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Abstract

Exercise-induced muscle adaptations vary based on exercise modality and intensity.

We constructed a signalling network model from 87 published studies of human or

rodent skeletal muscle cell responses to endurance or resistance exercise in vivo or

simulatedexercise in vitro. Thenetwork comprises259 signalling interactionsbetween

120 nodes, representing eight membrane receptors and eight canonical signalling

pathways regulating 14 transcriptional regulators, 28 target genes and 12 exercise-

induced phenotypes. Using this network, we formulated a logic-based ordinary

differential equation model predicting time-dependent molecular and phenotypic

alterations following acute endurance and resistance exercises. Compared with nine

independent studies, the model accurately predicted 18/21 (85%) acute responses

to resistance exercise and 12/16 (75%) acute responses to endurance exercise.

Detailed sensitivity analysis of differential phenotypic responses to resistance and

endurance training showed that, in the model, exercise regulates cell growth and

protein synthesis primarily by signalling via mechanistic target of rapamycin, which is

activated by Akt and inhibited in endurance exercise by AMP-activated protein kinase.

Endurance exercise preferentially activates inflammation via reactive oxygen species

and nuclear factor κB signalling. Furthermore, the expected preferential activation of

mitochondrial biogenesis by endurance exercise was counterbalanced in the model by

protein kinase C in response to resistance training. This model provides a new tool

for investigating cross-talk between skeletal muscle signalling pathways activated by

endurance and resistance exercise, and the mechanisms of interactions such as the

interference effects of endurance training on resistance exercise outcomes.
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computational model, endurance exercise, exercise, resistance exercise, signalling network,
skeletal muscle
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1 INTRODUCTION

Exercise stimulates phenotypic changes in skeletal muscle, including

metabolic adaptations, hypertrophy and tissue restructuring. Distinct

training protocols, such as resistance, endurance and sprint exercises,

activate different cell signalling pathways that lead to diverse

phenotypic responses (Baar, 2006). Conventionally, resistance

exercise preferentially promotes skeletal myocyte protein synthesis,

culminating in muscle hypertrophy with sustained training (Qi

et al., 2013). Conversely, endurance exercise primarily promotes

mitochondrial biogenesis, while suppressing protein synthesis and

cell growth (Qi et al., 2013). Importantly, these exercise-induced

responses are interrelated, with evidence suggesting that combining

resistance and endurance training can either amplify or interfere with

the effects elicited by a single exercise modality (Baar, 2006; Qi et al.,

2013). Since most physical training regimens involve a combination

of resistance and endurance exercises, deciphering the mechanisms

driving these adaptations would enhance our ability to predict skeletal

muscle phenotypic changes in response to various exercise training

programmes.

Skeletal muscle responses to exercise are regulated in part by

activation of signalling pathways that control gene and protein

expression. Although the activation of individual pathways during

exercise has been explored, the interplay between pathways that

coordinate responses to varied exercise modalities remains unclear.

Many of the same pathways regulate adaptations to both resistance

and endurance exercise, but distinct combinations and sequences of

exercise training canmanifest divergent phenotypes. For example, end-

urance and resistance training both activate insulin signalling (Consitt

et al., 2019), whereas endurance exercise preferentially activates the

β-adrenergic pathway (Sato et al., 2011). The interconnections in the

exercise signalling network make it difficult to intuitively understand

mechanisms of interference or synergy between different exercise

modes.

Systems biology models of cell biochemical networks have pre-

viously been used to investigate pathway interactions, characterize the

sensitivity of cell responses to molecular perturbations, and simulate

novel experiments (Akberdin et al., 2021; Coccimiglio & Clarke, 2020;

Tan et al., 2017). Here we constructed a new computational model to

investigate system-level regulation of skeletal muscle cell responses

to acute resistance and endurance training. This model integrates

findings from a wide range of exercise signalling studies, offering

mechanistic insights into observed responses to various exercise

protocols. Model simulations were used to investigate pathway inter-

actions thatmediate responses to combination training.Model outputs

were corroborated with independent data not used to formulate it.

2 METHODS

2.1 Network construction

We formulated the signalling network from empirical observations

reported in 87 publications, encompassing signalling activity, gene

Highlights

∙ What is the central question of this study?

How do the cell signalling pathways regulating

skeletal myocyte responses to resistance and end-

urance exercise interact?

∙ What is themain finding and its importance?

A new systems model of skeletal muscle signalling

pathways activated by resistance and endurance

training was developed with eight canonical

signalling pathways regulating 14 transcriptional

regulators, 28 target genes and12exercise-induced

phenotypes. The model accurately predicted 85%

of independent measurements for resistance

exercise and 75% for endurance training. Analysis

revealed pathways regulating the preferential

activation of protein synthesis and cell growth by

resistance training and inflammation by endurance

exercise.

expression, and phenotypic alterations during exercise or simulated

exercise in human or rodent skeletal muscle, in vivo or in vitro.

Human in vivo studies informing the model formulation reported

responses to resistance (squat, leg press, etc.) and endurance (e.g.

cycling, treadmill running or rowing) exercises. Rodent exercisemodels

included synergist ablation, weightlifting, and treadmill running. In

vitro studies measured responses to cell stretching, or electrical or

chemical stimulation to produce isometric or concentric myocyte

contractions. Table 1 categorizes the references used for network

construction by primary pathway and experimental system. For the

purposes of building the model, we neither specifically included nor

excluded data based on important variables such as age, sex or

exercise duration and intensity. The selection criteria for the 87 papers

used to formulate the model are summarized in a PRISMA diagram

(Supporting information, Figure S1), and details of the species, muscle,

exercise protocol and measurements for each of the 87 papers used to

formulate the model are included in the data supplement (Supporting

information, Table S2).

To construct the network, we began by selecting studies that

identified key signalling molecules involved in regulating phenotypic

adaptations to exercise in skeletal muscle. Interactions between

signalling nodes were based on exercise or non-exercise studies in

skeletal muscle. Model outputs included consensus gene and protein

markers of exercise response or well recognized exercise-induced

phenotypic alterations in skeletal muscle.

Five of the studies used to formulate the model used the rodent

synergist ablation model (Carlson et al., 2001; Goodman et al., 2015;

Martin et al., 2014; Miyazaki et al., 2011; White et al., 2014), which



FOWLER ET AL. 941

T
A
B
L
E
1

R
ef
er
en

ce
s
u
se
d
fo
r
n
et
w
o
rk

re
co
n
st
ru
ct
io
n
by

ex
p
er
im

en
ta
ls
ys
te
m
an
d
p
at
hw

ay
.

Sy
st
em

,r
ef
er
en

ce
ty
p
e,
o
r

m
ea
su
re
m
en

t
P
I3
K
–
A
kt
–
m
TO

R
ST
A
R
S

M
A
P
K

H
SP

7
0

H
ip
p
o

N
Fκ
B

TG
F
β–
B
M
P
–

Sm
ad

cA
M
P
–
A
M
P
K

C
al
ci
u
m

H
u
m
an

re
si
st
an

ce
ex
er
ci
se

La
m
o
n
et

al
.

(2
0
0
9
)

Si
lv
en

n
o
in
en

et
al
.

(2
0
1
5
)

Li
u
et

al
.(
2
0
0
4
)

B
ic
ke
le
t
al
.(
2
0
0
5
);

V
el
la
et

al
.

(2
0
1
2
)

Si
lv
en

n
o
in
en

et
al
.

(2
0
1
5
)

Si
lv
en

n
o
in
en

et
al
.

(2
0
1
5
)

H
u
m
an

en
d
u
ra
n
ce

ex
er
ci
se

R
ei
tz
n
er

et
al
.

(2
0
1
8
);
W
al
la
ce

et
al
.(
2
0
1
1
)

Si
lv
en

n
o
in
en

et
al
.

(2
0
1
5
)

Li
u
et

al
.(
2
0
0
4
);

M
o
rt
o
n
et

al
.

(2
0
0
6
)

Si
lv
en

n
o
in
en

et
al
.

(2
0
1
5
)

Si
lv
en

n
o
in
en

et
al
.

(2
0
1
5
)

R
o
d
en

t
sy
n
er
gi
st
ab

la
ti
o
n

M
ar
ti
n
et

al
.(
2
0
1
4
);

M
iy
az
ak
ie
t
al
.

(2
0
1
1
);
W
h
it
e
et

al
.

(2
0
1
4
)

C
ar
ls
o
n
et

al
.

(2
0
0
1
);
M
ar
ti
n

et
al
.(
2
0
1
4
);

M
iy
az
ak
ie
t
al
.

(2
0
1
1
)

G
o
o
d
m
an

et
al
.

(2
0
1
5
)

R
o
d
en

t
w
ei
gh

tl
if
ti
n
g

H
er
n
an

d
ez

et
al
.

(2
0
0
0
)

R
o
d
en

t
tr
ea
d
m
ill

A
ri
as

et
al
.(
2
0
0
1
);

W
h
it
e
et

al
.(
2
0
1
4
);

W
ill
ia
m
so
n
et

al
.

(2
0
0
6
)

W
ill
ia
m
so
n
et

al
.

(2
0
0
6
)

O
ga
ta

et
al
.(
2
0
0
9
)

W
ill
ia
m
so
n
et

al
.

(2
0
0
6
)

W
u
et

al
.(
2
0
0
1
)

R
o
d
en

t
im

m
o
b
ili
za
ti
o
n
/u
n
lo
ad

in
g

K
lo
ss
n
er

et
al
.(
2
0
0
9
)
K
im

et
al
.(
2
0
1
4
)

Se
n
fe
t
al
.(
2
0
0
8
)

Se
n
fe
t
al
.(
2
0
0
8
);

va
n
G
am

m
er
en

et
al
.(
2
0
0
9
)

W
in
b
an

ks
et

al
.

(2
0
1
3
)

C
el
ls
tr
et
ch
/s
ti
m
u
la
ti
o
n

Ja
co
b
s
et

al
.(
2
0
1
3
);

Li
u
et

al
.(
2
0
1
3
);

Sh
er
w
o
o
d
et

al
.

(1
9
9
9
)

Z
h
an

g
et

al
.

(2
0
0
7
)

C
ar
ra
sc
o
et

al
.

(2
0
0
3
);
Li
u
et

al
.

(2
0
1
3
);

Sh
er
w
o
o
d
et

al
.

(1
9
9
9
)

Jo
rq
u
er
a
et

al
.

(2
0
0
9
)

W
ad

a
et

al
.

(2
0
1
1
)

C
ar
ra
sc
o
et

al
.

(2
0
0
3
)

C
ar
ra
sc
o
et

al
.

(2
0
0
3
);
E
lt
it

et
al
.(
2
0
0
6
);

Jo
rq
u
er
a
et

al
.

(2
0
0
9
);
W
u

et
al
.(
2
0
0
1
)

In
h
ib
it
io
n
/o
ve
r-
ex
p
re
ss
io
n

M
u
rg
a
et

al
.(
1
9
9
8
,

2
0
0
0
);
H
ad

d
ad

an
d

A
d
am

s
(2
0
0
4
);

R
o
u
x
et

al
.(
2
0
0
7
);

M
iz
u
ta
n
ie
t
al
.

(2
0
0
9
)

A
ra
ie
t
al
.(
2
0
0
2
);

C
h
ar
ve
t
et

al
.

(2
0
0
6
);
K
u
m
ar

et
al
.(
2
0
0
6
);

So
ti
ro
p
o
u
lo
s

et
al
.(
1
9
9
9
);

Sc
h
ra
tt
et

al
.

(2
0
0
2
);
Z
h
an

g

et
al
.(
2
0
0
7
)

B
o
u
za
kr
ia
n
d

Z
ie
ra
th

(2
0
0
7
);

C
h
o
an

d
G
ru
o
l

(2
0
0
8
);

Ja
n
kn

ec
h
t
et

al
.

(1
9
9
3
);
Li
et

al
.

(2
0
0
5
);
Lo
n
g

et
al
.(
2
0
1
1
);

R
o
u
x
et

al
.

(2
0
0
7
)

Se
n
fe
t
al
.(
2
0
0
8
)

H
an

et
al
.(
2
0
1
8
);

K
im

et
al
.

(2
0
1
3
);
Y
u

et
al
.(
2
0
1
2
,

2
0
1
3
);
Z
h
ao

et
al
.(
2
0
0
7
)

C
ai
et

al
.(
2
0
0
4
);

va
n
G
am

m
er
en

et
al
.(
2
0
0
9
);

Tu
lla
ie
t
al
.

(2
0
1
1
)

E
n
ge
le
t
al
.

(1
9
9
9
);

W
in
b
an

ks
et

al
.

(2
0
1
3
);
Z
h
an

g

et
al
.(
1
9
9
8
)

K
im

et
al
.(
2
0
1
3
)

C
h
o
an

d
G
ru
o
l

(2
0
0
8
);
M
ac
iá
n

et
al
.(
2
0
0
0
);

M
in
et
ti
et

al
.

(2
0
1
1
) (C
o
n
ti
n
u
es
)



942 FOWLER ET AL.

T
A
B
L
E
1

(C
o
n
ti
n
u
ed

)

Sy
st
em

,r
ef
er
en

ce
ty
p
e,
o
r

m
ea
su
re
m
en

t
P
I3
K
–
A
kt
–
m
TO

R
ST
A
R
S

M
A
P
K

H
SP

7
0

H
ip
p
o

N
Fκ
B

TG
F
β–
B
M
P
–

Sm
ad

cA
M
P
–
A
M
P
K

C
al
ci
u
m

P
ro
te
in
ac
ti
vi
ty
/m

o
d
if
ic
at
io
n

M
iy
az
ak
ie
t
al
.(
2
0
1
1
);

W
ill
ia
m
so
n
et

al
.

(2
0
0
6
);
K
lo
ss
n
er

et
al
.(
2
0
0
9
);
Ja
co
b
s

et
al
.(
2
0
1
3
);
R
o
u
x

et
al
.(
2
0
0
7
);

C
o
o
lic
an

et
al
.

(1
9
9
7
);
Li
u
et

al
.

(2
0
1
3
);

Si
lv
en

n
o
in
en

et
al
.

(2
0
1
5
);
W
h
it
e
et

al
.

(2
0
1
4
);
M
u
rg
a
et

al
.

(2
0
0
0
);
M
u
rg
a
et

al
.

(1
9
9
8
);
M
iz
u
ta
n
i

et
al
.(
2
0
0
9
)

Z
h
an

g
et

al
.

(2
0
0
7
);
K
im

et
al
.(
2
0
1
4
);

K
u
m
ar

et
al
.

(2
0
0
6
)

M
ar
ti
n
et

al
.

(2
0
1
4
);

M
iy
az
ak
ie
t
al
.

(2
0
1
1
);
Li
u
et

al
.

(2
0
1
3
);
C
ar
ls
o
n

et
al
.(
2
0
0
1
);

B
o
u
za
kr
ia
n
d

Z
ie
ra
th

(2
0
0
7
);

Ja
n
kn

ec
h
t
et

al
.

(1
9
9
3
)

G
o
o
d
m
an

et
al
.

(2
0
1
5
);
W
ad

a

et
al
.(
2
0
1
1
);

Y
u
et

al
.

(2
0
1
2
);
Z
h
ao

et
al
.(
2
0
0
7
);

H
an

et
al
.

(2
0
1
8
);
K
im

et
al
.(
2
0
1
4
);

Y
u
et

al
.(
2
0
1
3
)V
an

G
am

m
er
en

et
al
.(
2
0
0
9
);
C
ai

et
al
.(
2
0
0
4
);

V
el
la
et

al
.

(2
0
1
2
)

W
in
b
an

ks
et

al
.

(2
0
1
3
)

W
ill
ia
m
so
n
et

al
.

(2
0
0
6
);
K
im

et
al
.(
2
0
1
4
)

K
o
u
lm

an
n
an

d

B
ig
ar
d
(2
0
0
6
);

A
ri
as

et
al
.

(2
0
0
1
);

W
in
b
an

ks
et

al
.

(2
0
1
3
);
Z
h
an

g

et
al
.(
1
9
9
8
)

To
ta
lp
ro
te
in

K
lo
ss
n
er

et
al
.(
2
0
0
9
);

Lo
n
g
et

al
.(
2
0
1
1
);

W
h
it
e
et

al
.(
2
0
1
4
);

A
ri
as

et
al
.(
2
0
0
1
)

Z
h
an

g
et

al
.

(2
0
0
7
);
C
h
ar
ve
t

et
al
.(
2
0
0
6
);

La
m
o
n
et

al
.

(2
0
0
9
);
Sc
h
ra
tt

et
al
.(
2
0
0
2
);

R
ei
tz
n
er

et
al
.

(2
0
1
8
);
W
al
la
ce

et
al
.(
2
0
1
1
)

C
h
o
an

d
G
ru
o
l

(2
0
0
8
)

Li
u
et

al
.(
1
9
9
9
);

Se
n
fe
t
al
.

(2
0
0
8
);

Jo
rq
u
er
a
et

al
.

(2
0
0
9
);
M
o
rt
o
n

et
al
.(
2
0
0
6
);

O
ga
ta

et
al
.

(2
0
0
9
)

G
o
o
d
m
an

et
al
.

(2
0
1
5
)

Jo
rq
u
er
a
et

al
.

(2
0
0
9
);
C
h
o
an

d

G
ru
o
l(
2
0
0
8
)

m
R
N
A
ex
p
re
ss
io
n

Lo
n
g
et

al
.(
2
0
1
1
);

Si
lv
en

n
o
in
en

et
al
.

(2
0
1
5
);
W
h
it
e
et

al
.

(2
0
1
4
)

C
h
ar
ve
t
et

al
.

(2
0
0
6
);
La
m
o
n

et
al
.(
2
0
0
9
);

Sc
h
ra
tt
et

al
.

(2
0
0
2
);

R
ei
tz
n
er

et
al
.

(2
0
1
8
);
W
al
la
ce

et
al
.(
2
0
1
1
)

Li
u
et

al
.(
2
0
1
3
);

Ja
n
kn

ec
h
t
et

al
.

(1
9
9
3
)

F
ig
u
ei
r
et

al
.

(2
0
1
5
);
C
ai
et

al
.

(2
0
0
4
);

Jo
rq
u
er
a
et

al
.

(2
0
0
9
);

H
er
n
an

d
ez

et
al
.

(2
0
0
0
)

G
o
o
d
m
an

et
al
.

(2
0
1
5
)

La
m
o
n
et

al
.

(2
0
1
4
);
Y
u
et

al
.

(2
0
1
3
)

C
ar
ra
sc
o
et

al
.

(2
0
0
3
);

Jo
rq
u
er
a
et

al
.

(2
0
0
9
);

Si
lv
en

n
o
in
en

et
al
.(
2
0
1
5
);

M
in
et
ti
et

al
.

(2
0
1
1
) (C
o
n
ti
n
u
es
)



FOWLER ET AL. 943

T
A
B
L
E
1

(C
o
n
ti
n
u
ed

)

Sy
st
em

,r
ef
er
en

ce
ty
p
e,
o
r

m
ea
su
re
m
en

t
P
I3
K
–
A
kt
–
m
TO

R
ST
A
R
S

M
A
P
K

H
SP

7
0

H
ip
p
o

N
Fκ
B

TG
F
β–
B
M
P
–

Sm
ad

cA
M
P
–
A
M
P
K

C
al
ci
u
m

R
ev
ie
w

M
ay
r
an

d
M
o
n
tm

in
y

(2
0
0
1
);
G
ra
h
am

et
al
.(
2
0
1
5
);

M
cG

lo
ry

et
al
.

(2
0
1
7
)

M
ia
n
o
et

al
.

(2
0
0
7
);
La
m
o
n

et
al
.(
2
0
1
4
);

G
ra
h
am

et
al
.

(2
0
1
5
)

W
h
it
m
ar
sh

an
d

D
av
is
(1
9
9
6
);

K
ra
m
er

an
d

G
o
o
d
ye
ar

(2
0
0
7
);
H
e
et

al
.

(2
0
1
6
)

H
al
d
er

et
al
.

(2
0
1
2
);
M
en

g

et
al
.(
2
0
1
6
);

F
is
ch
er

et
al
.

(2
0
1
6
);

G
ab

ri
el
et

al
.

(2
0
1
6
);
W
at
t

et
al
.(
2
0
1
8
)

Fe
b
b
ra
io
an

d

P
ed

er
se
n

(2
0
0
2
);
K
ra
m
er

an
d
G
o
o
d
ye
ar

(2
0
0
7
);
B
ak
ka
r

an
d
G
u
tt
ri
d
ge

(2
0
1
0
);
X
u
et

al
.

(2
0
1
7
)

E
lk
in
a
et

al
.

(2
0
1
1
);

G
o
o
d
m
an

an
d

H
o
rn
b
er
ge
r

(2
0
1
4
);

G
u
m
u
ci
o
et

al
.

(2
0
1
5
);
B
o
ro
k

et
al
.(
2
0
2
0
)

M
ay
r
an

d

M
o
n
tm

in
y

(2
0
0
1
);
W
en

et
al
.(
2
0
1
0
);

H
ar
d
ie
(2
0
1
1
)

K
o
u
lm

an
n
an

d

B
ig
ar
d
(2
0
0
6
);

B
er
d
ea
u
x
an

d

St
ew

ar
t
(2
0
1
2
);

K
an

g
an

d
Li
Ji

(2
0
1
2
);

B
en

av
id
es

D
am

m
an

d
E
gl
i

(2
0
1
4
);
G
ra
h
am

et
al
.(
2
0
1
5
);

M
cG

lo
ry

et
al
.

(2
0
1
7
);
M
ir
zo
ev

et
al
.(
2
0
2
1
)

stimulates repair responses that are not necessarily induced by physio-

logical exercise training. The only reaction in the model that relies

solely on data from thismodel is the activation of S6 kinase by c-JunN-

terminal kinase (JNK) (Martin et al., 2014). This studywas one of over a

dozen used to formulate themitogen-activated protein kinase (MAPK)

pathway in the networkmodel.

2.2 Logic-based ordinary differential equation
model formulation

Reactions between nodes were modelled using logic-based ordinary

differential equations (ODEs), a method previously used to model

other myocyte signalling networks (Tan et al., 2017). A system of

ODEs is generated from the reaction network and solved to compute

the activity of each node for prescribed initial conditions and input

exercise time courses. The activity of each node is governed by anODE

and varies between 0 and 1 following a saturating Hill-type function

(Tan et al., 2017). Regulation by more than one upstream node is

represented using continuous versions of logical operations, where

OR reactions mean activation of either upstream node is sufficient

to activate a response whereas AND reactions require both to be

activated.

As assumed in previous analyses (Tan et al., 2017), the same

default network parameterswere used for all reactions: Hill coefficient

nH =1.4, half-maximal activationEC50 =0.5, initial activityYinit =0, and

maximal activityYmax =1. Theweightof all reactionswas set0.7 to limit

saturation. Time constants τ in themodel were chosen to be 0.1min for

receptor activation, 10 min for all signalling reactions, and 60 min for

all mRNA expression reactions.

For the simulations described herein, initial conditions were

obtained by running the model with no exercise input for a simulation

time of 15 h, when node activities had reached steady state. Resistance

or endurance exercise was simulated by adjusting the input values

Ymax for the two exercise nodes between 0 and 1. The exercise input

nodes each activate ligands, receptors or signalling molecules in the

network, as shown in Figure 1. The Python code and parameter sets

used to generate the solutions reported here are included in a Jupyter

notebook (Supporting information, Supplement S3, available in a public

repository: https://doi.org/10.5281/zenodo.10257879).

2.3 Model validation

Model predictions were validated by comparing outputs with

independent experimental results from papers not used to build

the network model. In total, 37 results from nine papers were used

to validate the model predictions. Validation study selection criteria

are summarized in Supporting information Figure S1. Eight studies

measured responses to resistance exercise and six reported responses

to endurance exercise (Aronson et al., 1997; Camera et al., 2010;

Figueir et al., 2015; Galpin et al., 2012; Lessard et al., 2018; Liu

et al., 1999; Louis et al., 2007; Vissing, McGee et al., 2013; Vissing,

https://doi.org/10.5281/zenodo.10257879
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F IGURE 1 Logic-based networkmodel of skeletal myocyte signalling responses to resistance and endurance exercise. Schematic illustration
showing 259 interactions between 120 nodes that regulate the expression of 28 genes (red hexagons) and 12 exercise-related phenotypic outputs
(purple octagons). Themodel includes five extracellular ligands, eight cell surface receptors, eight canonical signalling pathways, and 14
transcription factors (rectangles with hard corners). Note that multiple activating node stimuli are treated with OR logic except where AND
interactions are shown.

Rahbek et al., 2013). All of the studies used for validation satisfied

the same selection criteria as the model formulation studies with the

additional requirements that they reported measurements of one

of protein phosphorylation, total protein or gene expression from

biopsies after a single bout of resistance or endurance exercise of

similar duration in human subjects. Endurance exercise bouts ranged

from 120 min at 60% to 30 min at 75% of peak or maximum V̇O2
,

or to exhaustion. Resistance exercise sessions ranged from 6 to 60

contractions at 70%–100% of single repetition maximum load. To

simplify comparison, we standardized the model resistance or end-

urance exercise input stimuli to 45min at 1.0 (100%), while recognizing

that humans cannot sustain 100% exercise output for this long. The

studies used for model validation were chosen so that key nodes from

all the pathways in the model could be tested. The validation studies

included data from 140 human subjects of both sexes. All subjects

were described as young and healthy, but only seven were female.

Twenty-one resistance exercise measurements and 16 endurance

exercise measurements were used. Details of the muscle, exercise

protocol, and measurements for each of the nine papers used for

model validation are also included in the data supplement (Supporting

information, Table S2).

We simulated 45min of maximum resistance or endurance exercise

input, using the steady-state baseline values as the initial conditions.

We then compared activity of key proteins immediately following

exercise to their baseline values. Differences between exercise and

baseline activity were classified as increased, decreased, or no change,

using a relative change threshold in the model of 0.05. These pre-

dictionswere then comparedwith statistically significant experimental

findings from the validation papers to assess model accuracy.

2.4 Model sensitivity to single exercise modes

We performed sensitivity analysis to identify major nodes responsible

for regulating gene expression.We simulated knockdown of each node

in the network by reducing Ymax by 50% (Ryall et al., 2012; Tan et al.,

2017) and predicted changes in activity of all other nodes for both

resistance and endurance exercise conditions. To do this, we simulated

30 min of exercise with each node knocked down and subtracted

activation values from model predictions of 30 min of exercise with

no nodes knocked down. Nodes in the network causing the greatest

total changes in activity were identified as key regulators of exercise

response.
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2.5 Combining exercise modes

We simulated 45 min of resistance exercise (input stimulus = 1),

followed immediately by 45 min of endurance exercise (input

stimulus = 1), as well as the reverse order. Additionally, we simulated

90 min each of resistance and endurance exercise alone starting

from a baseline level of zero. We compared relative changes in

phenotypic activity after exercise to outputs after 90 min of model

simulation with a constant baseline (0.1) exercise input, to determine

differences in responses to resistance, endurance and concurrent

training.

We then repeated both concurrent exercise simulations, with AMP-

activated protein kinase (AMPK) knocked down by reducing Ymax to

0.1, and again with simulated tumour necrosis factor α (TNFα) and
reactive oxygen species (ROS) knockdown.

3 RESULTS

3.1 Predictive computational model of exercise
signalling network in skeletal muscle

The model network has 120 nodes and 259 reactions (Figure 1 and

Supporting information Table S4) representing eight key pathways

that regulate skeletal myocyte responses to exercise, as well as the

crosstalk between them. Model outputs include the expression of

28 genes commonly measured, all of which have been identified as

markers of exercise-related skeletal muscle phenotypes. The model

also has 12 generic, transcriptionally regulated phenotypic outputs:

protein synthesis and degradation, proliferation, differentiation, cell

growth, mitochondrial biogenesis, angiogenesis, oxygen transport,

inflammation and anti-inflammatory, antioxidant production, and

changes in fibre type.

Several of the model pathways regulate skeletal muscle hyper-

trophic responses. Resistance exercise in the model activates the

transforming growth factor β (TGF-β) and bone morphogenic protein

(BMP) receptors engaging the Smad signalling pathway (shown in teal

in Figure 1) that regulates protein synthesis and myocyte growth by

inhibiting Akt (Borok et al., 2020; Goodman & Hornberger, 2014;

Gumucio et al., 2015). Smads 1 and 7 and Akt also interact with

Yes-associatedprotein (YAP) and transcriptional coactivatorwithPDZ-

binding motif (TAZ) (Figure 1, pink), which regulate cell migration,

growth, differentiation and proliferation (Bakkar & Guttridge, 2010;

Fischer et al., 2016;Goodmanet al., 2015;Halder et al., 2012;Hanet al.,

2018; Meng et al., 2016; Wada et al., 2011; Watt et al., 2018; Yu et al.,

2012; Zhao et al., 2007).

The phosphoinositide 3-kinase (PI3K)–Akt–mechanistic target of

rapamycin (mTOR) pathway (Figure 1, blue) regulates cell growth

and protein synthesis rates via p70 ribosomal S6 kinase 1 and

eukaryotic initiation factor 4E binding protein-1 (eIF4E) (Figueir et al.,

2015; Jacobs et al., 2013; Martin et al., 2014; Miyazaki et al., 2011;

Williamson et al., 2006). It is primarily activated in themodel by insulin-

like growth factor (IGF1) and calcium (Ca) in response to resistance

and endurance exercise (Benavides Damm&Egli, 2014; Coolican et al.,

1997; Florini et al., 1996; Jacobs et al., 2013; Klossner et al., 2009;

Martin et al., 2014;Miyazaki et al., 2011; Roux et al., 2007;Williamson

et al., 2006; Zhang et al., 2007).

The MAPK pathway (Figure 1, yellow) can also activate

rpS6 independently of mTOR, and ribosomal S6 kinase (RSK)

phosphorylates S6 directly (Figueir et al., 2015; Liu et al., 2013;

Martin et al., 2014; Roux et al., 2007; Williamson et al., 2006).

RSK, extracellular signal-regulated kinase (ERK), JNK, and p38

regulate transcription factors including cAMP response element-

binding protein (CREB), peroxisome proliferator-activated receptor γ
coactivator 1-α (PGC1α), and ETS-like gene 1 (Elk1) and downstream

phenotypes including cell proliferation and differentiation (Carrasco

et al., 2003; Figueir et al., 2015; Long et al., 2011).

The striated muscle activator of Rho signalling (STARS) pathway

(Figure 1, orange) regulates the transcriptional activity of serum

response factor (SRF) via actin dynamics and RhoA signalling. STARS

is responsive to both endurance and resistance exercise. SRF regulates

genes in the model associated with skeletal muscle cell differentiation,

proliferation and growth (Arai et al., 2002; Charvet et al., 2006; Kim

et al., 2014; Lamon et al., 2009, 2014; Miano et al., 2007; Schratt et al.,

2002; Sotiropoulos et al., 1999; Vissing, Rahbek et al., 2013; Zhao

et al., 2007).

The model also includes inflammatory responses to exercise. The

expression of inflammatory myokine genes IL6, IL8 and CCL2, as well

as TRIM63, which leads to protein degradation, is transcriptionally

regulated by nuclear factor κB (NFκB; Figure 1, purple), which is

activated in the model by the IkappaB kinase (IKK) complex, in

response to TNFα receptor stimulation during resistance exercise

(Bakkar&Guttridge, 2010; Cai et al., 2004; vanGammeren et al., 2009;

Vella et al., 2012).

Heat shock protein-70 (HSP70/HSP72) is activated in the model

both by resistance and endurance exercise and acts to inhibit forkhead

box O (FoxO) and NF𝜅B activity.(Senf et al., 2008). It is expressed

in skeletal muscle in response to exercise-related stresses such

as increased temperature, glycogen depletion, pH changes, calcium

signalling and increased levels of reactive oxygen species (Jorquera

et al., 2009; Liu et al., 1999, 2004).

Finally, several pathways in the model regulate metabolic

activity. Calcium signalling (Figure 1, green) (Koulmann & Bigard,

2006) activates calcineurin (CaN), protein kinase C (PKC), and

calcium calmodulin kinase (CAMK), which control PGC1𝛼 and myo-

cyte enhancer factor-2 (MEF2), regulating gene expression that

affects oxygen transport, fibre type, mitochondrial biogenesis and

angiogenesis.

Endurance exercise activates the cAMP–protein kinase A (PKA)–

AMPK pathway (Figure 1, magenta) via the β-adrenergic receptor

(βAR).AMPK inhibitsmTOR (Williamsonet al., 2006), decreasing global

rates ofmuscle protein synthesis and cell growth, and activatesPGC1𝛼,

increasingmitochondrial biogenesis (Hardie, 2011).

To determine the effect of acute exercise on determinants of

phenotypic change, we ran the model to steady state with no

exercise input, followed by a simulated bout of maximal resistance or
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F IGURE 2 Model-predicted changes in phenotypes relative to baseline during 45min of exercise and 15 h recovery. (a) Time courses of
phenotypes as a fraction of baseline for endurance (left) and resistance (right) exercise. Vertical dashed line represents end of exercise bout. (b)
Fractional changes from 1.0 (baseline) in each phenotype immediately after exercise showing greatest differences between responses to
resistance and endurance training in protein degradation, inflammation, cell growth and protein synthesis.

endurance exercise (input = 1.0) for 45 min and 15 h of rest post-

exercise. The expression of most genes in the model increased

during exercise, returning toward baseline following cessation

(Figure 2a,b), though a significant number of genes remained

significantly upregulated after 15 h of rest. The model predicted

differences between resistance and endurance exercise in the acute

expression of genes associated with inflammation, protein turnover

and cell growth phenotypes. By 15 h the differences in muscle

phenotypes between exercise modality were negligible. Differences

between 15 and 24 hwere also generally low.

3.2 Model validation for different exercise modes

Compared with experimental results from papers not used to

construct the signalling network, the model accurately predicted 85%

(18/21) measurements of resistance exercise responses and 75%

(12/16) measurements of endurance exercise responses (Figure 3).

Three of the seven discrepancies were instances where the model

variable changed by more than the threshold (5% of baseline) but

measurements reported no significant changes. In another three

comparisons, the model predicted decreases (in muscle RING-finger

protein-1 (MuRF1) in response to resistance exercise, and in TSC1/2

andmuscle atrophy F-box (MAFbx) in response to endurance exercise),

whereas experimental studies reported a significant increase. To

assess the sensitivity of model accuracy to parameter uncertainty,

we repeated the validation analysis by perturbing the reaction

parameters. When nH and EC50 were increased from 1.4 and 0.5 to

2.0 and 0.6, respectively, validation accuracy for model predictions

decreased from 81% to 76% for resistance exercise and from 75% to

69% for endurance exercise.When nH and EC50 were decreased to 1.0

and 0.4, respectively, model accuracy decreased to 62% for resistance

exercise and 50% for endurance exercise. Hence, the model results

were quite robust.



FOWLER ET AL. 947

F IGURE 3 Model validation. Simulated (Model) fractional changes from baseline in network node activity after 45min of exercise (input= 1)
comparedwith validation results (literature) from published experimental measurements in muscle that were not used to formulate themodel.
Validation results are shown in red for a reported statistically significant decrease during exercise, blue for a reported statistically significant
increase, and grey for no significant change.Model nodes were deemed to be increasedwhen the node variable increased from baseline bymore
than 0.05, decreasedwhen the variable decreased bymore than 0.05 from baseline, or unchanged otherwise. Themodel correctly predicts 18 of
21 responses to resistance exercise (a) and 12 of 16 responses to endurance exercise (b).

3.3 Identifying key regulators in different
exercise modes

Network sensitivity analysis identified the STARS, calcium, TNF𝛼,

MAPK, cAMP–AMPK and PI3K–Akt–mTOR pathways as the most

important regulators of response to resistance exercise (Figure 4a and

Supporting information Table S5A). These were the nodes that, when

knocked down, caused the greatest change in activity of phenotypes

in the network (sum of absolute values of rows of the sensitivity

matrix >1.5). These pathways promote protein synthesis, cell growth,

inflammation andmitochondrial biogenesis.

In the case of endurance exercise (Figure 4b and Supporting

information Table S5B), nodes of the STARS, ROS, calcium, TNF𝛼,

MAPK, cAMP–AMPK and PI3K–Akt–mTOR pathways were identified

as important. Examining the differences between node sensitivities

during resistance and endurance exercise (Figure 4c and Supporting

information Table S5C) reveals that the most important mediators of

the differences between resistance and endurance training responses

wereMAPKandmTORpromotionof cell growth andprotein synthesis,

andROSandNF𝜅Bactivationof inflammationandproteindegradation.

Using a 100% knockout instead of a 50% knockdown of nodes in the

sensitivity analysis did not change these conclusions.

3.4 Combining exercise modes

When we simulated concurrent training (45 min each of resistance

and endurance exercise), we found that the order of training sessions

did not significantly impact peak phenotypic alterations following

exercise; however, the timing of the peaks was relative to the timing

of the primary exercise stimulus regulating the phenotype. Concurrent

training elicited increases in protein synthesis and degradation, cell

growth and anti-inflammatory activity that were greater than those

induced by endurance training alone but smaller than those due to

resistance training alone.

To determine whether suppression of PI3K–Akt–mTOR signalling

by AMPK is responsible for diminished protein synthesis after

concurrent training, we re-ran the combined exercise simulations,

with Ymax of AMPK reduced to 0. Knocking down AMPK increased

protein synthesis after resistance, endurance and concurrent training;

however, the magnitudes of these differences were very small,

indicating that this is not the primary mechanism driving this effect

in the model (Figure 5). We also simulated the knockdown of TNFα
and ROS. We found that knocking down TNFα largely eliminated the

differences in protein synthesis between exercise modes. In contrast,

knocking down ROS increased the observed differences between

resistance and endurance exercise responses compared with control.

Repeating the analysis in Figure 5 with 100% knockout instead of

90% knockdown of AMPK, TNFα and ROS resulted in negligible

differences.

4 DISCUSSION

This new model of skeletal myocyte exercise signalling provides

mechanistic insight into the differential phenotypic responses to two

primary modes of exercise training. The model includes 120 nodes

connected by 259 reactions, and it predicts changes in 12 phenotypic

outcomes in response to resistance and endurance exercise inputs. The

model accurately predicted 85% of resistance and 75% of endurance

exercise measurements from independent studies.

The activity of all phenotypic outputs changed in response to

both exercise inputs; however, the magnitude of change differs

between resistance and endurance exercise. In particular, the model

predicted differences in activity of genes related to inflammation,

protein synthesis, cell growth and protein degradation during acute



948 FOWLER ET AL.

Receptors

∆R
E A

ct
iv

ity
 (K

D
–

C
on

tro
l) 

Cell Growth

Protein Synthesis

Anti-Inflammatory

Fibre Type

Antioxidant

Angiogenesis

Mitochondrial Biogenesis

Oxygen Transport

Differentiation

Proliferation

Inflammation

Protein Degradation 

M
ea

su
re

d 
N

od
es

Knocked Down Nodes (-50%)

Resistance Training 

STARS Pathway

Smad Pathway

Calcium Pathway

Transcription Factors

Hippo Pathway

PI3K/Akt Pathway

MAPK Pathway 

Other Pathways

cAMP/PKA Pathway

1.0

0.5

0.0

-0.5

-1.0

NFκB Pathway

Receptors

∆E
E 

Ac
tiv

ity
 (K

D
–

C
on

tro
l) 

Cell Growth

Protein Synthesis

Anti-Inflammatory

Fibre Type

Antioxidant

Angiogenesis

Mitochondrial Biogenesis

Oxygen Transport

Differentiation

Proliferation

Inflammation

Protein Degradation 

M
ea

su
re

d 
N

od
es

Knocked Down Nodes (-50%)

Endurance Training 

STARS Pathway

SmadPathway

Calcium Pathway

Transcription Factors

Hippo Pathway

PI3K/Akt Pathway

MAPK Pathway 

Other Pathways

cAMP/PKA Pathway

1.0

0.5

0.0

-0.5

-1.0

NFκB Pathway

(a)

(b)

F IGURE 4 Heatmaps showing sensitivity of 12
model output phenotypic responses (rows) when each
network node (column) is individually knocked down by
50%. Phenotypes are ordered frommost responsive to
resistance exercise at top (blue) tomost responsive to
endurance exercise at bottom (red). Knocked down nodes
are group by their category or pathway shown in Figure 1
and ordered as follows: receptors (SAC, LPA,
lysophosphatidic acid (LPAR), βAR, BMP, BMPR, IGF1,
IGF1R, TGFβ, TGFβR, TNF𝛼, TNFR1, integrin); calcium
(Ca, CaMK, PKC, CaN, GSK3β, Shc, Crk); smad (smad2/3,
smad4, smad1/5/8, smad6/7); STARS (STARS, F-actin,
G-actin, RhoA, LIMK1/2, ROCK, SRF); Hippo (PA,
MAP4K,MST1/2, SAV1,MOB1A/B, LATS1/2, NDR1/2);
PI3K/Akt (PI3K, Akt, TSC1/2, mTOR, Rheb)MAP kinase
(Ras, Raf, p38, JNK,MEK, ERK1/2, RSK); NF𝜅B (IKK,
HDAC); cAMP/AMPK/PKA (cAMP, AMPK, PKA); Other:
(HSP70, G𝛼12, G𝛼i2, G𝛼s, ROS); and transcription factors
(YAP/TAZ, myogenin, S6Ks, FoxO, NF𝜅B, CREB, AP1,
TIF1A, Elk1, Nrf2, MEF2, PGC1𝛼, NFAT). The heat map
scale represents knock-down responseminus baseline
response with blue>0 and red<0. (a) Sensitivity of
phenotypes to knockdowns during resistance exercise.
(b) Sensitivity of phenotypes to knockdowns during
resistance exercise. (c) Output phenotype sensitivities
during resistance exercise minus phenotype sensitivities
during resistance exercise. For original data used for
thesemaps, see Supporting informatiion Table S4A–C.

exercise between resistance and endurance. These results suggest

that the model recapitulates well-known differences between the

effects of resistanceandenduranceexercise trainingon skeletalmuscle

signalling (Vissing, McGee et al., 2013).

Sensitivity analysis identified key nodes and pathways regulating

responses to resistance and endurance exercise in themodel (Figure 6).

We found that the MAP kinase, PI3 kinase, STARS, NF𝜅B, cyclic

AMP, and calcium pathways are particularly important regulators of

responses to both forms of exercise. Many of the same signalling

cascades drive responses to both resistance and endurance exercise,

but the magnitude of activation differs between modes. Greater

predicted inflammation following endurance exercise resulted from

NF𝜅B activation by ROS in endurance exercise. It is worth noting

that inflammation in the studies we used to formulate the model

may have been a stress or damage response in naive subjects as

opposed to an adaptive response in trained subjects. Resistance

exercise preferentially regulated cell growth and protein synthesis

primarily via mTOR signalling activated by Akt and inhibited in end-

urance exercise by AMPK. Interestingly, the differences in protein

synthesis between resistance, endurance and concurrent training

in protein synthesis rates were largely eliminated by knocking

down TNF𝛼 in the model. Inhibiting ROS reduced protein synthesis

activated by endurance exercise but had no effect on protein

synthesis activated by resistance exercise. While, high doses of non-

steroidal anti-inflammatory drugs havebeen reported to interferewith

muscle hypertrophy stimulated by resistance training, a recent study

concluded that well recognized regulators of protein synthesis during

resistance exercise, like those included in our model, do not explain

this observation (Lilja et al., 2023). Finally, the model failed to pre-

dict the expected preferential activation of mitochondrial biogenesis

by endurance exercise. Although PGC1𝛼 is activated by AMPK and

calcium signalling in endurance exercise, inhibition of PGC1𝛼 by
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F IGURE 4 Continued

F IGURE 5 Predicted changes in protein synthesis phenotypes
following resistance, endurance and concurrent training. Effects of
knocking down AMPK, TNF𝛼 and ROS on differential exercise
responses. AMPK knockdown had little effect on these differences,
while ROS knockdown exaggerated them and TNF𝛼 knockdown
largely eliminated them.

NF𝜅B by endurance training and activation of PKC by LPA during

resistance exercise counteracted the differences between endurance

and resistance training onmitochondrial biogenesis in themodel.

4.1 Mechanisms of differential effects of
resistance, endurance and concurrent training

Most athletes employ concurrent training, that is, the combination

of resistance and endurance exercise training, to improve strength,

power and endurance (Baar, 2006). However, the interactions between

endurance and resistance exercise signalling pathways and how they

are affected by the timing, duration and intensity of exercise remain

poorly understood.(Inoue et al., 2016). An interference effect has been

described, wherein themuscle hypertrophy due to concurrent training

is less than that resulting from resistance training alone (Mesquita

et al., 2021). Hypothesized mechanisms have included repression

of PI3K–Akt–mTOR signalling and ribosome biogenesis by AMPK

activation during glycogen-depleting endurance exercise (Mesquita

et al., 2021).

Compared with baseline, we found increases in protein synthesis,

cell growth and anti-inflammatory activity tended to be greater with

concurrent training than endurance training alone, but less than those

resulting from resistance training alone. Simulating ROS knockdown

decreased the effects of endurance training and concurrent training

on protein synthesis while slightly increasing the effects of resistance

training alone. In contrast, knocking down TNF𝛼 blunted the effect of

resistance training on protein synthesis so that it was similar to the

effects of endurance training. TNF𝛼 activation ofMAPK signalling, S6K

and rpS6 may be important in regulating differential protein synthetic

responses to resistance and endurance exercise. AMPK knockdown

had little effect on the differences in protein synthesis rates induced

by the different exercise modes. Apró et al. (2013) reported that

activation of mechanistic target of rapamycin complex 1 (mTORC1) by

resistance exercise was not impaired by subsequent concurrent end-

urance exercise, but they also found that phosphorylation of AMPK

was decreased 3 h after both resistance exercise-only and concurrent

exercise, suggesting that prior activation of mTORC may suppress

AMPK activation. Our findings are consistent with those of Jørgensen
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F IGURE 6 Simplified network diagram showing key nodes and pathways regulating responses to resistance and endurance exercise.
Resistance exercise regulates cell growth and protein synthesis primarily by signalling via mTOR, which is activated by Akt and inhibited in
endurance exercise by AMPK. Endurance exercise preferentially activates inflammation via ROS andNFkB signalling. The expected preferential
activation of mitochondrial biogenesis by endurance exercise was counterbalanced in themodel by LPR regulation of PKC in response to
resistance training.

and co-workers (Jørgensen et al., 2005), who found that knocking out

the 𝛼2 isoform but not the 𝛼1 isoform of AMPK decreased AMPK

activation due to running, but that neither knockout affected running

induced changes in gene expression.

For the short exercise protocols tested in this study, we did not

see significant differences in peak magnitude of changes associated

with the order of concurrent training, as have been described in some

studies (Coffey & Hawley, 2017). This may be because the model

does not account for the metabolic costs of exercise and the fact that

mitochondrial biogenesis and protein turnover require more cellular

energy than is needed for metabolic homeostasis. It would be useful to

couple thismodelwith amodel of skeletalmyocyte energymetabolism,

which is well established (Dash et al., 2007). One recent report

describes amodel of skeletalmuscle that combines energymetabolism,

calciumandAMPKsignallingpathwayswithgeneexpression (Akberdin

et al., 2021).

These findings highlight the potential of the model for screening

a variety of different exercise protocols for differential phenotypic

responses, to generate new hypotheses that can then be tested in vivo.

4.2 Limitations

In response to resistance exercise, the model predicted a decrease in

AMPK,whichwas not reported in the published validation studies. The

model also failed to predict an increase in IL8 and eiF4E expression

in response to resistance exercise. For endurance exercise, the

model predicted increases in JNK and S6 which were not observed

experimentally. It predicted decreases in TSC1/2 and MAFbx, which

were experimentally observed to increase. Finally, the model failed

to predict a significant increase in MuRF1 in response to resistance

exercise. These discrepancies will help to identify areas for model

refinement in future revisions.

The model results and validation presented here were primarily

qualitative. Although the analysis produces continuous results, they

are all normalized to between 0 and 1, and we used constant default

values for all network parameters, owing to incomplete availability

of data for all network nodes and reactions and to avoid over-

parameterization. Computed quantitative changes in signalling nodes,

genes and phenotypic outputs are small compared with experimental

findings, especially when expressed as a fraction of steady-state

baseline values. In previous studies using this logic-based ordinary

differential equation approach, an arbitrary change in a node value of

0.05 has been used as a threshold for comparison with a statistically

significant experimental change (Ryall et al., 2012; Tan et al., 2017).

Here, we used a relative change of 5% as the threshold in the model,

and a P-value of 0.05 in the experiments taking into account the sign

of the change. Ideally, comparisons would be quantitative, since P-

values do not account for effect size, but the outputs of this type

of model are not suited to comparison with certain experimental

measurements such as gene expression that cannot typically be

normalized to a maximum value. A new modification of the current

modelling method (Cao et al., 2024) does produce model outputs of

mRNA expression normalized to baseline. The accuracies we obtained
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here with independent validation data of 75%–85% are comparable

with previous reports using this method in other systems (Ryall et al.,

2012; Tan et al., 2017). We also note that, while the validation studies

were chosen a priori and not used in the model formulation, their

selection was not random or blinded. Since the model is knowledge

based and we needed validation data that included measurements of

variables in themodel itself, the validation paperswere often published

aftermany of the formulation papers, and it is unlikely that the authors

of the validation studies were unaware of the prior knowledge used to

build the networkmodel.

Qualitative and quantitative model accuracy could be improved by

adjusting parameters, especially reaction weights and time constants,

which we did not attempt to optimize here. Previous uncertainty

quantification studies have shown that the reliability of this class

of network model is fairly robust to parameter uncertainty (Cao

et al., 2020). We investigated the effects of perturbing the two main

major adjustable parameters in the model and found that the model

accuracy was reasonably robust to parameter uncertainty and that

most of the quantitative changes in model results did not affect

the qualitative trends. As more exercise signalling measurements

become available, confidence in network logic and interactions may be

increased. In particular, if we added more gene targets of the trans-

criptional regulators in the model, the ability to test model outputs

more comprehensively and optimize model parameters would both be

increased. Similarly, more detailed time course data would allow the

model time constants to be optimized. Most of the validation studies

usedmeasurements from biopsies taken about 1 h post-exercise. Since

the model is dynamic, it does account for rest time post-exercise. A

model with time constants optimized by making use of time course

measurements during and after exercise could also be used to identify

optimal timing of futuremeasurements.

The model does not account for the full range of exercise stimuli. It

is not clear whether the value and timing of the endurance exercise

stimulus alone will be sufficient to discriminate between sprint and

endurance training. And the model is not muscle specific and does not

distinguish between eccentric and concentric contractions, which can

result in differences in protein activation during resistance training

(Vissing, Rahbek et al., 2013).

Hence, we need a more detailed understanding of the common

and distinct physical and metabolic stimuli differentiating endurance

from resistance exercise. A revised version of this model could rely

on a combination of more fundamental and muscle-type specific

physical inputs such as muscle perfusion, force and shortening to

capture the parameters of exercisewithmore precision. Finally, muscle

exercise responses are the combined result of multiple systems, cell

types and biological processes. Most of the measurements reported

in the studies used to formulate the model did not include single

cell or cell-type specific measurements. Improved versions of this

model could include paracrine signalling between skeletal myocytes

and other cell types, metabolic networks, translation of mRNA to

protein and feedback to the network itself, and organ-system inter-

actions.

4.3 Conclusions

We constructed and validated a new network model of skeletal

muscle cell signalling, which accurately predicts acute responses to

resistance and endurance exercise. Sensitivity analysis demonstrated

that resistance and endurance training recruit many of the same

signalling cascades, in particular the STARS,MAPK, mTOR and calcium

pathways. This model synthesizes a wide range of exercise signalling

literature and serves as a new tool for understanding signalling inter-

actions and phenotypic adaptations to acute exercise.

Exercise prescription involves many variables including timing,

volume, repetitions of endurance and resistance exercise bouts.

However, the biological basis of these recommendations and the

physiological differences between different training regimens remain

poorly understood. This new model of exercise and resistance training

responses in skeletal muscle may help to elucidate the differential

responses to and interactions between different exercise training pre-

scriptions. Personalized models could potentially be used to identify

different combinations and intensities of endurance and resistance

training and rest that optimize specific phenotypic responses.
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