
UCLA
UCLA Electronic Theses and Dissertations

Title
Applications of Formal And Semi-formal Verification on Software Testing, High-level
Synthesis And Energy Internet

Permalink
https://escholarship.org/uc/item/6jj2b6jn

Author
Gao, Min

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6jj2b6jn
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Applications of Formal And Semi-formal Verification on

Software Testing, High-level Synthesis And Energy Internet

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical And Computer Engineering

by

Min Gao

2018

© Copyright by

Min Gao

2018

ABSTRACT OF THE DISSERTATION

Applications of Formal And Semi-formal Verification on

Software Testing, High-level Synthesis And Energy Internet

by

Min Gao

Doctor of Philosophy in Electrical And Computer Engineering

University of California, Los Angeles, 2018

Professor Lei He, Chair

With the increasing power of computers and advances in constraint solving technologies,

formal and semi-formal verification have received great attentions on many applications.

Formal verification is the act of proving or disproving the correctness of intended algorithms

underlying a system with respect to a certain formal specification or property. These

verification techniques have wide range of applications in real life. This dissertation describes

the applications of formal and semi-formal verification in four parts. The first part of the

dissertation focuses on software testing. For software testing, symbolic/concolic testing

reasons about data symbolically but enumerates program paths. The existing concolic

technique enumerates paths sequentially, leading to poor branch coverage in limited time.

We improve concolic testing by bounded model checking. During concolic testing, we identify

program regions that can be encoded by BMC on-the-fly so that program paths within these

regions are checked simultaneously. We have implemented the new algorithm on top of

KLEE and called the new tool Llsplat. We have compared Llsplat with KLEE using 10

programs from the Windows NT Drivers Simplified and 88 programs from the GNU Coreutils

benchmark sets. With 3600 second testing time for each program, Llsplat provides on

average 13% relative branch coverage improvement on all 10 programs in the Windows drivers

set, and on average 16% relative branch coverage improvement on 80 out of 88 programs in

the GNU Coreutils set.

ii

The second part of the dissertation implements symbolic/concolic testing methods onto

an embedded platform. With the more extensive use and of higher demand of the embedded

systems, reliability of the embedded software becomes a critical issue. Thus it is important

to design a test harness that can test embedded software on the real platform or hardware in

the loop framework comprehensively and systematically. We present our design prototype

Codecomb. Codecomb implements symbolic/concolic execution that is able to achieve high

branch coverage to generated test cases. It mainly exploits client/server architecture to

achieve the isolation of testing tools and program under test such that complex computing

job is performed in the server side. Experimental results show that Codecomb can detect

program deficiency automatically on the embedded platform, and precisely locate errors such

as buffer overflow, memory leak in a running program.

The third part of the dissertation applies formal and semi-methods to high-level synthesis

(HLS) for VLSI. Verifying functional equivalence of high-level synthesis with formal methods

ensures the correctness of the transformation flow. Current verification work widely uses

static analysis such as model checking, while a pure dynamic execution flow is missing. In this

part, we propose a functional verification flow for HLS utilizing symbolic execution on both C

and Verilog directly. Specifically, on behavior C level we collect program traces via symbolic

execution. As for Verilog level, we first generate a circuit satisfiability modulo theory (SMT)

representation. Then we propose a light-weight pure symbolic execution framework to collect

Verilog’s on-the-fly time invariant version-based traces. To alleviate the scalability issue,

we develop an operation abstraction method using SMT solvers to match potential C and

Verilog traces. Extensive experiments on circuits from numerical computing and Chstone

benchmark verify the validity and effectiveness of the flow.

The last part of the dissertation investigates the applications on Energy Internet. Energy

Router based system is a crucial part in the energy transmission and management under the

circumstance of Energy Internet for green cities. During its design process, a sound formal

verification and a performance monitoring scheme are needed to check its reliability and

meaningful quantitative properties. In this chapter, we provide formal verification solutions

for ER based system by proposing a continuous-time Markov chain model describing the

iii

architecture of ER based system. To verify real world function of the ER based system, we

choose electricity trading to propose a Markov decision process model running on an ER

subsystem to describe the trading behaviour. To monitor the system performance, we project

the energy scheduling process in ER based system, and then implemented this scheduling

process on top of cloud computing experiment tool. Finally, we perform extensive experiment

evaluations to investigate the system reliability properties, quantitative properties, and

scheduling behaviours. The experiment verifies the effectiveness of the proposed models and

the monitoring scheme.

iv

The dissertation of Min Gao is approved.

Todd D Millstein

Sudhakar Pamarti

Puneet Gupta

Lei He, Committee Chair

University of California, Los Angeles

2018

v

To my family

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.2 Original Contributions . 7

1.3 Organization . 8

2 LLSPLAT: Improving Concolic Testing by Bounded Model Checking . . 9

2.1 Introduction . 9

2.2 A Motivating Example . 11

2.3 Concolic Testing . 13

2.3.1 Program Model . 13

2.3.2 The Concolic Testing Algorithm . 13

2.4 Combining Concolic Testing with BMC . 15

2.4.1 Identifying Program Portions for BMC 17

2.4.2 Translating Governed Regions to BMC Formulas 19

2.4.3 Integrating BMC Formulas with Concolic Testing 21

2.5 Experiments . 25

2.5.1 Experiment Settings . 25

2.5.2 Experimental Results . 26

2.5.3 Threats to Experiment Validity . 29

2.6 Related Work . 30

2.7 Conclusion . 32

3 Codecomb: Automated Test Case Generation And Defect Detection for

Emebedded Software Based on Symbolic Execution 34

vii

3.1 Introduction . 34

3.2 System Architecture . 36

3.2.1 Source Code Instrumentation . 37

3.2.2 Client Module . 38

3.2.3 Server Module . 38

3.3 Test Case Generation . 39

3.4 Defect Detection . 41

3.4.1 Buffer Checking . 41

3.4.2 Memory Allocation and deallocation 43

3.5 Experimental Results . 44

3.6 Conclusion . 48

4 A Dynamic Approach to Functional Verification of High Level Synthesis 49

4.1 Introduction . 49

4.2 Preliminary . 53

4.2.1 High-level Synthesis . 53

4.2.2 Sysmbolic/Concolic Execution For Sequential Programs 54

4.3 Verification Flow . 55

4.3.1 Verilog Trace Collection . 56

4.3.2 C and Verilog Trace Matching . 62

4.3.3 Termination of The Flow . 65

4.4 Experimental Results . 65

4.5 Conclusion And Future Work . 68

5 Probabilistic Model Checking and Scheduling Implementation of Energy

Router System in Energy Internet for Green Cities 70

viii

5.1 Introduction . 70

5.2 Preliminary . 73

5.2.1 Continuous-Time Markov Chain . 73

5.2.2 Markov Decision Process . 74

5.2.3 Energy Router Based Subsystem Architecture 75

5.3 Architecture Modeling of The Energy Router System 75

5.3.1 Modeling of The Multiple Energy Router System 76

5.3.2 Modeling of Single Energy Router Based Subsystem 77

5.4 Modeling of Energy Router Subsystem Based Electricity Trading 80

5.4.1 Requster Modeling . 81

5.4.2 Service Provider Modeling . 82

5.5 Energy Router System Scheduling . 84

5.5.1 Implementation of ER based System Simulation 85

5.6 Experiments and Results . 87

5.6.1 Architecture Model Properties . 87

5.6.2 Electricity Trading Model Properties 90

5.6.3 Scheduling Behaviour of ER Based System 91

5.7 Conclusion and Future Work . 92

6 Summary . 94

.1 Preliminaries . 97

.2 Proofs . 97

.2.1 Properties of Effective Dominance Sets and Governors 97

.2.2 Properties of the BMC Generation Algorithm 99

References . 104

ix

LIST OF FIGURES

2.1 Program Model . 13

2.2 An Example . 19

2.3 Branch coverage imporvement on the GNU Coreutils. Each bar denotes a bench-

mark under test. Y-axis represents relative branch coverage improvement. . . . 28

3.1 Codecomb architecture . 36

3.2 Run time comparison between CodeComb and Auto+Valgrind 47

4.1 High-level synthesis functional verification flow 55

4.2 A Verilog SMT description . 57

4.3 An example of operation abstraction . 63

5.1 ER system in energy Internet for green cities . 71

5.2 Architecture of single ER-based subsystem . 76

5.3 Multiple-ER system failure probability . 87

5.4 Single-ER based subsystem failure probability 88

5.5 Single-ER based subsystem communication count 88

5.6 Minimum cost for the requester to get the required amount of services 88

5.7 Maximum loss for the provider to provide the required amount of services 89

5.8 Average total revenue and average total line loss for ER based system 89

.1 Topological ordering of the governed region . 100

.2 An execution from the governor gov to a destination d 100

.3 Topological ordering of the governed region . 100

x

LIST OF TABLES

2.1 Edge formulas and block formulas . 21

2.2 Branch coverage comparison between Llsplat and KLEE on the Windows NT

Drivers Simplified . 27

2.3 Branch coverage comparison between Llsplat and KLEE and the number of

encoded governed regions on 10 randomly selected benchmarks from the GNU

Coreutils . 28

2.4 Crossing time statistics of improved benchmarks on the GNU Coreutils 29

3.1 Example of test case generation . 40

3.2 Example of deficiency detection . 42

3.3 Reports of CodeComb and Valgrind for bugtest 46

3.4 Testing result comparison between Codecomb and Valgrind. A stands for buffer

overflow, B stands for memory leak, C stands for pointer double free. 47

4.1 RTL signal version for the example . 61

4.2 inner product and FIR results. Upper, middle and lower blocks show inner product,

FIR and FFT results, respectively. SE means Verilog symbolic execution. 67

4.3 Convolution results. At the third row and the fourth row we verify the convolution

in Lenet-5 for the first and the second convolution layer. 67

4.4 Floating point benchmark results. 68

5.1 Local state variable for single ER-based subsystem 78

5.2 Single ER-based subsystem properties . 80

5.3 Local state variable for a service requester . 81

5.4 Local state variable for a service provider . 83

5.5 Green electricity trading properties . 83

xi

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Lei He for the

continuous support of my Ph.D study and related research, for his patience, motivation, and

immense knowledge. His guidance helped me in all the time of research and writing of this

thesis. I could not have imagined having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Puneet

Gupta, Prof. Sudhakar Pamarti, and Prof. Todd Millstein, for their insightful comments and

encouragement, but also for the hard question which help me to widen my research from

various perspectives.

My sincere thanks also goes to Prof. Rupak Majumdar, Dr. Gary Yeap, Dr. Richard Ho

and Prof. Chang Wu, who provided me opportunities to join their team as intern, and who

gave access to the laboratory and research facilities. Without they precious support it would

not be possible to conduct this research.

I thank my fellow mates in for the stimulating discussions, for the sleepless nights we

were working together before deadlines, and for all the fun we have had during these years.

In particular, I am really grateful to Dr. Zilong Wang for enlightening me the first glance of

research.

Last but not the least, I would like to thank my family: my parents and my grandparents

for supporting me spiritually throughout writing this thesis and my life in general.

xii

VITA

2011 B.E. (Electrical Engineering and Automation) and B.A. (English), Nanjing

University of Technology, Nanjing, China.

2012 M.S. (Electrical Engineering), UCLA, Los Angeles, California.

2014 Visiting Scholar, Max Planck Institute for Software Systems, Kaiserslautern,

Germany.

2015 Visiting Scholar, Max Planck Institute for Software Systems, Kaiserslautern,

Germany.

2016 PhD Intern, Synopsys, Sunnyvale, California.

2017 Visiting Scholar, Shanghai Fudan Microelectronics Group, Shanghai, China.

2017 PhD Intern, Google, Sunnyvale, California.

2013–Present Teaching Fellow/Research Assistant, Electrical And Computer Engineering

Department, UCLA, Los Angeles, California.

PUBLICATIONS

Ayca Balkan, Min Gao, Paulo Tabuada, Lei He,"A Behavioral Algorithm for State of

Charge Estimation," the 26th Electric Driving Transportation Association Electric Vehicle

Symposium (EVS’12).

Qiang Li, Kun Wang, Suwei Wei, Xuefeng Han, Lili Xu, Min Gao,“A Data Placement

Strategy based on Clustering and Consistent Hashing Algorithm in Cloud Computing,” 9th

International Conference on Communications and Networking in China.
xiii

Yuhua Zhang, Kun Wang, Min Gao, Zhiyou Ouyang, and Siguang Chen, “LKM: A LDA-

Based K-Means Clustering Algorithm for Data Analysis of Intrusion Detection in Mobile

Sensor Networks,” International Journal of Distributed Sensor Networks, Article ID 491910.

Kun Wang, Yuhua Zhang, Lei Shu, Chunsheng Zhu and Min Gao, “NAPR: A Node Activity-

based Probabilistic Routing Algorithm in Delay Tolerant-Mobile Sensor Networks,” IEEE

International Conference on Communications 2015.

Wensheng Guo, Guowu Yang, Xiaoyu Li and Min Gao, “A SAT-based Algorithm for Finding

Cycles in a Boolean Network,” Journal of University of Electronic Science and Technology of

China, vol. 44 issue 6, Dec 2015.

Hui Jiang, Kun Wang, Yihui Wang, Min Gao and Yan Zhang, “Energy Big Dta: A survey”

IEEE Access, vol 4.

Min Gao, Lei He, Rupak Majumdar, Zilong Wang, “LLSPLAT: Improving Concolic Testing

by Bounded Model Checking,” IEEE 16th International Working Conference on Source Code

Analysis and Manipulation 2016.

Wensheng Guo, Yong Wang, Xia Yang and Min Gao, “Codecomb: Automated Test Case

Generation and Defect Detecting for Embedded Software Based on Symbolic Execution,”

Journal of Chinese Computer Systems, vol 38 issue 6, 2017.

Min Gao, Kun Wang and Lei He, “Probabilistic Model Checking for Green Energy Router

System in Energy Internet, ” 2017 IEEE Global Communications Conference.

Min Gao, Kun Wang and Lei He, "Probabilistic Model Checking and Scheduling Implemen-

tation of an Energy Router System in Energy Internet for Green Cities," IEEE Transactions

on Industrial Informatics, vol. 14, no. 4, pp. 1501-1510, April 2018.

xiv

CHAPTER 1

Introduction

1.1 Motivation

With the increasing power of computers and advances in constraint solving technologies,

formal and semi-formal verification have received great attentions on many applications.

Formal verification is the act of proving or disproving the correctness of intended algorithms

underlying a system with respect to a certain formal specification or property, using formal

methods of mathematics.

Formal and semi-formal verification have the potential to be applied on lots of applications

in real world. Among all the possible applications, one of the most widely used applications

of is on software testing. Software testing is a process of analyzing or executing programs

with the intent of finding the software bugs. It can also be stated as the process of validating

and verifying that the program meets the specifications and requirements during design and

maintenance. As one of the most prevalent techniques on software testing, bounded model

checking (BMC) [CBR01,KCY,CMN12,MFS12] is a classical formal verification technique.

Given a program under test and a bound k, BMC unrolls loops and inlines function calls

k times to construct an acyclic program which is an under-approximation of the original

program. It then performs verification condition (VC) generation over the acyclic program

to obtain a formula which encodes the acyclic program and a property to check. The formula

is then fed into a SAT solver. If the formula is proved to be valid by the solver, the property

holds. Otherwise, the solver provides a model from which we can extract an execution of

the program that violates the property. BMC provides a way to encode and reason about

multiple execution paths simultaneously using a single formula, but its scalability is often

1

limited by deterministic dependencies between program paths and data values.

With the increasing power of computers and advances in constraint solving technologies,

an automated dynamic testing technique called concolic testing [GKS05,SMA05] has received

great attentions due to its low false positives and high code coverage [CZG13,CS13]. Concolic

testing runs a program under test with a random input vector. It then generates additional

input vectors by analyzing previous execution paths. Specifically, concolic testing selects one

of the branches in a previous execution path and generates a new input vector to steer the

next execution toward the opposite branch of the selected branch. By carefully selecting

branches for the new inputs, concolic testing avoids generating redundant input vectors that

execute the same program path, and thus enumerates all non-redundant program paths.

One challenge for concolic testing is that it suffers from path explosion. It may enumerate

exponentially many unique program paths one by one [God07,CZG13,CS13,ABC13], which

often leads to poor branch coverage in limited time.

To allieviate this issue and improve concolic testing, we utilize the advantage of BMC,

and propose a concolic+BMC algorithm. Given a program under test, the algorithm starts

with the per-path search mode in concolic testing while referring to the control flow graph

(CFG) of the program to identify easy-to-analyze portions of code that do not contain loops,

recursive function calls, or other instructions that are difficult to generate formulas using

BMC. Whenever a concolic execution encounters such a portion, the algorithm switches to

the BMC mode and generates a BMC formula for the portion, and identifies a frontier of

hard-to-analyze instructions. The BMC formula summarizes the effects of all execution paths

through the easy-to-analyze portion up to the hard frontier. When the concolic execution

reaches the frontier, the algorithm switches back to the per-path search mode to handle

the cases that are difficult to summarize by BMC. With 3600 second testing time for each

program, our implementation Llsplat provides on average 13% relative branch coverage

improvement on the programs in the Windows NT drivers simplified set, and on average 16%

relative branch coverage improvement on 80 out of 88 programs in the GNU Coreutils set.

In the field of embedded system, reliability of the embedded software has gained more

and more interests with the development of the society. Especially in the field of consumer

2

electronics, industry control, military system and aerospace, huge amount of embedded

system modules are playing crucial roles to achieve their functions. Some testing of embedded

software are implemented on emulators. There are a few limitations comparing with testing

on an emulator and the real embedded platform. First, run-time performance of an emulator

is usually slower than real embedded platform. This performance difference is due to the fact

that executing instruction in another instruction set such as ARM on top of a x86 machine

takes extra work to handle compatibility issue. In practice, even if some emulators are in the

form of x86 image such as Android emulator, many applications are not able to run on the

emulators. Second, emulators are customized for certain embedded platforms, which is not

universal. Even in a specific emulator such as Android emulator, due to the customization on

the Android platform from different manufacturers, the emulator may not achieve the same

functions as the real customized embedded platform.

As symbolic/concolic testing show good performance on normal software testing, a natural

question comes naturally that whether it is possible to deploy dynamic testing methods into

real embedded platforms or hardware in the loop testing. We preliminary investigate the

possibility of fitting dynamic methods and automatic test case generation into embedded

platforms. Since embedded platforms has limited computation and storage resources, we

use a client/server model to separate constraint solving and symbolic execution to greatly

reduce the computation load in the embedded platform. Experiments on PC and Pandaboard

embedded platform preliminary show that Codecomb can run on the embedded platform,

and is able to find software deficiencies automatically.

Formal and semi-formal verification is widely applied not only in software field, but

also in hardware VLSI design field. VLSI high-level design has many advantages over the

commonplace design flow that begins with register-transfer level (RTL) code. One of the

most compelling advantages is the improved verification efficiency which a higher level of

abstraction offers. It is apparent to the point of being self-evident that when the source code

of a design is created, there will be fewer errors if the source is at a higher abstraction level

than if it is at a lower level. HLS converts a high-level description of a design into a RTL

netlist by considering real design constraint such as area constraints and delay constraints.

3

It performs instruction scheduling, resource allocation and operation binding on high-level

design language such as C into RTL descriptions. As HLS transforms a sequential program

into a circuit description that run multiple computations in parallel. The structure and its

internal state transition relationship are not guaranteed to remain the same. Thus there is a

process needed to verify the the transformations which are applied to the design description.

Among all the formal verification categories, functional verification is a useful functionality

that can be applied to HLS in a similar manner to its application in RTL-to-gate equivalence

checking. Most of functional verification work with formal verification above rely on static

analysis on both behaviour and generated RTL side, where model checking is widely used.

One issue for the above static analysis methods is that static analysis tries to prove the

general equivalence of two state transition machines with full automation, which is hard in

general. Another issue is that since model checking describes all the state transitions of a

program model in their formulas including non-critical data paths and components that may

not affect the output, the number of states grows exponentially along with the increasing

scale.

Comparing to static analysis, dynamic testing method such as symbolic execution and

concolic execution explores model under investigation on a path-by-path basis. A single

path has much lighter encoding than a whole model. It can summarize both combinational

and sequential circuit trace accurately. Path based exploration then has the advantage

of easily checking all variable state transitions through all paths. It also avoids the loop

unrolling problem since it systematically enumerates all paths, and paths can be selected

with priority based on verification need. R. Mukherjee et al. [MTK16] developed a tool V2C

that translates Verilog to C such that dynamic testing for sequential programs can be applied

on Verilog. V2C accepts synthesizable Verilog as input and generates a word-level C program

as an output. Equivalence checking is then achievable on C level with the help of either

static analyzing tools or dynamic execution tools. One major disadvantage of V2C in HLS

equivalence checking is that this process needs to verify or to prove the transformation using

V2C is equivalent to original Verilog, which is actually a reversed process of HLS functional

checking. A formal equivalence proof is needed to show the correctness of the flow. Also

4

current V2C implementation have difficulties in dealing with dependency of inter-modular

combinatorial paths or combinatorial loops. It is hard to determine stability condition for

large circuits to obtain an equivalent C program automatically. On the contrary, symbolic

execution on top of Verilog directly does not have similar issues as it generates symbolic

expressions of the register-transfer relationship precisely. Thus directly applying V2C based

framework is not a natural solution for HLS functional verification. As for standalone dynamic

execution for Verilog, X. Qin et al. [QM14] proposed a concolic execution framework for

Verilog similar to [SMA05]. It first instruments the Verilog design, then interleaves concrete

and symbolic simulation to obtain execution traces, and then rearranges trace to generate

path constraints and concrete testing case. Different from [SMA05], however, this method

summarizes symbolic path constraints using the result from concrete simulation, while concolic

testing for software has symbolic expression and concrete value generated at the same time.

The performance bottleneck of this method lies on the concrete simulator. In fact, as long as

here are no constraints unsolvable by the SMT sovler, pure symbolic execution without any

concrete simulation can achieve the same functionally. In addition, from HLS equivalence

checking perspective, there are some room for optimization in reducing the complexity of

SMT solver. Thus far, a full flow of pure dynamic methods for HLS functional verification is

still missing.

To fulfill this task, we propose a new HLS functional verification flow via symbolic

execution using LegUp [CCA13] as the HLS engine. More precisely, our verification flow first

runs light-weight symbolic execution on both C code and HLS generated Verilog code to

generate SMT execution trace, respectively. The on-the-fly symbolic execution on Verilog side

is implemented on Verilog’s SMT representation obtained by Yosys [Wol] synthesis tool. Then

we perform optimization on module input symbolization and valid datapath identification

from the HLS code generation perspective to greatly reduce the complexity of the SMT solver.

Specifically, signals in Verilog traces are collapsed from clock-based encoding to clock-invariant

version-based encoding. Considering HLS binds the same operation to an identical set of

hardware, we perform one-on-one trace matching by abstracting identical operations on

C and Verilog traces such that the scalability issue can be alleviated. Various experiment

5

results show that our framework has the ability to verify the functional equivalence for

numerical computing circuits, and prove the potential of using formal methods for practical

HLS functional verification flow for future.

Formal and semi-formal verification have applications other than conventional software

and hardware fields as well. One of the application fields is on Energy Internet (EI).

Energy crisis and carbon emission have become two seriously concerned issues in green

cities [Che07, BZC15, ENS17] recently. As a feasible solution, EI [WYY17, ZYX16] has

aroused global concern since it has been proposed. EI is a new power generation developing a

green vision of evolution of smart grids into the Internet. Its organization is shown in Fig. 5.1.

The key device to compromise EI is energy router (ER) [JWW16]. ER communicates with

users similar to an Internet router, thus can perform immediate communication and control

according to real-time user status to achieve green efficient energy management.This is vital

to realizing green cities [OF15,MTG00]. The design of EI, especially the design of ER based

system, requires verification to check all properties related to reliability and economy.

In real world, systems such as ER based systems are inherently probabilistic. Thus

quantitative properties are of the greatest interest to verify in addition to logic properties for

formal verification. Probabilistic model checking [KNP07] formulates systems into probabilistic

transition models such as discrete-time Markov chains (DTMC), continuous-time Markov

chains (CTMC), and Markov decision processes (MDP). A quantitative logic property is then

applied to the model to check the result, and return a counter-example if a property is not

satisfied. We propose a probabilistic model checking method to ER based system design,

and monitor ER based system’s running behaviour via our scheduling scheme. Specifically,

we first propose a CTMC model on an ER based system containing multiple ERs to check

the reliability of the system operation. Then we propose a CTMC model on a green ER

based subsystem to perform model checking on its reliability and communication count

properties. To apply all the communication functions into the real scenario for green cities,

we propose an MDP electricity trading model, and model check quantitative properties on the

service requester’s cost and the service provider’s loss. We also propose an energy scheduling

simulation scheme for ER based system. In this scheme, we divide a load demand curve into

6

multiple time windows, and then project each demand in a time window into a cloudlet in

cloud computing, and then the energy scheduling process in ER based system is projected

to host allocation process in cloud computing. We define our own host allocation policy to

complete the scheme.

1.2 Original Contributions

The contributions of this dissertation are summarized as follows. On the applications of

formal verification in the software testing field, We propose a concolic+BMC algorithm that

applies BMC locally targeting at loop-free code fragment during concolic testing to alleviate

path explosion, and thus improve branch coverage. To the best of out knowledge, it is the

first time that static analysis methods such as BMC has been used to speed up concolic

execution. We also show the an real implementation to perform dynamic analysis method

into embedded platforms.

On the applications of formal verification in the VLSI HLS field, we propose a pure

symbolic execution flow to tackle functional verification of HLS. To the best of our knowledge,

it is the first time that a pure dynamic approach is applied on HLS functional verification

without transforming one side of the source code to the format of its counterpart before

verification. We also present a Verilog pure symbolic execution framework without performing

concrete simulation that runs directly from Verilog’s SMT representation. In addition, we

perform optimization on module input symbolization from HLS code generation perspective

and clock-invariant version-based encoding to greatly reduce the complexity for SMT solver.

Finally, we introduce an operation abstraction method to alleviate the scalability issue

considering allocated hardware usage from HLS along the datapath.

On the applications of formal verification in the Energy Internet field, we introduce CTMC

and MDP state machines to model ER based systems. To the best of out knowledge, it is the

first time that formal verification technique is applied to ER based systems. Moreover, we

project the energy scheduling of ER based system into cloud computing area, and implement

a tool to observe the performance of ER based systems due to the similarity of these two

7

areas. It is the first time that a cloud computing tool is tailored to suit the need for ER based

systems. Finally, we consider both electricity price and line loss during power transmission

during the selection of power service providers. Extensive experiment verifies the effectiveness

of the proposed models and the monitoring scheme.

1.3 Organization

The organization of this dissertation is shown as follows. In Chapter 2, we present LLSPLAT,

a framework to improve concolic testing by bound model checking. In Chapter 3, we study

the possibilities of employing dynamic testing methods to embedded platforms, and introduce

the implementation Codecomb. In Chapter 4, we show how dynamic testing methods are

applied in VLSI field to check the functional equivalence of HLS. The formal modeling and

simulation implementation of the energy router based system in RI is described in Chapter 5.

Finally, we conclude the dissertation in Chapter 6.

8

CHAPTER 2

LLSPLAT: Improving Concolic Testing by Bounded

Model Checking

2.1 Introduction

With the increasing power of computers and advances in constraint solving technologies, an

automated dynamic testing technique called concolic testing [GKS05,SMA05] has received

much attention due to its low false positives and high code coverage [CZG13,CS13]. Concolic

testing runs a program under test with a random input vector. It then generates additional

input vectors by analyzing previous execution paths. Specifically, concolic testing selects one

of the branches in a previous execution path and generates a new input vector to steer the

next execution toward the opposite branch of the selected branch. By carefully selecting

branches for the new inputs, concolic testing avoids generating redundant input vectors that

execute the same program path, and thus enumerates all non-redundant program paths. In

practice, concolic testing suffers from path explosion: it may enumerate exponentially many

unique program paths one by one [God07,CZG13,CS13,ABC13], which often leads to poor

branch coverage in limited time.

On the other hand, bounded model checking (BMC) [CBR01, KCY, CMN12,MFS12]

is a fully symbolic testing technique. Given a program under test and a bound k, BMC

unrolls loops and inlines function calls k times to construct an acyclic program which is an

under-approximation of the original program. It then performs verification condition (VC)

generation over the acyclic program to obtain a formula which encodes the acyclic program

and a property to check. The formula is then fed into a SAT solver. If the formula is proved

to be valid by the solver, the property holds. Otherwise, the solver provides a model from

9

which we can extract an execution of the program that violates the property. BMC provides

a way to encode and reason about multiple execution paths simultaneously using a single

formula, but its scalability is often limited by deterministic dependencies between program

paths and data values.

A natural question is whether there is a way to improve concolic testing by BMC to

alleviate path explosion and thus improve branch coverage? In this paper, we provide a

positive answer and propose a concolic+BMC algorithm. Intuitively, given a program under

test, the algorithm starts with the per-path search mode in concolic testing while referring to

the control flow graph (CFG) of the program to identify easy-to-analyze portions of code

that do not contain loops, recursive function calls, or other instructions that are difficult to

generate formulas using BMC. Whenever a concolic execution encounters such a portion, the

algorithm switches to the BMC mode and generates a BMC formula for the portion, and

identifies a frontier of hard-to-analyze instructions. The BMC formula summarizes the effects

of all execution paths through the easy-to-analyze portion up to the hard frontier. When the

concolic execution reaches the frontier, the algorithm switches back to the per-path search

mode to handle the cases that are difficult to summarize by BMC.

We have implemented the concolic+BMC algorithm on top of KLEE [CDE08] and called

the new tool Llsplat. We have compared Llsplat with KLEE, using 10 programs from

the Windows NT Drivers Simplified [SVC] and 88 programs from the GNU Coreutils used

in [CDE08]. With 3600 second testing time for each program, Llsplat provides on average

13% relative branch coverage improvement on the programs in the Windows NT drivers

simplified set, and on average 16% relative branch coverage improvement on 80 out of 88

programs in the GNU Coreutils set.

The rest of the paper is organized as follows. Section 2 provides a motivating example.

Section 3 reviews concolic testing. Section 4 describes the concolic+BMC algorithm. Section

5 presents experimental results. Section 6 shows related work. Section 7 concludes this

paper.

10

2.2 A Motivating Example

We illustrate the inadequacy of concolic testing, and the benefits of using BMC to improve

concolic testing, using the function foo below. The function runs in an infinite loop, and

receives two inputs in each iteration. One input c is a character and the other input s is a

character array. The function foo reaches the label L if the variable state is 9, and the input

array s holds the string “reset”. From the label L, there is a huge chunk of code consisting

conditionals, loops, and procedure calls. Similar functions like foo are often generated by

lexers.

Concolic testing systematically explores all execution paths of the function. Since the

function foo runs in an infinite loop, the number of distinct feasible executions is infinite. To

perform concolic testing we need to bound the number of iterations of the loop if we perform

a depth-first search of the execution paths. There are 17 possible choices of values of c and s

that concolic testing would consider, and at least 9 iterations are required to reach the label

L. Hence, concolic testing will explore about 179 ≈ 1011 execution paths. It is unlikely that

concolic testing can explore a path that reaches the label L and executes the code below the

label L in a reasonable time budget. We confirm this fact by testing the function foo using

KLEE [CDE08]. It could not reach the label L in a day, which led to poor branch coverage.

It is worth mentioning that, if there were buggy code after the label L, the situation

would get even worse because concolic testing cannot reveal the bugs efficiently.

1 void foo() {

2 char c, s[6];

3 int state = 0;

4

5 while(1) {

6 ... // Some dummy code

7 c = input(); s = input();

8

9 if (c == ’[’ && state == 0) state = 1;

11

10 if (c == ’(’ && state == 1) state = 2;

11 if (c == ’{’ && state == 2) state = 3;

12 if (c == ’~’ && state == 3) state = 4;

13 if (c == ’a’ && state == 4) state = 5;

14 if (c == ’x’ && state == 5) state = 6;

15 if (c == ’}’ && state == 6) state = 7;

16 if (c == ’)’ && state == 7) state = 8;

17 if (c == ’]’ && state == 8) state = 9;

18 if (s[0] == ’r’ && s[1] == ’e’ && s[2] == ’s’ &&

19 s[3] == ’e’ && s[4] == ’t’ && s[5] == 0 &&

20 state == 9)

21 goto L;

22 }

23 L: ... // A large chunk of code below.

24 }

In our concolic+BMC approach, whenever a concolic execution encounters a conditional,

it has a choice either to save a predicate representing that a particular branch is taken along

the execution as concolic testing does, or to save a BMC formula, for example, that encodes

the entire conditional. Which choice is taken depends on whether the conditional is “simple”

enough to generate a BMC formula easily. For example, a conditional is simple if there are

no loops and recursive function calls1 inside it. Since all conditionals are simple in function

foo, the concolic+BMC approach can easily generate a feasible path that reaches the label L

and thus greatly shorten the time to reach the subsequent uncovered paths. We validated

this fact by using Llsplat to test function foo. Llsplat could generate paths that reached

the label L in 3s, which led to better branch coverage.

1The program size after function inlining can be exponentially larger than the size of the original program.

12

P ::= (var g)∗ · Fn+

Fn ::= f((var p)∗) · (var l)∗ ·BB+

BB ::= Inst∗ · TermInst

Inst ::= x←− e | f(e∗) | x←− input()

TermInst ::= ret | br e BB1 BB2 | br BB | ERROR

Figure 2.1: Program Model

2.3 Concolic Testing

We first review the traditional concolic testing algorithm with depth-first path searching

stratergy, and then describe how Llsplat modifies it.

2.3.1 Program Model

We describe how concolic testing works on a simple language shown in Figure 2.1. A program

consists of a set of global variables and a set of functions. Each function consists of a name, a

sequence of formal parameters, a set of local variables, and a set of basic blocks representing

the control flow graph (CFG) of the function. Each basic block consists of a list of instructions

followed by a terminating instruction. There are three types of instructions: x←− e is an

assignment, f(e∗) is a function call, and x ←− input() indicates that the variable x is a

program input. There are four types of terminating instructions: ret is a return instruction,

br e BB1 BB2 is a conditional branch, br BB is an unconditional branch, and ERROR

indicates program abortion. We omit an explicit syntax of expressions. We assume there is

an entry function main that is not called anywhere. We also assume each function has an

entry basic block, and every basic block of the function is reachable from it.

2.3.2 The Concolic Testing Algorithm

To test a program P , concolic testing tries to explore all execution paths of P . It first

instruments the program P by Algo 1, and outputs an instrumented program P ′. The red-

highlighted lines(gray with monochrome printers) in the algorithms can be ignored for now

13

because they are used in the concolic+BMC approach we describe later. Algo 2 repeatedly

runs the instrumented program P ′. Due to limited space, we omit the instrumentation for

function calls, and the code that bounds the search depth in the search strategy — these are

identical to previous work [GKS05,SMA05].

Algo 1 first makes a copy P ′ of the program P , and inserts various global variables and

function calls which are used for the symbolic execution. It then returns the instrumented

program P ′. Algo 3 presents the definitions of the instrumented functions. The expressions

enclosed in double quotes (“e”) represent syntactic objects. We denote &x to be the address

of a variable x.

Algorithm 1: Instrumentation

Program instrument(P):
P ′ ←− P
Add to P ′ global vars i←− 0, inputNo←− 0, symStore←− [], pathC ←− []

Govs←− {BB | BB is a governor in P}
Add to P ′ global vars bmcNo←− 0, currGov ←− None, init←− None
foreach BB ∈ P ′ do

if BB ∈ GR(gov) for some gov ∈ Govs then continue
foreach Inst ∈ BB do

switch Inst do
case x←− input() do

Replace Inst by InitInput(“x”)
case x←− e do

Add updateSymStore(“x”, “e”) before Inst
case br e BB1 BB2 do

if BB ∈ Govs then
Add startBMC(BB) before Inst
foreach d ∈ Dests(BB) do

Add endBMC(BB, d) as the 1st instruction of d

else
Add addPathConstraint(“e”, e) before Inst

case Return do
if Inst is in the main function then

Add solveConstraint() before Inst

case ERROR do
Add print(“ERROR found”) before Inst

return P ′

14

Algorithm 2: run_llsplat

void run_llsplat(P):
I ←− []; branch_hist←− []; completed←− false

CFGP ←− CFGofProgram(P)

while ¬completed do execute instrument(P)

The function InitInput(“x”) initializes the input variable x using the input map I in all

runs except the first. The variable x is assigned randomly in the first run. The function also

saves a fresh symbolic variable for x in the symbolic store.

The function updateSymStore(“x”, “e”) updates x’s symbolic expression in the sym-

bolic store symStore based on the expression e. We write symexpr(“e”) to represent the

symbolic expression by substituting each variable v in “e” with its symbolic expression

symStore[&v]. For example, if “e” = “a+ b”, symStore[&a] = ea, and symStore[&b] = eb,

then symexpr(“e”) = ea + eb.

The function addPathConstraint(“e”, e) updates the path constraint pathC and the

coverage history branch_hist. Symbolic predicate expressions from the branching points are

collected in the list pathC. At the end of the execution, pathC contains all predicates whose

conjunction holds for the execution path. To explore paths of the program under test, each

run (except the first) is executed based on the coverage history computed in the previous

run. The coverage history is a list of BranchNodes. A BranchNode has two boolean fields:

isCovered records which branch is taken, and done records whether both branches have

executed in prior runs (with the same history up to this branch node).

The function solveConstraint() determines new inputs that forces the next run to execute

the last unexplored branch of the j-th conditional in branch_hist.

2.4 Combining Concolic Testing with BMC

Recall that the goal of our work is that, whenever a concolic run starts with some inputs,

instead of using the path constraint to encode a single execution path, we plan to add BMC

formulas to the path constraint so that it may encode (potentially exponentially) many

execution paths. Note that the path constraint is used by a constraint solver to decide new

15

Algorithm 3: Concolic Testing

void InitInput(“x”):
inputNo←− inputNo+ 1

j ←− inputNo
if I[j] is undefined then

x←− random()

I[j]←− x
else

x←− I[j]
symStore[&x]←− symj

void updateSymStore(“x”, “e”):
symStore[&x]←− symexpr(“e”)

struct BrNode:
isCovered : bool

done : bool

void addPathConstraint(“e”, b):
if b then

pathC[i]←− symexpr(“e”)
else

pathC[i]←− ¬symexpr(“e”)

if i < |br_hist| then
if i = |br_hist| − 1 then
br_hist[i].done←− true

else
br_hist[i]←− BrNode(isCovered : b, done :

false)

i←− i+ 1

void SolveConstraint():
j = i - 1
while j ≥ 0 do

if ¬br_hist[j].done then
if br_hist[j] is BmcNode then

foreach d such that ¬br_hist[j].isCovered[d] do
if
∧

0≤k≤j−1 pathC[k] ∧ rmLastDest(path_c[j]) ∧
∨

c∈Edges_d[d] c has a solution I ′ then

br_hist←− br_hist[0..j]
I ←− I ′

return

else
br_hist[j].isCovered←− ¬br_hist[j].isCovered
pathC[j]←− ¬pathC[j]

if pathC[0..j] has a solution I ′ then
br_hist←− br_hist[0..j]
I ←− I ′

return

j = j − 1

if j < 0 then completed←− true

runs in concolic testing. When we attempt to cover an uncovered instruction in the new run,

the path constraint that encodes multiple execution paths enables the constraint solver to

search for multiple paths leading to the instruction, instead of one path in the traditional

concolic testing.

To achieve the goal, given a program under test, we identify regions of the program for

generating BMC formulas. A region of a program is a subgraph of the control flow graph of

16

the program. We list the following requirements for identifying regions.

1. A region must be acyclic. It is required by any BMC procedure.

2. A region should not have function calls. It is desired because function inlining is required

before generating BMC formula but the resulting BMC formula may be exponentially

large in the size of the input program, which we want to avoid.

3. A region should be sufficiently large so that the corresponding BMC formula covers

more paths and fully exploits the power of a modern constraint solver. Most of the

path constraints in those multiple paths are the same except for the constraints within

the BMC regions, thus solving one concolic+BMC constraints representing multiple

paths may take less time than solving multiple independent paths.

In addition, given a region, it is also required that a desired BMC generation procedure

be compatible with concolic testing. Unlike generating a formula for an entire program in

existing BMC tools, we need to generate ones for regions of a program which lead to some

specific issues, which BMC procedures in existing BMC tools need not and cannot handle.

For example, a natural question would be that, after adding a BMC formula to the path

constraint, how the symbolic store needs to be updated so that concolic testing proceeds.

We now present the concolic+BMC algorithm. The key observation is that given a

program P under test, the instrumented program for P can additionally refer to the (static)

CFG of P and perform static analysis at run time. Section 2.4.1 describes how to identify

program portions for BMC formula generation. Section 2.4.2 describes the BMC formula

generation algorithm. Section 2.4.3 integrates this with concolic testing.

2.4.1 Identifying Program Portions for BMC

2.4.1.1 Preliminaries

Given a CFG, a basic block m dominates a basic block n if every path from the entry basic

block of the CFG to n goes through m. We denote Dom(m) to be the set of basic blocks

17

which m dominates. A depth-first search of the CFG forms a depth-first spanning tree (DFST).

There are edges in CFG that go from a basic block m to an ancestor of n in DFST (possibly

to m itself). We call these edges back edges. By [CSR01], a directed graph is acyclic if a

depth-first search yields no back edge.

2.4.1.2 Governors, Governed Regions, and Destinations

Given a basic block m, a basic block n ∈ Dom(m) is polluted in Dom(m) in the following four

cases: (1) n contains function call instructions, (2) n has no successors, (3) n is the source or

the target of a back edge, or (4) n is reachable from a polluted basic block k ∈ Dom(m). A

basic block m effectively dominates a basic block n if n ∈ Dom(m) and n is not polluted in

Dom(m). We denote Edom(m) to be the set of basic blocks that m effectively dominates.

A basic block m is called a governor candidate if (1) the terminating instruction of m

is of the form br e BB1 BB2, (2) m dominates both BB1 and BB2, and (3) Edom(BB1)

and Edom(BB2) are not empty. Given a governor candidate m with its two successors BB1

and BB2, the governed region of m, denoted by GR(m), is Edom(BB1) ∪ Edom(BB2). A

basic block n is a destination of GR(m) if n 6∈ GR(m) and n is a successor of some basic

block k ∈ GR(m). Let the set Dests(m) be all destinations of GR(m). A basic block gov

is a governor if gov is a governor candidate, and there is no governor candidate m with

gov ∈ GR(m). For any governor gov, GR(gov) is acyclic and does not have function calls,

and gov dominates every basic block BB ∈ GR(gov).

2.4.1.3 Example

Consider the program in Fig 2.2a. BB0 is a governor. Its governed region GR(BB0) includes

BB1, BB2, BB4, BB5, and BB6, which are inside the red dash circle. BB3 and BB7 are

the destinations in Dests(BB0). Though BB2 is a governor candidate, it is not a governor

because it is in GR(BB0).

18

(a) A program under test (b) Variable renaming

Figure 2.2: An Example

2.4.2 Translating Governed Regions to BMC Formulas

A governed region is ideal for generating a BMC formula because it is acyclic, does not have

function calls, and is “sufficiently” large in the sense that it includes as many (unpolluted)

basic blocks as its governor governs. We present our algorithm that translates a governed

region to a BMC formula, and provide an example.

2.4.2.1 The BMC Formula Generation Algorithm

Given a governor gov, we construct a BMC formula φ for GR(gov) in five steps:

1. Renaming variables in GR(gov) into an SSA-form. Since GR(gov) is acyclic, there

exists a topological ordering over the basic blocks in GR(gov). Let AccV ars be the

set of variables accessed by the instructions in GR(gov), and let a version map V be

a map from each variable x ∈ AccV ars to a variable xα with a version α ∈ N. We

assign the version number α to each variable in GR(gov) for renaming according to the

topological order.

2. Create a boolean variable gBB for each basic block BB ∈ GR(gov) , which is called an

19

execution guard. Our intention is that, if gBB is true, then an execution represented

by a model of the final BMC formula φ goes through BB. Otherwise, it does not goes

through BB.

3. Compute an edge map Edges that maps each basic block BB ∈ GR(gov)∪Dests(gov)

to a list of edge formulas. Each entry in the list represents the condition of hitting an

incoming edge of a basic block. For each BB ∈ GR(gov), if its terminating instruction is

br e BB1 BB2, then we add gBB ∧e to Edges[BB1], and add gBB ∧¬e to Edges[BB2];

if it is br BB1, then we add gBB to Edges[BB1]. If the terminating instruction belongs

to a governor, we insert the condition pair e and ¬e to the corresponding Edges map

directly. Let the governor’s terminating instruction be br e BB1 BB2. Let e0 be an

expression obtained by replacing each variable x in e with x0. We set Edges[BB1] = e0

and Edges[BB2] = ¬e0.

4. Compute a block map Blks that maps each basic block BB ∈ GR(gov) to a block

formula. For each BB ∈ GR(gov), let I1, I2, . . . , Ik be the non-terminating instructions

in BB. For each 1 ≤ i ≤ k, if Ii is xα ←− e, we define an instruction formula ci to be

xα = ite(gBB, e, xα−1). We set Blks[BB] =
∧

1≤i≤k ci.

5. Create the final BMC formula φ, defined as follows:∧
BB∈GR(gov)

gBB =
∨

c∈Edges[BB]

c

 ∧Blks[BB]


Intuitively, φ claims that for each basic block BB ∈ GR(gov), (1) BB is taken (i.e.,

gBB is true) if one of its predecessor is taken, and (2) the block formula of BB must

hold.

Our BMC formula generation algorithm has the following important property.

Theorem 2.4.1. Let gov be a governor and T be an arbitrary topological ordering over

GR(gov). After the BMC algorithm is done w.r.t. T , for any destination d ∈ Dests(gov), (1)

the formula φ∧
∨
c∈Edges[d] c encodes all executions from gov to d, and (2) for every execution

ρ from gov to d, the final version of each variable x in φ represents the value of x when ρ

enters d.
20

BB Edges[BB] Blks[BB]

BB1 {x0 > y0} x3 = ite(gBB1, x2− y0, x2)

BB2 {¬(x0 > y0)} x1 = ite(gBB2, y0− x0, x0)

BB3 {gBB1, gBB6 ∧ y1 6= 9}

BB4 {gBB2 ∧ x1 > y0} x4 = ite(gBB4, y0− x3, x3)

BB5 {gBB2 ∧ ¬(x1 > y0)} x2 = ite(gBB5, y0− x1, x1)

BB6 {gBB4, gBB5 ∧ x2 6= 0} y1 = ite(gBB6, x4, y0)

BB7 {gBB5 ∧ ¬(x2 6= 0), gBB6 ∧ ¬(y1 6= 9)}

Table 2.1: Edge formulas and block formulas

Example We illustrate our BMC algorithm by reusing the example in Fig 2.2a. The

topological order we use for the variable renaming is BB2, BB5, BB1, BB4, BB6. After

variable renaming, the resulting program is in Fig 2.2b. After Step 4 of the algorithm, the

edge map Edges and the block map Blks are shown in Table 2.1.

To give a flavor of the correctness of Theorem 2.4.1(2), we examine an execution ρ :

BB0, BB1, BB3 as an example. When ρ enters the destination BB3, the largest version of

x and y along ρ is x3 and y0, but their final versions in φ are x4 and y1. However, since

BB2, BB4, BB5 and BB6 are not taken along ρ, we have x4 = x3, x2 = x1 = x0, and

y1 = y0. Since BB1 is taken, we have x3 = x2− y0. Thus x4 = x0− y0 and y1 = y0. We

conclude that x4 and y1 represent the values of x and y when ρ enters the destination BB3.

2.4.3 Integrating BMC Formulas with Concolic Testing

To integrate BMC with concolic testing, we need to instrument function calls for BMC

encoding, obtain program CFG for performing static analysis, and consider the way to update

concolic data structures such as the worklist, the symbolic store and the branch history. Thus

we add the red lines in Algo 1, 2, and 3 to reflect the integration.

Once we meet a branch instruction, we need to check whether this instruction is a good

candidate to perform BMC. During the instrumentation in Algo 1, we first compute a set

Govs of all governors of the program P . Since basic blocks in governed regions are used

21

to generate BMC formulas, we skip instrumenting them. When a basic block BB has two

successors, if BB is a governor, we instrument a function call startBMC(BB) before BB’s

terminating instruction, and for each destination d ∈ Dests(BB), we instrument a function

call endBMC(BB, d) as the first instruction of d. If BB is not a governor, we perform the

old instrumentation in concolic testing.

BMC formulas generation in our algorithm requires static analysis result of a program

under test. In Algo 2, we read the CFG of the uninstrumented program P . This CFG is

used to generate BMC formulas along concolic executions.

Algorithm 4: startBMC and endBMC

void startBMC(gov):
currGov ←− gov; bmcNo←− bmcNo+ 1

init←−
∧

x∈AccV ars(gov)

(
xbmcNo
0 = symStore[&x]

)
// xbmcNo

0 is a fresh variable

struct BmcNode:
isCovered : BasicBlock −→ bool

Edges_d : BasicBlock −→ formula

done : bool

void endBMC(gov, d):
if currGov 6= gov then return
(φ,Vfinal, Edges)←− doBMC(CFGP , gov)

if i <| branch_hist | then
if i =| branch_hist | −1∧∀d′ ∈ Dests(gov)\{d}. branch_hist[i].isCovered[d′] then
branch_hist[i].done←− true

else
branch_hist[i]←− BmcNode(isCovered : λdest ∈ Dests(gov). false,
Edges_d : λdest ∈ Dests(gov). addSup(Edges[dest], bmcNo), done : false)

branch_hist[i].isCovered[d]←− true
pathC[i]←− init ∧ addSup(φ ∧

∨
c∈Edges[d] c, bmcNo)

i←− i+ 1

foreach x ∈ AccV ars(gov) do SymStore[&x]←− addSup(Vfinal(x), bmcNo)

Since a BMC region may contain multiple destinations, we need to instrument one

startBMC(gov) call and multiple endBMC(gov, d) calls into the program to define a BMC

governed region.

The definition of startBMC(gov) is given in Algo 4. It saves the governor gov that

will be used to generate a BMC formula using currGov. Then it increments bmcNo, which

records the number of BMC formulas that have been generated so far along the concolic
22

execution. It then uses init to “glue” the execution before entering GR(gov) with the BMC

formula for GR(gov). More concretely, for each variable x ∈ AccV ars(gov), an equation

xBmcNo0 = symStore[&x] is created, and init is the conjunction of all such equations.

The definition of endBMC(gov, d) is also given in Algo 4. If the passed-in governor

gov is the one saved in currGov, it performs the BMC generation algorithm described in

Section 2.4.2 to obtain a BMC formula φ for the governed region GR(gov), the final version

map Vfinal, and the edge map Edges.

The coverage history branch_hist is updated in endBMC(gov, d). We extend branch_hist

to be a list of BranchNode ∪ BmcNode. A BmcNode has three fields: isCovered records

which destinations have been covered in prior runs, Edges_d maps each destination to its

edge formulas, and done records whether all destinations have been covered in prior runs.

We then start to integrate BMC formulas into concolic testing. Given a formula ψ and

a number j, we denote addSup(ψ, j) to be the formula obtained by replacing each variable

x in ψ with a new variable xj. We first create a formula φ ∧
∨
c∈Edges[d] c which represents

all executions from the governor gov to the destination d by Theorem 2.4.1. Since the

governed region may be reached multiple times along an execution, we compute a formula

ψ ≡ addSup(φ ∧
∨
c∈Edges[d] c, bmcNo) which specifies that ψ is the bmcNo-th BMC formula

along the execution. We then add init ∧ ψ to the path constraint. Finally, to let the concolic

execution proceed, for each variable x ∈ AccV ars(gov), we update the symbolic store so that

symStore[&x] represents the value of x when the execution enters the destination d.

The function SolveConstraint is extended as shown in Algo 3. If the node branch_hist[j]

is a BmcNode, we find an uncovered destination d, and asks if there is an execution that

goes to d. The formula rmLastDest(pathC[j]) is defined by removing the disjunction of

edge formulas of d′ from pathC[j] where d′ is the destination covered by the just terminating

execution. If there are new inputs I ′ for such an execution to d, a new run is started with

inputs I ′.

Example We again reuse the example in Fig 2.2a. Suppose Llsplat randomly generates

x = 10 and y = 5 in the first run. When the run terminates, the path constraint is of size 1,
23

and pathC[0] = init ∧ φ ∧ ψd, defined as follows. Note that the superscript 1 of the variables

in pathC[0] represents that it is the first BMC formula generated along the run. The symbolic

variables sym1 and sym2 are created for x and y when InitInput(“x”) and InitInput(“y”)

are called.

init ≡ x01 = sym1 ∧ y01 = sym2

φ ≡



g1
BB1 = x01 > y01∧

g1
BB2 = ¬(x01 > y01)∧

g1
BB4 = (g1

BB2 ∧ x11 > y01)∧

g1
BB5 = (g1

BB2 ∧ ¬(x11 > y01))∧

g1
BB6 = (g1

BB4 ∨ (g1
BB5 ∧ g1

BB2 6= 0))


∧



x31 = ite(g1
BB1, x21 − y01, x21))∧

x11 = ite(g1
BB2, y01 − x01, x01))∧

x41 = ite(g1
BB4, y01 − x31, x31))∧

x21 = ite(g1
BB5, y01 − x11, x11))∧

y11 = ite(g1
BB6, x41, y01))


ψd ≡ g1

BB1 ∨ (g1
BB6 ∧ y11 6= 9)

The coverage history branch_hist is of size one. branch_hist[0] is a BmcNode defined

below:

branch_hist[0].isCovered =

[BB3 7→ true, BB7 7→ false]

branch_hist[0].done = false

branch_hist[0].Edges_d =

[BB3 7→ {g1
BB1, g

1
BB6 ∧ y11 6= 9},

BB7 7→ {g1
BB5 ∧ ¬(x21 6= 0), g1

BB6 ∧ ¬(y11 6= 9)}]

Now Llsplat searches for new inputs for the next run. Since BB7 is the only uncovered

24

destination based on branch_hist[0].isCovered, Llsplat solves the formula init ∧ φ ∧∨
c∈branch_hist[0].Edges_d[BB7] c, that is, Llsplat tries to find a feasible execution path that

leads to BB7 containing ERROR. Note that there are three execution paths to BB7, and

the formula encodes all.

2.5 Experiments

We have built our tool Llsplat to implement the concolic+BMC algorithm on top of KLEE

(LLVM version 3.4). To verify whether the algorithm can increase branch coverage of concolic

testing in practice, we designed our experiments to compare the branch coverage between

Llsplat and KLEE.

2.5.1 Experiment Settings

We chose two sets of benchmarks to perform the comparison. The first benchmark set is

the Windows NT Drivers Simplified set containing 10 C programs from [SVC], and the

second benchmark set is the GNU Coreutils tested in [CDE08] that contains 88 C programs.

Each program in Windows NT Drivers Simplified set ranges between 2344 and 6444 lines

of LLVM-IR code, and that of the GNU Coreutils set contains approximately 200,000 lines

of code in LLVM-IR level per benchmark including library code. All the experiments were

performed on a 2 core Intel Xeon E5-2667 v2 CPU machine with 256GB memory and 64-bit

Linux (Debian/Jessie).

Both Llsplat and KLEE ran with original KLEE arguments. We conducted the

experiments 10 times and then calculated the average coverage because the coverage depends

on the initial random input vector.

All the benchmarks in the Windows NT Drivers Simplified set are tested by calling

Llsplat and KLEE with maximum run time of 3600s and maximum memory of 1600MB.

All the benchmarks in the GNU Coreutils set are tested using the following command

./<tool-name> --libc=uclibc

25

--posix-runtime

--no-output

--max-memory=1600

--max-time=3600

./file_under_test

--sym-args 1 10 2

--sym-files 2 8

Using these options, we ran each benchmark that contained a minimum of 1 argument, and a

maximum 10 of arguments with each argument containing at most 2 characters for 3600s.

2.5.2 Experimental Results

Table 2.2 shows the branch coverage of all 10 benchmarks in the Windows NT Drivers

Simplified benchmark set. For example, KLEE covered 270 branches while Llsplat covered

319 branches with relative branch coverage improvement of 18.14% on cdaudio_s1_f. Relative

branch coverage improvement is defined by the difference between the branch coverage of

Llsplat and the branch coverage of KLEE divided by the branch coverage of KLEE.

The results in Table 2.2 show that Llsplat achieves better branch coverage than KLEE

for all 10 benchmarks in the set with 13% relative branch coverage improvement. We conclude

that the concolic+BMC algorithm improves the branch coverage of this benchmark set.

The programs in the GNU Coreutils benchmark set are larger than that of the Windows

NT Driver Simplified benchmark set. We would like to evaluate them to check whether

Llsplat can still achieve higher branch coverage than KLEE.

Figure 2.3 shows the result of relative branch coverage improvement for all 88 programs

from the GNU Coreutils benchmark set where each bar represents relative branch coverage

improvement of one benchmark. A bar above zero indicates by how much Llsplat wins over

KLEE; a bar below shows the opposite. Bars are sorted in ascending order.

The result shows that Llsplat outperforms KLEE in terms of branch coverage on most of

the benchmarks: 80 out of 88 benchmarks tested with Llsplat have higher branch coverage

26

Benchmark KLEE LLSPLAT

Branch Run Branch Run

covered time(s) covered time(s)

cdaudio_s1_f 270 2.26 319 (+18.14%) 61.06

cdaudio_s1_t 268 2.37 317 (+18.28%) 61.46

diskperf_s1_t 114 3614.35 132 (+15.78%) 3602.78

floppy_s3_f 142 1.55 156 (+9.85%) 20.92

floppy_s3_t 142 1.57 155 (+9.15%) 22.36

floppy_s4_f 224 3.60 238 (+6.25%) 31.99

floppy_s4_t 224 3.57 236 (+5.35%) 33.80

kbfiltr_s1_t 93 0.42 111 (+19.35%) 1.62

kbfiltr_s2_f 159 1.11 181 (+13.83%) 4.98

kbfiltr_s2_t 159 1.11 182 (+14.47%) 4.58

Table 2.2: Branch coverage comparison between Llsplat and KLEE on the Windows NT

Drivers Simplified

than KLEE. Average improvement for all benchmarks is 13% and 16% for the 80 improved

benchmarks. Among all the benchmarks 65 have more than 10% increases. Table 2.3 provides

detailed branch coverage information of 10 randomly selected benchmarks. The number of

encoded BMC governed regions is also provided in Table 2.3 to show the involvement of BMC

encoding in this benchmark set. Note that a governed region can be encoded multiple times

since it can be reached multiple times during one single execution path.

A natural question that arises is when Llsplat’s branch coverage exceeds KLEE’s result.

We compute the crossing time from which on Llsplat always outperforms KLEE on the

improved benchmarks from the GNU Coreutils. More concretely, for each benchmark, we

analyzed a graph that describes how branch coverage evolves in 3600s using Llsplat and

KLEE, and recorded the time when the branch coverage reported by Llsplat is always

higher than the one reported by KLEE. Table 2.4 shows the result statistics. The crossing

time of 46 and 68 benchmarks is below 60s and 120s, respectively. This fact implies that our

27

Figure 2.3: Branch coverage imporvement on the GNU Coreutils. Each bar denotes a

benchmark under test. Y-axis represents relative branch coverage improvement.

Benchmark KLEE LLSPLAT

Branch covered Branch covered Number of governed regions

csplit 1095 955 (-12.78%) 54059

chown 883 1000 (+13.25%) 55485

shred 734 762 (+3.81%) 85194

dd 647 811 (+25.34%) 38815

cut 651 728 (+11.82%) 39396

echo 258 301 (+16.67%) 108079

uniq 686 700 (+12.24%) 44827

link 431 518 (+20.18%) 79621

nice 481 581 (+20.79%) 94622

df 844 907 (+7.46%) 81981

Table 2.3: Branch coverage comparison between Llsplat and KLEE and the number of

encoded governed regions on 10 randomly selected benchmarks from the GNU Coreutils

method is preferable over KLEE on these benchmarks given a tight time budget.

In conclusion, the concolic+BMC algorithm has a benefit of increasing branch coverage

28

Crossing Time(s) 0-60 60-120 120-180 >180

Number of Benchmarks 46 22 1 11

Table 2.4: Crossing time statistics of improved benchmarks on the GNU Coreutils

of all 10 programs in the Windows NT Drivers Simplified benchmark set, and 80 out of 88

programs in the GNU Coreutils benchmark set.

2.5.3 Threats to Experiment Validity

We identified the following threats to the validity of our experiment:

• Test benchmarks used in the experiment may not be representative of all

programs. We chose the Windows NT Drivers Simplified set from [SVC] since three

programs in this benchmark set are used in [SK14] to evaluate context-guided concolic

testing. Thus we evaluated all programs in this benchmark set. To make our benchmark

selection more unbiased, we chose 88 programs from the GNU Coreutils benchmark set

used in [CDE08] to evaluate KLEE. Even though we used 98 C programs with diverse

sources, they may not be representative of all programs.

• More LLVM-IR types may yield different results. The current implementation

of Llsplat only deals with LLVM-IR of non-complex constant expression type and

non-floating type during the BMC encoding procedure. The experimental results might

be different with more other type of LLVM-IR instructions.

• Large governed region size may yield different results. In the GNU coreutils

expriment, there are 8 benchmarks where Llsplat performed worse than KLEE. We

observe the BMC formulas in those benchmarks are complex. Thus the STP solver used

in Llsplat and KLEE might not be smart enough to solve them efficiently. Under

such cases avoiding to encode complex governed regions or breaking complex regions

into a few small regions could help improve the result. It remains as our future work to

identify BMC formulas of acceptable complexity to avoid solving hard formulas.

29

2.6 Related Work

Concolic Testing Several approaches analyze states (i.e., path constraint and symbolic

store) maintained by concolic testing so as to explore the search space efficiently. Gode-

froid [God07] introduced compositional concolic testing. The work was later expended

to do compositional concolic testing on demand [AGT08]. The main idea is to generate

function summaries for an analyzed function based on the path constraint, and to reuse

them if the function is called again with similar arguments. Instead of computing dynamic

underapproximations of summaries, we compute exact summaries of governed regions using

the static representation of the CFG. Kuznetsov et al. [KKB12] introduced the dynamic

state-merging (DSM) technique. DSM maintains a history queue of states. Two states may

merge (depending on a separate and independent heuristic for SMT query difficulty) if they

coincide in the history queue. Our concolic+BMC approach is different because we do not

analyze the states to merge execution paths.

Moreover, several approaches combine other testing techniques with concolic testing

together. Majumdar and Sen introduced hybrid concolic testing [MS07] that combines

random testing and concolic testing. Boonstoppel et al. proposed RWSet [BCE08], a path

pruning technique identifying redundant execution paths based on similarity of their live

variables. Jaffar et al. [JMN13] used interpolation to subsume execution paths that are

guaranteed not to hit a buggy location. Avgerino et al. [ARC14] combined static data-flow

program analysis techniques with concolic testing. Santelices et al. [SH10] introduced a

technique that merges multiple execution paths based on the control dependency graph of a

program.

Recently there are some other trials on the combination use of concolic testing and model

checking. Daca et al. [DGH15] proposed an approach combining model checking and concolic

testing whose framework is similar to [MS07]. It ran concolic testing first to generate test

cases. When it failed to meet certain goals, it switched to model checking to prove path

feasibility to reduce searching space. Czech et al. [CJW15] used condotional model checking

to construct a residual program that is fed into a concolic testing tool to reduce testing

30

effort. Gonzalez-de-Aledo et al. [ASH16] exploited static analysis to zoom into potential

bug candidates and concolic execution to confirm these bugs. Our method is different from

these methods because our model checking targets at the loop-free fragment of the code such

that we can encode multiple paths on the fly to alleviate path explosion and increase branch

coverage.

Several heuristic-based approaches have been proposed to guide an execution toward a

specific branch. CREST [BS08] introduced four search strategies, as already shown in the

experiments. SAGE [GLM12] introduced generational search that selects all the branches in

an execution path and generates a set of inputs. Xie et al. [XTH09] proposed a fitness-guided

search that calculates fitness values of execution paths to guide the next execution towards a

specific branch. Li et al. [LSW13] proposed a subpath-guided search which steers symbolic

execution to less traveled paths. Seo and Kim [SK14] introduced context-guided search that

selects branches in a new context to help prevent the continuous selecting of the same branch.

KLEE [CDE08] used a meta-strategy which combines several search strategies in a round

robin fashion to avoid cases where one strategy gets stuck. Conceptually, our concolic+BMC

approach is compatible with the above search heuristics. In essence, concolic testing is to

cover both branches of a conditional, which can be regarded as two destinations. Then the

goal of concolic+BMC is to cover all destinations in a program.

Bounded Model Checking VC generation approaches in modern BMC tools can be

classified into two categories. The first one is based on weakest preconditions [Dij97] by

performing a demand-driven backward analysis from the points of interest [BL05,CFS09,

FS01,LQL12]. The other one encodes a program in a forward manner, such as CBMC [KCY],

ESBMC [CMN12], and LLBMC [MFS12]. We are inspired by the VC generation algorithm

of CBMC, and thus conceptually it is the closest work to our BMC algorithm. The VC

generation of CBMC differs from ours in four ways. First, though CBMC also does variable

renaming, it does it using a fixed order of basic blocks. We relax this requirement and prove

that any topological order works for variable renaming. This is important to us, because

we do not have to follow the fixed order CBMC uses. In fact, we use the reverse post order

31

of a governed region as our topological order for variable renaming because it has been

computed during the construction of depth first spanning tree which identifies back edges.

We save the computation time in this way. Secondly, though the VC generation of CBMC

also computes edge formulas for each basic block in a given acyclic program, all predecessors

of the basic block contribute to deriving edge formulas. However, this is not the case in ours.

For example, suppose that gov is governor, d is a destination of GR(gov), and there is a

predecessor BB 6∈ GR(gov) of d. This case may happen because BB is polluted. Then our

BMC algorithm does not derive an edge formula from BB for d. Thirdly, CBMC does not

have the notion of destinations. Since a governed region may have multiple destinations, it is

not clear that no matter which destination is chosen, whether the final version of variables in

the formula φ that encodes the governed region always represents the value of the variables

when the destination is reached. We prove this fact in our paper. Lastly, since CBMC encodes

the entire program, it does not identify acyclic portions of a program using the notions such

as governors. It also does function inlining and loop unrolling, which we do not.

ESBMC follows the VC generation algorithm of CBMC. It extends BMC to check

concurrent programs. LLBMC explicitly models the memory as a variable representing

an array of bytes, which requires LLBMC to distinguish if a little-endian or big-endian

architecture is analyzed. They are orthogonal to Llsplat.

Software Model Checking Large-block encoding [BCG09] is widely used in software

model checkers. It encodes control flow edges into one formula, for computing the abstract

successor during predicate abstraction. Selective enumeration using SAT solvers [HSI10]

and symbolic encodings for program regions, e.g., to summarize loops [KST13], have been

successfully exploited in software model checking.

2.7 Conclusion

Since concolic testing suffers from path explosion, we introduce the concolic+BMC algorithm

that applies BMC locally targeting at loop-free code fragment during concolic testing to

32

alleviate path explosion, and thus improve branch coverage. Our experiments show that the

concolic+BMC algorithm increases branch coverage of the two test benchmark sets. It is also

worth mentioning that, if we notice that there is a BMC region containing a potential error

after concolic+BMC, and we want to check exactly which branch in the region leads to the

error, we can always set that region to do concolic execution while keeping the remaining

regions performing BMC.

We believe some future work can be achieved on top of our algorithm. Specifically, the

implementation of Llsplat performs BMC encoding if there exists an acyclic graph containing

a few merging basic blocks without function calls inside of the graph. We avoid encoding

function calls because it may incur exponential blowup in the BMC formula generation. We

would like to come up with a clever evaluation procedure that identifies “cheap" function

calls that can be encoded. In addition, solving functions of large scale may yield long time

being spent in the SMT solver. We would also like to investigate whether there exists a low

cost governed region overhead estimation method to make the selection of BMC regions more

intelligent.

33

CHAPTER 3

Codecomb: Automated Test Case Generation And

Defect Detection for Emebedded Software Based on

Symbolic Execution

3.1 Introduction

Reliability of the embedded system has gained more and more interests with the development

of the society. Especially in the field of consumer electronics, industry control, military

system and aerospace, huge amount of embedded system modules are playing crucial roles

to achieve various functions. Similar to conventional software development, validation &

verification often spans more than 50% of embedded software development cost. For high-

standard embedded systems, the total test cost is about 60% of project. In critical systems,

this percentage is even greater than 80%. Thus a complete and thorough software testing

technique for embedded systems is a core research topic in software testing to guarantee the

reliability of software systems.

Conventional testing methods use a hybrid of manual testing and simple semi-automation

tools. Those methods can not guarantee satisfied efficacy in the sense of code coverage and

run time. In addition the manual part introduces great manpower. The occurrence and

development of symbolic execution provides a new breakthrough for test case automatic

generation. Test case generation based on symbolic execution greatly improves the coverage

of code under test, and vastly reduces the redundancy of generated test cases [CS13,SPF14,

Ueh16,CZG13].

There are a lot of advances in the development of symbolic execution tools in recent years.

34

CREST [BS08] is an open-source symbolic execution tool developed for C program. It uses

CIL to format and instrument C program under test. While the program is executing, CREST

collects path constraints and computes test case for a new path to execute. The disadvantage

of CREST is that it lacks supports some data types such as pointers and floating points

numbers. SAGE [GLM12] is a symbolic execution tool developed by Microsoft. It is reported

to have found one third of the software deficiencies in the development of Windows7. But

SAGE only supports x86, and does not support other embedded platforms. KLEE [CDE08]

complies code under test into LLVM-IR, and then performs symbolic execution over LLVM-IR.

It can generate test case with high coverage. KLEE can not symbolically execute library

function calls and third-party libraries without having source code. Thus the path constraints

obtained by KLEE are not always precise enough. S2E [CKC11] achieves selective symbolic

execution technique based on KLEE and QEMU. For complex source codes S2E can select

part of the source code to perform symbolic execution, the remaining part can be executed

on QEMU. S2E improves KLEE in the sense that programs without source codes are able to

run at the emulated machines. This fact makes testing on top of embedded platform possible.

However, due to the limitation of the QEMU itself, S2E can only support limited embedded

platforms. In addition, there are also some constraints on the accuracy of system information

that S2E collects.

Some testing of embedded software are implemented on emulators. There are a few

limitations comparing with testing on an emulator and the real embedded platform. First,

run-time performance of an emulator is usually slower than real embedded platform. This

performance difference is due to the fact that executing instruction in another instruction

set such as ARM on top of a x86 machine takes extra work to handle compatibility issue.

In practice, even if some emulators are in the form of X86 image such as Android emulator,

many applications are not able to run on those emulators. Second, emulators are customized

for certain embedded platforms, which is not universal. Even in a specific emulator such

as Android emulator, due to the customization on the Android platform from different

manufacturers, the emulator may not achieve the same functions as the real board.

Embedded platforms usually have limited hardware resources and have various layouts.

35

C/C++ source code

Pre-processing

IR conversion

Instrumentation

Compile to

executable code

Client

NET_SHELL

Target execution control

Test case

management

Constraint

management

Instrumented executable

Concrete execution

Symbolic execution

C
o
m

m
u
n
ic

a
t
io

n

Server

C
o
m

m
u
n
ic

a
t
io

n

Constraints and test

case management

Path

contraints

generation

Deficiency

contraints

assemble

SMT Formatting

SMT Solver

Upload Comm

Figure 3.1: Codecomb architecture

In symbolic execution, the highest computation load is on SMT query of path conditions and

property checking. Since the complexity of those SMT queries are NP, using the computation

power on the embedded platform is thus not practical and ideal. However, the symbolic

executor only needs the query result in order to proceed exploration. It means that the

SMT query load can be transferred to other powerful machines to become independent

from the path execution. In this chapter, we adopt symbolic execution and automatic

test case generation into embedded platforms. We use a client/server model to separate

constraint solving and symbolic execution to greatly reduce the computation load in the

embedded platform. Theoretically Codecomb can be tailors to any embedded platform that

has communication modules to send and receive data. We also provide symbolic descriptions

for corresponding memory deficiencies. Experiments on PC and Pandaboard embedded

platform show that Codecomb can run on the embedded platform, and is able to find software

deficiencies automatically.

3.2 System Architecture

To accommodate the traits of the embedded platforms that they have limited hardware

resources and have various layouts, we propose Codecomb, a client-server architecture tool

that separates the code under test and the symbolic execution engine. The system architecture

is shown in Figure 3.1. The architecture contains a pre-process module, a client module, and

a server module. The pre-process module responses for perform instrumentation of input

symbols and path constraints condition functions. The client module runs on real embedded

36

platforms. It executes instrumented and complied binary code to collect path constraints

and extract symbolic description of memory deficiencies with in arrays and pointers. The

server side communicates with the client module to perform SMT solving so as to obtain real

test case and check for deficiencies.

3.2.1 Source Code Instrumentation

One of the key steps for symbolic execution is the source code instrumentation. The function

instrumented can collect symbolic descriptions of path constraints and deficiencies such that

symbolic execution and concrete execution happen at the same time.

Codecomb uses LLVM-IR as the intermediate representation of the source code. During

the instrumentation process it first recognizes input variables that are needed to symbolize.

Based on symbolized input variables, Codecomb inserts different function calls to various IR

statements. Sorts of the statements of our interests are assignments, branch conditions, func-

tion calls, and memory deficiency related statements (getelementptr, alloca, etc.). Functions

instrumented include symbolic execution initialization function, load function, store function,

operator application function, buffer overflow checking function, pointer error checking func-

tion, and memory leak checking function, etc. Load and store functions can read and write

symbolic expressions from a symbolic store, operator application function constructs symbolic

expressions for unary and binary operations of the LLVM-IR. As for property checking, buffer

overflow checking function collects buffer size and the current index in the buffer, pointer

error checking function collects the pointer address and the space that a pointer points to,

and memory leak function collects memory allocation information during execution. When

a branch instruction is executed, an instrumented branch checking function collects path

constraints. If the instruction is a function call, instrumentation process inserts a function

call to collect call stacks. Once the instrumentation completes, a cross compilation tool

compiles instrumented code into executable object code such that the code can be uploaded

to the client module to perform symbolic execution.

37

3.2.2 Client Module

The client module runs on the target embedded board. It includes a shell program and an

executable instrumented bytecode. The shell program performs target execution control,

test case management, constraints management, and communication with the server module.

Target execution control sub-module initializes the server module in the shell program, and

makes sure the handshake with the server module is a success. Test case management sub-

module sends, receives and stores the test case from the server side solver engine. Constraint

management sub-module maintains all the symbolic expressions generated from the symbolic

execution, and communicates to the server module via the communication sub-module.

After completion of all the initialization process in the shell program, the shell program

randomly generate a test case for the instrumented code to start concrete execution. With

the help of the instrumented function calls, symbolic execution and the concrete execution are

executed simultaneously. Instrumented function calls collect path and deficiency constraints

from the execution trace, and then send those constraints to the server side for SMT solving.

The client side waits for the feedback from the server side to decide whether to continue

testing. If the client receives a continue signal along with the a set of new test case, the client

starts a new round of test.

3.2.3 Server Module

The server module responses for receiving SMT constraints from the server side, calling SMT

solver to query satisfiability and test cases, and sending data back to the client. It contains

the following sub-modules.

• Communication sub-module: this module receives path constraints from the client,

and sends control signal and new test case back to the client. In Combcomb we adopt

LAN to achieve communication between the client and the server.

• Constraints and test case management sub-module: this module maintains a

work list of all unexplored path constraints, and manages corresponding test cases

38

generated by the SMT solvers. The server sends test cases in this module to the client

to perform next round of execution to explore an undiscovered path.

• Path constraints generation sub-module: this module systematically generates

new path constraints based on the path sent from the client module. In Codecomb we

perform depth-first style path reasoning. All branches are inverted on by one from the

end of the path to the beginning of the path so that the SMT solver can verify the

reachability of the new path. A reachabable path along with the corresponding test

case is sent to the constraints and test case management sub-module.

• Deficiency constraints assemble sub-module: this module conjoins the union of

all deficiency constraints to a given path constraint.

• SMT formatting sub-module: this module changes the path constraints to specific

format that a SMT solver can read such that the server can call different SMT solvers

on demand.

• SMT solver sub-module: this module calls the corresponding SMT solver to query

satisfiability in parallel, and return test cases.

In real implementation the server side runs in multi-threaded mode to perform path reasoning,

SMT path and deficiency constraints solving. The main thread queries all symbolic constraints

via SMT solvers that are run in children threads, and sends a set of new test cases from the

constraints and test case management sub-module back to the client. Some children threads

are responsible for checking deficiency properties as well. If a path is proved to be faulty, the

error test case will be sent back to the client side to reproduce the error.

3.3 Test Case Generation

Test case generation based on symbolic execution generates a path constraint by conjoining

symbolic expressions of all branch conditions of a program path. Inverting one of the clauses

of the path constraint yields a new program path. Exhaustively and recursively inverting

39

every condition enumerates all program paths.

An example of test case generation is shown in Table 3.1. Assume that after initialization

the symbol a has been assigned with a value greater than 2, then at line 5 the path constraint

set is S = {3 ∗ a + 2 6= 8}. Thus line 6 will be executed. The server module inverts the

condition in S, and query for a new path S ′ = {3 ∗ a + 2 6= 8}. Test case a == 2 is then

sent back to the client to execute line 5 in the next round of execution. When the program

Table 3.1: Example of test case generation

Example: simple.c

1 int main(void) {

2 int a, b;

3 mksymbol_int(a);

4 b = 3 * a + 2;

5 if (b == 8) printf ("8/n");

6 else printf ("not 8/n");

7 return 0;

8 }

under test is complex and contains multiple branches, after one round of execution the

path constraint set is S = {s1, s2, ..., sn}. The server side changes the last condition in S

to generate a new path S ′ = {s1, s2, ..., s
′
n}. sn is labelled as visited in order not to query

redundant program paths. Another new path is generated by inverting the last unvisited

condition in path under analyzing of the path constraints generation sub-module. This

depth-first search scheme guarantees visiting all program paths without querying repetitive

constraints. Note that other path selection and generation schemes are also valid as long as

they systematically enumerate all program paths.

40

3.4 Defect Detection

Compilers and program IDES can identify regular syntax and semantic errors. Some IDEs

can achieve part of the static analysis functions. However, checking deficiencies such as

memory overflow and memory leak are hard for static analysis tools. Symbolic execution can

check such deficiencies thoroughly with high code coverage. We listed all the deficiencies we

implemented to check in Codecomb below.

3.4.1 Buffer Checking

Conventional static analysis only compares the concrete index of an array with the size of

the array to check whether a buffer overflow occurs. However, if the index is represented as

an expression instead of a concrete value, it is hard for a static tool to check for the potential

buffer overflow risk. Same thing happens to a pointer that points to an array. Codecomb

handle checks for such risks by instrumenting function calls before indexing getelementptr

LLVM-IR statement. Such functions can obtain symbolic and concrete value of the index,

and corresponding C/C++ source code line number. A arraycheck function checks whether

there is an array out of bound, a pointercheck function checks whether the current pointer

is out of bound, and a ptrtoarraycheck function checks whether a pointer that points to

an array is out of bound. Thus functions first determines whether current index symbolic

expression can be greater than the buffer size to check for buffer overflow or out of bound

indexing. If a violation happens an error reproduce test case along with an error is returned.

For example, there is an integer array that allocates M elements. Indexing a[i] returns a

value in a. If i is an expression instead of a concrete value, instrumented functions adds

a constraint i ≥ M to the deficiency constraint set R. R will be conjoined with the path

constraint set S in the server side to check for violations. If conjoined constraints returns a

satisfiable result, the indexing statement has the risk of buffer overflow. Using the example

shown in Table 3.2, Codecomb mainly checks the following three overflow errors.

41

Table 3.2: Example of deficiency detection

C souce code LLVM-IR (snippet)

int i; 1 %i = alloca i32

int s[5]; 2 %s = alloca [5xi32]

int *p = s; 3 %p = alloca i32*

int *q = (int*) malloc (5*sizeof(int)); 4 %q = alloca i32*

s[i] = 1; 5 %2= getelementptr inbounds[5xi32]* %s, i32 0, i32 0

p[i] = 1; 6 store i32* %2, i32** %p

q[i] = 1; 7 %3 = call noalias i8* @malloc(i64 20) #2

8 %4 = bitcast i8* %3 to i32*

9 store i32* %4, i32** %q

10 %5 = load i32* %i

11 %6 = sext i32 %5 to i64

12 %7= getelementptr inbounds[5xi32]* %s, i32 0, i64 %6

13 %8 = load i32* %i

14 %9 = sext i32 %8 to i64

15 %10 = load i32** %p

16 %11= getelementptr inbounds[5xi32]* %10, i32 0, i64 %9

17 %12 = load i32* %i

18 %13 = sext i32 %12 to i64

19 %14 = load i32** %q

20 %15= getelementptr inbounds[5xi32]* %14, i32 0, i64 %13

Array index out of bound In Table 3.2, we define an array ints[5], an indexing of s[i]

where i ≥ 5 will trigger index out of bound error. The indexing generates a getelementptr

instruction in the corresponding LLVM-IR. At line 2 of the LLVM-IR, the array of 5 integers

is allocated. At line 12 of the LLVM-IR, we can obtain the indexing offset is %6, which

corresponding to i in the source code. At this time, we instrument a stub function before

line 12 by passing in %6, the size of s, and the current line number in the original source

42

code. Inside the stub function, Codecomb checks whether %6 can be out of the s’s bound. A

concrete value of i can be compared directly. If i is a symbolic expression associated with the

input symbols, Codecomb calls the server side to check whether such a deficiency is satisfied

in the current execution path. If such a violation exists, the line number of the original source

code is printed.

Array pointer out of bound The indexing of the array pointer is at line 16. From line 2

of the LLVM-IR, we acknowledge that the array is of 5 integers. From stub functions inserted

before line 5,6,15 we are able to know %10 actually points to the array s. Thus we insert a

stub function before line 16 by passing in the bound and the current index to check whether

there is a buffer overflow violation by querying the SMT solver in the server side. If such a

violation exists, the line number of the original source code is printed.

Pointer segmentation We can observe from line 7 of the LLVM-IR, the pointer points to

a new allocated space of 20 bytes where the pointer can be dereferenced to a 32-bit integer

data. The indexing of the array pointer is at line 20. We insert a stub function by passing in

the index offset %13, the total allocated space of the array pointer, and dereferenced data

size. Inside the stub function, Codecomb checks whether %6 can be out of the s’s bound. A

concrete value of i can be compared directly. If i is a symbolic expression associated with the

input symbols, Codecomb calls the server side to check whether such a deficiency is satisfied

in the current execution path. If such a violation exists, the line number of the original source

code is printed.

3.4.2 Memory Allocation and deallocation

In symbolic execution, we can insert stub functions(malloccheck, freecheck, mallocinit) to

obtain all the information of the memory operation within an execution path so as to simulate

the usage of the memory. At the end of an execution path, Codecomb checks whether all

allocated memory spaces have been deallocated. If such a violation exists, the line number of

the original source code is printed. Checking for double-free violation is similar to memory

43

leak checking. In a program path, if the stub function freecheck detects that the program is

freeing up a space that has already been deallocated, Codecomb returns a double free error

along with the corresponding line number. Detailed implementation is shown as follows.

Memory leak detection Codecomb maintains a memory usage table. The corresponding

stub function updates the usage table by adding the allocated memory address and size,

original source code line number, and a flag of usage. Value of 1 in the flag means the memory

has not been deallocated. While the program executes a free instruction, the stub function

queries the memory usage table. If there is an corresponding entry in the table, the flag value

is decremented by 1. At the end of the execution, if there exists an entry in the memory

usage table that has a flag value equals to 1, Codecomb returns memory leak error with

corresponding source code line number.

Double free detection Double free error often happens on large scale and complex software

systems. With the help of the memory usage table, double free detection is available by

checking the flag value in the corresponding entry in the table. A flag value less than 0 means

that the program is trying to deallocate a space that has already been released. When the

program executes a memory release instruction, a stub function is called to query the memory

usage table. If such a error is detected in the stub function, Codecomb returns memory leak

error with corresponding source code line number.

3.5 Experimental Results

We have built our Codecomb prototype that implements the automatic test case generation

for embedded pplatforms. We implements the server on top of a Ubuntu 14.04 computer.

In the server side we use Z3 SMT solver as the symbolic execution querying solver. For the

comparison purpose, the client is implemented on Pandaboard, an embedded development

board that runs Ubuntu 12.4, and on a Ubuntu 14.04 computer. Using a linux development

board we can cross compile Valgrind to show the effectiveness of Codecomb. Thus we cross

44

compiled Valgrind 3.11.0 on the Pandaboard. We list one of the test cases as below to

clearly observe the performance, and the reports from CodeComb and Valgrind are shown in

Table 3.3.

1 int a[5] = {1,2,3,4,5};

2 int *p;

3 p = a;

4 int *q = (int *)malloc(5*sizeof(int));

5 int *q2 = (int *)malloc(5*sizeof(int));

6 int *q3 = (int *)malloc(5*sizeof(int));

7 int i,j;

8 mksymbol_int(i);

9 mksymbol_int(j);

10 if (i < 10) {

11 a[i] = 0;

12 if (j < 8) {

13 q[j] = 1;

14 p[j] = 1;

15 p[j] = a[i] + 1;

16 } else {

17 free(q3);

18 }

19 }

20 free(q2);

21 free(q2);

We observe that both Codecomb and Valgrind report all potential errors in the test case.

However, to trigger all errors, Valgrind requires carefully selected test cases. For complex

source code, it is hard to find all test cases that can trigger all errors manually. Codecomb

generates all test cases automatically, and can finish the whole flow in a single run. There

is no need to design special test cases comparing with Valgrind. We show the comparison

45

Table 3.3: Reports of CodeComb and Valgrind for bugtest

Codecomb Report Valgrind Report

Branch coverage 100% Test1:(i = 0, j = 0)

Array out of bound #11, #15 Memory leak #4, #6

Pointer out of bound #13 Pointer double free #21

Array pointer out of bound #14, #15 Test2:(i = 11, j = 11)

Memory leak #4, #6 Memory leak #4, #6

Pointer double free #21 Pointer double free #21

Test3:(i = 4, j = 10)

Memory leak #4

Pointer double free #21

Test4: (i = 4, j = 3)

Memory leak #4, #6

Pointer double free #21

Test5: (i = 9, j = 7)

segmentation fault #13, #14, #15

results of other test cases in Table 3.4. In this table, we provide three testing schemes. The

first scheme (Random + Valgrind) uses Valgrind by feeding in random inputs for multiple

rounds. The second scheme (Auto + Valgrind) uses Valgrind by feeding in all test cases

generated from Codecomb. The last scheme (Codecomb) uses pure CodeComb to conduct

testing. From the experiments we observe that Codecomb can detect all the test cases that

Valgrind can detect automatically. Due to the fact that Valgrind actually execute one single

program path determined by the input, carefully selection of the test cases are required to

find all potential errors. Thus the random testing scheme using Valgrind can not guarantee

the path coverage of the program, and can not guarantee to find all potential errors. The

characteristic of automatic test case generation benefits Valgrind in the second scheme to

find all potential errors so that Valgrind can visit all program paths. For all program paths,

46

Table 3.4: Testing result comparison between Codecomb and Valgrind. A stands for buffer

overflow, B stands for memory leak, C stands for pointer double free.

Benchmark array leak ptr_arr ptr_over

Error Type A B C A B C A B C A B C

Random + Valgrind 0 0 0 2 1 0 0 0 0 1 1 0

Auto + Valgrind 1 0 0 2 1 0 1 0 0 2 1 0

Codecomb 1 0 0 2 1 0 1 0 0 2 1 0

(a) PC client (b) Pandaboard client

Figure 3.2: Run time comparison between CodeComb and Auto+Valgrind

Codecomb detects the same vulnerabilities in the program as in Valgrind, and Codecomb

shows the better automation than Valgrind.

We also compare the deficiency checking speed between Codecomb and Valgrind, and the

result is shown in Figure 3.2. Figure 3.2a shows the run time comparison running on the PC

client, and Figure 3.2b is the comparison on the Pandaboard client. The performances on the

Pandaboard are in general worse than the PC client because embedded platform has limited

hardware resources and computation power. We profiled the performance of CodeComb, and

found the communication takes great amount of the total run time. Even though network

communication is a huge overhead in Codecomb, we can still observe that Codecomb itself has

better performance than Valgrind using test cases automatically generated from Codecomb

on both settings.

47

In conclusion, in this experiment we preliminary show that Codecomb can perform

symbolic execution and automatic test case generation on embedded system platforms. Under

the Linux embedded platform settings we show that Codecomb can detect the same memory

deficiencies as in Valgrind. Comparing to Valgrind that needs to carefully select test cases,

Codecomb is a fully automatic approach on test case generation on embedded platforms. As

Codecomb is an executable program, theoretically it has the ability to run on non-Linux

embedded platform where Valgrind can not be installed as long as the cross compilation tool

and network communication port on the client are provided.

3.6 Conclusion

In this chapter, we adopt symbolic execution and automatic test case generation into embedded

platforms. We use a client/server model to separate constraint solving and symbolic execution

to greatly reduce the computation load in the embedded platform. Multi-threading in both

client and server modules increases the efficiency of the Codecomb. Experiments on PC and

Pandaboard embedded platform show the Codecomb can run on the embedded platform,

and is able to find software deficiencies automatically. As a future work, we will continue

improve Codecomb to make it suitable for more complex source code, and add support to

more communication ports to make Codecomb suits more sorts of embedded platforms.

48

CHAPTER 4

A Dynamic Approach to Functional Verification of High

Level Synthesis

4.1 Introduction

High-level design has many advantages over the commonplace design flow that begins with

register-transfer level (RTL) code. Among the most compelling advantages is the improved

verification efficiency which a higher level of abstraction offers. It is apparent to the point of

being self-evident that when the source code of a design is created, there will be fewer errors

if the source is at a higher abstraction level than if it is at a lower level. However, there is

still a process to verify the transformations which are applied to the design description as it

proceeds through the design flow from creation to final realization.

Formal verification proves the correctness of the system with respect to a certain formal

specification or property. For example, many testing tools exploit formal verification in

bug finding [GHM16] [GWY17], and probabilistic model checking [GHW17] [GWH18] is

applied to verify its reliability and energy trading behaviour. Among all formal verification

categories, functional verification is a useful functionality that can be applied to HLS in a

similar manner to its application in RTL-to-gate equivalence checking. Most of functional

verification work with formal verification above rely on static analysis on both behaviour

and generated RTL side, where model checking is widely used. A. Mathur et al. [MFC09]

introduced the model checking on system level models and sequential equivalence checking in

the HLS level functional verification. slong this line C. Marquez et al. [MSC13] proposed

a Sequential equivalence checking (SEC) formalism and an algorithm, for use between a

specification written at electronic system level, and an RTL implementation. T. Nishihara et

49

al. [NMF06] presented a new word-level equivalence checking method between two models

before and after HLS or behavioral optimization. S.Kundu et al. [KLG08] proposed a HLS

verification algorithm defined by equivalent bisimulation relation. A. Koelbl et al. [KJJ09]

discussed solver technology that has shown to be effective on many real-life equivalence

checking problems. It compared different solver strategies, and presented a hierarchical

checking methodology. In HLS verification field, many existing HLS functional verification

work focus on scheduling verification only. C. Karfa et al. [KSM08] described a formal method

for checking equivalence between a given behavioral specification prior to scheduling and

the one produced by the scheduler with operations on finite state machine with datapath

(FSMD) models applied to both the behaviors. C. Lee et al. [LSH11] utilized FSMD on both

descriptions as well, and their goal is to verify scheduling with code transformations such as

speculation and common sub-expression extraction across basic block boundaries. J. Urdahl

et al. [USK14] proposed a path predicate abstraction for sound system level models of RTL

system-level designs model checking based on the notion of operational graph coloring. One

issue for the above static analysis methods is that static analysis tries to prove the general

equivalence of two state transition machines with full automation, which is hard in general.

Another issue is that since model checking describes all the state transitions of a program

model in their formulas including non-critical data paths and components that may not affect

the output, the number of states grows exponentially along with the increasing scale.

Comparing with static analysis, dynamic testing method such as symbolic execution and

concolic execution explores model under investigation on a path-by-path basis. A single path

has much lighter encoding than a whole model. It can summarize both combinational and

sequential circuit trace accurately. In practical situation, a circuit can generate output within

an estimable clock bound, which is actually a limited part of the whole model. Path based

exploration then has the advantage of easily checking all variable state transitions through

all paths. It also avoids loop unrolling problem since it systematically enumerates all paths.

Along this line, R. Mukherjee et al. [MTK16] developed a tool V2C that translates Verilog

to C such that dynamic testing for sequential programs can be applied on Verilog. V2C

accepts synthesizable Verilog as input and generates a word-level C program as an output.

50

Equivalence checking is then achievable on C level with the help of either static analyzing

tools or dynamic execution tools. One major disadvantage of V2C in HLS equivalence

checking is that this process needs to verify or to prove the transformation using V2C is

equivalent to original Verilog, which is actually a reversed process of HLS functional checking.

A formal equivalence proof is needed to show the correctness of the flow. Also current V2C

implementation have difficulties in dealing with dependency of inter-modular combinatorial

paths or combinatorial loops. It is hard to determine stability condition for large circuits to

obtain an equivalent C program automatically. On the contrary, symbolic execution on top

of Verilog directly does not have similar issues as it generates symbolic expressions of the

register-transfer relationship precisely. Thus directly applying V2C based framework is not a

natural solution for HLS functional verification. As for standalone dynamic execution for

Verilog, X. Qin et al. [QM14] proposed a concolic execution framework for Verilog similar

to [SMA05]. It first instruments the Verilog design, then interleaves concrete and symbolic

simulation to obtain execution traces, and then rearranges trace to generate path constraints

and concrete testing case. Different from [SMA05], however, this method summarizes

symbolic path constraints using the result from concrete simulation, while concolic testing

for software has symbolic expression and concrete value generated at the same time. The

performance bottleneck of this method lies on the concrete simulator. In fact, as long as

here are no constraints unsolvable by the SMT sovler, pure symbolic execution without any

concrete simulation can achieve the same functionally. In addition, from HLS equivalence

checking perspective, there are some room for optimization in reducing the complexity of

SMT solver. Thus far, a full flow of symbolic methods for HLS functional verification is still

missing.

In this chapter, we propose a pure dynamic HLS functional verification flow via symbolic

execution using LegUp [CCA13] as the HLS engine. More precisely, our verification flow first

runs light-weight symbolic execution on both C code and HLS generated Verilog code to

generate SMT execution trace, respectively. Our on-the-fly symbolic execution on Verilog side

is implemented on Verilog’s SMT representation obtained by Yosys [Wol] synthesis tool. Then

we perform optimization on module input symbolization and valid datapath identification

51

from the HLS code generation perspective to greatly reduce the complexity of the SMT solver.

Specifically, signals in Verilog traces are collapsed from clock-based encoding to clock-invariant

version-based encoding. Considering HLS binds the same operation to an identical set of

hardware, we perform one-on-one trace matching by abstracting identical operations on

C and Verilog traces such that the scalability issue can be alleviated. Various experiment

results show that our framework has the ability to verify the functional equivalence for

numerical computing circuits, and prove the potential of using formal methods for practical

HLS functional verification flow for future.

The contributions of this paper are summarized as follows.

• We propose a pure symbolic execution flow to tackle functional verification of HLS. To

the best of our knowledge, it is the first time that a pure dynamic approach is applied

on HLS functional verification without transforming one side of the source code to the

format of its counterpart before verification.

• We present a Verilog pure symbolic execution framework without performing concrete

simulation that runs directly from Verilog’s SMT representation. The framework

considers that multiple instructions are executed in parallel within a single clock cycle,

and generates symbolic expression on-the-fly without the help of concrete simulation.

We also perform optimization on module input symbolization from HLS code generation

perspective and clock-invariant version-based encoding to greatly reduce the complexity

for SMT solver.

• We introduce an operation abstraction method to alleviate the scalability issue consid-

ering allocated hardware usage from HLS along the data path.

The rest of the paper is organized as follows. Section 2 reviews HLS and symbolic/concolic

execution. Section 3 describes our HLS functional verification framework. Section 4 presents

experimental results, and Section 5 concludes the paper.

52

4.2 Preliminary

4.2.1 High-level Synthesis

HLS of VLSI system [CLN11] [MS09] is effective for hardware design. HLS converts a high-

level description of a design into a RTL netlist by considering real design constraint such as

area constraints and delay constraints. HLS parses high-level description into an intermediate

representation called control data flow graph (CDFG) [CZ06]. A CDFG G(Vc ∪ Vd, Ec ∪ Ed)

combines the control flow graph G(Vc, Ec) and the data flow graph G(Vd, Ed) of a design.

Data operations are encapsulated into many basic blocks, and these basic blocks branches to

other basic blocks representing control relationship.

All Operations in a CDFG are rearranged and transformed by scheduling, allocation

and binding process so as to be mapped into an RTL netlist. Allocations determines how

many resources are required in the hardware module. It tries to enable concurrency among

operations to allow hardware resource sharing. The degree of concurrency is determined

by the scheduling process. For the scheduling process, the results of a scheduler can be

represented by an finite state machine (FSM) style state transition graph (STG) transformed

from a CDFG. A STG G(s0, S, E) is a directed graph containing a starting state s0 and a

set of control state basic blocks S where each control state s ∈ S contains a set of guarded

operations that are scheduled in s. E represents for the state transition in between each state

basic block s. The scheduler constructs an STG Gs such that every operation is assigned to

at least one state in Gs, and all constraints are satisfied. In the meantime, the final latency

in a particular performance measure is minimized. Binding assigns each scheduled operation

to one of the available hardware resources. For example, if there are two add operations

in the same state s of FSM after scheduling for that part, they must be assigned to two

different adder resources. Scheduling and binding can be done separately or simultaneously.

Since a lot of transformations are performed in the HLS to generate a RTL netlist, functional

equivalence checking between behaviour description and RTL description is needed.

53

4.2.2 Sysmbolic/Concolic Execution For Sequential Programs

Symbolic/Concolic execution systematically explores all feasible paths in a program via actual

execution of the program. The key characteristic of symbolic/concolic execution is that it uses

symbolized and concrete variable representations such that all the variables defined in the

program are symbolic expressions during execution. To be specific, external input variables

are labelled as symbols. All left values of instructions inside a program path are encoded into

symbolic expressions derived from input symbols. Expressions on branch conditions along the

path constitutes a path constraint. SMT solver plays a important role in symbolic/concolic

execution. It reads in constraint expressions constructed from the path, and returns the

satisfiability of those constraints, which determines whether forking a new path is needed. For

example, In branch instructions, symbolic/concolic execution queries a SMT solver whether

its true/false branch is reachable or not. A new program path is available to explore if both

branches are reachable. As a further application, property checking can be done by conjoining

property expressions into path constraints. A set of concrete inputs that follow violate the

property can be obtained by feeding corresponding expressions into the SMT solver, and

obtaining a concrete model.

To begin with the detailed procedure, symbolic/concolic execution first instruments a

program P , outputs an instrumented program P ′. In P ′, all external inputs or user-specified

execution parameters are replaced with symbols. A program executor ex is initialized when

P ′ is ready. ex is an interpreter that responses for symbolically executing the P ′ and

maintaining all the execution states si. An execution state s stores all information of the

program execution such as current instruction counter, path constraints, memory storage,

local registers, function call paths, and coverage statistics. , which is essentially the frontier of

a program path under execution. ex maintains an execution state working list states storing

all si that are able and going to visit. Once stats is initialized, ex first fetches one of si from

states. There are various of state selection algorithms available. A few common selection

scheme including depth-first path searching, bread-first path searching, process tree based

random path searching, and red-black tree based random weight searching. The selected si is

54

then executed by ex. Changes are made on si depending on the type of instructions. For non-

branch instructions ex increments state’s instruction counter, updates its local register value

symbolically and concretely, and performs read/write operations on its memory if needed.

If the instruction is a branch instruction containing a branch condition expression cond,

ex queries a SMT solver to check whether two potential branches are possible to continue

exploring. Specifically, ex queries the solver if currPath ∧ cond and currPath ∧ ¬cond are

both satisfiable. Concrete execution plugs in concrete values to go through hard-to-solve

constraints. If both queries are satisfiable, ex forks a new execution state sj, then adds cond

to si’s path constraint. Correspondingly sj adds ¬cond to its path constraint. Both states

are then pushed back to the states to conclude the current execution cycle. If only one path

is satisfiable, there will be no fork in si. Unreachablility of both branches invalidates si.

4.3 Verification Flow

Our verification flow enumerates all possible executing paths from both C description and

generated Verilog. Then it compares input/output equivalence of those paths. The main flow

of the HLS functional verification is shown in Fig. 4.1. To begin with, a C behaviour program

HLS

Verilog trace

encoding set

Verilog

program

C

program

C trace

encoding set

Symbolic execution

Miter

Trace matching

Symbolic execution

Figure 4.1: High-level synthesis functional verification flow

dutC performs concolic execution implemented on top of KLEE [CDE08]. Different from

property checking querying property along each path, we modified KLEE to conjoin output

symbolic expressions to the path constraints. All conjoined program paths constitute an

55

output SMT expression set pSetC . dutC goes through standard HLS procedure to produce a

corresponding Verilog file under test dutV . To collect Verilog execution traces, we generate a

SMT description of dutV , and perform symbolic execution on top of it. Similar to C, output

symbolic expressions are conjoined to each Verilog execution traces, and those traces form an

output expression set pSetV . The final matching process checks the equivalence of dutC and

HLS-generated Verilog dutV . For any expression pC ∈ pSetC , there should be a pV ∈ pSetV

such that given the same input, output value outC ⊕ outV == 0. We regard dutC and dutV

are functional equivalent if all pCs are able to find their matching pV .

4.3.1 Verilog Trace Collection

Appending output expressions to path constraints in C is a trivial process from a existing

symbolic execution tool, we will mainly focus on the Verilog side in this section. Once we

have the Verilog file, we would like to know at which clock cycle the circuit will output the

result. Tradition concrete simulation reads in concrete data to obtain a specific circuit trace.

Here we propose a light-weight pure symbolic execution method for HLS generated Verilog

to exhaustively explore all the circuit traces. Our pure Verilog symbolic execution framework

runs directly on Verilog’s SMT representation. It considers that multiple instructions are

executed in parallel within a single clock cycle, neglects unrelated modules and performs

time-invariant version-based encoding on-the-fly.

4.3.1.1 Verilog SMT Representation

Converting Verilog to its corresponding SMT representation has been widely investigated

in hardware model checking [CKY03]. SMT can be regarded as an extended version of

boolean satisfiability problem where binary symbols are replaced with predicates over a set

of non-binary symbols. Our flow utilizes the open synthesis tool Yosys [Wol] to generate

SMT description for the Verilog circuit. It is generated from Yosys’s RTL intermediate

representation (RTLIR). A template of the generated Verilog module SMT formulas is shown

in Fig 4.2. Since there is a one-on-one mapping between C function and Verilog module, all

56

the function prefixes in the formula correspond to behaviour C function names and Verilog

module names.
(declare-sort |main_s| 0)

(declare-fun |main#0| (|main_s|) Bool) ; \clk

(define-fun |main_n clk| ((state |main_s|)) Bool (|main#0| state))

...

(declare-fun |main#12| (|main_s|) (_ BitVec 32)) ; \return_val

(declare-fun |main#13| (|main_s|) Bool) ; \reset

(define-fun |main_n reset| ((state |main_s|)) Bool (|main#13| state))

(declare-fun |main#14| (|main_s|) Bool) ; \start

(define-fun |main_n start| ((state |main_s|)) Bool (|main#14| state))

(declare-fun |main_h fct_inst| (|main_s|) |fct_s|)

...

(define-fun |main_h| ((state |main_s|)) Bool (and

(= (|main#13| state) (|fct_n reset| (|main_h fct_inst| state)))

(= (|main#14| state) (|fct_n start| (|main_h fct_inst| state)))

...

))

(define-fun |main_t| ((state |main_s|) (next_state |main_s|)) Bool (and

(|fct_t| (|main_h fct_inst| state) (|main_h fct_inst| next_state))

(= (|main#10| next_state) (|main#6| state))

...

))

Figure 4.2: A Verilog SMT description

The module Smod consists of a set of function declarations and definitions. Declarations

only declare function signatures while definitions define relationships between input parameters

and output register value. Both declarations and definitions use state variable state and

next_state as function parameters. Smod divides into a register-transfer block and a

parameter-setting block. The register-transfer block defines module’s input RTL signals

(wires and registers) as bit-vectors according to their own width, and declares a function to

access the definition. It also declares and defines functions describing internal RTL signal

values according to statements in RTLIR. In the parameter-setting block, all RTL signals’

initial value, inter-module signal connections and signal state transfer relationship are defined

with a boolean return value. For example, main_h connects wires in between Smod’s sub-
57

modules. main_t sets the register value change from state to next_state in Smod. We

also modified Yosys so as to specify all registers’ initial value in Smod. To make symbolic

execution update valid register value and advance the clock, at each clock cycle all function

definitions in the parameter setting block are required to be evaluated to true.

4.3.1.2 Verilog Symbolic Execution

Without loss of generality, we assume C description for HLS is wrapped under the function

main. A HLS-genrated Verilog file contains two sets of modules. One set of modules are

converted from C descriptions. Semantically each module in this set corresponds to one

function defined in C. Another set of modules are memory modules that implement memory

operations governed by a memory controller module. The memory controller module connects

to all other C-converted modules, and responses for management of all memory modules that

implement data read/write operations in the hardware level. Thus in a Verilog generated by

HLS tools, the top module contains a memory controller module instance in addition to a

main module instance.

In symbolic execution for sequential programs, especially in the intermediate representation

(IR) level, such memory operations are abstracted by memory instructions such as load, store,

getElementP tr instead of a set of detailed function implementations. ex fetches symbolic

expressions of a variable from its current execution state si’s memory store, which can be

constructed as a look-up table or a balanced tree in software level. In the scenario of Verilog,

performing symbolic execution on those hardware level memory operations as the same level

of C descriptions introduces extremely heavy load in SMT querying. However, at a specific

clock cycle that a module needs data from memory, its input data pins can create or load the

corresponding symbol from the current execution state. Thus neither concrete nor symbolic

values fetched from those memories are at our interest. We then have the following claim for

optimization in Verilog symbolic execution.

Claim 1. Memory modules in HLS generated Verilog file is out of the symbolic execution

domain, and the functionality of memory modules can be check separately.

58

As a result, HLS generated module uses main instance as the root of the hierarchy to

greatly reduce the complexity in the SMT solving process in Verilog symbolic execution.

Algorithm 5: Verilog symbolic execution

void run():
preprocessing()

while !workList.empty() do
S = getExecutionStatesAtClk(curClk)

for s ∈ S do
executeState(s)

incClk()

void executeState(s):
for module ∈ modules do

for statement ∈ statements do
executeStatement(statement)

curWorkList = {s}
for module ∈ modules do

for statement ∈ statements do
forkNewState(statement, curWorkList)

updateWorkList(curWorkList)

StatePair fork(s, c):
if !validTrueBr(s.p, c)∧!validFalseBr(s.p, c) then

return ∅

else if validTrueBr(s.p, c) ∧ validFalseBr(s.p, c) then
snew = forkExecutionState(s)

s.addCond(c)

snew.addCond(¬c)
return {s, snew}

else if validTrueBr(s.p, c) then
s.addCond(c)

return {s, null}

else
s.addCond(¬c)
return {null, s}

The overall flow Verilog symbolic execution is shown in Algorithm 5. Executor ex

maintains a work list workList of all possible circuit execution states. An execute state si

contains a key-value pair symbolic store of variable name and its SMT expression, and a list

of path constraint. New states are generated at each clock cycle while ex is executing ternary

59

ite expressions. The run method wraps up the procedure in high-level. The Verilog SMT

description for ex to execute is the conjunction of all function definitions in the parameter

setting block. Verilog SMT descriptions are preprocessed such that all inter-module and intra-

module dependencies are organized in a chronological and topological order. Chronological

order guarantees that values from previous clock cycle are assigned before any update at

current clock clki, and topological order guarantees the data dependency of the data path.

At clki, ex fetches a set of states S from workList that are available to execute at clki, and

symbolically executes all states in S.

The key difference between a sequential program and a Verilog is that all the instructions

are executed in parallel. Thus different from sequential programs, state execution in Verilog

is a two-fold process. First symbolic store in si appends symbolic expressions of all variables

described in the Verilog’s SMT function definition at clki. Unique symbolic names for variables

are assigned to distinguish their value change at different clocks. Then all statements are

iterated to check potential state forking ite statements. As stated in fork method, the

forking procedure reads path constraints from si and the condition from ite expression, forks

a new state sj if both the condition and its negation are reachable along the current path

constraint. Forked states are temporary buffered in curWorkList such that SMT solvers can

query subsequent branches over all states in curWorkList.

Ideally the trace collected in symbolic execution can be used to match with C-generated

trace directly. One major drawback of this representation is that it is a clock based repre-

sentation. The solving complexity grows exponentially as the clock increases, and a typical

circuit runs more than 1000 clock cycles to get an output. By taking a closer look at the

register value curves using clock as horizontal axis, we notice piece-wise constant patterns

for all registers. This fact is reasonable in the sense that in HLS-generated Verilog a signal

will not be updated until all of its guard conditions are true. We then only need to create

expressions at the clock cycle when a signal has been updated. Thus we are able to fold the

trace representation from time-based to version-based to make it compact. A condition free

variable in Verilog updates its version for each clock cycle because it gets assigned without

constraints. For a guarded variable, it may contain multiple guards, and at clki there is at

60

most one path among those guard conditions is satisfied. In symbolic execution, for a specific

branch of a path we know which branches are satisfied. The signal will be updated by a new

version in a single static assignment manner if its symbolic value has been changed.

Example Consider a HLS-generated Verilog snippet performing accumulative addition of

a two-element array shown below.

always@(posedge clk) begin

if ((cur_state == F_BB__4_5))) begin

result0_reg <= result0;

end

...

if ((cur_state == F_BB__8_6)) begin

ret_val <= result0_reg;

end

end

Symbolic execution claims the finish flag is set at the 14th clock cycle. The version table

for corresponding RTL signals from 5th clock cycle to 14th clock cycle is shown in Table 4.1.

Table 4.1: RTL signal version for the example

Signal Clock cycle #

Name 5 6 7 8 9 10 11 12 13 14

ret_val 0 0 0 0 0 0 0 0 0 1

result0_reg 0 0 1 1 1 1 1 2 2 2

result0 0 1 1 1 1 1 2 2 2 2

Constraints assembled from Table 4.1 after symbolic execution are:

ret_val_1 == result0_reg_2 ∧ result0_reg_2 == result0_2

∧result0_reg_1 == result0_1

61

4.3.2 C and Verilog Trace Matching

After we collect C-generated traces and Verilog encoded traces, we perform one-on-one

matching on traces to check equivalence. Conventional miter method performs exclusive

disjunction of C and Verilog’s outputs after conjoining two symbolic traces and equalizing

inputs of C and Verilog. In practice, many HLS use cases are in numerical computing. In

such use cases traces go through long and complex data path. For example, two operands

of the multiplication can be 64-bit SMT bit-vector expressions with more than 100 clauses.

The computation load for a SMT solver to evaluate the functional equivalence of many such

expressions is extremely heavy, and the computation complexity grows exponentially. From

HLS perspective, HLS binds multiple operations to given fixed hardware resources. For

example, many multiplications in C code will be assigned to the same multiplication hardware

block. Thus we can alleviate the load by abstracting such operations so that the length of two

traces are reduced. As long as we guarantee the equivalence of the corresponding operands in

C and Verilog before the operation, we are able to use equalized abstracted symbols to replace

those operands in C and Verilog’s traces during matching. Thus we propose an operation

abstraction method for both C and Verilog symbolic traces that replace verified operations

with abstracted symbols.

We define traceC and traceV by SMT expressions for C and Verilog that represent the

data flow graph from input to output. We define DFGC by the data flow graph of traceC,

and DFGV by the data flow graph traceV , respectively. Note that both DFGC and DFGV

are directed acyclic graph (DAG). Without loss of generality, we assume there is only one

single output. A super sink node that points from all the output nodes can be appended

under the multiple outputs scenario. Different DFGs within a set share many sub-traces

in common. If we can identify a target operation in DFGCi has a equivalent operation in

DFGVi, we abstract such operation as symbols. Results of SMT representation of identical

operations in both C and Verilog counterpart can be replaced by an abstracted symbol as

long as all the incoming operands in C and Verilog are equivalent symbolically.

The algorithm of the trace comparison method is shown in Algorithm 6. In high level, a

62

in1 in2

f1(in1) f2(in2)

f4(in1,in2)

f3(in1)

in1 in2

sym1 sym2

f4(in1,sym3)

f3(in1,sym1）

Figure 4.3: An example of operation abstraction

pair of two trace candidates traceC and traceV first match corresponding input symbols in

method connectInput. Then the algorithm abstracts all identical operations that can achieve

functional equivalence in traceC and traceV . Abstracted traceC and traceV then conjoin

with a exclusive-or expression of C’s and Verilog’s outputs to become the final expression for

the SMT solver query. An unsatisfiable result means that traceC and traceV are functional

equivalent because the result from the exclusive-or of outputs has to be false. The abstraction

step reduces the size of both traces, and thus make the final query step less complex.

The abstraction method first performs topological sort on both traceC and traceV ,

making all operations order by their data dependencies. Then it iterates through every

operation traceV , and finds a same operation that is functional equivalent in corresponding

C counterpart. The checking process iterates through traceC. Subtraces from the beginning

till this operation on both sides are calculated. The algorithm queries the SMT solver to

check whether all the operands for this operation are equivalent. If there exists such an

operation, the algorithm creates new symbols to abstract the operation, and replaces all

usages of this operation with the newly created symbol. replaceSymbol method creates

new symbols for both operands and output left value. Equal relationships between symbols

created in both C and Verilog are established as well. Newly created symbols then replace all

the occurrences of their originally represented operations. Since operands of the operation

63

Algorithm 6: Operation abstraction

bool compare(traceC, traceV):
connectInput(traceC, traceV)

abstract(traceC, traceV)

xorOutput(traceC, traceV)

return ¬query(traceC, traceV)

void abstract(traceC, traceV):
listC = topoSort(traceC)

listV = topoSort(traceV)

for clauseV ∈ listV do
if isTargetOperation(clauseV, listC) then

clauseC = getOperationInC(listC)

replaceSymbol(clauseC, traceC, clauseV, traceV)

bool isTargetOperation(clauseV, listC):
for clauseC ∈ listC do

if op(clauseC) == op(clauseV) then
for operandC, operandV ∈ clauseC, clauseV do

subTraceC = getSubTrace(operandC)

subTraceV = getSubTrace(operandV)

if ¬euiqvalent(subTraceC, subTraceV) then
Continue

return true;

return false;

void replaceSymbol(clauseC, traceC, clauseV, traceV):
createSymbols(clauseC, traceC, false)

createSymbols(clauseV, traceV, false)

eraseFromDFG(cluaseC, traceC, clauseV, traceV)

void createSymbols(clause, trace):
for input ∈ clause do

symName = newSymName(input)

sym = newSym(symName)

for use ∈ uses(input) do
updateInputSym(sym)

symName = newSymName(output)

sym = newSym(symName)

for use ∈ uses(output) do
updateInputSym(sym)

may have other usages, all usages of the operands can be replaced with the newly created

symbol. The accomplishment of symbol replacement means that the equivalent operation

is independent from the trace. The algorithm thus removes the operation from the trace.

64

An example is shown in Figure 4.3, in this DFG the red dashed block is the operation with

expensive verification cost, and has an equivalent counterpart in converted code. To erase

this node from the DFG, we create symbols for all data of the incoming and outgoing edges,

and update all related nodes with the created symbols.

4.3.3 Termination of The Flow

Theoretically a high level design can be complex with infinite loops resulting indefinite many

paths. However, in practice such designs are hard or impossible for HLS to generate RTL

due to synthesizable limitations. An alternative way is to check the functional equivalence

with a subset of paths with a high code coverage. For most of fixed loop or acyclic designs,

full coverage is practical to achieve. In our flow we use KLEE to explore the behaviour C

module to guarantee high code coverage given a reasonable time budget. KLEE can achieve

high code coverage using finite program paths proved by various papers and studies, and the

Verilog flow generates all the corresponding paths that can match all those C paths in the

RTL counterpart. So the flow can terminate with a confident result.

4.4 Experimental Results

We have built our prototype to implement HLS functional verification flow based on LegUp

4.0 with LLVM 3.5, KLEE 1.3.0 with LLVM 3.4 ,and Yosys. The verification target is the

Verilog code generated by LegUp for a C program. KLEE exploits logic expressions for return

values of the C program, while Yosys encodes the circuit netlist to SMT-LIBv2 language

for satisfiability testing. Several testcases have been analyzed to verify the validity of our

framework on whether the logic flow generated by high-level synthesis tool, LegUp as an

typical example here, is strictly compatible with the counterpart in C. All experiments were

performed on a single core Intel i7-950 CPU machine with 8GB memory and 64 bit Ubuntu

16.04 operating system.

We start from fundamental inner product, FIR filter and FFT cases where data are fetched

from RAM by memory controller in specific order. As fetching order is usually manipulated
65

by designers as an optimization strategy for higher throughput or less communication, it is

imperative to verify the correctness of data traffic according to various demands. Meanwhile,

such testcases contain a bunch of adders and multipliers, which are two basic components in

numerical computation, so that they are also the simplest cases to effectively evaluate the

scalability of our method when applied to numerical computation. We trace the memory

address during the cycle-based symbolic execution of target circuit so as to bind the memory

controller input/output to corresponding reference to external array in C program. Table 4.2

shows our flow has a fast run time and scales well with the rise of the number of total

operations performed by the synthesized circuit. IR LOC is the number of LLVM-IR

instructions symbolically executed by KLEE, which straightforwardly indicates the size of

the testcase. Verilog lines would not be small with the basic functional modules describing

the circuit, including dual-port ram and memory controller. We can also observe the Verilog

lines are the same for designs with similar structure, for LegUp tends to reuse resources for

conciseness as a default option. Therefore, the number of Verilog lines synthesized by tools

is also a good indicator for the complexity of the RTL design. In FFT, the inverse flag is

treated as a symbolic value. Thus two execution paths under different constraints, namely

FFT result and its inverse one, can be captured by both RTL and C symbolic execution and

successfully matched with each other.

We further show our flow running on convolutional neural networks (CNN), which are

huge numerical models with convolutions. We first apply our method to convolutions with

various input size and then evaluate the convolutions of different layers in Lenet-5 synthesized

by LegUp tool to show the effectiveness of our method. We have fully verified the two

convolution layers in this five-layer Lenet, and two more matrix convolution testcases, which

is shown in Table 4.3. We observe that all testcases need more than 1500 clock cycles to

finish circuit execution, and the first convolution layer needs 78840 clock cycles. All testcases

finish execution with reasonable run time, and show good scalability.

We finally select floating point benchmark from CHStone benchmark [HTH08] to show the

compatibility to more complicated cases. Those programs are double-precision floating point

addition programs containing multiple execution paths. The signed flag and exponential part

66

Table 4.2: inner product and FIR results. Upper, middle and lower blocks show inner product,

FIR and FFT results, respectively. SE means Verilog symbolic execution.

Array

size

Finish

clock

SE

time(s)

Match

time(s)

Verilog

LOC

IR LOC

200 804 0.48 0.05 899 3814

500 2004 1.37 0.08 899 9514

1000 4004 3.54 1.83 899 19014

2000 8004 5.35 3.08 899 38014

200 1004 0.97 0.09 924 4214

500 2504 2.46 1.23 924 15014

1000 5004 3.32 1.58 924 21014

2000 10004 8.18 3.26 924 42014

5000 25004 25.86 24.63 924 105014

32 308 0.26 1.7 795 66109

64 664 0.45 13.57 795 157099

Table 4.3: Convolution results. At the third row and the fourth row we verify the convolution

in Lenet-5 for the first and the second convolution layer.

Input size Kernel

size

Finish

clock

SE

time(s)

Match

time(s)

Verilog

LOC

IR LOC

16x16 3x3 1802 5.17 0.61 2054 50577

32x32 3x3 8170 18.84 1.41 2054 231677

32x32 5x5x6 78840 759.96 438.45 4150 2330466

10x10 5x5x10 6490 41.94 11.66 4214 2738090

is first extracted for two operands, and then all the bounded cases are taken care of by the

benchmark program with an output concatenated by all valid segments. We collect the path

constraints accordingly along the symbolic execution, where path constraint is incrementally

recorded when a valid new execution state is forked for following execution. Then in the

67

matching stage, corresponding path constraint is asserted when the path is searching for its

counterpart on the other side. We observe that Verilog code generated from HLS is much

more complicated than C code at this case, this is due to the fact that HLS uses finite state

machines to represent state goes through different branch conditions. As shown in Table 4.4,

all C execution paths find its counterpart in Verilog. In dfadd, matching time is longer

than symbolic execution time because the matching process is an enumeration process. An

optimization method of avoiding this enumeration remains as the future work.

Table 4.4: Floating point benchmark results.

Benchmark Finish

clock

SE

time(s)

Match

time(s)

Verilog

LOC

IR LOC Path

dfadd 59 29.46 75.84 6068 2894 64

mips 83 2577.03 152.69 4195 1464 34

dfmul 129 165.15 0.69 10322 849 7

dfdiv 185 43.30 6.86 13359 1998 23

dfsin 437 753.25 15.42 28614 17855 17

sha 1488 139.37 83.5 7047 6867 1

motion 8198 150.53 2.80 34074 904 1

4.5 Conclusion And Future Work

In this paper, we propose a pure dynamic execution functional verification full flow for HLS.

Specifically, our verification flow first runs light-weight symbolic execution on both C code

and HLS generated Verilog code to generate SMT execution traces. Our on-the-fly lightweight

symbolic execution on Verilog side is implemented on Verilog’s SMT representation obtained

by Yosys synthesis tool. Then we perform optimization on module input symbolization and

valid datapath identification from HLS code generation perspective to greatly reduce the

complexity for SMT solver. Considering HLS binds the same operation to an identical set of

hardware, we perform one-on-one trace matching by abstracting identical operations on C and

68

Verilog traces. To the best of our knowledge, it is the first time that a pure dynamic approach

is applied on HLS functional verification without transforming one side of the source code to

the format of its counterpart before verification. Extensive experiments verify the validity

and effectiveness of the flow. As for the future work, we will continue to optimize on the flow

to reduce the runtime for the verification process to make it more promising and practical.

We will also search for more efficient trace matching algorithms to avoid enumeration.

69

CHAPTER 5

Probabilistic Model Checking and Scheduling

Implementation of Energy Router System in Energy

Internet for Green Cities

5.1 Introduction

Energy crisis and carbon emission have become two seriously concerned issues in green cities

[Che07,BZC15,ENS17] recently. As a feasible solution, Energy Internet (EI) [WYY17,ZYX16]

has aroused global concern since it has been proposed. EI is a new power generation developing

a green vision of evolution of smart grids into the Internet. Its organization is shown in

Fig. 5.1. The key device to compromise EI is energy router (ER) [JWW16]. ER communicates

with users similar to an Internet router, thus can perform immediate communication and

control according to real-time user status to achieve green efficient energy management.This

is vital to realizing green cities [OF15,MTG00].

A variety of researches have been done on the ER and green city topics. H. Zhang et

al. [HWC17] proposes a multi-tier fog computing model with large-scale data analytics service

for smart cities applications. W. Wang et al. [WLF17] proposes a system-level stability

evaluation model in the Energy Internet based on a critical energy function to explore

small disturbance stability region. W. Zhong et al. [ZYS16] presents a demand response

model of vehicle-to-grid (V2G) mobile energy network in which the EVs generally move

across different districts represented as network nodes. K. Wang et al. [WHL17] provides a

survey to introduce EI communication for sustainability. Y. Zhang et al. [ZYX11] introduces

architecture, standards, and QoS improvement for home machine-to-machine networks. K.

70

Figure 5.1: ER system in energy Internet for green cities

Wang et al. [WLF17] evaluates EI system’s stability using big data analytics. Y. Zhang et

al. [WWH17] proposes a big data computing architecture for smart grid analytics, which

involves data resources, transmission, storage, and analysis. L. Xin et al. [XDS15] proposes

design and applications of ER to realize EI. P. Yi. et al. [YZJ16] deploys ERs in an energy

internet based on electric vehicles. It also provides feasibility analysis for applying ERs from

power marketing, district heating, and control perspective. M. Behi et al. [BAJ11] designs

a wireless green ER platform for controlling and scheduling of energies in energy efficient

buildings. In the ER design and power transfer area, A. Sanchez-Squella et al. [SOG10]

considers green efficient energy transfer among subsystems connected by the ERs. J. Miao

et al. [MZK17] formulates the steady-state power flow model of the ER embedded system

network and related optimal power flow formulation to optimize power system operation. S.

Hambridge et al. [HHY15] introduces an economic based energy routing strategy utilizing

energy storage to reduce consumption of grid power. However, all the work above lacks the

consideration of soundness and completeness of the system design objective.

Formal verification proves the correctness of system with respect to a certain formal

specification or property. For example in software field, many testing tools exploit formal

verification in bug finding [GHM16]. One of the major approaches in formal verification

is model checking [BCM90], which formulates system as transition graphs. It exhaustively

traverses the graph, and verifies whether the model satisfies the formula representing the

property. In real world, systems are inherently probabilistic, thus quantitative properties
71

are of the greatest interest to verify in addition to logic properties. Probabilistic model

checking [KNP07] formulates systems into probabilistic transition models such as discrete-time

Markov chains (DTMC), continuous-time Markov chains (CTMC), and Markov decision

processes (MDP). A quantitative logic property is then applied to the model to check the

result, and return a counter-example if a property is not satisfied.

In this paper, we propose a probabilistic model checking method to ER based system design,

and monitor ER based system’s running behaviour via our scheduling scheme. Specifically,

we first propose a CTMC model on an ER based system containing multiple ERs to check

the reliability of the system operation. Then we propose a CTMC model on a green ER

based subsystem to perform model checking on its reliability and communication count

properties. To apply all the communication functions into the real scenario for green cities,

we propose an MDP electricity trading model, and model check quantitative properties on the

service requester’s cost and the service provider’s loss. We also propose an energy scheduling

simulation scheme for ER based system. In this scheme, we divide a load demand curve into

multiple time windows, and then project each demand in a time window into a cloudlet in

cloud computing, and then the energy scheduling process in ER based system is projected

to host allocation process in cloud computing. We define our own host allocation policy to

complete the scheme.

The contributions of this paper are summarized as follows.

• We introduce CTMC and MDP state machines to model ER based systems. To the

best of out knowledge, it is the first time that formal verification technique is applied

to ER based systems.

• We project the energy scheduling of ER based system into cloud computing area, and

implement a tool to observe the performance of ER based systems due to the similarity

of these two areas. It is the first time that a cloud computing tool is tailored to suit

the need for ER based systems.

• We consider both electricity price and line loss during power transmission during the

selection of power service providers. Extensive experiment verifies the effectiveness of
72

the proposed models and the monitoring scheme.

The rest of the paper is organized as follows. Section II introduces preliminary knowledge.

Section III and IV introduce probabilistic model checking on architecture modeling and

trading behaviour modeling of ER based system, respectively. Section V mentions scheduling

for ER based system. Section VI shows experiments and results. Section VII concludes the

paper.

5.2 Preliminary

5.2.1 Continuous-Time Markov Chain

Continuous-time markov chain (CTMC) is an automata in continuous time domain that

preserves Markov property [KNP07].

Definition 1. (Continuous-Time Markov Chain) A continuous-time markov chain C is a

4-tuple (S, sinit, R, L) where S represents a finite set of states, sinit ∈ S is the initial state,

R : S × S → R>0 is the state transition rate matrix, and L : S → 2AP is a labelling function

which assigns to each state s ∈ S a label with atomic propositions.

The transition rate is used as the parameter of the exponential distribution. The probability

triggered to make state transition before t time units for a rate r is 1− e−rt.

As for model checking for the CTMC, Continuous Stochastic Logic (CSL) [KNP07] is

widely used to specify properties.

Definition 2. (Augmented Continuous Stochastic Logic) The state formula Φ and the path

formula φ of Augmented CSL is defined by:

• Φ ::= true|a|¬Φ|Φ ∧ Φ|P∼p[φ]|S∼p[Φ]

|R∼r[I=t]|R∼r[C6t]|R∼r[FΦ]|R∼r[S]

• φ ::= XΦ|Φ ∪I Φ

73

where a is an atomic proposition, P is the probability operator for all paths, S is the

steady state operator, R stands for the reward function, I in Φ is a immediate time stamp, C

stands for accumulated time, F stands for future states, X stands for the next state, I in

φ is a interval of R>0, ∪ is until operator, ∼ is a logical operator ∈ {<,6, >,>}, p ∈ [0, 1],

r, t ∈ R>0.

Given a CTMC model C and a CSL formula φ, CTMC model checking outputs a set of

states Sat(φ) = {s ∈ S|s |= φ}. The major task is to calculate probabilities or rewards for

P∼p[·], S∼p[·] and R∼r[·], which is discussed in [KNP07].

5.2.2 Markov Decision Process

Markov Decision Process(MDP) is a non-deterministic state transition automata that preserves

Markov property [KNP07].

Definition 3. (Markov Decision Process) A Markov Decision Process M is a 4-tuple

(S, sinit, Steps, L) where S represents a finite set of states, sinit ∈ S is the initial state,

Steps : S → 2Act×Dist(S) stands for the state transition probability function where Act is a set

of actions and Dist(S) is the set of probability distributions over the set S. L : S → 2AP

stands for a labelling with atomic propositions.

Probabilistic computation tree logic (PCTL) and its augmented version serve as the

backbone in model checking an MDP.

Definition 4. (Augmented Probabilistic Computation Tree Logic) The syntax of Augmented

PCTL is shown as follows:

• Φ ::= true|a|¬Φ|Φ ∧ Φ|P∼p[φ]

|R∼r[I=k]|R∼r[C6k]|R∼r[FΦ]

• φ ::= XΦ|Φ ∪6k Φ|Φ ∪ Φ

where a is an atomic proposition, P is the probability operator for all paths, R stands for the

reward function, I in Φ is a immediate time stamp, C stands for accumulated time, F stands
74

for future reachiable states, X stands for the next state, ∪ is until operator, ∼ is a logical

operator ∈ {<,6, >,>}, p ∈ [0, 1], r ∈ R>0, k ∈ N ∪ {∞} is a until bound.

The main unique task for augmented PCTL is to evaluate the probabilistic operator

P and the reward operator R. Evaluating P∼p[φ] is reduced to evaluate either minimum

probability of φ holding or maximum probability of φ holding depending on the ∼ operator

over all the paths. If ∼∈ {<,6} then the maximum probability is calculated to check φ

holding for s |= P∼p[φ], otherwise the minimum probability is calculated. The calculation of

reward follows the similar idea.

5.2.3 Energy Router Based Subsystem Architecture

The architecture of an ER based subsystem is shown in Fig. 5.2. As stated in [XZW11],

the router mainly contains a communication module and a control module. Ports provide

plug-and-play interfaces controlled by the router to convectional power source, renewable

power source such us wind turbine and solar cells, as well as energy storage and load. Router

communicates to each port through wired cord or wireless channels. Power electronics devices

such as solid-state transformers, converters and inverters electrically connect all the ports. In

our work, the main modeling focus is on the communication and control module instead of the

power electronic devices. The functionality of the ER falls into user-level and gate level. At

user-level, main functions include user attachment/detachment, service request/termination

and status update. At gate-level, the ER performs communication between not only its

local users but also other ERs. Real time energy control, management and trading are thus

available through these basic functions.

5.3 Architecture Modeling of The Energy Router System

We propose two CTMC models to describe the green energy router system architecture. The

first model describes the behaviour of a system consists of multiple ERs shown in Fig. 5.1, and

the other is a model on the operation of an ER based subsystem shown in Fig. 5.2. In a poisson

75

external network

port

sp1 A

port

sp1 B

port

sp1 M

port

sp2 A

port

sp2 B

port

sp2 N

port

sp3 A

port

sp3 B

port

sp3 K

port

load 1

port

load 2

port

load 3

port

load T

comm/control bus

power bus

energy

router

transformers/inverters/converters

Figure 5.2: Architecture of single ER-based subsystem

process, the length of the inter-arrival time follows exponential distribution. Exponential

distribution also describes naturally the time for a continuous process to change time. We

choose CTMC because we assume state transitions follow exponential distribution, and the

state transition is memoryless, and related work on dynamic energy management [QP99]

models the behaviour of a power-managed system as a CTMC model.

5.3.1 Modeling of The Multiple Energy Router System

A multiple-ER system contains multiple ERs and multiple associated ports.We generalize

Fig. 5.1 to a controller module, an ER set module representing a set of ERs, and a port

module representing the set of ports controlled by the routers. Modeling every operation in

each components results in the scale of the model growing exponentially, thus causing the

state space explosion. Instead of directly modeling each component’s broken and recovered

76

state using 2n states, we set the number of broken components cdown as the state variable

because we do not care exactly which component is broken from the reliability perspective.

cdown increases and decreases according to the failure and recovery rate. We assume the

failure rate is dependent on the number of failed components. This is because once a failure

happens, all the similar components will be checked to prevent the same issue from happening

again easily. Thus we set an coefficient to regulate the failure rate. The regulated rate rfail is

given by

rfail = e
−compdown
comptotal ×MTTF, (5.1)

where comptotal is the total number of components, and MTTF is the mean time to failure

of the component. This abstraction will reduce the state space to the order of n2.

The controller module serves as the hub of the system, it contains three operation states–

SLEEP, BUSY and BROKEN. In normal operation mode, the controller switches between

SLEEP and BUSY if the number of down routers and ports are less than the maximum

threshold. Controller itself transits to a BROKEN and reverts to SLEEP after repairing

according to its rate.

The state transition of the three modules are synchronized through actions, i.e., one action

triggers state transitions in multiple modules simultaneously. The failure of the system is

defined by any of the component that is unable to meet the normal operation requirement.

We label the system failure by “down" as

down = sctr == 0 ∨ fp > 0 ∨ fr > 0, (5.2)

where sctr is the controller state, fp and fr are the number of failed ports and routers,

respectively. The reliability property S =?[“down”] is thus the main property we are

interested in.

5.3.2 Modeling of Single Energy Router Based Subsystem

We consider an ER based subsystem shown in Fig. 5.2 whose control and communication

functionality is achieved through wireless communication. Thus in our model a local cell

77

Table 5.1: Local state variable for single ER-based subsystem

Variable Name Value Explanation

sp 0 broken

(port 1 idle

state) 2 sending message and waiting response

3 receiving message and processing

sr 0 broken

(router 1 idle

state) 2 sleeping

3 processing incoming message

> 4 send message back to ports

qsize 0-maxsize number of requests in the queue

inx 0-1 whether X is in the cell

module with a guarded channel [HMP01] to reduce the handoff dropping probability is

introduced as the communication medium. A handoff drops when a device enters a new cell

but the new cell has no channel to provide. Guarded channels are reserved exclusively for

the handoff calls. In this module the number of calls in the cell nLocal and existence of the

ports and routers inx are set as state variables. We set the router as the handoff call and all

the other ports as regular calls. Enter or departure of these calls will increase or decease the

nLocal and change the inx correspondingly.

In port module we define four operating states listed in Table 5.1. The normal duty cycle

circulates among port IDLE (sp = 1), SEND (sp = 2) and RECEIVE (sp=3) according to

the transition rate. One of the guards for each state transition is inx = true. The port may

run into BROKEN from any states. A repair action resets BROKEN back to IDLE.

The router module receives all the messages and requests from the ports, processes all those

messages and requests, and then sends results back to all the ports. To reduce computing

complexity of the model checker, we choose to lump the service model as a sequential queue.

78

Thus we embed an M/M/1 service queue module to model the service queue inside of the

router. Different ports send messages to the queue according to its own rate while increasing

qsize by 1. The router first transits from SLEEP (sr = 2) to IDLE (sr = 1). After checking

the local cell module for a true value of inrouter, it fetches one request from the queue, and

then transits to one of the sending back states. This is a non-deterministic transition whose

transition probability is in proportional to the request rate. We then have the following

lemma.

Lemma 5.3.1. The state transition probability of a set non-deterministic of n choices in the

router is given by reqi/Σreqi.

Proof. The controller sends message back to head of the queue, which is the index of the

ports sending out the request with the minimum time. Since all the ports follow a exponential

distribution of parameter reqi, the minimum time distribution parameter is given by Σreqi.

For a single port then the probability is reqi/Σreqi.

We then set the transition rate in proportional to this probability to reflect the right

transition distribution.

The qsize is decreased by 1 after the choice is made, and sr goes back to idle. IDLE

transits to SLEEP according to a preset rate. The router may run into BROKEN state

from any of the states mentioned above. A repair action then resets the state into the sleeping

state.

The main properties to be checked are listed in Table 5.2. One crucial property of for

this system is the reliability. The failure of system is defined by any of the component that

is under broken state or disconnected from local cells. We thus label the system failure as

“down” by

down = sr == 0 ∨ sps == 0 ∨ inx == 0, (5.3)

and intend to observe the probability of failure in the long run. Another property we

are interested in is energy consumption during the system operation. We generalize it to

79

Table 5.2: Single ER-based subsystem properties

Property Explanation

S =?[“down”] The system is down in the long run

R{“comm”} =?[C 6 T] The total number of services that the

router has performed until time T

the measurement of communication operation count by setting a reward of 1 to all the

communication actions and labeling the those actions with comm.

5.4 Modeling of Energy Router Subsystem Based Electricity Trad-

ing

With the real time communication support of ER, green energy management and trading can

be applied. Based on the ER subsystem, we propose and model check an MDP electricity

trading scheme which extends the general trust model in [AB12] by considering power demand

and demand response as a real world application of the ERs. We choose MDP because state

transitions are made based on decisions.

The whole scheme models the trading operations for n hours. Every 1.5 hrs the requester

req can choose whether to generate a load demand or not. Once a provider accept the request,

req has the non-deterministic choice on whether to accept and whether to actually pay for

the service with a reference of its own price threshold. Prices should be paid after the service

begins but before next request decision. Within n hrs req has to successfully receive and

consume power k times.

The proposed model contains one service requester req and multiple service providers

offering electricity from green energy sources. We assume that collaboration between requesters

will not gain more reward since in between a group of load ports there are no additional

devices to perform power redistribution. We also assume any supplier has enough power to

provide once it agrees to provide service, and line loss for all the suppliers are the same to

keep the scale the proposed model reasonable.
80

Table 5.3: Local state variable for a service requester

Variable Name Value Explanation

sreq 0 idle

(requester 1 a load request is generated

state) x1 requester is requesting spx

x2 spx accepts the service and issues a price

x3 spx refuses the service

spx,r 0-1 whether spx refuses service at this time stamp

5.4.1 Requster Modeling

Table 5.3 lists all the local state variables for a requester req. When a load request is generated

(sreq = 1), req chooses one service provider randomly, setting sreq = x1. If a service provider

spx agrees to provide the service after checking req’s trust level Tx, a synchronized action

takes place on both the provider x and the req along with a price Px calculated, and thus

sreq = x2. Otherwise another synchronized action sets sreq = x3. The reputation of the

requester req at spx is denoted by trx, representing the extend of provider x trusting req.

The trust level Tx is a linear combination of trx at spx and other service providers, which is

given by

Tx = α · trx + (1− α) · recx, (5.4)

where

recx =


trx, if knowy = 0 ∀y ∈ Y

Σite(knowy ,trusty ,0)

Σite(knowy ,1,0)
, otherwise

(5.5)

is the recommendation factor from other service providers, and knowy is true if there exists

the transaction history on spy. ite is a “if-then-else" expression.

A uniqueness in power system is that power demand fluctuates over time. Thus we set Px

at different timestamps in accordance with the fluctuation. One more factor needed to be

considered is the req’s reputation, and we set an inverse scaling factor on the time-specific

price to reflect the reputation. Thus the price for a requester req once a provider x agreed to

81

serve is given by

Px = C · (β
trx

+ 1− β

D
) · Prdemand(t), (5.6)

where C, β,D ∈ R>0, and Prdemand(t) is a piecewise constant demand approximation function

whose data is given in [HS11]. C, β,D constitutes the conversion rate from demand and price.

β,D takes trust into account in an inverse proportional fashion, and C is a conversion factor

with a unit of $/kwh.

Once Px is issued, the req compares Px with its own target price Ptarget. Ptarget is in

proportion to the power demand over time regulated by a parameter γ, which is global to

both requester and providers. req has two non-deterministic choices when a low PX is issued.

One is to get the service and pay, or get the service without payment. If req finds Px is higher

than expected, it can withdraw the load request in addition to the previous two choices,

which reflects the demand response.

If the service provider refuses the service request, then the corresponding spx,r flag is set

to 1. The req continues to query other unvisited service providers until all the providers

refuse to serve. spx,rs are reset to 0 before the next time stamp begins.

5.4.2 Service Provider Modeling

Table 5.4 lists all the local state variables for a service provider spx. When a synchronized

service request action arrives, spx compares the trust level Tx with thx. An accept action

sets ssp to 1, knowx to 1, and changes sreq in req when Tx > thx, or a reject action sets ssp

to 0 otherwise. It is reset to 0 after the request get processed before the next timestamp.

Getting paid service gains reputation bonus on req, and reputation penalty if the service

is not paid. Accordingly, the trust threshold of the req varies depending on the choice made.

Unpaid service results in a higher threshold, and paid service results in a reasonable threshold.

We set small penalties and threshold increase on lower Pxs, and high penalties and threshold

increase on higher Pxs. All the actions are synchronized with req, thus when corresponding

conditions for an action on req and spx hold, both states changes simultaneously.

In order to guarantee the load having k times power to consume, we set a have-to-pay

82

Table 5.4: Local state variable for a service provider

Variable Name Value Explanation

ssp (service 0 idle

provider state) 1 processing request

knowX 0 spx has no transaction record for req

1 spx has transaction record for req

thx 1-10 threshold for spx to refuse service

trx 1-10 reputation of req to spX

Table 5.5: Green electricity trading properties

Property Explanation

R{”cost”}min =

?[F (time ≥ max_time)]

req’s minimum cost to get required number of

service

R{”loss”}max =

?[F (time ≥ max_time)]

sum of spX’s maximum loss to provide required

number of service

mode for req and a have-to-serve mode for the provider when the remaining time is limited.

req stops request power when it is been served for k times.

Table 5.5 lists the quantitative properties we check for the MDP model. From the requester

perspective, req wants to get serviced with the minimum amount of money. In our model, we

label all the paid actions as "cost", and accumulate the cost until the end. From the service

provider perspective, providers intends to estimate their maximum loss before participating

the service. In our model, we label all the unpaid actions as "loss", and accumulate the loss

until the end.

83

5.5 Energy Router System Scheduling

Probabilistic model checking for ER based system shows a feasible way of calculating safety

probabilities and optimal costs. To observe single behaviour or average performance of ER

based system for better decision-making purposes, a scheduling platform is needed. This goal

is similar to cloud computing since both cloud computing and ER based system perform task

scheduling and allocation. In this section, we implement a scheduling simulation tool on top

of the cloud computing tool CloudSim [CRB11] to utilize the similarities.

A typical CloudSim system compromises of a data center, a data broker, multiple cloudlets,

virtual machines, and hosts. The data center is an abstract container that manages all the

physical computing sources. Those computing sources are called hosts. The data center broker

is responsible for sending multiple computing tasks to the data center, and acknowledge its

completion. Each computing task is called a cloudlet, and usually those cloudlets can be

bound with a computing resources designated by the cloud service provider. We call those

computer resources a virtual machine. The broker sends all required virtual machines into the

data center as well. The data center allocates virtual machines into different hosts according

to user defined allocation policies.

Since both cloud computing and ER based system perform task scheduling and allocation

for some specific entities, an interesting question is that can ER based system projected into

cloud computing based platform? In this section we provide a positive answer. We first

abstract the energy router along with all the power sources as a data center. Then, we divide

a load demand demandi into multiple piece-wise constant time windows. Each time window

of demandi is regarded as a set of cloudlets that starts computing at different specific time

stamps. A virtual machine is directly bound to a cloudlet to guarantee the the cloudlet

can finish computing within the scheduling interval. We label the virtual machine as vmj
i

representing for demandi at a time window order j. Thus demandi = {vm1
i , vm

2
i , ..., vm

N
i }.

A host host then becomes a power source provider naturally. Then question for the ER based

system becomes for each demandi at the beginning of each time window j, vmj
i should be

allocated to which hostk via the energy router according to designated policy.

84

5.5.1 Implementation of ER based System Simulation

From the problem formulation, we need CloudSim to have the following three properties.

• All virtual machines should be able to start at user specified time stamp.

• A virtual machine should be freed from its host and destroyed once the task

is completed.

• A new host allocation policy is required to make load choose a feasible

power service provider.

5.5.1.1 Modifying Virtual Machine Starting Time

We modified the interface of CloudSim to suit all the needs for ER based system simulation.

In CloudSim, all the cloudlets stored in an array are submitted by the broker at the beginning

of the experiment via the function call sendNow. We created a new class ERCloudlet

specifying the start time the cloudlet to be schduled, and replaced sendNow with another

API send in the original source code that can specify the starting time of a cloudlet to be

executed. Instead of submitting cloudlets by array at time 0, the broker in our implementation

submits cloudlets one by one at their designated starting time.

5.5.1.2 Modifying Virtual Machine Destroy Time

The destroy process of all virtual machines in CloudSim happens when all the cloudlets

completed their computing task. In ER based system, a cloudlet stands for the energy needed

in a time window. Thus it should be finished before the time window ends. Consequently, the

virtual machine should be deallocated from the host before next time window come. In our

implementation we destroy virtual machines one by one, and shifted the destroy process to

an earlier stage when the broker acknowledges that the virtual machine finishes computing.

85

5.5.1.3 Host Allocation Policy for ER based system

Host allocation policy in the cloud computing defines which virtual machines is allocated to

which host. Under the scenario of ER based system, this policy assigns vmj
i representing for

load demand to hostk that stands for a power service provider. To be more specific, a load

requests power to all power providers through the energy router during the start of each time

window, and then each power provider sends back a price. We set the pricing scheme to be

time dependent, and also trust dependent if the trust system is enabled. The load chooses

which power station to provide power supply according to user defined criteria, and also

chooses to pay or not to pay after receiving the desired power if the trust system is enabled.

The load’s trust increases if it pays for the demand generated, otherwise the trust decreases.

5.5.1.4 Trust based Power Transaction

The scheme for building trust system is totally customized. Our implementation of trust

system is almost identical to section IV. The trust query scheme whose trust evaluation is

identical to Eq. (5.4) and Eq.(5.5). The pricing scheme for service provider is identical to

Eq.(5.6). The only difference is that we disabled spx, r but setting a load’s trust to minimum

instead. This guarantees every vmj
i will receive power service.

A load will choose a power provider not only considering the electricity price, but also

line loss. Line loss cost lossL defines the money wasted on the energy loss transmitted from

a power plant to the load. Power service provider with longer distance incurs higher lossL.

For simplifying computation complexity, we define the total payment Ptotal to get required

amount of energy to be approximately Px + lossL. The load checks the cost from all the

hosts, and then chooses the service provider that has enough power with the lowest cost.

Each node has its estimated price Pest, and we relate Ptotal and Pest via a coefficient fexp. If

Ptotal > fexp ∗ Pest, the load will have higher probability not to pay the service, otherwise the

load will have lower probability not paying.

86

Figure 5.3: Multiple-ER system failure probability

5.6 Experiments and Results

We implemented all three models in the probabilistic model checking tool PRISM [KNP11].

Prism is a probabilistic model checker supporting modeling of DTMCs, CTMCs, MDPs, and

PTAs. We also implemented our ER based simulation framework on top of CloudSim. All

the evaluations and simulations are run on a desktop equipped with an Intel E5-2643@3.30G

CPU and 128GB memory. The PRISM’s cudd memory is set to be 4GB, and java memory is

set to be 16GB.

5.6.1 Architecture Model Properties

The multiple-ER model contains 1 hub, 10 ERs and 1000 ports. It has 0.8k states and

2k state transitions. Configurable parameters include mean time to failure (MTTF) and

recovery time for the controller, the ERs and the ports. Our main interest for this model is

its reliability. We varied the MTTF and the recovery time for the ERs to verify the reliability

property whose result is shown in Fig. 5.3.

We observe that the system failure probability goes down when the ERs have larger

MTTF and faster recovery time, and an ER MTTF larger than 100, 000hrs provides limited

contribution to the system reliability because of the probability convergence. Curves for

different MTTF settings for each ER will be bouded in this set of curves.

The ER based subsystem model contains one ER module, one local cell module, one

service queue module, and three port modules. The number of channels in the local cells

87

Figure 5.4: Single-ER based subsystem failure probability

Figure 5.5: Single-ER based subsystem communication count

(a) β = 1 (b) β = 3

Figure 5.6: Minimum cost for the requester to get the required amount of services

88

(a) β = 1 (b) β = 3

Figure 5.7: Maximum loss for the provider to provide the required amount of services

(a) Average total revenue (b) Average total line loss

Figure 5.8: Average total revenue and average total line loss for ER based system

89

NLocal and ER’s recovery time are set as experiment parameters, where NLocal varies from

40 to 200, and tRecRouter varies from 12 hrs to 60 hrs. Average life time for the ER is 50000hrs.

Average life time for all three ports are 1 month, 1.5 months and 2 months. Request rate

for all three ports which are the inverse of the corresponding average request frequency are

0.015, 0.02 and 0.025. In the service queue module, the maximum capacity for the service

queue is 50. In the local cell module, the arriving rate of new calls and hand-off calls are

49 and 21, and departure base rate is 1. In total the whole model contains approximately

14million − 54millon states and 50millin − 489millon state transitions depending on the

number of local channels.

The model checking result for the reliability property is shown in Fig. 5.4 where NLocal

stands for the number of channels in the local cells. We observe the reliability of the local

cell contributes the major part of the failure. Higher cell channel capacity results in lower

failure probability. Faster recovery time results in lower failure probability as well.

We also checked the total router related communication operations property shown in

Fig. 5.5 where T varies from 0 to 10000 seconds to get a taste of energy consumption under

the current parameter setting. We observe a linear increment of number of operations over

time, and a increment with more local channels at the same time. The operation number

saturates when nLocal is large enough.

5.6.2 Electricity Trading Model Properties

In this model, we checked properties from both the service requester and the service providers

perspective. This model contains one service requester and three service provider. The

requester is required to consume energy for 15 times during 48 time slots (72 hours). The

trust level varies from 1 to 10. We set α to 0.5, β ∈ {1, 3, 5}, and γ varying from 0.5 to 1.5

with a step of 0.1. The full model contains 113million states and 194million transitions. We

check the minimum cost from the service requester side, and the maximum loss property

from the service provider side.

The minimum loss for the requester to get required services is shown in Fig. 5.6, where

90

the mixed (2/5/8), low (2/2/2), medium (5/5/5), high (8/8/8) stands for the requester’s

initial trust levels for all three providers. The run time for the experiment is 14 hrs. We

observe a higher γ results in smaller cost, and the cost starts to drop earlier when β increases.

It is also clear that the requester’s strategy to get lower cost is to increase its target price,

and the cost starts to saturate when the β is large.

The maximum loss for the all service providers is shown in Fig. 5.7, where the initial

trust settings are identical to the minimum loss checking. We observe different behaviors

on varying β and γ. When β is small, all four trust settings show similar increasing trends

which is insensitive to the γ. The interpretation behind is that a small γ does not regulate

the price tight enough, thus under all situations the requester will take similar strategy to

pay as less money as possible to get serviced. The amount increases in high γ due to the

decrement in the requester’s cost. When β is large, low initial trust indicates the requester

has only limited chances to get serviced. Thus it follows the same strategy regardless of the

γ. Under other initial trust levels, a small γ results that the issued price is always higher

than the target price. To guarantee the load consumption with the minimum money, the user

will perform unpaid actions as many as possible. Thus the service providers suffers constant

high loss. When γ is high, the issued price can be lower than the target price. This increases

the choices for the requester to pay less, and the maximum loss gradually increases. However,

all high initial trusts makes the optimal choices fixed again because every transaction will be

consented by the providers. Thus the solution space becomes the same regardless of the γ.

5.6.3 Scheduling Behaviour of ER Based System

We built a ER based system containing three loads and three power service providers controlled

by an energy router. The system contains three categories of input data, distance from each

load to each power provider, a 5-day demand with a unit of MWh for each load with a time

window of 1 hour length, a 5-day time dependent electricity price having a unit of $/MWh

from a power provider with a time window of 1 hour length. The distance is generated by a

random number generator, and the other two data comes from running data of ISO-NE [ISO].

91

We set a 0.15 probability that a load will refuse to pay the service if the price is higher than

expected, and 0.05 if lower than its expectations. Then we varied β from 1 to 3 in Eq.(5.6)

and ExpectPriceFactor from 1 to 2 to observe the service providers total revenue and total

line loss in dollars within 5 days. Since the load actions are stochastic, for each parameter

setting we performed experiment 500 times, and returned their average outputs. We also

measured the total revenue and total line loss using time based pricing only with no trust

system applied as a base scenario to compare.

Fig. 5.8a shows the total revenue of all service providers. Comparing with the time based

pricing, we observe that introducing the trust system in general increase the total revenue

since a higher price will be applied to the load with low trust score. A higher beta value

yields higher revenue since high β increases the price for low trust score load. We also observe

that load’s ExpectPriceFactor has effect on the total revenue. The total revenue increases

when ExpectPriceFactor is around 1.3, 1.6, 1.9 when β equals to 1, 2, 3 respectively. This

indicates that below those factors the prices issued from the service providers are in general

satisfy loads’ expectations, and thus less loads refuse to pay the price. When the factor is

high, more loads refuse to pay for the power they got from the power provider, and thus bad

trusts result in higher revenue for the providers.

Total line loss of the experiment is shown in Fig. 5.8b. We observe that line loss increases

while β is increasing. This is because the higher price with higher β yields higher loss in

terms of money even with the same loss in terms of energy. Higher ExpectPriceFactor help

reduce the line loss in general. Comparing to the no trust time based pricing case, β = 1

yields even lower line line when the ExpectPriceFactor is high.

5.7 Conclusion and Future Work

In this paper, we applied probabilistic model checking to verify the energy router system design

in Energy Internet for green cities. We proposed two CTMC models to describe operation of

a multiple ER system and a single ER subsystem respectively, and presented their reliabilities

and expected communication operations through probabilistic model checking. To apply

92

ER system functions into real scenario for green cities, we selected electricity trading as an

example, and proposed an MDP model to describe the trading behaviour, and quantitatively

model checked the minimum cost of the service requester and the maximum loss of the service

providers. We also introduced an ER based system scheduling monitoring tool to observe

the system’s scheduling behaviour. We projected the power demand and supply transaction

process to computing cloudlets in cloud computing, and then modified CloudSim to suit the

need of ER based system transaction. As the future work, we will perform probabilistic model

checking on more real functions in the energy router system, apply other formal verification

techniques to verify the system design, and improve the monitoring tool to model more

complex ER based system design for the future development of green cities.

93

CHAPTER 6

Summary

In this chapter, we conclude the dissertation by summarizing our contributions and presenting

the future work.

In the software testing field, since concolic testing suffers from path explosion, we introduce

the concolic+BMC algorithm that applies BMC locally targeting at loop-free code fragment

during concolic testing to alleviate path explosion, and thus improve branch coverage. We

have compared Llsplat with KLEE, using 10 programs from the Windows NT Drivers

Simplified [SVC] and 88 programs from the GNU Coreutils used in [CDE08]. With 3600

second testing time for each program, Llsplat provides on average 13% relative branch

coverage improvment on the programs in the Windows NT drivers simplified set, and on

average 16% relative branch coverage improvment on 80 out of 88 programs in the GNU

Coreutils set. The experiments show that the concolic+BMC algorithm increases branch

coverage of the two test benchmark sets. we also adopt symbolic execution and automatic test

case generation into embedded platforms. We use a client/server model to separate constraint

solving and symbolic execution to greatly reduce the computation load in the embedded

platform. Multi-threading in both client and server modules increases the efficiency of the

Codecomb. Experiments on PC and Pandaboard embedded platform show the Codecomb

can run on the embedded platform, and is able to find software deficiencies automatically.

We believe some future work can be achieved on top of our algorithm. Specifically, the

implementation of Llsplat performs BMC encoding if there exists an acyclic graph containing

a few merging basic blocks without function calls inside of the graph. We avoid encoding

function calls because it may incur exponential blowup in the BMC formula generation. We

would like to come up with a clever evaluation procedure that identifies “cheap" function

94

calls that can be encoded. In addition, solving functions of large scale may yield long time

being spent in the SMT solver. We would also like to investigate whether there exists a low

cost governed region overhead estimation method to make the selection of BMC regions more

intelligent. As for Codecomb, we will continue improve Codecomb to make it suitable for

more complex source code, and add support to more communication ports to make Codecomb

suits more sorts of embedded platforms.

In the VLSI HLS filed, we propose a dynamic execution functional verification flow for HLS.

Specifically, our verification flow first runs light-weight symbolic execution on both C code

and HLS generated Verilog code to generate SMT execution traces. Our on-the-fly lightweight

symbolic execution on Verilog side is implemented on Verilog’s SMT representation obtained

by Yosys synthesis tool. Then we perform optimization on module input symbolization and

valid datapath identification from HLS code generation perspective to greatly reduce the

complexity for SMT solver. Considering HLS binds the same operation to an identical set of

hardware, we perform one-on-one trace matching by abstracting identical operations on C and

Verilog traces. To the best of our knowledge, it is the first time that a pure dynamic approach

is applied on HLS functional verification without transforming one side of the source code to

the format of its counterpart before verification. Extensive experiments verify the validity

and effectiveness of the flow. As for the future work, we will continue to optimize on the flow

to reduce the runtime for the verification process to make it more promising and practical.

We will also search for more efficient trace matching algorithms to avoid enumeration.

In the EI field, we applied probabilistic model checking to verify the energy router

system design in Energy Internet for green cities. We proposed two CTMC models to describe

operation of a multiple ER system and a single ER subsystem respectively, and presented their

reliabilities and expected communication operations through probabilistic model checking.

To apply ER system functions into real scenario for green cities, we selected electricity

trading as an example, and proposed an MDP model to describe the trading behaviour, and

quantitatively model checked the minimum cost of the service requester and the maximum

loss of the service providers. We also introduced an ER based system scheduling monitoring

tool to observe the system’s scheduling behaviour. We projected the power demand and

95

supply transaction process to computing cloudlets in cloud computing, and then modified

CloudSim to suit the need of ER based system transaction. As the future work, we will

perform probabilistic model checking on more real functions in the energy router system,

apply other formal verification techniques to verify the system design, and improve the

monitoring tool to model more complex ER based system design for the future development

of green cities.

96

.1 Preliminaries

Given a control flow graph (CFG) of a function, BB0, BB1, . . . , BBn is a path of CFG if for

each 0 ≤ i ≤ n− 1, (BBi, BBi+1) is an edge of CFG. Given an edge (a, b) of the CFG, we

call a the source of the edge and b the target of the edge. A state s of a program is a function

that maps each variable x in the program to a value in the domain of x. Given two states s

and s′, we denote s BB−−→ s′ to be an execution such that by executing the instructions of BB

with the initial state s, the execution ends up with the state s′. Occasionally, if we are not

interested in s or s′, we omit them and write BB−−→ s′ or s BB−−→.

Given a formula ψ, an assignment m of ψ is a function that maps each variable x in ψ

to a value in the domain of x. An assignment m is a model of ψ, denoted by m |= ψ, if ψ

evaluates to true by m.

Given a set S of variables, a version map V is a renaming function that maps each

variable x ∈ S to a variable xα for some α ∈ N. We write V(S) to be the set of variables

{y | ∃x ∈ S. y = V(x)}. Given a version map V and an assignment m to the variables in

V(S), we denote m|V to be an assignment to the variables in S such that for each variable

x ∈ S, m|V(x) = m(V(x)).

We denote s0
BB0−−→ s1

BB1−−→ s2 . . .
BBn−−→ sn to be an execution of a program.

.2 Proofs

We first prove properties of effective dominance sets and governors. We then prove properties

of our BMC algorithm.

.2.1 Properties of Effective Dominance Sets and Governors

Lemma .2.1. Given two basic blocks m and n, if n ∈ Edom(m), then for each path from m

to n, any basic block k along the path is not polluted.

Proof. Suppose not. Then there is a path from m to n along which there is some k that is

97

polluted. We consider two cases. Case 1: m = n. Then k must be n. Thus n is polluted

and is not in Edom(m). Contradiction. Case 2: m 6= n. Then p : m→∗ k →+ n. Since k is

polluted and n is reachable by k, n is polluted and is not in Edom(m). Contradiction.

Lemma .2.2. For any basic block m, Edom(m) is acyclic.

Proof. Suppose not. Then there is a basic block n ∈ Edom(m) such that n is the source of a

back edge. Hence n is polluted and is not in Edom(m). Contradiction.

Lemma .2.3. Let m be a governor. The governed region GR(m) is acyclic.

Proof. Let BB1 and BB2 be the successors of m. By Lemma .2.2, Edom(BB1) and

Edom(BB2) are acyclic. Moreover, there is not any edge a → b where a ∈ Edom(BB1)

and b ∈ Edom(BB2). Otherwise, we can construct a path m → BB1 →∗ a → b which

bypasses BB2, which indicates that BB2 does not dominate b. Similarly, we can prove that

there is not any edge a→ b where a ∈ Edom(BB2) and b ∈ Edom(BB1). Thus, GR(m) is

acyclic.

Lemma .2.4. Let m be a governor. The governed region GR(m) does not have any function

calls.

Proof. Let BB1 and BB2 be the successors of m. By Lemma .2.1, Edom(BB1) and

Edom(BB2) do not have function calls. Since GR(m) = Edom(BB1) ∪ Edom(BB2), so

does GR(m).

Lemma .2.5. A governor m dominates every basic block n in its governed region GR(m).

Proof. By definition of GR(m), we know that n is either dominated by BB1 or BB2 where

BB1 and BB2 are the successors of m. Without loss of generality, let us assume that BB1

dominates n. Since m is a governor, m dominates BB1. Since dominance relation is transitive,

m dominates n.

98

.2.2 Properties of the BMC Generation Algorithm

Given a governor gov and a basic block BB ∈ GR(gov), note that if gBB is true, then the

block formula Blks[BB] encodes the program logic of BB in SSA form, which leads to

Lemma .2.6.

Lemma .2.6. Given a program P and a governor gov, let V ,V ′ be the version map before

and after the SSA variable renaming for BB. The following two statements hold: (1) If

an assignment m with m(gBB) = true is a model of Blks[BB], then m|V
BB−−→ m|V ′ is an

execution of P . (2) If s BB−−→ s′ is an execution of P , then there is a model m of Blks[BB]

such that m(gBB) = true, m|V = s, and m|V ′ = s′.

Proof. Proof by induction on the number of instructions in BB.

Given a governor gov, we prove that, for any destination d ∈ Dests(gov), (1) the formula

φ ∧ gd where gd =
∨
e∈Edges[d] e represents all executions from gov to d, and (2) the final

version of each variable x ∈ AccV ars(gov) in φ always represents the value of x when an

execution from gov to d reaches d.

Lemma .2.7. Given a governor gov, for any topological ordering T over GR(gov) and any

destination d ∈ Dests(gov), if m is a model of φ∧ gd, then (1) we can construct an execution

ρ from the governor gov to the destination d, and (2) for each variable x ∈ AccV ars(gov), if

xα is the final version of x in φ, then m(xα) is the value of x when the execution ρ enters

the destination d.

Proof. Since m is a model of φ∧ gd, let the set Taken be {BB | m(gBB) = true}, i.e., the set

of all basic blocks whose guard gBB is set to true by m. Since gd is true, we know that the

guard of a predecessor of d holds, the guard of a predecessor of the predecessor of d holds,

and so on. This indicates that there is a path from gov to d along which the guards gBB of

all basic blocks BB ∈ GR(gov) are set to true by m. Moreover, the guards gBB of all basic

blocks BB ∈ GR(gov) that are not shown along the path are set to false by m since the

guards of two successors cannot hold at the same time. Hence we know that the set Taken

are the intermediate basic blocks of the path from gov to d.
99

Figure .1: Topological ordering of the governed region

Figure .2: An execution from the governor gov to a destination d

As shown in Fig .1, let BB1, . . . , BBi1 , . . . , BBi2 , . . . BBn be the sequence of basic blocks in

GR(gov) sorted by the topological ordering T such that each BBij ∈ Taken where 1 ≤ j ≤ k.

Note that gov,BBi1 , BBi2 , . . . , BBik , d is a path. Otherwise, T is not a topological ordering.

We now construct an execution along this path. For each BBi ∈ GR(gov) where 1 ≤ i ≤ n,

let Vi be the version map before BBi and V ′i be the one after BBi. By Lemma .2.6, we know

that for each 1 ≤ j ≤ k, m|Vij
BBij−−−→ m|V ′ij

is an execution. Also, since the guards gBB of all

basic block BB 6∈ Taken are set to false by the model m, we have

m|V1 = m|Vi1 , . . . , m|V ′ik−1
= m|Vik , m|V ′ik

= m|V ′n

Therefore, gov−−→ m|Vi1
BBi1−−−→ m|Vi2

BBi2−−−→ . . .
BBik−1−−−−→ m|Vik

BBik−−−→ m|V ′n
d−→ is an execution of

the program P . Moreover, since m|V ′n
d−→, the final version of each variable x in the model m

represents the value of x when the execution enters the destination d.

Lemma .2.8. Given a governor gov, for any topological ordering T over GR(gov) and any

destination d ∈ Dests(gov), if there is an execution from gov to d, then we can construct a

model m for the formula φ ∧ gd.

Proof. Let gov−−→ s0
BBi1−−−→ s1

BBi2−−−→ s2 . . .
BBik−−−→ sk

d−→ be an execution from the governor gov to

a destination d, as shown in Fig .2.

Let BB1, BB2, . . . , BBn be the sequence of basic blocks in GR(gov) sorted by the topolog-

ical ordering T . Note that for 2 ≤ j ≤ k, BBij−1
must occur before BBij along the sequence.

Otherwise, T is not a topological ordering. We present this fact in Fig .3.

Figure .3: Topological ordering of the governed region

100

For each BBi ∈ GR(gov) where 1 ≤ i ≤ n, let Vi be the version map before BBi and V ′i
be the one after BBi. We now construct an assignment m and prove that m is a model of

φ ∧ gd.

Let Taken be the set {BBij | 1 ≤ j ≤ k}. For each basic block BB ∈ GR(gov), if

BB ∈ Taken, then we set m(gBB) = true, m(gBB) = false otherwise. For each variable

x ∈ AccV ars(gov), we construct the assignment m in four steps:

(1) If V1(x) = xl and Vi1(x) = xh, then for each xα with l ≤ α ≤ h, m(xα) = s0(x);

(2) For each j ∈ [1, k − 1], if V ′ij (x) = xl and Vij+1
(x) = xh, then for each xα with l < α ≤ h,

m(xα) = sj(x),

(3) If V ′ik(x) = xl and V ′n(x) = xh, then for each xα with l < α ≤ h, m(xα) = sk(x);

(4) For each j ∈ [1, k], by Lemma .2.6, we know that there is a model mj of Blks[BBij] such

that mj(gBBij
) = true, mj |Vij

= sj−1 and mj |V ′ij
= sj. If Vij(x) = xl and V ′ij(x) = xh,

then for each xα with l < α ≤ h, m(xα) = mj(x).

Note that each variable xα is assigned exactly once in the above construction of m, which

means m does not make different values to xα. Now we show m is indeed a model of φ ∧ gd.

We consider two cases depending on whether a basic block BB ∈ GR(gov) is in the set

Taken.

1. Suppose BB ∈ Taken. Then BB is BBij for some j ∈ [1, k]. First, m |= Blks[BBij]

according to Step 4 of the above construction. Secondly, m evaluates gBBij
to true.

Lastly, m evaluates
∨
c∈Edges[BBij

] c to true by proving the following cases.

(a) BBij is the left successor of the governor gov. Let br e BBij BB2 be the

terminating instruction of gov. Since s0 |= e and m|V1 = s0, we have m |= V1(e),

and thus m |=
∨
c∈Edges[BBij

] c.

(b) BBij is the right successor of the governor gov. This case is proved similarly as

case (a).

101

(c) BBij is the unique successor of the basic blockBBij−1
∈ Taken. Sincem(gBBij−1

) =

true and gBBij−1
∈ Edges[BBij], we have that m |=

∨
c∈Edges[BBij

] c.

(d) BBij is the left successor of BBij−1
∈ Taken. Let br e BBij BB2 be the

terminating instruction of BBij−1
. Since sj−1 |= e and m|V ′ij−1

= sj−1, we have

m |= V ′ij−1
(e). Moreover, since m(gBBij−1

) = true, then m |= gBBij−1
∧ V ′ij−1

(e).

Hence m |=
∨
c∈Edges[BBij

] c.

(e) BBij is the right successor of BBij−1
∈ Taken. This case is proved similarly as

case (d).

2. Suppose BB 6∈ Taken. First, since m(gBB) = false, Blks[BB] are conjunctions of

equations of the form xα = xα−1. By Steps (1),(2), and (3), we have m |= Blks[BB].

Secondly, we prove that m evaluates
∨
c∈Edges[BB] c to false by contradiction. Suppose

there is c ∈
∨
e∈Edges[BB] e such that m |= c. We consider the following cases depending

on the form of c.

(a) c ≡ V1(e). Then BB is the left successor of the governor gov. Let br e BB BBi1

be the terminating instruction of gov. Since s0 |= ¬e and m|V1 = s0, we have

m |= ¬V1(e), and thus m 6|= c. Contradiction.

(b) c ≡ ¬V1(e). Then BB is the right successor of the governor gov. This case is

proved similarly as case (a).

(c) c ≡ gBB′ . Then we know that BB′ ∈ Taken and BB is the unique successor of

BB′. Since m(gBB′) = true, then m(gBB) = true. Contradiction.

(d) c ≡ gBBu∧V ′u(e) for some u ∈ [1, n]. Since m |= gBBu , we know that BBu ∈ Taken

and BB is the left successor of BBu. Without loss of generality, let BBu be BBij

for some j ∈ [1, k]. Then V ′u = V ′ij . Let br e BB BB′ be the terminating

instruction of BBij . Note that sj |= ¬e. Since m|V ′ij
= sj, we have m |= ¬V ′ij(e).

Contradiction.

(e) c ≡ gBBu ∧ ¬V ′u(e) for some u ∈ [1, n]. Since m |= gBBu , we know that BBu ∈

Taken and BB is the right successor of BBu. This case is proved similarly as case

(d).
102

Now that we have proved for each BB ∈ GR(gov), m |= gBB =
∨
c∈Edges[BB] c and m |=

Blks[BB]. Thus m |= φ. We now prove that m |= gd where gd =
∨
c∈Edges[d] c. Suppose

that the destination d is the unique successor of BBik , then gBBik
∈ Edges[d]. Since

m |= gBBik
, m |= gd. Suppose that d is the left successor of BBik , that is, the terminating

instruction of BBik is br e d BB2. Since sk |= e and m|V ′ik
= sk, we have m |= V ′ik(e).

Since gBBik
∧ V ′ik(e) ∈ Edges[d], we have m |= gd. By the similar reasoning, if d is the right

successor of BBik , we also have m |= gd. Hence m |= φ ∧ gd.

Theorem .2.9. Given a governor gov and a destination d ∈ Dests(gov), the formula φ ∧ gd

encodes all executions from gov to d. Moreover, the final version of each variable x in φ

represents the value of x when an execution from gov to d enters d.

Proof. Proved by Lemma .2.7 and .2.8.

103

REFERENCES

[AB12] Alessandro Aldini and Alessandro Bogliolo. “Model checking of trust-based user-
centric cooperative networks.” In Proc. 4th International Conference on Advances
in Future Internet (AFIN’12), pp. 32–41. Citeseer, 2012.

[ABC13] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil Mcminn.
“An Orchestrated Survey of Methodologies for Automated Software Test Case
Generation.” J. Syst. Softw., 86(8), August 2013.

[AGT08] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. “Demand-driven Com-
positional Symbolic Execution.” In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’08/ETAPS’08, pp. 367–381, Berlin,
Heidelberg, 2008. Springer-Verlag.

[ARC14] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley.
“Enhancing Symbolic Execution with Veritesting.” In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pp. 1083–1094,
New York, NY, USA, 2014. ACM.

[ASH16] Pablo Gonzalez-de Aledo, Pablo Sanchez, and Ralf Huuck. An Approach to
Static-Dynamic Software Analysis, pp. 225–240. Springer International Publishing,
Cham, 2016.

[BAJ11] M. Behl, M. Aneja, H. Jain, and R. Mangharam. “EnRoute: An energy router for
energy-efficient buildings.” In Proceedings of the 10th ACM/IEEE International
Conference on Information Processing in Sensor Networks, pp. 125–126, 2011.

[BCE08] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. “RWset: Attacking Path
Explosion in Constraint-based Test Generation.” In Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, Berlin,
Heidelberg, 2008.

[BCG09] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and
Roberto Sebastiani. “Software Model Checking via Large-Block Encoding.” In
Proceedings of the 9th International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2009, Austin, TX, November 15-18), pp. 25–32, 2009.

[BCM90] J. Burch, E. Clarke, K. McMillan, and D. Dill. “Sequential circuit verification using
symbolic model checking.” In 27th ACM/IEEE Design Automation Conference,
pp. 46–51, 1990.

[BL05] Mike Barnett and K. Rustan M. Leino. “Weakest-precondition of Unstructured
Programs.” In Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on

104

Program Analysis for Software Tools and Engineering, PASTE ’05, New York, NY,
USA, 2005. ACM.

[BS08] J. Burnim and K. Sen. “Heuristics for Scalable Dynamic Test Generation.” In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’08, pp. 443–446, Washington, DC, USA, 2008.

[BZC15] A. Becerra, W. Zeng, M. Chow, and J. Rodriguez-Andina. “Green city: A low-
cost Testbed for Distributed Control Algorithms in Smart Grid.” In M. Chow
A. C. Becerra, W. Zeng and J. Rodriguez-Andina, editors, Proc. 41st IECON
2015 Annual Conference of the IEEE Industrial Electronics Society, volume 68,
pp. 1948–1953. IEEE Conference, 2015.

[CBR01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. “Bounded Model
Checking Using Satisfiability Solving.” Form. Methods Syst. Des., 19(1):7–34,
July 2001.

[CCA13] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. “LegUp: An
Open-source High-level Synthesis Tool for FPGA-based Processor/Accelerator
Systems.” ACM Trans. Embed. Comput. Syst., 13(2):24:1–24:27, September 2013.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.”
In Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pp. 209–224, Berkeley, CA, USA, 2008. USENIX
Association.

[CFS09] Satish Chandra, Stephen J. Fink, and Manu Sridharan. “Snugglebug: A Powerful
Approach to Weakest Preconditions.” In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’09,
New York, NY, USA, 2009. ACM.

[Che07] Steven Cherry. “How to Build A Green City.” IEEE Spectrum, 44(6):26–29,
January 2007.

[CJW15] Mike Czech, Marie-Christine Jakobs, and Heike Wehrheim. Just Test What You
Cannot Verify!, pp. 100–114. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[CKC11] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “S2E: A platform
for in-vivo multi-path analysis of software systems.” ACM SIGPLAN Notices,
46(3):265–278, 2011.

[CKY03] Edmund Clarke, Daniel Kroening, and Karen Yorav. “Behavioral Consistency of
C and Verilog Programs Using Bounded Model Checking.” In Proceedings of the
40th Annual Design Automation Conference, DAC ’03, pp. 368–371, New York,
NY, USA, 2003. ACM.

105

[CLN11] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru Zhang.
“High-Level Synthesis for FPGAs: From Prototyping to Deployment.” Trans.
Comp.-Aided Des. Integ. Cir. Sys., 30(4):473–491, April 2011.

[CMN12] Lucas Cordeiro, Jeremy Morse, Denis Nicole, and Bernd Fischer. “Context-
Bounded Model Checking with ESBMC 1.17.” In Tools and Algorithms for the
Construction and Analysis of Systems, pp. 534–537. Springer Berlin Heidelberg,
2012.

[CRB11] R. Calheiros, R. Rajiv, A. Beloglazov, C. Rose, and R. Buyya. “CloudSim: A
Toolkit for Modeling and Simulation of Cloud Computing Environments and
Evaluation of Resource Provisioning Algorithms.” Softw. Pract. Exper., 41(1):23–
50, January 2011.

[CS13] Cristian Cadar and Koushik Sen. “Symbolic Execution for Software Testing: Three
Decades Later.” Commun. ACM, 56(2):82–90, February 2013.

[CSR01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[CZ06] J. Cong and Zhiru Zhang. “An efficient and versatile scheduling algorithm based
on SDC formulation.” In 2006 43rd ACM/IEEE Design Automation Conference,
pp. 433–438, July 2006.

[CZG13] Ting Chen, Xiao-Song Zhang, Shi-Ze Guo, Hong-Yuan Li, and Yue Wu. “State of
the Art: Dynamic Symbolic Execution for Automated Test Generation.” Future
Gener. Comput. Syst., 29(7):1758–1773, September 2013.

[DGH15] Przemyslaw Daca, Ashutosh Gupta, and Thomas A. Henzinger. “Abstraction-
driven Concolic Testing.” CoRR, abs/1511.02615, 2015.

[Dij97] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1997.

[ENS17] W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, and M. Jo. “Efficient energy
management for the internet of things in smart cities.” IEEE Commun. Mag.,
55(1):84–91, January 2017.

[FS01] Cormac Flanagan and James B. Saxe. “Avoiding Exponential Explosion: Gen-
erating Compact Verification Conditions.” In Proceedings of the 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’01, pp. 193–205, New York, NY, USA, 2001. ACM.

[GHM16] M. Gao, L. He, R. Majumdar, and Z. Wang. “LLSPLAT: Improving Concolic
Testing by Bounded Model Checking.” In 2016 IEEE 16th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp. 127–136,
2016.

106

[GHW17] M. Gao, L. He, and K. Wang. “Probabilistic Model Checking for Green Energy
Router System in Energy Internet.” In 2017 IEEE Global Communications
Conference (GLOBECOM), Dec 2017.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Automated
Random Testing.” In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pp. 213–223, New
York, NY, USA, 2005.

[GLM12] Patrice Godefroid, Michael Y. Levin, and David Molnar. “SAGE: Whitebox
Fuzzing for Security Testing.” Queue, 10(1):20:20–20:27, January 2012.

[God07] Patrice Godefroid. “Compositional Dynamic Test Generation.” In Proceedings of
the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’07, pp. 47–54, New York, NY, USA, 2007. ACM.

[GWH18] M. Gao, K. Wang, and L. He. “Probabilistic Model Checking and Scheduling
Implementation of an Energy Router System in Energy Internet for Green Cities.”
IEEE Transactions on Industrial Informatics, 14(4):1501–1510, April 2018.

[GWY17] Wen-sheng Guo, Yong Wang, Xia Yang, and Min Gao. “Codecomb: Automated
Test Case Generation and Defect Detecting for Embedded Software Based on
Symbolic Execution.” Journal of Chinese Computer Systems, 38(6):1250, 2017.

[HHY15] S. Hambridge, A. Huang, and R. Yu. “Solid State Transformer (SST) as an energy
router: Economic dispatch based energy routing strategy.” In 2015 IEEE Energy
Conversion Congress and Exposition (ECCE), pp. 2355–2360, 2015.

[HMP01] G. Haring, R. Marie, R. Puigjaner, and K. Trivedi. “Loss Formulas and their Ap-
plication to Optimization for Cellular Networks.” IEEE Transaction on Vehicular
Technology, 50(3):664 –673, May 2001.

[HS11] H. Hildmann and F. Saffre. “Influence of variable supply and load flexibility
on Demand-Side Management.” In Proc. 8th International Conference on the
European Energy Market (EEM’11), pp. 63–68, 2011.

[HSI10] William R. Harris, Sriram Sankaranarayanan, Franjo Ivancic, and Aarti Gupta.
“Program analysis via satisfiability modulo path programs.” In POPL 2010, pp.
71–82. ACM, 2010.

[HTH08] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya
Ishii. “CHStone: A benchmark program suite for practical C-based high-level
synthesis.” In 2008 IEEE International Symposium on Circuits and Systems, pp.
1192–1195, May 2008.

[HWC17] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang. “Multi-tier Fog
Computing with Large-scale IoT Data Analytics for Smart Cities.” IEEE Internet
of Things Journal, PP(99):1–1, 2017.

107

[ISO] “ISO New England Data.” https://www.iso-ne.com/.

[JMN13] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas. “Boosting Concolic
Testing via Interpolation.” In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, pp. 48–58, New York, NY,
USA, 2013. ACM.

[JWW16] H. Jiang, K. Wang, Y. Wang, M. Gao, and Y. Zhang. “Energy big data: A survey.”
IEEE Access, 4:3844–3861, Aug 2016.

[KCY] Daniel Kroening, Edmund Clarke, and Karen Yorav. “Behavioral Consistency of
C and Verilog Programs Using Bounded Model Checking.” In Proceedings of DAC
2003. ACM Press.

[KJJ09] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley. “Solver technology for system-
level to RTL equivalence checking.” In 2009 Design, Automation Test in Europe
Conference Exhibition, pp. 196–201, April 2009.

[KKB12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea.
“Efficient State Merging in Symbolic Execution.” SIGPLAN Not., 47(6):193–204,
June 2012.

[KLG08] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. “Validating High-Level Synthe-
sis.” In Aarti Gupta and Sharad Malik, editors, Computer Aided Verification, pp.
459–472, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[KNP07] Marta Kwiatkowska, Gethin Norman, and David Parker. “Stochastic Model
Checking.” In Proceedings of the 7th International Conference on Formal Methods
for Performance Evaluation, SFM’07, pp. 220–270, Berlin, Heidelberg, 2007.
Springer-Verlag.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of
Probabilistic Real-time Systems.” In G. Gopalakrishnan and S. Qadeer, editors,
Proc. 23rd International Conference on Computer Aided Verification (CAV’11),
volume 6806, pp. 585–591. Springer, 2011.

[KSM08] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar. “An Equivalence-Checking
Method for Scheduling Verification in High-Level Synthesis.” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 27(3):556–569,
March 2008.

[KST13] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C.M. Wintersteiger.
“Loop summarization using state and transition invariants.” Formal Methods in
System Design, 42(3):221–261, 2013.

[LQL12] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. “A Solver for Reachability Mod-
ulo Theories.” In Proceedings of the 24th International Conference on Computer
Aided Verification, CAV’12, pp. 427–443, Berlin, Heidelberg, 2012. Springer-Verlag.

108

[LSH11] C. H. Lee, C. H. Shih, J. D. Huang, and J. Y. Jou. “Equivalence checking of
scheduling with speculative code transformations in high-level synthesis.” In 16th
Asia and South Pacific Design Automation Conference (ASP-DAC 2011), pp.
497–502, Jan 2011.

[LSW13] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. “Steering Symbolic
Execution to Less Traveled Paths.” In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA ’13, pp. 19–32, New York, NY, USA, 2013. ACM.

[MFC09] A. Mathur, M. Fujita, E. Clarke, and P. Urard. “Functional Equivalence Verifi-
cation Tools in High-Level Synthesis Flows.” IEEE Design Test of Computers,
26(4):88–95, July 2009.

[MFS12] Florian Merz, Stephan Falke, and Carsten Sinz. “LLBMC: Bounded Model
Checking of C and C++; Programs Using a Compiler IR.” In Proceedings of the
4th International Conference on Verified Software: Theories, Tools, Experiments,
VSTTE’12, pp. 146–161, Berlin, Heidelberg, 2012. Springer-Verlag.

[MS07] Rupak Majumdar and Koushik Sen. “Hybrid Concolic Testing.” In Proceedings of
the 29th International Conference on Software Engineering, ICSE ’07, pp. 416–426,
Washington, DC, USA, 2007. IEEE Computer Society.

[MS09] Grant Martin and Gary Smith. “High-level synthesis: Past, present, and future.”
IEEE Design & Test of Computers, 26(4):18–25, 2009.

[MSC13] C. Marquez, M. Strum, and W. Chau. “Formal equivalence checking between
high-level and RTL hardware designs.” 2013 14th Latin American Test Workshop
- LATW, 00:1–6, 2013.

[MTG00] M. Moreno, F. Terroso, A. Gonzalez, M. Valdes, A. Skarmeta, M. Zamora, and
V. Chang. “Applicability of big data techniques to smart cities deployments.”
IEEE Trans. Industrial Informatics, 13(2):800–809, apr 2000.

[MTK16] Rajdeep Mukherjee, Michael Tautschnig, and Daniel Kroening. “v2c – A Verilog
to C Translator.” In Marsha Chechik and Jean-François Raskin, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pp. 580–586, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[MZK17] J. Miao, N. Zhang, C. Kang, J. Wang, Y. Wang, and Q. Xia. “Steady-state
Power Flow Model of Energy Router Embedded AC Network and Its Application
in Optimizing Power System Operation.” IEEE Transactions on Smart Grid,
PP(99):1–1, 2017.

[NMF06] T. Nishihara, T. Matsumoto, and M. Fujita. “Equivalence Checking with Rule-
Based Equivalence Propagation and High-Level Synthesis.” In 2006 IEEE In-
ternational High Level Design Validation and Test Workshop, pp. 162–169, Nov
2006.

109

[OF15] O. Ojala and T. Ferm. “Building green city with green choices in traffic.” In
O. Ojala and T. Ferm, editors, Proc. eChallenges e-2015 Conference, volume 68,
pp. 1–8. IEEE Conference, 2015.

[QM14] Xiaoke Qin and Prabhat Mishra. “Scalable test generation by interleaving concrete
and symbolic execution.” In VLSI Design and 2014 13th International Conference
on Embedded Systems, 2014 27th International Conference on, pp. 104–109. IEEE,
2014.

[QP99] Qinru Qiu and M. Pedram. “Dynamic power management based on continuous-
time Markov decision processes.” In Proceedings 1999 Design Automation Confer-
ence (Cat. No. 99CH36361), pp. 555–561, 1999.

[SH10] Raul Santelices and Mary Jean Harrold. “Exploiting Program Dependencies
for Scalable Multiple-path Symbolic Execution.” In Proceedings of the 19th
International Symposium on Software Testing and Analysis, ISSTA ’10, New York,
USA, 2010.

[SK14] Hyunmin Seo and Sunghun Kim. “How We Get There: A Context-guided Search
Strategy in Concolic Testing.” In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, New
York, NY, USA, 2014. ACM.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Test-
ing Engine for C.” In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pp. 263–272, New York, NY,
USA, 2005. ACM.

[SOG10] A. Sanchez-Squella, R. Ortega, R. Grino, and S. Malo. “Dynamic Energy Router.”
IEEE Control Systems, 30(6):72–80, Nov 2010.

[SPF14] T. Su, G. Pu, B. Fang, J. He, J. Yan, S. Jiang, and J. Zhao. “Automated Coverage-
Driven Test Data Generation Using Dynamic Symbolic Execution.” In 2014 Eighth
International Conference on Software Security and Reliability (SERE), pp. 98–107,
June 2014.

[SVC] SVCOMP15. “Competition on Software Verification.” https://github.com/
dbeyer/sv-benchmarks/tree/master/c/.

[Ueh16] Tadahiro Uehara. “Exhaustive Test-case Generation using Symbolic Execution.”
2016.

[USK14] J. Urdahl, D. Stoffel, and W. Kunz. “Path Predicate Abstraction for Sound System-
Level Models of RT-Level Circuit Designs.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 33(2):291–304, Feb 2014.

110

[WHL17] K. Wang, X. Hu, H. Li, P. Li, D. Zeng, and S. Guo. “A Survey on Energy
Internet Communications for Sustainability.” IEEE Transactions on Sustainable
Computing, PP(99):1–1, 2017.

[WLF17] K. Wang, H. Li, Y. Feng, and G. Tian. “Big Data Analytics for System Stability
Evaluation Strategy in the Energy Internet.” IEEE Transactions on Industrial
Informatics, 13(4):1969–1978, Aug 2017.

[Wol] Clifford Wolf. “Yosys Open SYnthesis Suite.” http://www.clifford.at/
yosys/.

[WWH17] K. Wang, Y. Wang, X. Hu, Y. Sun, D. J. Deng, A. Vinel, and Y. Zhang. “Wireless
Big Data Computing in Smart Grid.” IEEE Wireless Communications, 24(2):58–
64, April 2017.

[WYY17] K. Wang, J. Yu, Y. Yu, Y. Qian, D. Zeng, S. Guo, Y. Xiang, and J. Wu. “A
Survey on Energy Internet: Architecture, Approach, and Emerging Technologies.”
IEEE Systems Journal, PP(99):1–14, Jan 2017.

[XDS15] L. Xin, Z. Dong, Y. Sun, J. Hou, and J. Liu. “Design and application of energy
router to realise Energy Internet.” In 10th International Conference on Advances
in Power System Control, Operation Management (APSCOM 2015), pp. 1–6,
2015.

[XTH09] Tao Xie, N. Tillmann, J. de Halleux, and W. Schulte. “Fitness-guided path
exploration in dynamic symbolic execution.” In Dependable Systems Networks,
2009. DSN ’09. IEEE/IFIP International Conference on, pp. 359–368, June 2009.

[XZW11] Yi Xu, Jianhua Zhang, Wenye Wang, A. Juneja, and S. Bhattacharya. “Energy
router: Architectures and functionalities toward Energy Internet.” In 2011 IEEE
International Conference on Smart Grid Communications (SmartGridComm), pp.
31–36, 2011.

[YZJ16] P. Yi, T. Zhu, B. Jiang, R. Jin, and B. Wang. “Deploying Energy Routers in an
Energy Internet Based on Electric Vehicles.” IEEE Transactions on Vehicular
Technology, 65(6):4714–4725, May 2016.

[ZYS16] W. Zhong, R. Yu, X. Shengli, Y. Zhang, and D. K. Y. Yau. “On Stability
and Robustness of Demand Response in V2G Mobile Energy Networks.” IEEE
Transactions on Smart Grid, PP(99):1–1, 2016.

[ZYX11] Y. Zhang, R. Yu, S. Xie, W. Yao, Y. Xiao, and M. Guizani. “Home M2M net-
works: Architectures, standards, and QoS improvement.” IEEE Communications
Magazine, 49(4):44–52, April 2011.

[ZYX16] W. Zhong, R. Yu, S. Xie, Y. Zhang, and D. Tsang. “Software Defined Networking
for Flexible and Green Energy Internet.” IEEE Communications Magazine,
54(12):68–75, Dec 2016.

111

