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Abstract

Background:  There is growing interest in the area of “wearable tech” and its relationship to health. A common element of many of these 
devices is a triaxial accelerometer that can yield continuous information on gross motor activity levels; how such data might predict changes 
in health is less clear.
Methods:  We examined accelerometry data from 2,976 older men who were part of the Osteoporotic Fractures in Men (MrOS) study. Using 
a shape-naive technique, functional principal component analysis, we examined the patterns of motor activity over the course of 4–7 days and 
determined whether these patterns were associated with changes in polysomnographic-determined sleep and cognitive function (Trail Making 
Test—Part B [Trails B], Modified Mini-Mental State Examination [3MS]), as well as mortality over 6.5–8 years of follow-up.
Results:  In comparing baseline to 6.5 years later, multivariate modeling indicated that low daytime activity at baseline was associated with 
worsening of sleep efficiency (p < .05), more wake after sleep onset (p < .05), and a decrease in cognition (Trails B; p < .001), as well as a 
1.6-fold higher rate of all-cause mortality (hazard ratio = 1.64 [1.34–2.00]). Earlier wake and bed times were associated with a decrease in 
cognition (3MS; p < .05). Having a late afternoon peak in activity was associated with a 1.4-fold higher rate of all-cause mortality (hazard 
ratio = 1.46 [1.21–1.77]). Those having a longer duration of their daytime activity with a bimodal activity pattern also had over a 1.4-fold 
higher rate of cardiovascular-related mortality (hazard ratio = 1.42 [1.02–1.98]).
Conclusions:  Patterns of daily activity may be useful as predictive biomarkers for changes in clinically relevant outcomes, including mortality 
and changes in sleep and cognition in older men.

Keywords: Actigraphy—Functional data analysis—Biomarker

The near ubiquitous use of accelerometers in electronic devices 
ranging from “smartphones” to personal fitness devices provides 
the biomedical community with a potential wealth of data that 
could be useful in predicting changes in human health. For more 
than 25 years, the sleep community has used longitudinal (weeks to 
months) data from validated, wrist-worn accelerometers to estimate 
sleep and circadian activity rhythms (1,2), whereas those studying 
exercise have typically used waist-worn accelerometers to examine 

amounts of activity (3). It is, however, not known whether these 
data, independent of their use to impute sleep and exercise amounts, 
could be used to examine other health-related issues.

Studies of 24-hour activity patterns often use “actigraphs,” which 
are wrist-worn devices that use triaxial accelerometers to determine 
the amount and timing of gross motor movement (1). These data 
can be analyzed in a variety of ways and are often mathematically 
modeled using cosinor (ie, based on the mathematical formula of 
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a cosine wave) or modified cosinor analyses that yield information 
concerning the amplitude of activity, the timing of “peak” activity, 
and the goodness-of-fit (how close pattern is to cosine wave) (1). 
Although this is often quite useful in young adults with robust activ-
ity patterns, these analyses assume the presence of a particular shape 
of activity (ie, a predictable pattern, such as a cosine waveform) that 
may not be present in individuals with physical or psychological 
impairments, such as those associated with aging. One technique 
that is helpful to quantify nonstandard activity patterns is a shape-
naive modeling approach, functional principal component analysis 
(fPCA) (4). In one use of fPCA, we observed that a specific pattern 
of daily activity (bimodal peak activity with large midday decline) 
was associated with a clinical diagnosis of apathy in individuals 
with Alzheimer’s disease (5). Using more traditional methods, such 
as cosinor-fitting, other aspects of health have been associated with 
daily patterns of activity, most notably cognitive impairment among 
older adults (6–10) and mortality (11,12). In Paudel and colleagues 
(11), an extended cosinor analysis of diurnal patterns of actigraphy 
was used to search for associations with future mortality. In that 
study, the goodness-of-fit of the cosinor analysis was the best pre-
dictor of mortality, especially from cardiovascular disease (CVD). 
Thus, individuals whose patterns of activity were most divergent 
from the assumed cosine waveform were the most likely to die 
within the next 3.5 years. This type of finding exemplifies the need 
to examine whether specific shapes of activity, not necessarily of a 
cosinor variety, are associated with specific medical outcomes. We 
therefore analyzed data from a longitudinal study of a large cohort 
of community-dwelling older men in an effort to determine whether 
specific patterns of activity were associated with changes in sleep and 
cognition as well as mortality rates.

Materials and Methods

All data are presented as mean ± SD.

Participants
All participants were enrolled in the Osteoporotic Fractures in Men 
(MrOS) study, a large (n  =  5,994) cohort of community-dwelling 
men aged 65 and older, recruited from March 2000 to April 2002 
from clinical centers in Birmingham, AL; Minneapolis, MN; Palo 
Alto, CA; the Monongahela Valley near Pittsburgh, PA; Portland, 
OR; and San Diego, CA. Full details of the study methodology are 
published (13,14). Written consent was obtained from all partici-
pants prior to engaging in research, and all methods conform to the 
principles laid out in the Declaration of Helsinki.

Surviving and active participants were invited to participate in the 
ancillary MrOS Sleep study (n = 3,135), on average 3.4 ± 0.5 years 
(range 1.9–4.9 years) after initial recruitment into the MrOS study 
(Figure  1). All participants who remained active in the study and 
had acceptable polysomnograph (PSG) and actigraphy data from 
the initial sleep visit were eligible to be contacted to participate 
in a second sleep visit 6.5 ± 0.68 years (range 4.9–7.9 years) later. 
Participants were contacted in random order for enrollment until the 
study recruitment goal (N = 1,000) was met. In this manuscript, we 
report on four analytic subgroups: suitable actigraphy data for fPCA 
analysis (n = 2,976), data on mortality (n = 2,943, 8.0 ± 2.3 years 
of follow-up), data on change in objective sleep measures from PSG 
from Sleep Visits 1 to 2 (n = 1,004), and data on change in cognition 
from two different cognitive tests administered during Sleep Visits 1 
and 2 (n = 968; Figure 1). 

fPCA Predictor
For at least five consecutive days at the time of the first sleep visit, 
participants had their activity patterns monitored using a wrist-worn 
accelerometer (Octagonal SleepWatch-O; Ambulatory Monitoring 
Inc., Ardsley, NY; an “actigraph”) placed on the nondominant wrist. 
An actigraph is a small device that contains a three-dimensional 
accelerometer that monitors and records general arm movement. It 
is commonly used in sleep research as the data adequately estimate 
general sleep and wake patterns (1). Data in this study were acquired 
during 1-minute epochs in proportional integration mode, which 
provides an estimate of the magnitude of movement.

In a subset of 2,976 participants, we were able generate an 
“average day” of actigraph data by averaging each minute of 
the day across days of collection. This set of 1,440 points (one 
for each minute) from the 2,976 participants (ie, 4,285,440 data 
points) was subjected to fPCA (5,15), which is similar to PCA 
except that it is applied to semicontinuous data rather than dis-
crete data. In this iteration of fPCA, each individual’s data was 
fit with a nine-Fourier-based function, thereby generating a set 
of 2,976 Fourier functions (one for each participant). Functional 
data analysis then determined the equations that explained the 
greatest amount of variance in the Fourier functions (4). We cal-
culated the first four components of the fPCA as these typically 
explain the majority of the variance, with subsequent components 
yielding diminishing returns (5,16). Each participant was then 
assigned an eigenvalue for each of the four components, repre-
senting how closely an individual’s activity data followed a spe-
cific pattern uncovered by the fPCA. These eigenvalues (four per 
participant—one for each of the four fPCA components) were 
then subjected to parametric statistics. The first four fPCA com-
ponents were separately calculated for each of the three analysis 
cohorts (cognition, sleep, mortality).

Figure 1.  Participant flow chart.
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Change in Sleep
Of the 2,976 men with actigraphy data, a subset of 1,004 had sleep 
recorded by PSG during the two sessions that were 6.5 ± 0.68 years 
apart. In-home sleep studies were completed using unattended, 
portable polysomnography at both Sleep Visits 1 and 2 (Safiro; 
Compumedics, Melbourne, Australia), using procedures similar to 
those used in the Sleep Heart Health Study (17). PSG data were 
obtained from C3/A2 and C4/A1 electroencephalograms, bilateral 
electrooculograms, and bipolar submental electromyogram. Data 
were downloaded to the Central Sleep Reading Center and scored by 
certified research polysomnologists using standard criteria (18,19). 
For the purposes of these analyses, we calculated total sleep time 
(time scored as sleep during the sleep period), wake after sleep onset 
(WASO; time scored as wake occurring after the initiation of sleep 
and before the final awakening), and sleep efficiency (total sleep time 
divided by time of the sleep period). The change in the measurements 
between the two time points was calculated as Sleep Visit 2 − Sleep 
Visit 1.

Change in Cognition
Two tests of cognitive function were administered at both sleep visits 
by trained staff: Trail Making Test—Part B (Trails B) and Modified 
Mini-Mental State examination (3MS). Of the 2,976 men with 
actigraphy data, a subset of 968 had both 3MS and Trails B scores 
obtained during the two sleep visits.

Trails B is a timed (300 seconds) test that measures attention, 
sequencing, visual scanning, and executive function. Trails B requires 
the participant to continuously scan a page to identify numbers and 
letters in a specified sequence while shifting from number to letter 
sets (20). A shorter completion time represents better cognitive func-
tioning. A positive increase in completion time (took longer to com-
plete the test at Sleep Visit 2) represents cognitive decline.

The 3MS is a global measurement of cognitive function, with 
components for orientation, concentration, language, praxis, 
and immediate and delayed memory (21). Scores range from 0 to 
100, with higher scores representing better cognitive functioning. 
A decrease in 3MS score (ie, lower at Sleep Visit 2) represents cog-
nitive decline.

Mortality
Participants were contacted every 4 months to ascertain vital status. 
During a follow-up of 8.0 ± 2.3 years, over 99% of these contacts 
were completed. Deaths were confirmed with death certificates and 
cause of death was adjudicated to be due to CVD, cancer or other 
cause by central physician review of death certificates and medical 
records. Cause of death was broadly categorized by International 
Classification of Disease-9 codes as cardiovascular (codes 394.9–
443.9, 785.51, 966.71), cancer (codes 141.9–208.0), and other 
causes (codes not in previous categories). The most common cause 
of death in the “other” category was dementia (either senile demen-
tia unspecified or Alzheimer’s disease, n = 61).

Other Measurements
During Sleep Visit 1, participants completed questionnaires includ-
ing items about self-reported health status and demographics (age, 
race, highest year of schooling completed, body mass index). For 
the purposes of this analysis, race was coded as White and non-
White. Education was coded as less than high school education, 
high school education, and some college or graduate school. Body 
mass index was calculated as weight (kilogram) per the square of 

height (square meter). Also assessed were social status (MacArthur 
Subjective Status Scale [MSSS] range: 1–10, higher scores equat-
ing to perceived elevated social status (22)), sleep (Pittsburgh Sleep 
Quality Index [PSQI] range: 0–21, scores > 5 are associated with 
disrupted sleep (23)), daytime sleepiness (Epworth Sleepiness Scale 
[ESS] range: 0–24, higher scores associated with greater subjective 
sleepiness and scores > 10 considered clinically significant (24)), 
depressive symptomatology (Geriatric Depression Scale-Short Form 
[GDS] range: 0–15, designed for the assessment of depressive symp-
toms in older adults, scores > 5 associated with depression (25)), 
and anxiety (Goldberg Anxiety Scale [GAS] range: 0–9, higher scores 
associated with greater anxiety and scores > 4 associated with clinic-
ally relevant anxiety (26)).

Statistical Analysis
Using four independent multivariable linear regression models, we 
examined the relationship of each of the four fPCA components with 
a variety of psychiatric status and demographics variables that might 
be associated with daily activity patterns, including education, socio-
economic status (MSSS), self-rated health, age, mental status (3MS), 
race, anxiety (GAS), depression (GDS), sleepiness (ESS), and history 
of sleep disruption (PSQI). Results are presented as beta coefficients 
(B) and their 95% confidence intervals along with p values. To assess 
the association of fPCA with the outcomes of change in sleep, change 
in cognition, and mortality, fPCA predictors were expressed in quar-
tiles in adjusted models. In these models, all four fPCA predictors 
were included in the same model for each outcome. Missing data 
from covariates (0.1%) were replaced with median values in these 
models. Linear regression models were used to assess the relation-
ship of fPCA to change in sleep and change in cognition. Results 
are presented as adjusted means (95% confidence intervals), the p 
value for the test for linear trend across quartiles, and B (95% con-
fidence intervals) and p value. All models were minimally adjusted 
for age and race. Models for the three sleep outcomes (change in 
WASO, sleep efficiency, total sleep time) were further adjusted for 
education, socioeconomic status, mental status, anxiety, depression, 
daytime sleepiness, history of sleep disruption, and baseline value 
for the outcome measure (eg, minutes of WASO at Sleep Visit 1 for 
the regression analysis examining the change in WASO). The models 
for the two cognitive outcomes (change in Trails B test time, change 
in 3MS score) were further adjusted for education, socioeconomic 
status, self-rated health, anxiety, depression, sleepiness, history of 
sleep disruption, and baseline value for the outcome measure. Cox 
proportional hazards models were used to estimate the association 
of fPCA with all-cause and cause-specific mortality outcomes. The 
Schoenfeld residuals and the interaction between fPCA predictor and 
log-(time) were examined to verify the proportionality assumption. 
The hazard ratios and 95% confidence intervals for each outcome 
were calculated across quartiles of fPCA. Quartile 4 served as the 
referent group for fPCA1, whereas Quartile 1 served as the referent 
group for fPCA2–fPCA4. Tests for trend were performed by includ-
ing fPCA measure (ordinal variable, four levels) as an independent 
variable in models. Men who were lost to follow-up (n = 125) were 
censored after date of last follow-up contact. In cause-specific mor-
tality analyses, men who died of another cause were censored at the 
time of death. All models for the outcome of mortality were minim-
ally adjusted for age and race, then further adjusted for depression, 
anxiety, social status, education, daytime sleepiness, self-reported 
sleep quality, baseline cognitive function (3MS), and self-reported 
health status.
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Results

Participant Population
There were 2,976 men in the MrOS Sleep cohort who had suffi-
cient actigraphy data to perform fPCA (Figure  1). As with the 
overall cohort, these men were older (76.4 ± 5.53 years), predom-
inantly White (90%), had a relatively high self-rated social status 
(MSSS = 7.0 ± 1.7), had good self-rated health (87% rating “good” 
or “excellent”), and were well educated (79% had at least some col-
lege education). At Sleep Visit 1, the men were cognitively normal 
(3MS: 92.7 ± 6.01) and had relatively low rates of clinically rele-
vant depressive symptomatology (6.7% with GDS ≥ 6) or anxiety 
(9% with GAS ≥ 5). Nearly half reported problems with sleep (44% 
with PSQI > 5), but fewer exhibited symptoms of daytime sleepiness 
(13% with ESS > 10).

Variance in Activity Patterns Was Explained 
Using fPCA
In computing the fPCA of the diurnal motor patterns in older men 
(n = 2,976), the first component of the fPCA (fPCA1) explained 50% 
of the variance and could be described as the amplitude such that 
the higher the fPCA1 values, the greater the overall daytime activity 
(Figure 2A). fPCA2 explained variance (23%) associated with the 
timing of sleep, with lower values associated with an earlier wake 
and bed time and a greater morning peak of activity (Figure 2B). 
fPCA3 explained variance (9.1%) associated with a bimodal pattern, 
with higher values associated with a greater midday dip in activity 
and a slightly later bed and earlier wake time (Figure 2C). fPCA4 
explained variance (6.0%) associated with shifts in peak activity, 

with higher values associated with greater evening activity and lower 
values associated with greater morning activity (Figure 2D). In total, 
the four fPCA components accounted for 88% of the variability in 
the diurnal motor activity pattern. This technique also produced 
orthogonality within the fPCA components, with nonsignificant 
Pearson correlations among the four fPCA components (│r│’s < 
.025, p’s > .20), indicating that each of the four components can 
be thought of as an independent descriptor of the variance of the 
activity data.

Diurnal Activity Patterns, Demographics, and 
Psychiatric Status
At Sleep Visit 1, greater activity (higher fPCA1) was associated with 
younger age, better self-rated health, better cognitive function, more 
anxiety, less depression, and less sleep disruption (Supplementary 
Table  1). Later activity (higher fPCA2) was associated with more 
depression, less daytime sleepiness, higher self-rated social status, 
and being non-White (Supplementary Table  1). A  larger midday 
dip (higher fPCA3) was associated with older age, more depres-
sion, worse cognitive function, being non-White, and more daytime 
sleepiness (Supplementary Table 1). An evening peak activity (higher 
fPCA4) was associated with more sleep disruption and less educa-
tion (Supplementary Table 1). The different descriptors of the overall 
diurnal activity pattern were, therefore, differentially influenced by 
a variety of factors that must be considered when examining the 
relationship between diurnal activity patterns and other outcome 
measures.

fPCA Components of Diurnal Activity Predicted 
Changes in Sleep
We examined whether any of the four fPCA patterns of diurnal 
activity that occurred at Sleep Visit 1 could predict changes in PSG-
measured sleep at Sleep Visit 2. At Sleep Visit 1, participants had 
107 ± 61.3 minutes of WASO, 359 ± 63.1 minutes of total sleep 
time, and a sleep efficiency of 77.6% ± 11.1%. By Sleep Visit 2, 
6.5  years later, sleep worsened as WASO increased 16.2  ±  78.1 
minutes, total sleep time decreased 16.2 ± 81.9 minutes, and sleep 
efficiency decreased 3.62% ± 14.1%. Although results were not 
significant in minimally adjusted models, when the four fPCA com-
ponents were entered into the same multivariable adjusted model 
for predicting either change in total sleep time, WASO, or sleep 
efficiency, with adjustment for covariates, the amplitude of activity 
(fPCA1) at baseline was associated with changes in both WASO and 
sleep efficiency (Supplementary Table 2A–C), such that individuals 
who had less daily activity (lower fPCA1) at Sleep Visit 1 were 
more likely to have a greater increase in WASO (p trend =  .002) 
and worse sleep efficiency (p trend  =  .02) 6.5  years later. fPCA 
component 2, the timing of sleep, was associated to changes in 
WASO and sleep efficiency in minimally adjusted models, but not 
after further adjustment. fPCA components 3 and 4 at Sleep Visit 
1 were not associated with changes in WASO, sleep efficiency, or 
total sleep time.

fPCA Components of Diurnal Activity Predicted 
Changes in Cognitive Function
We examined whether the pattern of diurnal activity could pre-
dict changes in cognitive function. 3MS started at 94.2 ± 4.43 and 
declined 1.29 ± 4.92 between the two visits, 6.5 years apart. When 
the four fPCA components were entered into the same model for 
predicting change in 3MS scores, with adjustment for covariates, the 

Figure  2.  The first four components of the functional principal component 
analysis (fPCA) of actigraphy data from older men (n = 2,976). Plotted against 
clock time are the average pattern (black, dotted) and curves showing the pattern 
of activity in individuals with the average eigenvalue of positive fPCA scores 
(grey) or negative scores (solid black) added to the average activity pattern 
(note that the activity is described in a unitless measure). The first component 
(fPCA1, A) represents high (high eigenvalues) and low (low eigenvalues) overall 
amplitude. The second component (fPCA2, B) represents later (high eigenvalues) 
and earlier (low eigenvalues) rise and bed times. The third component (fPCA3, 
C) represents longer, biphasic (high eigenvalues) and shorter, more monophasic 
(low eigenvalues) activity patterns. The fourth component (fPCA4, D) represents 
morning (low eigenvalues) and evening (high eigenvalues) peaks in activity.
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timing of sleep (fPCA2) at Sleep Visit 1 was associated with changes 
in 3MS scores (Supplementary Table 3A) such that men who had 
an earlier activity schedule (lower fPCA2) were more likely to have 
a larger decline in 3MS scores at Sleep Visit 2, 6.5  years later (p 
trend = .01).

Trails B completion time started at 105  ±  39.6 seconds and 
increased 23.4 ± 57.1 seconds between the two visits. When the four 
fPCA components were entered into the same model for predict-
ing change in Trails B time, with adjustment for covariates, activ-
ity amplitude (fPCA1) at Sleep Visit 1 was associated with changes 
in Trails B time (Supplementary Table 3B), such that men who had 
less daily activity (lower fPCA1) were more likely to have a larger 
increase in Trails B completion time at Sleep Visit 2, 6.5 years later 
(p trend = .001).

fPCA Components of Diurnal Activity Predicted 
Mortality
Among the 882 (30.0%) deaths, 302 were attributed to CVD, 
230 to cancer, and 349 to non-CVD/noncancer causes. fPCA1 and 
fPCA4 were both associated with a higher rate of death (Figure 3, 
Supplementary Table 4A). After adjustment for multiple factors that 
could covary with activity, men with less activity (quartile 1, fPCA1) 
had over a 1.6-fold higher rate of all-cause mortality (hazard ratio 
1.64 [1.34–2.00], p trend < .0001). Men with an evening peak in 
activity (quartile 4, fPCA4) had over a 1.4-fold higher rate of all-
cause mortality (hazard ratio 1.46 [1.21–1.77], p trend < .0001). No 
associations were seen with fPCA2 or fCPA3 and rate of all-cause 
mortality.

The association between both fPCA1 and fPCA4 and a higher 
rate of all-cause mortality appeared to be primarily related to 
increased risks of CVD and non-CVD/noncancer deaths among 
men in the higher risk category (Supplementary Table 4B). Although 
fPCA3 was not related to all-cause mortality, it was related to car-
diovascular death (Supplementary Table 4B). No associations were 
seen with fPCA and cancer deaths.

Discussion

In older, community-dwelling men, specifiable daily patterns of activ-
ity were associated with future worsening of sleep and decreased 
cognition, as well as with shorter survival. Lower overall activity 
levels at baseline were associated with a future worsening of sleep 
(both WASO and sleep efficiency), diminished frontal lobe activity 
(Trails), and greater overall and cardiovascular-related mortality. 
Both overall and cardiovascular-related mortality were also related 
to a late afternoon activity peak and a bimodal activity pattern with 
an expansion of the time spent active. We also found that those with 
earlier bed and rise times with a peak of activity in the morning were 
more likely to have diminished overall cognitive function (3MS).

Although it is tempting to associate causality between specific 
patterns and outcome measures, our study does not directly address 
such. It may be that the activity patterns, especially fPCA1, could be 
manipulated to change outcomes (eg, increasing overall activity to 
improve sleep (27)). It is possible, however, that the associations we 
observe between activity patterns and these outcome measures are 
epiphenomenal in that the patterns may reflect compensatory mech-
anisms related to a proximally related cause of the decline (eg, those 
who will die from CVD may not have the cardiovascular capacity to 
have elevated activity levels, but the lower activity did not cause the 
increased deaths related to CVD). Likewise, the association between 
a higher risk of death from CVD and a bimodal (fPCA3) pattern of 
activity may represent an increase in daytime napping in these indi-
viduals that is secondary to the CVD (ie, the CVD does not allow 
them to maintain a consolidated period of wakefulness). The associ-
ation of elevated evening pattern of activity and increased all-cause 
mortality might be evidence of the increased activity associated 
with a dichotomy between desired and actual bedtimes, which has 
been linked to more rapid progression of breast cancer in women 
(28). The lack of direct association between patterns and outcomes 
does not diminish the utility of using activity pattern recognition to 
potentially identify risk factors in older men, but may limit inter-
pretation of these data for prediction of response targets.

Two previous studies of this same cohort have reported asso-
ciations between mortality and diurnal activity rhythms, notably 
a lower amplitude and elevated minimum of a cosinor fit to the 
data (11,29). We found multiple patterns of activity that were 
associated with an increased rate of mortality, especially those 
resulting from CVD. Individuals with less overall activity (low 
fPCA1), a longer activity period that is bimodal (high fPCA3), 
and a late afternoon peak in activity (high fPCA4) are all associ-
ated with increased mortality from CVD (Figure 3). The previous 
studies in the same cohort were unable to find graded associa-
tions between mortality from CVD and most metrics derived 
from cosinor analysis (including measures of activity such as 
mesor and amplitude). The association of these fPCA-derived 
activity patterns with mortality, and the failure of traditional 
shape-specific methods of data fitting, highlight the importance 
of using a shape-naive approach in examining activity data from 
a population that might have a non-“normal” pattern of activity 
(eg, older individuals).

These data were collected from a group of relatively healthy, 
older community-dwelling men at two time points. Collection at 
multiple time points would have been useful to examine the nature 
of the trajectory of changes in cognition and sleep, and the rela-
tive importance of these activity patterns in predicting these trajec-
tories. Whether the same patterns occur in unhealthy individuals, 
in women, or in men or women of different ages remains to be 

Figure 3.  All-cause mortality adjusted survival plots for fPCA1 (upper left), 
fPCA2 (upper right), fPCA3 (lower left), and fPCA4 (lower right). Survival 
curves are adjusted for age, race, depression, anxiety, social status, 
education, daytime sleepiness, self-reported sleep quality, baseline cognitive 
function (Modified Mini-Mental State Examination [3MS]), and self-reported 
health status. Missing data (0.1%) were replaced with median values.
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discovered. One of the benefits of this technique, however, is that 
there is no predefined shape of the activity—individual shapes can 
be defined in populations of interest. Most previous research has 
been cross-sectional and depended on a priori assumptions about the 
shape of the activity. Although the quality and availability of move-
ment data obtainable from current forms of wearable technology 
are unknown, at this point, however, the ability to detect patterns 
of activity that might be associated with clinically meaningful out-
comes, such as changes in cognitive function and mortality, and the 
plethora of such data from personal activity monitors and mobile 
phones make this technique a potentially important part of the clini-
cal toolbox in the years to come.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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