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ABSTRACT
Objective  Molecular profiling is developing to inform 
treatment in endometrial cancer. Using real world 
evidence, we sought to evaluate frontline immune 
checkpoint inhibitor vs chemotherapy effectiveness 
in advanced endometrial cancer, stratified by Tumor 
Mutational Burden (TMB) ≥10 mut/MB and microsatellite 
instability (MSI).
Methods  Patients with advanced endometrial cancer 
in the US-based de-identified Flatiron Health-Foundation 
Medicine Clinico-Genomic Database were included. 
Data originated from patients treated between January 
2011- March 2022 at 280 US clinics. Next-generation 
sequencing assays were performed via FoundationOne 
or FoundationOneCDx. Longitudinal clinical data 
were derived from electronic health records. Immune 
checkpoint inhibitor treatment included pembrolizumab, 
dostarlimab, and nivolumab monotherapies. Time to 
next treatment, time to treatment discontinuation, and 
overall survival were assessed with the log-rank test and 
Cox proportional hazard models with adjusted hazard 
ratios (aHR) for known prognostic factors. We used the 
Likelihood ratio test to compare biomarker performance.
Results  A total of 343 patients received chemotherapy 
and 28 received immune checkpoint inhibitor 
monotherapy as frontline treatment. Patients who 
received monotherapy were more likely to be stage III 
at diagnosis (immune checkpoint inhibitor: 54.6% vs 
chemotherapy: 15.0%; p<0.001) and more likely to 
test MSI-high via next-generation sequencing (immune 
checkpoint inhibitor: 53.6% vs chemotherapy: 19.2%; 
p<0.001). In MSI-high cancers, single-agent immune 
checkpoint inhibitor had a more favorable time to next 
treatment (aHR: 0.18, p=0.001) and overall survival 
(aHR 0.29, p=0.045). Additional analyses on 70 unique 
tumor specimens revealed mismatch repair deficiency 
(dMMR) via immunohistochemistry and MSI-high via 
next-generation sequencing concordance (91%), with 
nominal improvement of MSI over dMMR to predict time 
to treatment discontinuation (p=0.030), time to next 
treatment (p=0.032), and overall survival (p=0.22). MSI 

status was concordant with tumor mutational burden 
≥10 in 94.3% of cases.
Conclusion  Immune checkpoint inhibitors may 
have improved efficacy over chemotherapy in frontline 
treatment for advanced endometrial cancer defined 
by MSI-high using next-generation sequencing as a 
nominally better predictor of outcomes than dMMR 
with immunohistochemistry. This provides the biologic 
rationale of active phase III trials.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Biomarker-directed, FDA-approved immune check-
point inhibitors exist as later-line treatment options 
in advanced endometrial cancer.

WHAT THIS STUDY ADDS
	⇒ While limited by small sample size and its retro-
spective nature, this study found that single-agent 
frontline immune checkpoint inhibitor therapy use 
was associated with more favorable time to next 
treatment and overall survival compared with cy-
totoxic chemotherapy in MSI-high/tumor mutation-
al burden-high advanced endometrial cancer in 
a retrospective data set with well-validated next-
generation sequencing assays and survival end-
points. MSI-high by next-generation sequencing 
and dMMR by immunohistochemistry were highly 
concordant, and next-generation sequencing was 
a nominally better predictor of immune checkpoint 
inhibitor outcomes than immunohistochemistry.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ These findings support the rationale of active 
biomarker-selected phase III trials, which are exam-
ining the utility of immune checkpoint inhibitors in 
the frontline setting.

http://bmjopen.bmj.com/
http://dx.doi.org/10.1136/ijgc-2022-004026
http://dx.doi.org/10.1136/ijgc-2022-004026
http://crossmark.crossref.org/dialog/?doi=10.1136/ijgc-2022-004026&domain=pdf&date_stamp=2023-03-30
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INTRODUCTION

Endometrial cancer is the most common gynecologic malignancy in 
the United States and its incidence is on the rise worldwide.1 In 2022, 
there were an estimated 65 950 new cases and 12 550 deaths from 
the disease in the United States alone.1 2 While most women have 
early-stage disease associated with excellent outcomes, those with 
advanced disease reflect an unmet need with an estimated 5 year 
survival for stage IVA and stage IVB as 17% and 15%, respectively.3 
Additionally, recent data support disproportionately worse outcomes 
for minority patients that may be partially explained by molecular 
aberrations contributing to a more aggressive tumor biology.4

Molecular profiling and subtyping of endometrial cancer is 
becoming integral to informing treatment and prognostication. In 
2013, the Cancer Genome Atlas (TCGA) described four molecular 
classes of endometrial cancer based on comprehensive molec-
ular profiling.3 These included polymerase e (POLE)-mutant/ultra-
mutated, microsatellite instability (MSI), copy-number low, and 
copy-number high. Each class is associated with implications for 
histologic type and prognosis. In advanced endometrial cancer, 
67–91% of patients have at least one actionable genomic alter-
ation.3 Among these molecular subtypes are two that are charac-
terized by aberrations resulting in high tumor mutational burden: 
one with MSI and another by the presence of POLE mutations.5

MSI-high is found in approximately 30% of primary endometrial 
carcinomas and in an estimated 13–30% of recurrences, with rates 
significantly higher in endometrioid-type carcinomas compared with 
other histotypes.6 Conversely, POLE mutations are found in 10% of all 
endometrioid-types and are defined by presentation at a younger age, 
earlier stage, and have good prognosis.7 Currently, there are several 
methods to detect vulnerability to immune checkpoint inhibition in 
endometrial cancer: identifying deficiencies in mismatch repair protein 
expression by immunohistochemistry, measuring size of dinucleotide 
repeats at five selected loci by PCR, and by quantifying the amount 
of instability across hundreds of repeat loci or detecting an MMR 
COSMIC signature by next-generation sequencing-based comprehen-
sive genomic profiling. dMMR and PCR methods have been widely 
utilized in the past but have limitations: dMMR by immunohistochem-
istry interpretation is subject to interobserver variability due to under-
recognized patterns and/or background tissue staining and sampling 
limitations that miss tumors with subclonal loss, among others.8 9 PCR 
methods require larger tumor specimen blocks than next-generation 
sequencing and may be inconclusive in patients with lower or diffi-
cult to assess tumor burdens.10 In contrast, the relatively newer next-
generation sequencing-based MSI-high detection methods have not 
been compared with traditional methods for clinical validity or utility 
for predicting the efficacy of immune checkpoint inhibitors in MSI-high 
endometrial cancer.

For frontline treatment of advanced or recurrent endometrial 
cancer, the combination of carboplatin and paclitaxel continues to 
be the standard of care, regardless of biomarker-defined molecular 
subtype.11 Several studies have reported the promising efficacy of 
single-agent anti-PD1 and anti-PDL1 immunotherapy, predominantly 
in the second-line or later setting.12–15 However, these agents have 
not been approved in the frontline treatment setting due to the lack 
of randomized trial data comparing outcomes against chemotherapy.

Using electronic health record data from diverse practices across 
the United States, we sought to compare the outcomes of patients 

treated with immune checkpoint inhibitors in the frontline setting with 
those treated with standard chemotherapy, stratified by both next-
generation sequencing-based MSI assessment and tumor mutational 
burden level. Further, while dMMR and MSI are often concordant, they 
are not synonymous,16 and understanding the implications of discor-
dance on response to immune checkpoint inhibition was explored.15 16

METHODS

Patient Selection
This study comprised patients with confirmed diagnosis of 
advanced endometrial carcinoma or carcinosarcomas included 
in the US-wide Flatiron Health (FH)-Foundation Medicine (FMI) 
de-identified clinico-genomic database between January 2011 
and March 2022. All underwent genomic testing using Foundation 
Medicine comprehensive genomic profiling assays. De-identified 
clinical data originated from approximately 280 US cancer clinics 
(800 sites of care).17 Retrospective longitudinal clinical data were 
derived from electronic health records, comprising patient-level 
structured and unstructured data, curated via technology-enabled 
abstraction of clinical notes and radiology/pathology reports, which 
were linked to genomic data derived from Foundation Medicine 
testing by de-identified, deterministic matching.18 Clinical data 
included demographics, clinical and laboratory features, timing of 
treatment exposure, and survival. MMR status was also abstracted 
from electronic health records. Specific assay details or expres-
sion loss details are unfortunately unavailable. Regimens consid-
ered single-agent immune checkpoint inhibitor treatment included 
pembrolizumab, dostarlimab, and nivolumab monotherapies. Any 
regimen containing platinum chemotherapy without an immune 
checkpoint inhibitor was considered chemotherapy. The reason for 
choice of therapy was unknown at the time of data collection.

Analyses were conducted in three cohorts (Figure  1). Front-
line Comparative Effectiveness Cohort: Patients with advanced 
endometrial cancer who received either a single-agent immune 
checkpoint inhibitor or chemotherapy regimen as the frontline. 
Patients were excluded if they had no MSI call, clear cell histology, 
record gap, or did not receive platinum-based chemotherapy or an 
immune checkpoint inhibitor. dMMR and MSI Comparison Cohort: 
Patients who received an immune checkpoint inhibitor in any line 
of therapy and had records of dMMR, MSI, and tumor mutational 
burden testing. Patients with clear cell histology, no dMMR or MSI 
assessment, record gap, had follow-up of less than 1 week, or did 
not receive an immune checkpoint inhibitor were excluded from 
this cohort. Tumor mutational burden and MSI Comparison Cohort: 
Any patient with evaluable MSI and tumor mutational burden. 
Those without tissue biopsy or MSI call were excluded. Those with 
multiple lines of therapy with multiple tissue biopsies were counted 
once. Institutional Review Board approval was obtained before 
study conduct and included a waiver of informed consent.

Comprehensive Genomic Profiling
Hybrid capture-based next-generation sequencing assays were 
performed on patient tumor specimens in Clinical Labora-
tory Improvement Amendments–certified, College of American 
Pathologists (CAP)-accredited laboratory (Foundation Medicine, 
Cambridge, MA). Samples were evaluated for alterations as previ-
ously described.19 Tumor mutational burden was determined on up 
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to 1.1 Mb of sequenced DNA.20 MSI status was determined by pre-
specified analytical criteria, as previously described.21 22

Outcomes
Time to next treatment and time to treatment discontinuation are 
time-to-event proxies for drug clinical effectiveness.23 Time to next 
treatment was calculated from treatment start date until the start 
of next treatment line. Patients not yet reaching next treatment 
line were right censored at date of last clinical visit, laboratory 
result, or medication order.17 Patients who died before treatment 
switch were right censored. Time to treatment discontinuation 
was calculated from treatment start date until cessation of use 
of the life-prolonging treatment for any reason or cause. Patients 
not yet discontinuing treatment were right censored at date of last 
prescription or infusion. Overall survival was calculated from start 
of treatment to death from any cause, and patients without a record 
of mortality were right censored at the date of their last clinic visit 
or structured activity.17 Because patients cannot enter the database 
until a comprehensive genomic profiling report is delivered, overall 
survival risk intervals were left truncated to the date of report to 
account for immortal time.24 25 Flatiron Health database mortality 
information is a composite derived from three sources: the elec-
tronic health record, Social Security Death Index, and a commercial 
death dataset from obituaries and funeral homes. The mortality 
information has been externally validated in comparison to the 
National Death Index with >90% accuracy.26

Statistical Analysis and Interpretations
A prospectively declared statistical analysis plan was developed and 
executed. Consistent with ISPOR guidelines,27 the inclusion criteria, 
exclusion criteria, potential biases, primary outcome measures, explor-
atory outcome measures, handling of missing data, and all methods 
described below were specified before analysis execution unless 
otherwise noted. The pre-specified analysis included comparing the 

effectiveness of immune checkpoint inhibitors vs chemotherapy in 
patients treated in the frontline setting stratified by MSI status, by 
tumor mutational burden <10 mut/Mb and tumor mutational burden 
≥10 mut/Mb, and the effectiveness of patients receiving an immune 
checkpoint inhibitor by dMMR status vs MSI status. We hypothesized 
that patients with MSI-high or tumor mutational burden ≥10 would 
have comparable or improved outcomes with frontline immune 
checkpoint inhibitors over chemotherapy, but not when MSS or tumor 
mutational burden was <10. We also hypothesized that MSI assessed 
by next-generation sequencing would have better predictive ability to 
MMR assessed by immunohistochemistry.

Differences in time-to-event outcomes were assessed with the log-
rank test and Cox proportional hazard models. Chi-square tests and 
Wilcoxon Rank Sum tests were used to assess differences between 
categorical and continuous variables, respectively. Multiple compar-
ison adjustments were not performed; p-values are reported to quan-
tify the strength of association for biomarker and each outcome, not 
for null hypothesis significance testing. Interpretations are adopted 
broadly considering consistency of multiple outcome measures in 
concert (time to treatment discontinuation, time to next treatment, 
overall survival) across defined cohorts with no outcome measure 
or cohort standing on its own.17 The default interpretation is that a 
biomarker correlating with overall survival but not time to next treat-
ment and time to treatment discontinuation within a cohort is likely a 
confounding artifact. A biomarker correlating with time to next treat-
ment and time to treatment discontinuation but not overall survival is 
not more than nominally remarkable. This is because chemotherapy 
use in the frontline setting often has a maximum number of cycles. 
Time to treatment discontinuation was not used for comparisons 
involving chemotherapy.17 Missing values were handled by simple 
imputation with expected values determined using random forests 
with the R package ‘missForest.’ In subsequent analyses, imputed 
values were treated identically to measured values.17

Figure 1  Cohort selection diagrams and analysis overviews. (MSI=microsatellite instability; EHR=electronic health records; 
ICI=immune checkpoint inhibitor; dMMR=mismatch repair deficiency; TMB=tumor mutational burden; TTNT=time to next 
treatment; OS=overall survival; TTD=time to treatment discontinuation; CGP=comprehensive genomic profiling)
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Table 1  Patient characteristics in front-line treatment groups

MSI-H on chemo 
(n=66)

MSI-H on ICI 
(n=15)

MSS on chemo 
(n=277)

MSS on ICI 
(n=13) Total (n=371) P value

Age at Therapy Start 0.557

 � Median (Q1, Q3) 67.0 (60.0, 73.0) 68.0 (61.0, 72.5) 67.0 (61.0, 72.0) 71.0 (62.0, 73.0) 67.0 (60.0, 72.5)

Practice Type 0.694

 � Academic 18 (27.3%) 6 (40.0%) 73 (26.4%) 3 (23.1%) 100 (27.0%)

 � Community 48 (72.7%) 9 (60.0%) 204 (73.6%) 10 (76.9%) 271 (73.0%)

Stage at Diagnosis < 0.001

 � I 31 (47.0%) 7 (46.7%) 92 (33.2%) 4 (30.8%) 134 (36.1%)

 � II 3 (4.5%) 1 (6.7%) 12 (4.3%) 0 (0.0%) 16 (4.3%)

 � III 4 (6.1%) 7 (46.7%) 45 (16.2%) 8 (61.5%) 64 (17.3%)

 � IV 22 (33.3%) 0 (0.0%) 117 (42.2%) 1 (7.7%) 140 (37.7%)

 � Unknown/not documented 6 (9.1%) 0 (0.0%) 11 (4.0%) 0 (0.0%) 17 (4.6%)

Distant Recurrence 0.285

 � No 5 (7.6%) 0 (0.0%) 22 (7.9%) 0 (0.0%) 27 (7.3%)

 � Unknown 31 (47.0%) 4 (26.7%) 139 (50.2%) 6 (46.2%) 180 (48.5%)

 � Yes 30 (45.5%) 11 (73.3%) 116 (41.9%) 7 (53.8%) 164 (44.2%)

Histology < 0.001

 � Carcinosarcoma 7 (10.6%) 1 (6.7%) 48 (17.3%) 4 (30.8%) 60 (16.2%

 � Endometrial cancer, NOS 9 (13.6%) 1 (6.7%) 30 (10.8%) 0 (0.0%) 40 (10.8%)

 � Endometrioid carcinoma 48 (72.7%) 11 (73.3%) 108 (39.0%) 3 (23.1%) 170 (45.8%

 � Serous carcinoma 2 (3.0%) 2 (13.3%) 91 (32.9%) 6 (46.2%) 101 (27.2%)

Race 0.392

 � Black or African American ≤6 (≤9%) ≤6 (≤40%) 44 (15.9%) ≤6 (≤46%) 51 (13.7%

 � Other Race 11 (16.7%) ≤6 (≤40%) 47 (17.0%) ≤6 (≤46%) 61 (16.4%

 � Unknown/not documented ≤6 (≤9%) ≤6 (≤40%) 25 (9.0%) ≤6 (≤46%) 32 (8.6%)

 � White 44 (66.7%) 13 (86.7%) 161 (58.1%) 9 (69.2%) 227 (61.2%

ECOG Score 0.743

 � 0 18 (27.3%) 5 (33.3%) 101 (36.5%) 5 (38.5%) 129 (34.8%

 � 1 23 (34.8%) 5 (33.3%) 102 (36.8%) 3 (23.1%) 133 (35.8%

 � 2+ 9 (13.6%) 1 (6.7%) 26 (9.4%) 1 (7.7%) 37 (10.0%

 � Unknown 16 (24.2%) 4 (26.7%) 48 (17.3%) 4 (30.8%) 72 (19.4%

dMMR by IHC < 0.001

 � Loss 29 (100.0%) 12 (100.0%) 4 (2.9%) 1 (10.0%) 46 (24.6%

 � Normal 0 (0.0%) 0 (0.0%) 132 (97.1%) 9 (90.0%) 141 (75.4%

 � Missing Observations 37 3 141 3 184

Opioid Use Pre-Therapy 0.606

 � No 42 (63.6%) 10 (66.7%) 197 (71.1%) 8 (61.5%) 257 (69.3%)

 � Yes 24 (36.4%) 5 (33.3%) 80 (28.9%) 5 (38.5%) 114 (30.7%)

TMB < 0.001

 � Median (Q1, Q3) 21.3 (16.5, 31.1) 22.5 (19.4, 27.5) 2.5 (1.3, 5.0) 1.3 (0.9, 2.5) 3.8 (1.3, 10.0)

MSI by NGS < 0.001

 � MSI-H 66 (100.0%) 15 (100.0%) 0 (0.0%) 0 (0.0%) 81 (21.8%)

 � MSS 0 (0.0%) 0 (0.0%) 277 (100.0%) 13 (100.0%) 290 (78.2%)

PDL1 0.005

 � TPS 0 11 (16.7%) 2 (13.3%) 44 (15.9%) 1 (7.7%) 58 (15.6%)

 � TPS 1–19 3 (4.5%) 1 (6.7%) 16 (5.8%) 2 (15.4%) 22 (5.9%)

 � TPS 20+ 0 (0.0%) 0 (0.0%) 3 (1.1%) 2 (15.4%) 5 (1.3%)

Continued
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To adjust for differences in risk of death among patients treated 
with immune checkpoint inhibitors compared with chemotherapy, 
pre-therapy prognostic features associated with risk of death (Eastern 
Cooperative Oncology Group (ECOG) score, age, academic vs commu-
nity treatment setting, body mass index, stage at diagnosis, opioid 
use, TP53 and CTNNB1 mutation status, alkaline phosphatase levels, 
albumin levels, hemoglobin levels) among patients treated with 
chemotherapy were combined into a multivariable model (online 
supplemental Figure 1), as previously described.28 29 The resulting 
sum of coefficients (online supplemental Figure 3) was applied to the 
group receiving chemotherapy, as and separately to the “held out” 
group of patients receiving an immune checkpoint inhibitor. This risk 
score was used for adjustment in all Cox proportional hazard models 
and reported out as an adjusted hazard ratio (aHR).

Comparison of predictive biomarker performance was evaluated 
using the likelihood ratio test.30 R version 3.6.3 software was used 
for all statistical analyses.

RESULTS

Characteristics of Analysis Cohorts
Frontline Comparative Effectiveness Cohort: After selection, 343 
patients received frontline chemotherapy, and 28 patients received 
frontline immune checkpoint inhibitor monotherapy (Figure  1, 
Table 1). Compared with patients receiving chemotherapy, patients 

receiving immune checkpoint inhibitor monotherapy were less 
likely to be stage IV at diagnosis (4.0% vs 40.5%), more likely stage 
III at diagnosis (53.6% vs 14.3%), and more likely to test MSI-high 
(53.6% vs 19.2%, p<0.001). (Table 1).

dMMR and MSI Comparison Cohort: After selection, 70 patients 
had dMMR immunohistochemistry status abstracted from elec-
tronic health records, as well as MSI and tumor mutational burden 
testing via next-generation sequencing. Of these, 20 (29%), 25 
(36%), and 25 (36%) were treated in first, second, and third+lines 
of therapy, and 20 (29%), 26 (37%), 9 (13%), and 15 (21%) had 
ECOG 0, 1, 2+, unknown respectively (online supplemental Table, 
Figure 1).

Tumor mutational burden and MSI Comparison Cohort: After 
filtering, 1097 unique tissue specimens were evaluable for tumor 
mutational burden and MSI (Figure 1).

Real World Patients Receiving Frontline Immune Checkpoint 
Inhibitor Monotherapy versus Chemotherapy Have Favorable 
Outcomes when MSI-H by Next-generation Sequencing but 
not MSS
Among patients treated with single-agent immune checkpoint 
inhibitor vs chemotherapy in frontline, those with MSI-high as 
assessed by next-generation sequencing had more favorable 
time to next treatment (aHR: 0.18, 95% CI: 0.06 to 0.52, p=0.001) 
and overall survival (aHR: 0.29, 95% CI: 0.09 to 0.97, p=0.045) 

MSI-H on chemo 
(n=66)

MSI-H on ICI 
(n=15)

MSS on chemo 
(n=277)

MSS on ICI 
(n=13) Total (n=371) P value

 � unknown 52 (78.8%) 12 (80.0%) 214 (77.3%) 8 (61.5%) 286 (77.1%)

POLE Mutation 0.49

 � Negative 66 (100.0%) 15 (100.0%) 270 (97.5%) 13 (100.0%) 364 (98.1%)

 � Positive 0 (0.0%) 0 (0.0%) 7 (2.5%) 0 (0.0%) 7 (1.9%)

POLD1 Mutation < 0.001

 � Negative 66 (100.0%) 15 (100.0%) 277 (100.0%) 13 (100.0%) 371 (100.0%)

TP53 Mutation < 0.001

 � Negative 51 (77.3%) 12 (80.0%) 104 (37.5%) 2 (15.4%) 169 (45.6%

 � Positive 15 (22.7%) 3 (20.0%) 173 (62.5%) 11 (84.6%) 202 (54.4%)

CTNNB1 mutation 0.252

 � Negative 48 (72.7%) 10 (66.7%) 220 (79.4%) 12 (92.3%) 290 (78.2%)

 � Positive 18 (27.3%) 5 (33.3%) 57 (20.6%) 1 (7.7%) 81 (21.8%)

BMI 0.238

 � Median (Q1, Q3) 29.4 (22.1, 35.8) 26.2 (21.0, 32.1) 30.4 (25.3, 36.8) 29.2 (24.7, 37.9) 30.2 (24.7, 36.6)

 � Missing Observations 1 2 13 0 16

Subsequent second -line 
treatment

< 0.001

 � Chemo 4 (6.1%) 1 (6.7%) 60 (21.7%) 3 (23.1%) 68 (18.3%

 � Hormonal tx without chemo 3 (5.0%) 2 (14.3%) 32 (12.1%) 0 (0.0%) 37 (10.6%)

 � ICI 29 (43.9%) 0 (0.0%) 51 (18.4%) 2 (15.4%) 82 (221%)

Other 33 (50.0%) 14 (93.3%) 166 (59.9%) 8 (61.5%) 221 (59.6%)

BMI, Body Mass Index; chemo, chemotherapy; dMMR, mismatch repair deficiency; ECOG, Eastern Cooperative Oncology Group; ICI, Immune 
Checkpoint Inhibitor; IHC, Immunohistochemistry; MSI-H, microsatellite instability-high; MSS, microsatellite stable; NOS, Not otherwise specified; 
PDL1, Programmed cell-death ligand 1; POLD, polymerase d; POLE, polymerase e; Q1, first quarter; Q3, third quarter; TMB, Tumor Mutational 
Burden; TPS, Tumor Proportion Score.

Table 1  Continued

https://dx.doi.org/10.1136/ijgc-2022-004026
https://dx.doi.org/10.1136/ijgc-2022-004026
https://dx.doi.org/10.1136/ijgc-2022-004026
https://dx.doi.org/10.1136/ijgc-2022-004026
https://dx.doi.org/10.1136/ijgc-2022-004026
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(Figure 2). Analyses unadjusted for imbalances show similar results. 
Stratifying patients by tumor mutational burden ≥10 instead of MSI 
had similar associations (Figure 3).

dMMR by Immunohistochemistry and MSI by Next-generation 
Sequencing are Highly Concordant, but Favor MSI for the 
Limited Number of Discordant Cases
Among patients evaluated for immune checkpoint inhibitor effec-
tiveness (any line of therapy), 58 of 64 (91%) had concordant calls 
(Figure 4). While highly concordant, the addition of MSI to a Cox 
model evaluating only dMMR resulted in nominal improvement to 
predict time to treatment discontinuation (p=0.030), time to next 
treatment (p=0.032) and while not statistically significant, overall 
survival (p=0.22). However, if the model instead started with MSI, 
with the addition of MMR, similar improvement was seen for time to 
treatment discontinuation (p=0.68), time to next treatment (p=0.88) 

and overall survival (p=0.99). Limited benefit from an immune 
checkpoint inhibitor was observed for the five dMMR/MSS, while 
the one patient who was pMMR/MSI-high was continuing fourth-
line immune checkpoint inhibitor after 37.8 months (Figure 4).

In Frontline Cohort, MSI-high Status is Highly Concordant 
with Tumor Mutational Burden ≥ 10, with Similar Outcomes 
and Strength of Interactions
Among the 371 patients evaluated for frontline drug effectiveness, 
350 (94.3%) had concordant calls between MSI status and tumor 
mutational burden ≥10 status (Figure  3A). Using p-values as a 
proxy for strength of association, interaction tests by MSI status and 
tumor mutational burden ≥10 status were similar for time to next 
treatment (p=0.0009 and 0.0014) and overall survival (p=0.0144 
and p=0.0084) (Figure  3B,C). However, addition of tumor muta-
tional burden to a Cox model already containing MSI did not result 
in improvement of the model to predict time to treatment discontin-
uation, time to next treatment, or overall survival (data not shown). 
Only one patient who received an immune checkpoint inhibitor had 
a discordant call, being MSI-high and tumor mutational burden of 
3.75 mut/Mb, had time to next treatment of 1.2 months, and overall 

Figure 2  Outcomes of front-line treatment. (A)Time to next 
treatment (TTNT) and (B)Overal survival (OS) is shown by 
drug class. Overall survival estimates are left truncated (see 
Methods) with at-risk tables adjusted accordingly.

Figure 3  Micosatellite instability-high (MSI-high) 
concordance with tumor mutational burden (TMB≥10). 
(A). Comparison of adjusted* subgroups and interaction 
test p-values for (B)Time to next treatment (TTNT) and (C)
Overall survival (OS). *Adjusted for Age at treatment start, 
Eastern Cooperative Oncology Group (ECOG), Academic vs 
Community setting, Body Mass Index, Stage at diagnosis, 
opioid use pre-therapy, tumor protein 53 (TP53) mutation 
status, and catenin beta 1 (CTNNB1) mutation status. 
Chemo, chemotherapy; ICPI, immune checkpoint inhibitor; 
MSS, microsatellite stability.
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survival of 17.3 months. Full interaction models are provided in 
online supplemental Figure 4.

MSI, POLE, and POLD1 are Independently Associated with 
Tumor Mutational Burden
Among evaluable specimens in the Tumor Mutational Burden 
Comparison Cohort, the prevalence of specimens tested with MSS 
and tumor mutational burden ≥10 was infrequent. A minority of 
specimens were MSS with exceptionally high tumor mutational 
burden, and all of these had either POLE or POLD1 mutations 
(Figure  5). Multivariable evaluation of tumor mutational burden 
associated with MSI, POLE, POLD1, and clinicopathologic features 
revealed strongest associations with MSI, POLE, and POLD1 (all 
p<0.001, online supplemental Figure 2). The strongest clinical 
feature associated with tumor mutational burden was timing of 

specimen acquisition; specimens obtained at time of diagnosis 
independently had lower tumor mutational burden than those that 
were not (p=0.003).

DISCUSSION

Summary of Main Results
We found that patients who were MSI-high by next-generation 
sequencing had more favorable time to next treatment and overall 
survival when treated with frontline immune checkpoint inhibitor 
monotherapy over chemotherapy. Those who received an immune 
checkpoint inhibitor were more likely to have stage III disease and 
be dMMR/MSI-high, suggesting these characteristics likely influ-
enced treatment selection.

Figure 4  Mismatch repair deficiency (dMMR) by immunohistochemistry (IHC) and microsatellite instability (MSI) by next-
generation sequencing (NGS). Concordance. Swimmer plot shows time to next treatment for all immune checkpoint inhibitor 
(ICPI,ICI) lines of therapy with more than 1 week of follow-up. TTD, time to treatment discontinuation; TTNT, time to next 
treatment; Tx. therapy; OS, overall survival.

https://dx.doi.org/10.1136/ijgc-2022-004026
https://dx.doi.org/10.1136/ijgc-2022-004026
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dMMR detected by immunohistochemistry and MSI-high measured 
by next-generation sequencing were highly concordant. However, 
results favored next-generation sequencing-based MSI-high in cases 
of discordance. Five of six discordances were MSS and dMMR, and 
one pMMR/MSI-high. Within the MSS/dMMR cohort, immune check-
point inhibitors showed no durable efficacy. In contrast, the one patient 
with pMMR/MSI-high and tumor mutational burden of 11.3 mut/Mb 
has not received treatment following fourth-line immune checkpoint 
inhibitor therapy and is alive at 37.8 months.

Results in the Context of Published Literature
While the cohort is small, our observations are consistent with MSI by 
next-generation sequencing as having incremental improvement over 
dMMR by immunohistochemistry. Additionally, we hope future trials 
report the proportion of discordance as a subgroup analysis to better 
confirm this finding. MSI-high status is highly concordant with tumor 
mutational burden ≥10 status, with similar outcomes and improved 
response to immune checkpoint inhibitors when compared with 
chemotherapy. This supports the clinical validity of tumor mutational 
burden and MSI-high/dMMR as biomarkers to identify patients with 
advanced endometrial cancer who may benefit from immune check-
point inhibitor therapy in future phase III clinical trials.

Although many studies have assessed the benefit of biomarker-
targeted immunotherapy for treatment of advanced endometrial 
cancer, this study is the first to our knowledge to describe real 
world clinical data of biomarker driven frontline immune check-
point inhibitor monotherapy. KEYNOTE-158, which demonstrated 
remarkable efficacy of pembrolizumab in dMMR patients with 
previously treated recurrent or metastatic endometrial cancer, 
resulted in the first disease site agnostic drug approval by the US 
FDA in May 2017.31 Furthermore, three separate phase II trials 
were completed, confirming the efficacy of single agent immune 
checkpoint inhibitor in a biomarker selected dMMR population with 
recurrent disease.13 32 33

A recent College of American Pathologists guideline on biomarker 
testing cited a lack of studies comparing MMR by immunohisto-
chemistry vs MSI (by any method) with respect to their predictive 
ability for immune checkpoint inhibitor response.34 To our knowl-
edge, our study is the first to report these analyses to predict 
outcomes of immune checkpoint inhibitor therapy in patients 
with endometrial cancer. Given the established biologic rationale 
to support the replacement of frontline chemotherapy, the utility 
of single agent immune checkpoint inhibitors in the endometrial 
cancer space is now being investigated.35

Strengths and Weaknesses
The strengths of our study include our examination of outcomes of 
immune checkpoint inhibitor monotherapy vs chemotherapy in the 
frontline treatment of advanced endometrial cancer. Additionally, our 
dataset provides clinical rationale supporting the actively accruing 
phase III MK-3475-C93/KEYNOTE-C93/GG-3064/ENGOT-en15 trial 
(NCT05173987). Another strength is while we recognize that tumor 
mutational burden calculation can vary considerably by panel size, 
gene content and bioinformatic filtering,36 we used the only FDA-
approved companion diagnostic test and threshold.

We took multiple steps to address the limitations of our dataset. 
There is no central pathologic confirmation, and some included 
institutions lack immunohistochemistry assessment (rendering us 
unable to report MMR status). Retrospective analyses are limited 
by variable patient follow-up and inadequately validated endpoints. 
However, our study required stringent completeness of patient 
visit records and used a well-validated overall survival endpoint. 
Treatment assignments were at the clinician’s discretion, and while 
biases were considered and adjusted, unknown confounders may 
remain. Time-to-event measures are sensitive to imbalances in 
overall patient frailty and disease severity. We did not have direct 
measures of total disease burden at times of treatment. While 
correlated factors like ECOG and stage at diagnosis were included 

Figure 5  High TMB relationship to MSI or POLE or POLD 
mutations. Split graph beehive plot displays the TMB 
level per tissue specimen in the database with evaluable 
MSI status. Dashed line indicates 10 mut/Mb. ;MSI-H, 
microsatellite instability high; MSS, microsatellite stable; 
POLD, polymerase d; POLE, polymerase e; TMB=tumor 
mutational burden.
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in adjustments, these are imperfect proxies for patient frailty and 
disease extent. Randomized controlled trials will better adjust for 
these and other factors potentially biasing outcome assessments. 
Additionally, our dataset does not distinguish germline from somatic 
mutations or MLH1 promoter hypermethylation although treatment 
guidance would remain the same.

Implications for Practice and Future Research
Our study provides additional rationale for immune check-
point inhibitors as monotherapy in dMMR or next-generation 
sequencing-based MSI-high advanced stage endometrial cancers. 
While conclusions are limited by sample size and retrospective 
nature, we eagerly await the results of the phase III MK-3475-C93/
KEYNOTE-C93/GG-3064/ENGOT-en15 trial (NCT05173987), which 
will randomize approximately 350 patients with dMMR recur-
rent or metastatic endometrial cancers to receive either frontline 
pembrolizumab or carboplatin with paclitaxel.35 This was examined 
in KEYNOTE-177, a phase III trial of 307 patients with untreated 
metastatic MSI-high or dMMR colorectal cancer. At the second 
interim analysis, pembrolizumab was superior to chemotherapy 
with respect to progression-free survival, and in the final analysis, 
median overall survival was not reached with pembrolizumab (vs 
36.7 months with chemotherapy).37 38 Our results shared above are 
informative and suggest there may be benefit in immune check-
point inhibitors replacing chemotherapy in the frontline manage-
ment of advanced endometrial cancer, which may be validated by 
the much-anticipated randomized control trial.

Future research will also look to examine potential differential 
response to immune checkpoint inhibition in epigenetically driven 
dMMR/MSI-high, compared with patients with somatic mutations 
(Lynch-like) or germline alterations (Lynch syndrome). While data-
base assessments have their limitations, the rigor applied here for 
cohort filtering, establishing endpoint validity, and methodology 
creates a substantial foundation that may complement evidence 
from future trials.

CONCLUSIONS

In a biomarker-selected advanced stage endometrial cancer patient 
population, frontline immune checkpoint inhibitors may have 
improved efficacy over standard of care cytotoxic chemotherapy. 
While limited by small sample size and retrospective nature, our 
study suggests that MSI testing via next-generation sequencing 
provides incremental value over dMMR by immunohistochem-
istry and additionally supports the clinical rationale of the active 
phase III MK-3475-C93/KEYNOTE-C93/GG-3064/ENGOT-en15 trial 
(NCT05173987). We eagerly await the results of this important trial, 
which has practice-defining implications.
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