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ABSTRACT OF THE THESIS

Seismic Behavior of Deep, Slender Wide-Flange Structural Steel Beam-columns

by

Piyachai Chansuk
Master of Science in Structural Engineering
University of California San Diego, 2018

Professor Chia-Ming Uang, Chair

This thesis investigates nonlinear cyclic responses of deep wide-flange steel beam-
columns, which are primarily used in Special Moment Frame (SMF) for their high in-plane,
strong-axis moment of inertia to satisfy story drift limits specified in building codes. SMF
design principles aim to achieve energy dissipation through plastic hinging of the beams,
while flexural yielding of the columns at the base is also permitted. Although behavior of
the beams has been extensively researched, that of the columns is lacking especially for
deep columns (e.g., W18 to W36). Therefore, cyclic testing of deep columns was

conducted to generate experimental database. Due to large width-to-thickness ratios of

Xiv



these sections, test results showed significant web and flange local buckling; some
specimens also exhibited lateral-torsional buckling. These local and global instabilities
resulted in significant axial shortening and flexural strength degradation. These behaviors
differ significantly from those observed in prior testing of shallow W14 columns, featuring
excellent ductility capacity at high axial loads.

Additionally, the test matrix was designed to investigate the effects of section
depths, varying axial loads, lateral-drift loading sequences, and boundary conditions on the
column responses. Inevitably in this testing, the responses were also influenced by
flexibility of column-end connections. To eliminate this undesired variable from the
responses, a procedure was developed to correct the lateral drift response based on the
second-order Timoshenko elastic theory. The effects of boundary conditions were further
investigated using high-fidelity finite element software ABAQUS. Results show that fixed-

fixed and fixed-rotating column responses can be converted to one another.

XV



1. INTRODUCTION

1.1 General

Moment-resisting frames are one of the most common lateral force-resisting
systems that are used in high seismic regions due to their high energy dissipation capacity
and architectural versatility. Unexpected non-ductile failure of seismically designed steel
moment connections that was observed after the Northridge, California Earthquake in 1994
had triggered extensive studies on the behavior of Special Moment Frames (SMF).
Extensive studies, including those completed by the SAC Joint Venture (FEMA 2000),
have been conducted to evaluate the cyclic behavior and design of beam-to-column
connections. Since plastic hinging in the beams is expected in an SMF, cyclic behavior of
beams, but not columns has also been researched.

Before the Northridge Earthquake, shallow wide-flange columns (e.g., W14 or
W12 sections) were commonly used in moment-resisting frames because of their
comparable strong- and weak-axis radii of gyration. However, it was challenging to
continue using shallow sections in frame designs since they were required to have large
lateral stiffness to satisfy the code-enforced story drift limit (ASCE 2016). To overcome
this challenge, engineers turned to deeper steel columns, which were more economical in
providing adequate lateral stiffness, i.e., the in-plane strong-axis moment of inertia. For
instance, Table 1.1 compares the properties of shallow and deep sections with the same
strong-axis moment of inertia (see Figure 1.1). The benefit of using the deep W30x148
section is obvious; the weight of the column is reduced from 426 to 148 Ib/ft. However,
the width-to-thickness ratios for flange local buckling (FLB) and, particularly, web local

buckling (WLB) controls (i.e., bs/2tf and h/t,,, respectively) are much larger for the deep



section, making it more susceptible to local instability. In addition, the deep column is also
prone to out-of-plane, global-type member buckling like flexural buckling (FB) or lateral-

torsional buckling (LTB) since its radius of gyration about the weak-axis (ry) is much

smaller than that (r;,) about the strong-axis.

Because columns in moment frames are subjected to both bending and axial loads
during a seismic event, they are also referred to as beam-columns in design. Unfortunately,
little experimental research on cyclic behavior of beam-columns is available to expansively
support the seismic design or assessment provisions in AISC 341 (AISC 2016a) and ASCE

41 (ASCE 2013).

1.2 Literature Review

MacRae et al. (1990) tested 250UC73 (W10x49) columns under constant axial
compression and cyclic lateral displacements with two cycles at each member displacement
ductility of 2, 4, 6, 8, and 10, respectively. The constant axial force ratios, P/P,, ranged
from 0.0 to 0.8. Significant web and flange local buckling, axial shortening, and strength
degradation were reported for beam-column specimens with high axial load.

Newell and Uang (2008) cyclically tested shallow W14 columns with varying axial
load and reported high ductility capacities; web local buckling was limited or not observed
in some specimens. In contrast, an analytical study by Newell and Uang (2006)
demonstrated that cyclic hystereses of deeper columns (W27) subjected to high axial load
were characterized by rapid strength degradation due to severe simultaneous web and
flange local buckling.

To generate an experimental database as the basis for future analytical modeling of

deep columns and evaluate the adequacy of design requirements for deep columns in AISC



341 and ASCE 41, NIST developed a comprehensive research plan to study the seismic
behavior and design of deep, slender wide-flange structural steel beam-columns (NIST
2011). The plan included studies at the member, subassemblage, and system levels.

With the focus on the column behavior at the member level, Ozkula and Uang
(2015) initiated the NIST study with full-scale testing of twenty-five wide-flange
specimens, including five different W24 sections; each varied in section slenderness ratios
(bg/2ts and h/t,,) and member slenderness ratio (L/7,). As shown in Table 1.2, the test
matrix intended to investigate the effects of section slenderness parameters, constant axial
load levels, lateral-drift sequences (including both cyclic and monotonic types), bending
directions, and biaxial loading on the column responses. The test results confirmed the
findings from the analytical study of deep-column cyclic responses conducted by Newell
and Uang (2006). While in-plane plastic hinging in the form of simultaneous flange and
web local buckling was observed at the member ends of W24x131 and W24x104 columns
as expected, unexpected out-of-plane LTB was observed in W24x176 and W24x84
columns. This variation in instability behaviors of deep columns motivated additional
testing in the NIST research program. Following this so-called Phase 1 study, Phase 2 study
encompassed testing of additional twenty-three specimens with further diversified wide-
flange sections ranging from W14 to W30 to further investigate Phase 1 objectives and
examine the effects of section depths, varying axial loads, and boundary conditions on the
column responses. A similar experimental investigation with fewer specimens that
examined the beam-column cyclic behavior was conducted by Elkady and Lignos (2016),

which investigated the same variables as the NIST studies.



Most of the specimens tested in the NIST studies sustained fixed-fixed boundary
conditions; however, the top end of first-story columns in an SMF rotates during a seismic
event due to flexibility of the connected beams, i.e., the columns experience fixed-rotating
boundary conditions. To simulate and study this effect, four specimens in Phase 2 testing
were subjected to cyclic rotation at the moving end with the magnitude proportional to the
cyclic lateral drifts.

Testing of shallow, stocky W14 sections by Newell and Uang (2008) and deep,
slender W24 sections by Ozkula and Uang (2015) has shown that beam-column buckling

mode characterizes the column responses. Within a certain limit of L /7, a parameter based

on section slenderness was proposed to predict the governing buckling mode (or failure
mode), which are categorized into: (1) Symmetric Flange Local Buckling (SFB) mode, (2)
Anti-symmetric Local Buckling (ALB) mode, and (3) Coupled Buckling (CB) mode
(Ozkula et al. 2017). Buckled configurations and hysteretic features associated with each

failure mode are briefly summarized in Section 2.8.

1.3 Scope of the Thesis

Phase 2 testing of the NIST research program is introduced in Chapter 2. Flexibility
of column-end connections was observed in this testing, which affected the test responses.
To allow a meaningful comparison between the test responses, the effect of connection
flexibility needs to be removed from the global hystereses, i.e., the column shear and end
moment versus lateral displacements. Chapter 3 presents the procedure developed to

correct the lateral drift responses utilizing the second-order Timoshenko elastic theory.



This thesis presents the corrected test results in Chapter 4 and examines the effects
of section depths, varying axial loads, lateral-drift sequences, and boundary conditions on
the column responses.

Utilizing a high-fidelity finite element software ABAQUS, this thesis further
investigates the boundary condition effect on the column responses in Chapter 5. Since
most specimens in the NIST research program sustained fixed-fixed ends, developing a
procedure that enable conversion of the fixed-fixed column responses to fixed-rotating
column responses, which are more representative of the behavior of first-story columns in
an SMF, becomes the objective of this study. Although some fixed-rotating column
responses were obtained from Phase 2 testing (four boundary condition tests), calibrated
finite element models were used to generate additional data to support and generalize the

experimental findings.



Table 1.1 Section Property Comparison of Shallow and Deep Wide-flange Columns

. Weight T, T I I by h
Section X Y X Y — —
(Ib/ft) (in.) (in.) (in.%) (in.%) 2t¢ t,
W14x426 426 7.26 4.34 6600 2360 2.75 6.08
W30x148 148 12.4 2.28 6680 227 4.44 41.6
Table 1.2 Test Matrix (Phase 1)
Slenderness Column Axial Load
Group . Specimen L Bending
No. Section Designation | (ft) bs h L p Direction
—_ N J— Ca N
2t |t 7y (kips)
1L 0.2 465
1 W24x176 1M 18 481 | 28.7 71.1 0.4 931
1H 0.6 1396
2Z 0.0 0
2L 0.2 347
2L-P 0.2 347
2 W24x131 oM 18 6.70 | 35.6 72.7 0.4 693
2M-NF 0.4 693 St
2H 0.6 1040 rong-
3L 0.2 276 s
3 W24x104 3M 18 8.50 | 431 74.2 0.4 551
3H 0.6 826
4L 0.2 222
4 W24x84 M 18 5.86 | 459 | 110.8 04 445
SL 0.2 146
5 W24x55 5LM 18 6.94 | 546 | 161.2 0.3 219
5M 0.4 292
6L 0.2 347 Weak-
6 W24x131 6L-P 18 6.70 | 35.6 72.7 0.2 1040 axis
6H 0.6 1040
7 W24x131 ™ 18 6.70 | 35.6 72.7 0.4 693 Biaxial




o F bf

W30x148 W14x426

Figure 1.1 Comparison of Shallow and Deep Wide-flange Columns



2. TEST PROGRAM

2.1 Introduction

This chapter explains details of Phase 2 testing of the NIST research program that
are relevant to the scope of this thesis; Chansuk et al. (2018) provide the complete
information regarding the research. Although the original report divides Phase 2 testing
into two sub-phases, i.e., Phase 2A and 2B, this thesis presents both testing details and
results as one combined study but still keeps the same specimen-labeling scheme for

consistency purpose.

2.2 Test Setup

Twenty-three wide-flange columns with sections ranging from W14 to W30 were
subjected to inelastic strong-axis drifts utilizing various loading sequences and axial loads
that could be constant or varying. The overall geometry of the test setup is shown in Figure
2.1. Testing was conducted in the Seismic Response Modification Device (SRMD) Test
Facility at the University of California, San Diego. Specimens were tested in a horizontal
position with one end (west end) connected to a reaction fixture fixed to a strong wall and
the other end (east or moving end) connected to a reaction fixture tied down to the SRMD
shake table platen. The platen had six degrees of freedom. Longitudinal movement of the
platen imposed an axial force to the specimens. A force-control algorithm was employed
to either maintain a constant axial load or apply varying axial load. Displacing the platen
laterally in the horizontal plane imposed strong-axis bending to the specimens. To simulate

fixed-rotating boundary conditions, the platen was prescribed a cyclic rotation in the



column strong-axis direction. The platen was in a displacement-control mode for lateral

movements and strong-axis rotation.

2.3 Interior vs. Exterior Columns

During a seismic event, exterior first-story columns in an SMF sustain lateral drifts
and significant fluctuation in axial load demands that could range from compressive to
tensile forces due to dynamic overturning effects. On the contrary, interior columns
experience limited axial load fluctuation and are assumed to sustain constant compressive
axial loads in this research. A normalized parameter C, is used to indicate the levels of

axial load being applied to the specimens (AISC 2016a):

C, = b (2.1)
“ ¢cpn .
where P, = applied axial load (positive for compression), B, = AyF,,, A; = gross area,

FE,,, = nominal yield stress, and ¢, = resistance factor (0.9). For most constant axial load
tests simulating the interior-column condition, either of the three levels of axial
compression, i.e., C, = 0.2, 0.4, or 0.6, was applied to the specimens; letters “L”, “M”, and
“H” represent these low, medium, and high levels, respectively, in the specimen
designation. To accommodate the maximum capacity of the SRMD platen, some
specimens were tested with C, equal to 0.3 and named accordingly; “LM?” indicates the
average between the low- and medium-level axial compression. For varying axial load tests
simulating the exterior-column condition, certain ranges of C, were specified; specific

details regarding varying axial load sequences are discussed in Section 2.6.2.



2.4 Design of Test Specimens

Figure 2.2 shows geometries and bolted end-connection details of typical
specimens; additional information is documented by Chansuk et al. (2018). The weld
access hole profile specified in AISC 360 (AISC 2016c¢) was used for welding detail. High-
strength bolts with 1%-in. diameter were used to fasten the end plates to reaction fixtures.

Table 2.1 summarizes slenderness parameters of each specimen, including the
member slenderness ratios, L/r,, where L is the clear member length, and 7, is the radius
of gyration about the weak axis. Wide-flange sections were selected such that the L/7,
ratios fall within a targeted and practical range.

Three “shallow” (W14) and ten “deep” (W18 to W30) wide-flange sections for a
total of twenty-three specimens were included in Phase 2 testing. In Phase 1 testing, an
“unusual” coupled buckling involving out-of-plane LTB was observed in Group 1
specimens (W24x176). Therefore, Group 11 was assigned with the same section as Group
1, and Specimen 11M was tested to confirm if the same failure mode could be reproduced.
In addition, W14, W18, and W30 sections were included in Phase 2 test matrix to achieve
two goals: (1) to investigate whether findings from Phase 1 (testing of W24 sections) can
be applied to deeper (e.g., W30) and shallower (e.g., W14 and W18) columns, and (2) to
expand the section slenderness database. Figure 2.3 illustrates distribution of the flange
and web width-to-thickness ratios of test specimens with respect to the compactness limits
specified in AISC 341 (AISC 2016a).

In Phase 1 testing, Group 5 specimens failed due to elastic LTB without plastic

hinging at the member ends because their L /7, ratio (= 161.2) was much larger than that

of the other specimens. Consequently, inelastic cyclic responses associated with their
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slenderness characteristics were not obtained. Group 14 specimen had a similar web
slenderness to that of Group 5 specimens and a larger flange slenderness. But its L/, ratio
(= 101.4) was much lower than that of Group 5 specimens, making it less prone to elastic
LTB. Testing of Group 14 member was designed to fill this data gap.

All specimens were subjected to inelastic cyclic drifts except for Specimen 12LM-
P (“P” for “Pushover”), which was tested monotonically to obtain a monotonic backbone
curve for comparison with the cyclic backbone curve of its counterpart, Specimen 12LM.
Furthermore, Specimen 21M-NF underwent the near-fault loading protocol (see Section
2.6.1); the results were used to study how different lateral-drift sequences affected column
responses.

To study cyclic responses of exterior columns under different axial load variations
caused by the overturning moment effect, Specimen 11H-VA, 21M-VAU, 21M-VAM, and
21M-VAU-BC were subjected to varying axial load sequences in conjunction with the
AISC loading protocol (“VA” for “Varying Axial Load”).

In Phase 1 testing, fixed-fixed boundary conditions were used. Therefore, they were
mainly used in Phase 2 as well to allow a direct comparison between the test results from
both phases. To evaluate the effects of rotation at the top end of first-story columns in an
SMF caused by flexibility of the connected beams, four specimens with “BC” designation

were tested with fixed-rotating boundary conditions.

2.5 Steel Material Properties

ASTM A992 was specified for all beam-column specimens, and A572 Gr. 50 steel
was specified for the end plates. Table 2.2 summarizes mechanical properties of the

specimens; coupons were taken from both webs and flanges. A sample of engineering

11



stress versus engineering strain relationships are shown in Figure 2.4 (refer to Chansuk et

al. 2018 for more information).

2.6 Testing Procedure and Loading Protocols

Firstly, axial loads were applied to the specimens and either maintained at a
constant level or varied with respect to a prescribed range as the specimens underwent
inelastic lateral drifts imposed at the moving end of the columns (see Figure 2.1). For fixed-
rotating boundary condition tests, cyclic rotation about the column strong axis was also

prescribed to the platen. Several employed loading protocols are discussed below.
2.6.1 Lateral Drift Sequences

Since the objective of this research was to evaluate the cyclic responses of steel
columns in moment frames, the standard loading protocol for qualifying cyclic tests of
beam-to-column moment connections in Special and Intermediate Moment Frames
specified in Section K2.4b of AISC 341-16 was utilized for most specimens. Figure 2.5(a)
shows the typical story drift angle (SDA) history of the AISC loading protocol.

In addition to the AISC loading protocol, one specimen (Specimen 21M-NF) was
tested with the near-fault loading protocol shown in Figure 2.5(d). This loading protocol
was characterized by its large initial pulse that was followed by smaller-amplitude drift
cycles oscillating about a level of residual drift. Beside these two cyclic loading protocols,
the third lateral-drift sequence employed in this testing was a monotonic pushover, which
was applied to Specimen 12LM-P.

Ultimately, the column responses corresponding to the AISC loading protocol,
which resembled a far-field drift characteristic, the near-fault loading protocol, and the

monotonic loading, were compared to study the effects of lateral-drift sequences.

12



2.6.2 Varying Axial Load Sequences

To examine exterior-column behavior, Specimen 11H-VA was tested with the
AISC loading protocol in conjunction with the varying axial load sequence illustrated in
Figure 2.5(b). The compressive axial load applied to this specimen fluctuated about a
gravity load of C, = 0.45. The cyclic axial load variation grew proportionally to lateral-
drift amplitudes; this simulated the dynamic overturning-moment effect that amplified as
a structure displaced to higher amplitudes. At a certain drift level, plastic hinging was
expected at beam ends, and the overturning moment stabilized. Accordingly, the axial load
range was capped between C, = 0.3 and C, = 0.6 at SDA of 0.01 rad and beyond.

The varying axial load sequences used with Specimens 21M-VAU, 21M-VAM,
and 26LM-VAM are shown in Figure 2.6 with respect to the applied lateral drifts (i.e., the
AISC loading protocol). The only differences between the sequences applied to Group 21
specimens and the ones used with Specimens 11H-VA and 26LM-VAM were the
amplitude ranges and the time step at which the axial load reversed its direction. For Group
21 specimens, the axial load was set to reverse in direction at the same time step at which
the lateral drift changed its direction (dash lines at some peak drifts were provided in Figure
2.6 to illustrate this behavior); this reflected a more accurate loading condition that exterior
columns experienced in a seismic event. The axial load ranges were kept steady at SDA of
0.01 rad and beyond due to plastic hinging in beams.

In this testing, two types of axial load variation were considered with the following
features: (1) the gravity load was set at a target C, about which the axial load oscillated,
and (2) the gravity load was set lower than a target C, but the upper bound of the oscillating

axial load was set at the target C,. Specimens with the designation “VAM” were tested
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with the first loading type, which had its “Mean” axial load (i.e., the gravity load) equal to
a target C,. On the contrary, specimens tested with the second loading type were labeled
“VAU?”, indicating that the “Upper bound” of the axial load variation equaled to a target
C,. To investigate the varying axial load effect, column responses obtained from the
“VAM” and/or “VAU” tests were compared with their counterpart specimen that was
subjected to constant axial compression; the same target C, were used in all comparable
tests.
2.6.3 End Rotation Sequence

Due to flexibility of connected beams, first-story columns in an SMF sustain fixed-
rotating boundary conditions during a seismic event. These boundary conditions were
simulated in testing of four specimens (Specimens 11H-BC, 13M-BC, 16M-BC, and 21M-

VAU-BC). Expressing top end rotation as a function of the story drift angle,

L
a three-bay, four-story SMF designed by Harris and Speicher (2015) was analyzed to

0 =¢ (é) 2.2)

determine an approximate ¢ value for this test program. Based on a nonlinear, time-history
analysis of this structure with 14 ground motions, scaled to match the Design Earthquake
per ASCE 7, the top end rotation and the first-story drift angle were similar in magnitude,
i.e., & = 1.0. Thus, for most boundary condition tests, strong-axis end rotation was
prescribed at the platen end with the same magnitude as the applied story drift angle. Figure
2.5(c) shows the typical end rotation sequence that was applied in conjunction with the

AISC loading protocol.
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2.7 Instrumentation

Displacement transducers, inclinometers, strain gauge rosettes, and uniaxial strain
gauges were used to measure global and local responses. Figure 2.7 shows displacement
transducer and inclinometer layout. Figure 2.8 shows rosette and uniaxial strain gauge
locations. Movements of the platen and their associated forces in six degrees of freedom

were also recorded.

2.8 Characterization of Failure Modes

Testing of deep, slender columns in this study and shallow, stocky (W14) columns
by Newell and Uang (2008) has shown that beam-column buckling mode characterizes the
column hysteretic response. Within a certain limit of L/7,, a parameter based on local
slenderness properties was proposed to predict the governing buckling mode (or failure
mode), which are categorized into: (1) Symmetric Flange Local Buckling (SFB) mode, (2)
Anti-symmetric Local Buckling (ALB) mode, and (3) Coupled Buckling (CB) mode
(Ozkula et al. 2017). The buckled configuration and hysteretic feature of each failure mode
are briefly summarized herein. Failure mode classifications and certain phenomena
discussed in this section are referenced in Chapter 4 to help explain the column behaviors

observed during testing.

2.8.1 Symmetric Flange Local Buckling (SFB) Mode

For highly ductile sections with relatively low web and flange slenderness ratios
(mostly shallow columns, e.g., W12 and W14 columns), SFB is the common governing
failure mode. It involves in-plane plastic hinging at the column ends (or only at the bottom
end of first-story columns in an SMF in real application) without out-of-plane, global-type

member buckling. In the plastic hinge regions, at least a half-wave local buckle is observed
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at each half-width flange in a symmetric (or ‘mirrored”) configuration with respect to the
web plane as shown in Figure 2.9; for example, both top and bottom half-width flanges of
the northeast flange in Figure 2.9(a) buckle outward locally, and their respective apexes
are aligned. In addition, web local buckling, if occurs, is limited for this failure mode.
Figure 2.10 illustrates the cross-sectional view of the SFB configuration. The
corresponding column response exhibits large ductility capacity and limited axial
shortening even under high axial compression (Newell and Uang, 2008). In fact, strength

degradation is moderate and happens gradually for columns with SFB mode.

2.8.2 Anti-symmetric Local Buckling (ALB) Mode

As the section slenderness ratios increase, both flange and web local buckling
modes occur simultaneously as the web cannot provide sufficient rotational restraint to
maintain fix-ended boundary condition for the half-width, unstiffened flange elements.
Figure 2.12 shows this combined local buckling mode, which features at least a half-wave
local buckle at each half-width flange in an anti-symmetric (or ‘opposite’) configuration
with respect to the web plane. Considering the northeast flange in Figure 2.12(a) for
example, the top and bottom half-width flanges of the same flange buckle outward and
inward, respectively, and their respective apexes are not aligned; the apex of the outward
flange local buckle usually locates closer to the end plate compared to that of the inward
one. In addition, as the web tries to remain perpendicular to the flanges at the web-flange
junctions, it buckles locally in the direction that complies with the flange local buckling
configuration; Figure 2.11 demonstrates the cross-sectional view of this phenomenon.
Ultimately, ALB refers to the in-plane, plastic hinging failure mode with this combined
local buckling configuration. Once ALB occurs, drastic strength degradation prevails,

accompanied by significant column axial shortening. As a result, the column ductility
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capacity is relatively limited compared to the SFB case. The ductility capacity associated
with this failure mode is sensitive to the axial force level.

For specimens with ALB failure mode that sustain the AISC loading protocol in
strong-axis bending, the ALB sequence initiates with one half-wave buckle set (i.e., one
half-wave buckle at each unstiffen flange and stiffened web element) as shown in Figure
2.12(a). At higher drifts, some ALB specimens also develop an additional half-wave buckle
set, making a full-wave buckle set, as shown in Figure 2.12(b). This full-wave ALB
configuration usually results in severely deformed column ends, which initiates an out-of-
plane, rigid-body translation of the column portion between the buckled regions; this
movement should not be confused with lateral-torsional buckling or flexural buckling.
2.8.3 Coupled Buckling (CB) Mode

Coupled Buckling (CB) mode involves both local buckling and global-type, lateral-
torsional buckling (LTB). The sequence of these local and global instabilities may not be
obvious for all specimens since the two reciprocal phenomena are coupled. In obvious
cases, two observations include: (1) local buckling at column proceeds LTB, and (2) LTB
proceeds local buckling. Figure 2.13(a) shows the buckled configuration of the former
sequence of which local buckling usually exhibits the ALB pattern as shown. The latter
buckled configuration shown in Figure 2.13(b) is similar to the former one regarding the
out-of-plane, LTB-type buckling behavior. However, local buckling pattern of the latter
case as shown in Figure 2.14(a) only exhibits one half-wave local buckle in either the top
or bottom half-width flange (of the same flange), not both like the SFB or ALB pattern;
therefore, this type of flange local buckling should not be confused with the conventional
local buckling as in SFB or ALB mode. Instead, it was triggered by LTB, which induces

nonuniform stress distribution across the flange width because each flange bends about its
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strong axis (explained in the following paragraph). In this report, LTB-induced flange local
buckling refers to this phenomenon. Furthermore, LTB buckling configuration can be
further subdivided into two cases: single and reverse curvatures; Figure 2.13(a) and Figure
2.13(b) refer to the former case, while Figure 2.13(c) refers to the latter case.

Twisting and out-of-plane bending associated with the LTB movements caused
stress distribution to be nonuniform across the flange width. To demonstrate this
phenomenon, strains at the upper and lower flange edges are plotted against each other in
Figure 2.15 [see West End of Figure 2.13(b) for the strain gauge locations in the specimen
under consideration]. Both strains are initially the same in magnitude (data points move
along the 1:1 or 45° line), indicating a uniform bending stress distribution across the flange
width due to in-plane bending of the specimen. Tendency of LTB then can be observed in
the plot as the strains started to deviate from the 1:1 line, which initiates at SDA = 0.015
rad. Physically, flaking of the whitewash as shown in Figure 2.16(a) also illustrates this
nonuniform stress distribution due to LTB; it exhibits a sloped flaking pattern as the upper
flange portion experiences more compression and flakes off more mill scale compared to
the lower portion. As twisting and out-of-plane movements become more visually
observable at higher SDA levels, the out-of-plane, torsional, and warping stresses induced
by LTB increase drastically. As a result, the strains become more nonuniform and the
sloped flaking pattern grows drastically as shown in Figure 2.16(b) and Figure 2.16(c). In
this case, the conventional way of defining the plastic hinge zone or length becomes
difficult and may not be meaningful.

Chapter 2, 3, 4, and 5 in part are currently being prepared for submission for

publication of the material. Chansuk, P., Ozkula, G., and Uang, C.-M. (2018). “ATC-106
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Phase 2: Seismic behavior and design of deep, slender wide-flange structural steel beam-
columns.” Report No. SSRP-18/02, University of California, San Diego, La Jolla, CA. The

thesis author was the primary investigator and author of this material.
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Table 2.2 Steel Mechanical Properties

Group . E, E, Elong® Heat

No. | Seetion fcompt o | iy | (o) No.
Flange | 52.1 83.5 33.2

W Weaxd76 I yep | s14 | s27 | 361 | 27499
Flange | 54.6 75.6 38.3

12 | W30x26L ye™| s9.6 74.4 410 | 01709
Flange 57.3 73.6 41.7

13 | Waox173 [ 20 b 270 | 450564
Flange 58.3 73.7 37.1

141 W30x90 Pven | 627 | 759 | 381 | #1709
Flange | 55.3 77.4 36.3

15 | WIsx192 1 —wen—| 608 | 771 | 396 | 42017
Flange | 49.9 79.0 345

a

16 Web | 533 78.8 348 | 12986

W18x130

16° Flange 52.1 71.2 40.9 354162
Web | 56.6 71.9 40.1
Flange | 57.3 75.3 38.5

17| WIBX76 vep | 548 | 661 | 323 7505
Flange 54.8 70.9 39.1

21 | wigxaso [ 2o b 17 | 471309
Flange 54.6 79.6 35.5

22 |W30x148 e Tl 62 | 833 | 3as | 3G3%7
Flange [ 49.4 68.1 37.3

23 | WIS yeb™| 554 | 690 | 356 |°90°97¢7
Flange 51.6 68.4 38.7

24 | wiaxgz [ 2 ot 6o | 59070575
Flange 54.8 704 35.9

25 | wiaxss o 2 fae e | 438715
Flange 51.5 70.8 38.4

C

26 Web | 500 | 690 | 356 | 490819

W14x132

260 Flange 55.0 72.5 39.0 456821
Web | 557 71.6 39.0
Flange 54.1 80.8 35.2

27 | waxgs ol 2 81 oy | 36829

2 Group 16: Specimen 16M.

b Group 16: Specimen 16M-BC.

¢ Group 26: Specimen 26LM.
d Group 26: Specimen 26LM-VAM.

¢ Elongations are based on a 2-in. gauge length.

22




Column Specimen

SRMD Platen (Shake Table)
and Reaction Fixture

(a) Schematic View

West End
(Fixed End)

(b) Overview of Specimen

Figure 2.1 Test Setup
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Axial Force (kips) Story Drift Angle (rad)

Moving End Rotation (rad)
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Figure 2.5 Cyclic Loading Schemes
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Figure 2.9 Symmetric Flange Local Buckling (SFB) Mode of W14x176 Section
with €, = 0.61 (Newell and Uang 2008)

(a) Overall (b) Cross-sectional View
Figure 2.10 Flange Local Buckling Configuration in SFB

(a) Overall (b) Cross-sectional View

Figure 2.11 Flange and Web Local Buckling Configuration in ALB
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3. DATA REDUCTION

3.1 Introduction

In NIST beam-column testing (details discussed in Chapter 2), the use of bolted
end-plate connections to tie the specimens to reaction fixtures did not constitute ideal rigid
boundary conditions; some relative rotations between the specimen ends and the reaction
fixtures were observed. Flexibility of these connections varied in moment-rotation
characteristics for each specimen and affected each specimen’s responses differently. Thus,
in order to investigate other variables of interest, it is necessary to remove this connection
flexibility effect from the test responses. This thesis theoretically investigates elastic beam-
column behavior corresponding to rigid- and flexible-end boundary conditions, utilizing
the Timoshenko theory; theoretical expressions that considered both shear deformation and
the second-order effects were derived and used to correct the test lateral-drift responses to
eliminate the effect of end-connection flexibility. Once achieved, the corrected test data

would represent the responses corresponding to ideal (or rigid) boundary conditions.

3.2 Theoretical Investigation of Elastic Beam-column Behavior

Elastic flexural stiffnesses of a prismatic beam-column are a function of boundary
conditions and applied axial loads. Two boundary types were investigated in this
theoretical study: (1) ideal or rigid boundary conditions, and (2) flexible or partially-
restrained boundary conditions. Figure 3.1 and Figure 3.2 show the deformed
configurations of fixed-fixed and fixed rotating columns, respectively, with respect to these
two boundary types. Elastic flexural stiffnesses of these cases are investigated in this

section with respect to Euler and Timoshenko theories. Euler beam theory assumes
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negligible shear deformation, while Timoshenko beam theory accounts for the shear
deformation by assuming a uniform shear stress profile in a cross-section. When the
geometries of test specimens are considered in this study, results show that the effect of
shear deformation on elastic flexural stiffnesses cannot be ignored. Slope-deflection
equations and stiffness relationships of Timoshenko beam-columns with ideal and flexible

end conditions are derived in Sections 3.2.2.2 and 3.2.2.3, respectively.
3.2.1 Euler Member
3.2.1.1 Euler Beam with Ideal Boundary Conditions

Euler assumptions state that plane sections remain plane and shear deformation is
negligible. Following the displacement and force notations of a two-node member shown
in Figure 3.3, the elastic flexural stiffness matrix, K, of an Euler beam with ideal boundary

conditions is expressed as follows:

12 6 12 6 7
12 L 12 L
V1 6 6 ’[71
m| Ell T * T ?||a
(L] 12 6 12 6]) v,
e 2 e 2 1
M, 2 L 2 L|\*2 3D
6 2 6 4
L L |

This formulation neglects the axial load and shear deformation effects.
3.2.1.2 Euler Beam-Column with Ideal Boundary Conditions

When an axial load is applied to a member, the member’s elastic flexural stiffness
changes due to the second-order P-§ and P-A effects. Slope-deflection equations can be

derived by applying Euler compatibility and constitutive law to equilibriums of a member
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in its deformed configuration. This derivation is well established (e.g., Chen and Lui 1987);
the flexural stiffness relationships of an Euler beam-column with ideal boundary conditions

are:

Vi [1311 K1 Kiz Kia] v

M, _ |I£21 1522 1523 1524 | aq

V2 K31 Ki; K3z Kza||V2 3.2

Vof IR Ky Kuo Ku|22 32)
2 : 41 Kiz Ky Ky

where the stiffness matrix subscripts “C” and “T” distinguish the types of axial load being
applied to the member, i.e., “Compression” and “Tension”, respectively. Regardless of the
axial load directions, the axial load magnitude (i.e., absolute value) P can be normalized
as
¢ = +/P/EI (3.3)

and in a dimensionless form as

® = gL = (P/EI)L (3.4)
The two parameters defined above are used to simplify expressions of both beam-columns
under axial compression and axial tension.

Member with Axial Compression

Defining
Y. =2(1—-cos®) — dsind (3.5)

coefficients for the symmetric flexural stiffness matrix, K, in Eq. (3.2) are
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Kcqi, = L ®2(1 — cos ®)
— cos
€12 120,

_ El
K = —®(sind® — dcosd
a2 = 5 )

Kcoa = £l P(P — sin ®)
c24 = LT, sin

—Kc,13 = —Kc,31 = Kc,33 = Kc,11

—Kc,zs = —Kc,32 = —Kc,34 = —Kc,43 = Kc,14 = Kc,21 = Kc,41 = Kc,12

Kc,44 = Kc,zzi Kc,42 = Kc,24

(3.6)

Following expressions predict internal moment and shear along the member length when

axial compression is present:

@whenv; =1,v, =0,a; =0,and a, = 0,

EIl
M,, (x) = 7%, ®*{cos[p(L — x)] — cos(¢x)}

El .,
Vvl(x)z—L3lTJ ®° sin ®
c

(b) whenv; =0,v, =0,a; =1,and a, = 0,
El
Ma, (x) = 755~ @@ cos|p(L — x)| = sin[p(L — )] — sin(px)}
C

El
2%,

Vi, (x) = — ®2(1 — cos ®)

(cywhenv; =0,v, =1,a; =0,and a, = 0,
M,,(x) = —M,, (x)

Vo, () = =1, (x)
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(d)whenv;, =0,v, =0,a; =0,and a, =1,
El
M,, (x) = A ®{® cos(px) —sin(px) — sin[e(L — x)]}
C

Vi, () = Vg, (%)
Using superposition, internal moment and shear along the member length can be
determined if the end lateral displacements (v; and v,) and rotations (a; and «a,) are

known:
Miorar(x) = My, (X)vy + My, (x)ay + My, (X)v, + Mg, (X)a, (3.8)
Viotar(x) = Vo, (v, + Va, ()a; + Vo, (x)v, + Va, (W) a; (3.9)
Egs. (3.8) and (3.9) are the most general forms when all four degrees of freedom are
unrestrained. They can also be written in the stiffness matrix format as in Eq. (3.2) for x =
0 and x = L to establish the coefficients for K. K. 1, predicts the theoretical Euler lateral
stiffness considering stiffness reduction due to axial compression for specimens with ideal
fixed-fixed boundary conditions. In testing, flexibility of end connections was observed.

Therefore, elastic behavior of an Euler beam-column with flexible end restraints is studied

in Section 3.2.1.3 to address this issue.

Member with Axial Tension

Defining

Y, = —2(1 — cosh®) — ®sinh @ (3.10)

coefficients for the symmetric flexural stiffness matrix, K, in Eq. (3.2) are
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_ ET . |
Kri = ET @~ sinh @
T

Kr1z = 2@
T

®2(1 — cosh )

— El
Kro, = E@(sinh ® — @ cosh @)

(3.11)
K £ ®(d — sinh @)
= —— — Sin
T,24 LLPT
_I?T,13 = _I?T,31 = I?T,33 = I?T,ll
_RT,23 = _I?T,32 = _I?T,34 = _RT,43 = RT,14 = I?T,Zl = I?TAl = I?T,12
I?T,44 = I?T,ZZ; I?TAZ = I?T,24
The following expresses moment and shear equations along the member length:
@whenv; =1,v, =0,a; =0,and a, = 0,
1
M, (x) = —= ®2{cosh[p(L — x)] — cosh(¢x)}
! L2,
r ..
V,, (x) = %, ®° sinh @
(b) whenv; =0,v, =0,a; =1,and a, = 0,
Mq, (x) = = ®(@® coshlg(L — 1)] - sinhlp(L — )] — sinh(px)}
a, (X) = LT, coshfp X sinh|¢p X sinh(gpx (3.12)
El
Vo, (x) = — 0, ®2(1 — cosh ®)

(cywhenv; =0,v, =1,a; =0,and a, = 0,
M,,(x) = =M, (x)

Vo, () = =13, (x)
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(d)whenv;, =0,v, =0,a; =0,and a, =1,
El
Mg, (x) = — WCD{CD cosh(¢px) — sinh(px) — sinh[p(L — x)]}
T

Vi, () = Vg, (x)
3.2.1.3 Euler Beam-Column with Flexible Boundary Conditions

Ideal boundary conditions are difficult to achieve in full-scale testing in this
research program. To predict elastic behavior of an Euler beam-column with flexible end
restraints, end rotational springs with equal stiffness of

Ky = (%) (3.13)

are included in the theoretical derivation of the member flexural stiffness matrix as in Eq.

(3.14).

[131’1 131’2 131’3 131’4] U1
|I£2,1 IEZIZ I£2,3 I£2’4-|
V2 [Kgl Ki, Kjs K§4J vy (3.14)
: n Kiz Kiz Kia
f
K or K}

The procedure to establish the flexural stiffness coefficients is similar to that presented in
Section 3.2.2.3; the only difference is that the derivation in this section is based on the

Euler beam assumptions, which neglect the effect of shear deformation.

Member with Axial Compression

Defining
YL =2(B? + BDP?)(1 — cos D) — D(B? — 2 — P?) sin® — 2pP? (3.15)

coefficients for the symmetric flexural stiffness matrix, K, are derived as follows:
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—, _EI ®3[B sin® — d(1 — cos P)]
11 = F{(zﬁ + ®2)(1 — cos d) — fDsin q)}

—, _EI BP2(1 — cos D)
€127 12 (28 + ®2)(1 — cos P) — BP sin

— El
Kt = 57 PL(B? + fP?)sin @ — f2d cos D]

LY,
(3.16)
Kéza = %ﬁzcb(cb — sin ®)
_Ké,w = _1?531 = 1?633 = 1?5,11
_I?é,23 = _I?é,sz = _I?é,34 = _I?é,43 = I?é,m = Ké,m = I?é,zu = Ké@z
I?é,44 = Ké,zz; I?é,ztz = I?L",24
Eq. (3.17) expresses internal moment and shear along the member length:
@ whenv; =1,v,=0,6, =0,and 6, = 0,
My, () = ﬂ{ Bd?{cos[p(L — x)] — COS(fpaf)} }
L2 (28 + ®?)(1 — cos ®) — P sin @
v, () = E{ ®3[D(1 — cos P) —,[i'sindbl] }
L3 (2B + ®2)(1 — cos ®) — P sin @
(b) whenv; =0,v, =0,6; =1,and 6, =0,
M, () = T OB 0 coslo(L = 0] = (8 + oR)sinlp(t =] O

—B? sin(gx)}

y _El BD2(1 — cos D)
0, (x) = 12|28 + 2)(1 — cos ) — B sin ®

(cywhenv; =0,v,=1,6, =0,and 6, = 0,
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My, (x) = —=M,, (x)

Vo, () = =1, (x)

(d)whenv, =0,v, =0,6; =0,and 6, =1,

__ B g2 (A2 4 A2 <
Mg, (x) = T P{B*D cos(px) — (B* + fP?) sin(¢px)
c

—B?sin[p(L — )]}

Vo, (x) = Vg, (%)

Member with Axial Tension

Defining
Pr = =2(B% — P?)(1 — cosh ®) — ®(B? — 2 + ®?) sinh ® — 2P2 (3.18)

coefficients for the symmetric flexural stiffness matrix, K7, are derived as follows:

. EI ®3[B sinh ® — ®(1 — cosh ®)]
T 13 | (=28 + 2)(1 — cosh ®) — B sinh &
Z EI B®2(1 — cosh @)

T2 7 12 (=28 + ®2)(1 — cosh @) — fP sinh &

—, El ) o 5

Kr,, = Wd?[(ﬁ — fP*) sinh ® — B*® cosh D]
T

(3.19)
K El ,BZQD(CD inh @)
T24 = 757 — Sin
LY,
_K’II‘JB = _RII‘,31 = RII‘,33 = Rf‘,n
_I?%,zs = _I?%,sz = _I?%,34 = _I?%As = 1?7’",14 = 1?%,21 = 1?%,41 = 1?%,12
1?%,44 = 1?%,22; 1?%,42 = 1?%,24

Eqg. (3.20) expresses internal moment and shear along the member length:
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@whenv; =1,v,=0,a; =0,and a, = 0,

y _EI( B®*{cosh[p(L — x)] — cosh(px)}
w () = L_Z{(—zﬁ + ®2)(1 — cosh ®) — fP sinh q>}

. _EI ®3[—D(1 — cosh @) + B sinh D]
v () = L_3{(—2ﬁ + ®2)(1 — cosh ®) — B sinh CD}

(b) whenv; =0,v, =0,a; =1,and a, = 0,

EIl
Mg, (x) = = {B*® cosh[p(L — x)] — (B — fP?) sinh[p(L — x)]
T

—B? sinh(px)}
. _E LP%(1 — cosh d) (3:20)
«@ () = =2 |28 ¥ D) (1 = cosh &) — fPsinh @

(cywhenv; =0,v, =1,a; =0,and a, = 0,
Mvz(x) = _le(x)

Vo, (x) = =Vp, (x)

(d) When vl = 0, vz = 0, 0{1 = 0, and 0{2 = 1,
El
M, (x) = —Wflb{ﬁzcb cosh(px) — (8% — pP?) sinh(px)

T
—B?sinh[p(L — x)}

Vo, () =V, ()
3.2.2 Timoshenko Member

3.2.2.1 Timoshenko Beam with Ideal Boundary Conditions

Euler beam theory does not consider the effect of shear deformation. Timoshenko

beam theory represents a simplification of more precise beam theories that accounts for
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shear deformations by assuming a uniform shear stress distribution in a cross-section.
Constitutive law for shear force is expressed as (Graff 1975)

V =GAgyy (3.21)
where G is the shear modulus, y is the shear strain, and A (= kA) is the shear area; k is
the Timoshenko shear coefficient, which varies based on the shape of the cross-section.

For an I-section bent about its strong-axis, k can be determined as follows (Cowper 1966):

. 10(1 +v)(1 + 3m)? (3.22)
T (12 + 72m + 150m2 + 90m3) + v(11 + 66m + 135m2 + 90m3) + 30n2(m + m2) + 5vn?(8m + 9m?2)

2bf

where Poisson’s ratio v = 0.3 for steel, m = —
0

I h, = distance between the flange

. b
centroids, and n = h—f
0

Flexural stiffness relationships of a two-node Timoshenko beam are well

established as follows (e.g., Przemieniecki 1985):

12 6 12 6
(1+ID2 (1+1DL (1+I2 (1+1DL
a 6 4401 6 2-1 | 4
My _EI (1+1IDL 1+11 (1+1MI)L 1+1 a,
v, (T L 12 6 12 6 V2| (3.23)
M, (1+ML2 (1+0)L 1+  (A+mL| %
6 21 6 44T
L 1+ )L 141 (1+IL  1+10
( J
Y
K
where
_ 12E1 (3.24)
T GA L2

K, represents the Timoshenko lateral stiffness neglecting axial load effect. The elastic

flexural stiffnesses of a Timoshenko beam-column are derived in the following section.
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3.2.2.2 Timoshenko Beam-Column with Ideal Boundary Conditions

To establish the governing differential equations for a Timoshenko beam-column,
Timoshenko compatibility and constitutive laws are applied to equilibriums of a member
in its deformed configuration. The derived flexural stiffness relationships are shown in the

following form:

« (3.25)

Member with Axial Compression

Figure 3.4 depicts the free body diagram of an axially loaded beam in its deformed

configuration. The equilibriums of an infinitesimal member length can be expressed as

follows:
av
—+wkx)=0 (3.26)
dx
aM dv
—+ V(@) +P—=0 (3.27)
dx dx

Timoshenko compatibility and constitutive laws can be expressed as follows:

M(x) = EI(x) 3—2( (3.28)

V(x) = GA,(x) [% _ a(x)] (3.29)

Substitute Egs. (3.28) and (3.29) into Eq. (3.27) to derive a lateral displacement and

flexural rotation relationship as follows:
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dv -1 d*a (3.300)
dx p+ ¢@?|dx? pa(x) '
where
GA,
= 3.30b
P =g ( )

Differentiating Eq. (3.27), substituting in Eq. (3.30a), and setting w(x) = 0 gives a third-
order ordinary differential equation for flexural rotation below.

d3a ,da

— 0 (331)

The solution of this equation takes the form of a(x) = Ce?*. Substituting this into Eq.

(3.31) gives the characteristic equation for the Timoshenko member under compression:
(A3 + @) Ce™™ =0 (3.32)
The solution is
A=0,—ip,ip (3.33)
Thus, the general solution for the slope equation can be expressed as follows:
a(x) = Cie'P* + C,e % + (;, (3.34a)
or
a(x) = Cy sinpx + C, cos px + C3 (3.34b)

Substituting Eq. (3.34b) into Eq. (3.30a) and integrating once gives a deflection equation

below.

v(x) = ? C; cos px — C, sin px —

it B2 (3.35)

To derive the flexural stiffness matrix of a two-node element with four degrees of

freedom (lateral displacement and rotation at each end), four sets of boundary conditions
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are applied to the slope-deflection equations. The resulting system of equations are solved
to determine the unknown coefficients. Firstly, a unit end rotation is imposed at the left end

(node 1) of the element while other degrees of freedom remain fixed.
v(0)=0; v(L) =0;a(0)=1;a(L) =0 (3.36)

Solving the above system of equations gives:

1
Cy =lp—[—(1+u)sincb+cbcoscb]
c

1
C, = lp—[(l + u)(1 — cos®P) — ®sin P
c

(3.37)
1
C;=—0+u)(A —cosP)
We
L
C4_ = 661
where dimensionless factors are defined as
_L 3.38
H= G (3.38)
Y. =214+ wu)(1—cos®) — dsind (3.39)

Substituting Eg. (3.37) into Egs. (3.34b) and (3.35) gives closed-form solutions for the
lateral displacement and flexural rotation along the member length corresponding to the
applied unit rotation at node 1 [i.e., a; = a(0) = 1]. Applying the Timoshenko
constitutive law, closed-form solutions for the moment M, (x) and shear V;, (x) along the

member length can be expressed using Egs. (3.28) and (3.27) as:

El
Mg, (x) = L, O{P cos[p(L — x)] = (1 + ) sin[p(L — x)] = (1 + ) sin(ex)}

(3.40)

El
Vo, () = 7T ®*(1 — cos D)
c
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This same process is carried out for the three other cases: (a) a unit lateral
displacement is applied at node 1 [i.e., v; = v(0) = 1] while other DOFs remain fixed, (b)
a unit lateral displacement is applied at node 2 [i.e., v, = v(L) = 1] while other DOFs
remain fixed, and (c) a unit rotation is applied at node 2 [i.e., a, = a(L) = 1] while other

DOFs remain fixed. Mathematically, these boundary conditions can be expressed as

follows:
v(0) = 1; v(L) = 0; a(0) = 0; a(L) = 0 (3.41)
v(0) = 0; v(L) = 1; a(0) = 0; a(L) = 0 (3.42)
v(0) = 0; v(L) = 0;(0) = 0; a(L) = 1 (3.43)

Solving the above three sets of boundary conditions yields expressions for M,, (x) and

V,, (x), My, (x) and V,, (x), as well as My, (x) and V,, (x), respectively. The results are

shown below.
EI 5
My, () = F5= ®2(1 + w{cosp(L — )] — cos(px)}
C
El .
V,, (x) = _L3‘PC ®° sin®

My, (x) = —=M,, (x) (3.44)

Vo, () = =1, (x)

M, () = = - (@ cos(pn) = (1+ ) sin(gx) - (1+ ) sinf (L —x)])

Vi, () = Vg, (%)
Eqgs. (3.40) and (3.44) can also be expressed in the stiffness matrix format as in Eq. (3.25)

to establish the flexural stiffness coefficients as follows:
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El
KC,llzmcD sin @

El
KC,IZ = ECD (1 — COS CD)

I
KC,Zl = ﬁ(DZ(l + ,Ll)(l — COS (D)

El
Kcoz = WCD[(l + ) sin® — @ cos D]
¢ (3.45)

Kcza = [@ — (14 wsin @]

mfb
—Kc13 = —Kc,31 = K3z = Kc,11
—Kc32 = —Kcza = Keia = Ke12
—K¢23 = —Kcas = Kear = K1

Kc,44 = Kc,zz; Kc,42 = Kc,24

Member with Axial Tension

Egs. (3.26) and (3.27) express the equilibriums of an infinitesimal member length
in its deformed configuration under axial compression. Under axial tension with the
magnitude P, Eq. (3.27) becomes

aM dv
—+ V(@) —-P—=0 (3.46)
dx dx

The same Timoshenko compatibility and constitutive laws as discussed before are applied
to Egs. (3.26) and (3.46), which give:

(3.47)

dv -1 [d?«a
Tz~ Pa)

dx  p— g2
Differentiating Eq. (3.46), substituting into Eq. (3.47), and setting w(x) = 0 gives a third-

order ordinary differential equation below.
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d3a ,da

3.48
dx3 — ¢ dx =0 ( )

The solution of this equation takes the form of a(x) = Ce?*. Substituting this into Eq.

(3.48) results in the characteristic equation for the Timoshenko member under tension:
(A3 — @21)Ce™™ =0 (3.49)
The solution is
A=0,—¢,¢ (3.50)
Thus, the general solutions for the slope-deflection equations can be expressed as follows:

a(x) = Cie?* + CLe™%* + C; (3.51)

pp
2

v(x) = Cle"’ — Ce7 ¥ — —— P Csx|+ Cy (3.52)

The same process as described before is used to derive the flexural stiffness matrix.
Moment and shear equations along the member length can be expressed as follows:

@whenv; =1,v,=0,a; =0,and a, = 0,

®2(1 — w){cosh[p(L — x)] — cosh(px)}

@3 sinh ®

Vo, (O = 35
T

(b) whenv; =0,v, =0,a; =1,and a, = 0,
(3.53)

Mo, () = - @(®coshlp(L —)] — (1.~ @ sinhlp(L ~ )]

—(1 — ) sinh(px)}

El
Vo, (%) = — ®2(1 — cosh ®)

2v,

(cywhenv; =0,v, =1,a; =0,and a, = 0,
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M,,(x) = —M,, (x)
Vo, () = =13, (x)

(d)whenv, =0,v, =0,a; =0,and a, =1,

Mgy, (x) = — %CD{CD cosh(px) — (1 — p) sinh(¢x)

—(1 —p) sinh[p(L —x)]}
Ve, () = Vg, (x)
where
W, = —2(1 — u)(1 — cosh @) — dsinh & (3.54)

Finally, the flexural stiffness matrix, K, can be expressed in the form of Eq. (3.25), where

I
KT,ll = - L3LIJT (D3 sinh ®
I 2
KT,12 = W(D (1 — cosh (D)
T

El 5
Kry = 2%, ®“(1—pu)(1 — coshd)

El
Kropp = W(D[(l — ) sinh @ — @ cosh @]
T (3.55)

El _
Kro4 = mdb[d) — (1 — p) sinh @]

_KT,13 = _KT,31 = KT,33 = KT,11
_KT,32 = _KT,34 = KT,14 = KT,12
_KT,23 = _KT,43 = KT,41 = KT,21

KT,44 = KT,ZZ; KT,42 = KT,24
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3.2.2.3 Timoshenko Beam-Column with Flexible Boundary Conditions

Chapter 2 describes boundary conditions of the beam-column test specimens. Due
to out-of-plane flexibility of the end plates and elongation of the pretensioned rods,
unintended rotations at column ends were unavoidable during testing. To remove the rigid
body motion caused by these rotations from the measured lateral drift, a data reduction
procedure is presented in Section 3.3. The process involves analyzing the actual testing
condition to include the effect of connection flexibility. To provide a theoretical basis for
the proposed data reduction procedure, behavior of a beam-column with end rotational
springs is presented herein. Figure 3.5 shows the system of a member with end rotational
springs, comprising of four nodes and eight degrees of freedom. The rotational spring
stiffness constant is assumed equal at both ends in the form of B(EI/L). Two approaches
were used in establishing stiffness relationships of the system: (1) the governing
differential equations discussed in Section 3.2.2.2 were re-solved using different sets of
boundary conditions, and (2) the method of stiffness matrix condensation was implemented
on the stiffness matrices K. and Ky already derived in Section 3.2.2.2. Both approaches

gave consistent results.

Method of Differential Equations

Regarding the first approach, the unknown coefficients in Egs. (3.34b) and (3.35)
can be re-solved based on new sets of boundary conditions that take into consideration the
end rotational springs.

Figure 3.6 demonstrates the relationship between the spring forces and the member
internal moments at ends corresponding to the application of a unit end rotation at node 1

[see Eq. (3.56)]. Ultimately, four new sets of boundary conditions corresponding to the
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applications of a unit rotation and a unit lateral displacement at each end can be expressed

as follow:

v(0) = 0; v(L) = 0;
BEI __da|  BEI _da (3.56)
T[l - 0((0)] = —Ela o ; T[O - CZ(L)] = Ela el

v(0) =0; v(L) = 0;
BEI _da|  BEI _da (3.57)
T[O - 0((0)] = —Ela o ; T[l - CZ(L)] = Ela el

v(0) =1; v(L) = 0;
BEL .o o day  BEL . da (3.58)
T[ —a(0)] =— Ex:O' T[ —a(l)] = EFL

v(0) =0; v(L) = 1;
BEI _da|  BEI _da (3.59)
T [0 - 0((0)] = —Ela o ; T[O - CZ(L)] = Ela el

Solving the above system of equations and repeating the same process as described in
Section 3.2.2.2 give the flexural stiffness matrix of a Timoshenko beam-column with
flexible boundary conditions, K'. Results are the same as those derived from the method

of stiffness matrix condensation.

Method of Stiffness Matrix Condensation

K' can also be derived using the matrix condensation method (McGuire et al. 2014).
The flexural stiffness coefficients in K or K derived in Section 3.2.2.2 can be assembled
into the stiffness relationships of the system shown in Figure 3.5 to study the effect of
flexible boundary conditions. This is achieved by mobilizing one degree of freedom at a

time with a unit displacement (while others remain fixed) to formulate each column of the
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stiffness matrix in Eq. (3.60). Enforcing the equilibrium requirements V; = V; and V, = V;

and the compatibility requirements v; = v; and v, = v; gives the following:

PEI | BEI
Ky, + T K4 Ky — A K>3 0
(M BEI PEI| ,a;
— K 0 — =1
M, Ky Kys + L 1 43 Lo
) il _ K1z K14 K 0 Kiz 0 4 41 } (3.60)
M, BEI | BEI 61
v, T 0 0 == o0 o lsz
\MzJ K32 K34 K31 0 K33 0 82
BEI BEI
0 - 0 —
L 0 0 L
Eq. (3.60) is in the partitioned form of
{Pb} _ [Kbb K. {Ab)
Pc ch | ch ch

where A, represents the internal rotational degrees of freedom to be eliminated, and A, is

the preselected degrees of freedom that will remain after matrix condensation. Ultimately,

K' =K. — chKl;I}Kbc (3.61)
The resulting flexural stiffness matrix is expressed in the following format
4 [K1l1 Ki; Kis K1'4] 21
Ml — K2’1 K2’2 K2’3 K2’4 81
Y K31 K3z Kiz Kz f|V2 (3.62)
M, \th Ky Kas K44} Z
Y
K¢ or Ky

Member with Axial Compression

Eq. (3.63) expresses internal moment and shear along the member length:
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@ whenv; =1,v,=0,6, =0,and 6, = 0,

Iy _EI( po*(1 + w{cos[p(L — x)] — cos(px)}
v () = L_Z{[Zﬁ(l + 1) + ®2](1 — cos ) — B sin q)}
. _EI ®3[D(1 — cos P) — fsin D]

v () = L_3{[2,8(1 + 1) + ®2](1 — cos ) — B sin cp}

(b) whenv; =0,v, =0,6; =1,and 6, =0,

EIl
My, (x) = ch{ﬁch cos[p(L —x)] =[A*(1 + u) + BP?]sin[p(L — x)]
Cc

—B*(1 + ) sin(gx)}

EI{ LP?(1 — cos D) }

Vo, () =~z [28(1 + ) + @2](1 — cos @) — fPsin P

(cywhenv; =0,v,=1,6, =0,and 6, = 0,
Mvz (x) = _le(x)
W, (x) = =1, (x)

(d) When vl = 0, vz = 0, 91 = 0, and 82 = 1,

El
My, (x) = = 75 OB cos(px) ~[B2(1 + ) + BO?Isin(px)
C

—B*(1+ W sinfe(L — )]}
Vo, (x) = Vg, (x)
where
WYL= 2[B2(1 + p) + BP2](1 — cos D) — D[B2 — 2B(1 + p) — P2 sin D — 2D?

In the stiffness matrix format,
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, EI{ ®3[B sin® — d(1 — cos P)] }
Kcir =

T B |[28(1 + p) + d2](1 — cos d) — fPsin
o El BP2(1 — cos D)
1z = ﬁ{[mm +p) + ®?](1 — cos @) — fPsin CD}
, _EI BP*(1+ w)(1 — cos @)
¢~ 2 {[2/3(1 + ) + @2](1 - cos @) — BPsin ‘1’}

El
Ky = Wd){[ﬁz(l + 1) + pP?]sin @ — B2P cos P} (3.65
c :

El ]
Kios = Wﬁz‘b[‘b — (1 + p)sin @]
C
_Ké,13 = _Ké,31 = Ké,33 = Ké,n
_Ké,32 = _Ké,34 = Ké,14 = Ké,12
_Ké,23 = _Ké,43 = Ké,41 = Ké,21

l — . l — !
KC,44— - KC,ZZ' KC,42 - KC,24

Member with Axial Tension

Eq. (3.66) expresses internal moment and shear along the member length:

@ whenv; =1,v,=0,6, =0,and 6, = 0,

y _EI( p®*(1 — w){cosh[p(L — x)] — cosh(px)}
v () = L_Z{[—Zﬁ(l — ) + ®2](1 — cosh @) — Bd sinh cp}

EI{ ®3[-d(1 — cosh ®) + B sinh @] }
[

Vo, () =13 —2B(1 — i) + ®2](1 — cosh @) — D sinh @ (3.66)

(b) whenv; =0,v, =0,6; =1,and 6, =0,
El
Mg, (x) = 557 P{B?® cosh[e(L — x)]
1 LY,

—[82(1 — ) — pP?]sinh[p(L — x)] — B>(1 — p) sinh(px)}
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Vo (o) = _g{ BD2(1 — cosh d) | }
1 12 |[-28(1 — ) + ®2](1 — cosh ®) — Bd sinh &
()whenv; =0,v, = 1,6, = 0,and 6, = 0,
M,,(x) = =M, (x)
Vo, () = =15, (x)

(d)whenv, =0,v, =0,6;, =0,and 6, =1,

El
Mo, (x) = — 57 {B2® cosh(px) ~[B2(1 — ) — f&?]sinh(px)
T

—B*(1 — p) sinh[p(L — x)]}
Vo, (x) = Vg, (x)
where

Wr = =2[p*(1 — p) — pP*](1 — cosh P)

(3.67)
—®[p% — 28(1 — u) + ®?] sinh ® — 2P
In the stiffness matrix format,
. EI ®3[B sinh ® — ®(1 — cosh ®)]
T 13| [-28(1 — p) + @2](1 — cosh ®) — Bd sinh ®
Ko o EI B®2(1 — cosh @)
12712 |[-2B(1 — ) + ®2](1 — cosh ®) — BP sinh ®
X! _EI LP?(1 — u)(1 — cosh )
T2l = 12 |[-2B8(1 — ) + ®2](1 — cosh @) — BP sinh P (3.68)
El
K7, = W@{[ﬁz(l — p) — fP?]sinh ® — B2d cosh d}
T
EI ,
K724 = 7 B*®[® — (1 — p)sinh @]

LW

l _ l —_ ! —_ !
_KT,13 - _KT,31 - KT,33 - KT,ll
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_K%,sz = _K%,34 = KTI",14 = K%,12
_KII‘,23 = _KII‘,43 = KII‘,41 = KII‘,21
K%,44 = Kf,zz; K%Az = K%,24
3.2.3 Comparisons

Flexural stiffness expressions derived with respect to the Timoshenko elastic beam
theory are similar in structure to those derived based on the Euler elastic beam theory. The
only difference is the inclusion of variable u [see Eq. (3.38)] in the Timoshenko
expressions for beam-columns. As GAg approaches infinity (i.e., the member has infinite
shear rigidity), u becomes zero, and the Timoshenko expressions converge to the Euler
expressions.

The [1,1] term in each flexural stiffness matrix represents the theoretical lateral
stiffness of the member under consideration. Given geometric properties of the test
specimens and their applied axial load magnitudes, the theoretical Euler and Timoshenko
lateral stiffnesses, assuming ideal boundary conditions, can be calculated according to
Sections 3.2.1.2 and 3.2.2.2, respectively; these are K. 1, and K¢ 1, respectively. Ignoring
the effect of axial loads, the corresponding Euler and Timoshenko lateral stiffnesses can
also be determined according to Sections 3.2.1.1 and 3.2.2.1, respectively; these are K,
and K ;, respectively. Results are shown in Table 3.1. Since all specimens in Phase 2 test
program were subjected to strong-axis bending, the effect of axial compression on stiffness
reduction is insignificant; K;;, and K. ,, are similar in magnitude, which is also true for
K;, and K¢ 1,. However, the effect of shear deformation on lateral stiffness is significant

as demonstrated by the percent difference between K 1, and K 11; these values carry the
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Euler and Timoshenko beam assumptions, respectively. Indeed, the Euler beam theory
ignores shear deformation and, as a result, overestimates the member lateral stiffness.

In addition, the two theoretical quantities (K¢ 1, and K ;1) are also compared with
the measured lateral stiffnesses (K,,.) of each test specimen. Indeed, Timoshenko beam
theory, which considers shear deformation, can predict stiffness values closer to the
measured values; the difference between the theoretical lateral stiffness K. ;;, assuming
ideal boundary conditions, and the measured lateral stiffness K, results from flexibility
of the member end connections, which is unavoidable in testing. Due to this reason,
behavior of Timoshenko beam-columns with flexible end restraints is studied in Section
3.2.2.3. By idealizing the member end connection flexibility as a rotational spring, the
derived lateral stiffness relationship from Section 3.2.2.3 can be used to calibrated with the
test data (i.e., the lateral force vs. measured drift response) to determine the equivalent end
rotational spring stiffness S(EI/L), which represents and quantifies connection flexibility.
The calibrated B values are also reported in Table 3.1. Ultimately, after considering both
the effects of axial load and end connection flexibility, theoretical Timoshenko flexural
stiffnesses corelate well with test data in elastic range. Finite element analysis results are
also consistent with this conclusion (results not shown). Consequently, Timoshenko beam-

column equations are used in the data reduction process discussed in Section 3.3.

3.3 Drift Correction Procedure

Ideal rigid boundary conditions were difficult to achieve in this testing program as
some relative rotations between the specimen ends and the reaction fixtures were observed
despite the wuse of fully-restrained connections. Furthermore, moment-rotation

characteristics of these fully-restrained connections varied for each specimen. To make
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meaningful comparisons between the specimen responses, it is necessary to correct the test
data to eliminate the effect of end connection flexibility. The theoretical study of elastic
beam-column behavior corresponding to rigid- and flexible-end boundary conditions,
utilizing the Timoshenko theory, is discussed in Sections 3.2.2.2 and 3.2.2.3, respectively;
theoretical expressions that considered both shear deformation and the second-order effects
were derived. All test results were corrected according to the theoretical study to represent
ideal (or rigid) boundary conditions; the procedure is summarized in this section.

Figure 2.2(b) shows bolted end connections of typical specimens. Despite that 1%-
in. diameter high-strength bolts were used to fasten the end plates to fixed fixtures,
unintended end rotations were unavoidable due to the out-of-plane flexibility of the end
plates and elongation of the bolts. These end rotations due to connection flexibility caused
rigid-body rotation of the specimens. Accordingly, the measured (or imposed) lateral drift
at the moving end of the specimens, A,,, can be expressed as:

Am= D + D + Ay (3.69)
where A, and A,,, represent the elastic and plastic components of the measured lateral
drift due to column straining, respectively, and A,,,. is the drift resulting from rigid-body
rotation of the column due to connection flexibility. Removing 4,,,. from A,, gives the
corrected story drift corresponding to ideal boundary conditions. Since it is difficult to
measure A,,. experimentally, this component was removed using the following procedure.

Assuming that A,,. remains elastic, A,,.+A,,. collectively represents the elastic

component of A,,. Accordingly, the plastic component of A,,, can be extracted as follows:

14
Kme

Amp: A — (3.70)
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where V is the measured column shear (i.e., lateral force), and K,,,., is the measured elastic
stiffness (i.e., the initial slope of the A,,, versus V response). Corrected lateral drift due to
the column deformation only is then the sum of the theoretical elastic drift, A, and the

experimentally determined A,,,,:

A=A, + Ay 3.71)

where
A, = 4 3.72
=T (3.72)

K, is the best estimate of the elastic lateral stiffness and is represented by the theoretical
lateral stiffness of a Timoshenko beam-column with ideal boundary conditions,
considering both the second-order effect and the shear deformation effect. Calculation of
K, is discussed in the following sections for fixed-fixed boundary condition case, fixed-
rotating boundary condition case, and varying-axial load case. Eq. (3.71) can be re-written

as follows:

d ) (3.73)

v
A=Ae+Amp=K—+(Am—K
e me

Then, the corrected story drift angle (SDA) is defined as the corrected drift, A, divided by

the column clear length, L (i.e., excluding end plate thicknesses).

A
SDA = I (3.74)
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3.3.1 Specimens with Fixed-fixed Boundary Conditions and Constant Axial

Compression

Lateral Drift and End Moment Calculation

The lateral movement measured at the center of the SRMD platen, A, reflects the

exact lateral drift at the moving (or east) end of the column; see Figure 3.7(a). Thus,
Ay = Ar (3.75)
This drift includes the effect of rigid-body rotation due to connection flexibility. In testing,
the connection rotations were practically the same in magnitude and direction at both
column ends due to symmetry of the test setup; this allowed the inflection point to be
assumed to still remain at the midspan [see Figure 3.8(a)]. With this assumption, east and

west end moments including P-A effect are computed as follows:
1
My, = My = 3 [V(L — Ag) + PA,] (3.76)

where A; = axial shortening, and P = applied axial load (see Figure 3.9 for sign
conventions). The calculated end moment can be normalized by either the plastic moment,

M,,, or the reduced plastic moment, M,,, of the section (ASCE-WRC 1971):
For P/P, = 0.15,
M, = 1.18 (1 — —) M, (3.77a)

For P/P, < 0.15,
pc =M,y (3.77b)

The measured yield stresses from tensile coupon testing (see Table 2.2) are used to compute

P, and M,,.
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Corrected Lateral Drift

Eqg. (3.78) expresses the theoretical elastic shear-drift relationship of a beam-
column with ideal fixed-fixed boundary conditions with the inflection point at the midspan.
V = K11 (3.78)

Thus, K, based on the Timoshenko theory considering both shearing and second-order

effects (compression case) is

El
3,

Ke = KC,ll S CDg SlIl (D (379)

which is used in Eq. (3.73) to compute the corrected drift. The dimensionless factors are

P
d=plL= [—L 3.80
® /EI (3.80)

defined as

_F 3.81
H= G (3.81)
Y.=21+u)(1 —cos®) — dsind (3.82)

where P = axial force magnitude (i.e., absolute value), E = elastic modulus, I = moment
of inertia about the bending axis, and G = shear modulus. A, is the effective shear area,
accounting for the fact that shear stress and shear strain are not uniformly distributed over
the cross section (Cowper 1966); it also varies based on bending direction. Therefore,
calculation of A, is discussed below for strong- and weak-axis bending cases, respectively.

For a wide-flange member bent about its strong axis, shear stress distribution
concentrates mostly in the web. Defining

A, = kA (3.83)
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where A is the member’s cross-sectional area, Cowper (1966) provides an extensive

expression for the Timoshenko shear coefficient:

f = 10(1 +v)(1+3m)? (3.84)
T (124 72m + 150m2 4+ 90m3) + v(11 + 66m + 135m2 + 90m3) + 30n2(m + m?) + 5vn?(8m + 9m?)

where Poisson’s ratio v = 0.3 for steel, m = zhb’;tf, h, = distance between the flange
otw
centroids, and n = %. Alternatively, A, can be reasonably estimated as the web area, i.e.,
0

(d — 2¢)¢t,, of the section as shown in Figure 3.10.

For a wide-flange member bent about its weak axis, shear stress distribution
concentrates mostly in the flanges. Neglecting the web contribution in resisting shear, the
effective shear area becomes

Ag = kAf (3.85)
where As is the total flange area (= 2bstf), and k associated with the shear stress

distribution in a rectangular cross section (i.e., the flanges) is (Cowper 1966)

_10(1+v)

d Sl 4 (3.86)
12 + 11v

An example correction of the column shear-drift response of Specimen 13M
subjected to strong-axis bending is shown in Figure 3.11. Note that the calculated values
of K,,,. and K, are 177.18 and 231.26 kips/in., respectively; the measured lateral stiffness
was reduced by 23% due to flexibility of the end connections.

By idealizing the connection flexibility at both column ends as end rotational

springs with an equivalent spring stiffness of

Ky = B (%) (3.87)
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Eq. (3.88) was calibrated with the elastic portion of shear-drift test responses to determine

B and K,
V = Kibm (3.88)
where
) EI O3B sin® — d(1 — cos )]
c11 = 73 TZE — - (3.89)
L3 [2B(1 + u) + @2](1 — cos P) — BPsin P

The results are listed in Table 3.1. Note that a connection can be considered “fully

restrained” for S greater than 20 (Commentary of AISC 2016c).

3.3.2 Specimens with Fixed-rotating Boundary Conditions and Constant Axial

Compression

Lateral Drift and End Moment Calculation

For fixed-rotating boundary condition tests conducted in Phase 2 program, cyclic
end rotations in-phase with and proportional to cyclic lateral drifts were prescribed to the

east or moving end; thus, the east end rotation can be expressed as follows:

O = Em (AT’") (3.90)
where &, is the rotation-to-drift ratio and is set equal to 1 for Specimens 13M-BC and
16M-BC and 1.1 for Specimen 11H-BC.

Forces, moments, displacements, and rotations applied to the specimens in all three
primary directions of interest were recorded at the center of the SRMD platen [see Figure
3.7(b)]. The column east end was connected to the SRMD platen a distance L, away from
this reference point. Because of this setup, prescribing 6,,, to the SRMD platen for it to
rotate about its center, which simulated the east end rotation, resulted in a displacement of

the column east end. To maintain a consistent loading protocol, this displacement was
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accounted for in the lateral-drift loading protocol prescribed to the platen. Accordingly, the
lateral drift at the column moving end can be obtained from the following relationship.
Ay =Ar —0,Ly (3.91)
Given A, and 6,,, lateral movements of the platen, A, can be determined from Eq. (3.91).
Figure 3.8 compares deformed configurations of a column with ideal fixed-fixed
boundary conditions and a column with ideal fixed-rotating boundary conditions. The
inflection point of the fixed-rotating column locates closer to the rotating end, depending
on the magnitude of the end rotation in proportion to the applied lateral drift (i.e., &,,,). Due
to the unsymmetrical nature of the fixed-rotating boundary condition tests, the inflection
point location also moves once the column exhibits inelastic behavior. Therefore, the
approach described in Section 3.3.1 cannot be used to determine end moments. Instead,
utilizing the recorded strong-axis moment applied by the SRMD platen, M;, a moment
equilibrium can be applied to the entire system so that the moment at the column west end
can be calculated; Figure 3.7(b) demonstrates this free body diagram. Thus, west end

moment becomes

Enforcing moment equilibrium in the column, the following equation calculates east end

moment:
Mg = V(L —Ay) + PA,, — My, (3.933)
or

66



The accuracy of the calculated moment was confirmed by comparing it with that computed
from the strain gauge data when the column responded in the elastic range (results not
shown).

Corrected Lateral Drift

Because the west and east end moments were not the same in magnitude like those
observed in the fixed-fixed boundary condition case, connection rotation at each column
end also differed in magnitude. Consequently, in addition to the applied end rotation at the
moving end, connection flexibility also influenced the location of inflection point in the
specimens. The following steps determine K, for fixed-rotating specimens, which is used
in Eq. (3.73) to remove the effect of connection flexibility from the lateral drift responses:
(1) determine the equivalent end rotational spring stiffness and locate the inflection point
in the specimens, (2) based on the determined inflection point location, calculate an
equivalent moving-end rotation assuming both column-end connections are rigid, and (3)
calculate K, based on the equivalent moving-end rotation determined in (2). The theoretical

expressions provided by Chansuk et al. (2018) were utilized in this calculation.

Step 1: Determine the equivalent end rotational spring stiffness and inflection point
location
By idealizing the connection flexibility at both ends of the specimens as end
rotational springs with an identical equivalent stiffness of B(EI/L), Eq. (3.94) expresses
the theoretical elastic lateral stiffness relationship of a fixed-rotating beam-column with
flexible end restraints:

V= <Ké,11 - meKé,u) Ay, (3.94)

where K¢ 14 is per Eq. (3.89) and
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, _EI {[ LD?(1 — cos ) } (3.95)

C12 7 12 |[28(1 + ) + ®2](1 — cos @) — B sin d
Eq. (3.94) is calibrated with the measured shear-drift elastic response to back-calculate S.
Once B is determined, internal moment along the member can be expressed using the

superposition principle:

M (x) = [M{,l (x) — %"Mél (x)] A, (3.96)
where
, _EI( po*(1 + w{cos[p(L — x)] — cos(px)}
M, () = ﬁ{[zﬁu + 1) + ©2](1 — cos ) — S sin CD} (3.97)
! El 2 2 27 3
Mh, () = 7o P20 coslip(L — )] ~[B(1 + 1) + fO*Isinp(L — )]
¢ (3.99)

—B*(1 + w) sin(ex)}
The dimensionless factor W is defined as
W= 2[F%(1 + w) + fP?](1 — cos ®) — P[B% — 2B(1 + ) — P?]sin® — 2pd%  (3.99)
Physically, My, (x) and My_(x) represent the moment distribution along the member length
due to a unit lateral displacement and a unit rotation, respectively, at the moving end; where
x is measured from the moving end. Setting Eq. (3.96) to zero and solving for x give the

inflection point location, x;p, in the specimen.

Step 2: Determine an equivalent moving-end rotation

To eliminate the effect of rigid-body rotation caused by connection flexibility that
contributed to the measured lateral drift, the specimen is assumed to have ideal fixed-
rotating boundary conditions, i.e., rigid end connections, and sustain an equivalent moving-

end rotation of

68



o=¢ (Z) (3.100)

Essentially, if the specimen sustained 6 and A at the moving end with ideal boundary
conditions, it would have the same inflection point location as if it sustained 6,,, and A,
with flexible end connections, i.e., both the ideal and real configurations are equivalent. 8
is determined as follows.

Eq. (3.101) expresses the theoretical internal moment along a beam-column with

ideal fixed-rotating boundary conditions:

M(x) = |M,, (x) —%Mal(x) A (3.101)
where
M, (x) = ! ®2(1 + pw){cos[p(L — x)] — cos(px)} (3.102)

L2,
El
Mgy, (x) = mcb{cb cos[p(L —x)] — (1 + p) sin[p(L — x)] = (1 + W sin(px)}  (3.103)

Substituting x;p determined in Step 1 into Eq. (3.101) gives
§
M(x;p) = |My, (x;p) — ZMal (xp) | A (3.104)

Accordingly, & can be calibrated such that M (x,;,) = 0 to make the inflection point location
of the ideal configuration identical to that of the actual configuration. @ is then calculated

per Eq. (3.100).

Step 3: Calculate K,
Eqg. (3.105) expresses the theoretical elastic shear-drift relationship of the specimen

with the equivalent ideal fixed-rotating boundary conditions.

$
V= (Kc,n - ZKC,12> A (3.105)
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Thus, K, based on the Timoshenko theory considering both shearing and second-order

effects (compression case) becomes

¢
K, = Kc,11 - ZKC,12 (3-106)

where K 1, is calculated as in Eq. (3.79) and

I
201 —
29, ®“(1 — cos D) (3.107)

Kc,12 =

The calculated K, is then used in Eq. (3.73) to compute the corrected drift. An example
correction of the shear-drift response of Specimen 13M-BC is shown in Figure 3.12. Note
that the calculated values of K,,,, and K, are 88.45 and 106.31 kips/in., respectively. Table
3.2 summarizes key variables associated with this drift correction procedure for each fixed-

rotating specimen.

3.3.3 Specimens with Fixed-fixed Boundary Conditions and Varying Axial Load

Sequences

Lateral Drift and End Moment Calculation

This process is the same as that described in Section 3.3.1 since the specimens
sustain fixed-fixed boundary conditions.

Corrected Lateral Drift

Because the applied axial load varies during testing, the member elastic flexural
stiffness varies accordingly due to the beam-column effect. In strong-axis bending, this
effect is insignificant because the strong-axis moment of inertia is relatively high.
Nonetheless, to capture this phenomenon and establish a standard procedure for future
uses, the theoretical lateral stiffness relationship of a beam-column with flexible end
restrains as in Eq. (3.108) is calibrated with the column shear-drift test response in the

elastic range to determine the equivalent end rotational spring stiffness S(EI/L).
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V = (K¢q1 0r Kr11) A (3.108)

where K¢ 1, is expressed as in Eq. (3.89) for when the axial force is in compression and

EI{ ®3[B sinh® — ®(1 — cosh )] } (3.100)

Krn=-15 [—28(1 — ) + ®2](1 — cosh @) — BD sinh
for when the axial force is in tension. In computing ®, P is always positive. Using the
determined B, K. is estimated as either K/, or Ky, per Eq. (3.89) and (3.109),
respectively, for each loading step in the response history: it varies based on each
corresponding axial load magnitude and direction.

Eq. (3.110) expresses the theoretical elastic shear-drift relationship of a beam-

column with ideal fixed-fixed boundary conditions subjected to varying axial loads.
V = (KC,ll or KT,ll) A (3110)

Thus, K, for axial compression case is estimated as K¢ 1, per Eq. (3.79). For axial tension

case,
K,=Krq = — L 3 sinh o (3.111)
' 139,
where
Y, =—-2(1—-w)(1 — cosh®) — &sinh ® (3.112)

Similarly, K, is calculated for each loading step in the response history based on each
respective axial load magnitude and direction. Ultimately, the corrected drift is determined
using Eq. (3.73) based on the calculated varying K,,,, and K.

Chapter 2, 3, 4, and 5 in part are currently being prepared for submission for
publication of the material. Chansuk, P., Ozkula, G., and Uang, C.-M. (2018). “ATC-106

Phase 2: Seismic behavior and design of deep, slender wide-flange structural steel beam-

71



columns.” Report No. SSRP-18/02, University of California, San Diego, La Jolla, CA. The

thesis author was the primary investigator and author of this material.
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Figure 3.1 Fixed-fixed Beam-columns
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Conditions Restrained Boundary Conditions

Figure 3.2 Fixed-rotating Beam-columns

Vi, 01 Vs, v,
MlJal [ 9 MZ! az
1 2

| X

Figure 3.3 Two-node Member with Four Degrees of Freedom
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4. TEST RESULTS

4.1 Introduction

With respect to the scope of this thesis, measured responses and observed behavior
of certain specimens from NIST Phase 2 testing are presented in this chapter. Figures are
included to illustrate the progression of yielding, buckling, and the overall deformed
configuration of each specimen as the magnitudes of the story drift angle (SDA) increased.
Global responses of the specimens are presented in the form of lateral force (i.e., column
shear), end moment, and axial shortening versus story drift plots. An out-of-plane (OOP)
displacement at the column midspan is also reported for some specimens. For simplicity,
story drift angle in radian is also referred to as percent drift (e.g., 0.01 rad SDA corresponds
to 1% drift). As discussed in Section 2.5, the AISC loading protocol applied 6, 6, 6, 4, and
2 cycles at 0.375%, 0.5%, 0.75%, 1%, and 1.5% drift and greater to the specimens,
respectively.

Since all specimens bended in reverse curvature in strong-axis due to the applied
lateral drift and boundary conditions, the column flanges diagonal to each other at member
ends experienced the same in-plane bending effect (either tension or compression). With
respect to the test setup as shown in Figure 4.1, the northwest and southeast flanges were
under flexural compression in the positive drift, and the same for the southwest and
northeast flanges in negative drift. The terms “flange(s) under compression” or
“compression flange(s)” and “flange(s) under tension” or “tension flange(s)” are used in
this chapter for briefness to describe this in-plane flexural effect in the specimens due to
the applied cyclic story drift. To further facilitate column behavior explanation, positive

and negative excursions referred to when a specimen was displaced in the positive and
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negative directions, respectively. In addition, failure mode classifications and certain
phenomena defined in Section 2.8 are referenced here to help explain column behavior

during testing.

L tive Drifty a0 ™
% Nega-. \\

’)

East or
}Vlovmg End

positive Drift

Figure 4.1 Test Setup and Specimen Orientation

4.2 Group 11 Specimens: Section W24x176
4.2.1 General

Group 11 comprised three W24x176 columns labeled as Specimens 11M, 11H-VA,
and 11H-BC. The shape was identical to that of Group 1 specimens in Phase 1 testing,
which experienced the CB failure mode. Specimen 11M was subjected to constant axial
compression with €, = 0.4 and served as a re-test of Specimen 1M in Phase 1 testing to
confirm that the same CB mode could be reproduced. Specimen 11H-VA underwent

varying axial compression (C, = 0.3 to 0.6) to simulate an exterior column response. Both
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Specimens 11M and 11H-VA were tested with fixed-fixed boundary conditions. Specimen
11H-BC was subjected to constant axial compression with C, = 0.6 and the end rotation
sequence (see Section 2.6) to simulate rotation at the top end of first-story columns in real

application.
4.2.2 Specimen 11M

The governing failure mode of Specimen 11M is CB with the single-curvature
global configuration. Yielding as well as local and global buckling progression is illustrated
in Figure 4.2 and Figure 4.3. At 1% drift, the sloped flaking pattern initiated. At 1.5% drift,
minor LTB movements initiated at the west end. In addition, web and flange local buckles
with minor amplitudes were observed at both ends. Thus, the sequence of local and global
instabilities was not obvious for this specimen; both appeared to initiate at 1.5% drift. LTB
of the specimen aggravated at 2% and 3% drifts: during the positive excursion of each drift
cycle, the positive-drift compression flanges buckled out of plane more, and the same
happened for the negative-drift compression flanges during the negative excursion. As a
result, the specimen experienced significant twisting and downward movement with higher
out-of-plane amplitude observed toward the west end. LTB-type movement was limited at
the east end; instead, it appeared to exhibit the ALB configuration. Indeed, yielding seemed
more uniform and localized at the east end during 2% and 3% drifts compared to that at
the west end. Nonetheless, LTB-induced flange local buckling at the bottom half-width
flanges at both ends as shown with arrows in Figure 4.3 for SDA = 0.03 rad exacerbated
corresponding to the drastic downward movement of the column. The excessive out-of-
plane displacement prompted the termination of testing. During the attempt to unload the

specimen after the test was terminated, the northeast flange ruptured near the end plate
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across the entire flange width as shown in Figure 4.4. The rupture appeared to initiate from
the column web weld access hole. Figure 4.5 shows local buckling configurations at both
column ends at the end of test.

Figure 4.6 shows the global responses. Flexural strength degradation was obvious
during the 3% drift cycles when LTB aggravated. Axial shortening was moderate during
the 1.5% and 2% drift cycles due to the observed local buckling and moderate out-of-plane
movements. As their amplitudes increased during the 3% drift cycles, axial shortening
grew rapidly. As shown in Figure 4.6(d) and Figure 4.6(e) respectively, the column axial
shortening history and the out-of-plane displacement history were similar in shape,

indicating that the two quantities had a direct correlation due to geometry of the deformed

specimen.

(c) SDA =0.02 rad (d) SDA =0.03 rad
Figure 4.2 Specimen 11M: Overall Yielding and Buckling Progression
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. A

Figure 4.4 Specimen 11M: Column Fracture at End of Test (Northeast Flange)

(c) Northeast Flange (d) Southeast flange
Figure 4.5 Specimen 11M: Local Buckling at End of Test
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4.2.3 Specimen 11H-VA

The governing failure mode of Specimen 11H-VA is CB with the single-curvature
global configuration. Again, this specimen was subjected to the varying axial load
sequence in conjunction with the AISC loading protocol (see Section 2.5). The lowest and
highest axial compression (C, = 0.3 to 0.6) was reached in the positive and negative drift,
respectively. Yielding and buckling progression is illustrated in Figure 4.7 to Figure 4.9.

The sloped flaking pattern initiated at 1% drift. At 1.5% drift, minor LTB
movements initiated at both ends. At 2% and 3% drifts, LTB of the specimen aggravated;
during each cycle, compression flanges in the negative drift buckled downward out of plane
more than those in positive drift since the former experienced a higher axial compression
than the latter. Expansion of the sloped flaking pattern of the former demonstrated the
immensity of their out-of-plane movements; in contrast, whitewash flaking of the latter
was relatively limited corresponding to their less aggressive out-of-plane movements. The
test was terminated after completing the first cycle at 3% drift due to excessive out-of-
plane buckling. Figure 4.10 shows the ALB configuration (with minor amplitudes) at both
column ends at the end of test.

Figure 4.11 shows the global responses. The end moment response indicated
maximum flexural strengths of 1,980 and 2,580 kip-ft for the negative and positive
excursions, respectively; the latter was 30% greater than the former because it sustained
only half of the axial load applied to the former. Flexural strength degradation was apparent
in the negative excursion of the 3% drift cycle corresponding to the severe LTB observed
during testing. Axial shortening of Specimen 11H-VA grew rapidly starting at 2% drift

corresponding to the aggravated out-of-plane, LTB-type movements. In Specimen 11M,
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Figure 4.6(d) shows that axial shortening remained relatively constant when the specimen
was unloaded in in-plane flexure. In Specimen 11H-VA, axial shortening slightly reduced
in magnitude during the positive excursions due to the progressive decrease in axial

compression.
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(c) SDA =0.02 rad (d) SDA =0.03 rad
Figure 4.7 Specimen 11H-VA: Overall Yielding and Buckling Progression

(b) SDA =0.03 rad
Figure 4.8 Specimen 11H-VA: Overall Yielding and Buckling Progression (Sideview)
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(e) West End (Top view) (f) East End (Top view)
Figure 4.10 Specimen 11H-VA: Local Buckling at End of Test
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4.2.4 Specimen 11H-BC

The governing failure mode of Specimen 11H-BC is CB with the single-curvature
global configuration. Yielding and buckling progression is illustrated in Figure 4.12 and
Figure 4.14. No significant deformation was observed at the east (or rotating) end until 2%
drift was reached. In contrast, the sloped flaking pattern initiated at 1% drift at the west (or
fixed) end. At 1.5% drift, downward LTB movements initiated at the west end; a web local
buckle with a minor amplitude was also observed. LTB of the specimen exacerbated at 2%
drift: the west flange under compression in positive drift and that in negative drift buckled
out of plane more during the positive and negative excursions of each cycle, respectively.
This induced flange local buckling at the bottom half-width flanges at the west end as
shown with arrows in Figure 4.14 (for SDA = 0.02 and 0.0225 rad) and Figure 4.13. The
test was terminated after reaching 2.25% drift due to the excessive out-of-plane buckling.
Note the contrast between the extents of yielding at the west (i.e., fixed) and east (i.e.,
rotating) ends by the end of the test.

Figure 4.15 shows the global responses. Flexural strength at the west end degraded
significantly during the 2% drift cycles when LTB at the west end became more severe. In
addition, the onset of LTB at 1.5% drift boosted the axial shortening rate from that point

onward.
4.2.5 Concluding Remarks

Group 11 testing demonstrated that the same CB failure mode observed in Phase 1
testing could be reproduced. Furthermore, the effects of varying axial load and fixed-
rotating boundary conditions did not alter the governing failure mode associated with this

section.
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(c) SDA =0.015 rad (d) SDA =0.02 rad
Figure 4.12 Specimen 11H-BC: Overall Yielding and Buckling Progression

Figure 4.13 Specimen 11H-BC: LTB-induced Flange Local Buckling at End of Test
(West End)
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4.3 Group 13 Specimens: Section W30x173

4.3.1 General

Web and flange slenderness of Group 13 specimens was similar to that of Group 2
specimens with W24x131 section, which experienced the ALB failure mode. Test results
from these groups were compared to study the effect of section depths on column inelastic
cyclic responses involving in-plane plastic hinging. To investigate boundary condition
effect, Specimens 13M and 13M-BC were subjected to fixed-fixed and fixed-rotating
boundary conditions, respectively. Loading sequence of the latter boundary condition test
was discussed in Chapter 2. Both specimens sustained constant axial load with C, = 0.4.
4.3.2 Specimen 13M

Specimen 13M exhibited the ALB failure mode; Figure 4.16 and Figure 4.17 depict
yielding and buckling progression. Web and flange local buckling was first observed at
both ends at 1% drift; apexes of the outward flange local buckles located closer to the end
plates than those of the inward ones. The buckled elements underwent larger deformation
at 1.5% drift, forming plastic hinges at the column ends. No out-of-plane, LTB-type motion
was observed. Yield length was much shorter than that observed in testing of Group 11
specimens, which experienced the CB mode. Due to excessive web local buckling, the test
was terminated after completing the positive excursion of the second 1.5% drift cycle.

Figure 4.18 shows the global responses. Flexural strength degradation began during
the 1% drift cycles corresponding to the onset of web and flange local buckling. The
specimen lost its flexural capacity rapidly, decreasing to 75% of its maximum moment

capacity after four cycles of 1% drift. The onset of web and flange local buckling also
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triggered significant axial shortening, which continued to grow in proportion to the

amplitudes of the local buckling.
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4.3.3 Specimen 13M-BC

Like Specimen 13M, Specimen 13M-BC experienced the ALB failure mode. As
expected in a boundary condition test, neither plastic deformation nor local buckling
occurred at the east (or rotating) end. In contrast, web and flange local buckling initiated
at the west (or fixed) end at 1.5% drift as demonstrated in Figure 4.19 and Figure 4.20; the
ALB configuration was observed. LTB behavior was not observed in this specimen.

Figure 4.21 illustrates the global responses. Entering 1.5% drift, flexural strength
of the specimen began to degrade corresponding to the onset of local buckling at the west
end; it reduced to 62% of the maximum flexural strength after completing two cycles at
1.5% drift. In addition, the formation of local buckles triggered a rapid increase in axial
shortening during the 1.5% drift cycles and beyond.

In comparison, Specimens 13M and 13M-BC experienced ALB at 1% and 1.5%
drift, respectively. This demonstrated the effect of the fixed-rotating boundary conditions;
the applied end rotation helped relieving some of the flexural moment demand that would
have been produced with fixed-fixed boundary conditions at the same drift level. As a
result, the specimen with fixed-rotating boundary conditions could withstand larger story
drifts before it failed. Despite this difference, the global responses of Specimen 13M-BC

had a similar characteristic to those of Specimen 13M.
4.3.4 Concluding Remarks

As predicted, ALB was the failure mode although the depth of this W30 section
was larger than that of Group 2 specimens (W24) tested in Phase 1. Allowing one end of
the column to rotate produced plastic hinging at one end (i.e., fixed end) only, but it did

not alter the governing buckling mode.
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4.4 Group 16 Specimens: Section W18x130
4.4.1 General

Two W18x130 specimens were tested in this group to study the boundary condition
and section depth effects; the section had similar slenderness properties to those of Group
1 (and Group 11) specimens. Both specimens were subjected to the AISC loading protocol
and constant axial compression with C, = 0.4. For Specimen 16M-BC, the end rotation
sequence discussed in Section 2.6.3 was also applied at the east (or moving) end to simulate

rotation at the top end of a first-story column in an SMF.
4.4.2 Specimen 16M

The governing failure mode of Specimen 16M is CB with the single-curvature
global configuration; yielding and buckling progression is shown in Figure 4.22 and Figure
2.16. The sloped flaking pattern was apparent at 1% drift. At 2% drift, LTB movements
initiated; at 3% drift, they exacerbated with compression flanges buckling out of plane
more during each cycle. This led to a significant downward out-of-plane displacement at
the column midspan. Corresponding to this out-of-plane curvature, an LTB-induced flange
local buckle formed at each bottom half-width flange at each end (see the arrowed locations
in Figure 4.23). The test was terminated due to the excessive downward displacement and
significant flexural strength degradation in the specimen.

Figure 4.24 shows the global responses. Flexural strength was stable throughout
the 2% drift cycles even though LTB had initiated in some degree. After completing the
first 3% drift cycle, flexural strength reduced to 86% of the maximum value despite
considerable out-of-plane buckling in the specimen. Very significant flexural strength

degradation was observed during the positive excursion of the second 3% drift cycle, at
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which point the out-of-plane displacement increased rapidly. As shown in Figure 4.24(d)
and Figure 4.24(e) respectively, the column axial shortening history and the out-of-plane
displacement history were similar in shape, indicating that the two quantities had a direct

correlation due to geometry of the deformed specimen.
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4.4.3 Specimen 16M-BC

Like Specimen 16M, Specimen 16M-BC experienced the CB failure mode with the
single-curvature global configuration; yielding and buckling progression is illustrated in
Figure 4.25 and Figure 4.26. As expected in a boundary condition test, no significant
deformation was observed at the east end; it remained mostly elastic and underwent some
yielding toward the end of the test. At the west end, the sloped flaking pattern initiated at
2% drift. Successively at 3% drift, LTB of the specimen initiated and exacerbated at 4%
drift: the west flange under compression in positive drift and that in negative drift buckled
upward out of plane more during the positive and negative excursions of each cycle,
respectively. The exacerbated LTB movements caused a rapid increase in the column out-
of-plane displacement, which concentrated near the west end. Corresponding to this out-
of-plane curvature, an LTB-induced flange local buckle formed at each top half-width
flange at the west end as shown in Figure 4.27. Significant flexural strength degradation in
the specimen during the 4% drift cycles prompted the termination of the test.

Figure 4.28 shows the global responses. Flexural strength remained stable during
the 3% drift cycles despite the considerable development of the out-of-plane buckling near
the west end. Strength degradation prevailed at 4% drift, corresponding to when the drastic
out-of-plane movements occurred. Due to geometry of the deformed specimen, axial
shortening aggravated proportionally to the amplitudes of the out-of-plane buckling. In
comparison, Specimens 16M and 16M-BC reached their peak flexural strengths at 2% and
3% drift, respectively, and experienced strength degradation at 3% and 4% drift,
respectively. This demonstrated the effect of the fixed-rotating boundary conditions; the

applied end rotation helped relieving some of the flexural moment demand that would have
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been produced with fixed-fixed boundary conditions at the same drift level. As a result, the
specimen with fixed-rotating boundary conditions could withstand larger story drifts before
it failed. Despite this difference, the global responses of Specimen 16M-BC had a similar

characteristic to those of Specimen 16M.
4.4.4 Concluding Remarks

As predicted, CB was the failure mode although the depth of this W18 section was
shallower than that of Groups 1 and 11 specimens (W24). Allowing one end of the column

to rotate did not alter the governing buckling mode.
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4.5 Group 21 Specimens: Section W18x130
45.1 General

In Group 16, two W18x130 specimens—Specimens 16M and 16M-BC—were
tested with constant axial compression (C, = 0.4); Specimen 16M -BC was also subjected
to the end rotation sequence in conjunction with the typical AISC loading protocol. In this
group, four specimens with the same section and geometry as Group 16 specimens were
tested with four different loading scenarios. Specimen 21M-VAM was subjected to varying
compressive axial load with C, ranging from 0.1 to 0.7, while Specimen 21M-VAU was
subjected to varying tensile and compressive axial load with C, ranging from -0.2 (tension)
to 0.4 (compression). Note that the former axial load sequence had its mean C, value equal
to 0.4; in contrast, the C, value of 0.4 represented the upper bound value in the latter axial
load sequence. In both cases, the axial load range (AC,) remained the same (= 0.6).
Specimen 21M-NF was tested with the near-fault loading protocol. Lastly, Specimen 21M-
VAU-BC was subjected to both varying axial load and the end rotation sequence.

Characteristics of all loading scenarios were discussed in Section 2.6.
4.5.2 Specimen 21M-VAM

The governing failure mode of Specimen 21M-VAM is CB with the single-
curvature global configuration; yielding and buckling progression is shown in Figure 4.29
and Figure 4.30. Local buckling was not observed before the sloped flaking pattern and
LTB movements initiated at 1.5% and 2% drift, respectively. LTB movements were
triggered in the first negative excursion at 2% drift when axial compression increased to

its highest amplitude (C, = 0.7). They exacerbated at 3% drift: during each cycle,
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compression flanges in the negative drift buckled out of plane more than those in positive
drift since the former experienced higher combined axial and in-plane flexural compression
than the later. In addition, out-of-plane amplitudes of the former decreased (or recovered)
somewhat in the positive excursions due to the progressive decrease in axial compression.
Since axial shortening grew proportionally to the out-of-plane amplitudes, it also recovered
somewhat in the positive excursions as shown in Figure 4.33(d).

Significant LTB movements induced flange local buckling at both column ends as
shown in Figure 4.31. At the west end, the two half-wave buckles formed at the top half-
width flanges; at the east end, they formed at the top and bottom half-width flanges of the
northeast and southeast flanges, respectively. The former appeared to be triggered
primarily by out-of-plane stresses while the later appeared to be induced primarily by
warping stresses due to significant twisting at the east end as shown in Figure 4.32.

Influenced by web-flange interactions, the web at each end also buckled in the
direction that conformed to the flange local buckling configurations. In summary, global
buckling occurred first in this specimen, followed by local buckling. It will be shown later
that the order was reversed for Specimen 27L; local buckling initiated before global
buckling was triggered.

Figure 4.33 shows the global responses. The specimen exhibited higher plastic
moment capacity in the positive excursions compared to that in the negative excursions
since lower axial compression was applied in the former. A drastic flexural strength
degradation occurred during the second negative excursion at 3% drift as the applied axial
load progressively returned to its highest amplitude. Axial shortening began to grow at an

increasing rate at 2% drift, corresponding to the onset of LTB movements.
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(d) Northeast Flange (e) Southeast Flange

Figure 4.31 Specimen 21M-VAM: LTB-induced Local Buckling at End of Test
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(b) East End
Figure 4.32 Specimen 21M-VAM: Significant Twisting at East End
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4.5.3 Specimen 21M-VAU

Testing of Specimen 21M-VAM, which had an axial force coefficient C, varied
from 0.1 to 0.7, was stopped after completing two cycles at 3% drift due to excessive global
buckling and strength degradation. By varying C, from -0.2 to 0.4, Specimen 21M-VAU
was able to experience one cycle at 5% drift. The governing failure mode of Specimen
21M-VAU is CB with the reverse-curvature global configuration; yielding and buckling
progression is shown in Figure 4.34 and Figure 4.35.

LTB of the specimen was triggered during the 4% and 5% drift cycles only in the
negative excursions with downward and upward amplitudes at the northeast and southwest
flanges, respectively. In the positive excursions, the column sustained axial tension, which
stretched it and mitigated the out-of-plane buckling amplitudes as shown in Figure 4.36;
the column axial shortening also recovered corresponding to this phenomenon as shown in
Figure 4.39(d).

Severe LTB movements were observed during the first negative excursion at 5%
drift, at which point the member flexural strength began to degrade considerably as shown
in Figure 4.39(b). Out-of-plane and warping stresses associated with the LTB deformation
contributed significant tension at the free edges of the column flange CJP welds. In an
attempt to displace the specimen to +5% drift with increasing tensile axial load for the
second time, a rupture occurred at the northeast flange near the end plate as shown in Figure
4.37; the test was terminated. A partial fracture of a CJP weld was also observed at the top
edge of the southwest flange (see Figure 4.38). Indeed, the combined effects of in-plane
bending, LTB-type movements, and axial tension were detrimental to CJP welded joints

(it will be shown in the next section that a similar flange rupture was also observed in
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Specimen 21M-VAU-BC, which also experienced axial tension). Unlike Specimen 21M-
VAM that experienced considerable LTB-induced local buckling at the member ends,
Specimen 21M-VAU did not experience local buckling although this latter specimen
underwent higher drift levels. Partly, this was due to the axial compression applied to the

latter (maximum C, = 0.4) was lower than that applied to the former (maximum C, = 0.7).
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(b) Northeast Flange
Figure 4.36 Specimen 21M-VAU: Tensile Axial Load Effect on Out-of-Plane Buckling

-\,. vé AR
e i

Figure 4.37 Specimen 21M-VAU: Rupture at Northeast Flange
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(b) Southwest Flange
Figure 4.38 Specimen 21M-VAU: Column Flange CJP Weld Fracture
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4.5.4 Specimen 21M-VAU-BC

Section 2.5 discussed the end rotation sequence utilized in fixed-rotating boundary
condition tests; it intended to apply a strong-axis end rotation at the east (or moving) end
of the specimen with the same magnitude as the applied story drift angle (i.e., the AISC
loading protocol). However, the SRMD platen could only apply approximately 0.035 rad
rotation in both the clockwise and counterclockwise directions. Therefore, for 4% and
greater drift cycles, the rotation-to-drift ratio ¢ defined in Section 2.7 became less than 1
for some portions of the test where the applied story drift angle exceeded 0.035 rad; &
equaled to 1 anywhere else. Figure 4.40(a) compares the story drift angle and end rotation
histories of Specimen 21M-VAU-BC; two horizontal dashed lines indicates the maximum
rotation the platen could accommodate during testing. It shows the load steps at which the
applied story drift angle exceeded the applied end rotation. The corresponding global
response portions are shown in dashed line in Figure 4.40(b); the solid line indicates the
portions at which ¢ is maintained at 1. The plot shows that lateral stiffness of the former is
greater than that of the later when considering each loading and unloading branch of the
4% and greater drift cycles separately; this demonstrated the effect of varying ¢.

With the imposed rotation at the east end, the specimen was able to displace further
compared to Specimen 21M-VAU; it completed two cycles at 5% drift and one cycle at
5.5% drift (the platen setup at that time did not allow 6% drift displacement) before the test
was terminated. Specimen 21M-VAU only completed one cycle at 5% drift before its
northeast flange and CJP weld ruptured.

The governing failure mode of Specimen 21M-VAU-BC is CB with the single-

curvature global configuration; yielding and buckling progression is shown in Figure 4.41
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and Figure 4.42. LTB behavior of this specimen was similar to that of Specimen 21M-
VAU except that (1) the east end remained essentially in the elastic range up to 3% drift
(see Figure 4.42) and did not exhibit obvious LTB movements until 5% drift, and (2) CJP
weld ruptured at the southwest flange as shown in Figure 4.43. A minor LTB-induced
flange local buckling was observed at the top half-width southwest flange, which was
accompanied by a minor web local buckling due to the influence of web-flange interactions

as shown in Figure 4.44.
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4.5.5 Specimen 21M-NF

Figure 4.46(a) shows the near-fault loading protocol, which is characterized by its
large initial pulse and the following, smaller drift cycles that oscillate about a level of
residual drift. The specimen underwent all these cycles but did not exhibit significant
damage. Thus, after this “first run,” the same loading protocol was applied from the 4%
residual drift as shown in Figure 4.46(b); the “second run” refers to this portion of the test.
Although the specimen was subjected to a constant level of axial load, it underwent
asymmetric lateral drift loading: except for the first negative drift peak in the combined
near-fault loading protocol, all cycles were in a positive drift range.

Figure 4.47 illustrates the overall yielding and buckling progression. At the first -
2% drift, the specimen already experienced plastic deformation. In the following positive
excursion to +6% drift, LTB of the specimen initiated with upward and downward
amplitudes at the northwest and southeast flanges (i.e., compression flanges in positive
drift), respectively. Since plastic deformation had already established, the southwest and
northeast flanges (i.e., compression flanges in negative drift) experienced in-plane flexural
compression in the following negative excursion to +1% drift, even though the specimen
was not displaced into the negative drift range; Figure 4.48(a) shows the corresponding
expansion of flaking. LTB of the specimen aggravated slightly but less aggressive than that
observed during the former positive excursion. For the remaining first run cycles, LTB
exacerbated more in the positive excursions than in the negative excursions, demonstrating
the effect of the asymmetrical lateral drift loading. Figure 4.52(b) shows a slight flexural
strength degradation in the positive excursions but not in the negative excursions of the

first run.
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In the positive excursion to +10% drift during the second run, LTB of the specimen
aggravated drastically with significant out-of-plane amplitudes at the compression flanges
in the positive drift as shown in Figure 4.47(b) and Figure 4.49. This led to a drastic flexural
strength degradation as shown in Figure 4.52(b). Like the first run, LTB exacerbated in the
positive excursions; unlike the first run, it appeared that LTB amplitudes recovered
somewhat during the negative excursions. Since axial shortening grew proportionally to
the out-of-plane amplitudes, it also recovered somewhat in the negative excursions as
shown in Figure 4.52(d). Again, only the flexural strength in the positive excursions
degraded while that in the negative excursions remained relatively stable because of the
asymmetrical lateral drift loading. The test was terminated due to excessive reduction in
lateral force resistance.

LTB-induced flange local buckling configurations of this specimen were like those
of Specimen 21M-VAM as shown in Figure 4.50; those at the west end appeared to be
triggered primarily by out-of-plane stresses while those at the east end later appeared to be
induced primarily by warping stresses due to significant twisting at the east end as shown
in Figure 4.51. Influenced by web-flange interactions, the web at each end also buckled

locally in the direction that conformed to the flange local buckling configurations.
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Figure 4.47 Specimen 21M-NF: Overall Yielding and Buckling Progression
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4.5.6 Concluding Remarks

Column end moment and axial shortening responses of all W18x130 specimens
tested in Phase 2 are shown in Figure 4.53 and Figure 4.54, respectively, with consistent
range in the horizontal and vertical axes. Comparisons can be made as follows:

(1) Flexural strengths of Specimens 16M and 16M-BC are similar in magnitude since the
two specimens sustain the same level of axial compression (C, = 0.4). Specimen 21M-
VAM experiences varying axial compression with C, ranging from 0.1 in the positive
excursions to 0.7 in the negative excursions. This causes its end moment response to
be asymmetrical with higher and lower flexural strength relative to those of the former
specimens in the positive and negative excursions respectively.

(2) Specimens 21M-VAU and 21M-VAU-BC exhibit increased flexural and ductility
capacities as their axial load range is offset from C, = 0.1 to 0.7 to C, = -0.2 to 0.4.
Their end moment responses are also less asymmetrical compared to that of Specimen
21M-VAM because they sustain axial tension and compression that are relatively close
in magnitude (0.2 and 0.4). For Specimen 21M-VAM, the magnitudes of the lowest
and highest compression (0.1 and 0.7) are much more different.

(3) While flexural strength degradation is observed in both the positive and negative
excursions for constant axial load tests, it is only observed in the negative excursions
for varying axial load tests.

(4) Specimens 16M-BC and 21M-VAU-BC with fixed-rotating boundary conditions
exhibit lower elastic flexural stiffness than that of their counterparts with fixed-fixed

boundary conditions, i.e., Specimens 16M and 21M-VAU respectively. The former
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also sustains a higher drift level than the latter before significant strength degradation
or a column flange CJP weld rupture occurs.

(5) Specimen 21M-NF with the near-fault loading protocol exhibits a relatively stable end
moment response compared to others despite being pushed to 6% drift during the first
run test (see Section 4.5.5).

(6) Specimens 16M, 16M-BC, and 21M-VAM experience LTB movements at 2%, 3%,
and 2% drifts, respectively. Their axial shortening is relatively limited before the onset
of LTB. Such grows at an increasing rate proportional to the out-of-plane amplitude
once LTB initiates. All three specimens exhibit similar out-of-plane amplitudes when
their flexural strengths degrade significantly, prompting termination of the tests. As a
result, they exhibit relatively similar level of axial shorting (roughly 4 to 5 in.) at the
end of the tests.

(7) With a varying axial load that oscillates below the medium level (i.e., C, < 0.4),
Specimens 21M-VAU and 21M-VAU-BC exhibit significantly less axial shortening
compared to others. This is because their LTB movements are not triggered until 4%
drift and do not exacerbate much before the specimens experience column flange CJP
weld ruptures.

(8) In constant axial compression tests, axial shortening remains constant and exacerbates
during each in-plane flexural unloading and reloading branch, respectively. In contrast,
that of varying axial load tests recovers (i.e., reduces in magnitude) in the positive
excursions due to the simultaneous reduction of axial and in-plane flexural
compression; it then aggravated in the negative excursions, corresponding to when

axial load progressively returns to its highest compressive level.
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Chapter 2, 3, 4, and 5 in part are currently being prepared for submission for
publication of the material. Chansuk, P., Ozkula, G., and Uang, C.-M. (2018). “ATC-106
Phase 2: Seismic behavior and design of deep, slender wide-flange structural steel beam-
columns.” Report No. SSRP-18/02, University of California, San Diego, La Jolla, CA. The

thesis author was the primary investigator and author of this material.
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5. BOUNDARY CONDITION EFFECT

5.1 Introduction

In real application, the top end of first-story columns in a moment frame
experiences rotation due to the flexibility of the connected beams, i.e., the columns sustain
fixed-rotating boundary conditions. Accordingly, in NIST Phase 2 testing, four specimens
(Specimens 11H-BC, 13M-BC, 16M-BC, and 21M-VAU-BC) were cyclically tested with
the fixed-rotating boundary conditions (see Section 2.6.3 for loading protocols): a cyclic
end rotation in-phase with and proportional to the applied cyclic lateral drift was prescribed
to the east or moving end, which can be expressed as follows:

A

0=¢ (T) (5.1)

where ¢ is the rotation-to-drift ratio and is set equal to 1 for Specimens 13M-BC, 16M-BC,
and 21M-VAU-BC, and 1.1 for Specimen 11H-BC.

Based on the test results and finite element simulations, the effect of boundary
conditions on column responses was studied. In addition, a procedure to adjust fixed-fixed

column responses to account for this top-end rotation effect is proposed in this chapter.

5.2 Fixed-fixed vs. Fixed-rotating Column Responses

This section investigates the boundary condition effect by comparing the test
responses of nominally identical specimens with fixed-fixed and fixed-rotating boundary
conditions, respectively; the pairs of Specimens 11H and 11H-BC, Specimens 13M and
13M-BC, and Specimens 16M and 16M-BC with constant axial loads were considered.
Finite element models of these specimens were also analyzed to support the experimental

findings.

151



For fixed-fixed columns, the inflection point was assumed to remain at the column
midspan throughout the tests; thus, the end moment hysteresis was identical at both ends
that underwent significant plastic deformation. For fixed-rotating columns, the rotating end
stayed mostly in the elastic range; significant plastic hinging only occurred at the fixed
end. Therefore, the fixed-end moment responses of the two respective cases were
considered to study the boundary condition effects on the column maximum flexural
strengths, plastic rotation capacities, strength degradation behaviors, etc. Furthermore, to
facilitate the test response comparisons, backbone curves were constructed for the lateral
force and fixed-end moment responses of each column as shown in Figure 5.1; it was
accomplished by connecting each data point at the peak drift (both positive and negative)
of the first cycle of each drift level (ASCE 2013).

The backbone curve comparison of each specimen pair is shown in Figure 5.2. In
general, each backbone curve can be characterized into three zones: (1) the elastic zone,
(2) the inelastic zone up to the peak flexural strength, and (3) the strength degradation zone.
Figure 5.3 color-codes each corresponding zone for both the fixed-fixed and fixed-rotating
backbone curves associated with the ALB and CB failure modes. With respect to the fixed-
fixed backbone curve, the gray, green, and unshaded regions represent the elastic, inelastic,
and degradation zones, respectively; theses were represented by the red, yellow, and
unshaded regions for the fixed-rotating backbone curves. Mechanism of the boundary
condition effect is discussed below with respect to each zone.

In the elastic zone, the fixed-fixed columns experienced more flexural bending
demand than the fixed-rotating columns at the same drift level because the bending

curvatures in the latter was relieved somewhat by the rotation at its rotating end.
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Essentially, elastic flexural stiffnesses decreased as the result of the end rotation: the latter
exhibited lower elastic stiffness than the former. This trend was more prominent in the
lateral force responses (see Figure 5.2). Due to the reduction in flexural demand, the latter
was also able to undergo a higher drift level before it experienced substantial yielding and
entered the inelastic zone. Nonetheless, both the former and the latter exhibited similar
flexural yield strengths since they had the same sectional properties, and strain hardening
was minimal during the elastic cycles.

In the inelastic zone, fixed-rotating boundary conditions had different effects on
specimens with the ALB and CB failure modes. For ALB specimens, flange and web local
buckling initiated shortly after small portions of the column ends became fully plastic and
softened in material (i.e., the Young’s modulus decreased). Accordingly, not many
inelastic drift cycles beyond the elastic zone were required to set this condition prone to
local instability. This was true for both the fixed-fixed and fixed-rotating columns, even
though the latter experienced somewhat less moment demand per additional lateral drifts
than the former as the result of the end rotation. Indeed, as shown in Figure 5.3(a), the
inelastic zones of the former (green region) and the latter (yellow region) were both limited,
i.e., both columns sustained similar limited amount of inelastic cycles beyond their
respective elastic cycles before experiencing local buckling. Consequently, they also
developed similar extent of strain hardening, which was limited, and thus exhibited similar
peak flexural strengths that could be approximated by the reduced plastic moment capacity,
M, of the section.

Specimens with the CB failure mode, however, usually sustained more inelastic

drift cycles than the ALB specimens before they experienced global and local buckling. As
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a result, their inelastic zones were much larger than those of the latter as shown in Figure
5.3, i.e., the green and yellow regions in Figure 5.3(b) are much larger than those in Figure
5.3(a). Since they underwent significant lateral drifts beyond the elastic zone, the effect of
the rotating end became apparent as shown in Figure 5.3(b): the yellow region was much
wider than the green region. That is, the fixed-rotating column could undergo a larger
lateral drift beyond the elastic zone than the fixed-fixed column before global and local
buckling initiated and trigger flexural strength degradation. Essentially, inelastic flexural
stiffnesses also decreased as the result of the end rotation, i.e., it reduced the end moment
demand per an additional drift in the fixed-rotating column, which allowed the column to
sustain a larger drift level before buckling.

Despite this difference in the lateral drift range, both the fixed-fixed and fixed-
rotating CB columns exhibited similar peak flexural strengths. This implies that they
experienced similar extent of strain hardening before global instability exacerbated. To
verify this observation, finite element analysis of Specimen 16M and 16M-BC was
conducted. As an indirect measure of the extent of strain hardening, the cumulative energy
dissipation as the result of plastic straining is plotted against the story drift angle for each
specimen as shown in Figure 5.4. The horizontal lines indicate the energy levels at which
each respective specimen reached its peak flexural strength before global buckling
initiated; both are very close. Accordingly, this signifies that the two columns, indeed,
underwent similar extent of strain hardening before they buckled out-of-plane and, hence,
exhibited similar peak flexural strengths. This trend was also confirmed with other fixed-

fixed and fixed-rotating CB specimen pairs (results not shown).

154



Further investigation revealed that the fixed-rotating CB columns exhibited a
slightly lower peak flexural strength than the fixed-fixed CB columns. Since lateral-
torsional buckling (LTB) was the important limit state that influenced the peak flexural
strengths of these CB columns under cyclic loading, the elastic LTB design principle could
be used to understand the boundary condition effect on the peak strengths. AISC 360 (AISC
2016¢) used C,, the lateral-torsional buckling modification factor, in determining the
nominal flexural strength of flexural members with nonuniform moment diagrams. For
doubly symmetric members with no transverse loading between brace points, C; equaled
to 2.27, 1.67, and 1.0 for the case of equal end moments of the same sign (reverse curvature
bending), zero moment at one end, and uniform moment, respectively. Essentially, as the
moment diagram becomes more uniform, i.e., has a flatter slope, the corresponding LTB
capacity decreases. This principle can be applied to the CB specimens that experience LTB.
Figure 3.8 shows that fixed-fixed columns bend in reverse curvature with the inflection
point at the midspan, while that of the fixed-rotating columns locates closer to the rotating
end. As a result, at the same fixed-end moment magnitude, the latter would have a less
steep moment diagram than the former and, thus, be assigned with C, less than 2.27.
Essentially, the “more uniform” moment diagram of the fixed-rotating column makes it
more prone to LTB and, thus, reduces its peak flexural strength even under cyclic loading.
This effect is amplified as the magnitude of the end rotation increases since this results in
a more uniform moment diagram. For instant, Specimen 11H-BC was subjected to a larger
end rotation (¢ = 1.1) than the other fixed-rotating specimens (¢ = 1.0); consequently, its

peak flexural strength was much lower than that of Specimen 1H as shown in Figure 5.2(a).
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Based on the inflection point location, C;, could be calculated for each fixed-fixed
and fixed-rotating CB column as shown in Table 5.1. For each specimen pair, the ratio
between the two quantities, i.e., CE®/CLF, was determined. Similarly, a ratio between the
peak fixed-end moments with respect to the two boundary condition cases, i.e.,
MER /MFEE .. was also calculated. The former and latter ratios appeared to correlate
relatively well. Finite element results also supported this claim as shown in Table 5.2.

Lastly, in the flexural-strength degradation zone, it was observed that the degrading
rate, i.e., the slope of the degrading branch of the backbone curve, was similar for the fixed-
fixed and fixed-rotating specimens with the ALB failure mode. This was also true for the
CB specimen pairs, but in some cases, the fixed-rotating column degraded slower; the
flexural demand reduction as the result of the end rotation appeared to moderate the

degrading rate in the fixed-rotating CB specimens.

5.3 Conversion between Fixed-fixed and Fixed-rotating Boundary Conditions
5.3.1 Plastic Story Drift Angle

As discussed in Section 5.2, elastic and inelastic flexural stiffnesses decreased as
the result of the end rotation at one end of the column. In turn, these stiffnesses affected
the lateral drift range of each zone in the backbone curve. In the elastic zone, cyclic
behavior of a beam-column could be predicted based on the Timoshenko theory as
discussed in Section 3.2.2.2; Eq. (5.2) expresses the elastic stiffness relationship between
the fixed-end moment and the moving end’s lateral displacement and rotation.

$
M = <Kc,41 - ZKCAZ) A=K.A (5.2)

where K¢ 4, and K¢ 4, are calculated as follows [refer to Eq. (3.45)]:
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I
ca1 = 7, ®2(1+ u)(1 — cos D)

(5.3)
K —EICD[CD (1 + w)sind]
c42 = LY, Hjsin
To investigate the plastic component of the moment-displacement response, which was

more difficult to predict in cyclic tests, the elastic component of the lateral drift was isolated

per EQ. (5.4), resulting in the plastic drift response.

M
Ay=A—— .

As shown in Figure 5.5, the fixed-fixed and fixed-rotating backbone curves were plotted
against this plastic component of the lateral drift divided by the undeformed column length,
I.e., the plastic story drift angle (SDA). The results showed that, for Group 13 and 16
specimen pairs, the two moment versus plastic SDA backbone curves resembled similar
shapes, indicating that the plastic rotation capacity remained relatively the same for both
boundary condition cases, and the effect of the end rotation mostly concentrated in the

elastic component of the lateral drift response.
5.3.2 Equivalent Story Drift Angle and Response Conversion

Accordingly, to convert the backbone curves of the fixed-fixed case to the fixed-
rotating case, and vice versa, the elastic lateral drift corresponding to the boundary
condition of interest could be added to the plastic drift response:

(1) Fixed-fixed (FF) to fixed-rotating (FR)
FF

FF->FR _ AFF
A = 0 +
e

equ

(5.5)
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(2) Fixed-rotating (FR) to fixed-fixed (FF)
FR

FF
Ke

NERSFF — AFR 4

(5.6)

With respect to the test results, Figure 5.6 and Figure 5.7 show the backbone curve
conversion based on Egs. (5.5) and (5.6), respectively; the converted backbone curves

agree reasonably well with the intended ones.
5.3.3 Validation of Response Conversion Method with Finite Element Models

To further assess the proposed conversion procedure, it was applied to finite
element simulation results, which provided clean data that covered wider drift ranges than
what could be accomplished in testing. Software ABAQUS-CAE was utilized in this study.
Three models with the W18, W24, and W30 sections, respectively, were considered for
each failure mode, i.e., the ALB and CB modes. Geometry of the wide-flange cross sections
was simplified in the models, ignoring the fillet portions; a shell extrusion technique was
used in constructing the models. The models employed 4-node doubly curved “S4R” shell
elements suitable in analyses that involved severe local buckling; such was expected to
occur at the member ends in this study.

Figure 5.8 shows an example model with boundary condition details. To simulate
a fixed column base, all six degrees of freedom of the nodes at the bottom end were fixed.
At the top end, all edge nodes were coupled, and movements were prescribed at the edge
node at the centroid of the cross section. Lateral displacement was prescribed to U2 degree
of freedom. For fixed-rotating column simulation, rotation sequence was also prescribed
to UR1 degree of freedom. U3 was a free degree of freedom allowing the column to shorten
under the applied loads. The remaining degrees of freedom at the top column end were

fixed.
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Obtained from elastic buckling analysis (i.e., eigen analysis), the right figure in
Figure 5.8 shows the first buckling mode of the column subjected to a unit axial and lateral
force. This deformed configuration scaled to a hundredth in magnitude was applied to the
model as its initial geometric imperfection.

The elastic material properties of steel were defined by a Young’s Modulus of
29000 ksi and a Poisson’s ratio of 0.3. Regarding inelastic material behavior, yield stresses
were specified for the flange and web components of the model, respectively, according to
stress-strain relationships obtained from tensile coupon tests. To capture cyclic material
behavior of steel, both nonlinear isotropic and nonlinear kinematic hardening rules were
included in the material model. Their related parameters were calibrated using the available
cyclic and tensile coupon test results based on procedures provided in the ABAQUS
manual (HKS, 2007).

Some simulation results of these models were first correlated with the test data
(Specimens 13M, 13M-BC, 16M, and 16M-BC) as shown in Figure 5.9 to Figure 5.12 to
ensure that the finite element models were reliable. The same comparison approach
implemented on the test data was utilized: Figure 5.13 to Figure 5.16 compare the fixed-
fixed and fixed-rotating backbone curves of each model pairs with respect to the SDA,
plastic SDA, and equivalent SDA, respectively. In conclusion, finite element results support
the previous observations regarding the backbone-curve characteristics and the effect of
the end rotation; they also validate the proposed procedure in calculating the equivalent
lateral drifts.

While &, the rotation-to-drift ratio, of Specimens 13M-BC and 16M-BC was equal

to 1, Specimen 11H-BC sustained a slightly greater end-rotation magnitude, i.e., & = 1.1.
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Since the latter failed in the CB mode, the greater end-rotation magnitude considerably
affected its peak flexural strength (discussed in Section 5.2). Consequently, its plastic
backbone curve did not resemble that of its fixed-fixed counterpart as well as the others.
Further research is needed to investigate the effects of large end-rotation magnitudes on
the responses of columns with CB failure mode.

Chapter 2, 3, 4, and 5 in part are currently being prepared for submission for
publication of the material. Chansuk, P., Ozkula, G., and Uang, C.-M. (2018). “ATC-106
Phase 2: Seismic behavior and design of deep, slender wide-flange structural steel beam-
columns.” Report No. SSRP-18/02, University of California, San Diego, La Jolla, CA. The

thesis author was the primary investigator and author of this material.
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Table 5.1 Test Results: LTB Modification Factors of CB Specimens

Moment
CER MFR
Specimen Shape ggzgi‘?x C, # Range M::;x
b | (1000 kip-ft) | Mmax
IH | W24x176 | Fixedfixed | 2.27 (-1.96, 2.01)
T1H-BC | W24x176 | Fixed-rotating | 2.02 | °°° [ (169, 1.75) | (-86:087)
16M | W18x130 | Fixedfixed | 2.27 (-1.30,1.35)
16M-BC | W18x130 | Fixed-rotating | 246 | 0> [ (1.28,1.26) | O920%)

Table 5.2 ABAQUS Results: LTB Modification Factors of CB Specimens

Moment
B CFR MFR
Model Shape nggiiz Cy CI;F Range M’;’If"
b~ 1 (x1000 kip-ft) max
11M W24x176 | Fixed-fixed | 2.27 (-2.51, 2.53)
. . 0.95 0.97,0.96
11M-BC | W24x176 | Fixed-rotating | 2.16 (-2.43, 2.43) ( )
16M W18x130 | Fixed-fixed | 2.27 -1.42,1.42
PIXECTIXE 095 | ) | (0.95,0.95)
16M-BC | W18x130 | Fixed-rotating | 2.16 (-1.35, 1.35)
22L W30x148 | Fixed-fixed | 2.27 (-3.04, 3.04)
. . 0.95 0.97,0.97
22L-BC | W30x148 | Fixed-rotating | 2.15 (-2.96, 2.97) ( )
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6. SUMMARY AND CONCLUSIONS

6.1 Summary

Twenty-five W24 columns were tested in Phase 1 program (Ozkula and Uang 2015)
to evaluate the behavior and response of deep columns for seismic application in SMF
design. Phase 1 testing intended to investigate the effects of slenderness parameters,
constant axial load levels, lateral drift loading protocols, and biaxial loading on the column
responses. In Phase 2 program, twenty-three additional “shallow” (W14) and “deep” (W18,
W24, and W30) columns were tested to further investigate Phase 1 objectives and examine
the effects of section depths, fixed-rotating boundary conditions, and varying axial loads.
Phase 2 test data and numerical simulation results are presented in this thesis to investigate
seismic behavior of deep, slender wide-flange structural steel beam-columns. Theoretical
study was also conducted to predict the beam-column elastic responses. The following

conclusions can be made from this study.

6.2 Conclusions

(1) Timoshenko compatibility and constitutive laws were used to derive elastic flexural
stiffness relationships of a two-node member with and without nodal end rotational
springs; the derived stiffness relationships account for both shear deformation and the
second-order effect.

(2) A datareduction procedure utilizing Timoshenko beam-column theoretical expressions
derived in this study was proposed to eliminate the effect of connection flexibility from

the column global responses.
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(3) Test results showed that boundary conditions, varying axial loads, and lateral-drift
sequences had significant effects on the column response but did not influence the
governing buckling mode of the specimens.

(4) Cyclic responses of interior columns and exterior columns are very different in terms
of maximum flexural strength, post-buckling stiffness degradation, and axial
shortening. The backbone curves associated with the interior and exterior columns need
to be distinguished from one another for seismic design applications.

(5) Elastic flexural stiffness of specimens subjected to fixed-rotating boundary conditions
is lower than that of their nominally identical specimens with fixed-fixed ends. A
procedure to convert flexural-strength backbone curves of fixed-fixed columns to

account for rotation at the top end was proposed.
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