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Abstract

Why weight? Weighting approaches for causal inference with panel and cross-sectional data

by

Elijahu E Ben-Michael

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Avi Feller, Co-chair

Professor Peng Ding, Co-chair

In observational studies, researchers wish to study the effect of a treatment without directly
controlling treatment assignment. These studies are particularly useful when it is uneconom-
ical, unethical, or infeasible for researchers to manipulate treatment in a controlled setting.
They also offer insight into how treatment affects large, naturally occurring populations, and
so they are indispensible counterparts to randomized trials, which are typically conducted
on smaller, unrepresentative study samples. A key feature of randomized trials is that re-
searchers can use randomized treatment assignment to ensure that the treated and control
sample do not differ in observed and unobserved characteristics, on average. Observational
studies have no such guarantee, as treatment assignment occurs through some unknown pro-
cess. In practice, this unknown process often results in substantial differences between the
treated and control samples, leading to substantial biases in naive comparisons between the
two groups and confounding the relationship between the outcome and treatment.

There are many methods that attempt to overcome this bias by searching for ways in which
the treatment and control groups are comparable, e.g. by restricting the sample to the
region around a discontinuity in treatment assignment, or matching treated and control
units based on baseline characteristics. In this thesis we take a similar approach, using
weighting estimators that take a weighted average of treated and control outcomes, with
weights that make the two groups directly comparable. If the treated and control groups
differ on pre-treatment characteristics that are highly correlated with the outcome, then
comparisons between the two groups will be highly biased. However, if we can find weights so
that the two groups are balanced on these pre-treatment characteristics after weighting, then
the bias will be negligible. Therefore, in this thesis we address the problem of confounding
by addressing the problem of imbalance, finding weights that directly optimize for balance
between the weighted treated and control samples.
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Each of the chapters in this thesis follows a common “recipe”. First, we write the estimation
error of a weighting estimator explicitly in terms of balance. This informs what aspects of
the pre-treatment characteristics we should balance. Then we show how to achieve balance,
constructing a convex optimization problem that directly controls the balance, with a tradeoff
between better balance and lower variance. Finally, in some settings we cannot find weights
that achieve a sufficient level of balance. In these cases, we can account for any remaining
imbalance by combining the weighting estimator with a predictive model of the outcome.
Chapter 1 briefly covers the broad strokes of this general recipe in a simplified observational
study setting, where the goal is to estimate the average treatment effect for the treated
population. The subsequent chapters apply this recipe to answer questions in the social
sciences by developing weighting approaches to estimate the treatment effect on the treated
in three different settings.

Chapter 2 considers estimating treatment effects in comparative case-studies, where a single
unit is treated and there is access to a long series of pre-intervention outcomes. In this
setting, variants of weighting estimators that ensure balance on pre-intervention outcomes are
known as the synthetic control method (SCM), where the “synthetic control” is a weighted
average of comparison units. By inspecting the estimation error we see that an important
feature of the original SCM proposal is to use it only when the weights have excellent
balance on pre-intervention outcomes. This chapter primarily focuses on the final step,
proposing Augmented SCM as an extension of SCM when it is not possible to achieve good-
enough pre-treatment fit. The main proposal is to use ridge regression to de-bias the original
SCM estimate; we show that this estimator can itself be written as a modified synthetic
controls problem, allowing for limited extrapolation in order to improve pre-treatment fit.
We then use this framework to inspect the impact of an aggressive tax cut in Kansas in 2012,
finding evidence that the tax cuts hindered economic growth. We implement this estimation
procedure in a new R package, augsynth.1

Chapter 3 builds on Chapter 2 to adapt the synthetic control method to estimating treatment
effects with staggered adoption of treatment by different units at different times. Current
practice is to fit SCM separately for each treated unit, averaging the resulting estimates.
Following the recipe above, we show that the estimation error depends on both the average
imbalance across the synthetic controls and the imbalance of the average of the synthetic
controls. We propose finding “partially pooled” SCM weights that minimize both the average
and treated-unit specific fits. Finally, we combine these weights with a fixed effects estimate
of the outcomes. We then apply this method to measure the impact of teacher collective
bargaining laws on school spending, finding minimal impacts. As in Chapter 2, we implement
this procedure in the augsynth R package.

Finally, Chapter 4 focuses on estimating treatment effects for subgroups in observational
studies with cross-sectional data, analyzing a pilot study on letters of recommendation in

1Available at https://github.com/ebenmichael/augsynth.

https://github.com/ebenmichael/augsynth
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UC Berkeley undergraduate admissions. Here, we are interested in understanding how the
effect of submitting a letter of recommendation varies for under-represented students and
for applicants with different a priori probabilities of admission. Again following the general
recipe, we build on results in Chapter 3 to see that the estimation error for a subgroup
depends on the “local balance” within the subgroup. Using this, we develop balancing
weights that solve a convex optimization problem to directly optimize for the local balance
within subgroups while maintaining global covariate balance between the overall treated
and control samples. We then show that this approach has a dual representation as inverse
propensity score weighting with a hierarchical propensity score model and use a random
forest to de-bias the weighting estimator. Overall, we find that the impact of letters of
recommendation is higher for applicants with a higher predicted probability of admission,
and find mixed evidence of differences for under-represented minority applicants.
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Chapter 1

Balancing weights for causal inference

We begin by describing the general approach to weighting in observational studies in a sim-
plified setting. For units i = 1, . . . , n, we observe an outcome Yi ∈ R, a binary treatment
variable Wi ∈ {0, 1}, and a set of d pre-treatment baseline characteristics Xi ∈ Rd. Let
n1 =

∑
iWi be the number of treated units and n0 = n−n1 be the number of control units.

Following the potential outcomes framework (Neyman, 1923; Holland, 1986), we will posit
two potential outcomes for unit i, Yi(1) and Yi(0), that correspond to the outcome under
treatment and the outcome under control, respectively. Implicitly, this notation rules out
interference between units and different forms of treatment (Rubin, 1980). The observed out-
come is thus Yi = WiYi(1) + (1−Wi)Yi(0). We will further assume that (Xi,Wi, Yi(0), Yi(1))
are sampled i.i.d. from a distribution P(·). We will begin with two key restrictions on this
distribution, that allow for estimation of causal effects in this setting.

Assumption 1.1 (Ignorable treatment assignment). The potential outcomes are indepen-
dent of treatment assignment given the baseline characteristics:

Y (0), Y (1) ⊥⊥ W | X (1.1)

Assumption 1.2 (One Sided Overlap). The propensity score e(x) = P (W = 1 | X = x) < 1.

Together, Assumptions 1.1 and 1.2 are usually known as strong ignorability (Rosenbaum
and Rubin, 1983). In the chapters that follow we will consider variants of these foundational
assumptions, assessing their credibility in the three applications. Another important condi-
tional expectation is the prognostic score, m(x,w) ≡ E[Y (w) | X = x], where m(X, 1) and
m(X, 0) are the conditional expectation of the treated and control potential outcome given
X, respectively. The strong ignorability assumptions yield non-parametric identification of
the (population) average treatment effect on the treated via

E[Y (1)− Y (0) | W = 1] = E[Y | W = 1]− E
[

e(X)

1− e(X)
Y | W = 0

]
. (1.2)
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With this setup, we follow Athey et al. (2018) and focus on estimating the (conditional)
average treatment effect on the treated:

τ = µ1 − µ0 where µ1 =
1

n1

∑
Wi=1

m(Xi, 1), µ0 =
1

n1

∑
Wi=1

m(Xi, 0). (1.3)

It is straightforward to estimate µ1 as the average of the outcomes for the treated sample.;
however, estimating µ0 requires more care. As we will see below, the problem is that we only
observe control potential outcomes for units that receive the control condition, not for the
units that receive the treatment condition. In this chapter and those that follow, we will be
interested in estimating µ0 via a weighted average of the control units with weights γ̂:

µ̂0 =
∑
Wi=0

γ̂iYi. (1.4)

One way to choose the weights γ̂ is as a plug-in version of the identification result in Equation
(1.2). This approach, often called inverse propensity score weighting, first finds an estimator
of the propensity score ê(x) and then sets the weights to be an estimate of the odds of

treatment γ̂i = ê(Xi)
1−ê(Xi) (Imbens and Rubin, 2015). The finite sample performance of these

weighting approaches usually suffers when there are many covariates: one issue is that these
weights involve inverting the estimate 1− ê(Xi), which can behave poorly if the propensity
score is close to one (Athey et al., 2018). Instead, our focus will be on choosing these weights
to explicitly balance covariates, and therefore to explicitly reduce the estimation error.

1.1 Choosing what to balance

In order to decide how to find the weights, we will first inspect the estimation error: the
difference between the counterfactual mean for the treated group, µ0, and our estimator µ̂0.
Denoting the residual εi ≡ Yi −m(Xi, 0), the estimation error decomposes into two terms:
the error due to imbalance and the error due to noise,

µ̂0 − µ0 =
1

n1

∑
Wi=1

m(Xi, 0)−
∑
Wi=0

γ̂im(Xi, 0)︸ ︷︷ ︸
imbalance in prognostic

+
∑
Wi=0

γ̂iεi︸ ︷︷ ︸
noise

. (1.5)

Throughout, we will consider design-based weights that are independent of the outcomes.
Therefore, the noise term will be mean-zero and so any bias is due to imbalance in the
prognostic scorem(·, 0). On the other hand, the variance of the estimator will be proportional
to the sum of the squared weights ‖γ̂‖2

2.1

1In the survey sampling context a transformation of the square 2-norm is known as the effective sample
size neff = ‖γ̂‖−2

2 (
∑
i γ̂i)

2
.
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Ideally, we would attempt to minimize both the bias and the variance; however, we do not
know the true prognostic score. In the absence of this knowledge we can instead minimize
an upper bound on the bias. Specifically, if we posit that the prognostic score is in a class
of functions M, then the imbalance term will be less than the worst-case imbalance in the
model class:∣∣∣∣∣ 1

n1

∑
Wi=1

m0(Xi)−
∑
Wi=0

γ̂im0(Xi)

∣∣∣∣∣ ≤ max
m∈M

∣∣∣∣∣ 1

n1

∑
Wi=1

m(Xi)−
∑
Wi=0

γ̂im(Xi)

∣∣∣∣∣ ≡ imbalanceM(γ).

(1.6)
Therefore, to specify what to balance we first choose a model class M. An important

special case is where the prognostic score is assumed to be linear in a basis of the covariates,
φ(x), with a bounded coefficient vector, Φp = {β · φ(x) | ‖β‖p ≤ C}. With this model class,
by Hölder’s inequality the bias depends on the imbalance in the basis functions, measured
via the dual norm,

imbalanceΦp(γ) = C

∥∥∥∥∥ 1

n1

∑
Wi=1

φ(Xi)−
∑
Wi=0

γ̂iφ(Xi)

∥∥∥∥∥
q

where
1

p
+

1

q
= 1. (1.7)

There are two common choices for Φp. First, if we believe that β is (approximately) sparse,
we we can choose p = 1—so that the one-norm of β is bounded—and then imbalanceΦ1(γ)
measures imbalance by the L∞ norm of the imbalance vector, i.e. the difference between
the treated and re-weighted control samples in the least-balanced transformation of the
covariates. Many approaches to approximate balancing weights use some variant of this
model class, including Zubizarreta (2015); Athey et al. (2018); Ning et al. (2017); Tan (2018);
Wang and Zubizarreta (2019). Second, we may think that the covariates have roughly
equal contribution and so we set p = 2. With this choice of model class, imbalanceΦ2(γ)
measures imbalance in the transformed covariates through the L2 norm, which penalizes
larger imbalances more heavily than smaller imbalances and controls the imbalance in the
average transformation of the covariates rather than the least-balanced one. As we will see in
Section 2.4, ridge regression implicitly find weights for this model class. Related approaches
use a reproducing kernel Hilbert space Hk, with associated kernel k, as the model class. In
this case the prognostic score is linear in the reproducing kernel feature map φ(x) = k(·, x),
and we can compute imbalanceHk(γ) via the kernel trick; see, e.g., Kallus (2016); Wong and
Chan (2017); Hazlett (2020); Hirshberg et al. (2019).

1.2 Finding weights via convex optimization

Having decided what to balance, we will now consider how to construct the weights. We
will find weights that minimize a monotonic function hλ(·) of the imbalance – parameterized
by a hyperparameter λ – while regularizing the weights with a strictly convex dispersion
function, f : R→ R that penalizes non-uniform weights. This produces a trade-off between
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bias and variance where better balance comes at the price of lower precision. To fix ideas,
we will consider balancing the model class Φp. In this case we solve

min
γ

hλ

∥∥∥∥∥ 1

n1

∑
Wi=1

φ(Xi)−
∑
Wi=0

γ̂iφ(Xi)

∥∥∥∥∥
q

+
∑
Wi=1

f(γi). (1.8)

This formulation leads to several choices in constructing the optimization problem.

Constrained vs Lagrangian form. There are several monotonic transformations hλ(·)
to consider. One choice is a soft penalty with a scaling factor λ, hλ(x) = 1

λ
x2. Here, λ

determines how much to prioritize balance—and hence bias reduction—against the dispersion
of the weights. When λ is small we place greater emphasis on balance, and when λ is large
we place more emphasis on variance.

An alternative choice to the soft penalty is to explicitly constrain the imbalance, hλ(x) =
I(x ≤ λ).2 With this choice, the optimization (1.8) finds the most uniform weights subject
to a maximal allowed amount of imbalance. Here again λ controls the bias variance trade-off,
but the constraint guarantees that the imbalance will be less than λ. Note that from the usual
correspondence between the constrained and Lagrangian forms of an optimization problem,
there exists some choice of the hyperparameters so that the soft-penalized and constrained
approaches have the same solution. However, in many settings is may be beneficial to
explicitly constrain the optimization problem.

Exact balance and the dispersion function. The simplest choice of balance criterion is
to infinitely penalize any imbalance in any basis function by choosing h(x) = I(x = 0). Then,
the particular choice of norm becomes irrelevant, and we find weights that exactly balance
the basis functions φ(x). Deville and Särndal (1992) and Deville et al. (1993) consider this
procedure in the survey sampling context, solving (1.8) with various dispersion measures for
continuous or categorical covariates. More recently, there has been renewed interest in exact
balancing weights in the causal inference literature. Entropy balancing (Hainmueller, 2011)
is one such proposal, and Chan et al. (2016) explicitly adopt the framework of Deville and
Särndal (1992) to the causal inference setting.

When enforcing exact balance, the only free parameter in the balancing weights optimiza-
tion problem (1.8) is the choice of dispersion function f(·), which penalizes non-uniformity in
the weights: different choices of dispersion function will yield different weights that exactly
balance the covariates. One choice is an L2 dispersion penalty, f(γi) = γ2

i , which directly
controls the variance of the weighting estimator. In fact, the minimum variance weights that
exactly balance p < n basis functions corresponds to linear regression weights (Kline, 2011);
see Chapter 2. Chan et al. (2016) and Wang and Zubizarreta (2019) consider a wide variety

2I(A) =

{
0 x ∈ A
∞ x 6∈ A is the indicator function.
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of dispersion penalties including the entropy dispersion penalty f(γi) = γi log γi considered
by Hainmueller (2011).

Unfortunately, with covariates of even moderate dimension, we cannot expect to be able
to achieve exact balance. In many practical and empirical applications we often must suffice
with approximate balance.3 In general, if we can find weights that exactly balance the
covariates, we should consider protecting against imbalance in a wider function class, e.g.
by including more transformations of the covariates or balancing a non-parametric function
class. Therefore, the particular functional form of the dispersion function is not crucial,
and in the chapters below we default to controlling the variance of the weights with an L2

dispersion penalty.

Further constraints on the weights and ruling out extrapolation These weights can
also include post-processing steps in a principled way inside the optimization problem. For
example, trimming weights to prevent any particular unit from receiving too much weight
is a popular post-hoc processing step in traditional MLE-based IPW estimation. We can
directly include this constraint into the optimization problem, rather than applying a post-
hoc transformation to the weights. We can incorporate a lower and upper bound on the
weights, L ≤ γi ≤ U by including an infinite penalty in the dispersion function: for a disper-

sion function f , we can create a new dispersion function f̃(γi) =

{
f(γi) L ≤ γi ≤ U
∞ γi > U, γi < L

. In the survey-sampling context, Deville and Särndal (1992) show how to combine several
dispersion functions with weight truncation.

Another frequent post-hoc transformation is normalizing the inverted estimated propen-
sity score weights to sum to one. We can also include this constraint in a principled manner
into optimization problem (1.8). To constrain the weights to sum to one we can modify
the model class Φp to include the set of constant functions Φ̃p ≡ Φp ∪ {m(x) = c | c ∈ R}
and enforce exact balance on the set of constant functions, so that h(imbalanceΦ̃p(γ)) ={
h(imbalanceΦp(γ))

∑
Wi=0 γi = 1

∞
∑

Wi=0 γi 6= 1
. A sum–to-one constraint on the weights combined

with a non-negativity constraint, forbids extrapolation outside of the support of the data.
Specifically, we limit the re-weighted covariate distribution to be in the convex hull of the
treated units, {

∑
Wi=0 γiφ(Xi) | γi ≥ 0,

∑
i γi = 1}. In so doing, we are ensuring that our

estimator is interpolating between control units, which is often preferable to extrapolation.
We discuss the relative merits of interpolation and extrapolation in Chapter 2.

3Zhao and Percival (2017) show that if we restrict the weights to be non-negative and sum to one (see
next paragraph), a sufficient condition for exact balance is to have exponentially many more units than
covariates (or basis functions).
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The duality between balancing weights and propensity score
modelling

We now connect the weights from Equation (1.8) to inverse propensity weights by inspect-
ing the Lagrangian dual problem. We will see that solving (1.8) in fact fits a regularized
propensity score model with a different loss function than the usual MLE approach, where
the balance criterion determines the type and level of regularization.

We begin by deriving the Lagrangian dual for optimization problem (1.8).

Proposition 1.1. The Lagrangian dual to (1.8) is

min
β

1

n

n∑
i=1

(1−Wi)f
∗(φ(Xi) · β)−Wiφ(Xi) · β︸ ︷︷ ︸

balancing loss function

+ h∗(‖β‖p)︸ ︷︷ ︸
regularization

, (1.9)

where for a convex function f , f ∗(y) ≡ supx〈x, y〉 − f(x) is the convex conjugate.
If β̂ is the solution to the Lagrangian dual, the unit weights γ̂i that solve the primal problem
(1.8) are recovered as

γ̂i = f ∗′(β̂ · φ(Xi)) (1.10)

This Lagrangian dual (1.9) will appear in different forms and settings in the chapters that
follow.4 It consists of two key components, the first determined by the choice of dispersion
function f and the second determined by the model class Φp and choice of either a soft
penalty or a hard constraint. First, the dispersion function f controls the form of the loss
function, the first two terms in Equation (1.9). In particular, through the dual we can write
the weights as functions of the covariates, γ̂(Xi) = f ∗′(β · φ(Xi)). As we discuss below,

these can be viewed as estimates of the odds of treatment e(x)
1−e(x)

≈ f ∗′(β · φ(x)), so β · φ(x)
is the inverse propensity score in a “natural parameter” scale, and the derivative of the
convex conjugate of the dispersion function, f ∗′ determines the link function. In particular,
if f(γi) = 1

2
γ2
i is the two norm of the weights, the link function is the identity—-f ∗′(x) = x—

and if the weights are constrained to be non-negative, then the link function enforces that
constraint: f ∗′(x) = max{0, x}. Finally, if g(γi) = γi log γi is the entropy of the weights,
then the link function is exponential f ∗′(x) = ex.

Second, the choice of model class Φp determines the type of regularization through the
norm ‖β‖p.5 For example, for the class of (approximately) sparse linear models Φ1 with
a hard constraint hλ(x) = I(x ≤ λ), the dual problem is regularized via the L1 norm,
h∗λ(‖β‖p) = λ‖β‖1; this enforces sparsity in the dual variables (see e.g. Wang and Zubizarreta,

4Proposition 1.1 is equivalent to Proposition A.2 in Appendix A. It is stated here, with slightly different
notation, for clarity.

5The choice of hard or soft penalty controls whether this norm is squared or not. When hλ(x) = I(x ≤ λ)
is a hard constraint, h∗λ(‖β‖p)) = λ‖β‖p and when hλ(x) = 1

2λx
2 is a soft constraint, h∗λ(‖β‖p) = λ

2 ‖β‖
2
p.

When hλ(x) = |x|, the dual problem is constrained: h∗λ(‖β‖p) = I(‖β‖p ≤ λ).



CHAPTER 1. BALANCING WEIGHTS FOR CAUSAL INFERENCE 7

2019). To see this, note that the zero-subgradient condition of the dual problem (1.9) implies
that the only components of β̂ that are non-zero are those that correspond to covariates that
are on the constraint boundary:

β̂j 6= 0⇔

∣∣∣∣∣ 1n
n∑
i=1

φj(Xi)−
∑
Wi=1

γ̂iφj(Xi)

∣∣∣∣∣ = λ. (1.11)

So the zero sub-gradient condition ensures that the dual solution will be sparse, with the
only active coefficients corresponding to the binding constraints (Zubizarreta, 2015). In the
following chapters we will often be balancing Φ2 with a soft penalty, where the dual problem
has a ridge regularization h∗(‖β‖p) = λ

2
‖β‖2

2.

M-estimation of the inverse propensity score The zero gradient condition for the
balancing loss in the dual problem (1.9) shows that it is an M -estimator for the propensity
score, and so the weights are a regularized M -estimator of the inverse propensity score. First,
consider the expected value of the loss function:

q̄(β) ≡ E [(1−Wi)f
∗(φ(Xi) · β)−Wiφ(Xi) · β] . (1.12)

The gradient is the level of imbalance in φ(X), and the zero gradient condition is a population
balance condition for the odds of treatment:

∇q̄(β) = 0 ⇔ E [(1−Wi)f
∗′(φ(Xi) · β)φ(Xi)] = E [Wiφ(Xi)] . (1.13)

By the balancing property of the propensity score, we see that the treatment odds e(Xi)
1−e(Xi) =

f ∗′(φ(Xi)
′β) satisfies the zero gradient condition. Since the population loss q̄ is convex,

this implies that the inverse propensity score is a minimizer, and if q̄ is strictly convex
then the inverse propensity score is the unique minimizer.6 Thus, the dual problem (1.9)
is a regularized M estimator for the inverse propensity score. Zhao and Percival (2017)
use a variant of this M -estimation argument for the special case with a logistic link using
entropy balancing with covariates entering linearly (Hainmueller, 2011). Tan (2017) and
Wang and Zubizarreta (2019) extend this argument to the setting with sparsity, using an L∞

balance criterion. Zhao (2018) considers a broader class of loss functions under the equivalent
characterization as proper scoring rules and considers balancing weights for various causal
estimands.

1.3 Augmentation and bias correction

As we note above, and will see in the chapters that follow, in moderate to high dimensional
settings we can only expect approximate rather than exact balance. From Equation (1.5), we

6One necessary condition for this is that the propensity score is correctly specified.



CHAPTER 1. BALANCING WEIGHTS FOR CAUSAL INFERENCE 8

can see that the remaining imbalance leaves room for bias in our estimator. To account for
imbalance that remains after weighting, we can try to explicitly estimate and adjust for the
bias. We begin with an estimate of the prognostic score, e.g. fit via least squares regression
on the control sample,

min
m∈M

∑
Wi=0

(Yi −m(Xi, 0))2. (1.14)

With this estimator m̂(·, 0) in hand, we can estimate the bias by plugging it in to Equation
(1.5). We can directly correct for this via the augmented or bias-corrected estimator

µ̂aug =
∑
Wi=0

γ̂iYi︸ ︷︷ ︸
weighting estimator

+
1

n1

∑
Wi=1

m̂(Xi, 0)−
∑
Wi=0

γ̂im̂(Xi, 0)︸ ︷︷ ︸
estimate of bias due to imbalance

. (1.15)

This approach is analogous to bias-correction for inexact matching (Abadie and Imbens,
2011), and through the dual relation above we can see that it is similar to the Augmented
IPW estimator (Robins et al., 1994).

In the following chapters we will make use of bias-corrected estimators of this form in
various contexts. To see the benefit of this approach, we can return to the error decom-
position in Equation (1.5). By adjusting for the estimated bias, the estimation error now
depends on the imbalance in the error in the prognostic score, δm(x) ≡ m̂(x, 1) −m(x, 1),
rather than the imbalance in the prognostic score itself:

µ̂aug
0 − µ0 =

1

n1

∑
Wi=1

δm(Xi, 0)−
∑
Wi=0

γ̂iδm(Xi, 0)︸ ︷︷ ︸
imbalance in error

+
∑
Wi=0

γ̂iεi︸ ︷︷ ︸
noise

. (1.16)

Intuitively, if the error in the estimated prognostic score is small then the bias will also be
small. Various different augmented and bias-corrected approaches use this argument, relying
on Hölder’s inequality, to characterize the error in both high dimensional settings (Ning et al.,
2017; Athey et al., 2018; Hirshberg and Wager, 2018) and nonparametric settings (Kallus,
2016; Wong and Chan, 2017; Zhao, 2018). Hirshberg and Wager (2019) propose a variant of
this approach that takes Equation (1.16) as a starting point, and finds weights to minimize
the worst-case imbalance in the regression error, rather than the worst-case imbalance in the
prognostic score.

1.4 Dissertation roadmap

This chapter—based on unpublished material coauthored with David Hirshberg, Jose Zu-
bizarreta, and Avi Feller—lays out the foundation for the remaining chapters. Each chapter—
based on material coauthored with Avi Feller and Jesse Rothstein—will use a variant of the
bias-corrected weighting estimator above, with special attention given to one or all of the
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three steps. First, inspect the estimation error of the weighting estimator under a single or
multiple model classes. Second, find weights that control (an upper bound of) this estimation
error. Finally, use an outcome model to correct for remaining imbalance.

Chapter 2 considers using this procedure to estimate causal effects in comparative case
studies, with a single treated unit and outcome measures both before and after treatment.
Inspecting the estimation error, under several different outcome models it is sufficient to con-
trol the balance in pre-treatment outcomes. Various weighting approaches that control this
imbalance are known as the “Synthetic Control Method.” From this starting point, Chapter
2 primarily focuses on the bias-correction (or augmentation) step. In particular the chapter
uses ridge regression to predict post-treatment outcomes from pre-treatment outcomes, and
analyzes the numerical and statistical properties of this bias-corrected weighting estimator.

Chapter 3 continues this thread by generalizing to the setting where multiple units adopt a
treatment at different times. Starting with current practice—estimating a separate synthetic
control for each treated unit—we show that the estimation error can be controlled by both
the average imbalance across the synthetic controls and the imbalance of the average of the
synthetic controls. We then propose a “partially pooled” synthetic control estimator that
minimizes a convex combination of these two imbalances. Following the procedure laid out
in this chapter, we conclude by bias-correcting the synthetic control estimates, focusing on
predicting post-treatment outcomes with a simple two-way fixed effects model.

Finally, Chapter 4 uses these ideas to estimate subgroup treatment effects in observational
studies, designing an observational study evaluating a UC Berkeley pilot program on letters
of recommendation for undergraduate admissions. We first show that the estimation error for
subgroup treatment effects can be controlled by the “local imbalance” within each subgroup,
while the estimation error for the overall treatment effect additionally requires control over
the “global imbalance” across subgroups. Continuing with the procedure, we then find
weights which minimize the local imbalance within each subgroup while exactly balancing the
treated and control samples across the dataset. We conclude by considering bias correction
by predicting outcomes via the LASSO or with a random forest.
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Chapter 2

The Augmented Synthetic Control
Method

The synthetic control method (SCM) is a popular approach for estimating the impact of
a treatment on a single unit in panel data settings. The “synthetic control” is a weighted
average of control units that balances the treated unit’s pre-treatment outcomes as closely
as possible. A critical feature of the original proposal is to use SCM only when the fit on
pre-treatment outcomes is excellent. We propose Augmented SCM as an extension of SCM
to settings where such pre-treatment fit is infeasible. Analogous to bias correction for inexact
matching, Augmented SCM uses an outcome model to estimate the bias due to imperfect pre-
treatment fit and then de-biases the original SCM estimate. Our main proposal, which uses
ridge regression as the outcome model, directly controls pre-treatment fit while minimizing
extrapolation from the convex hull. This estimator can also be expressed as a solution to
a modified synthetic controls problem that allows negative weights on some donor units.
We bound the estimation error of this approach under different data generating processes,
including a linear factor model, and show how regularization helps to avoid over-fitting to
noise. We demonstrate gains from Augmented SCM with extensive simulation studies and
apply this framework to estimate the impact of the 2012 Kansas tax cuts on economic growth.
We implement the proposed method in the new augsynth R package.

2.1 Introduction

The synthetic control method (SCM) is a popular approach for estimating the impact of a
treatment on a single unit in panel data settings with a modest number of control units and
with many pre-treatment periods (Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015).
The idea is to construct a weighted average of control units, known as a synthetic control,
that matches the treated unit’s pre-treatment outcomes. The estimated impact is then the
difference in post-treatment outcomes between the treated unit and the synthetic control.
SCM has been widely applied — the main SCM papers have over 4,000 citations — and has
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been called “arguably the most important innovation in the policy evaluation literature in
the last 15 years” (Athey and Imbens, 2017).

A critical feature of the original proposal, not always followed in practice, is to use SCM
only when the synthetic control’s pre-treatment outcomes closely match the pre-treatment
outcomes for the treated unit (Abadie et al., 2015). When it is not possible to construct a
synthetic control that fits pre-treatment outcomes well, the original papers advise against
using SCM. At that point, researchers often fall back to linear regression. This allows better
(often perfect) pre-treatment fit, but does so by applying negative weights to some control
units, extrapolating outside the support of the data.

We propose the augmented synthetic control method (ASCM) as a middle ground in
settings where excellent pre-treatment fit using SCM alone is not feasible. Analogous to
bias correction for inexact matching (Abadie and Imbens, 2011), ASCM begins with the
original SCM estimate, uses an outcome model to estimate the bias due to imperfect pre-
treatment fit, and then uses this to de-bias the SCM estimate. If pre-treatment fit is good, the
estimated bias will be small, and the SCM and ASCM estimates will be similar. Otherwise,
the estimates will diverge, and ASCM will rely more heavily on extrapolation.

Our primary proposal is to augment SCM with a ridge regression model, which we call
Ridge ASCM. We show that, like SCM, the Ridge ASCM estimator can be written as a
weighted average of the control unit outcomes. We also show that Ridge ASCM weights
can be written as the solution to a modified synthetic controls problem, targeting the same
imbalance metric as traditional SCM. However, where SCM weights are always non-negative,
Ridge ASCM admits negative weights, using extrapolation to improve pre-treatment fit. The
regularization parameter in Ridge ASCM directly parameterizes the level of extrapolation
by penalizing the distance from SCM weights. By contrast, (ridge) regression alone, which
can also be written as a modified synthetic controls problem with possibly negative weights,
allows for arbitrary extrapolation and possibly unchecked extrapolation bias.

We relate Ridge ASCM’s improved pre-treatment fit to a finite sample bound on estima-
tion error under several data generating processes, including an autoregressive model and
the linear factor model often invoked in this setting (Abadie et al., 2010). Under an au-
toregressive model, improving pre-treatment fit directly reduces bias, and the Ridge ASCM
penalty term negotiates a bias-variance trade-off. Under a latent factor model, improv-
ing pre-treatment fit again reduces bias, though there is now a risk of over-fitting, and the
penalty term again directly parameterizes this trade-off. Thus, choosing the hyperparameter
will be important for practice; we propose a cross-validation procedure in Section 2.5.

Finally, we describe how the Augmented SCM approach can be extended to incorpo-
rate auxiliary covariates other than pre-treatment outcomes. We first propose to include
the auxiliary covariates in parallel to the lagged outcomes in both the SCM and outcome
models. We also propose an alternative when there are relatively few covariates, extending
a suggestion from Doudchenko and Imbens (2017): first residualize pre- and post-treatment
outcomes against the auxiliary covariates, then fit Ridge ASCM on the residualized outcome
series. We show that this controls the estimation error under a linear factor model with
auxiliary covariates.
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An important question in practice is when to prefer Augmented SCM to SCM alone. We
recommend making this decision based on the estimated bias, the computation of which is
the first step of implementing the ASCM estimator. If the estimated bias — the difference
between the outcome model’s fitted values for the treated unit and the synthetic control —
is large, then it is worth trading off bias reduction from ASCM for some extrapolation, which
the researcher can also assess directly. Since the estimated bias is in the same units as the
estimand of interest, researchers can assess what constitutes “large” bias based on context.

We demonstrate the properties of Augmented SCM both via calibrated simulation studies
and by using it to examine the effect of an aggressive tax cut in Kansas in 2012 on economic
output, finding a substantial negative effect. Overall, we see large gains from ASCM relative
to alternative estimators, especially under model mis-specification, in terms of both bias and
root mean squared error. We implement the proposed methodology in the augsynth package
for R, available at https://github.com/ebenmichael/augsynth.

The chapter proceeds as follows. Section 2.1 briefly reviews related work. Section 2.2
introduces notation, the underlying models and assumptions, and the SCM estimator. Sec-
tion 2.3 gives an overview of Augmented SCM. Section 2.4 gives key numerical results for
Ridge ASCM. Section 2.5 bounds the Ridge ASCM estimation error under a linear model
and under a linear factor model, the standard setting for SCM, and also addresses inference.
Section 2.6 extends the ASCM framework to incorporate auxiliary covariates. Section 2.7
reports on extensive simulation studies as well as the application to the Kansas tax cuts.
Finally, Section 4.6 discusses some possible directions for further research. The supplemen-
tary materials in Appendix A includes all of the proofs, as well as additional derivations and
technical discussion.

Related work

SCM was introduced by Abadie and Gardeazabal (2003) and Abadie et al. (2010, 2015) and
is the subject of an extensive methodological literature; see Abadie (2019) and Samartsidis
et al. (2019) for recent reviews. We briefly highlight some relevant aspects of this literature.

A group of papers adapts the original SCM proposal to allow for more robust estimation
while retaining SCM’s simplex constraint on the weights. Robbins et al. (2017); Doudchenko
and Imbens (2017); Abadie and L’Hour (2018) incorporate a penalty on the weights into the
SCM optimization problem, building on a suggestion in Abadie et al. (2015). Gobillon and
Magnac (2016) explore dimension reduction strategies and other data transformations that
can improve the performance of the subsequent estimator.

A second set of papers relaxes constraints imposed in the original SCM problem, in
particular the restriction that control unit weights be non-negative. Doudchenko and Imbens
(2017) argue that there are many settings in which negative weights would be desirable.
Amjad et al. (2018) propose an interesting variant that combines negative weights with
a pre-processing step. Powell (2018) instead allows for extrapolation via a Frisch-Waugh-
Lovell-style projection, which similarly generalizes the typical SCM setting. Doudchenko

https://github.com/ebenmichael/augsynth
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and Imbens (2017) and Ferman and Pinto (2018) both propose to incorporate an intercept
into the SCM problem, which we discuss in Section 2.3.

There have also been several other proposals to reduce bias in SCM, developed inde-
pendently and contemporaneously with ours. Abadie and L’Hour (2018) also propose bias
correcting SCM using regression. Kellogg et al. (2020) propose using a weighted average of
SCM and matching, trading off interpolation and extrapolation bias. Arkhangelsky et al.
(2019) propose the Synthetic Difference-in-Differences estimator, which can be seen as a
special case of our proposal with a constrained outcome regression.

Finally, there have also been recent proposals to use outcome modeling rather than SCM-
style weighting in this setting. These include the matrix completion method in Athey et al.
(2017), the generalized synthetic control method in Xu (2017), and the combined approaches
in Hsiao et al. (2018). We explore the performance of select methods, both in isolation and
within our ASCM framework, in Section 2.7.

2.2 Overview of the Synthetic Control Method

Notation and setup

We consider the canonical SCM panel data setting with i = 1, . . . , N units observed for
t = 1, . . . , T time periods; for the theoretical discussion below, we will consider both N and
T to be fixed. Let Wi be an indicator that unit i is treated at time T0 < T where units with
Wi = 0 never receive the treatment. We restrict our attention to the case where a single unit
receives treatment, and follow the convention that this is the first one, W1 = 1; see Chapter
3 for an extension to multiple treated units. The remaining N0 = N − 1 units are possible
controls, often referred to as donor units in the SCM context. To simplify notation, we limit
to one post-treatment observation, T = T0 + 1, though our results are easily extended to
larger T .

We adopt the potential outcomes framework (Neyman, 1923) and invoke SUTVA, which
assumes a well-defined treatment and excludes interference between units; the potential
outcomes for unit i in period t under control and treatment are Yit(0) and Yit(1), respectively.
We define the treated potential outcome as Yit(1) = Yit(0) + τit, where the treatment effects
τit are fixed parameters. Since the first unit is treated, the key estimand of interest is
τ = τ1T = Y1T (1)− Y1T (0). Finally, the observed outcomes are:

Yit =

{
Yit(0) if Wi = 0 or t ≤ T0

Yit(1) if Wi = 1 and t > T0.
(2.1)

To emphasize that pre-treatment outcomes serve as covariates in SCM, we use Xit, for
t ≤ T0, to represent pre-treatment outcomes; we use the terms pre-treatment fit and covariate
balance interchangeably. With some abuse of notation, we use X0· to represent the N0-by-T0

matrix of control unit pre-treatment outcomes and Y0T for the N0-vector of control unit
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outcomes in period T . With only one treated unit, Y1T is a scalar, and X1· is a T0-row
vector of treated unit pre-treatment outcomes. The data structure is then:


Y11 Y12 . . . Y1T0 Y1T

Y21 Y22 . . . Y2T0 Y2T
...

...
YN1 YN2 . . . YNT0 YNT

 ≡


X11 X12 . . . X1T0 Y1T

X21 X22 . . . X2T0 Y2T
...

...

︸ ︷︷ ︸
pre-treatment outcomes

XN1 XN2 . . . XNT0 YNT

 ≡
(
X1· Y1T

X0· Y0T

)

(2.2)

Assumptions on the data generating process

We now give assumptions on the underlying data generating processes (DGPs) for the control
potential outcomes. We separate control potential outcomes (before and after T0) into a
model component mit plus an additive noise term εit ∼ P (·):

Yit(0) = mit + εit. (2.3)

This setup encompasses many common panel data models; see Chernozhukov et al. (2019)
for an extended discussion. In Section 2.5, we consider two specific versions of (2.3): Yit(0) is
linear in its lagged values; and Yit(0) is linear in a set of latent factors. In the supplementary
materials, we also consider the case where mit is a linear model with Lipshitz deviations
from linearity. The results in Section 2.4 are purely numeric and do not rest on specific
assumptions about the underlying model.

We begin with our assumptions on the distribution of the noise terms, followed by as-
sumptions on the model component.

Assumption 2.1 (Noise component). The noise terms εit for i = 1, . . . , N and t = 1, . . . , T
are independent across units and time, and are sub-Gaussian with scale parameter σ.

(a) In our first DGP, we assume that the post-treatment noise terms ε1T , . . . , εNT have
zero mean for each unit:

E [εiT ] = 0 ∀i = 1, . . . , N. (2.4)

(b) In our second DGP, we further assume that the noise terms for all units and all periods
t = 1, . . . , T have zero mean:

E [εit] = 0 ∀i = 1, . . . , N and ∀t = 1, . . . , T. (2.5)

Assumption 2.2 (Model component). The control potential outcomes are generated ac-
cording to the following model and error components:



CHAPTER 2. THE AUGMENTED SYNTHETIC CONTROL METHOD 15

(a) The model components mit are generated as
∑T0

`=1 β`Yi(t−`)(0), so the control potential
outcomes Yit(0) are:

Yit(0) =

T0∑
`=1

β`Yi(t−`)(0) + εit. (2.6)

where {εit} are defined in Assumption 1(a).

(b) There are J unknown, latent time-varying factors µt = {µjt} ∈ RT , j = 1, . . . , J ,
with maxjt |µjt| ≤M , and each unit has a vector of unknown factor loadings φi ∈ RJ .
We collect the pre-intervention factors into a matrix µ ∈ RT0×J , where the tth row of
µ contains the factor values at time t, µ′t and assume that 1

T0
µ′µ = IJ . The model

components mit are generated as mit = φi ·µt, so the control potential outcomes Yit(0)
are generated as:1

Yit(0) = φi · µt + εit =
J∑
j=1

φijµjt + εit. (2.7)

where {εit} are defined in Assumption 1(b).

Together, the pair of Assumptions 2.1 and 2.2 enable estimation of the missing counterfactual
outcome. In particular, the mean-zero noise restrictions hold for the treated unit (i = 1),
and rule out any unmeasured variables that are correlated with the outcomes and that have
different distributions for the treated unit and comparison units. Under the DGP in Assump-
tion 2.2(a), treatment assignment can depend on the past outcomes, but cannot depend on
post-treatment outcomes; furthermore, there cannot be serial correlation between the post-
treatment and pre-treatment noise. This DGP includes the special case of an auto-regressive
process of order K < T0. Under the DGP in Assumption 2.2(b), treatment assignment can
depend on the factor loadings, but cannot depend on the realized pre-treatment outcomes.
We discuss this in more detail in the context of our application in Section 2.7.

Synthetic Control Method

The Synthetic Control Method imputes the missing potential outcome for the treated unit,
Y1T (0), as a weighted average of the control outcomes, Y ′0Tγ (Abadie and Gardeazabal,
2003; Abadie et al., 2010, 2015). Weights are chosen to balance pre-treatment outcomes and
possibly other covariates. We consider a version of SCM that chooses weights γ as a solution

1We consider both the time-varying factors µt and the unit-varying factor loadings φi to be non-random
quantities, so the randomness in Yit(0) is only due to the noise term εit.
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to the constrained optimization problem:

min
γ

‖V 1/2
x (X1· −X ′0·γ)‖2

2 + ζ
∑
Wi=0

f(γi)

subject to
∑
Wi=0

γi = 1

γi ≥ 0 i : Wi = 0

(2.8)

where the constraints limit γ to the simplex ∆N0 = {γ ∈ RN0 | γi ≥ 0 ∀i,
∑

i γi = 1}, and

where Vx ∈ RT0×T0 is a symmetric importance matrix and ‖V 1/2
x (X1· −X ′0·γ)‖2

2 ≡ (X1· −
X ′0·γ)′Vx(X1· −X ′0·γ) is the 2-norm on RT0 after applying V

1/2
x as a linear transformation.

To simplify the exposition and notation below, we will generally take Vx to be the identity
matrix. The simplex constraint in Equation (2.8) ensures that the weights will be sparse and
non-negative; Abadie et al. (2010, 2015) argue that enforcing this constraint is important
for preserving interpretability.

Equation (2.8) modifies the original SCM proposal in two ways.2 First, Equation (2.8)
penalizes the dispersion of the weights with hyperparameter ζ ≥ 0, following a suggestion
in Abadie et al. (2015). The choice of penalty is less central when weights are constrained
to be on the simplex, but becomes more important below when we relax this constraint
(Doudchenko and Imbens, 2017). Second, Equation (2.8) excludes auxiliary covariates; we
re-introduce them in Section 2.6.

When the treated unit’s vector of lagged outcomes, X1·, is inside the convex hull of the
control units’ lagged outcomes, X0·, the SCM weights in Equation (2.8) achieve perfect pre-
treatment fit, and the resulting estimator has many attractive properties. In this setting,
Abadie et al. (2010) show that SCM will be unbiased under the auto-regressive model in
Assumption 2.2(a) and bound the bias under the linear factor model in Assumption 2.2(b).

Due to the curse of dimensionality, however, achieving perfect (or nearly perfect) pre-
treatment fit is not always feasible with weights constrained to be on the simplex (see Ferman
and Pinto, 2018). When “the pre-treatment fit is poor or the number of pre-treatment periods
is small,” Abadie et al. (2015) recommend against using SCM. And even if the pre-treatment
fit is excellent, Abadie et al. (2010, 2015) propose extensive placebo checks to ensure that
SCM weights do not overfit to noise. Thus, the conditional nature of the analysis is critical
to deploying SCM, excluding many practical settings. Our proposal enables the use of (a
modified) SCM approach in many of the cases where SCM alone is infeasible.

2Equation (2.8) follows the recent methodological literature and directly optimizes for the pre-treatment
fit, minimizing the (possibly weighted) imbalance of pre-treatment outcomes between the treated unit and
the weighted control mean. In Section 2.5, we argue that this a natural quantity to target under both
linearity and a latent factor model. Many choices are possible, however, and we can easily modify Equation
(2.8) to balance other summary measures and functions of the lagged outcomes.
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2.3 Augmented SCM

Overview

We now show how to modify the SCM approach to adjust for poor pre-treatment fit. Let
m̂iT be an estimator for miT , the model component of the post-treatment control potential
outcome. The Augmented SCM (ASCM) estimator for Y1T (0) is:

Ŷ aug
1T (0) =

∑
Wi=0

γ̂scm
i YiT +

(
m̂1T −

∑
Wi=0

γ̂scm
i m̂iT

)
(2.9)

= m̂1T +
∑
Wi=0

γ̂scm
i (YiT − m̂iT ), (2.10)

where weights γ̂scm
i are the SCM weights defined above. Standard SCM is a special case,

where m̂iT is a constant. We will largely focus on estimators that are functions of pre-
treatment outcomes, m̂iT ≡ m̂(Xi), where m̂ : RT0 → R.

Equations (2.9) and (2.10), while equivalent, highlight two distinct motivations for ASCM.
Equation (2.9) directly corrects the SCM estimate,

∑
γ̂scm
i YiT , by the imbalance in a partic-

ular function of the pre-treatment outcomes m̂(·). Intuitively, since m̂ estimates the post-
treatment outcome, we can view this as an estimate of the bias due to imbalance, analogous
to bias correction for inexact matching (Abadie and Imbens, 2011). In this form, we can see
that SCM and ASCM estimates will be similar if the estimated bias is small, as measured
by imbalance in m̂(·). If the estimated bias is large, the two estimators will diverge, and
the conditions for appropriate use of SCM will not apply. In independent work, Abadie and
L’Hour (2018) also consider a bias-corrected estimator of this form.

Equation (2.10), by contrast, is analogous to standard doubly robust estimation (Robins
et al., 1994), which begins with the outcome model but then re-weights to balance residu-
als. We discuss connections to inverse propensity score weighting and survey calibration in
Appendix A.5.

Choice of estimator

While this setup is general, the choice of estimator m̂ is important both for understanding
the procedure’s properties and for practical performance. We give a brief overview of two
special cases: (1) when m̂ is linear in the pre-treatment outcomes; and (2) when m̂ is linear
in the comparison units. Ridge regression is an important example that is linear in both
pre-treatment outcomes and comparison units; we explore this estimator further in Sections
2.4 and 2.5.

First, consider an estimator that is linear in pre-treatment outcomes, m̂(X) = η̂0 + η̂ ·X.
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The augmented estimator (2.9) is then:

Ŷ aug
1T (0) =

∑
Wi=0

γ̂scm
i YiT +

T0∑
t=1

η̂t

(
X1t −

∑
Wi=0

γ̂scm
i Xit

)
. (2.11)

Pre-treatment periods that are more predictive of the post-treatment outcome will have
larger (absolute) regression coefficients and so imbalance in these periods will lead to a
larger adjustment. Thus, even if we do not a priori prioritize balance in any particular
pre-treatment time periods (via the choice of Vx), the linear model augmentation will adjust
for the time periods that are empirically more predictive of the post-treatment outcome. As
we show in Section 2.4, the ridge-regularized linear model is an important special case in
which the resulting augmented estimator is itself a penalized synthetic control estimator.
This allows for a more direct analysis of the role of bias correction.

Second, consider an estimator that is a linear combination of comparison units, m̂(X) =∑
Wi=0 α̂i(X)YiT , for some weighting function α̂ : RT0 → RN0 . Examples include k-nearest

neighbor matching and kernel weighting as well as other “vertical” regression approaches
(Athey et al., 2017). The augmented estimator (2.9) is itself a weighting estimator that
adjusts the SCM weights:3

Ŷ aug
1T (0) =

∑
Wi=0

(
γ̂scm
i + γ̂adj

i

)
YiT , where γ̂adj

i ≡ α̂i(X1)−
∑
Wj=0

γ̂scm
j α̂i(Xj). (2.12)

Here the adjustment term for unit i, γ̂adj
i , is the imbalance in a unit i-specific transforma-

tion of the lagged outcomes that depends on the weighting function α(·). While γ̂scm are
constrained to be on the simplex, the form of γ̂adj makes clear that the overall weights can
be negative.

There are many special cases to consider. One is the linear-in-lagged-outcomes model
with equal coefficients, η̂t = 1

T0
, which estimates a fixed-effects outcome model as m̂(Xi) =

X̄i. The corresponding treatment effect estimate adjusts for imbalance in all pre-treatment
time periods equally, and yields a weighted difference-in-differences estimator:

τ̂de =
(
Y1T − X̄1

)
−

(∑
Wi=0

γ̂i(YiT − X̄i)

)
=

1

T0

T0∑
t=1

[
(Y1T −X1t)−

(∑
Wi=0

γ̂i(YiT −Xit)

)]
.

(2.13)
An augmented estimator of this form has appeared as the de-meaned or intercept shift SCM
(Doudchenko and Imbens, 2017; Ferman and Pinto, 2018).4 See also Arkhangelsky et al.
(2019), who extend this to weight across both units and time.

In Section 2.7 we conduct a simulation study to inspect the performance of a range of
estimators including: other penalized linear models, such as the LASSO; flexible machine

3We thank an anonymous reviewer for suggesting this presentation.
4In these proposals, the SCM weights balance the residual outcomes Xit − X̄i rather than the raw

outcomes Xit. We further consider balancing residuals in Section 2.6.
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learning models, such as random forests; and panel data methods, such as fixed effects models
and low-rank matrix completion methods (Xu, 2017; Athey et al., 2017).

2.4 Ridge ASCM: Numerical results

We now inspect the algorithmic and numerical properties for the special case where m̂(Xi)
is estimated via a ridge-regularized linear model, which we refer to as Ridge Augmented
SCM (Ridge ASCM). With Ridge ASCM, the estimator for the post-treatment outcome is
m̂(Xi) = η̂ridge

0 +X ′iη̂
ridge, where η̂ridge

0 and η̂ridge are the coefficients of a ridge regression of
control post-treatment outcomes Y0T on centered pre-treatment outcomes X0· with penalty
hyper-parameter λridge:5{

η̂ridge
0 , η̂ridge

}
= arg min

η0,η

1

2

∑
Wi=0

(Yi − (η0 +X ′iη))2 + λridge‖η‖2
2. (2.14)

The Ridge Augmented SCM estimator is then:

Ŷ aug
1T (0) =

∑
Wi=0

γ̂scm
i YiT +

(
X1 −

∑
Wi=0

γ̂scm
i Xi·

)
· η̂ridge. (2.15)

We first show that Ridge ASCM is a linear weighting estimator as in Equation (2.12). Unlike
augmenting with other linear weighting estimators, when augmenting with ridge regression
the implied weights are themselves the solution to a penalized synthetic control problem, as
in Equation (2.8). Using this representation, we show that when the treated unit lies outside
the convex hull of the control units, Ridge ASCM improves the pre-treatment fit relative to
SCM alone by allowing for negative weights and extrapolating away from the convex hull.
We also show that ridge regression alone has a representation as a weighting estimator that
allows for negative weights.

Allowing for negative weights is an important departure from the original SCM proposal,
which constrains weights to be on the simplex. In particular, ridge regression alone allows
for arbitrarily negative weights and may have negative weights even when the treated unit
is inside of the convex hull. By contrast, Ridge ASCM directly penalizes distance from the
sparse, non-negative SCM weights, controlling the amount of extrapolation by the choice of
λridge, and only resorts to negative weights if the treated unit is outside of the convex hull.

Ridge ASCM as a penalized SCM estimator

We now express both Ridge ASCM and ridge regression alone as special cases of the penalized
SCM problem in Equation (2.8). The Ridge ASCM estimate of the counterfactual is the so-

5Similar to the synthetic controls problem, we can regularize time periods differently with a generalized
ridge penalty η′Λη using an importance matrix Λ. Following the typical case with diagonal elements, the
generalized ridge penalty reduces to separate regularization on each time period.
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lution to Equation (2.8), replacing the simplex constraint with a penalty f(γi) = (γi − γ̂scm
i )2

that penalizes deviations from the SCM weights.

Lemma 2.1. The ridge-augmented SCM estimator (2.11) is:

Ŷ aug
1T (0) =

∑
Wi=0

γ̂aug
i YiT , (2.16)

where
γ̂aug
i = γ̂scm

i + (X1 −X ′0·γ̂scm)′(X ′0·X0· + λridgeIT0)−1Xi·. (2.17)

Moreover, the Ridge ASCM weights γ̂aug are the solution to

min
γ s.t.

∑
i γi=1

1

2λridge
‖X1· −X ′0·γ‖2

2 +
1

2
‖γ − γ̂scm‖2

2 . (2.18)

When the treated unit is in the convex hull of the control units — so the SCM weights
exactly balance the lagged outcomes — the Ridge ASCM and SCM weights are identical.
When SCM weights do not achieve exact balance, the Ridge ASCM solution will use negative
weights to extrapolate from the convex hull of the control units. The amount of extrapolation
is determined both by the amount of imbalance and by the hyperparameter λridge. When
SCM yields good pre-treatment fit or when λridge is large, the adjustment term will be small
and γ̂aug will remain close to the SCM weights.

We can similarly characterize ridge regression alone as a solution to a penalized SCM

problem where the penalty term, f(γi) =
(
γi − 1

N0

)2

, penalizes the variance of the weights.

Other penalized linear models, such as the LASSO or elastic net, do not have this same
representation as a penalized SCM estimator.

Lemma 2.2. The ridge regression estimator Ŷ ridge
1T (0) ≡ η̂ridge

0 +X1 · η̂ridge can be written

as Ŷ ridge
1T (0) =

∑
Wi=0 γ̂

ridge
i YiT , where the ridge weights γ̂ridge are the solution to:

min
γ |

∑
i γi=1

1

2λridge
‖X1 −X ′0·γ‖2

2 +
1

2

∥∥∥∥γ − 1

N0

∥∥∥∥2

2

. (2.19)

For ridge regression alone, the hyperparameter λridge controls the variance of the weights
rather than the degree of extrapolation from the simplex. Thus, in order to reduce variance,
ridge regression weights might still be negative even if the treated unit is inside of the convex
hull and SCM achieves perfect fit.

Figure 2.1 visualizes this behavior in two dimensions. Figure 2.1a shows the treated unit
outside the convex hull of the control units, along with the weighted average of control units
using ridge regression and Ridge ASCM weights. For large λridge, ridge regression alone begins
at the center of the control units (i.e., uniform weights), while Ridge ASCM begins at the
SCM solution; both move smoothly towards an exact fit solution as λridge is reduced. Figure
2.1b shows the distance from the simplex of these ridge regression and Ridge ASCM weights.
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(a) Treated and control units with the convex
hull marked as a dashed line. Ridge and Ridge
ASCM estimates marked as solid lines.

(b) Distance of ridge and Ridge ASCM
weights from the simplex.

Figure 2.1: Ridge ASCM vs. ridge regression alone for a two-dimensional example with the
treated unit outside of the convex hull of the control units. Results shown varying λridge from
103 to 10−1. Green denotes that the weights are inside the simplex, red that the weights are
outside the simplex but the weighted average is inside the convex hull, and blue that the
weighted average is outside the convex hull.

Together these figures highlight that ridge regression weights can leave the simplex (i.e., have
some negative weights) before the corresponding weighted average is outside of the convex
hull, marked in red in both figures. That is, ridge regression weights use negative weights
to minimize the variance although it is possible to achieve the same level of balance with
non-negative weights. By contrast, Ridge ASCM weights begin at the SCM solution, which
is on the boundary of the simplex, then extrapolate outside the convex hull. Eventually, as
λridge → 0, both ridge and Ridge ASCM use negative weights to achieve perfect balance,
improving the fit relative to SCM alone. The weight vectors differ, however, with the Ridge
ASCM weights closer to the simplex.

When achieving excellent pre-treatment fit with SCM is possible, Abadie et al. (2015)
argue that we should prefer SCM weights over possibly negative weights: a slight balance
improvement is not worth the extrapolation and the loss of interpretability. In this case, the
Ridge ASCM weights will be close to the simplex, while the ridge regression weights may be
quite far away. When this is not possible, however, and SCM has poor fit, some degree of
extrapolation is critical; Ridge ASCM allows the researcher to directly penalize the amount
of extrapolation in these cases.6

6See King and Zeng (2006) for a discussion of extrapolation in constructing counterfactuals. As they
note: “If we learn that a counterfactual question involves extrapolation, we still might wish to proceed if the
question is sufficiently important, but we would be aware of how much more model dependent our answers
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Ridge ASCM improves pre-treatment fit relative to SCM alone

Just as the hyper-parameter λridge parameterizes the level of extrapolation, it also parame-
terizes the level of improvement in pre-treatment fit over the SCM solution. Because we are
removing the non-negativity constraint and allowing for extrapolation outside of the convex
hull, the pre-treatment fit from Ridge ASCM will be at least as good as the pre-treatment fit
from SCM alone, i.e., ‖X1−X ′0·γ̂aug‖2 ≤ ‖X1−X ′0·γ̂scm‖2. We can exactly characterize the
pre-treatment fit of Ridge ASCM using the singular value decomposition of the matrix of
control outcomes, which will be an important building block in the statistical results below.

Lemma 2.3. Let 1√
N0
X0· = UDV ′ be the singular value decomposition of the matrix of

control pre-intervention outcomes, where m is the rank of X0·, U ∈ RN0×m,V ∈ RT0×m, and
D = diag(d1, . . . , dm) ∈ Rm×m is the diagonal matrix of singular values, where d1 and dm
are the largest and smallest singular values, respectively. Furthermore, let X̃i = V ′Xi be
the rotation of Xi along the singular vectors of X0·. Then γ̂aug, the Ridge ASCM weights
with hyper-parameter λridge = λN0 satisfy

‖X1· −X ′0·γ̂aug‖2 = λ
∥∥∥(D + λI)−1 (X̃1 − X̃ ′0·γ̂scm)

∥∥∥
2
≤ λ

d2
m + λ

‖X1 −X ′0·γ̂scm‖2, (2.20)

and the weights from ridge regression alone γ̂ridge satisfy

‖X1 −X ′0·γ̂ridge‖2 = λ
∥∥∥(D + λI)−1 X̃1

∥∥∥
2
≤ λ

d2
m + λ

‖X1‖2. (2.21)

From Equation (2.20), we see that the pre-treatment imbalance for Ridge ASCM weights
is smaller than that of SCM weights by at least a factor of λ

d2m+λ
. Thus, Ridge ASCM will

achieve strictly better pre-treatment fit than SCM alone, except in corner cases where pre-
treatment fit will be equal, such as when the pre-treatment SCM residual X1 −X ′0·γ̂scm is
orthogonal to the lagged outcomes of the control units X0·. Since ridge regression penalizes
deviations from uniformity, rather than deviations from SCM weights, the relationship for
pre-treatment imbalance and fit between SCM and ridge regression alone is less clear.

2.5 Ridge ASCM: Estimation error

We now relate Ridge ASCM’s improved pre-treatment fit to improved estimation error under
the data generating processes in Section 2.2. Under a linear model, improving pre-treatment
fit directly reduces bias, and the Ridge ASCM penalty term negotiates a bias-variance trade-
off. Under a latent factor model, improving pre-treatment fit again reduces bias, though there
is now a risk of over-fitting. The penalty term also directly parameterizes this trade-off. Thus,
choosing the hyper-parameter λridge is important in practice. We describe a cross-validation
hyper-parameter selection procedure in Section 2.5. Finally, we discuss inference in Section
2.5.

would be.”
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Error under linearity

We first illustrate the key balancing idea in the simple case in our first DGP, where the
post-treatment outcome is a linear combination of lagged outcomes plus additive noise, as
in Assumption 2.2(a). We consider a generic weighting estimator with weights γ̂ that are
independent of the post-treatment outcomes Y1T , . . . , YNT ; both SCM and Ridge ASCM take
this form. Under linearity, the difference between the counterfactual outcome Y1T (0) and
the weighting estimator Ŷ1T (0) decomposes into: (1) systemic error due to imbalance in
the lagged outcomes X, and (2) idiosyncratic error due to the noise in the post-treatment
period:

Y1T (0)−
∑
Wi=0

γ̂iYiT = β ·

(
X1 −

∑
Wi=0

Xi

)
︸ ︷︷ ︸

imbalance in X

+ ε1T −
∑
Wi=0

γ̂iεiT︸ ︷︷ ︸
post-treatment noise

. (2.22)

With this setup, a weighting estimator that exactly balances the lagged outcomes X will
eliminate all systematic error. Furthermore, if the vector of autoregression coefficients β is
sparse, then it suffices to balance only the lagged outcomes with non-zero coefficients; for
example, under an AR(K) process, (β1, . . . , βT0−K−1) = 0, it is sufficient to balance only the
first K lags.

If the weighting estimator does not perfectly balance the pre-treatment outcomes X,
there will be a systematic component of the error, with the magnitude depending on the
imbalance. Below we construct a finite sample error bound for Ridge ASCM (and for SCM,
the special case with λridge = ∞), building on Lemma 2.3. This bound on the estimation
error holds with high probability over the noise in the post-treatment period εT .

Proposition 2.1. Under the auto-regressive model in Assumption 2.2(a), for any δ > 0 the
Ridge ASCM weights with hyperparameter λridge = λN0 satisfy the bound∣∣∣∣∣Y1T (0)−

∑
Wi=0

γ̂aug
i YiT

∣∣∣∣∣ ≤ ‖β‖2

∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+ δσ (1 + ‖γ̂aug‖2)︸ ︷︷ ︸
post-treatment noise

,

(2.23)

with probability at least 1−2e−
δ2

2 , where X̃i = V ′Xi is the rotation of Xi along the singular
vectors of X0·, as above, and σ is the sub-Gaussian scale parameter.

Proposition 2.1 shows the finite sample error of Ridge ASCM weights is controlled by
the imbalance in the lagged outcomes and the L2 norm of the weights; Lemma A.3 in the
supplementary materials gives a deterministic bound for ‖γ̂aug‖2. See Athey et al. (2018) for
analogous results on balancing weights in high dimensional cross-sectional settings.

In the special case that SCM weights have perfect pre-treatment fit, ASCM and SCM
weights will be equivalent, and the estimation error will only be due to the variance of the
weights and post-treatment noise. When SCM weights do not achieve perfect pre-treatment
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fit, Ridge ASCM with finite λ extrapolates outside the convex hull, improving pre-treatment
fit and thus reducing bias. This is subject to the usual bias-variance trade-off: The second
term in (2.23) is increasing in the L2 norm of the weights, which will generally be larger for
ASCM than for SCM. The hyperparameter λ directly negotiates this trade off.

Error under a latent factor model

Following Abadie et al. (2010), we now consider the case where control potential outcomes are
generated according to a linear factor model, as in Assumption 2.2(b): Yit(0) = φi ·µt + εit.
Under this model, the finite-sample error of a weighting estimator depends on the imbalance
in the latent factors φ and a noise term due to the noise at time T :

Y1T (0)− Ŷ1T (0) = Y1T (0)−
∑
Wi=0

γ̂iYiT =

(
φ1 −

∑
Wi=0

γ̂iφi

)
· µT︸ ︷︷ ︸

imbalance in φ

+ ε1T −
∑
Wi=0

γ̂iεit︸ ︷︷ ︸
noise

. (2.24)

Balancing the observed pre-treatment outcomes X will not necessarily balance the latent
factor loadings φ. Following Abadie et al. (2010), we show in the supplementary materials
that, under Equation (2.7), we can decompose the imbalance term as:

(
φ1 −

∑
Wi=0

γiφi

)
·µT =

1

T0

µ′

(
X1 −

∑
Wi=0

γiXi

)
︸ ︷︷ ︸

imbalance in X

·µT−
1

T0

µ′

(
ε1(1:T0) −

∑
Wi=0

γiεi(1:T0)

)
︸ ︷︷ ︸

approximation error

·µT ,

(2.25)
where εi(1:T0) = (εi1, . . . , εiT0) is the vector of pre-treatment noise terms for unit i. The first
term is the imbalance of observed lagged outcomes and the second term is an approximation
error arising from the latent factor structure. In the noiseless case where σ = 0 and all
εit = 0 deterministically, the approximation error is zero, and it is possible to express YiT (0)
as a linear combination of the pre-treatment outcomes, recovering the linear case above.
However, with σ > 0 we cannot write the period-T outcome as a linear combination of
earlier outcomes plus independent, additive error.

With this setup, we can bound the finite-sample error in Equation (2.24) for Ridge ASCM
weights (and for SCM weights as a special case). This bound is with high probability over
the noise in all time periods εit, and accounts for the noise in the pre- and post-treatment
outcomes separately.

Theorem 2.1. Under the linear factor model in Assumption 2.2(b), for any δ > 0 the Ridge
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ASCM weights with hyperparameter λridge = λN0 satisfy the bound∣∣∣∣∣Y1T (0)−
∑
Wi=0

γ̂aug
i Y1T (0)

∣∣∣∣∣ ≤ JM2

√
T0

( ∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+

4(1 + δ)

∥∥∥∥diag

(
djσ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2︸ ︷︷ ︸

excess approximation error

+

2σ

(√
log 2N0 +

δ

2

)
︸ ︷︷ ︸
SCM approximation error

)
+ δσ (1 + ‖γ̂aug‖2)︸ ︷︷ ︸

post-treatment noise

(2.26)

with probability at least 1 − 6e−
δ2

2 − e−2(log 2+N0 log 5)δ2 , where σ is the sub-Gaussian scale
parameter.

Theorem 2.1 shows that, relative to the linear case in Proposition 2.1, there is an ad-
ditional source of error under a latent factor model: approximation error due to balancing
lagged outcomes rather than balancing underlying factors. In particular, it is now possible
that a control unit only receives a large weight because of idiosyncratic noise, rather than
because of similarity in the underlying factors. See Arkhangelsky et al. (2019) and Ferman
(2019) for asymptotic analogues of this finite sample bound. As we discuss below, each of
the first three terms of the bound in Theorem 2.1 are directly computable from the observed
data, save for the unknown σ parameter.

In the special case where SCM achieves perfect pre-treatment fit, considered by Abadie
et al. (2010), the ASCM and SCM weights are equivalent and the error is only due to
post-treatment noise and the approximation error. The bound in Theorem 2.1 accounts for
the worst case scenario where the control unit with the largest weight is only similar to
the treated unit due to idiosyncratic noise. The approximation error, and thus the bias,
converges to zero in probability as T0 →∞ under suitable conditions on the factor loadings
µt (see also Ferman and Pinto, 2018). Intuitively, as we observe more Xit — and can exactly
balance each one — we are better able to match on the index φi ·µt and, as a result, on the
underlying factor loadings.7

Without exact balance, Theorem 2.1 shows that a long pre-period may not be enough to
control the error due to imbalance. In this case, Ridge ASCM with λ <∞ will extrapolate
outside the convex hull, reducing error due to imbalance in the lagged outcomes but possibly

7We show in the supplementary material that with dependent errors the probability of the worst-case
error additionally scales with the maximum eigenvalue of the covariance matrix. Dependence leads to a more
complicated error structure overall; we leave a thorough analysis of this to future work.
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Figure 2.2: Sketch of the error due to imbalance and approximation error (2.26) for the
linear factor model; the standard deviation of the treated unit’s pre-treatment outcomes is
normalized to one. We fit SCM weights on the empirical example in Section 2.7 and compute
the vector of pre-treatment fit. Each line shows the sum of the error due to imbalance in X,
excess approximation error, and SCM approximation error in Theorem 2.1 (with δ = 0) for
different values of σ. These are normalized so that the SCM solution (with λ large) equals
100%; values below 100% show improvement over the unadjusted weights for a given λ.

over-fitting to noise. Thus, the optimal level of extrapolation will depend on the synthetic
control fit and the amount of noise.

Figure 2.2 illustrates this using SCM weights from the empirical example we discuss in
Section 2.7, where pre-treatment fit is good but not perfect. For each value of σ, the figure
plots the sum of the imbalance, SCM approximation error, and excess approximation error
terms in the bound in Theorem 2.1, all directly computable from the data for a given σ. At
each noise level, a small amount of extrapolation leads to a smaller error bound, but as λ
shrinks there is a point where further extrapolation leads to over-fitting and eventually to a
worse error bound than without extrapolation. The risk of overfitting is greater when the
noise is large (e.g., σ = 0.5), though even here a sufficiently regularized ASCM estimate has a
lower error bound than SCM alone (represented as the λ→∞ bound at the left boundary).
When noise is less extreme, the benefits of augmentation are larger and the optimal amount
of regularization shrinks.

It is worth noting that Theorem 2.1 gives a worst-case bound. In Section 2.7 we inspect
the typical performance of the Ridge ASCM estimator via extensive simulation studies and
find that gains to pre-treatment fit through augmentation outweigh increased approximation
error in a range of practical settings, including when noise is very large.

Theorem 2.1 suggests two diagnostics to supplement the estimated bias from Equation
(2.9), based on the first two terms in the bound. For the first term, we can directly assess
imbalance in X via the pre-treatment RMSE, 1√

T0
‖X1 −X ′0·γ̂aug‖2. For the second term,

the excess approximation error depends on the unknown noise level, σ. However, as we
show in the supplementary materials, the excess approximation error is a scaled version of
the root mean square distance between the Ridge ASCM weights and the SCM weights,
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1√
N0
‖γ̂aug− γ̂scm‖2, which is a measure of extrapolation. We report these diagnostics for the

empirical application in Section 2.7. As Figure 2.2 previews, they support the use of ASCM
in this instance, despite what visually appears to be good pre-treatment fit for SCM.

Hyper-parameter selection

We propose a cross-validation approach for selecting λ inspired by the in-time placebo check
of Abadie et al. (2015). Let Ŷ

(−k)
1t =

∑
Wi=0 γ̂

aug
i(−k)Yit be the estimate of Y1t where time period

k is excluded from fitting the estimator in (2.17). Abadie et al. (2015) propose to compare

the difference Y1t − Ŷ (−t)
1t for some t ≤ T0 as a placebo check. We can extend this idea to

compute the leave-one-out cross validation MSE over time periods:

CV (λ) =

T0∑
t=1

(
Y1t − Ŷ (−t)

1t

)2

. (2.27)

We can then choose λ to minimize CV (λ) or follow a more conservative approach such as the
“one-standard-error” rule (Hastie et al., 2009). This proposal is similar to the leave-one-out
cross validation proposed by Doudchenko and Imbens (2017), who select hyperparameters by
holding out control units and minimizing the MSE of the control units in the post-treatment
time T . Finally, only excluding time period t might be inappropriate for some outcome
models, e.g. the linear model in Section 2.5. In these settings we can extend the procedure
to exclude all time periods ≥ t when estimating γ̂aug

(−t), as in Kellogg et al. (2020).

Inference

There is a growing literature on inference for the synthetic control method and variants,
going beyond the original proposal in Abadie and Gardeazabal (2003) and Abadie et al.
(2010, 2015); see, for example, Li (2017), Toulis and Shaikh (2018), Cattaneo et al. (2019),
and Chernozhukov et al. (2018).

We focus here on the conformal inference approach of Chernozhukov et al. (2019), which
has three key steps. First, for a given sharp null hypothesis, H0 : τ = τ0, we create an
adjusted post-treatment outcome for the treated unit Ỹ1T = Y1T − τ0 and extend the original
data set to include the adjusted outcome Ỹ1T . Second, we apply the estimator (2.17) to
the extended dataset to obtain adjusted weights γ̂(τ0). Finally, we compute a p-value by
assessing whether the adjusted residual Y1T − τ0 −

∑
Wi=0 γ̂i(τ0)YiT “conforms” with the

pre-treatment residuals:8

p(τ0) =
1

T

T0∑
t=1

1

{∣∣∣∣∣Y1T − τ0 −
∑
Wi=0

γ̂i(τ0)YiT

∣∣∣∣∣ ≤
∣∣∣∣∣Y1t −

∑
Wi=0

γ̂i(τ0)Yit

∣∣∣∣∣
}

+
1

T
. (2.28)

8Chernozhukov et al. (2019) consider several choices of test statistic and permutation distributions across
time periods. For a single post treatment time their main proposals reduce to Equation (2.28).
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Since the counterfactual outcome Y1T (0) is random, inverting this test to construct a con-
fidence interval for τ is equivalent to constructing a conformal prediction set (Vovk et al.,
2005) for Y1T (0) by using the quantiles of pre-treatment residuals:

Ĉconf
Y =

{
y ∈ R

∣∣∣∣∣
∣∣∣∣∣y −∑

Wi=0

γ̂i(Y1T − y)YiT

∣∣∣∣∣ ≤ q+
T,α

(∣∣∣∣∣Y1t −
∑
Wi=0

γ̂i(Y1T − y)Yit

∣∣∣∣∣
)}

, (2.29)

where q+
T,α(xt) is the d(1− α)T eth order statistic of x1, . . . , xT .

Chernozhukov et al. (2019) provide several conditions for approximate or exact finite-

sample validity of the p-values, and hence coverage of the prediction interval Ĉconf
Y . We

briefly discuss two of these conditions here, with a more complete technical treatment in
Appendix A.1. First, Chernozhukov et al. (2019) show exact validity when the residuals
Y1t −

∑
Wi=0 γ̂i(τ0)Yit are exchangeable for all t = 1, . . . , T . One sufficient condition for this

is that the outcome vectors (Y1t, . . . , YNt) are themselves exchangeable for t = 1, . . . , T .
When the residuals are not exchangeable, Chernozhukov et al. (2019) provide a finite

sample bound that relates in-sample prediction error to the validity of p(τ0). In Appendix
A.1, we adapt their SCM bounds to Ridge ASCM by showing that the ridge penalty controls
the difference between SCM and Ridge ASCM weights. Under a variant of the basic model
(2.3), the resulting p-value will be valid as the number of pre-treatment periods T0 → ∞.

Finally, in Section 2.7 we explore the finite sample coverage probabilities of Ĉconf
Y under

various data generating processes and find that they are near their nominal levels.

2.6 Auxiliary covariates

Thus far, we have focused exclusively on lagged outcomes as predictors. We now consider the
case where there are also a small number of auxiliary covariates Zi ∈ RK for unit i. These
auxiliary covariates may include summaries of lagged outcomes or time-varying covariates
such as the pre-treatment mean X̄i. Let Z0· ∈ RN0×K denote the matrix of donor units’
covariates, which we assume are centered, Z̄0· = 0.

These auxiliary covariates can be incorporated into both the balance objective for SCM
and the outcome model used for augmentation in ASCM. For the former, we can extend
SCM to choose weights to solve

min
γ∈∆N0

θx‖X1 −X ′0·γ‖2
2 + θz‖Z1 −Z0·γ‖2

2 + ζ
∑
Wi=0

f(γi), (2.30)

where ∆N0 is the N0-simplex. For the latter, we can augment the SCM weights with an
outcome model m̂(Xi,Zi) that is a function of both the lagged outcomes and auxiliary
covariates. For example, we can extend Ridge ASCM to choose m̂(X,Z) = η̂0 +X ′η̂x+Z ′η̂z
and fit via ridge regression:

min
η0,ηx,ηz

1

2

∑
Wi=0

(Yi − (η0 +X ′iηx +Z ′iηz))
2 + λx‖ηx‖2

2 + λz‖ηz‖2
2. (2.31)
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Both this SCM criterion and augmentation estimator incorporate user-specified weights that
determine the importance of balancing each set of covariates (Equation 2.30) or the amount
of regularization for each set of coefficients (Equation 2.31). There are many potential choices
for these weights. We discuss two, appropriate to different settings depending on the number
of auxiliary covariates.

A sensible default when the dimension of the auxiliary covariates is moderate is to incor-
porate the lagged outcomes X and the auxiliary covariates Z equally in Equations (2.30)
and (2.31), setting θx = θz = 1 and λx = λz = λridge (after standardizing auxiliary covariates
and lagged outcomes to have equal variance). With this setup the numerical and algorithmic
results in Section 2.4 apply for the combined vector of lagged outcomes and auxiliary co-
variates, (Xi,Zi) ∈ RT0+K . In particular, Ridge ASCM is again a penalized SCM estimator
that adjusts the synthetic control weights that solve optimization problem (2.30) to achieve
better balance by extrapolating outside of the convex hull.

An alternative approach when the dimension of the auxiliary covariates is small relative to
N (i.e., K � N) is to fit a regression model that regularizes the lagged outcome coefficients
ηx but does not regularize the auxiliary covariate coefficients ηz (i.e., set λz = 0). Lemma
2.4 below writes the resulting augmented estimator as its corresponding penalized SCM
optimization problem, with weights that perfectly balance the auxiliary covariates. This has
two key implications. First, since the auxiliary covariatesZ are exactly balanced regardless of
the balance that the SCM weights achieve alone, we can exclude them from the optimization
problem (2.30). Second, as we show below, the pre-treatment fit on the lagged outcomes
depends on how well the SCM weights balance the residualized lagged outcomes X̌. This
suggests modifying Equation (2.30) to balance X̌ rather than the lagged outcomes X, which
leads to the two-step procedure: (1) residualize the pre- and post-treatment outcomes on the
auxiliary covariates Z; and (2) estimate Ridge ASCM on the residualized outcomes. This
two-step procedure follows from a related proposal in Doudchenko and Imbens (2017).

Lemma 2.4. Let η̂x and η̂z be the solutions to (2.31) with λx = λridge and λz = 0. For
any weight vector γ̂ that sums to one, the ASCM estimator from Equation (2.10) with
m̂(Xi,Zi) = X ′iη̂x +Z ′iη̂z is

∑
Wi=0

γ̂iYiT +

(
X1 −

∑
Wi=0

γ̂iXi

)′
η̂x +

(
Z1 −

∑
Wi=0

γ̂iZi

)′
η̂z =

∑
Wi=0

γ̂cov
i YiT , (2.32)

where the weights γ̂cov are

γ̂cov
i = γ̂i + (X̌1 − X̌0·)(X̌

′
0·X̌0· + λridgeIT0)

−1X̌i + (Z1 −Z ′0·γ)′(Z ′0·Z0·)
−1Zi, (2.33)

and X̌i is the residual components of a regression of pre-treatment outcomes on the control
auxiliary covariates:

X̌i = Xi −Z ′i(Z ′0·Z0·)
−1Z ′0·X0·. (2.34)
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These weights exactly balance the auxiliary covariates, Z1 − Z ′0·γ̂cov = 0; the imbalance in
the lagged outcomes is

‖X1 −X ′0·γ̂cov‖2 ≤
(

λridge

λridge +N0ď2
r

)∥∥X̌1 − X̌ ′0·γ̂
∥∥

2
, (2.35)

where ďr is the minimal singular value of X̌0.

Comparing to the numerical results in Section 2.4, Lemma 2.4 shows that the two-step
approach penalizes extrapolation from the convex hull in the residualized space X̌, rather
than in the lagged outcomes themselves. In essence, by residualizing out the auxiliary
covariates Z, the two-step approach allows for a possibly large amount of extrapolation in
the auxiliary covariates, while carefully penalizing extrapolation in the part of the lagged
outcomes that is orthogonal to the covariates.

In Appendix A.2, we consider the performance of this estimator when the outcomes
follow a linear factor model with either a linear or a non-linear dependence on auxiliary
covariates, focusing on the special case where λridge → ∞ and the weights γ̂cov do not
extrapolate from the convex hull after residualization. When covariates enter linearly and
when K is small relative to N0, we show that exactly balancing a small number of auxiliary
covariates and targeting imbalance in the residuals X̌ decreases error due to pre-treatment
fit. When covariates enter non-linearly, however, there is additional approximation error due
to the linear regression specification. Thus, it is important to appropriately transforming
the covariates in practice. Furthermore with larger numbers of covariates, the approach that
incorporates them in parallel to lagged outcomes will be more appropriate.

2.7 Simulations and empirical illustrations

We first conduct extensive simulation studies to assess the performance of different methods,
finding substantial gains from ASCM. We then use our approach to examine the effect of an
aggressive tax cut on economic output in Kansas in 2012.

Calibrated simulation studies

We now present simulation studies calibrated to our empirical illustration in Section 2.7.
Specifically, we use the Generalized Synthetic Control Method (Xu, 2017) to estimate a
factor model with three latent factors based on the series of log GSP per capita (N = 50,
T0 = 89). We then simulate outcomes using the distribution of estimated parameters and
model selection into treatment as a function of the latent factors; see Appendix A.3 for
additional details. We also present results from three additional DGPs, each calibrated to
estimates from the same data: (1) the factor model with quadruple the standard deviation
of the noise term, (2) a unit and time fixed effects model, and (3) an autoregressive model
with 3 lags.
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Figure 2.3: Overall absolute bias, normalized to SCM bias for (a) the factor model simu-
lation, (b) the factor model simulation with quadruple the standard deviation, (c) the fixed
effects simulation, and (d) the AR simulation. The SCM estimates reported here are not
restricted to simulation draws with excellent pre-treatment fit; Abadie et al. (2015) advise
against using SCM in such settings.

We explore the role of augmentation using different outcome estimators. For each DGP,
we consider five estimators: (1) SCM alone, (2) ridge regression alone, (3) Ridge ASCM,
(4) fixed effects alone, and (5) De-meaned SCM (i.e., SCM augmented with fixed effects)
from Doudchenko and Imbens (2017) and Ferman and Pinto (2018), as shown in Equation
(2.13).9 Figure 2.3 shows the Monte Carlo estimate of the absolute bias as a percentage of
the absolute bias for SCM, with one panel for each simulation DGP; Appendix Figure A.1
shows the corresponding estimator root mean squared error (RMSE).

There are several takeaways. First, augmenting SCM with a ridge outcome regression
reduces bias relative to SCM alone — without conditioning on excellent pre-treatment fit —
in all four simulations. This underscores the importance of the recommendation in Abadie
et al. (2010, 2015) to use SCM only in settings with excellent pre-treatment fit.10 Under
the baseline factor model and the fixed effect model, the ridge augmentation greatly reduces

9Additional simulations shown in Appendix A.6 also consider alternative outcome models for use in
ASCM: (1) LASSO, (2) a random forest, (3) CausalImpact (Brodersen et al., 2015), (4) matrix completion
using MCPanel (Athey et al., 2017) and (5) fitting the factor model directly with gsynth (Xu, 2017). The
results are consistent with those for Ridge ASCM, with meaningful gains from augmentation relative to SCM
alone.

10Abadie et al. (2010, 2015) also strongly recommend incorporating auxiliary covariates, weighted by their
predictive power, into the procedure, noting that this is important for further reducing bias. For simplicity,
the simulations do not include auxiliary covariates.
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Figure 2.4: Bias and RMSE of Ridge ASCM, as a percentage of SCM bias and RMSE,
versus λ under a linear factor model. Results are divided by the quartile of the SCM fit
across all simulations.

bias, by more than 75% in the factor model simulation and over 90% in the fixed effects
simulation. In the AR(3) model and in the factor model with greater noise, the gains to
augmentation relative to SCM are more limited. Second, Ridge ASCM has lower bias than
ridge regression alone across all of the simulation settings. Third, when the fixed effects
estimator is incorrectly specified, combining it with SCM has much lower bias than either
method alone. And even when the fixed effects estimator is correctly specified, de-meaned
SCM has similar bias to the (correctly specified) fixed effects approach. Finally, Appendix
Figure A.1 shows that in all simulations ASCM has lower RMSE than SCM, as the large
decrease in bias more than makes up for the slight increase in variance.

Complementing the worst-case analysis in Section 2.5, we now consider how the typical
performance of augmentation relates to the amount of extrapolation and the quality of the
original SCM fit. Figure 2.4 shows the bias and RMSE as a function of λ for the primary
factor model simulation, conditional on the quartile of SCM fit. Larger values of λ (and
hence smaller adjustments) are to the left, with the left-most points in the plots representing
SCM. First, as expected, Augmented SCM substantially reduces bias regardless of SCM
pre-treatment fit. However, the gains are more modest when the SCM fit is in the best
quartile: in this case the bias is non-monotonic in λ and there is some optimal choice of λ
that minimizes the bias. Second, it is possible to under-regularize with ASCM, as evident
in the RMSE achieving a minimum for an intermediate value of λ. When pre-treatment fit
is good, augmentation with too-small λ leads to higher RMSE than SCM alone. However,
when SCM fit is relatively poor, even minimally regularized ASCM achieves much better
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Method AR(3) Factor Model: σ = σ̂ Factor Model: σ = 4σ̂ Fixed Effects

SCM 0.934 0.926 0.930 0.889

SCM + Ridge 0.932 0.950 0.936 0.939

Table 2.1: Coverage for 95% conformal prediction intervals (2.29) based on 1000 repetitions.

bias and RMSE than does SCM.
Finally, Table 2.1 shows the finite sample coverage of the conformal prediction intervals

for Y1T (0). For the four simulation settings we compute 95% prediction intervals for the
post-treatment counterfactual outcome Y1T (0) using the both the SCM and ridge ASCM
estimators. We see that the intervals for SCM alone can slightly undercover, due to finite
sample bias from poor treatment fit. In contrast, the intervals for ridge ASCM have close to
nominal coverage for Y1T (0).

Overall we find that SCM augmented with a penalized regression model has consis-
tently good performance across data generating processes. Due to this performance and the
method’s relative simplicity, we therefore recommend augmenting SCM with penalized re-
gression as a reasonable default in settings where SCM alone has poor pre-treatment fit. In
particular, we suggest using ridge regression; among the other benefits, Ridge ASCM allows
the practitioner to diagnose the level of extrapolation due to the outcome model.

Illustration: 2012 Kansas tax cuts

In 2010, Sam Brownback was elected governor of Kansas, having run on a platform empha-
sizing tax cuts and deficit reduction (see Rickman and Wang, 2018, for further discussion and
analysis). Upon taking office, he implemented a substantial personal income tax cut, both
lowering rates and reducing credits and deductions. This is a valuable test of “supply side”
models: Brownback argued that the tax cuts would increase business activity in Kansas,
generating economic growth and additional tax revenues that would make up for the static
revenue losses. Kansas’ subsequent economic performance has not been impressive relative
to its neighbors; however, potentially confounding factors include a drought and declines
in the locally important aerospace industry. Finding a credible control for Kansas is thus
challenging, and SCM-type approaches offer a potential solution.

We estimate the effect of the tax cuts on log gross state product (GSP) per capita using
the second quarter of 2012 — when Brownback signed the tax cut bill into law — as the
intervention time. We use four primary estimators: (1) SCM alone fit on the entire vector of
lagged outcomes, (2) Ridge ASCM, (3) Ridge ASCM including auxiliary covariates in parallel
to lagged outcomes and (4) Ridge ASCM on residualized outcomes, as proposed in Section
2.6.11 These estimators rely on the mean-zero noise Assumption 2.1. Substantively, under

11The covariates we include are the pre-treatment averages of (1) log state and local revenue per capita,
(2) log average weekly wages, (3) number of establishments per capita, (4) the employment level, and (5) log
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the auto-regressive model in Assumption 2.2(a) this assumes that post-treatment shocks for
Kansas will be the same as for other states in expectation; under the linear factor model
in Assumption 2.2(b) this rules out selection on pre-treatment shocks. This also rules out
unobserved confounders that affect both post-treatment shocks and the decision to enact the
Brownback tax cut bill.

Figure 2.5, known as a “gap plot”, shows the difference between Kansas and its synthetic
control for all four estimators, along with 95% point-wise confidence intervals intervals com-
puted via the conformal inference procedure from Chernozhukov et al. (2019). Figure 2.6
shows the log GSP per capita for both Kansas and its synthetic control using SCM and
Ridge ASCM. Appendix A.6 shows additional results.

First, the pre-treatment fit for SCM alone is relatively good for most of the pre-period,
with an overall pre-treatment RMSE of about 0.9 log points. However, the fit for SCM alone
worsens for in 2004–2005, with imbalances of over 4 log points — a pre-treatment imbalance
as large as the estimated impact. Using ridge regression to assess the possible implications of
this pre-treatment imbalance, we estimate bias due to pre-treatment imbalance of around 1
log point, or roughly a third of the magnitude of the estimated effect. To better understand
the estimated bias, we can inspect the ridge regression coefficients for lagged outcomes; see
Appendix Figure A.9. While the regression puts the most weight on the two most recent
years, the estimated bias due to imbalance in the mid-2000s is just as large as for 2010 and
2011. This suggests that there may be gains to augmentation.

As anticipated, augmenting SCM with ridge regression indeed improves pre-treatment
fit, with a pre-treatment RMSE of 0.65 log points, 25% smaller than the RMSE for SCM
alone. This improvement is especially pronounced in the mid 2000s, where SCM imbalance
is larger. In the end, despite a large reduction in the pre-treatment RMSE, the change in
the weights is quite small: the root mean square difference between SCM and Ridge ASCM
weights is only 0.01.

Next we consider including the auxiliary covariates. Adding these auxiliary covariates
and augmenting further improves both pre-treatment fit and balance on the covariates; see
Figure 2.7a. Finally, balancing the auxiliary covariates via residualization also improves pre-
treatment fit. Overall, the estimated impact is consistently negative for all four approaches,
with weaker evidence that the effect persists to the end of the observation period.

To check against over-fitting, Appendix Figures A.10, A.11, and A.12 show in-time
placebo estimates for SCM alone, Ridge ASCM, and Ridge ASCM with covariates, with
placebo treatment times in the second quarter of 2009, 2010, and 2011. We estimate placebo
effects that are near zero with all three placebo treatment times with all three estimators.

Figure 2.7a shows the covariate balance for the four estimators. While SCM and Ridge
ASCM achieve excellent fit for the pre-treatment average log GSP per capita, neither esti-

GSP per capita. For the augmented estimator on the lagged outcomes we select the hyperparameter λridge

as the largest λ within one standard error of the λ that minimizes the cross-validation placebo fit CV (λ); see
Section 2.5. Appendix Figure A.6 plots CV (λ). When including the auxiliary covariates we use the minimal
λ. Results are consistent using outcomes scales other than the standard normalization of log GSP per capita
(see Appendix A.6).
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Figure 2.5: Point estimates along with point-wise 95% conformal confidence intervals for the
effect of the tax cuts on log GSP per capita using SCM, Ridge ASCM, and Ridge ASCM
with covariates.

Figure 2.6: Point estimates along with point-wise 95% conformal prediction intervals for
counterfactual log GSP per capita without the tax cuts using SCM, ridge ASCM, and ridge
ASCM with covariates, plotting with the observed log GSP per capita in black.
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(a) (b)

Figure 2.7: (a) Covariate balance for SCM, Ridge ASCM, and ASCM with covariates. Each
covariate is standardized to have mean zero and standard deviation one; we plot the absolute
difference between the treated unit’s covariate and the weighted control units’ covariates∣∣Z1k −

∑
Wi=0 γ̂Zik

∣∣. (b) Donor unit weights for (1) SCM alone and (2) Ridge ASCM; left
facet uses lagged outcomes only; right fact includes auxiliary covariates.

mator achieves good balance on the other covariates, most notably the average employment
level across the quarters of the pre-period. In contrast, including the auxiliary covariates into
both the SCM and ridge optimization problems greatly improves the covariate balance, and
— by design — residualizing on the auxiliary covariates perfectly balances them. Moreover,
Ridge ASCM on residualized outcomes achieves very good pre-treatment fit on the lagged
outcomes as shown in Figure 2.5.

Finally, Figure 2.7b shows the weights on donor units for SCM and Ridge ASCM as
well as SCM and Ridge ASCM weights when including covariates jointly with the lagged
outcomes (see also Appendix Figure A.14). Here we see the minimal extrapolation property
of the ASCM weights. The SCM weights are zero for all but six donor states. The Ridge
ASCM weights are similar but deviate slightly from the simplex. As a result, the Ridge
ASCM weights retain some of the interpretability of the SCM weights. For the donor units
with positive SCM weight, Ridge ASCM places close to the same weight. For the majority
of those with zero SCM weight, Ridge ASCM also places a close to zero weight. Only
Louisiana receives a meaningful negative weight, with non-negligible negative weights for
only a few other donor units. By contrast, Appendix Figure A.13 shows the weights from
ridge regression alone: many of the weights are negative and the weights are far from sparse.
Including auxiliary covariates changes the relative importance of different states by adding
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new information, but the minimal extrapolation property remains.

2.8 Discussion

SCM is a popular approach for estimating policy impacts at the jurisdiction level, such as
the city or state. By design, however, the method is limited to settings where excellent
pre-treatment fit is possible. For settings when this is infeasible, we introduce Augmented
SCM, which controls pre-treatment fit while minimizing extrapolation. We show that this
approach controls error under a linear factor model and propose several extensions, including
to incorporate auxiliary covariates.

There are several directions for future work. First, we could incorporate a sensitivity
analysis that directly parameterizes departures from, say, the linear factor model, as in recent
approaches for sensitivity analysis for balancing weights (Soriano et al., 2020). Second, we
can adapt the ASCM framework to settings with multiple treated units. For instance, there
are different approaches in settings when all treated units are treated at the same time: some
papers propose to fit SCM separately for each treated unit (e.g., Abadie and L’Hour, 2018),
while others simply average the units together (e.g., Robbins et al., 2017). The situation is
more complicated with staggered adoption, when units take up the treatment at different
times; we explore this extension next in Chapter 3. Finally, we can consider more complex
data structures, such as applications with multiple outcomes series for the same units (e.g.,
measures of both earnings and total employment in minimum wage studies); hierarchical
data structures with outcome information at both the individual and aggregate level (e.g.,
students within schools); or discrete or count outcomes.
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Chapter 3

Synthetic Controls with Staggered
Adoption

Staggered adoption of policies by different units at different times creates promising oppor-
tunities for observational causal inference. The synthetic control method (SCM) is a recent
addition to the evaluation toolkit but is designed to study a single treated unit and does not
easily accommodate staggered adoption. In this chapter, we generalize SCM to the staggered
adoption setting. Current practice involves fitting SCM separately for each treated unit and
then averaging. We show that the average of separate SCM fits does not necessarily achieve
good balance for the average of the treated units, leading to possible bias in the estimated
effect. We propose “partially pooled” SCM weights that instead minimize both average and
state-specific imbalance, and show that the resulting estimator controls bias under a linear
factor model. We also combine our partially pooled SCM weights with traditional fixed
effects methods to obtain an augmented estimator that improves over both SCM weighting
and fixed effects estimation alone. We assess the performance of the proposed method via
extensive simulations and apply our results to the question of whether teacher collective
bargaining leads to higher school spending, finding minimal impacts. We implement the
proposed method in the augsynth R package.

3.1 Introduction

Jurisdictions often adopt policies at different times, creating promising opportunities for
observational causal inference. In our motivating application, 33 states passed laws between
1964 and 1987 mandating that school districts bargain with teachers unions (Hoxby, 1996;
Paglayan, 2019); our goal is to estimate the impact of these laws on student expenditures
and teacher salaries.

Estimating causal effects under staggered adoption remains challenging, however. One
promising approach is to use the synthetic control method (SCM; Abadie et al., 2010, 2015).
Developed for the case with a single treated unit, SCM estimates the counterfactual untreated
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outcome via a weighted average of untreated units, with weights chosen to match the treated
unit’s pre-treatment outcomes as closely as possible. Some applied researchers have used
SCM in staggered adoption settings by estimating SCM weights separately for each treated
unit and then averaging the estimates (see, e.g., Dube and Zipperer, 2015; Donohue et al.,
2019). This approach is not well understood, however, especially in applications like ours
where some treated units have poor SCM fits.

We develop SCM for the staggered adoption setting. We first consider two immediate
adaptations: separate SCM, which reflects the current practice of estimating weights that
separately minimize the pre-treatment imbalance for each treated unit; and pooled SCM,
which instead estimates weights that minimize the average pre-treatment imbalance across
all treated units. Both approaches have drawbacks. Separate SCM can lead to poor fit for
the average, leading to possible bias. Pooled SCM, by contrast, can achieve nearly perfect
fit for the average but can yield substantially worse unit-specific fits, making the estimator
susceptible to interpolation bias from non-linearity and settings where the outcome process
varies over time.

Our main proposal is partially pooled SCM, which finds intermediate weights between
these two extremes. First, we show that, under a linear factor model, the error of the
Average Treatment Effect on the Treated (ATT) estimate decomposes into error stemming
from the pooled fit and from state-specific fits. By minimizing both quantities, partially
pooled SCM thus directly controls the corresponding bias. We also motivate our proposal
by examining the Lagrangian dual of the constrained optimization problem, showing that
method partially pools parameters in the dual parameter space.

Partially pooled SCM in general does not perfectly balance both the unit-specific and
pooled average pre-treatment outcomes. Chapter 2 demonstrates that augmenting SCM with
an outcome model can correct for possible bias due to imperfect pre-treatment fit in settings
with a single unit. We now extend these augmented panel data methods to the staggered
adoption setting. While the framework is general, we focus here on augmentation with an
average of pre-treatment outcomes, as would arise from a fixed effects specification. We
refer to the augmented estimator as a weighted event study ; the (unweighted) “event study”
estimator is common in econometrics but has a number of pathologies that our weighted
approach avoids (e.g., Abraham and Sun, 2018; Callaway and Sant’Anna, 2018). We can
also view this as adapting intercept-shifted SCM (Doudchenko and Imbens, 2017; Ferman
and Pinto, 2018) to the staggered adoption case.

We apply our methods to estimating the impact of mandatory teacher collective bar-
gaining and show that they achieve better pre-treatment balance than existing approaches.
We find no impact of teacher collective bargaining laws on either teacher salaries or student
expenditures, consistent with several recent papers (Frandsen, 2016; Paglayan, 2019) but
counter to earlier claims (most notably Hoxby, 1996).

Related work. This chapter contributes to several active methodological literatures. First,
there is a large and active applied econometrics literature on challenges and remedies for
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two-way fixed effects models with multiple treated units, including event study models;
see Borusyak and Jaravel (2017); Abraham and Sun (2018); Athey and Imbens (2018);
Goodman-Bacon (2018); Callaway and Sant’Anna (2018); see also Xu (2017) and Athey
et al. (2017) for recent generalizations of these models. SCM has also attracted a great deal
of attention; see Abadie (2019) for a recent review. Several recent papers have explored
SCM with multiple treated units. In the case where all units adopt treatment at the same
time, some propose to first average the units and then estimate SCM weights for the average,
analogous to our fully pooled SCM estimate; for discussion, see Kreif et al. (2016); Robbins
et al. (2017). An alternative is Abadie and L’Hour (2018), who instead propose to estimate
separate SCM weights for each treated unit. In particular, they propose a penalized SCM
approach that aims to reduce interpolation bias, allowing for weights that move continuously
between standard SCM and nearest-neighbor matching. Our approach complements these
papers by adapting some of these ideas to the staggered adoption setting. For some other
examples of SCM under staggered adoption, see also Dube and Zipperer (2015); Toulis and
Shaikh (2018); Donohue et al. (2019).

We also build on recent papers that combine outcome modeling and SCM in panel data
settings, which themselves adapt “doubly robust” estimators more common in the (cross
sectional) observational studies literature. To date, these approaches have been limited to
the case with a single treated unit or, if multiple units are treated, to a single adoption time.
Along with Chapter 2,Ferman and Pinto (2018); Abadie and L’Hour (2018); Chernozhukov
et al. (2018); Arkhangelsky et al. (2019) all propose versions of bias correction. See also
Arkhangelsky and Imbens (2019) for a more general discussion of double robustness in panel
data settings.

Motivating example: Teacher collective bargaining. The United States, like other
developed countries, spends substantial resources on public education. Approximately 80%
of education spending goes to teacher salaries and benefits (U.S. Department of Education,
National Center for Education Statistics, 2018), and recent research points to teacher quality
as a key determinant of student outcomes (Jackson et al., 2014). Over recent decades, the
teacher employment relationship has changed dramatically via the introduction of unions
and collective bargaining agreements (Goldstein, 2015). Critics identify these as a “harmful
anachronism” and “the most daunting impediments” to education reform (Hess and West,
2006). A major 2018 Supreme Court decision, Janus v AFSCME, is expected to weaken
teachers’ unions, bringing renewed attention to this area and raising interest in understanding
the effects of teacher collective bargaining.

Since 1964, a number of states have passed laws mandating that school districts bargain
with teachers’ unions.1 Given the strong criticism directed at teachers’ unions, there is
surprisingly little evidence that they, or the mandatory bargaining laws, have any effect at
all. In a seminal study, Hoxby (1996) uses state-level changes in collective bargaining laws to

1Another 10 states allow but do not require collective bargaining, while 7 prohibit it. We focus on
identifying the effects of mandates.
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Figure 3.1: Staggered adoption of mandatory collective bargaining laws from 1964 to 1990.

argue that teacher collective bargaining raises teacher salaries and school expenditures but
reduces student outcomes. Several more recent papers have disputed Hoxby’s conclusions,
however. Using a panel of school districts, Lovenheim (2009) finds little effect of unionization
on teacher pay or class size. Frandsen (2016) similarly finds little effect of state unionization
laws on teacher pay. Finally, Paglayan (2019) extends the historical state-level data set
from Hoxby (1996). In a two-way fixed effect event study specification, she finds precisely
estimated zero effects of mandatory bargaining laws on school expenditures and teacher
salaries. See Appendix B.3 for additional discussion of Paglayan (2019).

Motivated in part by recent criticisms of event study models (Goodman-Bacon, 2018), we
revisit the Paglayan (2019) analysis using different methods. Figure 3.1 shows adoption times
of state mandatory bargaining laws between 1964 and 1990. Adoptions were spread across 14
separate years, though 16 states adopted laws between 1965 and 1970. Following Paglayan
(2019), our main outcomes of interest are per-pupil student expenditures and teacher salaries,
both measured in log 2010 dollars. We observe these outcomes back to 1959 for 49 states;
we exclude Washington DC and Wisconsin, which adopted a mandatory bargaining law in
1960 and thus has only one year of pre-intervention data. This gives between 6 and 28 years
of data before the adoption of mandatory bargaining, with an average of 13 years.

Chapter roadmap. Section 3.2 lays out the technical background. Section 3.3 develops
SCM for the staggered adoption setting and introduces partially pooled SCM. Section 3.4
gives theoretical results for the generalized SCM approaches. Section 3.5 introduces aug-
mented panel data methods and the weighted event study estimator. Section 3.6 describes
a calibrated simulation study. Section 3.7 gives additional results for the teacher collective
bargaining application. Finally, Section 4.6 discusses some directions for future work. The
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supplementary materials in Appendix B include further analyses and technical results.

3.2 Preliminaries

Setup and notation

We consider a panel data setting where we observe outcomes Yit for i = 1, . . . , N units over
t = 1, . . . , T time periods. In the teacher collective bargaining application, N = 49 and
T = 39. Some but not all of the units, indicated by Wi = 1, adopt the treatment during
the panel; once units adopt treatment, they stay treated for the remainder of the panel. See
Imai and Kim (2019) for a more general discussion. Let Ti represent the date that unit i
receives treatment, with Ti = ∞ denoting never-treated units. Without loss of generality,
we order units so that T1 ≤ T2 ≤ · · · ≤ TN . We assume that there are non-zero number of
never-treated units, N0 ≡ N −

∑
iWi > 0, and we let J = N − N0 =

∑
iWi. To clearly

differentiate ever treated units, we index them by j = 1, . . . , J . For treated units, we require
a sufficient number of time periods both before and after treatment: we assume that T1 � 1
and TJ ≤ T −K for some K > 0, representing the longest lagged treatment effect we will
examine.2

We adopt a potential outcomes framework to express causal quantities (Neyman, 1923;
Rubin, 1974) and assume stable treatment and no interference between units (SUTVA; Ru-
bin, 1980). In principle, each unit i in each time t might have a distinct potential outcome
for each potential treatment time s, Yit(s), for s = 1, . . . , T,∞. Following Athey and Imbens
(2018), we adopt two assumptions that impose mild substantive restrictions but dramat-
ically simplify the notation. First, we assume “no anticipation”: prior to treatment, a
unit’s potential outcomes are equal to the control potential outcome, i.e. Yit(s) = Yit(0) for
t < s, with treatment time s. Second, we assume “invariance to history”: following treat-
ment, a unit’s potential outcomes are equal to the treated potential outcome, Yit(s) = Yit(1)
for any 0 < s ≤ t, and do not depend on the timing of treatment. These assumptions
allow us to use just two potential outcomes, Yit(0) and Yit(1); the observed outcome is
Yit = 1{t < Ti}Yit(0) + 1{t ≥ Ti}Yit(1) for units with Wi = 1 and is Yit = Yit(0) for all t
for units with Wi = 0. The first assumption is relatively innocuous, and is a generalization
of the SUTVA assumption typically employed in cross-sectional studies (Rubin, 1980). The
second is stronger, ruling out treatment effects that phase in over time. However, this is not
too restrictive since we do not restrict how {Yit(0), Yit(1)} vary across units. See Imai and
Kim (2019) for related discussion.

2This ensures that we observe both pre-treatment outcomes and the outcome measures of interest for
all treated units, and that there are untreated comparisons for even the last treated units; N0 = 17, T1 = 6,
and K = 10 in our application. See Athey and Imbens (2018) for a discussion of the setting in which all
units eventually adopt treatment.
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Estimands

As is common in event studies, we focus on effects a specified period after treatment onset.
For treated unit j, we index “event time” relative to treatment time Tj by k = t− Tj. The
unit-level treatment effect for treated unit j at event time k ≥ 0 is:

τjk = Yj,Tj+k(1)− Yj,Tj+k(0).

Our primary estimand of interest is the Average Treatment Effect on the Treated k periods
after treatment onset, sometimes called the “event study” or “dynamic” ATT (Abraham
and Sun, 2018):

ATTk ≡
1

J

J∑
j=1

τjk =
1

J

J∑
j=1

Yj,Tj+k(1)− Yj,Tj+k(0).

We are also interested in the average post-treatment effect, averaging across k: ATT =
1
K

∑K
k=1 ATTk. Our methods generalize to many other estimands; see Callaway and Sant’Anna

(2018) for examples in this setting.
We observe all treated potential outcomes for treated units post-treatment adoption; that

is, Yj,Tj+k(1) is observed for k ≤ K ≤ T − TJ for all Wj = 1. The key challenge is therefore
to impute the average of the missing un-treated potential outcomes:

µk ≡
1

J

J∑
j=1

Yj,Tj+k(0).

It is useful to define the set of not yet treated units, which are the potential “donor units”
for SCM. For fixed event time k, the possible donor units for treated unit j are those units
that are either never treated or are not yet treated by time Tj + k. We denote these as
Djk = {i : Wi = 0 or Ti > Tj + k}. For a given treated unit j, Djk can differ across event
time k since units adopt treatment over time; however we use a fixed set of donors for each
treated unit. Following Paglayan (2019), we set the maximum value of leads to K = 10, and
restrict our attention to the set Dj ≡ DjK . This reduces the number of available donor units
but simplifies both estimation and exposition.

Finally, auxiliary covariates play an important role in many panel data settings. Consis-
tent with the analysis in Paglayan (2019), we do not include such covariates here. However,
it is straightforward to extend our results to consider auxiliary covariates in parallel to the
lagged outcomes.

SCM for a single treated unit

In the synthetic control method, the counterfactual outcome under control is estimated from
a weighted average, known as a synthetic control of untreated units, where weights are chosen
to minimize the squared imbalance between the lagged outcomes for the treated unit and
the weighted control (“donor”) units.
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For a fixed treated unit j, we consider a modified version of the original SCM estimator
of Abadie et al. (2010, 2015). In this version, the SCM weights γ̂j for treated unit j are the
solution to a constrained optimization problem:

min
γj∈∆scm

j

1

2(Tj − 1)

Tj−1∑
`=1

(
Yj,Tj−` −

N∑
i=1

γijYi,Tj−`

)2

+ λ
N∑
i=1

f(γij), (3.1)

where γj ∈ ∆scm
j is an N -vector that represents SCM donor unit weights, with elements {γij}

that satisfy γij ≥ 0 for all i,
∑

i γij = 1, and γij = 0 whenever i is not a possible donor, i 6∈
Dj.3 Equation (3.1) modifies the original SCM proposal in two key ways. First, where Abadie
et al. (2010, 2015) balance auxiliary covariates, we focus exclusively on lagged outcomes
Second, following a suggestion in Abadie et al. (2015), we include a term that penalizes the
weights toward uniformity, with hyperparameter λ; see Doudchenko and Imbens (2017);
Abadie and L’Hour (2018). In settings with perfect pre-treatment fit, the choice of penalty
can be important as Equation (3.1) may not have a unique solution for λ = 0. This is not
the case in our setting, however, and so we largely view this term as a technical convenience.

The SCM estimate of the missing potential outcome for treated unit j at event time k,
Yj,Tj+k(0), is then:

Ŷj,Tj+k(0) =
N∑
i=1

γ̂ij Yi,Tj+k,

with estimated treatment effect τ̂ scm
jk = Yj,Tj+k − Ŷj,Tj+k(0). Thus, the optimization problem

(3.1) minimizes the L2 norm of the imbalance between the treated unit and the synthetic
control over the pre-treatment period. Alternatively, it can be seen as minimizing the sum
of squared placebo treatment effects on pre-treatment outcomes.

A central question for SCM is assessing whether Ŷj,Tj+k(0) is a reasonable estimate for
Yj,Tj+k(0). Abadie et al. (2010) argue that, in addition to other model checks, SCM will be a

compelling estimator when the placebo estimates are close to zero, i.e. Yj,Tj−` − Ŷj,Tj−` ≈ 0
for all lags `. Accordingly, Abadie et al. (2010, 2015) recommend only proceeding with an
SCM analysis if the pre-treatment fit is excellent. Figure 3.2a shows SCM “gap plots,” of
Yj,Tj−`− Ŷj,Tj−` against ` for three illustrative treated states taken one at a time. Ohio shows
relatively good pre-treatment fit; however, the SCM estimates for Illinois and New York
fail to closely track those states’ pre-treatment outcomes, suggesting SCM is likely to give
misleading estimates for these states.

3Recall that the possible donor units for unit j, Dj , are the not yet treated units, defined as either
never-treated units or units that have not yet been treated at time Tj +K where we set K = 10. Thus, the
set of possible donor states for Michigan, which adopted mandatory collective bargaining in 1965, includes
the never-treated states as well as Nebraska, which also adopted mandatory collective bargaining in 1987.
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3.3 Generalizing to staggered adoption: Partially

Pooled SCM

We now extend SCM to the staggered adoption setting. The literature provides little guid-
ance about how to do this, and applied researchers have used a range of ad hoc approaches.
We start by outlining two immediate generalizations: separate SCM, which estimates weights
that separately minimize the pre-treatment imbalance for each treated unit; and pooled
SCM, which estimates weights that minimize the average pre-treatment imbalance across all
treated units. Both approaches have drawbacks, however. Separate SCM can lead to poor fit
for the average of the treated units, leading to bias in the estimated ATT. Pooled SCM, by
contrast, can achieve nearly perfect fit for the average but yields substantially worse state-
specific fits, making the estimator more susceptible to interpolation bias from non-linearity
and when both treatment adoption and the outcome process vary across time. Recognizing
this, we then propose partially pooled SCM, which finds intermediate weights between these
two extremes. We turn to the theoretical properties of this approach in the next section.

Separate SCM for each treated unit

A number of applied researchers have confronted the problem of using SCM when there are
multiple treated units with staggered adoption. These studies have taken each treated unit
one at a time, forming a separate synthetic control for each, and then estimating the ATT
by averaging the unit-specific SCM estimates (see, for example, Dube and Zipperer, 2015;
Donohue et al., 2019). We can re-write this separate SCM strategy as solving a single joint
optimization problem over a matrix of weights Γ = [γ1, . . . , γJ ] ∈ RN×J :4

min
γ1,...,γJ∈∆scm

j

1

2J

J∑
j=1

 1

Tj − 1

Tj−1∑
`=1

(
Yj,Tj−` −

N∑
i=1

γijYi,Tj−`

)2


︸ ︷︷ ︸
qsep

+ λ
J∑
j=1

N∑
i=1

f(γij), (3.2)

where qsep is the average pre-intervention mean square error across the J treated units. The
estimated ATT is then:

ÂTTk =
1

J

J∑
j=1

[
Yj,Tj+k −

N∑
i=1

γ̂ij Yi,Tj+k

]
=

1

J

J∑
j=1

Yj,Tj+k −
1

J

J∑
j=1

Ŷj,Tj+k(0), (3.3)

where the last term imputes the missing (average) potential outcome by averaging over the
unit-specific SCM estimates.

4Recall that we adopt the convention that each γj is an N -vector, with entries corresponding to inad-
missible donor units fixed at zero. We fix the same value of the hyper-parameter λ across all problems. It is
straightforward to generalize this to a separate λj for each treated unit, but complicates the exposition. In
principle, we could also give different weights to different units in the ATT, for example, prioritizing larger
states over smaller states or weighting units by dose (e.g., Dube and Zipperer, 2015).
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(a) SCM “gap plots” for three illustrative
states

(b) SCM pre-treatment fits by state

Figure 3.2: (a) The SCM pre-treatment fit for Ohio is good overall. The pre-treatment fit
for Illinois is poor: the SCM estimate fails to match an important pre-treatment trend. The
pre-treatment fit for New York is quite bad: the pre-treatment imbalance for New York
is roughly an order of magnitude larger than typical estimates for the impact of teacher
mandatory bargaining. (b) SCM fits by state show that Separate SCM gives better pre-
treatment fit for all treated states.

As with SCM for a single treated unit, an important question is when this separate
SCM strategy will yield a reasonable estimate of ATTk. One possible justification is that

ÂTTk will be an unbiased estimate of ATTk if the set of the state-specific SCM estimates
{Ŷj,Tj+k(0)}j are all unbiased for the corresponding potential outcomes {Yj,Tj+k(0)}j. How-
ever, Figure 3.2a, which plots the placebo gaps for three example states, shows this is not
the case in our application. This suggests that the separate SCM strategy will not yield con-
vincing estimates in our setting. We expect that in many applications there will be several
treated units with poor pre-treatment fit (see e.g. Dube and Zipperer, 2015; Donohue et al.,
2019). This motivates the search for other approaches.

Pooled SCM

An alternative strategy is to estimate weights that balance the average across treated units
directly. We call this pooled SCM. Specifically, we modify the separate SCM problem in
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(a) Separate SCM (b) Pooled SCM

Figure 3.3: Estimated ATT on per-pupil expenditure (log, 2010 $) using (a) separate SCM,
and (b) pooled SCM.

Equation (3.2) to:

min
γ1,...,γJ∈∆scm

1

L

L∑
`=1

∑
Tj>`

(
Yj,Tj−` −

N∑
i=1

γijYi,Tj−`

)2

︸ ︷︷ ︸
qpool

+ λ
J∑
j=1

N∑
i=1

f(γij), (3.4)

where L = TJ − 1 is the maximum number of observed lags, qpool is the imbalance between
the average synthetic control and the average treated unit at each lag `, summed over the
possible `, and the weights are again constrained to be non-negative, to sum to one for each
j, and to be zero for any i not in the set of donors Dj. Intuitively, by minimizing qpool the
pooled SCM approach finds weights that minimize the placebo estimates for the ATT, rather
than weights that minimize the average unit-specific placebo estimates, as in qsep. We can
see this in Figure 3.3, which shows the implied placebo estimates for the ATT using the two
approaches: The placebo ATT estimates are consistently positive for separate SCM weights
and are all nearly identical to zero for pooled SCM weights.

At the same time, the pooled SCM weights generally yield worse state-specific fits, which
do not enter the objective function in Equation (3.4). Figure 3.2b plots the state-level pre-
treatment imbalances for separate SCM vs pooled SCM, showing that the separate SCM
fit is better for all treated states. The resulting estimator is therefore more susceptible to
interpolation biases due to non-linearity (see e.g. Abadie and L’Hour, 2018, for a setting
with abundant micro data). Furthermore, as we show through simulation in Appendix B.2,
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even under linearity the pooled SCM estimator can be poor when both treatment adoption
and the outcome process vary over time.

Partially pooled SCM

We can now define our main proposal, partially pooled SCM, which finds weights that mini-
mize a convex combination of state-level imbalance, qsep, and pooled imbalance, qpool:

min
γ1,...,γJ∈∆scm

ν

2
qpool(Γ) +

(1− ν)

2
qsep(Γ) + λ

J∑
j=1

N∑
i=1

f(γij), (3.5)

with hyperparameter ν ∈ [0, 1]. This optimization problem nests both the separate SCM
approach (3.2) with ν = 0 and the pooled SCM approach (3.4) with ν = 1. In the next
section, we show that intermediate values of ν correspond to a partial pooling solution for
the γ weights in the dual parameter space, and discuss the specific choice of ν.

Figure 3.4a shows the balance possibility frontier for all ν: the impact of changing ν on
the pooled imbalance qpool (the y-axis) and on the average state-level imbalance qsep (the
x-axis) for the teacher collective bargaining application.5 The end points, ν = 0 and ν = 1
correspond to separate SCM and pooled SCM, respectively. As ν rises, pooled imbalance
falls while state-level imbalance rises, though at different rates. Moving from the separate
SCM estimate of ν = 0 to a partially pooled SCM estimate of ν = 0.5 reduces the pooled
imbalance by over 90 percent, with more modest further reductions as ν → 1. This is
consistent with Figure 3.2, which shows poor fit for ν = 0 and nearly perfect pre-treatment
fit for ν = 1.

Meanwhile, average state-level imbalance increases relatively slowly as ν rises from 0 to
0.5, increasing more rapidly as ν nears its upper limit. Even a very small deviation from the
pooled SCM solution, such as from ν = 1 to ν = 0.99, cuts the average state-level imbalance
by roughly one-fifth with essentially no change in the overall imbalance. Due to the number
of degrees of freedom involved, in many cases the pooled imbalance will be near zero for
ν = 1, and the objective function qpool will be relatively flat in the neighborhood of the
pooled solution. Therefore we expect that in many cases it will be possible to trade off a
small increase in pooled imbalance for a large decrease in the state-level imbalance, adding
robustness to the estimator at relatively little cost.

Based on Figure 3.4a, the intermediate estimate with ν = 0.5 has very similar global
pre-treatment imbalance to the fully pooled estimator, ν = 1, with only a modest increase
in state-level imbalance relative to the separate SCM estimate, ν = 0. This is reflected in
Figure 3.4b, which shows the placebo ATT estimates for partially pooled SCM. While the
imbalance for the ATT is slightly larger than for pooled SCM, it is substantially better than
for separate SCM.

5See King et al. (2017) and Pimentel and Kelz (2019) for other examples of balance frontiers in observa-
tional settings.
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(a) The balance possibility frontier (b) Partially pooled SCM

Figure 3.4: (a) The trade-off between pooled imbalance and state-specific imbalance, where
ν = 0 is the separate SCM solution and ν = 1 is the pooled SCM solution. The large
distance in average state-level imbalance between ν = 0.99 and ν = 1 suggest meaningful
gains in balance from deviating from the complete pooling estimate even by a small amount.
(b) Partially pooled SCM estimates for per-pupil current expenditures (log, 2010 $), with

the heuristic ν̂ =
√
qpool

/√
qsep ≈ 0.44; see Section 3.4.

We can now turn to the ATT estimates themselves. Figure 3.4b shows ÂTTk for k ∈ [0, 10]
for partially pooled SCM. Following Arkhangelsky et al. (2019), we quantify uncertainty
using the (leave-one-unit-out) jackknife to estimate standard errors and (asymptotic) Nor-
mality to compute 95% confidence intervals.6 Similar to the estimates from separate SCM
and pooled SCM — and consistent with Paglayan (2019) — we find no effect of mandatory
teacher collective bargaining laws on student expenditures. We explore additional analyses
in Section 3.7.

3.4 Theoretical results for partially pooled SCM

This section explores some of the theoretical properties of SCM under staggered adoption,
especially partially pooled SCM. First, we show that, under a linear factor model, the error
of the ATT estimate decomposes into error stemming from imperfection of the pooled fit
and from imperfections in the state-specific fits. By minimizing a weighted average of these

6The theoretical results in Arkhangelsky et al. (2019) focus on the setting with simultaneous adoption;
we leave the formal extensions to this setting for future work. While we do not pursue it here, we anticipate
that we could also apply the influence function-based inference method in Callaway and Sant’Anna (2018),
especially for the weighted event study estimators we consider in Section 3.5.
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quantities, partially pooled SCM, with appropriately chosen ν, can thus directly control the
corresponding bias. We also motivate partially pooled SCM by examining the Lagrangian
dual of the constrained optimization problem, showing that method partially pools param-
eters in the dual parameter space.

Pre-treatment fit and bias under a linear factor model

We consider the bias of a generic weighting estimator under staggered adoption. Following
the recent literature on panel data methods, we consider data generated by a linear factor
model; in Appendix B.4 we show analogous results for a time-varying autoregressive process.
For ease of exposition we consider the case where we balance the first t = 1, . . . , L time
periods for each unit, and we focus on the (absolute) error in estimating the ATT at event

time k,
∣∣∣ÂTTk − ATTk

∣∣∣.
We assume that there are F latent time-varying factors, where F is typically small relative

to both N and T . We let µt ∈ RF represent the vector of factor values at time t, and assume
it is bounded: maxt ‖µt‖∞ ≤ M . Each unit has a vector of time-invariant factor loadings
φi ∈ RF , and the control potential outcomes are generated as:

Yit(0) = φ′iµt + εit, (3.6)

where εit is independent, sub-Gaussian additive noise with scale parameter σ.
Two summaries of the factor values at the various treatment times will be important

to our analysis: µ̄k = 1
J

∑J
j=1 µTj+k ∈ RF , the average factor value across the J treatment

times, and S2
k = 1

J

∑J
j=1 ‖µTj+k − µ̄k‖2

2, the corresponding variance. Together, the relative
values of the magnitude of the mean ‖µ̄k‖2 and the standard deviation Sk measure the
amount of heterogeneity in the factors over treatment times.7 Our first result is that under
the standard linear factor model the error bound for the ATT depends on both the pooled
pre-treatment fit and the state-specific pre-treatment fits, where ‖µ̄k‖2 and Sk control their
relative importance for the bound.

Theorem 3.1. For γ̂1, . . . , γ̂J ∈ ∆scm where γ̂j is independent of ε·Tj+k and δ > 0, if Yit(0)

7For example, if all treatment times are the same, T1 = . . . = TJ , then the standard deviation Sk = 0.
Similarly, in the special case of a unit fixed effects model (e.g. a single, time constant factor) the standard
deviation is also zero. Conversely, if the factor values vary widely over time, the standard deviation Sk will
be large relative to the magnitude of the average factor value ‖µ̄k‖2.
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follows a linear factor model (3.6) the error for ÂTTk is

∣∣∣ÂTTk − ATTk

∣∣∣ ≤ M
√
F√
L

‖µ̄k‖2

√√√√√ L∑
t=1

 1

J

J∑
j=1

Yjt −
∑
i∈Dj

γ̂ijYit

2

︸ ︷︷ ︸
bias due to pooled fit

+Sk

√√√√√ 1

J

J∑
j=1

L∑
t=1

Yjt −∑
i∈Dj

γ̂ijYit

2

︸ ︷︷ ︸
bias due to individual fit


+
σM2F√

L

(
3δ + 2

√
logNJ

)
︸ ︷︷ ︸

bias due to approximation error

+
δσ√
J

(
1 + ‖Γ̂‖F

)
︸ ︷︷ ︸

variance

(3.7)

with probability at least 1 − 6e−
δ2

2 , where maxt ‖µt‖∞ ≤ M and ‖Γ‖2
F =

∑J
j=1

∑N
i=1 γ

2
ij is

the Frobenius norm of the weights.

Theorem 3.1 shows that the error for the ATT is bounded by several distinct terms,
each of which can be controlled by the partially pooled optimization problem (3.5). First,
we can directly control the variance term due to noise by penalizing the dispersion of the
weights, e.g., ‖Γ̂‖2

F . Second, there is an approximation error that arises due to balancing
— and possibly over-fitting to — noisy outcomes, rather than to the true underlying factor
loadings. In the worst case, the J synthetic controls put maximal weight on the control units
with the largest noise. Constraining the weights to lie in the simplex reduces the impact of
this worst case, however, and the error decreases as more lagged outcomes are balanced; see
Chapter 2 and Abadie et al. (2010); Arkhangelsky et al. (2019) for further discussion.

We are most interested in the bias arising from the pooled and state-specific fits. Theorem
3.1 shows that the bias in a weighting estimator for the ATT is controlled by choosing weights
that optimize a weighted sum of these two pre-treatment fits. The relative importance of
these fits is governed by the ratio of the average factor value ‖µ̄k‖2 and the factor standard
deviation Sk. When the average factor value is large relative to the standard deviation, then
the level of pooled fit is more important than the state-specific fits. Conversely, when the
factors vary widely over treatment times then the state-specific fits outweigh the pooled fit.
In the special case where Sk = 0, such as when all treatment times are the same or under
a unit (one-way) fixed effects model, Theorem 3.1 shows that only the pooled level of fit is
important for bias, at least under a linear factor model. In Appendix B.4 we show that a
time-varying auto-regressive model also exhibits this behavior.

Following Theorem 3.1, the (infeasible) optimization problem would choose hyperparam-

eter ν = ‖µ̄k‖2
‖µ̄k‖2+Sk

for some k, minimizing the first two terms in Equation (3.7). However,
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in general both ‖µ̄k‖2 and Sk are unknown, so we propose a heuristic to set ν based on
the ratio of qpool and qsep. First we solve the partially pooled SCM problem (3.5) with
ν = 0 (i.e. the separate SCM problem), then set ν to be the ratio of qpool and qsep:

ν̂ =
√
qpool

/√
qsep ∈ [0, 1].8 If the separate SCM problem (3.2) achieves good pooled

balance on its own, this approach will set a small ν. Conversely, if the pooled balance is
poor, ν will be large in order to account for this discrepancy. In the teacher bargaining
example, we choose ν̂ ≈ 0.44 for the per-pupil expenditure outcome, which is close to the
ν = 0.5 plotted in Figure 3.4a.

Partially pooled SCM: Dual shrinkage

We now inspect the Lagrangian dual problem to the partially pooled SCM problem (3.5),
showing that the optimization problem partially pools a set of state-specific dual variables
toward global dual variables. We focus on balancing the first L = T1 − 1 lagged outcomes,
which are observed for each treated unit; see Appendix B.4 for the general case.

For each treated unit j, the sum-to-one constraint induces a Lagrange multiplier αj ∈ R,
and the state-level balance measure induces a set of Lagrange multipliers βj ∈ RL, with
elements β`j. We combine these dual parameters into a vector α = [α1, . . . , αJ ] ∈ RJ and
a matrix β = [β1, . . . , βJ ] ∈ RL×J . In addition to the J sets of Lagrange multipliers — one
for each treated unit — the pooled balance measure in the partially pooled SCM problem
Equation (3.5) induces a set of global Lagrange multipliers µβ ∈ RL. As we see in the
following proposition, in the dual problem the parameters β1, . . . , βJ are regularized toward
this set of pooled Lagrange multipliers, µβ.

Proposition 3.1. The Lagrangian dual to Equation (3.5) is:

min
α,µβ ,β

L(α, β) +
λJL

2(1− ν)

J∑
j=1

‖βj − µβ‖2
2 +

λL

2ν
‖µβ‖2

2. (3.8)

Where the dual objective function is

L(α, β) ≡
J∑
j=1

[∑
Wi=0

f ∗

(
αj +

L∑
`=1

β`jYi,Tj−`

)
−

(
αj +

L∑
`=1

β`jYj,T1−`

)]
, (3.9)

and f ∗(y) = supx x
′y − f(x) is the convex conjugate of f .9 For treated unit j, the synthetic

control weight on unit i is γ̂ij = f ∗′
(
α̂j +

∑L
`=1 β̂`jYj,T1−`

)
.

8Note that by the triangle inequality,
√
qpool ≤

√
qsep. Thus their ratio is bounded above by 1. If the

SCM fits are perfect for each state, qsep = 0, then the overall fit will also be perfect, qpool = 0, and we define
ν = 0. This is not a common situation.

9For example, if f(x) = x log x is an entropy penalty, then f∗(y) = exp(y − 1) is an exponential. If
f(x) = 1

2x
2, then f∗(y) = 1

2y
2.
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The dual objective function (3.9) is an example of a calibrated loss function for propen-
sity score parameters (see e.g. Zhao, 2018; Wang and Zubizarreta, 2019); we develop this
propensity score connection in Appendix B.1. More relevant for our purposes is the form
of the regularization terms in (3.8). Proposition 3.1 highlights that the estimator partially
pools the individual synthetic controls to the pooled synthetic control in the dual parameter
space, with ν controlling the level of pooling. When ν = 0 in the separate SCM problem,
the parameters β1, . . . βJ are shrunk towards zero rather than a set of global parameters. By
contrast, when ν = 1, β1, . . . , βJ are constrained to be equal to µβ, fitting a single pooled
synthetic control in the dual parameter space. By choosing ν ∈ (0, 1), we move continuously
between the two extremes of J separate Lagrangian dual problems and a single dual problem,
regularizing the individual βjs toward the pooled µβ, allowing for some limited differences
between the J dual parameters.

3.5 Combining SCM and outcome modeling

We have established that the partially pooled SCM estimator achieves nearly as good overall
balance as the fully pooled estimator, while achieving much better balance for each state.
Nevertheless, balance will typically be imperfect, especially at the state level. We now follow
Chapter 2 and combine partially pooled SCM with outcome modeling, which can correct
for imperfect pre-treatment balance in the SCM estimator. We first describe the general
framework to combine SCM with an arbitrary panel data imputation method. We then
focus on augmentation with a (possibly weighted) average of pre-treatment outcomes, which
we refer to as a weighted event study.

Augmentation with generic panel data methods

Constructing the augmented estimator proceeds in three steps. First, we consider a work-
ing model for the potential outcome under control, k periods after treatment time Tj:
Yi,Tj+k(0) = mijk + εi,Tj+k; we give specific examples below. We estimate mijk with a pilot

estimate m̂ijk, and define the corresponding residuals, Ẏi,Tj+k ≡ Yi,Tj+k− m̂ijk for event time
k. Second, we estimate SCM weights γ̂∗ij using these residuals, i.e., by modifying the balance

criteria qpool and qsep in Equation (3.5) to depend on the residuals {Ẏi,Tj+k} rather than
“raw” {Yi,Tj+k}. Finally, we impute the counterfactual for treated unit j, k periods after
treatment as:

Ŷ aug
j,Tj+k

=
n∑
i=1

γ̂∗ijYi,Tj+k +

(
m̂jjk −

n∑
i=1

γ̂∗ijm̂ijk

)

= m̂jjk +
n∑
i=1

γ̂∗ij
(
Yi,Tj+k − m̂ijk

)
.

(3.10)
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Following Chapter 2 we can view this approach as analogous to bias correction for matching
(Rubin, 1973; Abadie and Imbens, 2011), where m̂jjk −

∑n
i=1 γ̂

∗
ijm̂ijk is an estimate of the

bias. As with partially pooled SCM, we then estimate ÂTT
aug

k = 1
J

∑J
j=1 τ̂

aug
jk .

This formulation is quite general and can accommodate any panel data imputation
method for the pilot estimate m̂ijk. We focus next on simple outcome models, especially
unit fixed effects. More broadly, however, we can estimate the factor model (3.6) directly, as
in the generalized SCM approach of Xu (2017) and set the pilot estimate to be the imputed
counterfactual m̂ijk = φ̂′iµ̂Tj+k. Alternatively, we can estimate m̂ijk using a direct matrix
completion approach (Hastie et al., 2015; Athey et al., 2017). We inspect the performance
of augmenting SCM with a factor model through simulation in Section 3.6 and apply it to
the teacher collective bargaining example in Section 3.7.

Weighted event studies

Our primary recommendation is to augment partially pooled SCM with a (possibly weighted)
average of pre-treatment outcomes, which we refer to as a weighted event study ; see Abraham
and Sun (2018); Callaway and Sant’Anna (2018) for futher discussion of event study models.
Here, the pilot estimate for unit i, k periods after treatment time Tj is a weighted average
of the pre-treatment outcomes:

m̂ijk = η̂′jY
pre
iTj
≡

Tj−1∑
`=1

η̂j`Yi,Tj−`, (3.11)

where the weights ηj need not be on the simplex. The treatment effect estimates for τjk, the
impact for treated unit j at event time k, have a particularly useful form:

τ̂ aug
jk =

Yj,Tj+k − Tj−1∑
`=1

η̂j`Yj,Tj−`

 − N∑
i=1

γ̂∗ij

Yi,Tj+k − Tj−1∑
`=1

η̂j`Yi,Tj−`

 , (3.12)

where ÂTT
aug

k is the simple average of τ̂ aug
jk over treated units j. We can view this approach as

a weighted average over all possible two-period, two-group difference-in-differences estimates.
Specifically, the base difference-in-differences estimate compares the “single difference” in
outcomes for treated unit j at two time points, Yj,Tj+k − Yj,Tj−`, to the “single difference”
in outcomes for donor unit i at the same time points, Yi,Tj+k − Yi,Tj−`. Equation (3.12) fixes
treated unit j and event time k, but then takes a double-weighted average, first over pre-
treatment periods to form a “synthetic pre treatment time period”, then over donor units
to track pre-intervention trends (see Arkhangelsky et al., 2019, for additional discussion).

Our default approach is to set uniform weights over time periods, η̂j` = 1
Tj−1

:

τ̂ aug
jk =

1

Tj − 1

Tj−1∑
`=1

[(
Yj,Tj+k − Yj,Tj−`

)
−

N∑
i=1

γ̂∗ij
(
Yi,Tj+k − Yi,Tj−`

)]
, (3.13)
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(a) The balance possibility frontier for the
weighted event study, and SCM alone.

(b) Weighted event study, ν̂ = 0.266

Figure 3.5: (a) The balance possibility frontier for SCM alone and for the weighted event
study model, which combines SCM and fixed effects, as well as the implied imbalance for
fixed effects alone. Incorporating unit-level fixed effects leads to substantial improvements
in balance. We use Equation (3.12) to estimate the event study estimator and compute the

implied balance as
√∑L

`=2 δ̂
2
−`, the RMSE of the placebo estimates. (b) Weighted event

study estimates for per-pupil current expenditure (log, 2010 $).

which is equivalent to augmenting SCM with a unit fixed effects model, mijk = 1
Tj−1

∑Tj−1
`=1 Yi,Tj−`.

This approach extends the intercept-shifted or de-meaned SCM estimator, which has attrac-
tive robustness properties (Doudchenko and Imbens, 2017; Ferman and Pinto, 2018), to the
staggered adoption setting.

A second special case is the unweighted event study model that imposes uniform weights
over units, γ̂∗ij = 1/‖Dj‖, as well as over time periods. In this form, Equation (3.12) is the
simple average over all two-period, two-group DID estimates averaged over all pre-treatment
lags ` and donor units i.10

Figure 3.5 shows the weighted event study estimates for the teacher collective bargaining
application, with ν̂ chosen by applying the procedure in Section 3.3 to the residuals Ẏ . Figure
3.5a shows the balance possibility frontier for SCM alone and for the weighted event study
estimator, as well as the implied imbalance for the event study estimator alone. The frontier

10This parallels recent proposals from, among others, Abraham and Sun (2018) and Callaway and
Sant’Anna (2018). We can also consider estimating ηt rather than restricting them to be uniform. Fol-
lowing Chapter 2, we could estimate these weights via ridge regression, which would allow for negative
weights; we could also restrict these weights to be on the simplex as in Arkhangelsky et al. (2019). We leave
a thorough analysis of these estimators to future work.
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for the weighted event study estimator is a clear improvement over either the FE or SCM
estimates alone, regardless of the level of tuning parameter ν. We see similar results when
examining the state-specific fits; see, for example, Appendix Figure B.4. The left of Figure
3.5b shows the placebo estimates from Equation (3.12), where k < 0.11 By design, the aug-
mentation improves pre-treatment fit relative to either the event study model or SCM alone.
As with the estimates for partially pooled SCM alone, the weighted event study estimates
show no impact of mandatory teacher collective bargaining on student expenditures.

3.6 Simulation study

We now consider the performance of different approaches in a simulation study calibrated
to the collective bargaining dataset; we turn to the impacts of mandatory teacher collective
bargaining laws in the actual data in the next section. We use the Generalized Synthetic
Control Method, implemented in the R package gsynth (Xu, 2017) to estimate the parameters
of simple data generating processes that best fit these data. Specifically, we estimate an
interactive two-way fixed effects model with a 2-dimensional latent time-varying factor µt ∈
R2 and unit-specific coefficients φi ∈ R2:

Yit = int + uniti + timet + φ′iµt + εit. (3.14)

We estimate (3.14) using untreated units and time periods, then estimate the variance-
covariance matrix of the unit fixed effects and factor loadings, Σ̂, and the variance of the
error term σ̂2

ε . We then generate simulated data sets with the same dimensions as the data,

N = 49 and T = 39, using the estimated {t̂imet, µ̂t}, and drawing {uniti, φi}
iid∼ MVN(0, Σ̂)

and εit
iid∼ N(0, σ̂2

ε). We impose a sharp null of no treatment effect, Yit(1) = Yit(0) = Yit.
A key component of the simulation model is selection into treatment. We fix the treat-

ment times to be the same as in the teacher unionization application, and set the probability
that unit i is treated at each treatment time to be πi = logit(θ0 + θ1(uniti + φi1 + φi2)). For
each treatment time, we assign treatment to those units not already treated with probability
πi, sweeping through the fixed set of treatment times. We set θ0 = −2.7 and θ1 = −1 to
ensure that around 32 units are eventually treated in each simulation draw, following the
distribution of the data. We provide additional simulation results under a two-way fixed
effects model and a random-effects autoregressive model in Appendix B.2.

We consider several estimators for the average post-treatment effect ATT. Figure 3.6
shows five: (1) A simple difference-in-differences estimator (i.e., an unweighted event study),

11These placebo checks differ from those typically performed in traditional event studies, which test for the
parallel trends assumption by comparing pre-treatment outcomes between treated and control units. These
tests generally have low power, however; see, e.g., Roth (2018); Bilinski and Hatfield (2018); Kahn-Lang and
Lang (2019). In contrast, the weighted event study estimator uses pre-treatment outcomes to select donor
units that best balance the treated units, in effect optimizing for the placebo test. It is still possible to
inspect pre-treatment fit, as in standard SCM, but this is best seen as an assessment of the quality of the
match rather than as a formal placebo test.
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Figure 3.6: Monte Carlo estimates of the bias for the overall ATT vs the MAD of the
individual ATT estimates. The lines trace out values for ν ∈ [0, 1], the points are the
average value using the heuristic ν̂.

(2) the partially pooled SCM estimator, with a “bias frontier” as we vary ν between 0 and
1, (3) the weighted event study estimator that combines fixed effects and partially pooled
SCM, again presented as a bias frontier, (4) directly estimating the factor model with gsynth,
and (5) augmenting partially pooled SCM with gsynth using the heuristic value of ν̂. The

vertical axis of each panel shows the absolute bias for the ATT,
∣∣∣E [ATT− ÂTT

]∣∣∣, while

the horizontal axis shows the Mean Absolute Deviation (MAD) of the individual average

post-treatment effect estimates, E
[

1
J

∑
Wj=1 |τj − τ̂j|

]
. Appendix Figure B.1 additionally

plots the the MAD and RMSE for both estimates.
There are several key takeaways from Figure 3.6. First, the unweighted event study

model is misspecified here, and does not do particularly well at controlling either ATT or
unit-level bias. Second, partially pooled SCM significantly reduces the bias for the overall
ATT relative to separate SCM, and a small amount of pooling also leads to slightly better
individual ATT estimates. The gains to pooling, however, diminish for ν close to 1, with the
fully pooled SCM yielding poor individual ATT estimates and slightly worse overall ATT
estimates than partially pooled SCM. Third, the weighted event study estimator dominates
either of the alternatives in terms of both pooled and state-level imbalance. Here again
there are gains to partially pooling SCM, although the gains are limited together with the
fixed effects augmentation. Finally, as expected, directly estimating the oracle gsynth model
has lower bias for the overall ATT. However, the MAD for the individual ATT estimates
is similar to partially pooled SCM, due to the low number of pre-intervention periods for
many of the treated units. Combining gsynth and SCM leads to very similar estimates in
this case.
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Appendix Figure B.2 shows the results for a two-way fixed effects model, where the
unweighted event study is the oracle estimator. In this setting we see that the pooled SCM
estimate has half the bias of the separate SCM estimate, with no ill effects from pooling.
Additionally, all forms of augmentation lead to nearly unbiased estimators. Appendix Figure
B.3 shows the results for the random effects AR model. In this setting it is possible to
over pool, with both the separate and fully pooled SCM estimators performing worse than
partially pooled SCM. In addition, although the fixed effects model is misspecified, the
partially pooled weighted event study performs better than either partially pooled SCM or
the event study alone.

3.7 Impacts of mandatory teacher collective

bargaining laws

We now return to our primary application of the impact of mandatory teacher collective
bargaining. We first consider additional analyses on per-pupil expenditures and then turn
to the effects on teacher salary.

Effects on per-pupil expenditures

As we show in Figure 3.5, we find no meaningful effects of mandatory teacher collective
bargaining on per-pupil expenditures. Pooled across the ten years after treatment adoption,
the overall estimate from the combined event study and SCM model is essentially zero:

ÂTT = −0.01, or a 1 percent reduction in per-pupil expenditures, with an approximate 95%
confidence interval of [−0.049,+0.029]. Supplementing our main analyses, Appendix Figure
B.5 presents corresponding estimates from the generalized synthetic control method (Xu,
2017), both alone and combined with partially pooled SCM, showing similar null results
overall. Taken together, these estimates are in stark contrast to the results from Hoxby
(1996), who argues for a 12 percent positive effect, although she gives a range of estimates.

We can assess the strength of evidence by conducting robustness and placebo checks.
First, following Abadie et al. (2015), we begin by assessing out-of-sample validity via in time
placebo checks. These checks re-index treatment time to be earlier in order to hold out some
pre-treatment time periods (i.e. setting T ′j = Tj−x for some x), then estimate placebo effects
for the held-out pre-intervention time periods. Figure 3.7 shows the placebo estimates for
the weighted event study estimator with placebo treatment time two and four periods before
the true treatment time. Both estimators achieve excellent pre-treatment fit and estimate
small negative placebo effects that are indistinguishable from zero.

Next, we consider the result of trimming states with poor pre-treatment fit, following
common practice in the matching and SCM literatures. Figure 3.8a shows the state-level
fit for both partially pooled SCM and the weighted event study; two states, New York and
Alaska, have especially bad pre-treatment fits without augmentation, though interestingly
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(a) Two year in-time placebo estimates.

ÂTT = −0.015, approximate 95% confidence
interval [−0.076, 0.046].

(b) Four year in-time placebo estimates.

ÂTT = −0.018, approximate 95% confidence
interval [−0.067, 0.031].

Figure 3.7: Placebo estimates for per-pupil expenditures re-indexing treatment time to (a)
two and (b) four years before the true treatment time. The placebo effects are very close to
zero and are indistinguishable from zero at this level of precision.

the augmented model fits these states much better. Figure 3.8b shows the overall ATT
estimates and 95% confidence intervals when removing an increasing number of treated
units with poor fits, in the order of state-level fit shown in Figure 3.8a. We see that the
substantive conclusions remain the same.

Appendix B.3 includes several additional analyses of the impact on per-pupil expendi-
tures. First, an important feature of SCM-based methods is that we can directly inspect the
weights. Appendix Figures B.6 and B.7 show the state-specific weights over donor states for
each treated unit for partially pooled SCM and the weighted event study, respectively. Ap-
pendix Figure B.8 shows the number of times each potential donor state is part of a treated
state’s synthetic control. Taken together, these figures highlight the role of augmentation in
constructing more plausible estimators. For the weights from SCM alone, both Illinois and
Wyoming are consistently important donor states; after removing the unit fixed effects, the
weights are much more evenly distributed across the donor pool, suggesting that estimates
are not overly reliant on a single control unit. Finally, we can assess the sensitivity of our
estimates to the particular choice of pooling parameter ν. Appendix Figure B.9b shows the
overall ATT estimates for partially pooled SCM and the weighted event study estimator
varying ν from separate SCM ν = 0 to pooled SCM ν = 1. We see that the partially pooled
SCM estimates are more sensitive to the choice of ν, but no choice of ν substantively changes
the conclusions for either estimator.
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(a) Distribution of state-level fits (b) Dropping 1 to 20 treated units according
to their worst fit.

Figure 3.8: (a) The distribution of state-level fits (in terms of RMSE) with and without
augmentation; Alaska and New York are clear outliers on the original scale, but have similar
pre-treatment fits to other states after removing pre-treatment averages. (b) Estimates are
not especially sensitivity to dropping an increasing number of units (ranked by pre-treatment
imbalance), although the uncertainty intervals are wider with fewer units in the analysis.

Effects on average teacher salary

Thus far, we have focused on the impacts of teacher collective bargaining agreements on
expenditures, finding no effect overall. One possible explanation is that school districts are
able to divert funds from other purposes to fund higher teacher salaries with no net effect
on total expenditures. In Figure 3.9, we therefore repeat the analysis focusing on average
teacher salaries (in log, 2010 $) as the outcome of interest. Figure 3.9a shows the separate
SCM estimate, which, similar to our discussion in Section 3.3, shows poor balance for average
pre-treatment outcomes. By contrast, Figure 3.9b shows the weighted event study estimate,
which has excellent pre-treatment balance. Estimates with partially pooled SCM alone are
similar.

Consistent with the estimates on expenditures, the estimates from Figure 3.9 do not
show any meaningful impact of mandatory teacher collective bargaining on teacher salaries.
Specifically, impacts larger than around 0.04 are outside the 95% intervals, even nine years
after implementation of the laws. When we average over all post-treatment years, as in

Paglayan (2019, Table 2), the estimate is again essentially zero: ÂTT = −0.006 with an
approximate 95% confidence interval of [−0.051,+0.039]. While not as severe as for per-
pupil expenditures, Hoxby (1996)’s estimate that unions raise teacher salaries by 5 percent
is also outside this interval.
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(a) Separate SCM (b) Weighted event study, ν̂ = 0.22

Figure 3.9: (a) Separate SCM and (b) weighted event study estimates for the impact of
mandatory collective bargaining laws on average teacher salary (log, 2010 $).

3.8 Discussion

In this chapter, we develop a new framework for estimating the impact of a treatment
adopted gradually by units over time. In our motivating example, 33 states have enacted
laws mandating school districts to bargain with teachers unions (Paglayan, 2019), and we
seek to estimate the effects of these laws on educational expenditures and teacher pay. To
do so, we adapt SCM to the staggered adoption setting. We argue that current practice of
estimating separate SCM weights for each treated unit is unlikely to yield good results, but
also that fully pooled SCM may over-correct; our preferred approach, partially pooled SCM,
finds weights that balance both state-specific and overall pre-treatment fit. We then augment
SCM with a simple average of pre-treatment outcomes, which yields a weighted event study
estimator that has advantages over either the event study or SCM estimator alone. We apply
this approach to the teacher bargaining example and, consistent with recent analyses, find
precisely estimated null effects on teacher salaries and student expenditures.

We briefly note some directions for future work. First, we could extend these ideas to
settings with multiple treated units but where treatment can “shut off” for some units,
deviating from the staggered adoption structure. This would necessarily require additional
assumptions; see, for example, Imai and Kim (2019). We could similarly incorporate other
structure from our application. For example, in staggered adoption settings where multiple
units adopt treatment at the same time, we could add a layer in the hierarchy and more
closely pool units treated at the same time while still partially pooling different treatment
cohorts.

Second, many SCM analyses explore multiple outcomes. As in other SCM studies, we
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treat each outcome separately, choosing different synthetic control weights for each. In many
settings, however, lagged values from one outcome may predict future values of another,
suggesting that balancing multiple outcome variables would be useful. This seems especially
important in settings like ours with relatively few units.

Finally, we focus on relatively simple outcome models, and in particular a simple pre-
treatment average. More complex models are possible and may be desirable. For example,
Fesler and Pender (2019) apply the Ridge Augmented SCM proposal in Chapter 2 to a
staggered adoption setting, modeling each treated unit separately. Partial pooling may be
helpful here. In another direction, we might consider an outcome model that incorporates the
time weights used in Arkhangelsky et al. (2019). We anticipate that, unlike in the simple case
with unit fixed effects, these augmented approaches likely require more elaborate shrinkage
estimation, such as via matrix penalties.
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Chapter 4

Varying impacts of letters of
recommendation on college admissions

In a pilot study during the 2016-17 admissions cycle, the University of California, Berkeley
invited many applicants for freshman admission to submit letters of recommendation. We are
interested in estimating how impacts vary for under-represented applicants and applicants
with differing a priori probability of admission. Assessing treatment effect variation in
observational studies is challenging, however, because differences in estimated impacts across
subgroups reflect both differences in impacts and differences in covariate balance. To address
this, we develop balancing weights that directly optimize for “local balance” within subgroups
while maintaining global covariate balance between treated and control populations. We
then show that this approach has a dual representation as a form of inverse propensity
score weighting with a hierarchical propensity score model. In the UC Berkeley pilot study,
our proposed approach yields excellent local and global balance, unlike more traditional
weighting methods, which fail to balance covariates within subgroups. We find that the
impact of letters of recommendation increases with the predicted probability of admission,
with mixed evidence of differences for under-represented minority applicants.

4.1 Introduction and motivation

In a pilot study during the 2016-17 admissions cycle, the University of California, Berkeley
invited some applicants for freshman admission to submit letters of recommendation (LORs)
as part of their applications. Unlike other highly selective universities, UC Berkeley had never
previously asked applicants to submit letters from teachers and guidance counselors. Ide-
ally, these letters would support what the university calls “holistic review”: looking beyond
reductive summaries (e.g., SAT scores) and examining the whole applicant, taking account
of any contextual factors and obstacles overcome (Hout, 2005). However, there was also le-
gitimate concern that applicants from disadvantaged backgrounds might not have access to
adults who could write strong letters, and that the use of letters would further disadvantage
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these students.
In this chapter, we design an observational study of the impact of submitting a letter of

recommendation on subsequent admission using data from this pilot program. Our goal is
to understand how these impacts vary for under-represented applicants and for applicants
with differing a priori probabilities of admission.

Assessing treatment effect variation in observational studies is challenging, even when, as
here, subgroups are pre-specified. Variation in estimated impacts reflect both actual treat-
ment effect variation and differences in covariate balance across groups. Traditional Inverse
Propensity Score Weighting (IPW) is one standard approach: first estimate a propensity
score model via logistic regression, including treatment-by-subgroup interaction terms; con-
struct weights based on the estimated model; and then compare IPW estimates across sub-
groups (see Green and Stuart, 2014; Lee et al., 2019). Estimated weights from traditional
IPW methods, however, are only guaranteed to have good covariate balancing properties
asymptotically. Balancing weights estimators, by contrast, instead find weights that directly
minimize a measure of covariate imbalance, often yielding better finite sample performance
(Zubizarreta, 2015; Athey et al., 2018; Hirshberg and Wager, 2019). Both balancing weights
and traditional IPW, however, face a curse of dimensionality when estimating subgroup
effects: it is difficult to achieve exact balance on all covariates within each subgroup, or,
equivalently, balance all covariate-by-subgroup interactions.

We therefore develop an approximate balancing weights approach tailored to estimating
subgroup treatment effects, with a focus on the UC Berkeley LOR pilot study. Specifically,
we present a convex optimization problem that finds weights that directly target the level
of local imbalance within each subgroup — ensuring approximate local covariate balance —
while guaranteeing exact global covariate balance between the treated and control samples.
We show that controlling local imbalance controls the estimation error of subgroup-specific
effects, allowing us to better isolate treatment effect variation. We also show that, even when
the target estimand is the overall treatment effect, ensuring both exact global balance and
approximate local balance reduces the overall estimation error.

Next, we demonstrate that this proposal has a dual representation as inverse propensity
weighting with a hierarchical propensity score model, building on recent connections between
balancing weights and propensity score estimation (Zhao and Percival, 2017; Tan, 2017; Chat-
topadhyay et al., 2020). In particular, finding weights that minimize both global and local
imbalance corresponds to estimating a propensity score model in which the subgroup-specific
parameters are partially pooled toward a global propensity score model. Any remaining im-
balance after weighting may lead to bias. To adjust for this, we also combine the weighting
approach with an outcome model, analogous to bias correction for matching (Rubin, 1973;
Athey et al., 2018).

After assessing its properties, we use this approach to estimate the impacts of letters of
recommendation during the 2016 UC Berkeley undergraduate admissions cycle. We focus
on variation in the effect on admissions rates based on under-represented minority (URM)
status and on the a priori predicted probability of admission, estimated using data from the
prior year’s admissions cycle. First, we show that the proposed weights indeed yield excellent
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local and global balance, while traditional propensity score weighting methods yield poor
local balance. We then find evidence that the impact of letters increases with the predicted
probability of admission. Applicants who are very unlikely to be admitted see little benefit
from letters of recommendation while applicants on the cusp of acceptance see a larger,
positive impact.

The evidence on the differential effects by URM status is more mixed. Overall, the
point estimates for URM and non-URM applicants are close to each other. However, these
estimates are noisy and mask important variation by a priori probability of admission. For
applicants with the highest baseline admission probabilities, we estimate larger impacts for
non-URM than URM applicants, though these estimates are sensitive to augmentation with
an outcome model. For all other applicants, we estimate the reverse: larger impacts for URM
than non-URM applicants. Since URM status is correlated with the predicted probability
of admission, this leads to a Simpson’s Paradox-type pattern for subgroup effects, with a
slightly larger point estimate for non-URM applicants pooled across groups (Bickel et al.,
1975; VanderWeele and Knol, 2011).

These results hinge on estimating higher-order interaction terms with the treatment.
This suggests caution but also highlights the advantages of a design-based approach (Rubin,
2008). Since we separate the design and analysis phases, we can carefully assess covariate
balance and overlap in the subgroups of interest — and can tailor the weights to target
these quantities directly. This is a challenge for many recent approaches that use automatic
machine learning methods to regularize the complexity of estimated heterogeneous treatment
effects (Carvalho et al., 2019). Nonetheless, we view our proposed approach as a complement
to — not a substitute for — these approaches and explore an augmented estimator as part
of our analysis.

The importance of higher-order interactions also suggests that, as in all observational
studies, our results are sensitive to violating the strong assumption of ignorable treatment
assignment. Thus, we argue our analysis is a reasonable first look at this question, best
understood alongside other approaches that rest on different assumptions (such as those
in Rothstein, 2017). In Appendix C.1, we explore one alternative approach that instead
leverages unique features of the UC Berkeley pilot study, which included an additional review
without the letters of recommendation from a sample of 10,000 applicants. The results from
this approach are broadly similar to the estimates from the observational study, differing
mainly in regions with relatively poor overlap.

The chapter proceeds as follows. In the next section we introduce the letter of recom-
mendation pilot program at UC Berkeley. Section 4.2 introduces the problem setup and
notation, and discusses related work. Section 4.3 proposes and analyzes the approximate
balancing weights approach. Section 4.4 presents a simulation study. Section 4.5 presents
empirical results on the effect of letters of recommendation. Section 4.6 concludes with a dis-
cussion about possible extensions. The appendix includes additional theoretical discussion
and analysis.
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A pilot program for letters of recommendation in college
admissions

As we discuss above, there is considerable debate over the role of letters of recommendation in
college admissions. LORs have the potential to offer insight into aspects of the applicant not
captured by the available quantitative information or by the essays that applicants submit
(Kuncel et al., 2014). At the same time, letters from applicants from under-resourced high
school may be less informative or prejudicial against the applicant, due, e.g., to poor writing
or grammar, or to lower status of the letter writer; see Schmader et al. (2007) as an example.

The UC Berkeley LOR pilot study is a unique opportunity to assess this question; Roth-
stein (2017) discusses implementation details. For this analysis, we restrict our sample to
non-athlete California residents who applied to either the College of Letters and Science or
the College of Engineering at UC Berkeley in the 2016 admissions cycle. This leaves 40,541
applicants, 11,143 of whom submitted LORs. For the purposes of this study, we follow the
university in defining a URM applicant as one who is a low-income student, a student in a
low-performing high school, a first-generation college student, or from an underrepresented
racial or ethnic group. We focus our analysis on the impacts for applicants who both were
invited to and subsequently did submit LORs.1

Selection into treatment

UC Berkeley uses a two-reader evaluation system. Each reader scores applicants on a three-
point scale, as “No,” “Possible,” or “Yes.” Application decisions are based on the combina-
tion of these two scores and the major to which a student has applied. In the most selective
majors (e.g., mechanical engineering), an applicant typically must receive two “Yes” scores
to be admitted, while in others a single “Yes” is sufficient. In the LOR pilot, applicants were
invited to submit letters based in part on the first reader score, and the LORs, if submitted,
were made available to the second reader.

As in any observational study of causal effects, selection into treatment is central. De-
cisions to submit letters were a two-step process. Any applicant who received a “Possible”
score from the first reader was invited. In addition, due to concerns that first read scores
would not be available in time to be useful, an index of student- and school-level charac-
teristics was generated, and applicants with high levels of the index were invited as well.2

1We could use the methods discussed here to explore a range of different quantities. For this target,
the net effect of LORs on admission includes differential rates of submission of a letter given invitation.
While non-URM applicants submitted letters at a higher rate than URM applicants, the majority of the
discrepancy arises from applicants who were unlikely to be admitted a priori (Rothstein, 2017).

2The index was generated from a logistic regression fit to data from the prior year’s admissions cycle,
predicting whether an applicant received a “Possible” score (versus either a “No” or a “Yes”). Applicants
with predicted probabilities from this model greater than 50% were invited to submit LORs. Because we
observe all of the explanatory variables used in the index, this selection depends only on observable covariates.
A small share of applicants with low predicted probabilities received first reads after January 12, 2017, the
last date that LOR invitations were sent, and were not invited even if they received “Possible” scores.
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Figure 4.1: Absolute difference in means, standardized by the pooled standard deviation,
between applicants submitting and not submitting letters of recommendation for several key
covariates. By design, applicants submitting letters of recommendation disproportionately
have a “Possible” score from the first reader (70% of treated applicants vs. 4% of untreated
applicants).

Of the 40,451 total applicants, 14,596 were invited to submit a letter. Approximately 76%
of those invited to submit letters eventually submitted them, and no applicant submitted a
letter who was not invited to.

For this analysis, we assume that submission of LORs is effectively random conditional
on the first reader score and on both student- and school-level covariates. In particular,
the interaction between the covariates and the first reader score plays an important role in
the overall selection mechanism, as applicants who received a score of “No” or “Yes” from
the first reader could still have been asked to submit an LOR based on their individual
and school information. Figure 4.1 shows covariate imbalance for several key covariates
— measured as the absolute difference in means divided by the pooled standard deviation
— for applicants who submitted LORs versus those who did not.3 We see that there are
large imbalances in observable applicant characteristics, most notably average school income,
GPA, the number of honors and AP classes taken, and SAT score. There were also large
imbalances in first reader scores (not shown in Figure 4.1): 70% of applicants that submitted

3The full set of student-level variables we include in our analysis are: weighted and unweighted GPA, GPA
percentile within school, parental income and education, SAT composite score and math score, the number of
honors courses and percentage out of the total available, number of AP courses, ethnic group, first generation
college student status, and fee waiver status. The school level variables we control for are: average SAT
reading, writing, and math scores, average ACT score, average parental income, percent of students taking
AP classes, and the school Academic Performance Index (API) evaluated through California’s accountability
tests. For students that did not submit an SAT score but did submit an ACT score, we imputed the SAT
score via the College Board’s SAT to ACT concordance table. For the 992 applicants with neither an SAT
nor an ACT score, we impute the SAT score as the average among applicants from the school.
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Figure 4.2: Distribution of the “admissibility index” — an estimate of the a priori probability
of acceptance — for the 2016 UC Berkeley application cohort, separated into URM and non-
URM and those that submitted a letter versus those that did not.

LORs had “Possible” scores, compared to only 4% of those who did not.

Heterogeneity across a priori probability of admission

To better understand who was invited to submit LORs and any differential impacts between
URM and non-URM applicants, we construct a univariate summary of applicant- and school-
level characteristics. We use logistic regression to estimate the probability of admission given
observable characteristics using the prior year (2015) admissions data.4 We then use this
model to predict a priori admissions probabilities for the applicants of interest in 2016; we
refer to these predicted probabilities as the Admissibility Index (AI). The overall AUC in
predicting 2016 admissions is 0.88 and the mean square error is 10% (see Appendix Table
C.1). However, the predictive accuracy decreases for higher AI applicants, slightly under-
estimating the probability of admissions for middle-tier applicants and over-estimating for
the highest admissibility applicants (see Appendix Figure C.1). Additionally, predictive per-
formance is better for URM applicants than non-URM applicants, particularly for applicants
to the College of Engineering (see Appendix Figure C.2).

Figure 4.2 shows the AI distribution for the 2016 applicant cohort, broken out by URM
status and LOR submission. There are several features of this distribution that have im-
portant implications for our analysis. First, although the probability of admission is quite
low overall, applicants across nearly the full support of probabilities submitted LORs. This
is primarily because applicants who received “Possible” scores from the first readers come
from a wide range of admissibility levels. This will allow us to estimate heterogeneous ef-
fects across the full distribution, with more precision for applicants with lower AIs. Second,

4This is a different model than the logistic regression used by the admissions office, which predicted a
reviewer score of “Possible” rather than admission.
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AI Range URM Number of Applicants Number Submitting LOR Proportion Treated

< 5%
URM 11,832 2,157 18%
Not URM 6,529 607 9%

5% - 10%
URM 3,106 1,099 35%
Not URM 2,099 536 25%

10% - 20%
URM 2,876 1,212 42%
Not URM 2,495 828 33%

> 20%
URM 4,645 2,345 50%
Not URM 6,959 2,359 34%

Table 4.1: Number of applicants and proportion treated by subgroup.

because the admissions model disproportionately predicted that URM students had high
chances of receiving “Possible” scores, many more URM applicants were invited to submit
letters than non-URM applicants, and so our estimates for URM applicants will be more
precise than those for non-URM applicants.

From Figure 4.2 we know that the distribution of AI varies between URM and non-URM
applicants, and so apparent differences in estimated effects between the two groups may
be due to compositional differences. Therefore, in the subsequent sections we will focus
on estimating effects within subgroups defined by both URM status and admissibility. To
do this, we define subgroups by creating four (non-equally-sized) strata of the AI: < 5%,
5% − 10%, 10% − 20% and > 20%. Interacting with URM status, this leads to eight non-
overlapping subgroups; we will marginalize over these to estimate the other subgroup effects
above. Table 4.1 shows the total number of applicants in each of the eight groups, along
with the proportion submitting letters of recommendation. As we discuss in Section 4.5, we
will further divide each of these subgroups by first reader score and college, to ensure exact
balance on these important covariates.

4.2 Treatment effect variation in observational studies

Setup and estimands

We now describe the letter of recommendation study as an observational study where for
each applicant i = 1, . . . , n, we observe applicant and school level-covariates Xi ∈ X ; a group
indicator Gi ∈ {1, . . . , K} denoting e.g., URM status or coarsened AI; a binary indicator for
submitting a letter of recommendation Wi ∈ {0, 1}; and whether the applicant is admitted,
which we denote as Yi ∈ {0, 1}. We assume that for each applicant, (Xi, Gi,Wi, Yi) are
sampled i.i.d. from some distribution P(·). Additionally, let n1g and n0g be the number of
treated and control units in subgroup Gi = g, respectively. Following the potential outcomes
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framework (Neyman, 1923; Holland, 1986), we assume SUTVA (Rubin, 1980) and posit two
potential outcomes Yi(0) and Yi(1) for each applicant i, corresponding to i’s outcome if that
applicant submits a letter of recommendation or not, respectively; the observed outcome
is Yi = WiYi(1) + (1 −Wi)Yi(0).5 In this study we are interested in estimating two types
of effects. First, we wish to estimate the overall Average Treatment Effect on the Treated
(ATT), the treatment effect for applicants who submit a letter,

τ = E[Y (1)− Y (0) | W = 1],

where we denote µ1 = E[Y (1) | W = 1] and µ0 = E[Y (0) | W = 1]. Second, for each
subgroup Gi = g, we would like to estimate the Conditional ATT (CATT),

τg = E[Y (1)− Y (0) | G = g,W = 1], (4.1)

where similarly we denote µ1g = E[Y (1) | G = g,W = 1] and µ0g = E[Y (0) | G = g,W = 1].
Estimating µ1g is relatively straightforward: we can simply use the average outcome for

treated units in group g, µ̂1g ≡ 1
n1g

∑
Gi=g

WiYi. However, estimating µ0g is more difficult due

to confounding; we focus much of our discussion on imputing this counterfactual mean for
the group of applicants who submitted letters of recommendation. To do this, we rely on two
key assumptions that together form the usual strong ignorability assumption (Rosenbaum
and Rubin, 1983).

Assumption 4.1 (Ignorability). The potential outcomes are independent of treatment given
the covariates and subgroup:

Y (1), Y (0) ⊥⊥ W | X,G. (4.2)

Assumption 4.2 (One Sided Overlap). The propensity score e(x, g) ≡ P (W = 1 | X =
x,G = g) is less than 1:

e(X,G) < 1. (4.3)

In our context, Assumption 4.1 says that conditioned on the first reader score and applicant-
and school-level covariates, submission of an LOR is independent of the potential admissions
outcomes. Due to the selection mechanism we describe in Section 4.1, we believe that this is
a reasonable starting point for estimating these impacts; see Rothstein (2017) and Appendix
C.1 for alternatives. Assumption B.2 corresponds to assuming that no applicant would have
been guaranteed to submit a letter of recommendation. Although some applicants were
guaranteed to be invited to submit an LOR, we believe that this is a reasonable assumption
for actually submitting a letter. In Section 4.5 we assess overlap empirically.

With this setup, let m0(x, g) = E[Y (0) | X = x,G = g] be the prognostic score, the
expected control outcome conditioned on covariates X and group membership G. Under
Assumptions 4.1 and B.2, we have the standard identification result:

µ0g = E[m0(X,G) | W = 1] = E
[

e(X,G)

1− e(X,G)
Y | W = 0

]
. (4.4)

5There is a possibility of interference induced by the number of admitted applicants being capped. With
6874 admitted students, we consider the potential interference to be negligible
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Therefore we can obtain a plug-in estimate for µ0g with an estimate of the prognostic score,
m0(·, ·), an estimate of propensity score, e(·, ·), or an estimate of the treatment odds them-

selves, e(·,·)
1−e(·,·) . We next review existing methods for such estimation, turning to our proposed

weighting approach in the following section.

Related work: methods to estimate subgroup treatment effects

There is an extensive literature on estimating varying treatment effects in in observational
studies; see Anoke et al. (2019) and Carvalho et al. (2019) for recent discussions. This
is an active area of research, and we narrow our discussion here to methods that assess
heterogeneity across pre-defined, discrete subgroups. In particular, we will focus on linear
weighting estimators that take a set of weights γ̂ ∈ Rn, and estimate µ0g as a weighted
average of the control outcomes in the subgroup:

µ̂0g ≡
1

n1g

∑
Gi=g

γ̂i(1−Wi)Yi. (4.5)

Many estimators take this form; we focus on design-based approaches that do not use out-
come information in constructing the estimators (Rubin, 2008). See Hill (2011); Künzel
et al. (2019); Carvalho et al. (2019); Nie and Wager (2019) for discussions of approaches
that instead focus on outcome modeling.

Methods based on estimated propensity scores. A canonical approach in this setting
is Inverse Propensity Weighting (IPW) estimators for µ0g (see Green and Stuart, 2014).
Traditionally, this proceeds in two steps: first estimate the propensity score ê(x, g), e.g. via

logistic regression; second, estimate µ0g as in Equation (4.5), with weights γ̂i = ê(Xi,Gi)
1−ê(Xi,Gi) :

µ̂0g =
∑

Wi=0,Gi=g

ê(Xi, Gi)

1− ê(Xi, Gi)
Yi (4.6)

where these are “odds of treatment” weights to target the ATT. A natural approach to
estimating ê(Xi, Gi), recognizing that Gi is discrete, is to estimate a logistic model for
treatment separately for each group or, equivalently, with full interactions between Gi and
(possibly transformed) covariates φ(Xi) ∈ Rp:

logit(e(x, g)) = αg + βg · φ(x). (4.7)

Due to the high-dimensional nature of the problem, it is often infeasible to estimate Equation
(4.7) without any regularization: the treated and control units might be completely sepa-
rated, particularly when some groups are small. Classical propensity score modeling with
random effects is one common solution, but can be numerically unstable in settings similar
to this (Zubizarreta and Keele, 2017). Other possible solutions in high dimensions include
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L1 penalization (Lee et al., 2019), hierarchical Bayesian modeling (Li et al., 2013), and gen-
eralized boosted models (McCaffrey et al., 2004). In addition, Dong et al. (2020) propose
a stochastic search algorithm to estimate a similar model when the number of subgroups is
large, and Li (2017) and Yang et al. (2020) propose overlap weights, which upweight regions
of greater overlap. We explore overlap weights further in Section 4.5.

Under suitable assumptions and conditions, methods utilizing the estimated propensity
score will converge to the true ATT asymptotically. However, in high dimensional settings
with a moderate number of subgroups these methods can often fail to achieve good covariate
balance in the sample of interest; as we show in Section 4.5, these methods fail to balance
covariates in the UC Berkeley LOR study. The key issue is that traditional IPW methods
focus on estimating the propensity score itself (i.e., the conditional probability of treatment)
rather than finding weights that achieve good in-sample covariate balance.

Balancing weights. Unlike traditional IPW, balancing weights estimators instead find
weights that directly target in-sample balance. One example is the Stable Balancing Weights
(SBW) proposal from Zubizarreta (2015), which finds the minimum variance weights that
achieve a user-defined level of covariate balance in φ(Xi) ∈ Rp:

min
γ

‖γ‖2
2

subject to max
j

∣∣∣∣∣ 1

n1

∑
Wi=1

φj(Xi)−
1

n1

∑
Wi=0

γiφj(Xi)

∣∣∣∣∣ ≤ δ,
(4.8)

for weights γ, typically constrained to the simplex, and for allowable covariate imbalance
δ. These methods have a long history in calibrated survey weighting (see, e.g. Deming
and Stephan, 1940; Deville et al., 1993), and have recently been extensively studied in the
observational study context (e.g. Hainmueller, 2011; Zubizarreta, 2015; Athey et al., 2018;
Hazlett, 2020; Hirshberg et al., 2019). They have also been shown to estimate the propensity
score with a loss function designed to achieve good balance (Zhao and Percival, 2017; Wang
and Zubizarreta, 2019; Chattopadhyay et al., 2020).

While balancing weights achieve better balance than the traditional IPW methods above,
we must take special care to use them appropriately when estimating subgroup treatment
effects. As we will show in Section 4.5, designing balancing weights estimators without ex-
plicitly incorporating the subgroup structure also fails to balance covariates within subgroups
in the LOR study. We turn to designing such weights in the next section.

4.3 Approximate balancing weights for treatment

effect variation

Now we describe a specialization of balancing weights that minimizes the bias for subgroup
treatment effect estimates. This approach incorporates the subgroup structure into the
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balance measure and optimizes for the “local balance” within each subgroup. First we
show that the error for the subgroup treatment effect estimate is bounded by the level
of local imbalance within the subgroup. Furthermore, the error for estimating the overall
ATT depends on both the global balance and the local balance within each subgroup. We
then describe a convex optimization problem to minimize the level of imbalance within
each subgroup while ensuring exact global balance in the full sample. Next, we connect
the procedure to IPW with a hierarchical propensity score model, using the procedure’s
Lagrangian dual formulation. We conclude by describing how to augment the weighting
estimate with an outcome model.

Local balance, global balance, and estimation error

Subgroup effects

We initially consider the role of local imbalance in estimating subgroup treatment effects.
This is the subgroup-specific specialization of standard results in balancing weights. We will
compare the estimate µ̂0g to µ̃0g ≡ 1

n1g

∑
Gi=g

Wim0(Xi, g), our best approximation to µ0g if

we knew the true prognostic score. Defining the residual εi = Yi −m0(Xi, Gi), the error is

µ̂0g − µ̃0g =
1

n1g

∑
Gi=g

γ̂i(1−Wi)m0(Xi, g)− 1

n1g

∑
Gi=g

Wim0(Xi, g)︸ ︷︷ ︸
biasg

+
1

n1g

∑
Gi=g

(1−Wi)γ̂iεi︸ ︷︷ ︸
noise

.

(4.9)
Since the weights γ̂ are design-based, they will be independent of the outcomes, and the noise
term will be mean-zero and have variance proportional to the sum of the squared weights

1
n2
1g

∑
Gi=g

(1 −Wi)γ̂
2
i .

6 At the same time, the conditional bias term, biasg, depends on the

imbalance in the true prognostic score m0(Xi, Gi). The idea is to bound this imbalance
by the worst-case imbalance in all functions m in a model class M. While the setup is
general,7 we describe the approach assuming that the prognostic score within each subgroup
is a linear function of transformed covariates φ(Xi) ∈ Rp with L2-bounded coefficients; i.e.,
M = {m0(x, g) = ηg · φ(x) | ‖ηg‖2 ≤ C}. We can then bound the bias by the level of local
imbalance within the subgroup via the Cauchy-Schwarz inequality:

|biasg| ≤ C

∥∥∥∥∥ 1

n1g

∑
Gi=g

γ̂i(1−Wi)φ(Xi)−
1

n1g

∑
Gi=g

Wiφ(Xi)

∥∥∥∥∥
2︸ ︷︷ ︸

local imbalance

. (4.10)

6In the general case with heteroskedastic errors, the variance of the noise term is 1
n2
1g

∑
Gi=g

γ̂2
i Var(εi) ≤

maxi{Var(εi)} 1
n2
1g

∑
Gi=g

γ̂2
i .

7See Wang and Zubizarreta (2019) for the case where the prognostic score can only be approximated
by a linear function; see Hazlett (2020) for a kernel representation and Hirshberg et al. (2019) for a general
nonparametric treatment.
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Based on Equation (4.10), we could control local bias solely by controlling local imbalance.
This approach would be reasonable if we were solely interested in subgroup impacts. In
practice, however, we are also interested in the overall effect, as well as in aggregated sub-
group effects, such as the impact for all URM applicants, not just the specific URM × AI
stratum. We can estimate these aggregated effects by taking a weighted average of the
subgroup-specific estimates, e.g. we estimate µ0g as µ̂0 =

∑K
g=1

n1g

n1
µ̂0g = 1

n1

∑
Wi=0 n1Gi γ̂iYi.

As we show in in both the simulations in Section 4.4 and the analysis of the LOR pilot study
in Section 4.5, incorporating the global balance constraint leads to negligible changes in the
level of local balance and the performance of the subgroup estimators, but can lead to large
improvements in the global balance and the performance of the overall estimate. Thus, there
seems to be little downside in terms of subgroup estimates from an approach that controls
both local and global imbalance — but large gains for overall estimates, as we discuss next.

Overall treatment effect

The imbalance within each subgroup continues to play a key role in estimating the overall
treatment effect, alongside global balance. To see this, we again compare to our best estimate
if we knew the prognostic score, µ̃0 = 1

n1

∑K
g=1 n1gµ̃0g, and see that the local imbalance plays

a part. The error is

µ̂0 − µ̃0 = η̄ ·

(
1

n1

n∑
i=1

n1Gi γ̂i(1−Wi)φ(Xi)−
1

n1

n∑
i=1

Wiφ(Xi)

)
+

1

n1

k∑
g=1

n1g (ηg − η̄) ·

(∑
Gi=g

γ̂i(1−Wi)φ(Xi)−
1

n1g

∑
Gi=g

Wiφ(Xi)

)
+

1

n1

n∑
i=1

γ̂i(1−Wi)εi,

(4.11)

where η̄ ≡ 1
K

∑K
g=1 ηg is the average of the model parameters across all subgroups. Again

using Cauchy-Schwarz we see that the overall bias is controlled by the local imbalance within
each subgroup as well as the global balance across subgroups:

|bias| ≤ ‖η̄‖2

∥∥∥∥∥ 1

n1

n∑
i=1

n1Gi γ̂i(1−Wi)φ(Xi)−
1

n1

n∑
i=1

Wiφ(Xi)

∥∥∥∥∥
2︸ ︷︷ ︸

global balance

+

G∑
g=1

n1g

n1

‖ηg − η̄‖2

∥∥∥∥∥∑
Gi=g

γ̂i(1−Wi)φ(Xi)−
1

n1g

∑
Gi=g

Wiφ(Xi)

∥∥∥∥∥
2︸ ︷︷ ︸

local balance

.

(4.12)

In general, we will want to achieve both good local balance within each subgroup and good
global balance across subgroups. Equation (4.12) shows that the relative importance of local
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and global balance for estimating the overall ATT is controlled by the level of similarity in
the outcome process across groups. In the extreme case where the outcome process does not
vary across groups — i.e., ηg = η̄ for all g — then controlling the global balance is sufficient
to control the bias. In the other extreme where the outcome model varies significantly across
subgroups — e.g., ‖ηg − η̄‖2 is large for all g — we will primarily seek to control the local
imbalance within each subgroup in order to control the bias for the ATT. Typically, we
expect that interaction terms are weaker than “main effects,” i.e., ‖ηg − η̄‖2 < ‖η̄‖2 (see
Cox, 1984; Feller and Gelman, 2015). As a result, our goal is to find weights that prioritize
global balance while still achieving good local balance.

Optimizing for both local and global balance

We now describe a convex optimization procedure to find weights that optimize for local
balance while ensuring exact global balance across the sample. The idea is to stratify across
subgroups and find approximate balancing weights within each stratum, while still constrain-
ing the overall level of balance. In our setting, we stratify on first reader score, URM status,
the coarsened AI measure, and the college that the applicant is applying to; see Section 4.5.
We then find weights γ̂ that solve the following optimization problem:

min
γ

K∑
g=1

∥∥∥∥∥ ∑
Gi=g,Wi=0

γiφ(Xi)−
∑

Gi=g,Wi=1

φ(Xi)

∥∥∥∥∥
2

2

+
λg
2

∑
Gi=G,Wi=0

γ2
i

subject to
∑
Wi=0

γiφ(Xi) =
∑
Wi=1

φ(Xi)

∑
Gi=G,Wi=0

γi = n1g

γi ≥ 0 ∀i = 1, . . . , n

(4.13)

The optimization problem (4.13) has several key components. First, following Equation
(4.10) we try to find weights that minimize the local imbalance for each stratum defined by
G; this is a proxy for the stratum-specific bias. We also constrain the weights to exactly
balance the covariates globally over the entire sample. Equivalently, this finds weights that
achieve exact balance marginally on the covariates φ(Xi) and only approximate balance for
the interaction terms φ(Xi) × 1Gi , placing greater priority on main effects than interaction
terms. Taken together, this ensures that we are minimizing the overall bias as well as the
bias within each stratum. In principle, weights that exactly balance the covariates within
each stratum would also yield exact balance globally. Typically, however, the sample sizes
are too small to achieve exact balance within each stratum, and so this combined approach
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at least guarantees global balance.8 From Equation (4.12), we can see that if there is a
limited amount of heterogeneity in the baseline outcome process across groups, the global
exact balance constraint will limit the estimation error when estimating the ATT, even if
local balance is relatively poor. While we choose to enforce exact global balance, we could
also limit to approximate global balance, with the relative importance of local and global
balance controlled by an additional hyperparameter set by the analyst.

Second, we include an L2 regularization term that penalizes the sum of the squared
weights in the stratum; from Equation (4.9), we see that this is a proxy for the variance
of the weighting estimator. For each stratum, the optimization problem includes a hyper-
parameter λg that negotiates the bias-variance tradeoff within that stratum. When λg is
small, the optimization prioritizes minimizing the bias through the local imbalance, and when
λ is large it prioritizes minimizing the variance through the sum of the squared weights. As
a heuristic, we set λg = 1

ng
: for larger strata where better balance is possible, this heuristic

will prioritize balance — and thus bias — over variance; for smaller strata, by contrast, this
will prioritize lower variance.

We also incorporate two additional constraints on the weights. We include a fine balance
constraint (Rosenbaum et al., 2007): within each stratum the weights sum up to the number
of treated units in that stratum, n1g. Since each stratum maps to only one subgroup, this
also guarantees that the weights sum to the number of treated units in each subgroup. We
also restrict the weights to be non-negative, which stops the estimates from extrapolating
outside of the support of the control units (King and Zeng, 2006). Together, these induce
several stability properties, including that the estimates are sample bounded.

In our setting the strataG are part of a hierarchy: each stratum is a unique combination of
first reader score, URM status, admissibility group, and college. Thus, we could also extend
the optimization problem in Equation (4.13) to balance intermediate levels between global
balance and local balance. Incorporating additional balance constraints for each intermediate
level, is unwieldy in practice due to the proliferation of hyperparameters. Instead, we expand
φ(x) to include additional interaction terms between covariates and levels of the hierarchy.
In our application, we interact the admissibility index with both URM status and the AI
group, which means that we exactly balance AI within each URM-AI group.

Finally, we compute the variance of our estimator conditioned on the design (X1, Z1,W1), . . . ,
(Xn, Zn,Wn) or, equivalently, conditioned on the weights. The conditional variance is

Var(µ̂0g | γ̂) =
1

n2
1g

∑
Gi=g

(1−Wi)γ̂
2
i Var(Yi). (4.14)

Using the ith residual to estimate Var(Yi) yields the empirical sandwich estimator for the
treatment effect

V̂ar(µ̂1g − µ̂0g | γ̂) =
1

n2
1g

∑
Gi=g

Wi(Yi − µ̂1g)
2 +

1

n2
1g

∑
Gi=g

(1−Wi)γ̂
2
i (Yi − µ̂0g)

2, (4.15)

8This constraint induces a dependence across the strata, so that the optimization problem does not
decompose into J sub-problems.
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where, as above, µ̂1g is the average outcome for applicants in subgroup g who submit an
LOR. This is the fixed-design Huber-White heteroskedastic robust standard error for the
weighted average. See Hirshberg et al. (2019) for discussion on asymptotic normality and
semi-parametric efficiency for estimators of this form.

Dual relation to partially pooled propensity score estimation

Thus far, we have motivated the approximate balancing weights approach by appealing to
the connection between local bias and local balance. We now draw on recent connections
between approximate balancing weights and (calibrated) propensity score estimation through
the Lagrangian dual problem. The weights that solve optimization problem (4.13) correspond
to estimating the inverse propensity weights with a (truncated) linear odds function with
the stratum G interacted with the covariates φ(X),9

P (W = 1 | X = x,G = g)

1− P (W = 1 | X = x,G = g)
= [αg + βg · φ(x)]+ , (4.16)

where the coefficients βg are partially pooled towards a global model.
To show this, we first derive the Lagrangian dual. For each stratum g, the sum-to-n1g

constraint induces a dual variable αg ∈ R, and the local balance measure induces a dual
variable βg ∈ Rp. These dual variables are part of the balancing loss function for stratum z:

Lg(αg, βg) ≡
∑

Wi=0,Gi=g

[αg + βg · φ(Xi)]
2
+ −

∑
Wi=1,Gi=g

(αg + βg · φ(Xi)) , (4.17)

where [x]+ = max{0, x}. With this definition we can now state the Lagrangian dual.

Proposition 4.1. With λg > 0, if a feasible solution to (4.13) exists, the Lagrangian dual
is

min
α,β1,...,βJ ,µβ

K∑
g=1

Lg(αg, βg)︸ ︷︷ ︸
balancing loss

+
J∑
z=1

λg
2
‖βg − µβ‖2

2︸ ︷︷ ︸
shrinkage to global variable

. (4.18)

If α̂, β̂1, . . . , β̂J are the solutions to the dual problem, then the solution to the primal problem
(4.13) is

γ̂i =
[
α̂Zi + β̂Zi · φ(Xi)

]
+
. (4.19)

The Lagrangian dual formulation sheds additional light on the approximate balancing
weights estimator. First, applying results on the connection between approximate balanc-
ing weights and propensity score estimation (e.g., Zhao and Percival, 2017; Wang and Zu-
bizarreta, 2019; Hirshberg and Wager, 2019; Chattopadhyay et al., 2020), we see that this

9The truncation arises from constraining weights to be non-negative, and the linear odds form arises from
penalizing the L2 norm of the weights. We can consider other penalties that will lead to different forms.
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approach estimates propensity scores of the form (4.16). This corresponds to a fully inter-
acted propensity score model where the coefficients on observed covariates vary across strata.
Recall that we find approximate balancing weights for each stratum because the number of
units per stratum might be relatively small; therefore we should not expect to be able to
estimate this fully interacted propensity score well.

The dual problem in Equation (4.18) also includes a global dual variable µβ induced by
the global balance constraint in the primal problem (4.13). Because we enforce exact global
balance, this global model is not regularized. However, by penalizing the deviations between
the stratum-specific variables and the global variables via the L2 norm, ‖βg−µβ‖2

2, the dual
problem partially pools the stratum-specific parameters towards a global model. Thus, we
see that the approximate balancing weights problem in Equation (4.13) corresponds to a
hierarchical propensity score model (see, e.g. Li et al., 2013), as in Section 4.2, fit with a
loss function designed to provide covariate balance. Excluding the global constraint removes
the global dual variable µβ, and the dual problem shrinks the stratum-specific variables βg
towards zero without any pooling. In contrast, ignoring the local balance measure by setting
λg → ∞ constrains the stratum-specific variables βg to all be equal to the global variable
µβ, resulting in a fully pooled estimator.

Finally, recall that in the primal problem (4.13), the hyperparameter λg controlled the
bias-variance tradeoff within stratum z between prioritizing local balance or effective sample
size. In the dual problem λg performs the same role by controlling the level of partial pooling.
When λg is large the dual parameters are heavily pooled towards the global model, and when
λg is small the level of pooling is reduced. By setting λg = 1

ng
as above, larger strata will be

pooled less than smaller strata.10

Augmentation with an outcome estimator

The balancing weights we obtain via the methods above may not achieve perfect balance,
leaving the potential for bias. We can augment the balancing weights estimator with an
outcome model, following Chapter 2 and other similar proposals in a variety of settings
(see, e.g. Athey et al., 2018; Hirshberg and Wager, 2019). Analogous to bias correction for
matching (Rubin, 1973) or model-assisted estimation in survey sampling (Särndal et al.,
2003), the essential idea is to adjust the weighting estimator using an estimate of the bias.
Specifically, we can estimate the prognostic score m0(x, g) with a working model m̂0(x, g),
e.g., with a flexible regression model. An estimate of the bias in group g is then:

b̂iasg =
1

n1g

∑
Wi=1,Gi=g

m̂0(Xi, g)− 1

n1g

∑
Wi=0,Gi=g

γ̂im̂0(Xi, g). (4.20)

This is the bias due to imbalance in estimated prognostic score in group g after weight-
ing. With this estimate of the bias, we can explicitly bias-correct our weighting estimator,

10It is also possible to have covariate-specific shrinkage by measuring imbalance in the primal problem
(4.13) with a weighted L2 norm, leading to an additional p hyper-parameters. We leave exploring this
extension and hyper-parameter selection methods to future work.
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estimating µ0g as

µ̂aug
0g ≡ µ̂0g + b̂iasg

=
1

n1g

∑
Wi=0,Gi=g

γ̂iYi +

[
1

n1g

∑
Wi=1,Gi=g

m̂0(Xi, g)− 1

n1g

∑
Wi=0,Gi=g

γ̂im̂0(Xi, g)

]
.

(4.21)

Thus, if the balancing weights fail to achieve good covariate balance in a given subgroup,
the working outcome model, m̂0(Xi, g), can further adjust for any differences.

4.4 Simulation study

Before estimating the differential impacts of letters of recommendation, we first present
simulations assessing the performance of our proposed approach versus traditional inverse
propensity score weights fit via logistic regression. For n = 10, 000 units, we draw d = 50

covariates Xid
iid∼ N(0, 1) and subgroup indicators Gi ∈ {1, . . . , G} as Multinomial( 1

G
, . . . , 1

G
),

where G ∈ {10, 50}. We then use a separate logistic propensity score model for each group
following Equation (4.7),11

logit e(Xi, Gi) = αGi + (µβ + Uβ
g �Bβ

g ) ·Xi, (4.22)

and also use a separate linear outcome model for each group,

Yi(0) = η0Gi + (µη + Uη
g �Bη

g ) ·Xi + εi, (4.23)

where εi ∼ N(0, 1) and � denotes element-wise multiplication. We then draw group-specific

treatment effects τg
iid∼ N(0, 1) and set the treated potential outcome as Yi(1) = Yi(0)+τGiWi.

The true ATT in simulation j is thus τj = 1
n1

∑n
i=1Wi(Yi(1)− Yi(0)).

We draw the fixed effects and varying slopes for each group according to a hierarchical

model with sparsity. We draw the fixed effects as αg
iid∼ N(0, 1) and η0g

iid∼ N(0, 1). For the
slopes, we first start with a mean slope vector µβ, µη ∈ {− 3√

d
, 3√

d
}K , where each element

is chosen independently with uniform probability. Then we draw isotropic multivariate

normal random variables Uβ
g , U

η
g
iid∼ MVN(0, Id). Finally, we draw a set of d binary variables

Bβ
gj, B

η
gj Bernoulli with probability p = 0.25. The slope is then constructed as a set of sparse

deviations from the mean vector: µβ + Uβ
g � Bβ

g for the propensity score and µη + Uη
g � Bη

g

for the outcome model.
For j = 1, . . . ,m with m = 500 Monte Carlo samples, we estimate the treatment effects

for group g, τ̂gj, and the overall ATT, τ̂j, and compute a variety of metrics. Following the

11The logistic specification differs from the truncated linear odds in Equation 4.16. If the transformed
covariates φ(Xi) include a flexible basis expansion, the particular form of the link function will be less
important.
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Figure 4.3: Performance of approximate balancing weights and traditional IPW with logistic
regression for estimating subgroup treatment effects.

metrics studied by Dong et al. (2020), for subgroup treatment effects we compute (a) the

mean absolute bias across the G treatment effects, 1
m

∑m
j=1

∣∣∣1g∑G
g=1 τ̂gj − τg

∣∣∣, and (b) the

mean root mean square error
√

1
mG

∑m
j=1

∑G
g=1(τ̂gj − τg)2. For the overall ATT we measure

(a) the absolute bias
∣∣∣ 1
m

∑m
j=1 τ̂j − τj

∣∣∣ and (b) the root mean square error
√

1
m

∑m
j=1(τ̂j − τj)2.

We compute treatment effects for five weighting estimators:

• Partially pooled balancing weights: approximate balancing weights that solve (4.13),
using G as the stratifying variable and prioritizing local balance by setting λg = 1

n1g
.

• Fully pooled balancing weights: approximate balancing weights that solve (4.13), but
ignore local balance by setting λ to be very large and fully pooling towards the global
model. This is equivalent to stable balancing weights in Equation (4.8) with an exact
balance constraint δ = 0.

• No pooled balancing weights: approximate balancing weights that solve (4.13), but
without the exact global balance constraint.

• Full interaction IPW: traditional IPW with a fully interacted model that estimates a
separate propensity score within each stratum as in Equation (4.7).

• Fixed effects IPW: full interaction IPW with stratum-specific coefficients constrained
to be equal to a global parameter βg = β for all g.

We fit each logistic regression via maximum likelihood with an L1 penalty to induce
sparsity; for the fully interacted specification we also include a set of global parameters µβ
so that the slope for group g is µβ + ∆g, with an L1 penalty for each component. For
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both logistic regression specifications, we estimate the models with glmnet (Friedman et al.,
2010) using an L1 penalty on the parameters with hyperparameter chosen through 5-fold
cross validation.12

Figure 4.3 shows the results for the overall ATT and for subgroup effects. We see that
with 10 subgroups, prioritizing local balance with either the partially pooled or no-pooled
approximate balancing approaches yields lower bias and RMSE than ignoring local balance
entirely with the fully pooled approach. These approaches also have better performance
than either of the traditional logistic regression approaches. In this setting where there are
1,000 units per group, it is possible to achieve good balance in each group and there is
no benefit to partially pooling via the exact global balance constraint. However, with 50
subgroups and 200 units per group, it is difficult to balance within each subgroup and there
is a benefit to partial pooling. Partially pooling balancing weights yields much lower bias for
the overall ATT than the no-pooled approach, and has lower bias for the subgroup effects
as well, although this comes at the cost of higher RMSE for subgroup effects.

4.5 Differential impacts of letters of recommendation

We now turn to estimating the differential impacts of letters of recommendation on ad-
missions decisions. We focus on the eight subgroups defined in Table 4.1, based on the
interaction between URM status (2 levels) and admissibility index (4 levels). Due to the
selection mechanism described in Section 4.1, however, it is useful to create even more fine-
grained strata and then aggregate to these eight subgroups. Specifically, we define G = 41
fine-grained strata based on URM status, AI grouping, first reader score, and college applied
to.13 While we are not necessarily interested in treatment effect heterogeneity across all 41
strata, this allows us to exactly match on key covariates and then aggregate to obtain the
primary subgroup effects.

Another key component in the analysis is the choice of transformation of the covariates
φ(·). Because we have divided the applicants into many highly informative strata, we choose
φ(·) to include all of the raw covariates. Additionally, because of the importance of the
admissibility index, we also include a natural cubic spline for AI with knots at the sample
quantiles. Finally, we include the output of the admissions model and a binary indicator for
whether the predicted probability of a “Possible” score is greater than 50%. If desired, we
could also consider other transformations such as a higher order polynomial transformation,
using a series of basis functions for all covariates, or computing inner products via the kernel
trick to allow for an infinite dimensional basis (see, e.g. Hazlett, 2020; Wang and Zubizarreta,

12This amounts to partial pooling towards a sparse global model with sparse deviations. We can also
consider partially pooling via multilevel modelling.

13Of the 48 possible strata, we drop 7 strata where no applicants submitted a letter of recommendation.
These are non-URM applicants in both colleges in the two lowest AI strata but where the first reader assigned
a “Yes” or “No”. This accounts for ∼ 2% of applicants. The remaining 41 strata have a wide range of sizes
with a few very large strata. Min: 15, p25: 195, median: 987, p75: 1038, max: 8000
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Figure 4.4: The distribution of imbalance in each component of φ(X) after weighting with
both the partially- and fully-pooled balancing weights estimators, as well as the fully inter-
acted IPW estimator.

2019; Hirshberg and Wager, 2019). We further prioritize local balance in the admissibility
index by exactly balancing the AI within each URM × subgroup. As we discuss above,
this ensures local balance in the admissibility index at an intermediate level of the hierarchy
between global balance and local balance. Finally, we standardize each component of φ(X)
to have mean zero and variance one.

Diagnostics: local balance checks and assessing overlap

Before estimating effects, we first assess the level of local balance within each subgroup,
following the discussion in Section 4.3. We consider the five estimators described in Section
4.4. We also use the estimated fully interacted propensity score model to create subgroup
overlap weights as in Yang et al. (2020).

Figure 4.4 shows the distribution of the imbalance in each of the 51 (standardized)
components of φ(X), for the three balancing weights approaches as well as the fully interacted
IPW estimator. The fully interacted IPW approach has very poor balance overall, due
in part to the difficulty of estimating the high-dimensional propensity score model. As
expected, both the fully- and partially-pooled balancing weights achieve perfect balance
overall; however, only the partially pooled balancing weights achieve excellent local balance.
The partially- and no-pooled approaches have similar global and local balance overall, but
the partially-pooled approach sacrifices a small amount of local balance for an improvement
in global balance. Appendix Figure C.3 shows these same metrics for the fixed effects IPW
and overlap weights, which uses the same propensity score estimates as in the fully interacted
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Figure 4.5: Weights on control units from solving the approximate balancing weights problem
(4.13). Not pictured: the vast majority of control units that receive zero weight.

IPW approach. Both yield poor local balance.
Appendix Figure C.4 shows imbalance in the one-dimensional summary admissibility

index. Our proposed approach, which directly balances this summary index within URM and
AI subgroups, again achieves excellent balance overall and within each group. This is not true
for other approaches, especially fully interacted IPW weights, which fail to achieve reasonable
balance in the admissibility index for most subgroups, with worse imbalance relative to the
unweighted comparisons for some subgroups. Here we see the effect of partial pooling.
The no-pooled approach—only targeting balance within the fine-grained strata, ignoring
global balance as well as balance in our primary subgroups—fails to achieve good balance in
some subgroups, notably for high admissibility URM applicants, while the partially pooled
approach achieves exact balance by design.

Finally, we assess overlap within each subgroup. A key benefit of weighting approaches
is that any overlap issues manifest in the distribution of our weights γ̂. Figure 4.5 plots the
distribution of the weights over the comparison applicants by URM status and AI group,
normalized by the number of treated applicants in the subgroup. The vast majority of control
units receive zero weight and are excluded from the figure. Of the 28,556 applicants who did
not submit an LOR, only 5,702 (20%) receive positive weight. This is indicative of a lack of
“left-sided” overlap: very many applicants who did not submit a letter of recommendation
had nearly zero odds of doing so in the pilot program. This is problematic for estimating
the overall average treatment effect, but is less of a concern when we focus on estimating
the average treatment effect on the treated.

For each AI subgroup we also see that the distribution of weights is skewed more positively
for the non-URM applicants. In particular, for the lower AI, non-URM subgroups we see
a non-trivial number of comparison applicants that “count for” over 2% of the re-weighted
sample, with a handful of outliers that are equivalent to over 5%. While large weights
do not necessarily affect the validity of the estimator — though they suggest caution in



CHAPTER 4. VARYING IMPACTS OF LETTERS OF RECOMMENDATION ON
COLLEGE ADMISSIONS 84

●
●

●
●

●
●

●
●

●
●

●
●

●
●

10% 20% 30% 40%

Overall

Not URM

URM

AI > 20%

AI 10% − 20%

AI 5% − 10%

AI < 5%

Percent admitted

● ●Letter of Rec No Letter of Rec

(a) Treated and re-weighted control percent
admitted.

●

●

●

●

●

●

●

0% 5% 10%

Overall

Not URM

URM

AI > 20%

AI 10% − 20%

AI 5% − 10%

AI < 5%

Effect on admission

(b) Estimated effects on admission.

Figure 4.6: Estimated treated and control means and treatment effect of letters of recommen-
dation on admission ± two standard errors, overall and by URM status and Admissibility
Index.

terms of “right-sided” overlap — large weights decrease the effective sample size, reducing
the precision of our final estimates. Appendix Figure C.5 shows the effective sample size,
n1g

/∑
Gi=g

(1 −Wi)γ̂
2
i , for each subgroup g. We see that the URM subgroups have larger

effective sample sizes than the non-URM subgroups, with particularly stark differences for
the lower AI subgroups. Furthermore, for all non-URM subgroups with AI ≤ 20%, the
effective sample size is ≤ 100. From this, we should expect to have far greater precision in
the estimates for URM applicants than non-URM applicants.

Treatment effect estimates

After assessing local balance and overlap, we can now turn to estimating the differential
impacts of letters of recommendation. Figure 4.6 shows (1) the percent of applicants who
submitted an LOR who were accepted, µ̂1g (2) the imputed counterfactual mean, µ̂0g and
(3) the ATT, µ̂1g − µ̂0g. The standard errors are computed via the sandwich estimator in
Equation (4.15). Overall, we estimate an increase in admission rates of 5 percentage points
(pp). While we estimate a larger effect for non-URM applicants (6 pp) than URM applicants
(4 pp), there is insufficient evidence to distinguish between the two effects. Second, we see
a roughly positive trend between treatment effects and the AI, potentially with a peak for
the 10%-20% group. This is driven by the very small estimated effect for applicants with AI
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< 5% and who are thus very unlikely to be accepted a priori. Substantively, this corresponds
to letters of recommendation having a very low impact for applicants unlikely to be accepted,
but a larger impact for applicants that are perhaps on the cusp on acceptance. Appendix
Figure C.6 shows an estimate of the log risk ratio, log E[Y (1)|G=g]

E[Y (0)|G=g]
, for the subgroups. From

the estimated risk ratios, we see that this pattern, while noisy, is consistent with impacts
that are roughly constant on the multiplicative scale, perhaps with a dip for both the low
and high admissibility applicants.

Figure 4.7 further stratifies the subgroups, showing the effects jointly by URM status
and AI. While the point estimate for the overall increase in admission rates is slightly larger
for non-URM applicants than for URM applicants, this is mainly a composition effect. For
applicants very unlikely to be admitted (AI < 5%) the point estimates are nearly identical
for URM and non-URM applicants, although the URM subgroup is estimated much more
precisely. For the next two levels of the admissibility index (AI between 5% and 20%),
URM applicants have a higher estimated impact, with imprecise estimates for non-URM
applicants. For the highest admissibility groups (AI > 20%), non-URM applicants have
larger positive effects, though again these estimates are noisy. Since URM applicants have
lower AI on average, the overall estimate is also lower for URM applicants. Furthermore,
the peak in the effect for middle-tier applicants is more pronounced for URM applicants
than non-URM applicants. From Figure 4.7a we see that this is primarily because high
admissibility URM applicants with a letter of recommendation are admitted at very high
rates; the imputed baseline after re-weighting is similarly large.

We also consider augmenting the weighting estimator with an estimate of the prognostic
score, m̂(x, g). In Appendix Figure C.7 we show estimates after augmenting with ridge
regression; we compute standard errors via Equation (4.15), replacing Yi − µ̂0g with the
empirical residual Yi − m̂(Xi, g). Because the partially pooled balancing weights achieve
excellent local balance for φ(X), augmenting with a model that is also linear in φ(X) results
in minimal adjustment. We therefore augment with a nonlinear outcome model, random
forests. Tree-based estimators are a natural choice for a nonlinear outcome model, creating
“data-dependent strata” similar in structure to the strata we define for G. For groups where
the weights γ̂ have good balance across the estimates m̂(x, g), there will be little adjustment
due to the outcome model. Conversely, if the raw and bias-corrected estimate disagree for
a subgroup, then the weights have poor local balance across important substantive data-
defined strata. For these subgroups we should be more cautious of our estimates.

Figure 4.8 shows the random forest-augmented effect estimates relative to the un-augmented
estimates; the difference between the two is the estimated bias. Overall, the random forest
estimate of the bias is negligible and, as a result, the un-adjusted and adjusted estimators
largely coincide. Augmentation, however, does seem to stabilize the higher-order interaction
between AI and URM status, with particularly large adjustments for the highest AI group
(AI ≥ 20%). This suggests that we should be wary of over-interpreting any change in the
relative impacts for URM and non-URM applicants as AI increases.

In the Appendix we consider alternative estimates. First, Appendix Figure C.8 shows the
estimated effects on admission rates using all five weighting procedures we consider above.
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Figure 4.7: Estimated treated and control means and treatment effect of letters of recommen-
dation on admission ± two standard errors, further broken down by URM status interacted
with the Admissibility Index.
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Despite failing to achieve good local balance, the IPW approaches and fully pooled balancing
weights approach yield effect estimates that are similar to our proposed approach. The
overlap weighting approach of Li (2017), however, leads to substantively different conclusions,
perhaps due to the change in the estimand. These differences appear to be driven by that
estimator’s negative estimated effect of LORs for high admissibility, non-URM applicants,
suggesting that there are other substantively important sources of heterogeneity beyond
URM status and admissibility.

Second, we consider effects on an intermediate outcome: whether the second reader —
who has access to the LOR — gives a “Yes” score. Because these are design-based weights, we
use the same set of weights to estimate effects on both second reader scores and admissions
decisions. With this outcome we can also make use of a within-study design to estimate
treatment effects, leveraging scores from additional third readers who did not have access to
the letters of recommendation; we describe this design in Appendix C.1. Appendix Figures
C.9 and C.10 show the results for both approaches. Overall for second reader scores we see
a similar structure of heterogeneity as for admission rates, although there does not appear
to be an appreciable decline in the treatment effect for the highest admissibility non-URM
applicants. The two distinct approaches yield similar patterns of estimates overall, with the
largest discrepancy for applicants with a predicted probability of admission between 5% and
10%, particularly for non-URM applicants. However, this group has a very low effective
sample size, and so the weighting estimates are very imprecise.

Taken together, these results paint a relatively clear picture of differential impact of
letters of recommendation across applicants’ a priori probability of admission. Treatment
effects are low for applicants who are unlikely to be accepted and high for applicants on
the margin for whom letters provide useful context, with some evidence of a dip for the
highest admissibility applicants. Our estimates of differential impacts between URM and
non-URM students are more muddled, due to large sampling errors, and do not support
strong conclusions. Point estimates indicate that LORs benefit URM applicants more than
they do non-URM applicants at all but the highest academic indexes. Because non-URM
applicants are overrepresented in the high-AI category, the point estimate for the average
treatment effect is larger for non-URMs; however, there is insufficient precision to distinguish
between the two groups.

4.6 Discussion

Estimating heterogeneous treatment effects and assessing treatment effect variation in ob-
servational studies is a challenge, even for pre-specified subgroups. Focusing on weighting
estimators that estimate subgroup treatment effects by re-weighting control outcomes, we
show that the estimation error depends on the level of local imbalance between the treated
and control groups after weighting. We then present a convex optimization problem that
finds approximate balancing weights that directly target the level of local imbalance within
each subgroup, while ensuring exact global balance to also estimate the overall effect. Using
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this method to estimate heterogeneous effects in the UC Berkeley letters of recommenda-
tion pilot study, we find evidence that letters of recommendation lead to better admissions
outcomes for stronger applicants, with mixed evidence of differences between URM and
non-URM applicants.

There are several directions for future methodological work. First, we directly estimate
the effect of submitting an LOR among those who submit. However, we could instead frame
the question in terms of non-compliance and use the invitation to submit an LOR as an
instrument for submission. Using the approximate balancing weights procedure described
above we could adjust for unequal invitation probabilities, and estimate the effect on com-
pliers via weighted two-stage least squares. Second, we could consider deviations from the
ignorability assumption via a sensitivity analysis. One potential path is to extend the bal-
ancing weights sensitivity procedure from Soriano et al. (2020) to the setting with distinct
subgroups. Third, we could adapt our approach to explore treatment effect variation in other
types of observational studies, for instance in settings that mimic the structure of multisite
trials.
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Appendix A

Supplementary materials for Chapter
2

A.1 Inference

We now give additional technical details for the validity of the conformal inference approach
of Chernozhukov et al. (2019) with Ridge ASCM, showing approximate validity (as T0 →∞)
under a set of assumptions.

The approximate validity of the conformal inference procedure in Section 2.5 depends
on the predictive accuracy of Ŷ aug

it (0) when fit using all periods t = 1, . . . , T , including the
post-treatment period T . Denoting Y1· ≡ (X1·, Y1) ∈ RT to be the full vector of treated
unit outcomes and Y0· ≡ [X0·,Y0T ] ∈ RN0×T be the matrix of comparison unit outcomes,
the Ridge ASCM optimization problem in this setting is

min
γ s.t.

∑
i γi=1

1

2λridge
‖Y1· − Y ′0·γ‖2

2 +
1

2
‖γ − γ̂scm‖2

2 . (A.1)

We will also consider the constrained form:

min
γ
‖Y1· − Y ′0·γ‖2

2

subject to
1

2
‖γ − γ̂scm‖2 ≤

C√
N0∑

i

γi = 1

(A.2)

With these definitions we can characterize the in-sample prediction error of the counter-
factual model described by Chernozhukov et al. (2019), which is a version of Equation (2.3)
in an asymptotic framework where T0 is growing while T is fixed. We state the model and
assumptions for asymptotically (in T0) valid inference below.
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Assumption A.1. There exist weights γ∗ ∈ ∆N0 such that the potential outcomes under
control for the treated unit (i = 1) satisfy

Y1t(0) =
∑
Wi=1

γ∗i Yit + ε1t,

where ε1t are independent of the comparison unit outcomes, E[ε1tYit] = 0 for all Wi = 0 and
t = 1, . . . , T . Furthemore,

1. The data is β-mixing with exponential speed

2. There exist constants c1, c2 > 0 such that E[(Yitε1t)
2] ≥ c1 and E[|Yitε1t|3] ≤ c2 for all

i such that Wi = 0 and t = 1, . . . , T

3. For all i such that Wi = 0, Xi1ε11, . . . , XiT ε1T is β-mixing with β-mixing coefficient
satisfying β(t) ≤ a1e

−a2tk for constants a1, a2, k > 0

4. There exists a constant c3 > 0 such that maxWi=0

∑T
t=1X

2
itε

2
1t ≤ c2

3T with probability
1− o(1)

5. logN0 = o
(
T

4k
3k+4

)
6. There exists a sequence `T > 0 such that Y ′0t(w − γ∗) ≤ `T

1
T
‖Y ′0·(w − γ∗)‖

2
2 for all

w ∈ ∆N0 + B2( C√
N0

), for some constant C where Bp(a) = {x ∈ R | ‖x‖p ≤ a}, with

probability 1− o(1) for T0 + 1 ≤ t ≤ T

7. The sequence `T satisfies `T (log min{T,N0})
1+k
2k
√
T → 0

This setup is nearly identical to the assumptions in Lemma 1 in Chernozhukov et al.
(2018); the only key change is for assumption 6 where the bound on the point-wise prediction
error is assumed to hold for all weights that are the sum of weights on the simplex ∆N0 and

a vector in the L2 ball B2

(
C√
N0

)
.

Under the model in Assumption A.1, we can characterize the prediction error of the con-
strained form of Ridge ASCM (A.2) by directly following the development in Chernozhukov
et al. (2019), who show asymptotic validity for the conformal procedure with the SCM esti-
mator when it is correctly specified and γ∗ ∈ ∆N0 . Lemma A.1 below is equivalent to Lemma
1 in Chernozhukov et al. (2019), and shows that under Assumption A.1 the in-sample pre-
diction error for the constrained form of Ridge ASCM (A.2) is the same as SCM, up to the
level of extrapolation C allowed through the constraint ‖γ̂aug − γ̂scm‖2 ≤

C√
N0

. Then, by

Theorem 1 in Chernozhukov et al. (2019) we see that the inference procedure will be valid
asymptotically in T0.



APPENDIX A. SUPPLEMENTARY MATERIALS FOR CHAPTER 2 100

Lemma A.1. Under Assumption A.1, the ridge ASCM weights solving the constrained
problem (A.2), γ̂aug satisfy

1

T

T∑
t=1

(∑
Wi=0

γ̂∗i Yit −
∑
Wi=0

γ̂aug
i Yit

)2

≤ K0(2 + C)√
T

(log min{T,N0})
1+k
2k (A.3)

and ∣∣∣∣∣µT · φ1 −
∑
Wi=0

γ̂aug
i YiT

∣∣∣∣∣ ≤ K0(2 + C)√
T

`T (log min{T,N0})
1+k
2k (A.4)

with probability 1− o(1), for some constant K0 depending on the constants in Assumption
A.1.

Proof of Lemma A.1. This proof directly follows Lemma 1 in Chernozhukov et al. (2019).
First, notice that

‖Y1· − Y ′0·γ̂aug‖2
2 ≤ ‖Y1· − Y ′0·γ̂scm‖2

2 ≤ ‖Y1· − Y ′0·γ∗‖
2
2 = ‖ε1‖2

2 ,

where ε1 = (ε11, . . . , ε1T ) ∈ RT is the vector of noise terms for the treated unit. Next,

Y1· − Y ′0·γ̂aug = Y1· − Y ′0·(γ̂aug − γ∗ + γ∗) = ε1 − Y ′0·(γ̂aug − γ∗)

Together, this implies that ‖ε1 − Y ′0·(γ̂aug − γ∗)‖2
2 ≤ ‖ε1‖2

2 and so by expanding the left-hand
side we see that by Hölder’s inequality

‖Y ′0·(γ̂aug − γ∗)|22 ≤ 2ε′1Y
′

0·(γ̂
aug − γ∗)

≤ 2 ‖Y0·ε1‖∞ ‖γ̂
aug − γ∗‖1

≤ 2 ‖Y0·ε1‖∞ (‖γ̂scm − γ∗‖1 + ‖γ̂aug − γ̂scm‖1)

Now, since both γ̂scm ∈ ∆N0 and γ∗ ∈ ∆, ‖γ̂scm − γ∗‖1 ≤ 2. From the constraint in Equation
(A.2), ‖γ̂aug − γ̂scm‖1 ≤

√
N0 ‖γ̂aug − γ̂scm‖2 ≤ C. This implies that

‖Y ′0·(γ̂aug − γ∗)‖2
2 ≤ 2(2 + C) ‖Y0·ε1‖∞

Lemma 17 in Chernozhukov et al. (2019) shows that

P
(
‖Y0·ε1‖∞ > K0 (log min {T,N0})

1+k
2k

√
T
)

= o(1).

Combining the pieces gives Equation (A.3). Next, combining Equation (A.3) with Assump-
tion A.1(6) gives Equation (A.4).
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A.2 Additional results

Specialization of Ridge ASCM results to SCM

This appendix section specializes select results from the main text for Ridge ASCM for the
special case of SCM, with λ→∞.

First we specialize Proposition 2.1 to SCM weights by taking λ→∞.

Corollary A.1. Under the linear model (2.6) with independent sub-Gaussian noise with
scale parameter σ, for any δ > 0, for weights γ ∈ ∆N0 independent of the post-treatment
outcomes (Y1T , . . . , YNT ) and for any δ > 0,

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤ ‖β‖2

∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥
2︸ ︷︷ ︸

imbalance inX

+ δσ (1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

, (A.5)

with probability at least 1− 2e−
δ2

2 .

We can similarly specialize Theorem 2.1.

Corollary A.2. Under the linear factor model (2.7) with independent sub-Gaussian noise
with scale parameter σ, for weights γ ∈ ∆N0 independent of the post-treatment outcomes
(Y1T , . . . , YNT ) and for any δ > 0,

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤
JM2

√
T0

∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥
2︸ ︷︷ ︸

imbalance inX

+
2JM2σ√

T0

(√
log 2N0 + δ

)
︸ ︷︷ ︸

approximation error

+ δσ (1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

,

(A.6)

with probability at least 1− 6e−
δ2

2 .

Error under a partially linear model with Lipshitz deviations from
linearity

We now bound the estimation error for SCM and Ridge ASCM under the basic model (2.3)
when the outcome is only partially linear, with Lipshitz deviations from linearity.

Assumption A.2. For the post-treatment outcome, miT are generated as β ·Xi + f(Xi),
so the post-treatment control potential outcome is

YiT (0) = β ·Xi + f(Xi) + εiT , (A.7)

where f : RT0 → R is L-Lipshitz and where {εiT} are defined in Assumption 1(a).
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Under this model, the L-Lipshitz function f(·) will induce an approximation error from
deviating away from the nearest neighbor match.

Theorem A.1. Let C = maxWi=0 ‖Xi‖2. Under Assumption A.2, for any δ > 0, the
estimation error for the ridge ASCM weights γ̂aug (2.17) with hyperparameter λridge = N0λ
is

∣∣∣∣∣Y1T (0)−
∑
Wi=0

γ̂aug
i Y1T

∣∣∣∣∣ ≤ ‖β‖2

∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+

CL

∥∥∥∥diag

(
dj

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2︸ ︷︷ ︸

excess approximation error

+

L
∑
Wi=0

γ̂scm
i ‖X1 −Xi‖2︸ ︷︷ ︸

SCM approximation error

+ δσ (1 + ‖γ̂aug‖2)︸ ︷︷ ︸
post-treatment noise

(A.8)

with probability at least 1− 2e−
δ2

2 .

We can again specialize this to the SCM weights alone by taking λ→∞.

Corollary A.3. Under Assumption A.2, for any δ > 0, the estimation error for weights on
the simplex γ̂ ∈ ∆N0 independent of the post-treatment outcomes (Y1T , . . . , YNT ) is

Y1T (0)−
∑
Wi=0

γ̂iYi ≤ ‖β‖2

∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+L
∑
Wi=0

γ̂i‖X1 −Xi‖2︸ ︷︷ ︸
approximation error

+ δσ(1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

(A.9)

with probability at least 1− 2e−
δ2

2 .

Inspecting Corollary A.3, we see that in order to control the estimation error, the weights
must ensure good pre-treatment fit while only weighting control units that are near to the
treated unit. The ratio L/‖β‖2 controlling the relative importance of both terms. Abadie
and L’Hour (2018) propose finding weights by solving the penalized SCM problem,

min
γ∈∆N0

∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥
2

2

+ λ
∑
Wi=0

γ̂i‖X1 −Xi‖2
2. (A.10)
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Comparing this to Corollary A.3, we see that under the partially linear model (A.7) where
f(·) is L-Lipshitz, finding weights that limit interpolation error by controling both the overall
imbalance in the lagged outcomes as well as the weighted sum of the distances is sufficient
to control the error. In the above optimization problem, the hyperparameter λ takes the
role of L/‖β‖2.

Error under a linear factor model with covariates

We can quantify the behavior of the two-step procedure from Lemma 2.4 in controlling the
error under a more general form of the linear factor model (2.7) with covariates (see Abadie
et al., 2010; Botosaru and Ferman, 2019, for additional discussion). We can also consider
the error under a linear model with auxiliary covariates, as a direct consequence of Lemma
2.4.

Assumption A.3. The mit are generated as mit =
∑J

j=1 φijµjt + ft(Zi) for a time-varying

function ft : RK → R, so the potential outcomes under control are

Yit(0) =
J∑
j=1

φijµjt + ft(Zi) + εit, (A.11)

where {εit} are defined in Assumption 1(b).

To characterize how well the covariates approximate the true function f(Zi), we will
consider the best linear approximation in our data, and define the residual for unit i and
time t as eit = ft(Zi) − Z ′i(Z ′Z)−1Z ′ft(Z), where Z ∈ RN×K is the matrix of all auxiliary
covariates for all units. For each time period we will characterize the additional approx-
imation error incurred by only balancing the covariates linearly with the residual sum of
squares RSSt =

∑n
i=1 e

2
it. For ease of exposition, we assume that the control covariates are

standardized and rotated, which can always be true after pre-processing, and present results
for the simpler case in which we fit SCM on the residualized pre-treatment outcomes rather
than ridge ASCM (i.e., we let λridge →∞); the more general version follows immediately by
applying Theorem 2.1.

Theorem A.2. Under the linear factor model with covariates in Assumption A.3, with
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1
N0
Z ′0·Z0· = IK , for any δ > 0, γ̂cov in Equation (2.33) with λridge →∞ satisfies the bound∣∣∣∣∣Y1T (0)−

∑
Wi=0

γ̂covYiT

∣∣∣∣∣ ≤ JM2

√
T0

( ∥∥X̌1 − X̌ ′0·γ̂
∥∥

2︸ ︷︷ ︸
imbalance in X̌

+ 4σ

√
K

N0

‖Z1 −Z ′0·γ̂‖2︸ ︷︷ ︸
excess approximation error

)
+

2JM2σ√
T0

(√
logN0 +

δ

2

)
︸ ︷︷ ︸

SCM approximation error

+ (JM2 + 1)e1max + (JM2 + 1)
√
RSSmax‖γ̂cov‖2︸ ︷︷ ︸

covariate approximation error

+ δσ(1 + ‖γ̂cov‖2)︸ ︷︷ ︸
post-treatment noise

(A.12)

with probability at least 1−6e−
δ2

2 −2e−
KN0(2−

√
log 5)2

2 , where e1max = maxt |e1t| is the maximal
residual for the treated unit and RSSmax = maxtRSSt is the maximal residual sum of
squares

We can also consider the special case of Theorem A.2 when ft(Zi) =
∑K

k=1BtkZik is a
linear function of the covariates, and so

Yit(0) =
J∑
j=1

φijµjt +
K∑
k=1

BtkZik + εit = φ′iµT +B′tZi + εit. (A.13)

In this case the residuals eit = 0 ∀i, t.

Corollary A.4. Under the linear factor model with covariates in Assumption A.3 with
ft(Zi) =

∑K
k=1 BtkZik as in Equation (A.13), for any δ > 0, γ̂cov in Equation (2.33) with

λridge →∞ satisfies the bound∣∣∣∣∣Y1T (0)−
∑
Wi=0

γ̂covYiT

∣∣∣∣∣ ≤ JM2

√
T0

( ∥∥X̌1 − X̌ ′0·γ̂
∥∥

2︸ ︷︷ ︸
imbalance in X̌

+ 4σ

√
K

N0

‖Z1 −Z ′0·γ̂‖2︸ ︷︷ ︸
excess approximation error

)
+

2JM2σ√
T0

(√
logN0 +

δ

2

)
︸ ︷︷ ︸

SCM approximation error

+ δσ(1 + ‖γ̂cov‖2)︸ ︷︷ ︸
post-treatment noise

(A.14)

with probability at least 1− 6e−
δ2

2 − 2e−
KN0(2−

√
log 5)2

2 .

Building on Lemma 2.4, Theorem A.2 and Corollary A.4 show that due to the addi-
tive, separable structure of the auxiliary covariates in Equation (A.13), controlling the pre-
treatment fit in the residualized lagged outcomes X̌ partially controls the error. This justifies
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directly targeting fit in the residualized lagged outcomes X̌ rather than targeting raw lagged
outcomes X. Moreover, the excess approximation error will be small since since the number
of covariates K is small relative to N0 and the auxiliary covariates are measured without
noise. As in Section 2.4, we can achieve better balance when we apply ridge ASCM to X̌
than when we apply SCM alone. Because X̌ are orthogonal to Z by construction, this comes
at no cost in terms of imbalance in Z. However, the fundamental challenge of over-fitting
to noise still remains, and, as in the case without auxiliary covariates, selecting the tuning
parameter remains important. We again propose to follow the cross validation approach
in Section 2.5, here using the residualized lagged outcomes X̌ rather than the raw lagged
outcomes X.

A.3 Simulation data generating process

We now describe the simulations in detail. We use the Generalized Synthetic Control Method
(Xu, 2017) to fit the following linear factor model to the observed series of log GSP per capita
(N = 50, T0 = 89, T = 105), setting J = 3:

Yit = αi + νt +
J∑
j=1

φijµjt + εit. (A.15)

We then use these estimates as the basis for simulating data. Appendix Figure A.5 shows
the estimated factors µ̂. We use the estimated time fixed effects ν̂ and factors µ̂ and then
simulate data using Equation (A.15), drawing:

αi ∼ N( ˆ̄α, σ̂α)

φ ∼ N(0, Σ̂φ)

εit ∼ N(0, σ̂ε),

where ˆ̄α and σ̂α are the estimated mean and standard deviation of the unit-fixed effects, Σ̂φ

is the sample covariance of the estimated factor loadings, and σ̂ε is the estimated residual
standard deviation. We also simulate outcomes with quadruple the standard deviation,
sd(εit) = 4σ̂ε. We assume a sharp null of zero treatment effect in all DGPs and estimate the
ATT at the final time point.

To model selection, we compute the (marginal) propensity scores as

logit−1 {πi} = logit−1 {P(T = 1 | αi,φi)} = θ

(
αi +

∑
j

φij

)
,

where we set θ = 1/2 and re-scale the factors and fixed effects to have unit variance. Finally,
we restrict each simulation to have a single treated unit and therefore normalize the selection
probabilities as πi∑

j πj
.
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We also consider an alternative data generating process that specializes the linear factor
model to only include unit- and time-fixed effects:

Yit(0) = αi + νt + εit.

We calibrate this data generating process by fitting the fixed effects with gsynth and drawing
new unit-fixed effects from αi ∼ N( ˆ̄α, σ̂α). We then model selection proportional to the fixed
effect as above with θ = 3

2
. Second, we generate data from an AR(3) model:

Yit(0) = β0 +
3∑
j=1

βjYi(t−j) + εit,

where we fit β0,β to the observed series of log GSP per capita. We model selection as

proportional to the last 3 outcomes logit−1πi = θ
(∑4

j=1 Yi(T0−j+1)

)
and set θ = 5

2
. For this

simulation we estimate the ATT at time T0 + 1.

A.4 Proofs

Proofs for Section 2.4

Lemma A.2. With η̂ridge
0 and η̂ridge, the solutions to (2.14), the ridge estimate can be written

as a weighting estimator:

Ŷ ridge
1T (0) = η̂ridge

0 + η̂ridge′X1 =
∑
Wi=0

γ̂ridge
i YiT , (A.16)

where

γ̂ridge
i =

1

N0

+ (X1 − X̄0)′(X ′0·X0· + λridgeIT0)
−1Xi. (A.17)

Moreover, the ridge weights γ̂ridge are the solution to

min
γ |

∑
i γi=1

1

2λridge
‖X1 −X ′0·γ‖2

2 +
1

2

∥∥∥∥γ − 1

N0

∥∥∥∥2

2

. (A.18)

Proof of Lemmas 2.1 and A.2. Recall that the lagged outcomes are centered by the control
averages. Notice that

Ŷ aug
1T (0) = m̂(X1) +

∑
Wi=0

γ̂scm
i (YiT − m̂(Xi))

= η̂0 + η̂′X1 +
∑
Wi=0

γ̂scm
i (YiT − η̂0 −X ′iη̂)

=
∑
Wi=0

(γ̂scm
i + (X1 −X ′0·γ̂scm)(X ′0·X0· + λIT0)

−1Xi)YiT

=
∑
Wi=0

γ̂aug
i YiT

(A.19)
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The expression for Ŷ ridge
1T (0) follows.

We now prove that γ̂ridge and γ̂scm solve the weighting optimization problems (A.18) and
(2.18). First, the Lagrangian dual to (A.18) is

min
α,β

1

2

∑
Wi=0

(
α + β′Xi +

1

N0

)2

− (α + β′X1) +
λ

2
‖β‖2

2, (A.20)

where we have used that the convex conjugate of 1
2

(
x− 1

N0

)2

is 1
2

(
y + 1

N0

)2

− 1
2N2

0
. Solving

for α we see that ∑
Wi=0

α̂ + β̂′Xi + 1 = 1

Since the lagged outcomes are centered, this implies that

α̂ = 0

Now solving for β we see that

X ′0·

(
1

1

N0

+X0·β̂

)
+ λβ̂ = X1

This implies that
β̂ = (X ′0·X0· + λI)−1X1

Finally, the weights are the ridge weights

γ̂i =
1

N0

+X ′1(X ′0·X0· + λI)−1Xi = γ̂ridge
i

Similarly, the Lagrangian dual to (2.18) is

min
α,β

1

2

∑
Wi=0

(α + β′Xi + γ̂scm
i )

2 − (α + β′X1) +
λ

2
‖β‖2

2, (A.21)

where we have used that the convex conjugate of 1
2

(x− γ̂scm
i )2 is 1

2
(y + γ̂scm

i )2 − 1
2
γ̂scm2
i .

Solving for α we see that α̂ = 0. Now solving for β we see that

β̂ = (X ′0·X0· + λI)−1(X1 −X ′0·γ̂scm)

Finally, the weights are the ridge ASCM weights

γ̂i = γ̂scm
i + (X1 −X ′0·γ̂scm)′(X ′0·X0· + λI)−1Xi = γ̂aug

i
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Proof of Lemma 2.3. Notice that

X1 −X ′0·γ̂aug = (I −X ′0·X0·(X
′
0·X0· +N0λI)−1)(X1 −X ′0·γ̂scm)

= N0λ(X ′0·X0· +N0λI)−1(X1 −X ′0·γ̂scm)

= V diag

(
λ

d2
j + λ

)
V ′(X1 −X ′0·γ̂scm)

So since V is orthogonal,

‖X1 −X ′0·γ̂aug‖2 =

∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2

Lemma A.3. The ridge augmented SCM weights with hyperparameter λN0, γ̂aug, satisfy

‖γ̂aug‖2 ≤ ‖γ̂
scm‖2 +

1√
N0

∥∥∥∥diag

(
dj

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2

, (A.22)

with X̃i = V ′Xi as defined in Lemma 2.3.

Proof of Lemma A.3. Notice that using the singular value decomposition and by the triangle
inequality,

‖γ̂aug‖2 =
∥∥γ̂scm +X0·(X

′
0·X0· + λI)−1(X1 −X ′0·γ̂scm)

∥∥
2

=

∥∥∥∥γ̂scm +Udiag

( √
N0dj

N0d2
j + λN0

)
V ′(X1 −X ′0·γ̂scm)

∥∥∥∥
2

≤ ‖γ̂scm‖2 +

∥∥∥∥∥diag

(
dj

(d2
j + λ)

√
N0

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥∥
2

.

Proofs for Sections 2.5, A.2, and A.2

For these proofs we will begin by considering a model where the post-treatment control
potential outcomes at time T are linear in the lagged outcomes and include a unit specific
term ξi.

Assumption A.4. The post-treatment potential outcomes are generated as

YiT (0) = β ·Xi + ξi + εiT , (A.23)

where {εiT} are defined as in Assumption 2.1(a).
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Below we will put structure on the unit-specific terms ξi, first we write a general finite-
sample bound.

Proposition A.1. Under model (A.23) with independent sub-Gaussian noise, for weights
γ̂ independent of the post-treatment residuals (ε1T , . . . , εNT ) and for any δ > 0,

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤ ‖β‖2

∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥
2︸ ︷︷ ︸

imbalance inX

+

∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣︸ ︷︷ ︸
approximation error

+ δσ(1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

, (A.24)

with probability at least 1− 2e−
δ2

2 .

Proof. First, note that the estimation error is

Y1T (0)−
∑
Wi=0

γ̂iYiT = β ·

(
X1 −

∑
Wi=0

γ̂iXi

)
+

(
ρ1 −

∑
Wi=0

γ̂iξi

)
+

(
ε1T −

∑
Wi=0

γ̂iεiT

)
(A.25)

Now since the weights are independent of εiT , by Assumption 2.1(a) we see that ε1T −∑
Wi=0 γ̂iεiT is sub-Gaussian with scale parameter σ

√
1 + ‖γ̂‖2

2 ≤ σ (1 + ‖γ̂‖2). Therefore
we can bound the second term:

P

(∣∣∣∣∣ε1T −
∑
Wi=0

γ̂iεiT

∣∣∣∣∣ ≥ δσ (1 + ‖γ̂‖2)

)
≤ 2 exp

(
−δ

2

2

)
The result follows from the triangle inequality and the Cauchy-Schwartz inequality.

Proof of Proposition 2.1. Note that under the linear model (2.6), ξi = 0 for all i. Now from
Lemma 2.3 we have that

‖X1 −X ′0·γ̂aug‖2 =

∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2

.

Plugging this in to Equation (A.24) completes the proof.

Proof of Corollary A.1. This is a direct consequence of Proposition A.1 noting that under
the linear model (2.6), ξi = 0 for all i.

Random approximation error We now consider the case where ξi are random. We can
use Proposition A.1 to further bound the approximation error. In particular, we make the
following assumption:

Assumption A.5. ξi are sub-Gaussian random variables with scale parameter $ and are
mean-zero, E[ξi] = 0 for all i = 1, . . . , N .
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Lemma A.4. Under Assumption A.5, for weights γ̂ and any δ > 0 the approximation error
satisfies ∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂iξi

∣∣∣∣∣ ≤ δ$ + 2‖γ̂‖1$

(√
log 2N0 +

δ

2

)
, (A.26)

with probability at least 1− 4e−
δ2

2 .

Proof of Lemma A.4. From the triangle inequality and Hölder’s inequality we see that∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣ ≤ |ξ1|+ ‖γ̂‖1 max
Wi=0

|ξi|.

Now since the ξi are mean-zero sub-Gaussian with scale parameter $, we have that

P (|ξ1| ≥ δ$) ≤ 2e−
δ2

2

Next, from the union bound, the maximum of the N0 sub-Gaussian variables ρ2, . . . , ρN
satisfies

P

(
max
Wi=0

|ξi| ≥ 2$
√

log 2N0 + δ

)
≤ 2e−

δ2

2$2 .

Setting δ = δ$ and combining the two probabilities with the union bound gives the
result.

Lemma A.5. Under Assumption A.5, for the ridge ASCM weights γ̂aug with hyper-parameter
λridge = λN0 and for any δ > 0 the approximation error satisfies∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂iξi

∣∣∣∣∣ ≤ 2$

(√
log 2N0 +

δ

2

)
+ (1 + δ)4$

∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥
2︸ ︷︷ ︸

excess approximation error

,

(A.27)

with probability at least 1− 4e−
δ2

2 − e−2(log 2+N0 log 5)δ2 .

Proof of Lemma A.5. Again from Hölder’s inequality we see that∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂aug
i ξi

∣∣∣∣∣ = |ξ1|+

∣∣∣∣∣∑
Wi=0

(γ̂scm
i + γ̂aug

i − γ̂scm
i )ξi

∣∣∣∣∣
≤ |ξ1|+ ‖γ̂scm‖1 max

Wi=0
|ξi|+ ‖γ̂aug − γ̂scm‖2

√∑
Wi=0

ξ2
i .
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We have bounded the first two terms in Lemma A.4, now it sufficies to bound the third
term. First, from Lemma A.3 we see that

‖γ̂aug − γ̂scm‖2 =
1√
N0

∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥
2

.

Second, via a standard discretization argument (Wainwright, 2018), we can bound the L2

norm of the vector (ξ2, . . . , ξN) as

P

√∑
Wi=0

ξ2
i ≥ 2$

√
log 2 +N0 log 5 + δ

 ≤ 2 exp

(
− δ2

2$2

)
.

Setting δ = 2δ$
√

log 2 +N0 log 5, noting that log 2 +N0 log 5 < 4N0, we have that

‖γ̂aug − γ̂scm‖2

√∑
Wi=0

ξ2
i ≤ (1 + δ)$4

∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥
2

with probability at least 1− 2e−2(log 2+N0 log 5)δ2 . Since ‖γ̂scm‖1 = 1, combining with Lemma
A.4 via the union bound gives the result.

Theorem A.3. Under Assumptions A.4 and A.5 model (A.23), for γ̂ independent of the
post-treatment outcomes (Y1T , . . . , YNT ) and for any δ > 0,

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤ ‖β‖2

∥∥∥∥∥X1 −
∑
Wi=0

γ̂iXi

∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+ δ$ + 2‖γ̂‖1$

(√
log 2N0 +

δ

2

)
︸ ︷︷ ︸

approximation error

+ δσ (1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

,

(A.28)

with probability at least 1− 6e−
δ2

2 .

Proof of Theorem A.3. The Theorem directly follows from Proposition A.1 and Lemma A.4,
combining the two probabilistic bounds via the union bound.

Theorem A.4. Under Assumptions A.4 and A.5 model (A.23), for any δ > 0, the ridge
ASCM weights with hyperparameter λridge = λN0 satisfy the bound

Y1T (0)−
∑
Wi=0

γ̂iYiT ≤ ‖β‖2

∥∥∥∥∥diag

(
λ

d2
j + λ

)(
X̃1 −

∑
Wi=0

γ̂scm
i X̃i

)∥∥∥∥∥
2︸ ︷︷ ︸

imbalance in X

+ 2$

(√
log 2N0 +

δ

2

)
︸ ︷︷ ︸

approximation error

(1 + δ)4$

∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥
2︸ ︷︷ ︸

excess approximation error

+ δσ (1 + ‖γ̂‖2)︸ ︷︷ ︸
post-treatment noise

,

(A.29)

with probability at least 1− 6e−
δ2

2 − e−2(log 2+N0 log 5)δ2 .
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Proof of Theorem A.4. First note that from Lemma 2.3 we have that

‖X1 −X ′0·γ̂aug‖2 =

∥∥∥∥diag

(
λ

d2
j + λ

)
(X̃1 − X̃ ′0·γ̂scm)

∥∥∥∥
2

.

The Theorem directly follows from Proposition A.1 and Lemma A.5, combining the two
probabilistic bounds via the union bound.

Theorems A.3 and A.4 have several implications when the outcomes follow a linear factor
model (2.7). To see this, we need one more lemma:

Lemma A.6. The linear factor model is a special case of model (A.23) with β = 1
T0
µµT

and ξi = 1
T0
µ′Tµεi(1:T0). ‖β‖2 ≤ MJ2

√
T0

, and if εi(1:T0) are independent sub-Gaussian vectors

with scale parameter σT0 , then 1
T0
µ′Tµ

′εi(1:T0) is sub-Gaussian with scale parameter
JM2σT0√

T0
.

Proof of Lemma A.6. Notice that under the linear factor model, the pre-treatment covariates
for unit i satisfy:

Xi = µφi + εi(1:T0).

Multiplying both sides by (µ′µ)−1µ′ = 1
T0
µ′ and rearranging gives

1

T0

µ′Xi −
1

T0

µ′εi(1:T0) = φi.

Then we see that the post treatment outcomes are

YiT (0) =
1

T0

µ′Tµ
′Xi +

1

T0

µ′Tµ
′εi(1:T0).

Since εi(1:T0) is a sub-Gaussian vector v′εi(1:T0) is sub-Gaussian with scale parameter σT0
for any v ∈ RT0 such that ‖v‖2 = 1. Now notice that ‖µ′Tµ′‖2 ≤ ‖µT‖2‖µ‖2 ≤ MJ2

√
T0.

This completes the proof.

Proof of Corollary A.2. From Lemma A.6 we can apply Theorem A.3 with β = 1
T0
µ′Tµ

′ and

ξi = 1
T0
µ′Tµ

′εi(1:T0). Since εit are independent sub-Gaussian random variables, εi(1:T0) is a
sub-Gaussian vector with scale parameter σT0 = σ. Noting that ‖γ̂‖1 =

∑
Wi=0 |γ̂i| = 1 and

applying Lemma A.6 gives the result.

Proof of Theorem 2.1. Again from Lemma A.6 we can apply Theorem A.4 with β = 1
T0
µ′Tµ

′

and ξi = 1
T0
µ′Tµ

′εi(1:T0), so $ = JM2σ√
T0

. Plugging these values into Theorem A.3 gives the
result.
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Corollary A.5 (Approximation error for ridge ASCM with dependent errors). Under the

linear factor model (2.7) with time-dependent errors satisfying εi(1:T0)
iid∼ N(0, σ2Ω) the

approximation error satisfies∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣ =

∣∣∣∣∣ 1

T0

µ′Tµ
′

(
ε1(1:T0) −

∑
Wi=0

γ̂iεi(1:T0)

)∣∣∣∣∣
≤ 2

√
‖Ω‖2

T0

JM2σ

(√
log 2N0 + δ + (1 + δ)2

∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥
2

)
,

(A.30)

Proof of Corollary A.5. From Lemma A.6, we see that ξi = 1
T0
µ′Tµ

′εi(1:T0) is sub-Guassian

with scale parameter JM2
√
‖Ω‖2
T0

. Plugging in to Lemma A.5 gives the result.

Lipshitz approximation error If ξi are Lipshitz functions, we can can also bound the
approximation error.

Assumption A.6. ξi = f(Xi) where f : RT0 → R is an L-Lipshitz function.

Lemma A.7. Under Assumption A.6, for weights on the simplex γ̂ ∈ ∆N0 , the approxima-
tion error satisfies ∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂iξi

∣∣∣∣∣ ≤ L
∑
Wi=0

γ̂i‖X1 −Xi‖2 (A.31)

Proof of Lemma A.7. Since the weights sum to one, we have that∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣ ≤
∣∣∣∣∣∑
Wi=0

γ̂i(f(X1)− f(Xi))

∣∣∣∣∣ .
Now from the Lipshitz property, |f(X1) − f(Xi)| ≤ L‖X1 − Xi‖2, and so by Jensen’s
inequalty: ∣∣∣∣∣∑

Wi=0

γ̂i(f(X1)− f(Xi))

∣∣∣∣∣ ≤ L
∑
Wi=0

γ̂i‖X1 −Xi‖2

Proof of Theorem A.3. The proof follows directly from Proposition A.1 and Lemma A.7.

Lemma A.8. Let C = maxWi=0 ‖Xi‖2. Under Assumption A.6, the ridge ASCM weights
γ̂aug (2.17) with hyperparameter λridge = N0λ satisfy∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂aug
i ξi

∣∣∣∣∣ ≤ L
∑
Wi=0

γ̂scm
i ‖X1 −Xi‖2 + CL

∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥
2

(A.32)
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Proof of Lemma A.8. From the triangle inequality we have that∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂aug
i ξi

∣∣∣∣∣ ≤
∣∣∣∣∣∑
Wi=0

γ̂scm
i (f(X1)− f(Xi))

∣∣∣∣∣+
∣∣∣∣∣∑
Wi=0

Xi (X
′
0·X0· + λI)

−1
(X1 −X ′0·γ̂scm)f(Xi)

∣∣∣∣∣ .
We have already bounded the first term in Lemma A.7, now we bound the second term.
From the Cauchy-Schwartz inequality and since ‖x‖2 ≤

√
N0‖x‖∞ for all x ∈ RN0 we see

that∣∣∣∣∣∑
Wi=0

Xi (X
′
0·X0· + λI)

−1
(X1 −X ′0·γ̂scm)f(Xi)

∣∣∣∣∣ ≤√N0

∥∥∥X0· (X
′
0·X0· + λI)

−1
(X1 −X ′0·γ̂scm)

∥∥∥
2
|f(Xi)|

=

∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥
2

|f(Xi)|

≤ CL

∥∥∥∥diag

(
dj

d2
j + λ

)(
X̃1 − X̃ ′0·γ̂scm

)∥∥∥∥
2

,

where the second line comes from Lemma A.3 and the third line from the Lipshitz property.

Proof of Theorem A.1. The proof follows directly from Proposition A.1 and Lemma A.8.

Proofs for Sections 2.6 and A.2

Proof of Lemma 2.4. The regression parameters η̂x and η̂z in Equation (2.31) are:

η̂x = (X̌ ′0·X̌0· + λridgeI)−1X̌ ′0·Y0T and η̂z = (Z ′0·Z0·)
−1Z ′0·Y0T (A.33)

Now notice that

Ŷ cov
0T = η̂′xX1 + η̂′zZ1 +

∑
Wi=0

(YiT − η̂′xXi − η̂zZi)γ̂i

= η̂′x(X1 −X ′0·γ̂) + η̂z(Z1 −Z ′0·γ̂) + Y ′0T γ̂

= η̂′x(X1 −X ′0·γ̂)− η̂′xX0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂) + Y ′0TZ0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂) + Y ′0T γ̂

= η̂′x(X̌1 − X̌ ′0·γ̂) + Y ′0TZ0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂) + Y ′0T γ̂

= Y ′0T
(
γ̂ + X̌0·(X̌

′
0·X̌0· + λridgeIT0)

−1(X̌1 − X̌ ′0·γ̂) +Z0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂)
)
.
(A.34)

This gives the form of γ̂cov. The imbalance in Z is

Z1 −Z ′0·γ̂cov =
(
Z1 −Z ′0·Z0·(Z

′
0·Z0·)

−1Z1

)
+
(
Z0· −Z ′0·Z0·(Z

′
0·Z0·)

−1Z0·
)′
γ̂

−Z ′0·X̌0·(X̌
′
0·X̌0· + λridgeI)−1(X̌1 − X̌ ′0·γ̂)

= 0.

(A.35)
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The pre-treatment fit is

X1 −X ′0·γ̂cov =
(
X1 −X ′0·Z0·(Z

′
0·Z0·)

−1Z1

)
+
(
X0· −X ′0·Z0·(Z

′
0·Z0·)

−1Z0·
)′
γ̂

−X ′0·X̌0·(X̌
′
0·X̌0· + λridgeIT0)

−1(X̌1 − X̌ ′0·γ̂)

=
(
IT0 −X ′0·X̌0·(X̌

′
0·X̌0· + λridgeIT0)

−1
) (
X̌1 − X̌ ′0·γ̂

)
=
(
IT0 − X̌ ′0·X̌0·(X̌

′
0·X̌0· + λridgeIT0)

−1
) (
X̌1 − X̌ ′0·γ̂

)
.

(A.36)

This gives the bound on the pre-treatment fit.

Proof of Theorem A.2. First, we will separate f(Z) into the projection onto Z and a resid-
ual. Defining Bt = (Z ′Z)−1Z ′ft(Z) ∈ RK as the regression coefficient, the projection of
ft(Zi) is Z ′iBt and the residual is eit = ft(Zi)−Z ′iBt. We will denote the matrix of regres-
sion coefficients over t = 1, . . . , T0 as B = [B1, . . . ,BT0 ] ∈ RK×T0 and denote the matrix of
residuals as E ∈ Rn×T0 , with E1· = (e11, . . . , e1T0) as the vector of residuals for the treated
unit and E0· as the matrix of residuals for the control units.

Then the error is∣∣∣∣∣Y1T (0)−
∑
Wi=0

γ̂cov
i YiT

∣∣∣∣∣ ≤
∣∣∣∣∣µT ·

(
φ1 −

∑
Wi=0

γ̂cov
i φi

)∣∣∣∣∣+

∣∣∣∣∣Bt ·

(
Z1 −

∑
Wi=0

γ̂cov
i Zi

)∣∣∣∣∣
+

∣∣∣∣∣e1T −
∑
Wi=0

γ̂coveiT

∣∣∣∣∣+

∣∣∣∣∣ε1T −
∑
Wi=0

γ̂cov
i εiT

∣∣∣∣∣
Since γ̂cov

i exactly balances the covariates, the second term is equal to zero. We can bound
the third term with Hölder’s inequality:∣∣∣∣∣e1T −

∑
Wi=0

γ̂coveiT

∣∣∣∣∣ ≤ |e1T |+
√
RSST‖γ̂cov‖2

In previous theorems we have bounded the last term with high probability. Only the error
due to imbalance remains.

Denote ε0(1:T0) as the matrix of pre-treatment noise for the control units, where the rows
correspond to ε2(1:T0), . . . , εN0(1:T0). Building on Lemma A.6, we can see that the error due
to imbalance in φ is equal to

µT ·

(
φ1 −

∑
Wi=0

γ̂cov
i φi

)
=

1

T0

µ′Tµ
′(X1 −X ′0·γ̂cov)− 1

T0

µ′Tµ
′(ε1(1:T0) − ε′0(1:T0)γ̂

cov)

− 1

T0

µ′Tµ
′B′(Z1 −Z ′0·γ̂cov)− 1

T0

µ′Tµ
′(E1· −E′0·γ̂cov).

(A.37)
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By construction, γ̂cov perfectly balances the covariates, and combined with Lemma 2.4, the
error due to imbalance in φ simplifies to

µT ·

(
φ1 −

∑
Wi=0

γiφi

)
=

1

T0

µ′Tµ
′(X̌1−X̌ ′0·γ̂)− 1

T0

µ′Tµ
′(ε1(1:T0)−ε′0(1:T0)γ̂

cov)− 1

T0

µ′Tµ
′(E1·−E′0·γ̂cov).

We now turn to bounding the noise term and the error due to the projection of f(Z) on to
Z. First, notice that

1

T0

µ′Tµ
′ε′0(1:T0)γ̂

cov =
1

T0

µ′Tµ
′ε′0(1:T0)γ̂

scm +
1

T0

µ′Tµ
′ε′0(1:T0)Z0·(Z

′
0·Z0·)

−1(Z1 −Z ′0·γ̂scm).

We have bounded the first term on the right hand side in Lemma A.4. To bound the
second term, notice that

∑
Wi=0

∑T0
t=1µ

′
Tµt·Zikεit is sub-Gaussian with scale parameter

σMJ2
√
T0‖Z·k‖2 = MJ2σ

√
T0N0. We can now bound the L2 norm of 1

T0
µ′Tµ

′ε′0(1:T0)Z0· ∈
RK :

P

(
1

T0

‖µ′Tµ′ε′0(1:T0)Z0·‖2 ≥ 2JM2σ

(√
N0K log 5

T0

+ δ

))
≤ 2 exp

(
−T0δ

2

2

)

Replacing δ with
√

KN0

T0
(2−

√
log 5) and with the Cauchy-Schwarz inequality we see that

1

T0

∣∣µ′Tµ′ε′0(1:T0)Z0·(Z
′
0·Z0·)

−1(Z1 −Z ′0·γ̂)
∣∣ ≤ 4JM2σ

√
K

T0N0

‖Z1 −Z ′0·γ̂scm‖2

with probability at least 1− 2 exp
(
−KN0(2−

√
log 5)2

2

)
.

Next we turn to the residual term. By Hölder’s inequality and using that for a matrix
A, the operator norm is bounded by ‖A‖2 ≤

√
trace(A′A) we see that∣∣∣∣ 1

T0

µ′Tµ
′(E1· −E′0·γ̂cov)

∣∣∣∣ ≤ JM2

√
T0

(‖E1·‖2 + ‖γ̂cov‖2‖E0·‖2)

≤ JM2

 max
t=1,...,T0

|e1t|+ ‖γ̂cov‖2

√√√√ 1

T0

T0∑
t=1

RSSt


≤ JM2

(
max

t=1,...,T0
|e1t|+ ‖γ̂cov‖2

√
max
t
RSSt

)
,

where we have used that 1√
T0
‖E1·‖2 ≤ maxt=1,...,T0 |e1t| and trace(E′0·E0·) =

∑T0
t=1 RSSt.

Combining with Lemma 2.4 and putting together the pieces with the union bound gives
the result.
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A.5 Connection to balancing weights and IPW

We have motivated Augmented SCM via bias correction. An alternative motivation comes
from the connection between SCM and inverse propensity score weighting (IPW). This is
also comparable in form to the generalized regression estimator in survey sampling (Cassel
et al., 1976; Breidt and Opsomer, 2017), which has been adapted to the causal inference
setting by, among others, Athey et al. (2018) and Hirshberg and Wager (2019).

First, notice that the SCM weights from the constrained optimization problem in Equa-
tion (2.8) are a form of approximate balancing weights ; see, for example, Zubizarreta (2015);
Athey et al. (2018); Tan (2017); Wang and Zubizarreta (2019); Zhao (2018). Unlike tra-
ditional inverse propensity score weights, which indirectly minimize covariate imbalance by
estimating a propensity score model, balancing weights seek to directly minimize covariate
imbalance, in this case L2 imbalance. Balancing weights have a Lagrangian dual formulation
as inverse propensity score weights (see, for example Zhao and Percival, 2017; Zhao, 2018;
Chattopadhyay et al., 2020). Extending these results to the SCM setting, the Lagrangian
dual of the SCM optimization problem in Equation (2.8) has the form of a propensity score
model. Importantly, as we discuss below, it is not always appropriate to interpret this model
as a propensity score.

We first derive the Lagrangian dual for a general class of balancing weights problems,
then specialize to the penalized SCM estimator (2.8).

min
γ

hζ(X1 −X ′0·γ)︸ ︷︷ ︸
balance criterion

+
∑
Wi=0

f(γi)︸ ︷︷ ︸
dispersion

subject to
∑
Wi=0

γi = 1.
(A.38)

This formulation generalizes Equation (2.8) in two ways: first, we remove the non-negativity
constraint and note that this can be included by restricting the domain of the strongly
convex dispersion penalty f . Examples include the re-centered L2 dispersion penalties for
ridge regression and ridge ASCM, an entropy penalty (Robbins et al., 2017), and an elastic
net penalty (Doudchenko and Imbens, 2017). Second, we generalize from the squared L2

norm to a general balance criterion hζ ; another promiment example is an L∞ constraint (see
e.g. Zubizarreta, 2015; Athey et al., 2018).

Proposition A.2. The Lagrangian dual to Equation (A.38) is

min
α,β

∑
Wi=0

f ∗(α + β′Xi·)− (α + β′X1)︸ ︷︷ ︸
loss function

+ h∗ζ(β)︸ ︷︷ ︸
regularization

, (A.39)

where a convex, differentiable function g has convex conjugate g∗(y) ≡ supx∈dom(g){y′x −
g(x)}. The solutions to the primal problem (A.38) are γ̂i = f ∗′(α̂ + β̂′Xi), where f ∗′(·) is
the first derivative of the convex conjugate, f ∗(·).
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There is a large literature relating balancing weights to propensity score weights. This
literature shows that the loss function in Equation (A.39) is an M-estimator for the propen-
sity score and thus will be consistent for the propensity score parameters under large N
asymptotics. The dispersion measure f(·) determines the link function of the propensity

score model, where the odds of treatment are π(x)
1−π(x)

= f ∗′(α+β′x). Note that un-penalized
SCM, which can yield multiple solutions, does not have a well-defined link function. We ex-
tend the duality to a general set of balance criteria so that Equation (A.39) is a regularized
M-estimator of the propensity score parameters where the balance criterion hζ(·) determines
the type of regularization through its conjugate h∗ζ(·). This formulation recovers the duality
between entropy balancing and a logistic link (Zhao and Percival, 2017), Oaxaca-Blinder
weights and a log-logistic link (Kline, 2011), and L∞ balance and L1 regularization (Wang
and Zubizarreta, 2019). This more general formulation also suggests natural extensions of
both SCM and ASCM beyond the L2 setting to other forms, especially L1 regularization.

Specializing proposition A.2 to a squared L2 balance criterion hζ(x) = 1
2ζ
‖x‖2

2 as in the
penalized SCM problems yields that the dual propensity score coefficients β are regularized
by a ridge penalty. In the case of an entropy dispersion penalty as Robbins et al. (2017)
consider, the donor weights γ̂ have the form of IPW weights with a logistic link function,
where the propensity score is π(Xi) = logit−1(α+β′Xi), the odds of treatment are π(Xi)

1−π(Xi)
=

exp(α + β′Xi) = γi.
We emphasize that while Proposition A.2 shows that the the estimated weights have

the IPW form, in SCM settings it may not always be appropriate to interpret the dual
problem as a propensity score reflecting stochastic selection into treatment. For example,
this interpretation would not be appropriate in some canonical SCM examples, such as the
analysis of German reunification in Abadie et al. (2015).

Proof of Proposition A.2. We can augment the optimization problem (A.38) with auxiliary
variables ε, yielding:

min
γ,ε

hζ(ε) +
∑
Wi=0

f(γi).

subject to ε = X1 −X ′0·γ∑
Wi=0

γi = 1

(A.40)

The Lagrangian is

L(γ, ε, α,β) =
∑
i|Wi=0

f(γi) + α(1− γi) + hζ(ε) + β′(X1 −X ′0·γ − ε). (A.41)

The dual maximizes the objective
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q(α,β) = min
γ,ε
L(γ, ε, α,β)

=
∑
Wi=0

min
γi
{f(γi)− (α + β′Xi)γi}+ min

ε
{hζ(ε)− β′ε}+ α + β′X1

= −
∑
Wi=0

f ∗(α + β′Xi) + α + β′X ′1 − h∗ζ(β),

(A.42)

By strong duality the general dual problem (A.39), which minimizes −q(α,β), is equivalent
to the primal balancing weights problem. Given the α̂ and β̂ that minimize the Lagrangian
dual objective, −q(α,β), we recover the donor weights solution to (A.38) as

γ̂i = f ∗′(α̂ + β̂′Xi). (A.43)

A.6 Additional figures
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Figure A.1: RMSE for different augmented and non-augmented estimators across outcome
models.
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Figure A.2: Absolute bias (as a percentage of SCM bias) for ridge, fixed effects, and several
machine learning and panel data outcome models, and their augmented versions using the
same data generating processes as Figure 2.3.
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Figure A.3: Bias for different augmented and non-augmented estimators across outcome
models conditioned on SCM fit in the top quintile.
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Figure A.4: RMSE for different augmented and non-augmented estimators across outcome
models conditioned on SCM fit in the top quntile.
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Figure A.5: Latent factors for calibrated simulation studies.

Figure A.6: Cross validation MSE and one standard error computed according to Equation
(2.27). The minimal point, and the maximum λ within one standard error of the minimum
are highlighted.
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Figure A.7: Point estimates along with point-wise 95% conformal confidence intervals for
the effect of the tax cuts on GSP per capita using SCM, ridge ASCM, and ridge ASCM with
covariates.

Figure A.8: Point estimates along with point-wise 95% conformal confidence intervals for the
effect of the tax cuts on log GSP per capita using de-meaned SCM, ridge regression alone,
ridge ASCM with λ chosen to minimize the cross validated MSE, the original SCM proposal
with covariates (Abadie et al., 2010), and a two-way fixed effects differences in differences
estimate.
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Figure A.9: Ridge regression coefficients for each pre-treatment quarter, averaged across
post-treatment quarters.

Figure A.10: Placebo point estimates along with 95% conformal confidence intervals for
SCM with placebo treatment times in Q2 2009, 2010, and 2011. Scale begins in 2005 to
highlight placebo estimates.
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Figure A.11: Placebo point estimates along with 95% conformal confidence intervals for
ridge ASCM with placebo treatment times in Q2 2009, 2010, and 2011. Scale begins in 2005
to highlight placebo estimates.

Figure A.12: Placebo point estimates along with 95% conformal confidence intervals for
Ridge ASCM with covariates with placebo treatment times in Q2 2009, 2010, and 2011. The
time period begins in 2005 and ends in Q1 2012 to highlight placebo estimates.
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Figure A.13: Donor unit weights for SCM, ridge regression, and ridge ASCM balancing
lagged outcomes.

Figure A.14: Donor unit weights for SCM and ridge ASCM fit on lagged outcomes after
residualizing out auxiliary covariates.
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Appendix B

Supplementary materials for Chapter
3

B.1 The dual perspective: generalized propensity

score weighting and conditional parallel trends

As we discuss in the main text, we can view partially pooled SCM as a form of balancing
weights. By exploiting the duality between balancing weights and inverse propensity weight-
ing, we can then interpret these weights as a form of (generalized) propensity score weighting
(Imbens, 2000; Imai and Van Dyk, 2004). We further use this dual interpretation to show
identification under a particular conditional parallel trends assumption (Abadie, 2005). For
this section we consider combining units into treatment time cohorts indexed by Zi where
Zi = j if Ti = Tj < ∞ and Zi = 0 if Ti = ∞ for control units. This is equivalent to fully
pooling the synthetic control for units that share a treatment time.

Interpretation: inverse generalized propensity score weighting

In the case of a single treated unit, Appendix A.5 relates the synthetic control problem to
propensity score estimation through the Lagrangian dual; see also Zhao and Percival (2017),
Zhao (2018), and Wang and Zubizarreta (2019). A simple extension of that result shows that
the loss function L(α, β) in the dual problem (3.8) estimates the parameters of J separate
propensity score models that are linear in the lagged outcomes, with link function f ∗′; i.e.
the propensity score model follows

f ′
(
P (Zi = j | Yi,Tj−L, . . . , Yi,Tj−1)

P (Zi = 0 | Yi,Tj−L, . . . , Yi,Tj−1)

)
= αj +

L∑
`=1

β`jYi,Tj−`, j = 1, . . . , J. (B.1)

This dual problem has the form of a propensity score model for the probability of assignment
to treatment level j, Zi = j, relative to control, Zi = 0, conditioned on the previous T1 out-
comes. The loss function L(α, β) is a so-called calibrated loss, rather than the more standard
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likelihood approach. Using a calibrated loss generally leads to better finite sample proper-
ties for the resulting weights than more traditional methods; see Tan (2017). Jointly, this
series of separate logistic models has the form of a multinomial regression for the generalized
propensity score (Imbens, 2000).

Armed with this IPW interpretation of the loss function, we can shed more light on
the regularization in Equation (3.8) by comparing it to the corresponding regularized max-
imum likelihood estimate. This estimate is a maximum a priori estimate of the following
hierarchical propensity score model (Li et al., 2013):

f ′
(
P (Zi = j | Yi,Tj−L, . . . , Yi,Tj−1)

P (Zi = 0 | Yi,Tj−L, . . . , Yi,Tj−1)

)
= αj +

L∑
`=1

β`jYi,Tj−`, j = 1, . . . , J

β`j | µβ` ∼ N

(
µβ`,

(1− ν)

λ

)
µβ` ∼ N

(
0,
ν

λ

)
.

(B.2)

Written in a Bayesian form, we see that the dual problem (3.8) shrinks cohort specific
parameters βj towards a global model of treatment µβ.

Finally, we note that while the form of Equation (B.1) holds whenever λ > 0, interpret-
ing this model as a generalized propensity score requires additional considerations. First,
treatment levels must be well defined. This is most natural when we consider cohorts with
multiple treated units, and so can imagine another unit adopting treatment at the same time.
Second, all control units must have well-defined treated potential outcomes. This is plausible
in our collective bargaining example — we can conceive of never treated states adopting such
laws — but is not always appropriate, such as in classic SCM examples (Abadie et al., 2015).

Connection to semiparametric DID and identification under
conditional parallel trends

With this IPW interpretation, we consider the oracle estimator that uses the true (unpe-
nalized) propensity score weights to estimate the ATT and show that it identifies causal
treatment effects under a conditional parallel trends assumption. To do so, we show that
this approach is a version of semiparametric DID (Abadie, 2005; Callaway and Sant’Anna,
2018) and then apply existing results. Unlike existing methods, however, the weighted event
study approach instead conditions on pre-treatment dynamics, specifically the residuals after
subtracting off the pre-treatment average.

To formalize these results, we make some additional assumptions that are standard in the
event studies literature (see Callaway and Sant’Anna, 2018) but which might not necessarily
hold in all settings. First, we assume that the observed units are sampled from an underlying
population.

Assumption B.1 (Sampling). {Yi1, . . . , YiT , Ti}Ni=1
iid∼ P(·) for some joint distribution P(·)
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Second, we assume that every unit has a non-zero probability of adopting treatment at any
time, both overall and conditional on lagged residuals.

Assumption B.2 (Overlap). P(Z = j) > 0 for all j = 0, . . . , J .

Finally, we relax the parallel trends assumption to only hold conditionally. Following Hazlett
and Xu (2018), we assume that parallel trends holds given the vector of residuals, Ẏit =
Yit − Ȳ pre

i,j .

Assumption B.3 (Conditional parallel trends). For t′ < t and j = 1, . . . , J ,

E[Yit(0)− Yit′(0) | Ẏi1, . . . , ẎiTj−1, Z = j] = E[Yit(0)− Yit′(0) | Ẏi1, . . . , ẎiTj−1, Z = 0]. (B.3)

Assumption B.3 loosens the usual parallel trends assumption by allowing trends to differ
depending on how the lagged outcomes deviate from their baseline value. Thus, we are
essentially conditioning on pre-treatment “dynamics,” rather than pre-treatment levels. For
instance, even if two states have very different levels of student expenditures, under condi-
tional parallel trends we can compare them so long as they have similar pre-treatment trends
and shocks. See Hazlett and Xu (2018) for further discussion.

Given these assumptions, we now return to the SCM-weighted event study estimator in
Equation (3.12). Let p̂ij =

γ̂ij
1−γ̂ij be the implied propensity score for unit i for treatment

Zj = j from Equation (B.1). Then we can re-write Equation (3.12) as:

τ̂ aug
jk =

1

Tj − 1

Tj−1∑
t=1

[(
Yj,Tj+k − Yj,t

)
−

N∑
i=1

p̂ij
1− p̂ij

(
Yi,Tj+k − Yi,t

)]
. (B.4)

This is identical in form to the semiparametric DID estimators proposed by Abadie (2005)
and Callaway and Sant’Anna (2018).1 We can then immediately apply Theorem 1 in Call-
away and Sant’Anna (2018). Specifically, the population analog of τ̂ aug

jk identifies τjk under
Assumptions B.1-B.3:

1

Tj − 1

Tj−1∑
t=1

{
E[YTj+k(1)− Yt(0) | Z = j] −

P(Z = j | Ẏ1, . . . , ẎTj−1)

P(Z = 0 | Ẏ1, . . . , ẎTj−1)
E
[
YTj+k(0)− Yt(0) | Z = 0

]}

=
1

Tj − 1

Tj−1∑
t=1

E[YTj+k(1)− YTj+k(0) | Z = j]

= E[YTj+k(1)− YTj+k(0) | Z = j].

(B.5)

1The estimator in Callaway and Sant’Anna (2018) also standardizes by the the sum of
p̂ij

1−p̂ij . This sum

equals 1 by construction when Γ̂ is estimated via the calibrated approach above. The estimator in Callaway
and Sant’Anna (2018) also restricts estimation to t = Tj − 1. We slightly modify their Theorem 1 under the
stronger assumption that conditional parallel trends hold for all pre-treatment times, t = 1, . . . , Tj
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This shows that the weighted event study approach estimates causal effects under weaker
assumptions than are needed for traditional event studies. This is not the only proposal to
generalize DID: existing semiparametric approaches condition on auxiliary or time-invariant
covariates, rather than on lagged outcomes. We anticipate that blended strategies that con-
dition both on auxiliary covariates and pre-treatment outcome dynamics may be attractive
in many applications.
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B.2 Additional simulation results

We now describe the two-way fixed effects model and the autoregressive model that we use
in our simulation studies. First, the two-way fixed effects model is:

Yit = int + uniti + timet + εit. (B.6)

Here, both unit and time effects are normalized to have mean zero. We estimate (B.6) using
just the un-treated observations, and extract the estimated variance of the unit effects, Σ̂,
and of the error term, σ̂2

ε . We then generate simulated data sets with the same N = 49 and

T = 38 where uniti
iid∼ N(0, Σ̂) and εit

iid∼ N(0, σ̂2
ε). We impose a sharp null of no treatment

effect, Yit(1) = Yit(0) = Yit. This model satisfies the parallel trends assumption needed for
traditional event studies and DID models. We set the probability that unit i is treated at
each treatment time to be πi = logit(θ0 + θ1 · uniti), with θ0 = −2.7 and θ1 = −1 to ensure
that around 30 units are eventually treated in each simulation draw.

We also consider a random effects autoregressive model:

Yit =
3∑
`=1

ρ`Yi,t−` + εit

ρ ∼ N(µρ, σ
2
ρ).

(B.7)

We fit this random effects model using lme4 (Bates et al., 2015) to get estimates µ̂ρ and σ̂ρ.
In order to increase the level of heterogeneity across time, we simulate from this hierarchical
model with 8 times the standard deviation 8σ̂ρ. We allow selection to depend on the three

lagged outcomes πi = logit
(
θ0 + θ1

∑L
`=1 Yi,t−`

)
, where θ0 = log 0.04 and θ1 = −2.
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(a) MAD for overall ATT vs MAD for individ-
ual ATT estimates

(b) RMSE for overall ATT vs RMSE for indi-
vidual ATT estimates

Figure B.1: Monte Carlo estimates of the MAD and RMSE for the overall ATT and the
individual ATT estimates under a linear factor model (3.14).
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(a) Bias for overall ATT vs MAD for individual
ATT estimates

(b) MAD for overall ATT vs MAD for individ-
ual ATT estimates

(c) RMSE for overall ATT vs RMSE for indi-
vidual ATT estimates

Figure B.2: Monte Carlo estimates of the MAD and RMSE for the overall ATT and the
individual ATT estimates under a two-way fixed effects model (B.6).



APPENDIX B. SUPPLEMENTARY MATERIALS FOR CHAPTER 3 136

(a) Bias for overall ATT vs MAD for individual
ATT estimates

(b) MAD for overall ATT vs MAD for individ-
ual ATT estimates

(c) RMSE for overall ATT vs RMSE for indi-
vidual ATT estimates

Figure B.3: Monte Carlo estimates of the MAD and RMSE for the overall ATT and the
individual ATT estimates under a random effects AR model (B.7).
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B.3 Additional results and figures for mandatory

collective bargaining

Event study estimates for the teacher collective bargaining
application

A common approach for estimating causal effects under staggered adoption is by fitting a
variant of the two-way fixed effect model, known as the event study, or dynamic treatment
effect, specification:

Yit = uniti + timet +
L∑
`=2

δ`1{Ti = t− `}+
K∑
k=0

τk1{Ti = t+ k}+ εit, (B.8)

for outcome Yit for state i at time t, where L = TJ and K = T − T1 are the maximum num-
ber of pre-treatment outcomes (lags) and post-treatment outcomes (leads) observed for all
treated units in the sample. Following standard practice, the coefficient for δ1 is normalized
to zero. This is arbitrary, and researchers sometimes impose a different normalization (e.g.,
δL = 0). If all units are eventually treated, a second normalization is required. Paglayan
(2019) uses a slightly different normalization to the equation shown here, though the dif-
ferences are immaterial. See Abraham and Sun (2018); Callaway and Sant’Anna (2018) for
further discussion of this workhorse model.

Figures B.10 and B.11a shows the results from estimating Equation (B.8) on the full
data in Paglayan (2019) for per-pupil expenditures and average teacher salary, respectively;
we show standard errors clustered by state (Pustejovsky and Tipton, 2018). The placebo
estimates to the left of treatment adoption time, the coefficients δ̂` from Equation (B.8),
show that states that pass laws have declining expenditures — and, to a lesser degree,
declining salaries — in the several years prior to adoption, relative to other states at the
same time. These “pre-trends” suggest that the critical parallel trends assumption is likely
violated in this setting, raising doubts about the estimates to the right of the treatment
adoption time, the coefficients τ̂k from Equation (B.8). Paglayan (2019) estimates Equation
(B.8) using only the ever-treated states, for which there is no evidence against the parallel
trends assumption. Figures B.10 and B.11a are nearly identical to the corresponding figures
from the supplementary materials in Paglayan (2019).

Additional figures
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Figure B.4: Illustrative fits for the weighted event study

(a) gsynth alone (b) Partially pooled SCM augmented with
gsynth

Figure B.5: gsynth and augmented estimates for per-pupil student expenditures (log, 2010
$).
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Figure B.6: Partially pooled SCM weights. White cells indicate zero weight, black cells
indicate a weight of 1.
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Figure B.7: Weighted event study weights. White cells indicate zero weight, black cells
indicate a weight of 1.
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Figure B.8: Partially pooled and weighted event study weights. The number of times that
each state is part of a treated state’s synthetic control, normalized by the number of times
it is a possible donor state. Note that California is an eligible donor state in only two cases.
Colors on a log scale.
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(a) Removing NY and AK (ν̂ = 0.27) (b) Varying ν from 0 to 1.

Figure B.9: (a) Partially pooled SCM estimates removing the two worst fit states, (b) ÂTT
as ν varies between 0 and 1 (plotted against qsep), estimates and approximate 95% confidence
intervals using ν̂ shown.

Figure B.10: Event study estimates for per pupil expenditures (log 2010 $).
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(a) Event study regression (b) Partially Pooled SCM, ν̂ = 0.50

Figure B.11: (a) Event study and (b) partially pooled SCM estimates for average teacher
salary (log, 2010 $).
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B.4 Additional results and proofs

Partial pooling in dual parameters

Lemma B.1. The Lagrangian dual to Equation (3.2) is

min
α,β

J∑
j=1

[∑
Wi=0

f ∗

(
αj +

L∑
`=1

β`jYi,Tj−`

)
−

(
αj +

L∑
`=1

β`jYj,T1−`

)]
︸ ︷︷ ︸

L(α,β)

+
J∑
j=1

λJL

2
‖βj‖2

2, (B.9)

where f ∗(y) = supx x
′y− f(x) is the convex conjugate of f . The resulting donor weights are

γ̂ij = f ∗′
(
α̂j −

∑L
`=1 β̂`jYi,Tj−`

)
.

Proof of Lemma B.1. Notice that the separate synth problem (3.2) separates into J opti-
mization problems:

min
γ1,...,γJ∈∆scm

j

qsep(Γ) + λ
J∑
j=1

N∑
i=1

f(γij)

=
1

2J

J∑
j=1

min
γj∈∆scm

j


 1

Tj − 1

Tj−1∑
`=1

(
Yj,Tj−` −

N∑
i=1

γijYi,Tj−`

)2
 + λ

N∑
i=1

f(γij)


(B.10)

Thus the Lagrangian dual objective is the sum of the Langrangian dual objectives of the
individual objectives in Equation (B.10). Inserting the dual objectives derived in Appendix
A.5 yields the result.

Proof of Proposition 3.1. We start be defining auxiliary variables, E0, E1, . . . , EJ ∈ RL where

Ej` = Yj,Tj−` −
∑N

i=1 γijYiTj−` for j ≥ 1 and E0` =
∑

Tj>`

(
Yj,Tj−` −

∑N
i=1 γijYi,Tj−`

)
. Ad-

ditionally we rescale by 1
λ
. Then we can write the partially pooled SCM problem (3.5)

as

min
γ1,...,γJ ,E0,...,EJ

ν

2Lλ

L∑
`=1

E2
0` +

1− ν
2Jλ

J∑
j=1

1

L
E2
j` +

J∑
j=1

N∑
i=1

f(γij)

subject to Ej` = Yj,Tj−` −
N∑
i=1

γijYiTj−`

E0` =
∑
Tj>`

(
Yj,Tj−` −

N∑
i=1

γijYi,Tj−`

)
γj ∈ ∆scm

j

(B.11)
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With Lagrange multipliers µβ, ζ1, . . . , ζJ ∈ RL and α1, . . . , αJ ∈ R, the Lagrangian to Equa-
tion (B.11) is

L(Γ, E0, . . . , EJ , α1, . . . , αJ , µβ, β1, . . . , βJ) =

L∑
`=1

 ν

2Lλ
E2

0` − µβ,`

 J∑
j=1

Yj,Tj−` −
∑
i∈Dj

γijYi,Tj−`

− E0`µβ,`


+

J∑
j=1

L∑
`=1

 1− ν
2JLλ

E2
j` − ζ`j

Yj,Tj−` −∑
i∈Dj

γijYi,Tj−`

− ζ`jEj`


+
J∑
j=1

∑
i∈Dj

f(γij)− αjγij − αj

(B.12)

Defining βj = µβ + ζj, the dual problem is:

− min
Γ,E0,E1,...,EJ

L(·) = −
J∑
j=1

∑
i∈Dj

min
γij

{
f(γij)−

(
αj −

L∑
`=1

β`jYi,Tj−`

)
γij

}
+

J∑
j=1

αj +
L∑
`=1

β`jYj,Tj−`

−
L∑
`=1

min
Ej`

{
1− ν
2JLλ

E2
j` − Ej`(β`j − µβ`)

}

−
L∑
`=1

min
E0`

{ ν

2Lλ
E2

0` − E0`µβ`

}
(B.13)

From Lemma B.1, we see that the first term in (B.13) is L(α, β) and we have the same
form for the implied weights. The next two terms are the convex conjugates of a scaled L2

norm. Using the computation that the convex conjugate of a
2
‖x‖2

2 is 1
2a
‖x‖2

2. Finally, the
primal problem (3.5) is still convex and a primal feasible point exists, so by Slater’s condition
strong duality holds.

Duality when balancing a general number of lagged outcomes

When balancing a different number of lagged outcomes for each treated unit, the lagrangian
dual problem only changes slightly. First, we immediately see that the dual to separate SCM
(3.2) is nearly identical to Equation (B.9):

min
α,β

L(α, β) +
J∑
j=1

λ(Tj − 1)

2
‖βj‖2

2 = min
α,β

L(α, β) +
J∑
j=1

Tj−1∑
`=1

λ(Tj − 1)

2
β2
`j (B.14)
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An important distinction is that for each treatment level j there is a different number of
lagged outcomes Tj; therefore the dual parameters βj have different lengths. Scaling the
ridge penalty by Tj ensures that the dual parameters are shrunk equally towards zero, and
balancing a different number of lagged outcomes for each treatment level changes the implied
selection model.

As before, the average balance term induces an additional set of Lagrange multipliers
µβ ∈ RTJ , where the varying-length βj’s are pooled towards µβ for each 1 ≤ ` ≤ Tj − 1.

min
α,β,µβ

L(α, β) +
J∑
j=1

λ(Tj − 1)

2(1− ν)

Tj−1∑
`=1

(β`j − µβ`)
2 +

λL

2ν
‖µβ‖2

2. (B.15)

Error bounds

Time-varying AR

Theorem B.1. Let Yit(0) follow a time-varying AR(L) process

Yit(0) =
L∑
`=1

(ρ̄` + ξt`)ρt`Yi,t−` + εit, (B.16)

where εit are independent sub-Gaussian random variables with scale parameter σ, and S2 ≡
1
J

∑J
j=1

∑L
`=1 ξ

2
Tj`

. For γ̂1, . . . , γ̂J ∈ ∆scm, the error at time Tj for treated unit j is

|τ̂j0 − τj0| ≤
∥∥ρ̄+ ξTj

∥∥
2

√√√√√ L∑
`=1

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

2

+ δσ (1 + ‖γ̂j‖2) (B.17)

with probability at least 1− 2e−
δ2

2 . Furthermore, the error for ÂTT0 is

ÂTT0 − ATT0 =
1

J

J∑
j=1

τ̂j0 − τj0 = ‖ρ̄‖2

√√√√√ L∑
`=1

 1

J

J∑
j=1

Yj,Tj−` −
∑
i∈Dj

γ̂ijYi,Tj−`

2

︸ ︷︷ ︸
global fit

+ S

√√√√√ 1

J

J∑
j=1

L∑
`=1

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

2

︸ ︷︷ ︸
individual fit

+
δσ√
J

(1 + ‖Γ‖F )

(B.18)

with probability at least 1− 2e−
δ2

2 .
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Proof of Theorem B.1. Notice that

τ̂j0 − τj0 =
L∑
`=1

(ρ̄` + ξTj`)

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

+

εjTj −∑
i∈Dj

γ̂ijεiTj


So by the triangle and Cauchy-Schwarz inequalities,

|τ̂j0 − τj0| ≤ ‖ρ̄+ ξTj‖2

√√√√√ L∑
`=1

Yj,Tj−` −∑
i∈Dj

γijYi,Tj−`

2

+

∣∣∣∣∣∣εjTj −
∑
i∈Dj

γijεiTj

∣∣∣∣∣∣
Since γ̂j is fit on pre-Tj outcomes, the weights are not dependent on εTj , and so the

second term above is sub-Gaussian with scale parameter σ
√

1 + ‖γ̂j‖2
2 ≤ σ(1 + ‖γ̂j‖2). This

implies that

P

∣∣∣∣∣∣εjTj −
∑
i∈Dj

γ̂ijεiTj

∣∣∣∣∣∣ ≥ δσ (1 + ‖γ̂j‖2)

 ≤ 2 exp

(
−δ

2

2

)
This completes the proof of the first inequality. For the bound on ÂTT0, notice that

ÂTT0 − ATT0 =
1

J

J∑
j=1

τ̂j0 − τj0 =
1

J

J∑
j=1

 L∑
`=1

(ρ̄` + ξTj`)

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

+

εjTj −∑
i∈Dj

γ̂ijεiTj


=

L∑
`=1

ρ̄`
1

J

J∑
j=1

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`


+

1

J

J∑
j=1

L∑
`=1

ξTj`

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`


+

1

J

J∑
j=1

εjTj −∑
i∈Dj

γ̂ijεiTj


(B.19)

By Cauchy-Schwarz the absolute value of the first term is∣∣∣∣∣∣
L∑
`=1

ρ̄`
1

J

J∑
j=1

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

∣∣∣∣∣∣ ≤ ‖ρ̄‖2

√√√√√ L∑
`=1

 1

J

J∑
j=1

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

2

.
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Similarly, the absolute value of the second term is∣∣∣∣∣∣ 1J
J∑
j=1

L∑
`=1

ξTj`

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

∣∣∣∣∣∣ ≤ 1

J

J∑
j=1

‖ξTj‖2

√√√√√ L∑
`=1

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

2

≤ S

√√√√√ 1

J

J∑
j=1

L∑
`=1

Yj,Tj−` −∑
i∈Dj

γ̂ijYi,Tj−`

2

Finally, notice that 1
J

∑J
j=1 εjTj is the average of J independent sub-Gaussian random vari-

ables and so is itself sub-Gaussian with scale parameter σ√
J

. However, 1
J

∑J
j=1

∑
i∈Dj γ̂ijεiTj

is the weighted average of sub-Gaussian variables that are independent over i but not neces-
sarily independent over j, and so the weighted average is sub-Gaussian with scale parameter
σ√
J
‖Γ‖F . The two averages are independent of each other, so

P

 1

J

J∑
j=1

εjTj −∑
i∈Dj

γ̂ijεiTj

 ≥ δσ√
J

(
1 + ‖Γ̂‖F

) ≤ 2 exp

(
−δ

2

2

)
Putting together the pieces completes the proof.

Linear factor model

We begin by bounding the error for the treatment effect for a single treated unit. This
re-writes Theorem 2.1 with the notation in Chapter 3. Then we prove Theorem 3.1.

Proposition B.1. Let Yit(0) follow a linear factor model

Yit(0) = µ′tφi + εit, (B.20)

where µt, φi ∈ RF with maxt ‖µt‖∞ ≤ M , and εit is independent sub-Gaussian with scale
parameter σ. For γ̂1, . . . , γ̂J ∈ ∆scm, the error at time Tj for treated unit j is

|τ̂j0 − τj0| ≤
M2F√
L

√√√√√ L∑
t=1

Yjt −∑
i∈Dj

γ̂ijYit

2

+ σ
M2F√
L

(
2δ +

√
log ‖Dj‖

)
+ δσ (1 + ‖γ̂j‖2)

(B.21)

with probability at least 1− 6e−
δ2

2 .

Proof of Proposition B.1. First notice that

τ̂j0 − τj0 = µ′Tj

φj −∑
i∈Dj

γ̂ijφi

+

εjt −∑
i∈Dj

γ̂ijεiTj


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From the proof of Theorem B.1, we know that

P

∣∣∣∣∣∣εjTj −
∑
i∈Dj

γ̂ijεiTj

∣∣∣∣∣∣ ≥ δσ (1 + ‖γ̂j‖2)

 ≤ 2 exp

(
−δ

2

2

)
.

Following Abadie et al. (2010), we can re-write φi in terms of the lagged outcomes as

φi = (µ′1:Lµ1:L)−1

L∑
t=1

µt(Yit − εit) =
1

L

L∑
t=1

µt(Yit − εit) (B.22)

where µ1:L ∈ RL×F is the matrix of factors from time t = 1, . . . , L. With the Cauchy-Schwarz
inequality, this implies that∣∣∣∣∣∣µ′Tj

φj −∑
i∈Dj

γ̂ijφi

∣∣∣∣∣∣ =
1

L

L∑
t=1

µ′Tjµt

Yjt −∑
i∈Dj

γ̂ijYit

− 1

L

L∑
t=1

µ′Tjµt

εjt −∑
i∈Dj

γ̂ijεit


≤ 1

L
‖µ′Tjµ1:L‖2

√√√√√ L∑
t=1

Yjt −∑
i∈Dj

γ̂ijYit

2

+
1

L

∣∣∣∣∣
L∑
t=1

µ′Tjµtεjt

∣∣∣∣∣+ max
i∈Dj

∣∣∣∣∣
L∑
t=1

µ′Tjµtεit

∣∣∣∣∣
Next, since εjTj are independent sub-Gaussian,

P

(
1

L

∣∣∣∣∣
L∑
t=1

µ′Tjµtεjt

∣∣∣∣∣ ≥ δσ

L
‖µ′Tjµ1:L‖2

)
≤ 2 exp

(
−δ

2

2

)
and by the standard tail bound on maxima of sub-Guassian random variables,

P

(
1

L
max
i∈Dj

∣∣∣∣∣
L∑
t=1

µ′Tjµtεit

∣∣∣∣∣ ≥ σ

L
‖µ′Tjµ1:L‖2

(√
log ‖Dj‖+ δ)

))
≤ 2 exp(−δ

2

2
)

Now notice that 1
L
‖µ′Tjµ1:L‖2 ≤ M2F√

L
. Combining these bounds gives the result.

Proof of Theorem 3.1. Using Equation (B.22), we can write the error for the ATT as

ÂTTk − ATTk =
1

J

J∑
j=1

τ̂jk − τjk =
1

JL

J∑
j=1

L∑
t=1

µ′Tj+kµt

Yjt −∑
i∈Dj

γ̂ijYit


− 1

JL

J∑
j=1

L∑
t=1

µ′Tj+kµt

εjt −∑
i∈Dj

γ̂ijεit


+

1

J

J∑
j=1

εjt −∑
i∈Dj

γ̂ijεiTj

 .

(B.23)
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From the proof of Theorem B.1, we can bound the final term in Equation (B.23). We
now bound the first two terms. First, we decompose the first term into a time constant, and
a time varying component:

1

JL

J∑
j=1

L∑
t=1

µ′Tj+kµt

Yjt −∑
i∈Dj

γ̂ijYit


︸ ︷︷ ︸

(∗)

=
1

JL
µ̄′k

L∑
t=1

µt

J∑
j=1

Yjt −∑
i∈Dj

γ̂ijYit



+
1

JL

J∑
j=1

L∑
t=1

ξ′Tj+kµt

Yjt −∑
i∈Dj

γ̂ijYit

 ,

where ξTj+k ≡ µTj+k − µ̄k. Now by Cauchy-Schwarz and using that 1
L
‖µ1:L‖2 ≤ M

√
F√
L

we get
that

|(∗)| ≤M

√
F

L
‖µ̄k‖2

√√√√√ L∑
t=1

 1

J

J∑
j=1

Yjt −
∑
i∈Dj

γ̂ijYit

2

+
M

J

√
F

L

J∑
j=1

‖ξTj+k‖2

√√√√√ L∑
t=1

Yjt −∑
i∈Dj

γ̂ijYit

2

≤M

√
F

L
‖µ̄k‖2

√√√√√ L∑
t=1

 1

J

J∑
j=1

Yjt −
∑
i∈Dj

γ̂ijYit

2

+M

√
F

L
Sk

√√√√√ 1

J

J∑
j=1

L∑
t=1

Yjt −∑
i∈Dj

γ̂ijYit

2

We now turn to the second term in Equation (B.23). Since εit are independent sub-
Gaussian random variables and 1

L
‖µ′Tj+kµ1:L‖2 ≤ M2F√

L
,

P

(
1

L

∣∣∣∣∣ 1J
J∑
j=1

L∑
t=1

µ′Tj+kµtεjt

∣∣∣∣∣ ≥ δσM2F√
JL

)
≤ 2 exp

(
−δ

2

2

)
Next, since γ̂1, . . . , γ̂J ∈ ∆scm, 1

J

∑J
j=1 ‖γ̂j‖1 = 1, so by Hölder’s inequality

∣∣∣∣∣∣ 1J
J∑
j=1

L∑
t=1

µ′Tj+kµt
∑
i∈Dj

γ̂ijεit

∣∣∣∣∣∣ ≤ max
j∈{1,...,J},i∈Dj

∣∣∣∣∣
L∑
t=1

µ′Tj+kµtεit

∣∣∣∣∣ ≤ 2
σM2F√

L

(√
logNJ + δ

)

where the final inequality holds with probability at least 1 − 2 exp
(
− δ2

2

)
by the standard

tail bound on the maximum of sub-Gaussian random variables. Putting together the pieces
with a union bound gives that
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∣∣∣ÂTTk − ATTk

∣∣∣ ≤ M
√
F√
L

‖µ̄k‖2

√√√√√ L∑
t=1

 1

J

J∑
j=1

Yjt −
∑
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γ̂ijYit

2

+ Sk

√√√√√ 1

J
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i∈Dj

γ̂ijYit

2


+
σM2F√

L

((
2 +

1√
J

)
δ + 2

√
logNJ

)
+

δσ√
J

(
1 + ‖Γ̂‖F

)
with probability at least 1− 6e−

δ2

2 .
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Appendix C

Supplementary materials for Chapter
4

C.1 Within-subject comparison

We compare the weighting estimates for the effect of submitting an LOR on the second reader
scores to estimates exploiting an additional feature of the pilot study. After the admissions
process concluded, 10,000 applicants who submitted letters were randomly sampled and the
admissions office recruited several readers to conduct additional evaluations of the applicants
(Rothstein, 2017). During this supplemental review cycle, the readers were not given access
to the letters of recommendation, but otherwise the evaluations were designed to be as similar
as possible to the second reads that were part of the regular admissions cycle; in particular,
readers had access to the first readers’ scores.

With these third reads we can estimate the treatment effect by taking the average differ-
ence between the second read (with the letters) and the third read (without the letters). One
major issue with this design is that readers might have applied different standards during
the supplemental review cycle. Regardless, if the third readers applied a different standard
consistently across URM and admissibility status, we can distinguish between treatment
effects within these subgroups. We show the results in Figures C.9 and C.10.

C.2 Proofs

Proof of Proposition 4.1. First, we will augment the primal optimization problem in Equa-
tion (4.13) with auxiliary covariates E1, . . . , Ej so that Eg =

∑
Gi=g,Wi=0 γiφ(Xi)−

∑
Gi=g,Wi=1 φ(Xi).
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Then the optimization problem becomes:

min
γ

J∑
z=1

1

2λg
‖Ej‖2

2 +
λg
2

∑
Zi=z,Wi=0

γ2
i + I(γi ≥ 0)

subject to
∑
Wi=0

γiφ(Xi) =
∑
Wi=1

φ(Xi)

Ej =
∑

Gi=g,Wi=0

γiφ(Xi)−
∑

Gi=g,Wi=1

φ(Xi), z = 1, . . . , J∑
Gi=g,Wi=0

γi = n1g,

(C.1)

where I(x ≥ 0) =

{
0 x ≥ 0
∞ x < 0

is the indicator function. The first constraint induces a

Lagrange multiplier µβ, the next J constraints induce Lagrange multipliers δ1, . . . , δJ , and
the sum-to-one constraints induce Lagrange multipliers α1, . . . , αJ . Then the Lagrangian is

L(γ, E , µβ, δ, α) =
J∑
z=1

[
1

2λg
‖Ej‖2

2 − Ej · δj +
∑

Gi=g,Wi=0

1

2
γ2
i + I(γi ≥ 0)− γi(α + (µβ + δj) · φ(Xi))

]

+
J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · φ(Xi))

(C.2)
The dual objective is:

q(µβ, δ, α) =
J∑
z=1

[
min
Ej

{
1

2λg
‖Ej‖2

2 − Ej · δj
}

+
∑

Gi=g,Wi=0

min
γi≥0

{
1

2
γ2
i − γi(α + (µβ + δj) · φ(Xi))

}]

+
J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · φ(Xi))

(C.3)
Note that the inner minimization terms are the negative convex conjugates of 1

2
‖x‖2

2 and
1
2
x2 + I(X ≥ 0), respectively. Solving these inner optimization problems yields that

q(µβ, δ, α) = −
J∑
z=1

[
λg
2
‖δj‖2

2 +
∑

Gi=g,Wi=0

[αj + (µβ + δj) · φ(Xi)]
2
+

]

+
J∑
z=1

∑
Gi=g,Wi=1

(1 + (µβ + δj) · φ(Xi))

(C.4)

Now since there exists a feasible solution to the primal problem (4.13), from Slater’s con-
dition we see that the solution to the primal problem is equivalent to the solution to
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Figure C.1: (a) Mean square error (Brier score) and (b) admission rates for the Admissibility
Index predicting the 2016-2017 cycle admissions results, computed in 2% groups.

College URM AUC Brier Score

Letters and Science
URM 89% 9%
Not URM 88% 11%

Engineering
URM 92% 5%
Not URM 89% 11%

Table C.1: AUC and Brier score for the Admissibility Index predicting the 2016-2017 cycle
admissions results.

maxµβ ,α,δ q(µβ, α, δ). Defining βj ≡ µβ + δj gives the dual problem (4.18). Finally, note that
the solution to the minimization over the weights in Equation (C.3) is γi = [αj + βj · φ(Xi)]+,
which shows how to map from the dual solution to the primal solution.

C.3 Additional figures and tables
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Figure C.2: ROC curve for Admissibility Index predicting the 2016-2017 cycle admissions
results.
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Figure C.3: Distribution of covariate balance measured by the mean standardized difference
for different weighting methods.
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Figure C.4: Imbalance in the admissibility index after weighting relative to before weighting,
overall and within each subgroup. For several subgroups, the fully pooled balancing weights
procedure results in increased imbalance in the admissibility index, denoted by an arrow.
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Figure C.5: Effective sample size for each subgroup, with weights solving the approximate
balancing weights problem (4.13).
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Figure C.6: Estimated log risk ratio of admission with and without letters of recommendation
± two standard errors computed via the delta method, overall and by URM status and AI.
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Figure C.7: Estimated effect of letters of recommendation on admission rates with and
without augmentation via ridge regression.
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Figure C.8: Estimated effect of letters of recommendation on admission rates for comparable
weighting estimators.
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Figure C.9: Effects on second reader scores overall, by URM status, and by AI, estimated
via (a) the partially pooled balancing weights estimator and (b) the within-subject design.
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Figure C.10: Effects on second reader scores by URM status interacted with AI, estimated
via (a) the partially pooled balancing weights estimator and (b) the within-subject design.
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C.4 Additional simulation results

Figure C.11: Performance of approximate balancing weights for estimating subgroup treat-
ment effects as λ varies.
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