virtual networks

onto a shared physical substrate. SecondNET [36] applies virtual network embedding to

the data center with the intent of supplying applications with their exact capacity needs.

It uses a novel MPLS-based source routing scheme, but requires users to have detailed

information about application behavior to take full advantage of the benefits.

Generally, the systems described in this section enforce their isolation models

through the collective behavior of traffic policers across end hosts or, more rarely, within

network devices [49, 72]. While some systems set policer limits statically at the time of

allocation, many utilize mechanisms like work conservation [49, 76, 84] or distributed

rate limiting [8, 76] that must observe and react to dynamic traffic characteristics to

enforce their performance guarantees.

2.4 Network Programmability

The traditional model of using vendor-supplied software to manage closed net-

work hardware severely hampers the ability of providers to construct and deploy innova-

tive network solutions. As with commodity end host platforms, open, programmable net-

work devices equip data center providers with the customizability they need to develop

unconventional network architectures. Despite software-defined networking’s current
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popularity, proposals for innovative network control frameworks predate SDN develop-

ments. This section summarizes the evolution of network programmability and describe

the features available to current platforms.

An early model, Active Networking [99] provides differentiated network behav-

ior to applications in response to custom, user-supplied forwarding directives. Several

projects fall under the active networking title, the most prominent of which is ANTS, a

Java-based system that propagates per-application forwarding instructions in augmented

packets called capsules. While both ANTS and our architecture aim to empower appli-

cations with improved control, we assume a different role and level of involvement for

service operators. ANTS requires that applications choose their forwarding schemes and

appropriately construct capsules, whereas in our architecture, tenants make only simple,

high-level requests for resources.

Contemporary to ANTS, Tempest [77] allows users (or network operators) to

create virtual private networks over an ATM substrate. Tempest partitions switches

into “switchlets”, which appear to users as fully-functional switches under their private

control. Similar to modern OpenFlow switches, a designated component on each switch

translates high-level instructions into the appropriate switch-specific configuration. Tem-

pest does not prescribe which party is responsible for assigning switchlet configurations,

opting instead to define a general framework that can be flexibly controlled by either

users or network operators, depending on the desired use case.

The authors of FIRE [69] observe that as routing algorithms have evolved, net-

work providers have become interested in specializing routing behavior for multiple

classes of traffic. FIRE decouples routing protocol state propagation from the algo-

rithms that use link metrics to compute forwarding tables. It allows multiple routing

algorithms to execute simultaneously, with a filter for classifying traffic to the appropri-

ate algorithm instance. FIRE’s architecture is modular, permitting providers to load at
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new routing algorithms and classifiers at runtime.

More recently, Tesseract [102] proposed the adoption of a “4D” control architec-

ture [33] to separate the logically-distinct decision, dissemination, discovery, and data

planes of a network. The SANE [54] and Ethane [15] projects adopted 4D’s princi-

ples and made centralized control practical in the context of enterprise network security.

SANE aims to prevent network attacks and mitigate the threat of compromised devices,

while Ethane enforces network connectivity policies. Both focus on user authentication

and employ a domain-specific policy language to express permitted/prohibited connec-

tivity.

These 4D systems laid the foundation for future centralized software-defined

networking platforms. Today, with hardware support from multiple vendors [79], the

availability of several open source controller software projects [24, 34, 73], and adoption

in production networks [44], OpenFlow [55] is rapidly gaining traction as the de facto

SDN protocol.

2.4.1 Higher-level Programming Constructs

While SDN and OpenFlow deliver programmability for network hardware, the

API is sparse – akin to a RISC assembly language for the network. This interaction

may suffice for data center providers, but for service operators, an attractive aspect of

centralized SDN is the potential to build network control software out of high-level,

modular components. Here, we describe abstractions and programming languages that

simplify SDN’s details.

Built atop OpenFlow, FlowVisor [83] provides strict application partitioning by

dividing the network into “slices.” Each slice maintains private management routines

and is isolated from other slices via independent hardware queues in the switches. This

isolation enables multiple applications to share the physical network while unrelated
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OpenFlow controller software manages each slice. In contrast, Onix [47] presents an

all-purpose controller framework designed to be shared by simultaneously executing ap-

plications. Like our architecture, Onix provides a virtualized graph-based view of the

physical network for applications to manipulate. However, Onix requires that applica-

tions mediate their own resource usage, while our architecture automatically enforces

performance isolation between applications that share the network.

Other recent projects address the need for higher-level SDN programming lan-

guages. These languages aim to reduce the complexity of constructing and maintain-

ing SDN controller software. Nettle [94] is a domain-specific, functional language for

programming OpenFlow devices. Embedded in Haskell, Nettle allows network opera-

tors to write declarative programs that receive network events and respond by issuing

OpenFlow commands. The Frenetic [28] project enables parallel composition between

reusable modules, a declarative query language for classifying and aggregating network

traffic. It uses a novel runtime system to manage parallel module execution, but it does

not by itself provide performance isolation across modules.

Pyretic [59] extends the ideas of Frenetic with an imperative Python-like lan-

guage for sequential module composition. Pyretic also allows for the attachment of vir-

tual traffic header fields, enabling network control software developers to extend packet

processing with custom, high-level metadata. Together, these efforts enable the compo-

sition of applications from the parallel and sequential execution of modular components,

but efficiently compiling their directives into forwarding hardware remains challenging.

2.4.2 General Purpose Network Processing

Most SDN devices have severely constrained resources for control plane process-

ing. Furthermore, OpenFlow hardware exposes limited visibility into the device with a

narrow interface consisting of data plane rules and output actions. Several research
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efforts have developed alternative platforms that enhance network devices with high-

performance, general purpose processors. They aim to construct a fully programmable

platform with low-level hardware interaction just as others have have invested signifi-

cant effort towards constructing high-speed routers from general purpose hardware [23,

40, 89].

SideCar [85] and ServerSwitch [52] propose architectures that augment tradi-

tional networking hardware with commodity CPUs to improve network programmabil-

ity. Each system approaches the problem from a different angle – SideCar adds high-

performance general purpose hardware to network devices, while ServerSwitch incor-

porates specialized switching silicon into traditional server architectures. NaaS [19] ad-

vocates exposing already present in-network processing elements to tenant applications,

allowing them to execute custom parallel packet processing code.

2.4.3 Middlebox Services

Data center providers deploy middleboxes to supplement the network with addi-

tional, often location-sensitive functionality such as firewalling, intrusion detection, and

load balancing. APLOMB [82] surveys common enterprise middlebox deployments and

proposes outsourcing their functionality to cloud infrastructure. They introduce novel

mechanisms for efficiently redirecting traffic between the cloud, the enterprise, and the

general Internet. CoMB [80] makes the observation that many middleboxes require

common functionality (e.g., packet classification, enforcement, etc.) that could be made

modular. It aims to consolidate middleboxes onto a shared set of hardware resources

that are assigned via constraint satisfaction at a central controller.

In the context of network security, Fresco [86] provides a framework for com-

posing security modules and takes an authority/priority-based approach to resolving con-

flicts at the level of individual rules, rather than modules. In addition to basic forwarding,
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Fresco can statelessly redirect packets, mirror packets to an external packet analysis sys-

tem, or quarantine packets to a restricted subset of the network.

CloudNaaS [11] provides a flexible language for tenants to request middlebox

interposition and custom endpoint addressing in virtual networks. It leverages SDN by

compiling tenant requests into a fault tolerant set of forwarding rules, but it does not

take advantage of dynamic network traffic state or in-network packet processing.

2.4.4 Other Objectives

Finally, other systems coordinate network resource usage in support of other

high-level objectives. DevoFlow [21] reduces the burden on the centralized SDN con-

troller by delegating functionality to network switches. However, DevoFlow focuses

on improving the performance of control tasks such as setting up hardware flow table

entries or collecting statistics rather than executing higher-level application logic. To-

wards a similar goal, DIFANE [103] treats the global set of switch rule memory like a

large distributed cache. It cleverly constructs wildcard rules to keep all traffic in the data

plane, yielding a better “division of labor” between controller and switches and freeing

the controller to handle other concerns.
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Chapter 3

Task Switching for Data Center Net-

works

This chapter lays the groundwork for task switching (TS), a fundamentally dif-

ferent way for data center tenants and their applications to interact with the network.

The task switching abstractions serve as the foundation for our Blender and Omakase

models. We first present task switching and its design goals, followed by an explanation

of the task-switched network architecture. Finally, we describe task compilation and the

life cycle of a task on the network.

3.1 Motivation and Goals

Application performance and network management suffer from a one-size-fits-

all design prevalent in today’s data center networks. As outlined in Chapter 2, re-

searchers have proposed many systems that offer advantages to data center networks.

While they generally introduce performance improvements, each proposal affects ten-

ants differently. For any particular system, some tenant services may benefit strongly,

while others might perform as well without it, making the investment unnecessary for

that tenant.

As a departure from traditional network architectures, a task-switched network

22
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supports multiple, simultaneous application-specific tasks. Within each task, the exe-

cuting application can define distinct topologies and routing conventions specifically

tailored to its unique resource requirements, providing enhanced performance at the ex-

pense of certain attributes that may not be critical to the task at hand. Thus, the data

center network no longer needs to balance a single solution for routing consistency, fail-

ure resilience, high performance forwarding, flexible policy enforcement, and security

across all the applications in the data center.

Task switching addresses the challenge of providing network virtualization in

multi-tenant data center network environments. While end host virtualization allows

any server to host any VM, the network is often a key performance bottleneck [39].

The majority of proposed data center network architectures try to decouple placement

from performance by maximizing bandwidth between server pairs through symmetric

topologies. While this strategy admits considerable flexibility in assigning work across

the data center, there are cases in which skewed communication patterns dominate. We

argue that for these workloads it is far more effective to select application-specific re-

source allocation systems to make efficient use of the network’s physical resources.

Individual tenants host a variety of services that each present different network-

ing demands. For example, the hosted services themselves may be clustered, multi-

tiered, or replicated. Each of these design patterns performs best with a distinct set

of resources—a low-diameter mesh, a high-bandwidth tree of arbitrary depth, and an

edge-disjoint, redundant multi-graph, respectively.

Additionally, real-world data center infrastructures grow and evolve, often be-

coming less homogeneous and symmetric. This heterogeneity may result from growth,

limited budgets, physical wiring constraints, or the presence of dynamic link allocation

via optics [26, 97] or wireless [38]. As the topology distorts, routing designs based upon

a systematic network design may begin to perform poorly—or not at all. Task switching
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functions over any physical topology, allowing applications to optimize for the network

at hand. Finally, the needs of data center applications are changing quickly. For ex-

ample, Amazon recently introduced explicit support for high-performance computing

(HPC, applications that often have latency-bound phases) instances on EC2, presum-

ably in response to sufficiently strong economic incentives.

For task switching, we assume a data center environment that is controlled by a

single administrative entity, which we call the network provider. Whether the data center

supports private services (e.g., Google or Facebook) or public cloud computing (e.g.,

EC2 [5] or Azure [57]), we assume that multiple applications and services wish to share

the physical network infrastructure. We call the users who operate these applications

service operators and assume they are distinct from those running the network (even

if they are working for the same company in the case of a private data center). In

this setting, we aim to achieve the following goals with the task switching network

architecture:

• Modularity for network providers:

A key goal of network virtualization is to set the application free from the details

of the physical network, giving applications the freedom to connect any set of

servers as if they had a dedicated network [39]. Task switching allows network

providers to realize this vision for data center networks by decoupling tasks’ vir-

tual networks from the physical reality. Task switching should not mandate any

particular physical topology, instead it should map virtual networks onto any given

physical topology to meet both per-application and network-wide performance ob-

jectives.

Furthermore, be it to support performance isolation (Blender) or general function-

ality (Omakase), task switching’s resource allocation policies should be modular
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and easily extensible. Providers should have the flexibility to compose powerful

network primitives (e.g., rate limiting, flow statistics, etc.) in support of simul-

taneously executing tasks with autonomous resource allocation objectives (Sec-

tion 2.3.1).

• Simplicity and flexibility for service operators:

Service requests should be simple and concise, allowing service operators to spec-

ify their high-level task objectives (i.e., what they need from the network), not

the details of how to get it. They should not need to supply (potentially secret)

knowledge of the underlying physical network or an excessive amount of detail

regarding their task’s traffic characteristics (i.e., a traffic matrix) to effectively tai-

lor their task’s virtual network to their needs.

• Practical and scalable:

The task switching architecture should account for resource limitations in network

device storage and processing. Task switching should execute on realistic hard-

ware that is available now or in the near future, enabling real implementations at

data center scales.

3.2 Task Switching Architecture

A task-switched network allows applications to create multiple, custom tasks to

meet their networking requirements throughout their lifetime. Unlike other SDN archi-

tectures that allocate at the granularity of flows [3, 15], the fundamental unit of alloca-

tion is the network task: an autonomous subset of the network’s resources resembling

the virtual network slices described in Section 2.4.1.
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(c) A task for a trading platform.

Figure 3.1. Optimizing tasks for individual applications, task switching finds a fat-tree

subgraph for MapReduce (MR) and an isolated spanning tree for the trading platform

(T).

Tasks specify the set of communicating end hosts within the data center, a de-

sired virtual topology to construct between those hosts, and a resource allocation system

to manage link resource allocation and route selection. A logically centralized (but possi-

bly replicated) task server registers each allocation system, compiles tasks, and manages

individual task deployment. The task server maintains all of the state for a task, which

includes the physical network representation, allocated virtual networks, and the state

of the network devices.

As an example, consider the fat-tree data center network in Figure 3.1(a) con-

necting eight physical hosts. Various emerging multi-path resource allocation systems

support well-provisioned networks [3, 42, 64, 91], but their unified allocation systems

remain blind to individual application needs. Such networks may host a range of applica-
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tions inside distinct VM pools, such as a bandwidth-hungry MapReduce/Hadoop cluster

(MR) and a queuing-sensitive trading platform (T). While the MapReduce application

is generally bottlenecked by the available bisection bandwidth in the network, trading

platforms demand the consistent low-latency performance of isolated network paths [7].

In contrast, a task-switched network treats these two applications as distinct

tasks. Each task runs an instance of a particular allocation system that best addresses the

communication pattern and preferences of that particular task. An allocation system in-

cludes an allocator that determines the subset of the physical network that will connect

the application endpoints in its task. In this case, the MapReduce task in Figure 3.1(b)

searches for high-bandwidth physical paths between mappers and reducers to optimize

the performance of the shuffle phase. In contrast, the trading platform in Figure 3.1(c)

allocates for isolation, building an exclusively owned spanning tree. Allocation systems

also define a set of route selection rules that allow switches to make application-specific

forwarding decisions across multiple paths.

Allocators take as input the node set, a desired virtual topology, and a view of

physical network connectivity from the task server. The allocator then maps one or more

physical paths to each link in the virtual topology to achieve its performance objectives.

Allocation occurs in an on-line fashion, processing task requests in the order they arrive.

Figure 3.2 sketches an overview of the task switching architecture. The task

server guides allocation in many ways. First, the server may prune links or switches

from the physical network view before passing it to the allocator, allowing network ad-

ministrators to export different network views to each task. This mechanism makes it

trivial to physically separate traffic between tasks. For example, the task server can

remove the spanning tree links in Figure 3.1(c) from the network view passed to the

MapReduce allocator, rendering it impossible for MapReduce tasks to consider execut-

ing on that subsection of the network. The task server may also perform admission
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Figure 3.2. A task server mediates access to the network, compiling individual tasks

and performing admission control.

control on the proposed virtual topologies, and that admission control could consider a

wide range of metrics: It may limit tasks based on current network load, task type and

count, or expected monetary return of the task. The task server might also choose to

revoke tasks.

The increased flexibility of task switching may also make other administrative

tasks easier. For instance, tasks and resource allocation systems represent two new units

by which the network may be controlled. This architecture permits a number of mech-

anisms that act on these units of control and enables a rich policy space. For example,

the network provider might migrate tasks for upgrading or expanding the current net-

work. This modularity also increases network operation transparency, allowing routing

elements to attribute activity to one task or multiple tasks. Attribution gives adminis-

trators an increased ability to diagnose errors, and makes it easier to assign blame (or
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Figure 3.3. The life cycle of a task is analogous to program compilation, with multiple

stages refining a high-level input until it can be executed in hardware.

praise) to the end user who registered the offending task. Further, such information is

critical for allowing administrators to determine policies for task admission and network

capacity planning.

3.3 Task Compilation and Life Cycle

The task switching task server must compile, install, and monitor multiple ap-

plication tasks. This design builds on a software-defined network (SDN) infrastructure

whose switches accept rules that dictate how packets move through the network [15, 55].

Figure 3.3 depicts the sequence of steps involved in processing an application’s task re-

quest, which is analogous to traditional software compilation. Each processing step

refines the request, facilitating its transformation from an abstract set of goals into a col-

lection of low-level forwarding rules that switching hardware can interpret and install to

instantiate the resulting task.
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A task begins as a service operator’s high-level description of his application’s

desired network properties. This description, which we call a task request, is analogous

to the source code presented to a traditional compiler. The exact content of the request

will depend on the service operators goals, but it would likely contain the desired allo-

cator, topology, routing characteristics, performance requirements, and other high-level

objectives for the task. Requests may optionally include detailed performance charac-

teristics (e.g., the expected traffic matrix), but this level of detail is neither required nor

expected to be available from most service operators.

The compilation process starts when a service operator submits the request to

the task server, where it is received by the specified allocator. The allocation phase oper-

ates over the task server’s abstract view of the physical network in an attempt to satisfy

the client’s task request. As it proceeds, the allocator builds a virtual network topology

and annotates the physical view’s links with the results of the allocation, similar to pro-

ducing an intermediate representation. Annotations include adding the request’s unique

identifier to each of the links, updating the number of allocated routes over the link,

and recording allocated link properties. The annotations inform future allocations of the

allocator’s decisions, allowing them to avoid resource conflicts.

Next, the task server delivers the annotated virtual network to a rule generator,

which translates the newly allocated view into a set of SDN hardware rules. The gener-

ation process is analogous to a compiler converting an intermediate representation into

low-level machine code. The resulting rules consist of a set of identifying packet head-

ers to match, an output action to perform for matching packets, and other directives to

ensure that performance objectives are met (e.g., rate limiting or QoS).

SDN switches have limited capacities in their forwarding tables. Therefore, fol-

lowing generation, the task server executes rule optimization routines. The optimization

phase conserves space in these switch tables by intelligently marking rules for the cor-
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rect forwarding table and combining rules into a single wild-carded entry, when appro-

priate. Such optimizations improve the scalability of the system, allowing more rules,

and thus more tasks, to be installed. Finally, after being generated and optimized, the

task’s rule set is given to a rule dispatcher, which methodically pushes them into the

switches’ forwarding tables. The dispatcher manages rule installation consistency, ac-

counting for the hardware’s hardware installation rate.

3.4 Summary

A variety of technologies now exist to allocate resources to tenants across the

multiple paths found in well-connected topologies. While they increase performance by

spreading flows for all applications in a similar fashion, such unified treatment makes

it difficult or impossible to deliver qualitatively different paths to applications. Task

switching rejects this one-size-fits-all approach to path selection and provides applica-

tions with the ability to have a stake in their resource allocation decisions.

The next chapter describes a feasibility analysis of the task switching architec-

ture using three example resource allocation systems. In subsequent chapters, we per-

form a simulated analysis of task switching (Chapter 4), introduce a core model for

managing task allocations over a graph network representation in support of tenant per-

formance isolation (Chapter 5), and extend the model for composing general purpose

network functionality (Chapter 6).
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Chapter 4

Task Switching Simulation

This chapter describes a simulation framework to explore the viability of the

task switching design. We examine three allocation strategies, their objectives, and the

metrics used to evaluate them. Our results show that task switching allows allocators

to effectively optimize for different metrics, even for a randomized placement of hosts

across the physical infrastructure.

4.1 Allocation Strategies

Task switching allows network operators to customize tasks along three primary

axes: virtual topology, choice of allocator, and route selection rules. Here, we set

aside route selection and employ simple, hash-based multi-path route selection for all

tasks. Additionally, we only consider logical mesh networks in which every pair of end

hosts can communicate with one another. Other virtual topologies, such as rings (for

chain replication) or trees (for aggregation or file distribution), could leverage alloca-

tion to customize the arrangement of the topology, e.g., to build an efficient aggregation

tree. Within these constraints, we present three example allocators to illustrate how task

switching might optimize a tenant’s network for resilience, isolation, or bandwidth. We

return to to examine more pragmatic allocators along with a model for customizing route

selection and defining new virtual topologies in Chapter 5.

33
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Allocators use three components for assigning resources to tenants. First, each

allocator requires one or more metrics to define an objective function that drives the

resource assignment process. The second component is an allocation algorithm to maxi-

mize or minimize the objective function. The third component annotates and optionally

filters the network for future tasks. Since allocation is an on-line process, an alloca-

tion’s goodness may decrease as other allocations (optimizing for different metrics) are

made. Thus the allocator may wish to store additional annotations on the physical net-

work to inform future allocations. The topology server may optionally filter links based

on these annotations, ensuring that other allocators do not decrease the quality of prior

allocations (for an example see Section 4.1.3).

Formally, we represent the physical network as a graph P = {V,E}, where V is

the set of hosts and switches and E is the set of physical links. A task’s virtual network

N = {H,L} is a set of hosts H ⊆V and virtual paths L connecting the hosts in H. Given

a view of the physical network, Pview, an allocator chooses which links to use for each

of a task’s inter-host paths. The topology server maintains a set of annotations for each

physical link, including the total number of tasks using the link (Ti), its physical capacity

(Ci), and a number of claims (Mi) made to that capacity (i.e., the number of task paths

that traverse it).

4.1.1 Bandwidth

Maximizing capacity is often a core objective of traditional network architec-

tures. These topologies are well suited for parallel data processing tasks that require

high bisection bandwidth in support of low all-to-all transfer times. Other bandwidth-

oriented tasks include data backup, video and audio serving, and VM image distribution.

Metric: We use bisection bandwidth as the metric to evaluate the performance

of the bandwidth allocator. The bisection bandwidth of a topology is the amount of
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bandwidth a bijection of hosts can transfer to one another; it is a rough measure of a

topology’s ability to handle many concurrent transfers.

Allocation: An allocation strategy may consider either single or multiple path

solutions, where multiple physical paths support the virtual path. In either case, one al-

location strategy is to maximize the total flow possible along links (end-to-end paths) in

the virtual topology. However, even a single-path solution must consider how other

virtual paths in this task have been mapped, otherwise many virtual paths could be

mapped onto the same physical links. This approach can be modeled as a maximum

multi-commodity flow problem, where polynomial time solutions exist when allowing

fractional flow allocations.

However, for simplicity we approximate this allocation by using a single-path

allocator. This allocator uses a maximum spanning tree to find the current maximal

path [53]. Such an approximation is reasonable, as many recent performance isolation

models operate over singly-rooted trees [8, 72].

Physical network annotation/filtering: The bandwidth allocator depends on

the number of claims on each link to determine its available bandwidth. The topology

server manages link claim annotations, Mi, which the allocator uses to set the available

capacity on links proportionally as Ci

Mi
. Bandwidth tasks increment the Mi annotation

by one for each physical link mapped to a virtual path. In contrast, the subsequently

described resilience and isolation allocators increment Mi by 1/N when a virtual path is

split over N physical links, dividing bandwidth equally across them. Annotating in this

fashion allows the bandwidth allocator to take advantage of the capacity left by alloca-

tions that are not bandwidth constrained. This strategy assumes that the network has the

ability to rate-limit end hosts, perhaps using emerging VM-based technologies [36, 84].
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4.1.2 r resilience

A tenant may also wish to increase the overall physical path diversity available to

its virtual topology. For example, consider aggregation trees used for scalable monitor-

ing [51]. These tasks are willing to traverse longer paths in return for increased failure

resilience, ensuring more hosts are connected during failures or congestion. The large

numbers of components in modern data center networks means that some level of fail-

ure is virtually always present [32]. Failures are perhaps even more of a concern with

emerging topologies that depend on end hosts to participate in switching [35, 37].

Metric: Here we measure resilience as the number of cuts r in the physical

network required to break a virtual path. Since hosts have a single up-link to their

top-of-rack switch in the physical topologies we study, we ignore cuts to those access

links for pairs of hosts on different switches. We note that this approach provides an

aggressive notion of resilience, providing r disjoint paths (not including access links)

between end hosts.

Allocation: Here we use shortest paths to find a suitable set of r paths between

end hosts. For each virtual path we repeatedly find a shortest path with respect to hop

count, add it to the set of possible paths, and remove its links from consideration for

future paths between the same pair of end hosts. The task parameters may also specify

an average, rather than minimum, resilience that allocation must reach. Specifying an

average allows some virtual paths to be backed by fewer than r disjoint physical paths,

increasing the likelihood that an allocation will find enough paths to succeed.

Physical network annotation/filtering: Beyond setting the link claims as de-

scribed above, this allocator does not require additional annotations. Future allocations

will not decrease the resilience of allocated tasks.
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4.1.3 k isolation

Isolation between tasks may be used to ensure consistent levels of network

performance, or to isolate critical services from potentially disruptive external traffic

sources. However, modern data center switches are often limited in their ability to pro-

vide per-flow isolation. While there may be hundreds to thousands of separate tasks,

current switches support only a handful of fair queuing classes [84]. Tenants may use

the k-isolation allocator to ensure sufficient resources exist to limit the degree of sharing

with other tasks.

Metric: We measure isolation on each physical link as the number of tasks with

a virtual path on that link. Here each task specifies the maximum number of other

tasks that may share a link, k. k may either reflect the maximum number of service

classes the physical network can support or it may be set to one to provide complete

isolation from other traffic. With this metric, k limits sharing on a per-link basis. A

more restrictive scheme could provide isolation by limiting the number of tasks that can

share a switch. This restriction would ensure further task separation and eliminate any

potential for inter-task interference in switches at the cost of more quickly exhausting

network resources.

Allocation: To increase isolation, we wish to find a topology that connects the

task’s nodes that is minimally shared with other tasks. We approximate the aggregate

level of sharing by summing the total number of tasks allocated across the chosen phys-

ical links. This task is equivalent to finding a minimum-cost tree connecting the hosts,

a Steiner tree on an existing graph, an NP-hard problem. We employ the minimum

spanning tree heuristic, with a worst-case performance ratio of two [107].

The allocator computes the minimum spanning tree on the physical network,

using the number of current tasks as the edge weight. The allocator then removes all
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physical links and switches from this spanning tree that are not used in the paths between

nodes in the task. Each link used in the mapped topology increases its task count. In the

end, the allocator produces a task whose virtual paths all map to physical links whose

task count (Ti) is less than or equal to the allocator’s sharing parameter k.

Physical network annotation/filtering: To prevent subsequent allocations from

violation the isolation requirement, the topology server remove links from consideration.

In this case, the topology server first removes links whose number of tasks is already k.

To do so, the topology server records the minimum k used by an isolation task for each

link. k = ∞ for links with no isolation tasks. Note that removing links may disconnect

Pview and subsequent allocations may fail.

4.2 Simulations

A fundamental question posed by task switching is whether allocating paths for

specific objectives can improve the networks for all tasks relative to a unified resource

allocation system. To begin to answer, we build a simulator that takes as input a physical

network graph, P, and multiple tasks. We simulate the three allocators described in

Section 4.1 and report how well each task meets its objective metrics (and those of the

other allocators).

We study task switching on a k = 16 fat tree with 16-port switches and 16 pods.

All links are 1 Gb/s in capacity. We create a pool of tasks, each allocated using one of

our three allocators. Each task uses an exclusive set of end hosts randomly distributed

across the physical network. We use this “network oblivious” host-to-task assignment

to determine if task switching can meet different objectives without optimizing physical

layout. All tasks have equal node count and use a mesh virtual network. Finally, our

experiments allocate isolation before resilience and bandwidth tasks, ensuring that those
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tasks find k = 1 isolations.1

Clearly the results depend on the particular physical topology and set of tasks.

Hence, the resulting metrics are only meaningful in comparison to an alternative design.

While traditional Ethernet’s single spanning tree is an obvious choice, it is an excep-

tionally weak strawman as it fails to take advantage of the path diversity and resulting

bisection bandwidth made available by recently proposed physical topologies.

Instead, we compare our task-switched allocations to a unified resource alloca-

tion system modeled after recent proposals such as Trill [91], 802.1aq [64], and Cisco’s

FabricPath product [18]. These systems route layer-2 frames using multiple shortest

paths calculated by instances of the IS-IS routing protocol. We emulate this ECMP

approach by calculating all shortest paths in physical network P for each pair of end

hosts. We then assume that the pair can achieve the maximum flow along the union

of those paths. With this assumption, performance outperforms standard hash-based

ECMP, which is oblivious to available capacity and limits the number of considered

paths (16 for FabricPath). We simulate a VLAN for each task, using a portion of the

k-isolation allocator’s logic to place the task as if an administrator had planned the task.

However, unlike the full k-isolation allocator, ECMP emulation does not prevent succes-

sive tasks from sharing links with other VLANs.

We evaluate allocations based on metrics of our allocators. We calculate isola-

tion using the number of virtual paths each task assigned to each physical link. For a

given task, we calculate isolation as the ratio of the task’s paths to the total path count on

the link, averaged across all physical links. A value of one indicates a highly isolated al-

location while near zero values indicate that other tasks dominate the link. We measure

resilience as described in Section 4.1.2.

1This ordering emulates a topology server that runs isolation tasks on a network view that only shows

isolation allocations. It would then re-allocate other tasks that conflict with the new mapping.
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Figure 4.1. Task switching versus ECMP emulation on a k = 16 fat tree with 1024

hosts.

To measure the bandwidth of the allocated virtual network, we consider each

task’s effective bisection bandwidth. Since task allocation often results in asymmetric

topologies, we calculate bisection bandwidth as the average maximum flow between

two randomly chosen sets of |H|/2 nodes (repeated 200 times). Note that maximum

flow depends upon the capacity of the physical links in the allocated virtual network. To

take into account the existence of the other tasks, we weight the physical capacity by the

total claims (Section 4.1.1) made on this link by this task divided by all claims made on

the link.

We first investigate allocations for six tasks: two isolation, two resilience, and

two bandwidth (2i-2r-2b). This mixture represents a balance between the three task

classes with a low overall task count. Figure 4.1(a) shows the average results for each
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metric for the isolation, resilience, and bandwidth tasks respectively. Looking at task

switching (“TSwitch”), all tasks achieve their goals. First, isolation tasks achieve their

target (k = 1). In contrast, “VLAN+ECMP” provides less isolation for all tasks, though

our allocator increases isolation relative to the other tasks. Interestingly, task switching

provides increased isolation for the resilience and bandwidth tasks as well. This effect

is likely because we remove isolation task links from consideration and our bandwidth

allocator uses fewer paths than ECMP.

Second, in task switching, resilience tasks receive their target of exactly r = 3

disjoint paths through the topology. ECMP on the other hand treats resilience and band-

width tasks identically, spreading virtual paths across as many shortest paths as exist,

giving both high resilience. Finally, the task-switched bandwidth tasks receive the high-

est effective bisection bandwidth, illustrating that the other allocators are giving up band-

width relative to their optimization goals.

It is also important to qualify the kind of bandwidth ECMP emulation reports.

In a fat tree, this emulation assumes near optimal effective bisection bandwidth by using

every minimum hop-count path, and the number of multiple paths for ECMP emulation

is unrealistically large (an average of 60 paths with a standard deviation of 13.5) per

virtual path for both 2i-2r-2b and 7i-5r-4b task mixes. Additionally, the task-switched

isolation tasks receive more bandwidth than their counterpart tasks under ECMP emula-

tion. More importantly, that bandwidth is not shared with any other tasks mapped to the

topology.

Figure 4.1(b) shows the results of allocating seven isolation, five resilience, and

four bandwidth tasks (7i-5r-4b). This mixture represents an imbalanced task distribution

in which a significant fraction of the network is allocated exclusively to isolation tasks.

By using seven isolation tasks, seven of the eight uplinks of the fat tree’s edge switch

cannot be allocated to other tasks when using task switching. This configuration reduces
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the ability of task switching to deliver high effective bisection bandwidth to the band-

width task, a 31% decrease relative to the ECMP emulation.2 Despite the additional

constraints, the task-switched isolation tasks continue to receive superior capacity; a

trade-off a unified resource allocation system cannot achieve. The benefit could be fur-

ther improved with a multi-commodity flow bandwidth allocator, rather than our current

approximation scheme.

Finally, task switching and ECMP utilize the network similarly for the 2i-2r-2b

mix. However, task switching the 7i-5r-4b task mix allows 10% of the links to go unused

in the fat tree. This reduction in utilization is essentially the penalty of supporting many

isolation requests.

4.3 Summary

Task switching formalizes the simultaneous use of multiple resource allocation

mechanisms in a data center network, allowing network providers to define multiple

resource allocators and tenants to request individualized tasks. This chapter used simu-

lation to illustrate how task switching can provide both network efficiency and individual

application performance to admit flexible network management strategies. We described

an abstract set of allocators that allow applications to take advantage of the paths that

others choose not to utilize. Further, our simulated results show that we can leverage

almost the full diversity of a fat tree topology to meet differing application objectives.

The next chapter introduces Blender, a programming model with a concrete pro-

totype that embraces the task switching framework. Blender moves beyond abstract

allocators and assigns resources according to the objectives of practical performance

isolation models proposed in recent literature. It defines a straightforward interface for

providers to author allocators and manipulate the graph representation of the network.

2Note that by hosting 16 tasks of 64 nodes, the maximum possible bisection bandwidth is 32 Gb/s.
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We evaluate a Blender prototype system that handles crucial implementation challenges,

including managing the costs and complexity of dynamic reconfiguration in real switch-

ing hardware.
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Chapter 5

Blender: Mixing Data Center Network

Isolation Models

Large data centers host thousands of services and end-user applications. For

efficiency, they multiplex tenants across the physical infrastructure, leveraging server

virtualization to carve out isolated units of CPU, memory, and storage. In contrast,

tenants typically receive only loose, qualitative descriptions of network performance.

This imprecision leaves data center providers at the whim of their tenants and forces

tenants to design services for worst-case network scenarios. With unpredictable network

loads from a diverse group of tenants, today’s data center providers must accept hot spots

(i.e., tenants pay to wait [96]) or monitor and dynamically adjust VM placement [56],

application components [105], or network flows [3] to improve utilization.

Performance isolation in multi-tenant neworks has received considerable atten-

tion, and many network allocation schemes have been proposed that provide different

degrees of isolation [8, 36, 49, 72, 76, 84]. For example, some schemes provide pre-

dictability via fixed performance guarantees [8, 36], but limit the number of concurrent

tenants placed on the network to ensure that guarantees are met. Other schemes pro-

vide proportional network shares, allowing tenants to receive performance relative to

use [49, 72, 76, 84]. In fact, these are fundamental trade-offs that any isolation model

44
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must make—no single network allocation strategy can provide every isolation property

desired by a tenant or network provider [72].

In this chapter, we present Blender, a model designed to resolve this situation

by allowing network providers to deploy multiple isolation schemes across a shared,

software-defined network (SDN) infrastructure. As opposed to monolithic approaches,

Blender allows providers to pick and choose (as well as create) appropriate models to

support the varying needs of the network’s tenants. Such flexibility allows network

providers to compose contrasting performance isolation schemes with one another and

differentiate their cloud offerings through new resource management models.

In designing such a system, we face two key challenges. First, we must ensure

that the programming model we offer to network providers is straightforward and usable

without overly restricting their ability to express complex isolation policies. In response

to this challenge, Blender provides a concise set of abstractions to express a range of

allocation schemes that naturally compose with one another, and at run time, the Blender

model ensures that multiple schemes will co-exist on a single data center network. Such

flexibility allows providers to better support tenant needs and to differentiate their cloud

offerings through new resource management and charging models [50, 92].

The second primary challenge is scale. Blender must account for the finite hard-

ware resources available in SDN switches for storing forwarding entries and implement-

ing traffic rate limiters. We overcome these hardware capacity limitations by combining

a specialized tenant model with optimization mechanisms to prevent resource exhaus-

tion. These techniques allow Blender’s resource allocations to fit within the hardware

constraints of modern top-of-rack switches.
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Figure 5.1. An example to illustrate how a shared infrastructure might host multiple

isolation methods. We first allocate a fixed-capacity MapReduce task followed by two

proportional-share Web service tasks. We show how the per-link limits L and propor-

tional weights w change (in bold) on the physical network after each allocation.

5.1 Requirements for Blending

The choice of isolation model for a particular data center network is a function of

its topology, workload, and business model. The disparate set of engineering decisions

in previous proposals suggest that a variety of desirable operating points exist, and it

seems unlikely that the best answer will be the same for all tenants. Current isolation

systems, however, are monolithic: all tenants are treated in an identical fashion. We

argue that technical and economic concerns indicate a clear need to deploy multiple

isolation models across shared data center networks. For instance, some services may

need highly predictable performance, while others may have more flexible requirements,

allowing for higher utilization.

As an example, consider how one might support multiple conflicting services on

a single network. Figure 5.1 shows a network with four hosts and three tenant requests

(which we call tasks). Figure 5.1(a) illustrates the network state before any allocations

are made—a dumbbell network with 100 Mbps of capacity on each link.

In this scenario, a MapReduce task, MR0, requires isolation to maintain a pre-

dictable level of network performance between hosts a and b. To that end, we provide it
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with a private, fixed allocation of 60 Mbps. Figure 5.1(b) shows how we might configure

the physical network to support MR0. Ltask id denotes the installation of a rate limiter

in the network. Note that MR0’s allocation updates the available link capacity on the

logical network.

The remaining two tasks both host Web services on hosts c and d. For the sake

of discussion, assume that these tasks prefer to proportionally share their capacity such

that they receive service according to their relative importance (or payment) and that

Web2 pays three times as much as Web1.

Figure 5.1(c) shows the result of allocating these two tasks, where wtask id de-

notes a task’s proportional weight allocation. Because MR0 reserves 60 Mbps on the

bottleneck link, the proportional Web tasks share the remaining 40 Mbps in a 3:1 ratio.

We update the rate limiters on the chosen links appropriately.

While this example illustrates one form of composition where tasks execute

alongside one another, we have identified at least two others: hierarchy and mixture. The

second form, hierarchical composition, allows tasks to further subdivide the resources

of an existing task. Hierarchical subdivision allows, for example, a provider to partition

the network into fixed chunks for separate departments, enabling each department to

choose its own internal sharing scheme.

Finally, many of the isolation schemes described in Chapter 2 can be expressed

as a mixture of individual features. Thus the third form of composition allows users

to express features as modular components that can be re-purposed in other allocation

schemes. For instance, Seawall [84] lacks sender coordination, potentially over-running

the receiving VM. Such a facility could be provided by distributed rate limiting [74] as

implemented in Oktopus [8]. Similarly, Oktopus would benefit from work conservation,

a feature common to many other models.

Considering the isolation models and features of recent proposals, we extract the
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following requirements for a general and practical network virtualization system:

1. Multiple isolation models should be able to co-exist on the same physical network.

2. Each isolation model should be expressed as a modular composition of features

that support the tenant environment and simplify model implementations.

3. The system should support reactive, coordinated traffic control to ensure efficient

sharing between flows, entities, and tenants.

5.2 The Blender Resource Allocation Model

This section discusses the Blender programming model and how it addresses

the requirements outlined in the prior section. A later section (Section 5.4) describes

a Blender prototype implementation that cleanly integrates into a full-featured SDN

architecture and manipulates the necessary network state.

Blender allows network providers to specify different isolation policies using a

small number of high-level abstractions. Utilizing task switching, network providers

define isolation policies as separate software modules called allocators. A logically cen-

tralized controller runs these modules at the request of tenants and ultimately translates

their directives into forwarding and rate limiting state in the network, allowing network

providers to create, compose, and execute multiple isolation models across the same

physical infrastructure.

In a “blended” network, tenants make requests for Blender to construct tasks,

the unit of resource allocation and management that specifies a logical communication

pattern. Some tenants may create a single task, such as a long-lived, complex, multi-

tiered client service. Other tenants may have multiple tasks, each corresponding to fine-

grain application phases, such as the read, shuffle, and write phases of a MapReduce

execution.
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A tenant specifies a task’s isolation requirements by submitting a small, high-

level description of the task’s communication requirements (including the choice of

allocator) to Blender’s centralized task controller. Given the arrival of a new task re-

quest, the specified allocator analyzes how to (and whether it can) meet the isolation

objectives for the task and generates a proposed set of network configuration changes.

Blender then determines whether the changes are allowed and feasible, and if so, admits

the task, configuring the underlying network to enforce the isolation directives, possibly

resulting in the reconfiguration of other tasks’ virtual networks1.

5.2.1 Allocation by Graph

Building upon the task-switching architecture introduced in Chapter 3, Blender

grants each task a virtual network in which to operate. When a tenant submits a task

request, its allocator computes paths to connect the task’s endpoints and creates resource

reservations to describe how to treat the task’s flows. A natural way to make these

computations is over a graph; thus Blender represents resources as a logical graph of

switches/hosts (vertices) and links (edges). Blender uses these graphs to build higher-

level abstractions for describing and composing isolation policies.

Each allocation takes a task t and a network graph G as input. The allocator is

restricted to using only the resources described in G, even if additional resources may

be physically available2. The allocator analyzes the graph and computes a new graph

representing the task’s desired resources: allocate(G, t, . . .) → G′. If Blender admits

the task, it removes the resources (described in Section 5.2.2) in G′ from G. Subsequent

allocations may either use the remaining resources in G\G′ or, in the case of hierarchical

composition, those allocated to G′.

1This work considers Blender in the context of a trusted environment; providers install allocators that

do not sabotage other tasks.
2This mechanism may be combined with ACLs or other high-level resource management policies to

control resource access.
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Table 5.1. An example of composed task allocations and removals and the resulting

hieararchy of network graphs.

Time Task Allocations Network Graph Hierarchy

0 Initial state Groot,0

1 Add ta at root Groot,1 →{Ga,0}
2 Add tσ at a Groot,1 →{Ga,1 →{Gσ ,0}}
3 Add tβ at a Groot,1 →{Ga,2 →{Gσ ,0,Gβ ,0}}
4 Remove tβ at a Groot,1 →{Ga,1 →{Gσ ,0}}

Hierarchical composition. The ability to pass modified graphs through succes-

sive allocations supports on-line hierarchical composition of isolation policies. Thus,

the sequence of task arrivals and departures forms a logical hierarchy of network graphs.

Table 5.1 depicts an example sequence of graphs in which an initial fixed-rate allocation

is sub-divided by two subsequent proportional allocations. To illustrate the changes, we

label each network graph Gtid,v with the task identifier that created it, tid, and a version

number v.

Here, a network provider creates the initial graph Groot,0. A tenant then carves

out a fixed-rate virtual network (Ga) by requesting task ta, which results in a new version

of the root graph, Groot,1, that expresses the remaining, unassigned capacity. Next, the

tenant uses a proportional allocator to create two tasks, tα and tβ , within that virtual

network by passing in Ga. This yields two successive versions of Ga (Ga,1 and Ga,2)

as well as a graph for each of the sub-allocations (Gα and Gβ ). When task tβ departs,

Blender returns its resources to Ga. In this case, Ga returns to the state of Ga,1, though

this may not always be the case (e.g., if task tα departs instead).

5.2.2 Link Reservations

An allocator implements its policy by annotating the provided network graph

with link reservations. Table 5.2 describes the graph, link, and reservation elements to

which allocators (and extensions) have access. To support the built-in reservation types,
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Table 5.2. Allocators manipulate graphs G that contain the following logical elements.

Here links and switches are given unique identifiers: lid and sid.

Name Item Definition

Graphs G :={Switches,Links}
Links l :={lid,capacity, weight, state}
Switches s :={sid,state}
Reservations res :={ResType,lid,Traffic,args}
ResType rt :={fixed|propo|<user defined>}
Traffic tc :={pattern}

Blender annotates each edge with the current available bandwidth (capacity) and the

sum of the proportional weight currently reserved on the link. Fixed reservations carve

out a specific amount of bandwidth from a link that must be less than capacity. In con-

trast, proportional reservations receive bandwidth relative to the link’s current weight.

Note that it is the allocator’s job to compute such weights, which is the principle differ-

entiator between many existing proportional isolation schemes [72, 84].

Allocators create reservations by specifying the type, link, and any additional

arguments the reservation may require (e.g., capacity or weight). For example, an allo-

cator may create a proportional reservation with a weight of w and associate it with link

l. If this task is admitted, Blender increments l’s weight in the input graph by w and sets

up policers to rate limit traffic over l to l.capacity ∗ w
l.weight+w

. Links and switches

also contain a state annotation, a user-defined dictionary that allows allocators and

custom reservation types to maintain additional bookkeeping information across task

arrivals and departures.

There are fundamentally two types of bandwidth reservations that one can make

in Blender—those that are guaranteed and those that are best effort—and we impose

a simple restriction when hierarchically composing allocations: We allow guaranteed

allocations to sub-divide a prior guaranteed allocation. Best effort allocations may also

sub-divide a guaranteed allocation, but never the opposite. Thus, a best effort allocation
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Table 5.3. The API allocators use to create reservations and add annotations. Blender

provides an endpoint pair epp that describes the task’s traffic.

Function Description

createRes(rt, l, args) → resl Create reservation of type rt on link l.

addRoute(epp, resl0 , resl1 ,. . . ) Route traffic between epp over resli .

can be used to sub-divide a guaranteed allocation, but any future allocation after the

transition to best effort must also be best effort.

5.2.3 Constructing Forwarding Tables

Allocators create reservations and forward traffic using the simple API shown in

Table 5.3. The first function, createRes, uses the reservation type, the link to apply it to,

and any additional arguments the reservation type may require (e.g., capacity or weight)

to construct a new reservation. The second, addRoute, allows the allocator to specify

the path(s) the task’s traffic should take through the network.

An allocator is first required to create a reservation for every link it wishes to use

(allocators are always free to request zero-capacity, work-conserving fixed allocations to

indicate best effort forwarding). Armed with a set of reservations, the allocator can then

call addRoute to associate the task’s traffic between a particular endpoint pair with the

associated reservations. Multiple endpoint pairs are free to share the same reservation.

Blender validates the parameters to addRoute; the call will fail if the reserva-

tions correspond to a disconnected set of links, or if the path(s) constructed by the links

do not terminate at the indicated endpoints. If the allocator provides multiple paths,

Blender will balance the indicated traffic evenly across them (Section 5.4.2).

5.2.4 Modular Reservation Extensions

Network providers may extend the resource reservation capabilities of Blender

and enable new kinds of isolation models by defining their own reservation extensions.
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Blender provides fixed-rate reservations by default, but some reservation types may re-

quire more flexible control over resources. For example, proportional reservations must

convert per-link weights w to physical limits. Moreover, they must update physical

rate limits if any later task decreases the available capacity on a link (as in Figure 5.1).

The modular design of Blender reservation extensions allows this flexibility, which we

leverage to provide proportional reservations, work conservation, and distributed rate

limiting in our prototype (Section 5.4.4).

A reservation extension consists of three primary functions: res.create,

res.apply, and res.exec. The Blender controller maintains state for each reser-

vation as the allocator processes the task. Calls to createRes cause Blender to call

res.create; this associates a unique identity with reservation-specific parameters (e.g.,

the weight or fixed capacity). Blender calls res.apply during generation to convert

these high-level reservations into physical rate limits. The reservation extension then

enables the appropriate policing machinery when it installs the associated forwarding

directives to pass task traffic over the link. Static reservation extensions need only im-

plement these two calls.

Reservation extensions that wish to respond to network events may optionally

define res.exec, an event-driven control loop that manages all instances of the type.

These dynamic reservation extensions indicate the events that should trigger the exe-

cution of the control loop, which can be both external (e.g., SNMP traps, OpenFlow

controller requests, custom device APIs, etc.) or generated by Blender (e.g., a task

departure). Inside the control loop, the reservation extension can then inspect the net-

work through whatever API the hardware supports (e.g., SNMP counters) and update

its configuration accordingly. For example, proportional reservations use the res.exec

facility to recompute reservations when tasks arrive or depart. Note that like allocators,

Blender reservation extensions are trusted components. Rate-limit modifications must
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not exceed the available capacity in the task’s parent network graph. For example, all

proportionally rate-limited tasks sharing a link ensure that their limits do not exceed the

link’s capacity. Unlike allocators, reservation control loops do not manipulate network

graphs. Instead, they interact directly with the underlying network equipment to monitor

and modify the state of the network.

5.3 Sample Allocators

This section demonstrates Blender’s flexibility in implementing isolation mod-

els. We take inspiration from recent data center virtualization proposals and create two

allocators: Squid and Jetty. Squid creates fixed, predictable allocations in the spirit of

Oktopus [8] and FairCloud’s PS-P [72] models, allocating over-subscribed virtual net-

work topologies. Jetty creates proportional allocations in the fashion of Seawall [84]

and PS-L [72], providing isolation at the link level.

We describe each allocators’ parameters and basic allocation strategy in the fol-

lowing sections. Our descriptions focus on our adaptation of the models and their in-

teraction with the Blender framework. We refer the reader to the original proposals of

these models for additional details of their operation. Finally, following the allocator

descriptions, we discuss how they differ from their inspirations in Section 5.3.3.

5.3.1 Squid: Predictable Virtual Networks

Squid mimics the data center isolation model provided by Oktopus [8] and PS-

P [72], which allows tenants to request virtual networks that emulate non-blocking

switches. Each switch i connects ni VMs with bisection bandwidth bi. The switch

may be further connected to other virtual switches based on an over-subscription factor

O. Thus, a virtual switch must have uplink capacity (bi · ni)/O to each other switch.
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Figure 5.2. A depiction of an Oktopus virtual network, where S is the size of each

cluster group, B is the bandwidth of a cluster’s virtual non-blocking switch, and O is the

over-subscription factor for inter-cluster links. Figure from [8].

Like Oktopus (pictured in Figure 5.2), we assume the input graph is a singly-rooted,

multi-level tree.

A complete Squid allocation request is specified as (G,squid,CVMs, j,n,b,O).

This request will cause the Squid allocator to embed j virtual switches, each connecting

n VMs with links of capacity b, in the input network graph G. Squid will arrange the

virtual switches to have an over-subscription ratio of O. The allocator is free to choose

the n · j endpoints from the provided CVMs ∈ G candidates.

Squid uses a first-fit strategy to find feasible virtual switch (cluster) placements.

It uses a depth-first recursive algorithm that attempts to place each cluster as low in the

topology as possible, minimizing the number of links traffic crosses. For each switch

in the topology, Squid records the number of clusters that can be placed beneath it. To

determine if a given cluster of size ni can be placed under a switch, Squid first checks

the links l in G for sufficient capacity b to connect a cluster. It then ensures that each

found cluster has capacity bi∗ni

O
to every other feasible cluster. If sufficient capacity does

not exist (or if too few candidate endpoints were supplied), the Squid allocator rejects

the task.

If successful, this process returns a subtree under which all clusters fit. Squid
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then generates reservations with a top-down traversal of this subgraph, creating a fixed

reservation for each link. The reservation capacity is the sum of the connectivity re-

quirements of all clusters under this link. To place the traffic, Squid computes all-pairs

shortest path between the selected VMs, calling addRoute for each included endpoint

pair.

5.3.2 Jetty: Proportional Tenant Allocations

Jetty provides proportional link capacity sharing similar to PS-L [72] at the gran-

ularity of tenants (in contrast to Seawall’s entity-based proportional shares [84]). For

each tenant Jetty ensures a proportional share of capacity on each physical network link

the entity uses. While we simplify our discussion of Jetty by assuming a singly-rooted,

multi-level tree topology, it may be trivially extended to multi-rooted topologies. A Jetty

task allocation request consists of (G,jetty,CVMs,n,w).

Jetty begins by finding the n endpoints in CVMs that are best connected to the

network core. It calculates the bottleneck bandwidth on the shortest path from the top-

level core switch to each endpoint and then chooses the top-n highest-capacity endpoints.

Unlike Squid, Jetty never rejects requests during allocation (assuming CVMs ∈G contains

at least n endpoints). Like Squid, Jetty notes the lowest level root switch under which all

VMs connect, and it creates reservations in a similar top-down process. Each reservation

is proportional and uses the same weight w. Jetty then computes all-pairs shortest paths,

and calls addRoute for each endpoint pair.

5.3.3 Enforcement

It is instructive to discuss how Squid and Jetty differ from their inspirations,

which install traffic policers only on sending VMs. Our allocators use in-network traffic

policers in addition to end host rate limiting. This decision allows Squid and Jetty to
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collapse the collection of tenant traffic across each reservation and eliminates the need

for the tightly coupled VM sending rate coordination found in Oktopus. With the ap-

propriate optimizations (Section 5.4.3), under our scheme the allocators create at most

one reservation per link per tenant, meaning a 48-port switch connecting hosts with 8

VMs would require at most 2 ∗ 8 ∗ 48 = 768 rate policers (assuming every VM is in a

different tenant). This policer count is well within the hardware limitations of modern

top-of-rack switches; for example Cisco’s 4948 E/F top-of-rack switch supports as many

as 8K policers [17].

Our use of in-network limiting also simplifies our ability to augment reserva-

tions with dynamic rate coordination. By default, neither Jetty nor Squid provide work

conservation across tenants. We design a dynamic reservation extension to add work

conservation (a feature not available in Oktopus) to both allocators in Section 5.4.4.

5.4 Prototype Implementation

This section describes an OpenFlow-based implementation of Blender using

the task switching architecture introduced in Chapter 3. In the OpenFlow model [55],

switches are simple forwarding elements whose forwarding tables are populated by an

intelligent, logically-centralized controller. While we have not modified our OpenFlow

switches, we are leveraging HP Labs extensions to our HP ProCurve switches. The

extensions allow an OpenFlow controller to define limiters on a switch and add a rate

limiting action to OpenFlow rules that reference those limiters. This interface provides

the necessary fine-grained control over switch packet forwarding and rate limiting.

5.4.1 Task Controller and Rule Installation

The task controller is implemented in Python as a module for NOX [34], an

open-source OpenFlow controller. It maintains all of the state for Blender, including
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Table 5.4. Lines of code in our Python implementation of the Blender framework.

Component Lines of code

Blender task controller 2248

Squid allocator 559

Jetty allocator 85

Work conserving extension 191

Distributed rate limiting extension 232

Total 3315

Intermediate
Representation

Allocator

reservation(type, limit, link)
route(endpointPair, [link,...])

Generation

Optimization

Commit: Update G and Install

Physical
Rules rule(switchID, pattern, action{port, limitID})

Check G for Resources

*

*

*

limit(switchID, limit)

Figure 5.3. After allocation, compilation proceeds to convert an intermediate represen-

tation of abstract limits and routes into a concrete set of rules. Any stage with an * can

abort the task before it commits.

the physical network representation, allocated network graphs, connections to end host

clients, and the limiters and rules installed in the switches and end systems. The re-

maining components of the system are implemented as modules within the Blender task

controller, including the library of reservation extensions and provider-installed alloca-

tors. Table 5.4 shows the code size of our Python prototype, breaking out allocators and

our dynamic reservation drivers. Useful allocators and drivers may be written in less

than a few hundred lines of code.

Blender needs to ensure two important forms of task-wise concurrency control.

First, allocators must receive a consistent view of the input network graph. A task should
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not observe other allocations and should execute only if it can receive all its resources.

Second, a task’s rules must be fully installed before sending traffic. This requirement

provides per-task forwarding consistency; all packets of a given task obey one set of

forwarding and rate limiting rules at a time.

Blender provides these semantics by processing a task request as a transaction.

Each allocation involves creating reservations, generating switch rules, optimizing the

rule count (Section 5.4.3), and installing rules into the network. We call the first three

steps task compilation as a task’s routes and resource reservations must be converted

into SDN-compatible forwarding rules. Figure 5.3 shows this sequence of events as

Blender handles a task request.

Stages marked with an asterisk may abort the transaction before any changes are

made to the physical network. For instance, SDN switches have limited storage capacity

in their forwarding tables, and the task controller ensures that all network elements have

sufficient space for the task’s optimized rules. At this point Blender commits updated an-

notations to the task’s input graph to reflect the task’s resource claims. Blender commits

tasks in the order it receives them. If two allocations attempt to use the same resources,

one will ultimately commit before the other, causing the second to roll-back and either

try again or be rejected, thus preventing tasks from executing without receiving their full

set of resources.

Finally, after successfully committing updates to the available network resources,

Blender pushes the task’s rules and rate limits into the network. To ensure the task’s

forwarding rules are consistent across the network, we wait until the task’s network

state is fully installed in all devices before notifying the requesting application that its

network is available and ready for use.

An additional challenge specific to our testbed environment is ensuring that all

rules reside in fast-path hardware lookup tables. Our switches can only install a limited
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number of rules into their TCAM in a short period of time, and additional rules are

silently added to a slower software table. To prevent these slow software rules, we rate

limit our rule installation and periodically check for and move any rules that are found

to be in the software table. We have empirically determined that issuing eight rules per

second and checking for software rules every ten seconds works well for our switches.

To cope with failures, the task server records the set of rules for each switch, and it will

re-dispatch rules to any failed switch when it reconnects.

5.4.2 End-system Shim Layer

Tenants interact with Blender by submitting task requests. They do so by com-

municating with a local Blender shim that is running in user-space on the VM. The

shim maintains a communication channel with the task controller. Upon connecting to

the task controller, the shim transmits a unique identifier on behalf of the host it repre-

sents. The controller considers this value the endpoint identifier and associates it with

the physical location of the VM. While this process binds the VM to a physical host in

our prototype, it would be straightforward to move the shim into a hypervisor or adopt

recent proposals for data center address virtualization [62].

Tenants submit a network task request to the local shim, which relays it to the

Blender task controller. After the controller installs rules and limiters at the switches,

the controller replies to each shim in the task. The reply contains a set of type of service

(TOS) bits and an optional rate limit for each destination in the task. Upon receiving

this information, the shim manipulates iptables to mark outgoing packets with TOS

bits and tc to rate limit flows. For destinations with multiple paths, the shim installs

TOS marking rules that split traffic evenly among the available paths at a flow-level

granularity. To the controller, the shim appears no different from a switch; the controller

will re-install rules/limits if the VM reconnects after failure. If a task does not pass



61

the allocation phase, the shim will receive a callback from the controller indicating this

failure.

5.4.3 Rule Optimization

OpenFlow rules eventually reside in switch memory, a limited resource. Our

testbed switches store rules in a TCAM, which allows wildcard matching via “don’t

care” entries. TCAM sizes are limited due to cost and power requirements, so Blender’s

rule optimization phase tries to conserve space in these switch tables by combining rules

into a single wildcarded TCAM entry, when appropriate. The optimizations improve the

scalability of the system by allowing more (or larger) tasks to be installed.

Blender’s optimizer leverages two abstractions to combine forwarding rules: our

task-based allocation strategy and a hierarchical network identifier space, as enabled by

several recently proposed virtualization systems [32, 62, 63]. For each switch port in

use by a task, it uses wildcarding to collapse all of the port’s rules into a match on the

longest-prefix destination and TOS field of the rule set. The optimizer is space-efficient

and produces only one forwarding rule per switch port per task. Unfortunately, our

switches do not respect OpenFlow’s rule priority field, making longest prefix matching,

and the use of this optimizer in our testbed, impossible.

We implemented a second optimizer that is simpler and less space efficient, but

does not require rule priorities, making it deployable on our switches. It uses a simple

heuristic that attempts to wildcard the source address of rules at each switch. The algo-

rithm finds the set of rules that share the same destination, TOS field, limiter, and output

port. If the source address is identical for the entire set, the optimizer will collapse them

into one rule with a wild card for the source address. Once this optimization occurs, the

Blender task controller must not admit any future rules that match this wildcard. We use

this optimizer in our testbed evaluations.
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5.4.4 Reservation Extensions

While Blender supports fixed and proportional link reservations by default, net-

work providers are free to extend Blender with their own reservation types. Moreover,

such reservation extensions are modular; a link can support many reservations of dif-

ferent types (e.g., composing work conserving reservations with fixed rate guarantees).

We leverage this facility in our prototype to design reservation extensions for work con-

servation and distributed rate limits. Allocators combine these reservation types with

existing, fixed reservations on the desired link(s). For instance, a work-conserving ver-

sion of the Squid allocator simply pairs a work conservation reservation with each fixed

reservation.

Work conservation. Work conservation allows a task to contribute its unused

portion of a reservation on a link to an excess capacity pool. If other tasks on the

same link are operating below their reserved capacities, capacity-hungry tasks can draw

capacity from this pool. Note that the work conservation reservation extension described

here is implemented by querying for traffic demands and modifying the rate limits of

the hardware policers that are already associated with the tasks’ reservations. It does

not require weighted fair queueing or any other explicitly work-conserving hardware

mechanisms. This design also illustrates the flexibility of reservation extensions, as the

excess capacity pool may be shared among all reservations on the link, regardless of

their allocator, or it may be scoped to a subset of the link’s reservations.

Distributed Rate Limiting. DRL provides a mechanism whereby multiple

senders coordinate their sending rates to ensure that their aggregate traffic rate is below

a maximum global rate limit, without statically limiting their rates. The DRL reserva-

tion extension periodically checks the rates, across multiple links, of a coordinated set

of traffic and adjusts link-local rate limits in proportion to the traffic’s demand across
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those links. The application of DRL is useful in a situation in which a task would like

to control the aggregate sending rate across paths that may not share any common hops.

For example, in a multi-tiered, distributed service, a tenant may want to limit the global

rate at which one tier can transmit to another.

5.5 Evaluation

Our evaluation explores Blender’s ability to run multiple, composed isolation

models on the same network. We measure the overheads of task allocation and installa-

tion and show that, even with the limitations of current OpenFlow prototypes, Blender

can react to traffic observations and provide effective isolation between tasks. We em-

ulate a task-intensive workload over both Squid and Jetty, studying the impact of work

conservation on their performance. Finally, we characterize the behavior of two reser-

vation extensions. These experiments allow us to highlight Blender’s features, quantify

Blender’s resource usage, and demonstrate its practicality for networks containing thou-

sands of switches.

5.5.1 Physical Testbed

We explore Blender using a three-level fat tree [2] built from six 48-port HP

ProCurve 6600-series switches running the K.14.87o OpenFlow firmware. The switches

can store 1500 OpenFlow rules and contain 256 hardware rate policers. We use VLAN

separation to divide each physical switch into eight six-port mini-switches. We arrange

the mini-switches into a k = 6 fat tree [2] in which there are six pods, each with nine

hosts, three edge mini-switches, and three aggregation mini-switches. Note that while

our prototype runs across the full fat tree topology, we limit our topology to a single core

mini-switch to effectively reproduce topologies used in experiments in the Oktopus [8]

and Seawall papers [84].
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The switching fabric carries traffic for 50 hosts, each of which contains an Intel

Xeon X3210 and 4 GB of main memory. Every host uses two gigabit Ethernet interfaces;

the first connects to a control network for system administration and interfacing with the

task server, and the second interface connects to one of the edge-level, Blender-enabled

mini-switches. The hosts each house four Linux-KVM virtual machines, for a total of

200 VMs.

5.5.2 Isolation

We demonstrate Blender’s ability to combine multiple isolation models on a

shared physical network by hierarchically composing allocators, as described in Sec-

tion 5.2.1. This experiment uses the Squid allocator to isolate sets of Jetty tasks from

one another. We first use Squid to create two virtual networks of fixed capacity: 600

Mbps (NetGraph1) and 300 Mbps (NetGraph2). Within each virtual network, we allo-

cate two proportional Jetty tasks. We have engineered the task requests to ensure that

all six allocations share a common path in the core of the physical network3. We then

start traffic flows within the four Jetty tasks at various times.

Figure 5.4 shows the rate utilization across the shared physical path. The three

sub-figures show total utilization, traffic for NetGraph1, and traffic for NetGraph2, from

top to bottom, respectively. Initially, a single Jetty task of weight 3 is executing on

NetGraph1. At time 15, a Jetty task of weight 1 begins executing on NetGraph2. Fifteen

seconds later, a second Jetty task of weight 1 arrives on NetGraph2, causing them to

each share 50% of NetGraph2’s 300 Mbps capacity. At time 45, a Jetty task of weight 1

starts on NetGraph1, triggering NetGraph1’s capacity to be reallocated in a 3:1 ratio. At

subsequent 15-second intervals, one of the remaining tasks finishes and departs.

Notice that each pair of Jetty tasks performs as if they were on their own network,

3This was done by setting CVMs to control the placement of VMs.
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Figure 5.4. A composition of multiple isolation policies over a shared physical path.

The three figures show total utilization, traffic for a 600-Mbps network slice, and traffic

for a 300-Mbps network slice, from top to bottom, respectively. Each slice’s events do

not impact the tasks operating in the other.

responding only to Jetty task arrivals on their Squid virtual network. Moreover, the

combined traffic never exceeds the sum of the capacities of the Squid virtual networks.

5.5.3 Task Throughput

Next, we evaluate the time for Blender to complete a set of 100 tasks, using both

Jetty and Squid, in a similar fashion to the evaluation in [8]. Each of the 100 tasks re-

quests a number of VMs drawn from an exponential distribution with a mean of 18. Each

VM in the task chooses one destination among the other VMs in the task and sends 1500

MB to it. The task is considered complete when every VM has completed its transfer.

A task dispatcher requests tasks to Blender, and each requested task is either accepted,
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Figure 5.5. The time it takes Jetty and Squid to complete a set of 100 tasks as we vary

the task request parameters.

in which case the task begins running, or it is rejected due to insufficient resources (lack

of capacity or available VMs). The task dispatcher continues to request any rejected

tasks until they are all completed. We measure the time between the first task beginning

and the final task ending. Without a system like Blender, such a comparison would be

difficult to perform.

For Jetty, each VM in a task is equally likely to send to any other VM in the task,

and all tasks request equal weights for their paths. For Squid, the parameter selection

process is similar to that in the evaluation of Oktopus [8]. Because Squid sub-divides its

tasks into clusters, we assign VM destinations according to the oversubscription factor

O such that the likelihood of a VM choosing an inter-cluster destination is 1
O

for O > 1

and uniform likelihood for O = 1. Finally, Squid tasks draw their bandwidth request

value from an exponential distribution whose mean we vary.

Figure 5.5 shows the time it takes each configuration to complete the set of 100

tasks. We plot the completion time for Squid oversubscription factors of 1, 2, 5, 10,

and 10 with work conservation enabled. We also show Jetty with and without work

conservation. Jetty has no notion of bandwidth or oversubscription factor, so we present
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Figure 5.6. The mean and standard deviation (bars) of the bandwidth between the VMs

of a 15-node experimental task with a varying number of background tasks.

Jetty’s completion times separately on the plotted results.

Because it shares capacity evenly among concurrently executing tasks, Jetty is

only constrained by the number of available VMs. As a result, it tends to keep network

utilization high, and it performs relatively well, particularly with work conservation

enabled. For low mean bandwidths, Squid tends to run out of VMs before it exhausts

the available network capacity, leading to poor performance for larger oversubscription

factors. Enabling work conservation provides a significant benefit in this region due to

improved network utilization. As we increase the mean bandwidth, oversubscription

becomes more beneficial due to capacity, rather than VMs, becoming the constraining

resource. For the number of VMs in our network, an oversubscription factor of 5 appears

to perform the best for Squid tasks.

5.5.4 Allocator bandwidth and variability

In the previous experiment, Jetty achieves a higher overall throughput than Squid.

However, the increase in throughput comes at a cost with respect to Squid in the form

of variance. To illustrate this effect, we adjust the load on the network by installing
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Figure 5.7. Rule and policer count, along with the number and average size of con-

currently executing tasks for a switch during the Squid Mean = 150, Oversub = 5 run

described in Figure 5.5.

a varying number of background Jetty tasks. Next, we install one experimental task

and measure the capacity between all pairs of its VMs. Figure 5.6 plots the mean and

standard deviation of the experimental task as we vary the total number of VMs in use.

As expected, provisioning the experimental task with the Jetty allocator yields a higher

average capacity than Squid, which has a substantially lower variance. This experiment

demonstrates that if given the opportunity to choose, different tenants would benefit

from selecting an allocator that matches their applications’ bandwidth and performance

variability requirements.

5.5.5 Hardware Resources

Switches have a finite hardware capacity, which constrains their ability to store

rules and police traffic. These limitations affect the number of concurrent tasks Blender
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Figure 5.8. Rule and policer count, along with the number and average size of concur-

rently executing tasks for a switch during the Jetty run described in Figure 5.5.

can support, which is a complex problem. As the number of rules and policers needed

by a switch depends on task count, task size, network topology, and allocation strategy.

For Squid and Jetty tasks, policer usage scales according to the number of executing

tasks, while rule usage more closely follows task size.

Figure 5.7 illustrates the rule and policer counts for a single switch, along with

the number of concurrently executing tasks and average task size, during the execution

of the Squid Mean = 150,Oversub = 5 run depicted in Figure 5.5. We selected the

switch with the maximum rule count during the run. The other switches followed a

similar pattern. As we described in Section 5.4.3, we use a sub-optimal rule optimizer

due to our switches not implementing rule priority. With our better optimizer, the rule

count would be equal to that of the policer count, which is a significant decrease.

Over the course of the experiment, we do not prescribe the order in which tasks
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Table 5.5. The time and space requirements for a simple two-node task, a Squid task of

size 4, and a Squid task of size 36.

Allocator Simple Squid

VM count 2 4 36

Action Time

Allocation 0.407 ms 2.31 ms 86.3 ms

Rule generation 0.327 ms 2.17 ms 280.0 ms

Rule optimization 0.0898 ms 0.559 ms 64.8 ms

Task construction 0.0262 ms 0.132 ms 16.4 ms

Rule installation 229.0 ms 805.0 ms 15100.0 ms

Resource Count

Rules (pre-opt) 6 44 5496

Rules (post-opt) 6 20 468

Rate Limiters 0 [4-12] 36

execute. Our task dispatcher requests tasks one at a time, cycling though all outstanding

tasks until it finds one for which the system has sufficient resources. As the lower graph

indicates, this scheme tends to initially execute smaller tasks, as they are more likely

to find the resources they desire as tasks enter and leave. Around the time the 60th job

begins executing, the switch reaches a peak of 65 allocated policers, which corresponds

to the maximum concurrently-executing task count of 32. As the system shifts to larger

task sizes, the concurrent task count decreases. The transition to larger tasks leads to

an inflection point in the graph, beyond which the usage of policers decreases and the

number of rules increases.

Figure 5.8 shows the utilization of the same resources during the execution of

Jetty tasks. The trends for Jetty are similar to that of Squid, though less pronounced, due

to Jetty not being constrained by available capacity.

Another important resource in any SDN is the controller. As described in Sec-

tion 5.4.4, Blender allows for reservation extensions to execute code on the controller

in response to dynamic network conditions. While reservation extension execution may

sound like it would tax the controller, the reservation extension programming model
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counts and control loop intervals.

naturally enables extensions that are light-weight, with a tunable control loop interval to

trade off accuracy and resource usage.

As an example, our work conservation extension executes a control loop in

which it periodically requests switch statistics and reassigns rate limits. Figure 5.9 shows

the processing requirement of the work conservation extension at the controller, varying

the control loop interval and the number of switches.

5.5.6 Task Installation Overheads

Data centers must set up many tenants, stressing the scalability of the allocation

architecture. We explore the overheads Blender incurs to compile and install network

tasks of varying complexity. These experiments measure overheads for a strawman two-

node task with a single bi-directional link as well as two Squid tasks (our most expensive

allocator) of sizes 4 and 36. Table 5.5 breaks down timings by component, and lists the

number of rules and rate limiters used per task.

The takeaway from these numbers is that even for a relatively large task (Squid

36)4, total compilation time (without installation) is roughly 500 ms. The time to install

4Public cloud offerings typically limit the number of VMs a user may instantiate. Users of EC2, for

example, must request special permission to use more than 20 VMs.
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Figure 5.10. The work conservation dynamic module controlling the traffic of three

senders across a shared physical path. Each sender has a fixed reservation of 300 Mbps,

which it contributes to work-conservation pool for a total of 900 Mbps. The work con-

servation module divides the pool among the set of active senders, which varies over

time.

the rules is over 15 seconds (recall we can only install 8 rules / switch / second). This de-

lay illustrates the importance of rule optimization; our simple optimizer (Section 5.4.3)

improved rule count by an order of magnitude.

5.5.7 Dynamic Policies

To exhibit the functionality of dynamic isolation policies and custom reservation

drivers described in Section 5.4.4, we evaluate two dynamic reservation modules: work

conservation and Distributed Rate Limiting (DRL) [74].

Work conservation. To demonstrate work conservation, we configure and in-

stall three tasks, each of which reserves 300 Mbps across a shared path and contributes

its reservation to a work-conserving pool. Figure 5.10 depicts the experiment’s result.

Initially, two of the tasks send UDP datagrams as quickly as possible across the shared

path. Due to the third task being idle, the UDP senders draw from the excess work-

conservation pool and each send at just over 400 Mbps. After 30 seconds, the third task

begins sending TCP traffic over the shared path. Despite competing with UDP, the work

conservation module ensures that the third task’s TCP traffic receives its 300-Mbps reser-
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Figure 5.11. The Distributed Rate Limiting (DRL) module enforcing an 800-Mbps

global rate limit across three physically-disjoint network paths. The plot shows the

outgoing rates of the three limiters, L1, ..., L3, that are responsible for policing the three

paths. As senders begin and end their transmissions, the total traffic rate remains below

the global 800-Mbps limit.

vation. At 90 seconds, the TCP flow completes, and the UDP senders are again given

the excess pool capacity.

Distributed Rate Limiting. To test our DRL module, we construct a task in

which a set of three sending VMs transmit to three receiving VMs across three fully-

disjoint paths. For each path, the sender creates a fixed 900-Mbps reservation along

the path to its corresponding receiver. We then configure the edge-switches of all three

senders to participate in a DRL reservation with a global rate limit of 800 Mbps.

Figure 5.11 shows the traffic departure rates from the edge-switch rate limiters

associated with the traffic for each of the three senders. Every 30 seconds, one sender

begins or ends its transmission, causing the DRL module to reallocate the 800-Mbps

budget amongst the active senders. Without DRL, we would see each sender fully uti-

lizing its 900-Mbps reservation, however with DRL enabled, the aggregate sending rate

of all three senders remains below the global limit.
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5.6 Summary

This chapter introduced Blender, a programming model that enables data cen-

ter providers to author and compose multiple isolation models on the same network.

Blender’s primary contributions can be summarized as the following:

• Blender performance isolation model: Blender is a modular model that allows

network providers to simultaneously execute multiple isolation models, both side-

by-side and hierarchically, on shared physical resources. Providers define an al-

location scheme as a composition of reservations made across a logical graph

representing the network. Some reservation types may provide fixed capacity

guarantees while others could enforce proportional rate limits. Blender enables

mixing of standard isolation functionality, such as work conservation, to augment

a pre-existing static allocation policy.

• Blender network architecture: Blender provides this flexibility while ensuring

a consistent and scalable forwarding infrastructure. It multiplexes network re-

sources at the granularity of network tasks, which represent an entire service (e.g.,

a tenant) or individual application phases that have specific network demands.

Transactional task allocation ensures atomic and isolated changes to network state.

• Implementation and evaluation: We illustrate these concepts through an Open-

Flow based [55] prototype. We demonstrate the ability to author, compose, and ex-

ecute different isolation policies, including the fixed and proportional bandwidth

sharing strategies found in recent work [8, 72, 84]. Blender leverages switch-

based traffic policers to simplify resource allocation and dynamic traffic con-

trol; we describe the resource requirements for task-based allocations and show

that for realistic resource allocation strategies, per-switch rule and policer counts
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are bounded by O(numTasks∗ portCount). Even without those assumptions, our

tenant-churn experiments on a 50-node, 200-VM, fat-tree testbed easily fit within

the resource constraints of HP’s prototype OpenFlow switches.

While Blender can express many recently proposed isolation models and easily

enables the addition of new features to them (e.g., work conservation), it focuses ex-

clusively on network performance isolation. The next chapter introduces Omakase, ex-

tensions to the Blender model for providing tenants with an “app store” of other useful

network features. The Omakase model enables tenants to deploy general functionality

such as failure recovery or flow scheduling directly within the network infrastructure.
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Chapter 6

Omakase: An App Store Model for the

Data Center Network

This chapter describes Omakase, a model for writing, deploying, and managing

applications that control the underlying network hardware used by tenants multiplexed

across a shared cloud infrastructure. Just as the POSIX [95] family of standards maintain

compatibility between operating systems, Omakase defines a similar set of standard

interfaces that allow cloud providers to author a variety of network applications.

The Omakase model allows cloud service providers to construct Apps that pro-

vide distinct pieces of network functionality to their tenants. Like the smartphone apps

from which they were inspired, Apps rely on specific facilities of the underlying plat-

form to support their implementation. On phones, these features are generally provided

by sharable sensors that are disjoint from one another (e.g., the accelerometer can be

simultaneously read by multiple apps and has no impact on the GPS). In contrast, many

resources in the underlying fabric of a cloud network are not intrinsically sharable. Thus,

one of the primary challenges for Omakase in presenting a smartphone-like app abstrac-

tion is detecting and resolving App feature conflicts.

Just as few smartphone users have identical app configurations on their phones,

cloud computing tenants are likely to vary greatly in the set of functionality they require

76
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from the network. Furthermore, smartphone users generally don’t write their own apps,

they prefer to choose from among a set that has been approved by their provider, and we

believe this preference will persist in the cloud. As an example, consider three tenants

that share the physical data center network of a public cloud computing platform: a

tenant managing a three-tiered Web service, a tenant executing a bulk data processing

job (e.g., MapReduce or Hadoop), and a tenant hosting back-end business logic in the

cloud. While all three tenants want some form of performance isolation, each would

benefit from a different set of supplemental Apps to support their execution:

• Three-tiered Web service: The Web service requires external routing (to inter-

face with customers outside the data center), load balancing (to direct incoming

service requests), and bounded latency for communication between tiers (to meet

customer performance objectives).

• Bulk data processing: The bulk processing job wishes to maximize its through-

put with multiple links and a traffic-aware App for assigning flows to paths.

• Back-end business logic: The back-end service needs external routing with vir-

tual private networking (VPN) capability (to interface with the business’s other

systems and intrusion detection (to prevent unauthorized access).

The Omakase model lets the provider export these types of functionality to ten-

ants, who need only make simple requests to incorporate it into their virtual network. In

Omakase, a tenant’s Apps have the potential to conflict with one another if they attempt

to use the same features (e.g., rate limiting) in a shared region of the network. To ac-

commodate this possibility, Omakase additionally accounts for the location in which the

App intends to execute and requires that cloud providers enable sensible, common-case

conflict resolutions. This section describes the expectations placed on cloud providers
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for developing Apps, Omakase’s facilities for detecting and resolving App conflicts, and

the process by which tenants request Apps to run on their behalf.

6.1 Developing Apps

Omakase provides flexibility for tenants to customize their virtual cloud net-

works while ensuring that cloud operators ultimately retain control over their network.

Therefore, we require that the cloud provider, rather than the tenants, construct and

supply Apps to ensure that they are not malicious or otherwise abusing the network’s

resources.

To Omakase, an App represents a collection of functionality that can be chosen

by a tenant to operate within a configurable subset of the tenant’s virtual network. Apps

perform their responsibilities in two phases. First, before a tenant begins executing on

the network, Omakase executes a static provisioning routine for each of the tenant’s

selected Apps. Provisioning allows each App to subscribe to event notifications from

network devices and initialize its state for execution, both at the controller and in the

network.

After the virtual network and Apps are provisioned, the tenant may begin using

the network. Completion of provisioning marks the second phase, in which an App will

receive a notification when its subscribed events are triggered. The App may execute

an arbitrary callback function in response to an event notification, where the App may

choose to change its event subscriptions or update the state of the network. Table 6.1

describes the API available to Apps for subscribing to events and updating network state.

6.1.1 Atoms

Omakase does not prescribe that Apps be implemented in any particular lan-

guage or controller software. Instead, the distinguishing characteristics of an App are
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Table 6.1. Omakase App API for managing event subscriptions and performing network

state updates.

Function Description

subscribe(event, location, callback function) Subscribes to an event, registering a callback.

unsubscribe(event, location) Unsubscribes from event notifications.

update(atom, location, [atom-specific arguments]) Updates network state, via the specified atom.

determined by the atoms it uses to carry out its goals. Atoms abstract the features and

functionality of the network, for example, rate limiting, providing traffic statistics, select-

ing flow paths, modifying packets, etc. Despite many devices implementing and expos-

ing these features differently (e.g., in switch hardware vs. at the hypervisor), Omakase

unifies each atom into one abstraction whose App interactions are translated to the ap-

propriate interface for the underlying device.

Omakase requires the network provider to enumerate the set of available atoms

and their interface definitions. While providers are free to define their own atoms, Ta-

ble 6.2 summarizes our default set of Omakase’s atoms and their properties. When oper-

ators develop an App, they label the App with its required atoms to inform Omakase of

how the App will be using the network resources1. Labelling an App as ‘using an atom’

provides two primary benefits. First, it supplies the App with an atom-specific interface,

expanding the set of events or network state updates for the App to utilize. Additionally,

labelling enables conflict detection during the static App allocation phase.

6.2 Conflicts

In Omakase, a conflict occurs when two or more Apps attempt to modify the net-

work, using the same atom, in a manner that is unsafe without external coordination. To

account for the differences in atom behavior, the specific conditions that represent a con-

1Atom labelling is analogous to developers labelling Android applications with their desired security

permissions.
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Table 6.2. A summary of Omakase’s atoms and the facilities they provide.

Atom Name Conflict Resolution Allows App to . . .

Create zones Static Sub-divide network regions.

Choose routes Static Establish VM reachability.

Create rate limits Dynamic Add or remove rate limits.

Modify rate limits Dynamic Change the enforced rate limit.

Read statistics N/A (read-only) Receive network traffic information.

Assign flow paths Static Bind a flow to a set of hops.

Intercept traffic Static Inspect packet content.

Modify traffic Static Re-write packet content.

flict are atom-dependant. Omakase uses spatial zone separation to reduce the likelihood

of conflicts and performs atom-specific resolution for conflicts that cannot be avoided.

Zones are defined hierarchically, as a subset of a graph representing the network’s de-

vices and links. Omakase expects tenants to specify in which zone each of their Apps

will execute. We provide a special zone creation atom that allows for the definition of

new zones. By convention, our implementation restricts this atom to Apps that provide

performance isolation (Section 6.3).

Even with zones scoping the use of atoms, multiple Apps may wish to share

an atom within a single zone. When such a conflict is discovered, Omakase executes

a provider-defined, atom-specific resolution routine. The conflict resolution routine is

free to take any information about the state of the network or the tenant’s App set into

account. Depending on the cloud provider’s policies and atom in question, resolution

strategies may involve prioritizing one App over another, processing each App sequen-

tially, or coordinating the Apps such that they safely share network resources. For Apps

that require coordination, the requirement is enforced in the atom interfaces that they

declare.

The Omakase model makes a distinction between two forms of conflicts, static

and dynamic conflicts, which correspond to the two phases of App execution. To ensure

safe execution, a static conflict is one that must be detected and resolved during the
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static App provisioning phase. Consider an example in which a tenant requests multiple

Apps that assign flows to routes. We leverage atom labelling to detect this condition,

and for this example, resolve the conflict by rejecting this (nonsensical) tenant request.

With a different atom, for example modifying traffic, Omakase may choose to resolve

a conflict by ensuring a sequential ordering on the flow of traffic through the set of

conflicting Apps.

For some atoms, the presence of a conflict may depend not only on Apps sharing

a zone, but how the network state is managed by the Apps within that zone. For example,

if multiple co-located Apps declare that they modify rate limits, whether or not they

conflict depends on the set of traffic for which each App intends to modify limits. For

atoms that have a additional parameter, like the traffic set in this example, the network

provider may opt to resolve their conflicts at runtime, while the Apps are dynamically

executing. Dynamic conflicts are detected and resolved by the atom implementation in

App update calls.

6.3 Prototype Implementation

This section describes a prototype implementation of the Omakase model as an

extension to the Blender model introduced in Chapter 5. Our Omakase prototype shares

many of the goals and principles behind Blender. Like Blender, Omakase adheres to

the task switching philosophy of holistically allocating resources at the unit of tasks.

Omakase also maintains the simplicity of Blender’s task request specification. In the

interest of making Omakase easy for service operators, one of our goals is to put the App

configuration burden on the cloud provider, rather than the tenants, whenever possible.

We believe that it is unreasonable to expect detailed configuration information from all

tenants, and thus tenants need only provide the names of the Apps they wish to run and

the zones they want them to run in (if not in all zones).
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Figure 6.1. The Blender task compilation procedure over a graph, G, revised to include

Omakase’s App extensions. We describe Blender’s other stages in Section 5.4.

Omakase inherits Blender’s isolation models to provide performance isolation.

We augment the isolation allocators to additionally designate zones as they annotate the

graph representation of the network’s resources. The performance isolation allocator is

a natural location to assign zones, as isolation models commonly distinguish between

multiple network areas to differentiate the resources they provision. For instance, we

adapt the Squid allocator to divide its virtual networks into a zone for each of the clusters

it allocates.

We implement App logic within reservation extension modules and introduce

a new App provisioning stage to the task compilation process. The provisioning stage

checks for (and when possible, resolves) static atom conflicts, instantiates App reser-

vation extensions, and assigns the Apps’ reservations to OpenFlow rules according to

the zone specification in the tenant’s service request. Figure 6.1 depicts our prototype

implementation’s architecture, updated to include Omakase’s extensions. We place the
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App provisioning stage before optimization to ensure that the optimizer takes reserva-

tion extensions into account (i.e., to prevent the optimizer from combining a set of rules

for which a reservation only applies to a subset of the rules).

6.3.1 App execution

The Omakase model admits flexible placement of Apps on the network. Unlike

other logically centralized systems, including Blender, functionality need not always ex-

ecute at the controller. Depending on the App’s requirements and the device capabilities,

the App might execute at controller, on an end host (in the Blender shim), in a dedicated

VM running App-specific software, on a middlebox, or directly in the network switches.

In our Blender-based prototype, we modify Blender’s shim to allow providers to include

functionality in support of end-host atoms (e.g. notifications for new flows), and we la-

bel devices in the network graph with their atom capabilities, Apps choose where to

execute under the assumption that sufficient processing resources are available. Other

work [80] has explored the use of constraint satisfaction to schedule middlebox place-

ment in resource-limited devices, and we believe similar techniques could be applied to

the Omakase model to eliminate this assumption.

In addition to executing on end hosts and in the controller, we have tested placing

Apps on an experimental Broadcom switch platform that supports low-level APIs for

accessing the hardware. We ported Apps to execute on the switch’s CPU, and Omakase

correctly elected to execute on the switch, when possible. Unfortunately the device’s

TCAM update latency prevents us from collecting viable results in our evaluation of

sample applications, so we limit our Apps to executing on conventional, general-purpose

computing platforms.
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Table 6.3. A summary of application classes and the atoms they require.

Atom

Application Class Create

zones

Choose

routes

Create

rate

limits

Modify

rate

limits

Read

statistics

Assign

flow

paths

Inter-

cept

traffic

Modify

traffic

Performance isolation [8, 84, 101]
√ √ √ √

Failure recovery
√ √

Dynamic path selection [3, 42]
√ √

Flow deadline scheduling [4, 100]
√ √

Routing (external network) [78]
√ √ √

Load balancing [6, 98]
√ √

VPN / Encryption [66]
√ √

Intrusion detection [88]
√

6.4 Sample Apps

This section demonstrates Omakase’s flexibility in implementing Apps. We

describe several examples that are inspired from recent publications or open source

projects and examine their interaction with Omakase. Table 6.3 lists the application

classes we consider and summarizes the atoms they use. For each class, we examine a

prototype implementation and evaluate its behavior.

6.4.1 Performance Isolation

Our Omakase prototype inherits its performance isolation functionality from

Blender. As a result, we restrict performance isolation to be the only class of App

that is allowed to define zones. We believe this is appropriate, since every tenant is

likely to need some form of performance isolation. A detailed evaluation of Blender’s

performance isolation mechanisms and a description of our experimental testbed can be

found in Chapter 5.

6.4.2 Failure Recovery

As the size of a network increases, so does the likelihood of a component failure.

We recognize that different tenants may wish to respond to such failures in numerous

ways, and the Omakase model allows for such diversity. For example, one tenant might
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Figure 6.2. The receive rate of a traffic sink while running the failure recovery App.

The vertical line at 10 seconds signals a switch failure event.

want to minimize the service interruption by automatically routing around the failure,

a tenant second might want to reallocate a new virtual network in a different physical

location, and a third may prefer to halt execution until the failure is resolved.

By default, Blender does not provide any mechanisms to automatically recover

from link failures. For our Omakase prototype, we construct a failure recovery App

that executes at the controller and operates like the first of the three examples described

above. When a link failure occurs, the App determines which of a tenant’s routes crossed

that link and searches for an alternative path whose characteristics in the annotated net-

work graph indicate that it could serve as an equivalent replacement. Upon finding such

a link, it then applies the reservations from the failed link to the replacement and informs

the appropriate end host shims to mark their future packets to use the replacement.

Figure 6.2 illustrates the failure recovery App’s behavior. Within a pod of our

fat-tree testbed network, we establish a path from a sending VM through the pod’s ag-

gregation layer to a receiving VM with a reservation of 300 Mbps. The sender uses the

iperf tool to generate and send as much data as possible to the receiver via a TCP flow.

We simulate a switch failure by configuring the aggregation switch to disconnect from
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the centralized controller. Upon detecting the switch’s disappearance, the recovery App

chooses to route around the failure using an alternative aggregation switch and estab-

lishes a 300-Mbps replacement reservation through it. In the figure, we plot the rate

at which the receiver’s NIC observes incoming data. We mark the time of the failure

with a vertical line, after which the receiver stops seeing traffic for approximately 1.5

seconds. When the alternative path is established, the reception rate briefly spikes as

the replacement switch’s hardware rate policer accounts for the sudden burst of traffic,

followed by a return to the expected 300-Mbps rate.

6.4.3 Flow Path Selection

When multiple routes connect a pair of communicating endpoints, Omakase se-

lects only one route for any individual flow that passes between them to avoid TCP

reordering problems. Here, we describe two Apps we have built to perform flow route

selection. The first App, random assignment (RA), randomly maps each flow to an

available route, which closely approximates conventional ECMP [42]. The second,

bandwidth-maximizing assignment (BMA), is inspired by the global first-fit algorithm

of Hedera [3]. BMA assigns a flow to the route with the largest available capacity.

Both flow assignment Apps are similarly structured, and we label each with the

‘assign flow paths’ atom. This label enables App subscription to a ‘new flow’ event

notification, which is triggered by the end host hypervisor when a flow begins at one

of its VMs. RA simply chooses a random path in response, whereas BMA additionally

utilizes the ‘read statistics’ atom to read and compare path utilizations before returning

a decision. While they currently perform placement for all new flows, either could

easily be extended to selectively optimize only long-running or high-volume flows for

bandwidth maximization.

To evaluate these Apps, we configure three paths between two VMs within a pod
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Figure 6.3. The average flow rate for three TCP flows, between two VMs, with three,

300-Mbps parallel paths. Error bars indicate standard deviation.

in our testbed. Each path holds a 300-Mbps reservation, and the sending VM transmits

as much data as possible over three TCP flows using the iperf traffic generator. Fig-

ure 6.3 plots the average rate of the three flows over ten runs of the experiment, with

error bars to designate the standard deviation.

6.4.4 Deadline-aware Flow Scheduling

While the conventional performance metric for data center applications has been

bandwidth, several recent projects [4, 100, 106] have begun to focus on latency. This

work is largely motivated by reports from industry [41], which indicate that even small

increases in latency can lead to a significant reduction in customer satisfaction. For

example, Amazon notes that a 100-ms increase in latency costs the company 1% in

sales, and Google observes that an extra half second of search page generation time

reduces customer traffic by 20%.

For the Omakase prototype, we constructed a deadline-aware App that was in-

spired by D3 [100], which uses deadlines to schedule flow completion times. To make

use of the App, a tenant application informs its local Blender shim of the size and dead-

line for each new flow that it starts. The shim then begins periodically computing the
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rate necessary for the flow to complete on time and issues a request for that capacity to

the App. At the same interval, the App considers all its received requests and produces

a schedule of flow rates, which it uses to update switch rate policers.

Like D3, our App would ideally execute directly within the network’s devices.

Unfortunately, our experimental switch platform was not optimized for fast rate policer

updates and could not keep up with the App’s proposed changes. The poor perfor-

mance is an issue of software (fast rate policer updating is not a frequently requested

feature) and not a fundamental limitation of the hardware. To stand-in for programmable

switches, we substitute the controller to execute the App, which reduces the responsive-

ness.

To demonstrate the App’s behavior, we begin with a scenario that is similar to

the previous experiment. Initially, a sending VM transmits via three TCP flows to a

receiving VM across three parallel paths. Each path is configured with a 300-Mbps

reservation. We use BMA flow placement to spread the flows across the available paths.

This time, rather than sending as much data as possible, our traffic generator aims to

send one gigabyte of data over each of the three flows with a deadline of 60 seconds.

After 15 seconds, two additional flows begin, each with a size of 200 megabytes and a

deadline of 10 seconds.

Figure 6.4 displays the results. Prior to the additional flows beginning, the three

original flows converge to the necessary rate for on-time completion. When the two

short-deadline flows start, our App displaces two of the longer flows until they complete.

Afterwards, the two displaced flows converge on a higher rate to make up for their

displaced time. The third flow, which never shared a link with one of the short-dealine

flows, continues at its original rate.
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Figure 6.4. A combination of the BMA flow assignment App and a deadline-aware flow

scheduling App. Long flows send one gigabyte of data with a deadline of 60 seconds,

and short flows send 200 megabytes of data with a deadline of 10 seconds.

6.4.5 External Routing

To facilitate interaction with external (non-Blender) networks, we modified the

BIRD [14] routing daemon to interface with the reservation extension infrastructure

of our Omakase prototype. The resulting routing App’s functionality resembles the

RouteFlow [78] project’s goal of integrating traditional routing protocols into a software-

defined networking control architectures. However, rather than using a dedicated VM

to host the routing daemon, we adjust the (comparatively lightweight) BIRD daemon

process to establish a standard socket connection with the Blender controller.

The routing App leverages the ‘intercept traffic’ atom to place rules in switches

that capture routing protocol messages and forward them to the controller. The controller

then relays the routing messages via a socket connection to the BIRD instance responsi-

ble for the switch that received the message. The controller marks each relayed protocol

message with the switch port it was received on, and our modifications to BIRD cause it

to perceive reception of the message on a corresponding virtual network interface. We
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similarly capture the resulting decisions made by the BIRD daemon (i.e., routing table

entry changes) and relay them to the routing App, which pushes the equivalent Open-

Flow rules into the switch. With this relay architecture, the routing daemon may run on

the same server as the controller, or it could be offloaded to a secondary control machine

if the controller’s processing burden becomes a concern.

6.4.6 Middlebox Apps

Middleboxes represent a popular method for interjecting new functionality into

networks [82]. To demonstrate that Omakase can effectively enable middleboxes, we

introduced our prototype implementation to several small groups of graduate students.

Over the course of a five-week graduate networking class, they implemented various

forms of middlebox Apps as a class project. In each of their projects, their App used

at least one dedicated VM to provide their middlebox functionality. The VM ran open

source middlebox software (e.g., Snort [88]) and traffic directly passed through the mid-

dlebox without inspection by the controller. The range of Apps they produced included

an intrusion detection system [60], a data compression service [45], a virtual private

networking App [108], and a wide-area network optimization utility [81].

6.5 Summary

Researchers, open source communities, and network hardware vendors have un-

dertaken many useful and interesting software ventures to improve cloud networks. Un-

fortunately, individual projects typically solve only a small number of the problems

faced by cloud tenants, and current cloud computing services limit the ability of tenants

to receive the complete set of functionality they want from the network. To compli-

cate matters, in highly-shared cloud environments, operational requirements are likely

to vary considerably from one tenant to another.
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In this chapter, we presented Omakase, a model for building modular Apps for

the data center network. Omakase allows service operators to easily pick and choose

the pieces of functionality that best meet their needs. We demonstrated Omakase’s main

contributions:

• Omakase tenant model: Omakase defines a cloud networking model in which

network providers can easily author new Apps to enhance the network with new

functionality for tenants. Apps declare their use of atoms, which unlocks event

subscriptions and network state modifications. Omakase admits App execution

in multiple locations within in network and distinguishes between zones to more

easily validating the coexistence of a set of Apps.

• Implementation and evaluation: We illustrate the effectiveness of the Omakase

model with a prototype implementation that extends the Blender model. We show

that Omakase’s extensions are flexible and capable of naturally augmenting the

network with valuable features including failure recovery, flow path assignment,

and deadline-aware flow scheduling. Furthermore, we demonstrate that the model

is straightforward to use as evidenced by several groups of students who were

able to acquaint themselves with the codebase and construct middlebox Apps in a

short time frame as part of a UCSD networking course.

In the following chapter, we conclude the dissertation and discuss avenues for

future research.
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Chapter 7

Conclusion

Recent technical and economic trends have fueled the construction of large and

sophisticated data centers. Containing thousands of servers, their size and stringent

performance requirements represent a unique operating environment with critical chal-

lenges for their interconnection networks. Conventional topologies and routing systems

cannot cope with the massive level of redundancy needed to achieve fault tolerance

and provide high performance. Furthermore, these environments host a diverse set of

services executing side-by-side, each with potentially contrasting operating parameters,

contributing to an overwhelming complexity of resource allocation and device configu-

ration.

In spite of these challenges, data centers also represent a rare opportunity to

leverage the exclusive ownership of a large installation to take advantage of service

diversity and deliver qualitatively different paths to tenant applications. In this chapter,

we summarize our vision, architecture, and prototype implementation for providing a

custom, virtualized network for every tenant and discuss the current limitations and

potential future directions of the work described here.

93
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7.1 Summary

With task switching, we presented a new architecture for data center services to

interact with the network. In contrast to other proposals that allocate resources to flows

or VMs, task switching allocates resources at the unit of a task, which encompasses

all of the resources associated with a tenant’s service. Towards the goal of providing

modularity for network providers and flexibility for tenants, task switching rejects the

one-size-fits-all approach to network path selection to provide services with the ability

to customize their routing and resource allocation decisions.

In a task-switched network, a centralized topology server maintains a view of

the network’s structure and available resources. Tenants submit requests for resources

to the topology server, which uses one of multiple allocators to assign resources to the

tenant according to the content of the request and the network’s available capacity. We

described and simulated one possible set of allocators that allow tenant services to take

advantage of paths that others choose not to utilize, and our simulations demonstrated

the allocators’ effectiveness for symmetric and heterogeneous task workloads. Task

switching serves as the foundation for our Blender performance isolation model and its

Omakase application extensions.

The Blender model represents a realization of the task switching framework with

an emphasis on inter-task performance isolation. It resolves the either/or balancing act

between resource efficiency and performance predictability by allowing data center op-

erators to run multiple performance isolation models simultaneously. The model simpli-

fies the ability of data center providers to compose different isolation models by allocat-

ing over a hierarchical set of logical network graphs. Blender builds on many recently-

proposed isolation models as well as on advancements for controlling software-defined

networks.
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Blender can express a variety of task-based isolation models that provide both

fixed and weighted capacity sharing across data center network links. Put within the

context of our task switching architecture, it becomes possible for data center opera-

tors to easily author and compose multiple isolation models across a shared physical

infrastructure. Moreover, our experiments with a prototype implementation indicate

that task-based isolation models can be practical given the current rate limiter facilities

in modern top-of-rack switches.

With Omakase, we introduced a model for augmenting task switching with gen-

eral App functionality that goes beyond forwarding and capacity guarantees. Omakase

allows cloud-computing tenants to succinctly express the functionality they want from

their cloud network in a fashion that resembles users extending their baseline smart-

phone functionality via user-selected apps. Tenants can choose and deploy software to

control the reliability, routing, fairness, security, and latency of their virtual network

infrastructure with the same ease and flexibility with which they configure virtualized

compute nodes.

Our Omakase prototype extends Blender with network zones and novel conflict

resolution routines to detect and resolve situations in which multiple Apps conflict at

shared locations in the network. Apps utilize straightforward APIs to declare their use

of atoms, which unlock event subscriptions and network state modification opportuni-

ties. Additionally, we demonstrate the effectiveness of the Omakase model by character-

izing several example Apps and describe how they could take advantage of in-network

processing capabilities to go beyond standard software-defined networking platforms.

7.2 Limitations and Future Directions

The systems and analysis described in this dissertation are not without limi-

tations. For example, while technical solutions are necessary to achieve success in
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providing virtual network services, an equally critical barrier to adoption stems from

economics. How much more should Blender’s guaranteed rate reservation cost than a

proportional share? How expensive should adding flow assignment or flow deadline

functionality be to a tenant? In this dissertation, we made no attempt to quantify the

financial expense of our proposed mechanisms or prescribe potential tenant costs. In a

practical deployment, the data center provider must know the operational cost to reserve

capacity or execute an App to ensure that tenants are paying appropriately for network

resources. Due to the competitive and variable nature of cloud computing markets, we

believe an economic analysis of flexible data center resource resource assignment is an

important avenue for complementary future work.

A second obstacle that complicates the deployment of our task switching systems

is that current network hardware platforms have not been optimized for fast programma-

bility and reconfiguration. SDN and OpenFlow have made great strides towards an open

and programmable device model, but much of the currently available, SDN-capable

hardware was retrofitted rather than designed for SDN from scratch. Such devices have

been engineered for the common case of infrequent routing or policy changes and thus

they respond slowly to data path updates, even when the underlying hardware (e.g., the

TCAM flow table) is theoretically capable of much higher performance. The result is

that installing new rules for large tasks or executing high frequency feedback loops may

not be feasible on current-generation commodity hardware.

Another consequence of limited hardware support for SDN is that, despite con-

forming to a standardized API, current SDN devices commonly ignore useful directives,

relegate nonessential functionality to slow software paths, or place additional restric-

tions on hardware usage (e.g., only a subset of the packet header can be matched). Ulti-

mately, we hope to see switch hardware and software co-designed from the ground up

for high-speed programmability.
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A co-designed platform would convey several benefits to task-switched systems.

Ideally, such a platform would contain a strong CPU (to balance the device’s general-

purpose processing performance with the high-speed forwarding hardware), an API for

bulk rule installation (making it easier to efficiently provision and optimize large tasks),

and better accessibly for executing code on the device (allowing for devices to trigger

events rather than relying on less-efficient controller polling). Fortunately, network de-

vice vendors are beginning to design and position their hardware in this way, and it is

now only a matter of time until commodity devices start to match this vision.

Finally, with 50 servers, we have reached the limits to the size of an academic

testbed, and the prototypes presented here would benefit from further evaluation at a

larger scale. Further, while we have attempted to measure our prototypes under rea-

sonable assumptions, the research community desperately needs additional data and

guidance from industry regarding tenants, workload, and network traffic characteristics.

Network virtualization is an important problem in industry, and establishing a robust

solution is a necessary step for the cloud computing model to meet its full potential.

Several commercial systems are currently being developed, and though the final product

may not look like Blender, we believe the central ideas introduced in this dissertation

have strong advantages over other approaches and could be integrated into a commercial

network virtualization solution.
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