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ABSTRACT OF THE THESIS 

 

Seismic Behavior of Deep, Slender Wide-Flange Structural Steel Beam-columns 

 

by 

 

Piyachai Chansuk 

Master of Science in Structural Engineering 

University of California San Diego, 2018 

Professor Chia-Ming Uang, Chair 

 

This thesis investigates nonlinear cyclic responses of deep wide-flange steel beam-

columns, which are primarily used in Special Moment Frame (SMF) for their high in-plane, 

strong-axis moment of inertia to satisfy story drift limits specified in building codes. SMF 

design principles aim to achieve energy dissipation through plastic hinging of the beams, 

while flexural yielding of the columns at the base is also permitted. Although behavior of 

the beams has been extensively researched, that of the columns is lacking especially for 

deep columns (e.g., W18 to W36). Therefore, cyclic testing of deep columns was 

conducted to generate experimental database. Due to large width-to-thickness ratios of 
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these sections, test results showed significant web and flange local buckling; some 

specimens also exhibited lateral-torsional buckling. These local and global instabilities 

resulted in significant axial shortening and flexural strength degradation. These behaviors 

differ significantly from those observed in prior testing of shallow W14 columns, featuring 

excellent ductility capacity at high axial loads. 

Additionally, the test matrix was designed to investigate the effects of section 

depths, varying axial loads, lateral-drift loading sequences, and boundary conditions on the 

column responses. Inevitably in this testing, the responses were also influenced by 

flexibility of column-end connections. To eliminate this undesired variable from the 

responses, a procedure was developed to correct the lateral drift response based on the 

second-order Timoshenko elastic theory. The effects of boundary conditions were further 

investigated using high-fidelity finite element software ABAQUS. Results show that fixed-

fixed and fixed-rotating column responses can be converted to one another.  
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1. INTRODUCTION 

1.1 General 

Moment-resisting frames are one of the most common lateral force-resisting 

systems that are used in high seismic regions due to their high energy dissipation capacity 

and architectural versatility. Unexpected non-ductile failure of seismically designed steel 

moment connections that was observed after the Northridge, California Earthquake in 1994 

had triggered extensive studies on the behavior of Special Moment Frames (SMF). 

Extensive studies, including those completed by the SAC Joint Venture (FEMA 2000), 

have been conducted to evaluate the cyclic behavior and design of beam-to-column 

connections. Since plastic hinging in the beams is expected in an SMF, cyclic behavior of 

beams, but not columns has also been researched.  

Before the Northridge Earthquake, shallow wide-flange columns (e.g., W14 or 

W12 sections) were commonly used in moment-resisting frames because of their 

comparable strong- and weak-axis radii of gyration. However, it was challenging to 

continue using shallow sections in frame designs since they were required to have large 

lateral stiffness to satisfy the code-enforced story drift limit (ASCE 2016). To overcome 

this challenge, engineers turned to deeper steel columns, which were more economical in 

providing adequate lateral stiffness, i.e., the in-plane strong-axis moment of inertia. For 

instance, Table 1.1 compares the properties of shallow and deep sections with the same 

strong-axis moment of inertia (see Figure 1.1). The benefit of using the deep W30×148 

section is obvious; the weight of the column is reduced from 426 to 148 lb/ft. However, 

the width-to-thickness ratios for flange local buckling (FLB) and, particularly, web local 

buckling (WLB) controls (i.e., 𝑏𝑏𝑓𝑓/2𝑡𝑡𝑓𝑓 and ℎ/𝑡𝑡𝑤𝑤, respectively) are much larger for the deep 
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section, making it more susceptible to local instability. In addition, the deep column is also 

prone to out-of-plane, global-type member buckling like flexural buckling (FB) or lateral-

torsional buckling (LTB) since its radius of gyration about the weak-axis (𝑟𝑟𝑦𝑦) is much 

smaller than that (𝑟𝑟𝑥𝑥) about the strong-axis.  

Because columns in moment frames are subjected to both bending and axial loads 

during a seismic event, they are also referred to as beam-columns in design. Unfortunately, 

little experimental research on cyclic behavior of beam-columns is available to expansively 

support the seismic design or assessment provisions in AISC 341 (AISC 2016a) and ASCE 

41 (ASCE 2013). 

1.2 Literature Review 

MacRae et al. (1990) tested 250UC73 (W10×49) columns under constant axial 

compression and cyclic lateral displacements with two cycles at each member displacement 

ductility of 2, 4, 6, 8, and 10, respectively. The constant axial force ratios, 𝑃𝑃/𝑃𝑃𝑦𝑦, ranged 

from 0.0 to 0.8. Significant web and flange local buckling, axial shortening, and strength 

degradation were reported for beam-column specimens with high axial load.   

Newell and Uang (2008) cyclically tested shallow W14 columns with varying axial 

load and reported high ductility capacities; web local buckling was limited or not observed 

in some specimens. In contrast, an analytical study by Newell and Uang (2006) 

demonstrated that cyclic hystereses of deeper columns (W27) subjected to high axial load 

were characterized by rapid strength degradation due to severe simultaneous web and 

flange local buckling. 

To generate an experimental database as the basis for future analytical modeling of 

deep columns and evaluate the adequacy of design requirements for deep columns in AISC 
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341 and ASCE 41, NIST developed a comprehensive research plan to study the seismic 

behavior and design of deep, slender wide-flange structural steel beam-columns (NIST 

2011). The plan included studies at the member, subassemblage, and system levels. 

With the focus on the column behavior at the member level, Ozkula and Uang 

(2015) initiated the NIST study with full-scale testing of twenty-five wide-flange 

specimens, including five different W24 sections; each varied in section slenderness ratios 

(𝑏𝑏𝑓𝑓/2𝑡𝑡𝑓𝑓 and ℎ/𝑡𝑡𝑤𝑤) and member slenderness ratio (𝐿𝐿/𝑟𝑟𝑦𝑦). As shown in Table 1.2, the test 

matrix intended to investigate the effects of section slenderness parameters, constant axial 

load levels, lateral-drift sequences (including both cyclic and monotonic types), bending 

directions, and biaxial loading on the column responses. The test results confirmed the 

findings from the analytical study of deep-column cyclic responses conducted by Newell 

and Uang (2006). While in-plane plastic hinging in the form of simultaneous flange and 

web local buckling was observed at the member ends of W24×131 and W24×104 columns 

as expected, unexpected out-of-plane LTB was observed in W24×176 and W24×84 

columns. This variation in instability behaviors of deep columns motivated additional 

testing in the NIST research program. Following this so-called Phase 1 study, Phase 2 study 

encompassed testing of additional twenty-three specimens with further diversified wide-

flange sections ranging from W14 to W30 to further investigate Phase 1 objectives and 

examine the effects of section depths, varying axial loads, and boundary conditions on the 

column responses. A similar experimental investigation with fewer specimens that 

examined the beam-column cyclic behavior was conducted by Elkady and Lignos (2016), 

which investigated the same variables as the NIST studies. 
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Most of the specimens tested in the NIST studies sustained fixed-fixed boundary 

conditions; however, the top end of first-story columns in an SMF rotates during a seismic 

event due to flexibility of the connected beams, i.e., the columns experience fixed-rotating 

boundary conditions. To simulate and study this effect, four specimens in Phase 2 testing 

were subjected to cyclic rotation at the moving end with the magnitude proportional to the 

cyclic lateral drifts. 

Testing of shallow, stocky W14 sections by Newell and Uang (2008) and deep, 

slender W24 sections by Ozkula and Uang (2015) has shown that beam-column buckling 

mode characterizes the column responses. Within a certain limit of 𝐿𝐿/𝑟𝑟𝑦𝑦, a parameter based 

on section slenderness was proposed to predict the governing buckling mode (or failure 

mode), which are categorized into: (1) Symmetric Flange Local Buckling (SFB) mode, (2) 

Anti-symmetric Local Buckling (ALB) mode, and (3) Coupled Buckling (CB) mode 

(Ozkula et al. 2017). Buckled configurations and hysteretic features associated with each 

failure mode are briefly summarized in Section 2.8. 

1.3 Scope of the Thesis 

Phase 2 testing of the NIST research program is introduced in Chapter 2. Flexibility 

of column-end connections was observed in this testing, which affected the test responses. 

To allow a meaningful comparison between the test responses, the effect of connection 

flexibility needs to be removed from the global hystereses, i.e., the column shear and end 

moment versus lateral displacements. Chapter 3 presents the procedure developed to 

correct the lateral drift responses utilizing the second-order Timoshenko elastic theory. 
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This thesis presents the corrected test results in Chapter 4 and examines the effects 

of section depths, varying axial loads, lateral-drift sequences, and boundary conditions on 

the column responses.  

Utilizing a high-fidelity finite element software ABAQUS, this thesis further 

investigates the boundary condition effect on the column responses in Chapter 5. Since 

most specimens in the NIST research program sustained fixed-fixed ends, developing a 

procedure that enable conversion of the fixed-fixed column responses to fixed-rotating 

column responses, which are more representative of the behavior of first-story columns in 

an SMF, becomes the objective of this study. Although some fixed-rotating column 

responses were obtained from Phase 2 testing (four boundary condition tests), calibrated 

finite element models were used to generate additional data to support and generalize the 

experimental findings. 
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Table 1.1 Section Property Comparison of Shallow and Deep Wide-flange Columns  

Section Weight 
(lb/ft) 

𝑟𝑟𝑥𝑥 
(in.) 

𝑟𝑟𝑦𝑦  

(in.) 
𝐼𝐼𝑥𝑥 

(in.4) 
𝐼𝐼𝑦𝑦 

(in.4) 
𝑏𝑏𝑓𝑓
2𝑡𝑡𝑓𝑓

 
ℎ
𝑡𝑡𝑤𝑤

 

W14×426 426 7.26 4.34 6600 2360 2.75 6.08 
W30×148 148 12.4 2.28 6680 227 4.44 41.6 

 

Table 1.2 Test Matrix (Phase 1) 

Group 
No. Section Specimen 

Designation 
𝐿𝐿 

(ft) 

Slenderness Column Axial Load 
Bending 
Direction 𝑏𝑏𝑓𝑓

2𝑡𝑡𝑓𝑓
 

ℎ
𝑡𝑡𝑤𝑤

 
𝐿𝐿
𝑟𝑟𝑦𝑦

 𝐶𝐶𝑎𝑎 𝑃𝑃 
(kips) 

1 W24×176 
1L 
1M 
1H 

18 4.81 28.7 71.1 
0.2 
0.4 
0.6 

465 
931 
1396 

Strong-
axis 

2 W24×131 

2Z 
2L 

2L-P 
2M 

2M-NF 
2H 

18 6.70 35.6 72..7 

0.0 
0.2 
0.2 
0.4 
0.4 
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Figure 1.1 Comparison of Shallow and Deep Wide-flange Columns 
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2. TEST PROGRAM 

2.1 Introduction 

This chapter explains details of Phase 2 testing of the NIST research program that 

are relevant to the scope of this thesis; Chansuk et al. (2018) provide the complete 

information regarding the research. Although the original report divides Phase 2 testing 

into two sub-phases, i.e., Phase 2A and 2B, this thesis presents both testing details and 

results as one combined study but still keeps the same specimen-labeling scheme for 

consistency purpose.  

2.2 Test Setup 

Twenty-three wide-flange columns with sections ranging from W14 to W30 were 

subjected to inelastic strong-axis drifts utilizing various loading sequences and axial loads 

that could be constant or varying. The overall geometry of the test setup is shown in Figure 

2.1. Testing was conducted in the Seismic Response Modification Device (SRMD) Test 

Facility at the University of California, San Diego. Specimens were tested in a horizontal 

position with one end (west end) connected to a reaction fixture fixed to a strong wall and 

the other end (east or moving end) connected to a reaction fixture tied down to the SRMD 

shake table platen. The platen had six degrees of freedom. Longitudinal movement of the 

platen imposed an axial force to the specimens. A force-control algorithm was employed 

to either maintain a constant axial load or apply varying axial load. Displacing the platen 

laterally in the horizontal plane imposed strong-axis bending to the specimens. To simulate 

fixed-rotating boundary conditions, the platen was prescribed a cyclic rotation in the 
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column strong-axis direction. The platen was in a displacement-control mode for lateral 

movements and strong-axis rotation. 

2.3 Interior vs. Exterior Columns 

During a seismic event, exterior first-story columns in an SMF sustain lateral drifts 

and significant fluctuation in axial load demands that could range from compressive to 

tensile forces due to dynamic overturning effects. On the contrary, interior columns 

experience limited axial load fluctuation and are assumed to sustain constant compressive 

axial loads in this research. A normalized parameter 𝐶𝐶𝑎𝑎 is used to indicate the levels of 

axial load being applied to the specimens (AISC 2016a): 

𝐶𝐶𝑎𝑎 =
𝑃𝑃𝑢𝑢
𝜙𝜙𝑐𝑐𝑃𝑃𝑛𝑛

 (2.1) 

where 𝑃𝑃𝑢𝑢 = applied axial load (positive for compression), 𝑃𝑃𝑛𝑛 = 𝐴𝐴𝑔𝑔𝐹𝐹𝑦𝑦𝑛𝑛, 𝐴𝐴𝑔𝑔 = gross area, 

𝐹𝐹𝑦𝑦𝑛𝑛 = nominal yield stress, and 𝜙𝜙𝑐𝑐 = resistance factor (0.9). For most constant axial load 

tests simulating the interior-column condition, either of the three levels of axial 

compression, i.e., 𝐶𝐶𝑎𝑎 = 0.2, 0.4, or 0.6, was applied to the specimens; letters “L”, “M”, and 

“H” represent these low, medium, and high levels, respectively, in the specimen 

designation. To accommodate the maximum capacity of the SRMD platen, some 

specimens were tested with 𝐶𝐶𝑎𝑎 equal to 0.3 and named accordingly; “LM” indicates the 

average between the low- and medium-level axial compression. For varying axial load tests 

simulating the exterior-column condition, certain ranges of 𝐶𝐶𝑎𝑎 were specified; specific 

details regarding varying axial load sequences are discussed in Section 2.6.2. 
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2.4 Design of Test Specimens 

Figure 2.2 shows geometries and bolted end-connection details of typical 

specimens; additional information is documented by Chansuk et al. (2018). The weld 

access hole profile specified in AISC 360 (AISC 2016c) was used for welding detail. High-

strength bolts with 1½-in. diameter were used to fasten the end plates to reaction fixtures. 

Table 2.1 summarizes slenderness parameters of each specimen, including the 

member slenderness ratios, 𝐿𝐿/𝑟𝑟𝑦𝑦, where 𝐿𝐿 is the clear member length, and 𝑟𝑟𝑦𝑦 is the radius 

of gyration about the weak axis. Wide-flange sections were selected such that the 𝐿𝐿/𝑟𝑟𝑦𝑦 

ratios fall within a targeted and practical range. 

Three “shallow” (W14) and ten “deep” (W18 to W30) wide-flange sections for a 

total of twenty-three specimens were included in Phase 2 testing. In Phase 1 testing, an 

“unusual” coupled buckling involving out-of-plane LTB was observed in Group 1 

specimens (W24×176). Therefore, Group 11 was assigned with the same section as Group 

1, and Specimen 11M was tested to confirm if the same failure mode could be reproduced. 

In addition, W14, W18, and W30 sections were included in Phase 2 test matrix to achieve 

two goals: (1) to investigate whether findings from Phase 1 (testing of W24 sections) can 

be applied to deeper (e.g., W30) and shallower (e.g., W14 and W18) columns, and (2) to 

expand the section slenderness database. Figure 2.3 illustrates distribution of the flange 

and web width-to-thickness ratios of test specimens with respect to the compactness limits 

specified in AISC 341 (AISC 2016a). 

In Phase 1 testing, Group 5 specimens failed due to elastic LTB without plastic 

hinging at the member ends because their 𝐿𝐿/𝑟𝑟𝑦𝑦 ratio (= 161.2) was much larger than that 

of the other specimens. Consequently, inelastic cyclic responses associated with their 



11 

slenderness characteristics were not obtained. Group 14 specimen had a similar web 

slenderness to that of Group 5 specimens and a larger flange slenderness. But its 𝐿𝐿/𝑟𝑟𝑦𝑦 ratio 

(= 101.4) was much lower than that of Group 5 specimens, making it less prone to elastic 

LTB. Testing of Group 14 member was designed to fill this data gap.  

All specimens were subjected to inelastic cyclic drifts except for Specimen 12LM-

P (“P” for “Pushover”), which was tested monotonically to obtain a monotonic backbone 

curve for comparison with the cyclic backbone curve of its counterpart, Specimen 12LM. 

Furthermore, Specimen 21M-NF underwent the near-fault loading protocol (see Section 

2.6.1); the results were used to study how different lateral-drift sequences affected column 

responses. 

To study cyclic responses of exterior columns under different axial load variations 

caused by the overturning moment effect, Specimen 11H-VA, 21M-VAU, 21M-VAM, and 

21M-VAU-BC were subjected to varying axial load sequences in conjunction with the 

AISC loading protocol (“VA” for “Varying Axial Load”).  

In Phase 1 testing, fixed-fixed boundary conditions were used. Therefore, they were 

mainly used in Phase 2 as well to allow a direct comparison between the test results from 

both phases. To evaluate the effects of rotation at the top end of first-story columns in an 

SMF caused by flexibility of the connected beams, four specimens with “BC” designation 

were tested with fixed-rotating boundary conditions. 

2.5 Steel Material Properties 

ASTM A992 was specified for all beam-column specimens, and A572 Gr. 50 steel 

was specified for the end plates. Table 2.2 summarizes mechanical properties of the 

specimens; coupons were taken from both webs and flanges. A sample of engineering 
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stress versus engineering strain relationships are shown in Figure 2.4 (refer to Chansuk et 

al. 2018 for more information).  

2.6 Testing Procedure and Loading Protocols 

Firstly, axial loads were applied to the specimens and either maintained at a 

constant level or varied with respect to a prescribed range as the specimens underwent 

inelastic lateral drifts imposed at the moving end of the columns (see Figure 2.1). For fixed-

rotating boundary condition tests, cyclic rotation about the column strong axis was also 

prescribed to the platen. Several employed loading protocols are discussed below. 

2.6.1 Lateral Drift Sequences 

Since the objective of this research was to evaluate the cyclic responses of steel 

columns in moment frames, the standard loading protocol for qualifying cyclic tests of 

beam-to-column moment connections in Special and Intermediate Moment Frames 

specified in Section K2.4b of AISC 341-16 was utilized for most specimens. Figure 2.5(a) 

shows the typical story drift angle (SDA) history of the AISC loading protocol. 

In addition to the AISC loading protocol, one specimen (Specimen 21M-NF) was 

tested with the near-fault loading protocol shown in Figure 2.5(d). This loading protocol 

was characterized by its large initial pulse that was followed by smaller-amplitude drift 

cycles oscillating about a level of residual drift. Beside these two cyclic loading protocols, 

the third lateral-drift sequence employed in this testing was a monotonic pushover, which 

was applied to Specimen 12LM-P. 

Ultimately, the column responses corresponding to the AISC loading protocol, 

which resembled a far-field drift characteristic, the near-fault loading protocol, and the 

monotonic loading, were compared to study the effects of lateral-drift sequences.  
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2.6.2 Varying Axial Load Sequences 

To examine exterior-column behavior, Specimen 11H-VA was tested with the 

AISC loading protocol in conjunction with the varying axial load sequence illustrated in 

Figure 2.5(b). The compressive axial load applied to this specimen fluctuated about a 

gravity load of 𝐶𝐶𝑎𝑎 = 0.45. The cyclic axial load variation grew proportionally to lateral-

drift amplitudes; this simulated the dynamic overturning-moment effect that amplified as 

a structure displaced to higher amplitudes. At a certain drift level, plastic hinging was 

expected at beam ends, and the overturning moment stabilized. Accordingly, the axial load 

range was capped between 𝐶𝐶𝑎𝑎 = 0.3 and 𝐶𝐶𝑎𝑎 = 0.6 at SDA of 0.01 rad and beyond.  

The varying axial load sequences used with Specimens 21M-VAU, 21M-VAM, 

and 26LM-VAM are shown in Figure 2.6 with respect to the applied lateral drifts (i.e., the 

AISC loading protocol). The only differences between the sequences applied to Group 21 

specimens and the ones used with Specimens 11H-VA and 26LM-VAM were the 

amplitude ranges and the time step at which the axial load reversed its direction. For Group 

21 specimens, the axial load was set to reverse in direction at the same time step at which 

the lateral drift changed its direction (dash lines at some peak drifts were provided in Figure 

2.6 to illustrate this behavior); this reflected a more accurate loading condition that exterior 

columns experienced in a seismic event. The axial load ranges were kept steady at SDA of 

0.01 rad and beyond due to plastic hinging in beams. 

In this testing, two types of axial load variation were considered with the following 

features: (1) the gravity load was set at a target 𝐶𝐶𝑎𝑎 about which the axial load oscillated, 

and (2) the gravity load was set lower than a target 𝐶𝐶𝑎𝑎 but the upper bound of the oscillating 

axial load was set at the target 𝐶𝐶𝑎𝑎. Specimens with the designation “VAM” were tested 
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with the first loading type, which had its “Mean” axial load (i.e., the gravity load) equal to 

a target 𝐶𝐶𝑎𝑎. On the contrary, specimens tested with the second loading type were labeled 

“VAU”, indicating that the “Upper bound” of the axial load variation equaled to a target 

𝐶𝐶𝑎𝑎. To investigate the varying axial load effect, column responses obtained from the 

“VAM” and/or “VAU” tests were compared with their counterpart specimen that was 

subjected to constant axial compression; the same target 𝐶𝐶𝑎𝑎 were used in all comparable 

tests.  

2.6.3 End Rotation Sequence 

Due to flexibility of connected beams, first-story columns in an SMF sustain fixed-

rotating boundary conditions during a seismic event. These boundary conditions were 

simulated in testing of four specimens (Specimens 11H-BC, 13M-BC, 16M-BC, and 21M-

VAU-BC). Expressing top end rotation as a function of the story drift angle, 

𝜃𝜃 = 𝜉𝜉 �
Δ
𝐿𝐿
� (2.2) 

a three-bay, four-story SMF designed by Harris and Speicher (2015) was analyzed to 

determine an approximate 𝜉𝜉 value for this test program. Based on a nonlinear, time-history 

analysis of this structure with 14 ground motions, scaled to match the Design Earthquake 

per ASCE 7, the top end rotation and the first-story drift angle were similar in magnitude, 

i.e., 𝜉𝜉 = 1.0. Thus, for most boundary condition tests, strong-axis end rotation was 

prescribed at the platen end with the same magnitude as the applied story drift angle. Figure 

2.5(c) shows the typical end rotation sequence that was applied in conjunction with the 

AISC loading protocol. 
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2.7 Instrumentation 

Displacement transducers, inclinometers, strain gauge rosettes, and uniaxial strain 

gauges were used to measure global and local responses. Figure 2.7 shows displacement 

transducer and inclinometer layout. Figure 2.8 shows rosette and uniaxial strain gauge 

locations. Movements of the platen and their associated forces in six degrees of freedom 

were also recorded.  

2.8 Characterization of Failure Modes 

Testing of deep, slender columns in this study and shallow, stocky (W14) columns 

by Newell and Uang (2008) has shown that beam-column buckling mode characterizes the 

column hysteretic response. Within a certain limit of 𝐿𝐿/𝑟𝑟𝑦𝑦, a parameter based on local 

slenderness properties was proposed to predict the governing buckling mode (or failure 

mode), which are categorized into: (1) Symmetric Flange Local Buckling (SFB) mode, (2) 

Anti-symmetric Local Buckling (ALB) mode, and (3) Coupled Buckling (CB) mode 

(Ozkula et al. 2017). The buckled configuration and hysteretic feature of each failure mode 

are briefly summarized herein. Failure mode classifications and certain phenomena 

discussed in this section are referenced in Chapter 4 to help explain the column behaviors 

observed during testing. 

2.8.1 Symmetric Flange Local Buckling (SFB) Mode 

For highly ductile sections with relatively low web and flange slenderness ratios 

(mostly shallow columns, e.g., W12 and W14 columns), SFB is the common governing 

failure mode. It involves in-plane plastic hinging at the column ends (or only at the bottom 

end of first-story columns in an SMF in real application) without out-of-plane, global-type 

member buckling. In the plastic hinge regions, at least a half-wave local buckle is observed 
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at each half-width flange in a symmetric (or ‘mirrored’) configuration with respect to the 

web plane as shown in Figure 2.9; for example, both top and bottom half-width flanges of 

the northeast flange in Figure 2.9(a) buckle outward locally, and their respective apexes 

are aligned. In addition, web local buckling, if occurs, is limited for this failure mode. 

Figure 2.10 illustrates the cross-sectional view of the SFB configuration. The 

corresponding column response exhibits large ductility capacity and limited axial 

shortening even under high axial compression (Newell and Uang, 2008). In fact, strength 

degradation is moderate and happens gradually for columns with SFB mode. 

2.8.2 Anti-symmetric Local Buckling (ALB) Mode 

As the section slenderness ratios increase, both flange and web local buckling 

modes occur simultaneously as the web cannot provide sufficient rotational restraint to 

maintain fix-ended boundary condition for the half-width, unstiffened flange elements. 

Figure 2.12 shows this combined local buckling mode, which features at least a half-wave 

local buckle at each half-width flange in an anti-symmetric (or ‘opposite’) configuration 

with respect to the web plane. Considering the northeast flange in Figure 2.12(a) for 

example, the top and bottom half-width flanges of the same flange buckle outward and 

inward, respectively, and their respective apexes are not aligned; the apex of the outward 

flange local buckle usually locates closer to the end plate compared to that of the inward 

one. In addition, as the web tries to remain perpendicular to the flanges at the web-flange 

junctions, it buckles locally in the direction that complies with the flange local buckling 

configuration; Figure 2.11 demonstrates the cross-sectional view of this phenomenon. 

Ultimately, ALB refers to the in-plane, plastic hinging failure mode with this combined 

local buckling configuration. Once ALB occurs, drastic strength degradation prevails, 

accompanied by significant column axial shortening. As a result, the column ductility 
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capacity is relatively limited compared to the SFB case. The ductility capacity associated 

with this failure mode is sensitive to the axial force level. 

For specimens with ALB failure mode that sustain the AISC loading protocol in 

strong-axis bending, the ALB sequence initiates with one half-wave buckle set (i.e., one 

half-wave buckle at each unstiffen flange and stiffened web element) as shown in Figure 

2.12(a). At higher drifts, some ALB specimens also develop an additional half-wave buckle 

set, making a full-wave buckle set, as shown in Figure 2.12(b). This full-wave ALB 

configuration usually results in severely deformed column ends, which initiates an out-of-

plane, rigid-body translation of the column portion between the buckled regions; this 

movement should not be confused with lateral-torsional buckling or flexural buckling.  

2.8.3 Coupled Buckling (CB) Mode 

Coupled Buckling (CB) mode involves both local buckling and global-type, lateral-

torsional buckling (LTB). The sequence of these local and global instabilities may not be 

obvious for all specimens since the two reciprocal phenomena are coupled.  In obvious 

cases, two observations include: (1) local buckling at column proceeds LTB, and (2) LTB 

proceeds local buckling. Figure 2.13(a) shows the buckled configuration of the former 

sequence of which local buckling usually exhibits the ALB pattern as shown. The latter 

buckled configuration shown in Figure 2.13(b) is similar to the former one regarding the 

out-of-plane, LTB-type buckling behavior. However, local buckling pattern of the latter 

case as shown in Figure 2.14(a) only exhibits one half-wave local buckle in either the top 

or bottom half-width flange (of the same flange), not both like the SFB or ALB pattern; 

therefore, this type of flange local buckling should not be confused with the conventional 

local buckling as in SFB or ALB mode. Instead, it was triggered by LTB, which induces 

nonuniform stress distribution across the flange width because each flange bends about its 
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strong axis (explained in the following paragraph). In this report, LTB-induced flange local 

buckling refers to this phenomenon. Furthermore, LTB buckling configuration can be 

further subdivided into two cases: single and reverse curvatures; Figure 2.13(a) and Figure 

2.13(b) refer to the former case, while Figure 2.13(c) refers to the latter case. 

Twisting and out-of-plane bending associated with the LTB movements caused 

stress distribution to be nonuniform across the flange width. To demonstrate this 

phenomenon, strains at the upper and lower flange edges are plotted against each other in 

Figure 2.15 [see West End of Figure 2.13(b) for the strain gauge locations in the specimen 

under consideration]. Both strains are initially the same in magnitude (data points move 

along the 1:1 or 45° line), indicating a uniform bending stress distribution across the flange 

width due to in-plane bending of the specimen. Tendency of LTB then can be observed in 

the plot as the strains started to deviate from the 1:1 line, which initiates at SDA = 0.015 

rad. Physically, flaking of the whitewash as shown in Figure 2.16(a) also illustrates this 

nonuniform stress distribution due to LTB; it exhibits a sloped flaking pattern as the upper 

flange portion experiences more compression and flakes off more mill scale compared to 

the lower portion. As twisting and out-of-plane movements become more visually 

observable at higher SDA levels, the out-of-plane, torsional, and warping stresses induced 

by LTB increase drastically. As a result, the strains become more nonuniform and the 

sloped flaking pattern grows drastically as shown in Figure 2.16(b) and Figure 2.16(c). In 

this case, the conventional way of defining the plastic hinge zone or length becomes 

difficult and may not be meaningful. 

Chapter 2, 3, 4, and 5 in part are currently being prepared for submission for 

publication of the material. Chansuk, P., Ozkula, G., and Uang, C.-M. (2018). “ATC-106 
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Phase 2: Seismic behavior and design of deep, slender wide-flange structural steel beam-

columns.” Report No. SSRP-18/02, University of California, San Diego, La Jolla, CA. The 

thesis author was the primary investigator and author of this material. 
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Table 2.2 Steel Mechanical Properties 

Group 
No. Section Comp. 𝐹𝐹𝑦𝑦 

(ksi) 
𝐹𝐹𝑢𝑢 

(ksi) 
Elonge 

(%) 
Heat  
No. 

11 W24×176 Flange 52.1 
51.4 

83.5 
82.7 

33.2 
36.1 27469 Web 

12 W30×261 Flange 54.6 
59.6 

75.6 
74.4 

38.3 
41.0 451709 Web 

13 W30×173 Flange 57.3 
67.2 

73.6 
79.7 

41.7 
37.0 450564 Web 

14 W30×90 Flange 58.3 
62.7 

73.7 
75.9 

37.1 
38.1 417509 Web 

15 W18×192 Flange 55.3 
60.8 

77.4 
77.1 

36.3 
39.6 432017 Web 

16a 
W18×130 

Flange 49.9 
53.3 

79.0 
78.8 

34.5 
34.8 12986 Web 

16b Flange 52.1 
56.6 

71.2 
71.9 

40.9 
40.1 354162 Web 

17 W18×76 Flange 57.3 
54.8 

75.3 
66.1 

38.5 
32.3 7505 Web 

21 W18×130 Flange 54.8 
59.0 

70.9 
72.0 

39.1 
41.7 471309 Web 

22 W30×148 Flange 54.6 
66.2 

79.6 
83.3 

35.5 
34.5 3G3357 Web 

23 W18×60 Flange 49.4 
55.4 

68.1 
69.0 

37.3 
35.6 59055727 Web 

24 W14×82 Flange 51.6 
54.4 

68.4 
69.5 

38.7 
36.9 59070575 Web 

25 W14×53 Flange 54.8 
62.6 

70.4 
73.6 

35.9 
34.6 438715 Web 

26c 
W14×132 

Flange 51.5 
50.0 

70.8 
69.0 

38.4 
35.6 456819 Web 

26d Flange 55.0 
55.7 

72.5 
71.6 

39.0 
39.0 456821 Web 

27 W24×84 Flange 54.1 
58.4 

80.8 
81.9 

35.2 
32.4 36829 Web 

a Group 16: Specimen 16M. 
b Group 16: Specimen 16M-BC. 
c Group 26: Specimen 26LM. 
d Group 26: Specimen 26LM-VAM. 
e Elongations are based on a 2-in. gauge length. 
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(a) Schematic View 

 

(b) Overview of Specimen 

Figure 2.1 Test Setup
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PLAN 

 

ELEVATION 

(a) Overall Dimensions 
 

 

(b) Section A-A 
 

Figure 2.2 Specimen Geometries and End Details (Groups 11 to 13) 
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Figure 2.3 Distribution of Width-to-Thickness Ratios Annotated with Group Numbers 

 

 

Figure 2.4 Samples of Engineering Strain versus Stress Curves 
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(a) AISC Story Drift Angle Loading Protocol 

 
(b) Varying Axial Load Sequence (Specimen 11H-VA) 

 
(c) Moving-end Rotation Sequence (𝜉𝜉 = 1.0) 

 
(d) Near-fault Loading Protocol 

Figure 2.5 Cyclic Loading Schemes 



27 

 
(a) Specimen 21M-VAM 

 
(b) Specimens 21M-VAU and 21M-VAU-BC 

 
(c) Specimen 26LM-VAM 

Figure 2.6 Varying Axial Load Sequences 
 

𝐶𝐶 𝑎𝑎
 

𝐶𝐶 𝑎𝑎
 

𝐶𝐶 𝑎𝑎
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Figure 2.7 Typical Displacement Transducer and Inclinometer Layout 
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Figure 2.8 Typical Rosette and Uniaxial Strain Gauge Layout 

 

  

Rosette Orientation 
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(a) East End (b) Web at West End (c) West End

Figure 2.9 Symmetric Flange Local Buckling (SFB) Mode of W14×176 Section 

with 𝐶𝐶𝑎𝑎 = 0.61 (Newell and Uang 2008) 

(a) Overall (b) Cross-sectional View

Figure 2.10 Flange Local Buckling Configuration in SFB 

(a) Overall (b) Cross-sectional View

Figure 2.11 Flange and Web Local Buckling Configuration in ALB 

Axis of 
Symm. 

N 

N 

N 



Ea
st

 E
nd

 
O

ve
ra

ll 
W

es
t E

nd
 

(a
)S

D
A 

= 
0.

03
 ra

d

(b
)S

D
A 

= 
0.

05
 ra

d

Fi
gu

re
 2

.1
2 

A
nt

i-s
ym

m
et

ric
 L

oc
al

 B
uc

kl
in

g 
(A

LB
) M

od
e 

of
 W

18
×7

6 
C

ol
um

n 
w

ith
 C

a =
 0

.2
 (S

pe
ci

m
en

 1
7L

) 

A
xi

s o
f 

Sy
m

m
. 

N
 

N
 

N
 

31 



Ea
st

 E
nd

 
O

ve
ra

ll 
W

es
t E

nd
 

(a
)S

in
gl

e-
C

ur
va

tu
re

 C
ou

pl
ed

 B
uc

kl
in

g 
M

od
e 

of
 W

24
×8

4 
C

ol
um

n 
w

ith
 C

a =
 0

.2
 (S

pe
ci

m
en

 2
7L

)

(b
)S

in
gl

e-
C

ur
va

tu
re

 C
ou

pl
ed

 B
uc

kl
in

g 
M

od
e 

of
 W

18
×1

30
 C

ol
um

n 
w

ith
 C

a =
 0

.4
 (S

pe
ci

m
en

 1
6M

)

(c
)R

es
er

ve
-C

ur
va

tu
re

 C
ou

pl
ed

 B
uc

kl
in

g 
M

od
e 

of
 W

24
×1

76
 C

ol
um

n 
w

ith
 C

a =
 0

.2
 (S

pe
ci

m
en

 1
L)

Fi
gu

re
 2

.1
3 

C
ou

pl
ed

 B
uc

kl
in

g 
(C

B
) M

od
e 

N
 

N
 

N
 

N
 

N
 

N
 

St
ra

in
 

G
au

ge
s 

N
 

N
 

N
 

32 



33 

  
(a) Northwest Flange (b) West End 

Figure 2.14 LTB-Induced Flange Local Buckling (Specimen 16M with W18×130 Section 

and Ca = 0.4) 

 
Figure 2.15 Nonuniform Strain Profile across the Northwest Flange [see Figure 2.13(b)] 

   
(a) SDA = 0.015 rad (b) SDA = 0.02 rad (c) SDA = 0.03 rad 

Figure 2.16 Nonuniform (or Sloped) Flaking of Whitewash at West End (Specimen 16M 

with W18×130 Section, Ca = 0.4) 
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3. DATA REDUCTION 

3.1 Introduction 

In NIST beam-column testing (details discussed in Chapter 2), the use of bolted 

end-plate connections to tie the specimens to reaction fixtures did not constitute ideal rigid 

boundary conditions; some relative rotations between the specimen ends and the reaction 

fixtures were observed. Flexibility of these connections varied in moment-rotation 

characteristics for each specimen and affected each specimen’s responses differently. Thus, 

in order to investigate other variables of interest, it is necessary to remove this connection 

flexibility effect from the test responses. This thesis theoretically investigates elastic beam-

column behavior corresponding to rigid- and flexible-end boundary conditions, utilizing 

the Timoshenko theory; theoretical expressions that considered both shear deformation and 

the second-order effects were derived and used to correct the test lateral-drift responses to 

eliminate the effect of end-connection flexibility. Once achieved, the corrected test data 

would represent the responses corresponding to ideal (or rigid) boundary conditions. 

3.2 Theoretical Investigation of Elastic Beam-column Behavior 

Elastic flexural stiffnesses of a prismatic beam-column are a function of boundary 

conditions and applied axial loads. Two boundary types were investigated in this 

theoretical study: (1) ideal or rigid boundary conditions, and (2) flexible or partially-

restrained boundary conditions. Figure 3.1 and Figure 3.2 show the deformed 

configurations of fixed-fixed and fixed rotating columns, respectively, with respect to these 

two boundary types. Elastic flexural stiffnesses of these cases are investigated in this 

section with respect to Euler and Timoshenko theories. Euler beam theory assumes 
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negligible shear deformation, while Timoshenko beam theory accounts for the shear 

deformation by assuming a uniform shear stress profile in a cross-section. When the 

geometries of test specimens are considered in this study, results show that the effect of 

shear deformation on elastic flexural stiffnesses cannot be ignored. Slope-deflection 

equations and stiffness relationships of Timoshenko beam-columns with ideal and flexible 

end conditions are derived in Sections 3.2.2.2 and 3.2.2.3, respectively. 

3.2.1 Euler Member 

3.2.1.1 Euler Beam with Ideal Boundary Conditions 

Euler assumptions state that plane sections remain plane and shear deformation is 

negligible. Following the displacement and force notations of a two-node member shown 

in Figure 3.3, the elastic flexural stiffness matrix, 𝑲𝑲� , of an Euler beam with ideal boundary 

conditions is expressed as follows:  
    

�

𝑉𝑉1
𝑀𝑀1
𝑉𝑉2
𝑀𝑀2

� =
𝐸𝐸𝐼𝐼
𝐿𝐿

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡     

12
𝐿𝐿2

    
6
𝐿𝐿

    
6
𝐿𝐿

    4

−
12
𝐿𝐿2

  
6
𝐿𝐿

−
6
𝐿𝐿

  2

−
12
𝐿𝐿2

−
6
𝐿𝐿

6
𝐿𝐿

   2

      
12
𝐿𝐿2

−
6
𝐿𝐿

   −
6
𝐿𝐿

4 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑣𝑣1
𝛼𝛼1
𝑣𝑣2
𝛼𝛼2
� 

(3.1) 

This formulation neglects the axial load and shear deformation effects. 

3.2.1.2 Euler Beam-Column with Ideal Boundary Conditions 

When an axial load is applied to a member, the member’s elastic flexural stiffness 

changes due to the second-order P-𝛿𝛿 and P-Δ effects. Slope-deflection equations can be 

derived by applying Euler compatibility and constitutive law to equilibriums of a member 

𝑲𝑲�  
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in its deformed configuration. This derivation is well established (e.g., Chen and Lui 1987); 

the flexural stiffness relationships of an Euler beam-column with ideal boundary conditions 

are:   
     

�

𝑉𝑉1
𝑀𝑀1
𝑉𝑉2
𝑀𝑀2

� =

⎣
⎢
⎢
⎢
⎡𝐾𝐾
�11 𝐾𝐾�12
𝐾𝐾�21 𝐾𝐾�22

𝐾𝐾�13 𝐾𝐾�14
𝐾𝐾�23 𝐾𝐾�24

𝐾𝐾�31 𝐾𝐾�32
𝐾𝐾�41 𝐾𝐾�42

𝐾𝐾�33 𝐾𝐾�34
𝐾𝐾�43 𝐾𝐾�44⎦

⎥
⎥
⎥
⎤
�

𝑣𝑣1
𝛼𝛼1
𝑣𝑣2
𝛼𝛼2
� 

(3.2) 

where the stiffness matrix subscripts “C” and “T” distinguish the types of axial load being 

applied to the member, i.e., “Compression” and “Tension”, respectively. Regardless of the 

axial load directions, the axial load magnitude (i.e., absolute value) 𝑃𝑃 can be normalized 

as  

𝜑𝜑 = �𝑃𝑃/𝐸𝐸𝐼𝐼 (3.3) 

and in a dimensionless form as 

Φ = 𝜑𝜑𝐿𝐿 = ��𝑃𝑃/𝐸𝐸𝐼𝐼�𝐿𝐿 (3.4) 

The two parameters defined above are used to simplify expressions of both beam-columns 

under axial compression and axial tension. 

Member with Axial Compression 

Defining 

Ψ�𝐶𝐶 = 2(1 − cosΦ) −Φ sinΦ (3.5) 

coefficients for the symmetric flexural stiffness matrix, 𝑲𝑲�𝑪𝑪, in Eq. (3.2) are 

  

𝑲𝑲�𝑪𝑪 or 𝑲𝑲�𝑻𝑻 
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𝐾𝐾�𝐶𝐶,11 =
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ�𝐶𝐶

Φ3 sinΦ 

𝐾𝐾�𝐶𝐶,12 =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ�𝐶𝐶

Φ2(1 − cosΦ) 

𝐾𝐾�𝐶𝐶,22 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝐶𝐶

Φ(sinΦ−Φ cosΦ) 

𝐾𝐾�𝐶𝐶,24 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝐶𝐶

Φ(Φ− sinΦ) 

−𝐾𝐾�𝐶𝐶,13 = −𝐾𝐾�𝐶𝐶,31 = 𝐾𝐾�𝐶𝐶,33 = 𝐾𝐾�𝐶𝐶,11  

−𝐾𝐾�𝐶𝐶,23 = −𝐾𝐾�𝐶𝐶,32 = −𝐾𝐾�𝐶𝐶,34 = −𝐾𝐾�𝐶𝐶,43 = 𝐾𝐾�𝐶𝐶,14 = 𝐾𝐾�𝐶𝐶,21 = 𝐾𝐾�𝐶𝐶,41 = 𝐾𝐾�𝐶𝐶,12 

𝐾𝐾�𝐶𝐶,44 = 𝐾𝐾�𝐶𝐶,22;  𝐾𝐾�𝐶𝐶,42 = 𝐾𝐾�𝐶𝐶,24 

(3.6) 

Following expressions predict internal moment and shear along the member length when 

axial compression is present: 

(a) when 𝑣𝑣1 = 1, 𝑣𝑣2 = 0, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 0, 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ�𝐶𝐶

Φ2{cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cos(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝑣𝑣1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ�𝐶𝐶

Φ3 sinΦ 

(b) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝛼𝛼1 = 1, and 𝛼𝛼2 = 0, 

𝑀𝑀𝛼𝛼1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝐶𝐶

Φ{Φ cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − sin(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝛼𝛼1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ�𝐶𝐶

Φ2(1 − cosΦ) 

(c) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 1, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 0, 

𝑀𝑀𝑣𝑣2(𝑥𝑥) = −𝑀𝑀𝑣𝑣1(𝑥𝑥) 

𝑉𝑉𝑣𝑣2(𝑥𝑥) = −𝑉𝑉𝑣𝑣1(𝑥𝑥) 

(3.7) 
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(d) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 1, 

𝑀𝑀𝛼𝛼2(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝐶𝐶

Φ{Φ cos(𝜑𝜑𝑥𝑥)−sin(𝜑𝜑𝑥𝑥) − sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]} 

𝑉𝑉𝛼𝛼2(𝑥𝑥) = 𝑉𝑉𝛼𝛼1(𝑥𝑥) 

Using superposition, internal moment and shear along the member length can be 

determined if the end lateral displacements (𝑣𝑣1 and 𝑣𝑣2) and rotations (𝛼𝛼1 and 𝛼𝛼2) are 

known: 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡(𝑥𝑥) = 𝑀𝑀𝑣𝑣1(𝑥𝑥)𝑣𝑣1 + 𝑀𝑀𝛼𝛼1(𝑥𝑥)𝛼𝛼1 + 𝑀𝑀𝑣𝑣2(𝑥𝑥)𝑣𝑣2 + 𝑀𝑀𝛼𝛼2(𝑥𝑥)𝛼𝛼2 (3.8) 

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡(𝑥𝑥) = 𝑉𝑉𝑣𝑣1(𝑥𝑥)𝑣𝑣1 + 𝑉𝑉𝛼𝛼1(𝑥𝑥)𝛼𝛼1 + 𝑉𝑉𝑣𝑣2(𝑥𝑥)𝑣𝑣2 + 𝑉𝑉𝛼𝛼2(𝑥𝑥)𝛼𝛼2 (3.9) 

Eqs. (3.8) and (3.9) are the most general forms when all four degrees of freedom are 

unrestrained. They can also be written in the stiffness matrix format as in Eq. (3.2) for 𝑥𝑥 =

0 and 𝑥𝑥 = 𝐿𝐿 to establish the coefficients for 𝑲𝑲�𝑪𝑪. 𝐾𝐾�𝐶𝐶,11 predicts the theoretical Euler lateral 

stiffness considering stiffness reduction due to axial compression for specimens with ideal 

fixed-fixed boundary conditions. In testing, flexibility of end connections was observed. 

Therefore, elastic behavior of an Euler beam-column with flexible end restraints is studied 

in Section 3.2.1.3 to address this issue.  

Member with Axial Tension 

Defining 

Ψ�𝑇𝑇 = −2(1 − coshΦ) −Φ sinhΦ (3.10) 

coefficients for the symmetric flexural stiffness matrix, 𝑲𝑲�𝑻𝑻, in Eq. (3.2) are 
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𝐾𝐾�𝑇𝑇,11 = −
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ�𝑇𝑇

Φ3 sinhΦ 

𝐾𝐾�𝑇𝑇,12 =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ�𝑇𝑇

Φ2(1 − coshΦ) 

𝐾𝐾�𝑇𝑇,22 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝑇𝑇

Φ(sinhΦ−Φ coshΦ) 

𝐾𝐾�𝑇𝑇,24 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝑇𝑇

Φ(Φ− sinhΦ) 

−𝐾𝐾�𝑇𝑇,13 = −𝐾𝐾�𝑇𝑇,31 = 𝐾𝐾�𝑇𝑇,33 = 𝐾𝐾�𝑇𝑇,11  

−𝐾𝐾�𝑇𝑇,23 = −𝐾𝐾�𝑇𝑇,32 = −𝐾𝐾�𝑇𝑇,34 = −𝐾𝐾�𝑇𝑇,43 = 𝐾𝐾�𝑇𝑇,14 = 𝐾𝐾�𝑇𝑇,21 = 𝐾𝐾�𝑇𝑇,41 = 𝐾𝐾�𝑇𝑇,12 

𝐾𝐾�𝑇𝑇,44 = 𝐾𝐾�𝑇𝑇,22;  𝐾𝐾�𝑇𝑇,42 = 𝐾𝐾�𝑇𝑇,24 

(3.11) 

The following expresses moment and shear equations along the member length: 

(a) when 𝑣𝑣1 = 1, 𝑣𝑣2 = 0, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 0, 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ�𝑇𝑇

Φ2{cosh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cosh(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ�𝑇𝑇

Φ3 sinhΦ 

(b) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝛼𝛼1 = 1, and 𝛼𝛼2 = 0, 

𝑀𝑀𝛼𝛼1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝑇𝑇

Φ{Φ cosh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − sinh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − sinh(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝛼𝛼1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ�𝑇𝑇

Φ2(1 − coshΦ) 

(c) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 1, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 0, 

𝑀𝑀𝑣𝑣2(𝑥𝑥) = −𝑀𝑀𝑣𝑣1(𝑥𝑥) 

𝑉𝑉𝑣𝑣2(𝑥𝑥) = −𝑉𝑉𝑣𝑣1(𝑥𝑥) 

 

(3.12) 
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(d) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 1, 

𝑀𝑀𝛼𝛼2(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝑇𝑇

Φ{Φ cosh(𝜑𝜑𝑥𝑥) − sinh(𝜑𝜑𝑥𝑥) − sinh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]} 

𝑉𝑉𝛼𝛼2(𝑥𝑥) = 𝑉𝑉𝛼𝛼1(𝑥𝑥) 

3.2.1.3 Euler Beam-Column with Flexible Boundary Conditions 

Ideal boundary conditions are difficult to achieve in full-scale testing in this 

research program. To predict elastic behavior of an Euler beam-column with flexible end 

restraints, end rotational springs with equal stiffness of  

𝐾𝐾𝜃𝜃 = 𝛽𝛽 �
𝐸𝐸𝐼𝐼
𝐿𝐿
� (3.13) 

are included in the theoretical derivation of the member flexural stiffness matrix as in Eq. 

(3.14).  
     

�

𝑉𝑉1
𝑀𝑀1
𝑉𝑉2
𝑀𝑀2

� =

⎣
⎢
⎢
⎢
⎡𝐾𝐾
�11′ 𝐾𝐾�12′

𝐾𝐾�21′ 𝐾𝐾�22′
𝐾𝐾�13′ 𝐾𝐾�14′

𝐾𝐾�23′ 𝐾𝐾�24′

𝐾𝐾�31′ 𝐾𝐾�32′

𝐾𝐾�41′ 𝐾𝐾�42′
𝐾𝐾�33′ 𝐾𝐾�34′

𝐾𝐾�43′ 𝐾𝐾�44′ ⎦
⎥
⎥
⎥
⎤
�

𝑣𝑣1
𝜃𝜃1
𝑣𝑣2
𝜃𝜃2

� 
(3.14) 

The procedure to establish the flexural stiffness coefficients is similar to that presented in 

Section 3.2.2.3; the only difference is that the derivation in this section is based on the 

Euler beam assumptions, which neglect the effect of shear deformation. 

Member with Axial Compression 

Defining 

Ψ�𝐶𝐶′ = 2(𝛽𝛽2 + 𝛽𝛽Φ2)(1 − cosΦ) −Φ(𝛽𝛽2 − 2𝛽𝛽 − Φ2) sinΦ− 2𝛽𝛽Φ2 (3.15) 

coefficients for the symmetric flexural stiffness matrix, 𝑲𝑲�𝑪𝑪′ , are derived as follows: 

𝑲𝑲�𝑪𝑪′ or 𝑲𝑲�𝑻𝑻′  
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𝐾𝐾�𝐶𝐶,11
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[𝛽𝛽 sinΦ−Φ(1 − cosΦ)]
(2𝛽𝛽 + Φ2)(1− cosΦ) − 𝛽𝛽Φ sinΦ

� 

𝐾𝐾�𝐶𝐶,12
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − cosΦ)
(2𝛽𝛽 + Φ2)(1− cosΦ) − 𝛽𝛽Φ sinΦ

� 

𝐾𝐾�𝐶𝐶,22
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝐶𝐶′

Φ[(𝛽𝛽2 + 𝛽𝛽Φ2)sinΦ− 𝛽𝛽2Φ cosΦ] 

𝐾𝐾�𝐶𝐶,24
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝐶𝐶′

𝛽𝛽2Φ(Φ− sinΦ) 

−𝐾𝐾�𝐶𝐶,13
′ = −𝐾𝐾�𝐶𝐶,31

′ = 𝐾𝐾�𝐶𝐶,33
′ = 𝐾𝐾�𝐶𝐶,11

′   

−𝐾𝐾�𝐶𝐶,23
′ = −𝐾𝐾�𝐶𝐶,32

′ = −𝐾𝐾�𝐶𝐶,34
′ = −𝐾𝐾�𝐶𝐶,43

′ = 𝐾𝐾�𝐶𝐶,14
′ = 𝐾𝐾�𝐶𝐶,21

′ = 𝐾𝐾�𝐶𝐶,41
′ = 𝐾𝐾�𝐶𝐶,12

′  

𝐾𝐾�𝐶𝐶,44
′ = 𝐾𝐾�𝐶𝐶,22

′ ;  𝐾𝐾�𝐶𝐶,42
′ = 𝐾𝐾�𝐶𝐶,24

′  

(3.16) 

Eq. (3.17) expresses internal moment and shear along the member length:  

(a) when 𝑣𝑣1 = 1, 𝑣𝑣2 = 0, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 0, 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2
�
𝛽𝛽Φ2{cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cos(𝜑𝜑𝑥𝑥)}

(2𝛽𝛽 + Φ2)(1− cosΦ) − 𝛽𝛽Φ sinΦ
� 

𝑉𝑉𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[Φ(1 − cosΦ) − 𝛽𝛽 sinΦ]
(2𝛽𝛽 + Φ2)(1− cosΦ) − 𝛽𝛽Φ sinΦ

� 

(b) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝜃𝜃1 = 1, and 𝜃𝜃2 = 0, 

𝑀𝑀𝜃𝜃1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝐶𝐶′

Φ{𝛽𝛽2Φ cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − (𝛽𝛽2 + 𝛽𝛽Φ2) sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] 

−𝛽𝛽2 sin(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝜃𝜃1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − cosΦ)
(2𝛽𝛽 + Φ2)(1 − cosΦ) − 𝛽𝛽Φ sinΦ

� 

(c) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 1, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 0, 

 

(3.17) 
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𝑀𝑀𝑣𝑣2(𝑥𝑥) = −𝑀𝑀𝑣𝑣1(𝑥𝑥) 

𝑉𝑉𝑣𝑣2(𝑥𝑥) = −𝑉𝑉𝑣𝑣1(𝑥𝑥) 

(d) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 1, 

𝑀𝑀𝜃𝜃2(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝐶𝐶′

Φ{𝛽𝛽2Φ cos(𝜑𝜑𝑥𝑥) − (𝛽𝛽2 + 𝛽𝛽Φ2) sin(𝜑𝜑𝑥𝑥) 

−𝛽𝛽2 sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]} 

𝑉𝑉𝜃𝜃2(𝑥𝑥) = 𝑉𝑉𝛼𝛼1(𝑥𝑥) 

Member with Axial Tension 

Defining 

Ψ�𝑇𝑇′ = −2(𝛽𝛽2 − 𝛽𝛽Φ2)(1− coshΦ) −Φ(𝛽𝛽2 − 2𝛽𝛽 + Φ2) sinhΦ− 2𝛽𝛽Φ2 (3.18) 

coefficients for the symmetric flexural stiffness matrix, 𝑲𝑲�𝑻𝑻′ , are derived as follows: 

𝐾𝐾�𝑇𝑇,11
′ = −

𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[𝛽𝛽 sinhΦ−Φ(1 − coshΦ)]
(−2𝛽𝛽 + Φ2)(1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

𝐾𝐾�𝑇𝑇,12
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − coshΦ)
(−2𝛽𝛽 + Φ2)(1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

𝐾𝐾�𝑇𝑇,22
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝑇𝑇′

Φ[(𝛽𝛽2 − 𝛽𝛽Φ2) sinhΦ− 𝛽𝛽2Φ coshΦ] 

𝐾𝐾�𝑇𝑇,24
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝑇𝑇′

𝛽𝛽2Φ(Φ− sinhΦ) 

−𝐾𝐾�𝑇𝑇,13
′ = −𝐾𝐾�𝑇𝑇,31

′ = 𝐾𝐾�𝑇𝑇,33
′ = 𝐾𝐾�𝑇𝑇,11

′   

−𝐾𝐾�𝑇𝑇,23
′ = −𝐾𝐾�𝑇𝑇,32

′ = −𝐾𝐾�𝑇𝑇,34
′ = −𝐾𝐾�𝑇𝑇,43

′ = 𝐾𝐾�𝑇𝑇,14
′ = 𝐾𝐾�𝑇𝑇,21

′ = 𝐾𝐾�𝑇𝑇,41
′ = 𝐾𝐾�𝑇𝑇,12

′  

𝐾𝐾�𝑇𝑇,44
′ = 𝐾𝐾�𝑇𝑇,22

′ ;  𝐾𝐾�𝑇𝑇,42
′ = 𝐾𝐾�𝑇𝑇,24

′  

(3.19) 

Eq. (3.20) expresses internal moment and shear along the member length: 
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(a) when 𝑣𝑣1 = 1, 𝑣𝑣2 = 0, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 0, 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2{cosh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cosh(𝜑𝜑𝑥𝑥)}
(−2𝛽𝛽 + Φ2)(1− coshΦ) − 𝛽𝛽Φ sinhΦ

� 

𝑉𝑉𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[−Φ(1 − coshΦ) + 𝛽𝛽 sinhΦ]
(−2𝛽𝛽 + Φ2)(1− coshΦ) − 𝛽𝛽Φ sinhΦ

� 

(b) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝛼𝛼1 = 1, and 𝛼𝛼2 = 0, 

 

𝑀𝑀𝛼𝛼1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝑇𝑇′

Φ{𝛽𝛽2Φ cosh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − (𝛽𝛽2 − 𝛽𝛽Φ2) sinh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] 

−𝛽𝛽2 sinh(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝛼𝛼1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1− coshΦ)
(−2𝛽𝛽 + Φ2)(1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

(c) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 1, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 0, 

𝑀𝑀𝑣𝑣2(𝑥𝑥) = −𝑀𝑀𝑣𝑣1(𝑥𝑥) 

𝑉𝑉𝑣𝑣2(𝑥𝑥) = −𝑉𝑉𝑣𝑣1(𝑥𝑥) 

(d) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 1, 

𝑀𝑀𝛼𝛼2(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ�𝑇𝑇′

Φ{𝛽𝛽2Φ cosh(𝜑𝜑𝑥𝑥) − (𝛽𝛽2 − 𝛽𝛽Φ2) sinh(𝜑𝜑𝑥𝑥) 

−𝛽𝛽2 sinh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]} 

𝑉𝑉𝛼𝛼2(𝑥𝑥) = 𝑉𝑉𝛼𝛼1(𝑥𝑥) 

(3.20) 

3.2.2 Timoshenko Member 

3.2.2.1 Timoshenko Beam with Ideal Boundary Conditions 

Euler beam theory does not consider the effect of shear deformation. Timoshenko 

beam theory represents a simplification of more precise beam theories that accounts for 
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shear deformations by assuming a uniform shear stress distribution in a cross-section. 

Constitutive law for shear force is expressed as (Graff 1975) 

𝑉𝑉 = 𝐺𝐺𝐴𝐴𝑠𝑠𝛾𝛾 (3.21) 

where 𝐺𝐺 is the shear modulus, 𝛾𝛾 is the shear strain, and 𝐴𝐴𝑠𝑠 (= 𝑘𝑘𝐴𝐴) is the shear area; 𝑘𝑘 is 

the Timoshenko shear coefficient, which varies based on the shape of the cross-section. 

For an I-section bent about its strong-axis, 𝑘𝑘 can be determined as follows (Cowper 1966): 

𝑘𝑘 =
10(1 + 𝜈𝜈)(1 + 3𝑚𝑚)2

(12 + 72𝑚𝑚 + 150𝑚𝑚2 + 90𝑚𝑚3) + 𝜈𝜈(11 + 66𝑚𝑚 + 135𝑚𝑚2 + 90𝑚𝑚3) + 30𝑛𝑛2(𝑚𝑚 + 𝑚𝑚2) + 5𝜈𝜈𝑛𝑛2(8𝑚𝑚 + 9𝑚𝑚2) (3.22) 

where Poisson’s ratio 𝜈𝜈 = 0.3 for steel, 𝑚𝑚 = 2𝑏𝑏𝑓𝑓𝑡𝑡𝑓𝑓
ℎ0𝑡𝑡𝑤𝑤

, ℎ0 = distance between the flange 

centroids, and 𝑛𝑛 = 𝑏𝑏𝑓𝑓
ℎ0

. 

 Flexural stiffness relationships of a two-node Timoshenko beam are well 

established as follows (e.g., Przemieniecki 1985): 
    

�

𝑉𝑉1
𝑀𝑀1
𝑉𝑉2
𝑀𝑀2

� =
𝐸𝐸𝐼𝐼
𝐿𝐿

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡     

12
(1 + Π)𝐿𝐿2

    
6

(1 + Π)𝐿𝐿

    
6

(1 + Π)𝐿𝐿
    

4 + Π
1 + Π

−
12

(1 + Π)𝐿𝐿2
  

6
(1 + Π)𝐿𝐿

−
6

(1 + Π)𝐿𝐿
  
2 − Π
1 + Π

−
12

(1 + Π)𝐿𝐿2
−

6
(1 + Π)𝐿𝐿

6
(1 + Π)𝐿𝐿

   
2 − Π
1 + Π

      
12

(1 + Π)𝐿𝐿2
−

6
(1 + Π)𝐿𝐿

   −
6

(1 + Π)𝐿𝐿
4 + Π
1 + Π ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑣𝑣1
𝛼𝛼1
𝑣𝑣2
𝛼𝛼2
� 

(3.23) 

where 

Π =
12𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠𝐿𝐿2

 (3.24) 

𝐾𝐾11 represents the Timoshenko lateral stiffness neglecting axial load effect. The elastic 

flexural stiffnesses of a Timoshenko beam-column are derived in the following section. 

𝑲𝑲 
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3.2.2.2 Timoshenko Beam-Column with Ideal Boundary Conditions 

To establish the governing differential equations for a Timoshenko beam-column, 

Timoshenko compatibility and constitutive laws are applied to equilibriums of a member 

in its deformed configuration. The derived flexural stiffness relationships are shown in the 

following form: 
     

�

𝑉𝑉1
𝑀𝑀1
𝑉𝑉2
𝑀𝑀2

� = �

𝐾𝐾11 𝐾𝐾12
𝐾𝐾21 𝐾𝐾22

𝐾𝐾13 𝐾𝐾14
𝐾𝐾23 𝐾𝐾24

𝐾𝐾31 𝐾𝐾32
𝐾𝐾41 𝐾𝐾42

𝐾𝐾33 𝐾𝐾34
𝐾𝐾43 𝐾𝐾44

� �

𝑣𝑣1
𝛼𝛼1
𝑣𝑣2
𝛼𝛼2
� 

(3.25) 

Member with Axial Compression 

Figure 3.4 depicts the free body diagram of an axially loaded beam in its deformed 

configuration. The equilibriums of an infinitesimal member length can be expressed as 

follows: 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑥𝑥

+ 𝑤𝑤(𝑥𝑥) = 0 (3.26) 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥

+ 𝑉𝑉(𝑥𝑥) + 𝑃𝑃
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= 0 (3.27) 

Timoshenko compatibility and constitutive laws can be expressed as follows: 

𝑀𝑀(𝑥𝑥) = 𝐸𝐸𝐼𝐼(𝑥𝑥)
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

 (3.28) 

𝑉𝑉(𝑥𝑥) = 𝐺𝐺𝐴𝐴𝑠𝑠(𝑥𝑥) �
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

− 𝛼𝛼(𝑥𝑥)� (3.29) 

Substitute Eqs. (3.28) and (3.29) into Eq. (3.27) to derive a lateral displacement and 

flexural rotation relationship as follows: 

𝑲𝑲𝑪𝑪 or 𝑲𝑲𝑻𝑻 
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𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

=
−1

𝜌𝜌 + 𝜑𝜑2 �
𝑑𝑑2𝛼𝛼
𝑑𝑑𝑥𝑥2

− 𝜌𝜌𝛼𝛼(𝑥𝑥)� (3.30a) 

where 

𝜌𝜌 =
𝐺𝐺𝐴𝐴𝑠𝑠
𝐸𝐸𝐼𝐼

 (3.30b) 

Differentiating Eq. (3.27), substituting in Eq. (3.30a), and setting 𝑤𝑤(𝑥𝑥) = 0 gives a third-

order ordinary differential equation for flexural rotation below. 

𝑑𝑑3𝛼𝛼
𝑑𝑑𝑥𝑥3

+ 𝜑𝜑2 𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= 0 (3.31) 

The solution of this equation takes the form of 𝛼𝛼(𝑥𝑥) = 𝐶𝐶𝑒𝑒𝜆𝜆𝑥𝑥. Substituting this into Eq. 

(3.31) gives the characteristic equation for the Timoshenko member under compression: 

(𝜆𝜆3 + 𝜑𝜑2𝜆𝜆)𝐶𝐶𝑒𝑒𝜆𝜆𝑥𝑥 = 0 (3.32) 

The solution is 

𝜆𝜆 = 0,−𝑖𝑖𝜑𝜑, 𝑖𝑖𝜑𝜑 (3.33) 

Thus, the general solution for the slope equation can be expressed as follows: 

𝛼𝛼(𝑥𝑥) = 𝐶𝐶1𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥 + 𝐶𝐶2𝑒𝑒−𝑖𝑖𝑖𝑖𝑥𝑥 + 𝐶𝐶3 (3.34a) 

or  

𝛼𝛼(𝑥𝑥) = 𝐶𝐶1 sin𝜑𝜑𝑥𝑥 + 𝐶𝐶2 cos𝜑𝜑𝑥𝑥 + 𝐶𝐶3 (3.34b) 

Substituting Eq. (3.34b) into Eq. (3.30a) and integrating once gives a deflection equation 

below. 

𝑣𝑣(𝑥𝑥) =
−1
𝜑𝜑
�𝐶𝐶1 cos𝜑𝜑𝑥𝑥 − 𝐶𝐶2 sin𝜑𝜑𝑥𝑥 −

𝜑𝜑𝜌𝜌
𝜑𝜑2 + 𝜌𝜌

𝐶𝐶3𝑥𝑥� + 𝐶𝐶4 (3.35) 

 To derive the flexural stiffness matrix of a two-node element with four degrees of 

freedom (lateral displacement and rotation at each end), four sets of boundary conditions 
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are applied to the slope-deflection equations. The resulting system of equations are solved 

to determine the unknown coefficients. Firstly, a unit end rotation is imposed at the left end 

(node 1) of the element while other degrees of freedom remain fixed. 

𝑣𝑣(0) = 0;  𝑣𝑣(𝐿𝐿) = 0;𝛼𝛼(0) = 1;𝛼𝛼(𝐿𝐿) = 0 (3.36) 

Solving the above system of equations gives: 

𝐶𝐶1 =
1
Ψ𝐶𝐶

[−(1 + 𝜇𝜇) sinΦ + Φ cosΦ] 

𝐶𝐶2 =
1
Ψ𝐶𝐶

[(1 + 𝜇𝜇)(1 − cosΦ) −Φ sinΦ] 

𝐶𝐶3 =
1
Ψ𝐶𝐶

(1 + 𝜇𝜇)(1 − cosΦ) 

𝐶𝐶4 =
𝐿𝐿
Φ
𝐶𝐶1 

(3.37) 

where dimensionless factors are defined as 

𝜇𝜇 =
𝑃𝑃
𝐺𝐺𝐴𝐴𝑠𝑠

 (3.38) 

Ψ𝐶𝐶 = 2(1 + 𝜇𝜇)(1− cosΦ) −Φ sinΦ (3.39) 

Substituting Eq. (3.37) into Eqs. (3.34b) and (3.35) gives closed-form solutions for the 

lateral displacement and flexural rotation along the member length corresponding to the 

applied unit rotation at node 1 [i.e., 𝛼𝛼1 = 𝛼𝛼(0) = 1]. Applying the Timoshenko 

constitutive law, closed-form solutions for the moment 𝑀𝑀𝛼𝛼1(𝑥𝑥) and shear 𝑉𝑉𝛼𝛼1(𝑥𝑥) along the 

member length can be expressed using Eqs. (3.28) and (3.27) as: 

𝑀𝑀𝛼𝛼1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶

Φ{Φ cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − (1 + 𝜇𝜇) sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − (1 + 𝜇𝜇) sin(𝜑𝜑𝑥𝑥)} 

(3.40) 
𝑉𝑉𝛼𝛼1(𝑥𝑥) = −

𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝐶𝐶

Φ2(1 − cosΦ) 
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 This same process is carried out for the three other cases: (a) a unit lateral 

displacement is applied at node 1 [i.e., 𝑣𝑣1 = 𝑣𝑣(0) = 1] while other DOFs remain fixed, (b) 

a unit lateral displacement is applied at node 2 [i.e., 𝑣𝑣2 = 𝑣𝑣(𝐿𝐿) = 1] while other DOFs 

remain fixed, and (c) a unit rotation is applied at node 2 [i.e., 𝛼𝛼2 = 𝛼𝛼(𝐿𝐿) = 1] while other 

DOFs remain fixed. Mathematically, these boundary conditions can be expressed as 

follows: 

𝑣𝑣(0) = 1;  𝑣𝑣(𝐿𝐿) = 0;  𝛼𝛼(0) = 0;  𝛼𝛼(𝐿𝐿) = 0 (3.41) 

𝑣𝑣(0) = 0;  𝑣𝑣(𝐿𝐿) = 1;  𝛼𝛼(0) = 0;  𝛼𝛼(𝐿𝐿) = 0 (3.42) 

𝑣𝑣(0) = 0;  𝑣𝑣(𝐿𝐿) = 0;𝛼𝛼(0) = 0;  𝛼𝛼(𝐿𝐿) = 1 (3.43) 

Solving the above three sets of boundary conditions yields expressions for 𝑀𝑀𝑣𝑣1(𝑥𝑥) and 

𝑉𝑉𝑣𝑣1(𝑥𝑥), 𝑀𝑀𝑣𝑣2(𝑥𝑥) and 𝑉𝑉𝑣𝑣2(𝑥𝑥), as well as 𝑀𝑀𝛼𝛼2(𝑥𝑥) and 𝑉𝑉𝛼𝛼2(𝑥𝑥), respectively. The results are 

shown below. 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝐶𝐶

Φ2(1 + 𝜇𝜇){cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cos(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝑣𝑣1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ𝐶𝐶

Φ3 sinΦ 

𝑀𝑀𝑣𝑣2(𝑥𝑥) = −𝑀𝑀𝑣𝑣1(𝑥𝑥) 

𝑉𝑉𝑣𝑣2(𝑥𝑥) = −𝑉𝑉𝑣𝑣1(𝑥𝑥) 

𝑀𝑀𝛼𝛼2(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶

Φ{Φ cos(𝜑𝜑𝑥𝑥) − (1 + 𝜇𝜇) sin(𝜑𝜑𝑥𝑥) − (1 + 𝜇𝜇) sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]} 

𝑉𝑉𝛼𝛼2(𝑥𝑥) = 𝑉𝑉𝛼𝛼1(𝑥𝑥) 

(3.44) 

Eqs. (3.40) and (3.44) can also be expressed in the stiffness matrix format as in Eq. (3.25) 

to establish the flexural stiffness coefficients as follows: 
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𝐾𝐾𝐶𝐶,11 =
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ𝐶𝐶

Φ3 sinΦ 

𝐾𝐾𝐶𝐶,12 =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝐶𝐶

Φ2(1 − cosΦ) 

𝐾𝐾𝐶𝐶,21 =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝐶𝐶

Φ2(1 + 𝜇𝜇)(1− cosΦ) 

𝐾𝐾𝐶𝐶,22 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶

Φ[(1 + 𝜇𝜇) sinΦ−Φ cosΦ] 

𝐾𝐾𝐶𝐶,24 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶

Φ[Φ− (1 + 𝜇𝜇)sinΦ] 

−𝐾𝐾𝐶𝐶,13 = −𝐾𝐾𝐶𝐶,31 = 𝐾𝐾𝐶𝐶,33 = 𝐾𝐾𝐶𝐶,11  

−𝐾𝐾𝐶𝐶,32 = −𝐾𝐾𝐶𝐶,34 =  𝐾𝐾𝐶𝐶,14 = 𝐾𝐾𝐶𝐶,12 

 −𝐾𝐾𝐶𝐶,23 = −𝐾𝐾𝐶𝐶,43 = 𝐾𝐾𝐶𝐶,41 = 𝐾𝐾𝐶𝐶,21 

𝐾𝐾𝐶𝐶,44 = 𝐾𝐾𝐶𝐶,22;  𝐾𝐾𝐶𝐶,42 = 𝐾𝐾𝐶𝐶,24 

(3.45) 

Member with Axial Tension 

Eqs. (3.26) and (3.27) express the equilibriums of an infinitesimal member length 

in its deformed configuration under axial compression. Under axial tension with the 

magnitude 𝑃𝑃, Eq. (3.27) becomes 

𝑑𝑑𝑀𝑀
𝑑𝑑𝑥𝑥

+ 𝑉𝑉(𝑥𝑥) − 𝑃𝑃
𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= 0 (3.46) 

The same Timoshenko compatibility and constitutive laws as discussed before are applied 

to Eqs. (3.26) and (3.46), which give: 

𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

=
−1

𝜌𝜌 − 𝜑𝜑2 �
𝑑𝑑2𝛼𝛼
𝑑𝑑𝑥𝑥2

− 𝜌𝜌𝛼𝛼(𝑥𝑥)� 
(3.47) 

Differentiating Eq. (3.46), substituting into Eq. (3.47), and setting 𝑤𝑤(𝑥𝑥) = 0 gives a third-

order ordinary differential equation below. 
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𝑑𝑑3𝛼𝛼
𝑑𝑑𝑥𝑥3

− 𝜑𝜑2 𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= 0 (3.48) 

The solution of this equation takes the form of 𝛼𝛼(𝑥𝑥) = 𝐶𝐶𝑒𝑒𝜆𝜆𝑥𝑥. Substituting this into Eq. 

(3.48) results in the characteristic equation for the Timoshenko member under tension: 

(𝜆𝜆3 − 𝜑𝜑2𝜆𝜆)𝐶𝐶𝑒𝑒𝜆𝜆𝑥𝑥 = 0 (3.49) 

The solution is 

𝜆𝜆 = 0,−𝜑𝜑,𝜑𝜑 (3.50) 

Thus, the general solutions for the slope-deflection equations can be expressed as follows: 

𝛼𝛼(𝑥𝑥) = 𝐶𝐶1𝑒𝑒𝑖𝑖𝑥𝑥 + 𝐶𝐶2𝑒𝑒−𝑖𝑖𝑥𝑥 + 𝐶𝐶3 (3.51) 

𝑣𝑣(𝑥𝑥) =
−1
𝜑𝜑
�𝐶𝐶1𝑒𝑒𝑖𝑖𝑥𝑥 − 𝐶𝐶2𝑒𝑒−𝑖𝑖𝑥𝑥 −

𝜑𝜑𝜌𝜌
𝜑𝜑2 − 𝜌𝜌

𝐶𝐶3𝑥𝑥� + 𝐶𝐶4 (3.52) 

 The same process as described before is used to derive the flexural stiffness matrix. 

Moment and shear equations along the member length can be expressed as follows: 

(a) when 𝑣𝑣1 = 1, 𝑣𝑣2 = 0, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 0, 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝑇𝑇

Φ2(1 − 𝜇𝜇){cosh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cosh(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ𝑇𝑇

Φ3 sinhΦ 

(b) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝛼𝛼1 = 1, and 𝛼𝛼2 = 0, 

𝑀𝑀𝛼𝛼1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝑇𝑇

Φ{Φ cosh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − (1 − 𝜇𝜇) sinh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] 

−(1 − 𝜇𝜇) sinh(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝛼𝛼1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝑇𝑇

Φ2(1 − coshΦ) 

(c) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 1, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 0, 

(3.53) 
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𝑀𝑀𝑣𝑣2(𝑥𝑥) = −𝑀𝑀𝑣𝑣1(𝑥𝑥) 

𝑉𝑉𝑣𝑣2(𝑥𝑥) = −𝑉𝑉𝑣𝑣1(𝑥𝑥) 

(d) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝛼𝛼1 = 0, and 𝛼𝛼2 = 1, 

𝑀𝑀𝛼𝛼2(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝑇𝑇

Φ{Φ cosh(𝜑𝜑𝑥𝑥) − (1 − 𝜇𝜇) sinh(𝜑𝜑𝑥𝑥) 

−(1 − 𝜇𝜇) sinh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]} 

𝑉𝑉𝛼𝛼2(𝑥𝑥) = 𝑉𝑉𝛼𝛼1(𝑥𝑥) 

where 

Ψ𝑇𝑇 = −2(1 − 𝜇𝜇)(1 − coshΦ) −Φ sinhΦ (3.54) 

Finally, the flexural stiffness matrix, 𝑲𝑲𝑻𝑻, can be expressed in the form of Eq. (3.25), where 

𝐾𝐾𝑇𝑇,11 = −
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ𝑇𝑇

Φ3 sinhΦ 

𝐾𝐾𝑇𝑇,12 =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝑇𝑇

Φ2(1 − coshΦ) 

𝐾𝐾𝑇𝑇,21 =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝑇𝑇

Φ2(1 − 𝜇𝜇)(1 − coshΦ) 

𝐾𝐾𝑇𝑇,22 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝑇𝑇

Φ[(1− 𝜇𝜇) sinhΦ−Φ coshΦ] 

𝐾𝐾𝑇𝑇,24 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝑇𝑇

Φ[Φ− (1 − 𝜇𝜇) sinhΦ] 

−𝐾𝐾𝑇𝑇,13 = −𝐾𝐾𝑇𝑇,31 = 𝐾𝐾𝑇𝑇,33 = 𝐾𝐾𝑇𝑇,11  

−𝐾𝐾𝑇𝑇,32 = −𝐾𝐾𝑇𝑇,34 =  𝐾𝐾𝑇𝑇,14 = 𝐾𝐾𝑇𝑇,12 

 −𝐾𝐾𝑇𝑇,23 = −𝐾𝐾𝑇𝑇,43 = 𝐾𝐾𝑇𝑇,41 = 𝐾𝐾𝑇𝑇,21 

𝐾𝐾𝑇𝑇,44 = 𝐾𝐾𝑇𝑇,22;  𝐾𝐾𝑇𝑇,42 = 𝐾𝐾𝑇𝑇,24 

(3.55) 
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3.2.2.3 Timoshenko Beam-Column with Flexible Boundary Conditions 

Chapter 2 describes boundary conditions of the beam-column test specimens. Due 

to out-of-plane flexibility of the end plates and elongation of the pretensioned rods, 

unintended rotations at column ends were unavoidable during testing. To remove the rigid 

body motion caused by these rotations from the measured lateral drift, a data reduction 

procedure is presented in Section 3.3. The process involves analyzing the actual testing 

condition to include the effect of connection flexibility. To provide a theoretical basis for 

the proposed data reduction procedure, behavior of a beam-column with end rotational 

springs is presented herein. Figure 3.5 shows the system of a member with end rotational 

springs, comprising of four nodes and eight degrees of freedom. The rotational spring 

stiffness constant is assumed equal at both ends in the form of 𝛽𝛽(𝐸𝐸𝐼𝐼/𝐿𝐿). Two approaches 

were used in establishing stiffness relationships of the system: (1) the governing 

differential equations discussed in Section 3.2.2.2 were re-solved using different sets of 

boundary conditions, and (2) the method of stiffness matrix condensation was implemented 

on the stiffness matrices 𝑲𝑲𝑪𝑪 and 𝑲𝑲𝑻𝑻 already derived in Section 3.2.2.2. Both approaches 

gave consistent results. 
 

Method of Differential Equations 

Regarding the first approach, the unknown coefficients in Eqs. (3.34b) and (3.35) 

can be re-solved based on new sets of boundary conditions that take into consideration the 

end rotational springs.  

Figure 3.6 demonstrates the relationship between the spring forces and the member 

internal moments at ends corresponding to the application of a unit end rotation at node 1 

[see Eq. (3.56)]. Ultimately, four new sets of boundary conditions corresponding to the 
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applications of a unit rotation and a unit lateral displacement at each end can be expressed 

as follow: 

𝑣𝑣(0) = 0;  𝑣𝑣(𝐿𝐿) = 0; 

𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

[1 − 𝛼𝛼(0)] = −𝐸𝐸𝐼𝐼
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥
�
𝑥𝑥=0

;  
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

[0 − 𝛼𝛼(𝐿𝐿)] = 𝐸𝐸𝐼𝐼
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥
�
𝑥𝑥=𝐿𝐿

 
(3.56) 

𝑣𝑣(0) = 0;  𝑣𝑣(𝐿𝐿) = 0;  

𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

[0 − 𝛼𝛼(0)] = −𝐸𝐸𝐼𝐼
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥
�
𝑥𝑥=0

;  
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

[1 − 𝛼𝛼(𝐿𝐿)] = 𝐸𝐸𝐼𝐼
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥
�
𝑥𝑥=𝐿𝐿

 
(3.57) 

𝑣𝑣(0) = 1;  𝑣𝑣(𝐿𝐿) = 0;  

𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

[0 − 𝛼𝛼(0)] = −𝐸𝐸𝐼𝐼
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥
�
𝑥𝑥=0

;  
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

[0 − 𝛼𝛼(𝐿𝐿)] = 𝐸𝐸𝐼𝐼
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥
�
𝑥𝑥=𝐿𝐿

 
(3.58) 

𝑣𝑣(0) = 0;  𝑣𝑣(𝐿𝐿) = 1; 

𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

[0 − 𝛼𝛼(0)] = −𝐸𝐸𝐼𝐼
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥
�
𝑥𝑥=0

;  
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

[0 − 𝛼𝛼(𝐿𝐿)] = 𝐸𝐸𝐼𝐼
𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥
�
𝑥𝑥=𝐿𝐿

 
(3.59) 

Solving the above system of equations and repeating the same process as described in 

Section 3.2.2.2 give the flexural stiffness matrix of a Timoshenko beam-column with 

flexible boundary conditions, 𝑲𝑲′. Results are the same as those derived from the method 

of stiffness matrix condensation. 
 

Method of Stiffness Matrix Condensation 

 𝑲𝑲′ can also be derived using the matrix condensation method (McGuire et al. 2014). 

The flexural stiffness coefficients in 𝑲𝑲𝑪𝑪 or 𝑲𝑲𝑻𝑻 derived in Section 3.2.2.2 can be assembled 

into the stiffness relationships of the system shown in Figure 3.5 to study the effect of 

flexible boundary conditions. This is achieved by mobilizing one degree of freedom at a 

time with a unit displacement (while others remain fixed) to formulate each column of the 
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stiffness matrix in Eq. (3.60). Enforcing the equilibrium requirements 𝑉𝑉1 = 𝑉𝑉𝑖𝑖 and 𝑉𝑉2 = 𝑉𝑉𝑗𝑗 

and the compatibility requirements 𝑣𝑣1 = 𝑣𝑣𝑖𝑖 and 𝑣𝑣2 = 𝑣𝑣𝑗𝑗  gives the following: 

     

⎩
⎪
⎨

⎪
⎧
𝑀𝑀𝑖𝑖
𝑀𝑀𝑗𝑗
𝑉𝑉1
𝑀𝑀1
𝑉𝑉2
𝑀𝑀2⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐾𝐾22 +

𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

𝐾𝐾24

𝐾𝐾42 𝐾𝐾44 +
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

   𝐾𝐾21 −
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

  𝐾𝐾41  0

𝐾𝐾23 0

𝐾𝐾43 −
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

𝐾𝐾12             𝐾𝐾14

−
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

            0
    𝐾𝐾32            𝐾𝐾34

0          −
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

𝐾𝐾11 0

    0
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿

𝐾𝐾13 0

0 0
𝐾𝐾31 0

0 0

𝐾𝐾33   0

  0
𝛽𝛽𝐸𝐸𝐼𝐼
𝐿𝐿 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝛼𝛼𝑖𝑖
𝛼𝛼𝑗𝑗
𝑣𝑣1
𝜃𝜃1
𝑣𝑣2
𝜃𝜃2⎭
⎪
⎬

⎪
⎫

 (3.60) 

Eq. (3.60) is in the partitioned form of 

�𝑷𝑷𝑏𝑏𝑷𝑷𝑐𝑐
� = �𝑲𝑲𝑏𝑏𝑏𝑏 𝑲𝑲𝑏𝑏𝑐𝑐

𝑲𝑲𝑐𝑐𝑏𝑏 𝑲𝑲𝑐𝑐𝑐𝑐
� �𝚫𝚫𝑏𝑏𝚫𝚫𝑐𝑐

� 

where 𝚫𝚫𝑏𝑏 represents the internal rotational degrees of freedom to be eliminated, and 𝚫𝚫𝑐𝑐 is 

the preselected degrees of freedom that will remain after matrix condensation. Ultimately, 

𝑲𝑲′ = 𝑲𝑲𝑐𝑐𝑐𝑐 − 𝑲𝑲𝑐𝑐𝑏𝑏𝑲𝑲𝑏𝑏𝑏𝑏
−1𝑲𝑲𝑏𝑏𝑐𝑐 (3.61) 

The resulting flexural stiffness matrix is expressed in the following format 
     

�

𝑉𝑉1
𝑀𝑀1
𝑉𝑉2
𝑀𝑀2

� =

⎣
⎢
⎢
⎡
𝐾𝐾11′ 𝐾𝐾12′
𝐾𝐾21′ 𝐾𝐾22′

𝐾𝐾13′ 𝐾𝐾14′
𝐾𝐾23′ 𝐾𝐾24′

𝐾𝐾31′ 𝐾𝐾32′

𝐾𝐾41′ 𝐾𝐾42′
𝐾𝐾33′ 𝐾𝐾34′
𝐾𝐾43′ 𝐾𝐾44′ ⎦

⎥
⎥
⎤
�

𝑣𝑣1
𝜃𝜃1
𝑣𝑣2
𝜃𝜃2

� 
(3.62) 

Member with Axial Compression 

Eq. (3.63) expresses internal moment and shear along the member length: 

  

𝑲𝑲𝑪𝑪
′  or 𝑲𝑲𝑻𝑻

′  
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(a) when 𝑣𝑣1 = 1, 𝑣𝑣2 = 0, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 0, 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2
�
𝛽𝛽Φ2(1 + 𝜇𝜇){cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cos(𝜑𝜑𝑥𝑥)}

[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1 − cosΦ) − 𝛽𝛽Φ sinΦ
� 

𝑉𝑉𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[Φ(1− cosΦ) − 𝛽𝛽 sinΦ]
[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1 − cosΦ) − 𝛽𝛽Φ sinΦ

� 

(b) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝜃𝜃1 = 1, and 𝜃𝜃2 = 0, 

𝑀𝑀𝜃𝜃1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶′

Φ{𝛽𝛽2Φ cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]−[𝛽𝛽2(1 + 𝜇𝜇) + 𝛽𝛽Φ2]sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] 

−𝛽𝛽2(1 + 𝜇𝜇) sin(𝜑𝜑𝑥𝑥)} 

𝑉𝑉𝜃𝜃1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − cosΦ)
[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1− cosΦ) − 𝛽𝛽Φ sinΦ

� 

(c) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 1, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 0, 

𝑀𝑀𝑣𝑣2(𝑥𝑥) = −𝑀𝑀𝑣𝑣1(𝑥𝑥) 

𝑉𝑉𝑣𝑣2(𝑥𝑥) = −𝑉𝑉𝑣𝑣1(𝑥𝑥) 

(d) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 1, 

𝑀𝑀𝜃𝜃2(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶′

Φ{𝛽𝛽2Φ cos(𝜑𝜑𝑥𝑥)−[𝛽𝛽2(1 + 𝜇𝜇) + 𝛽𝛽Φ2]sin(𝜑𝜑𝑥𝑥) 

−𝛽𝛽2(1 + 𝜇𝜇) sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]} 

𝑉𝑉𝜃𝜃2(𝑥𝑥) = 𝑉𝑉𝛼𝛼1(𝑥𝑥) 

(3.63) 

where 

Ψ𝐶𝐶′ = 2[𝛽𝛽2(1 + 𝜇𝜇) + 𝛽𝛽Φ2](1− cosΦ) −Φ[𝛽𝛽2 − 2𝛽𝛽(1 + 𝜇𝜇) −Φ2] sinΦ− 2𝛽𝛽Φ2 (3.64) 

In the stiffness matrix format, 
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𝐾𝐾𝐶𝐶,11
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[𝛽𝛽 sinΦ−Φ(1 − cosΦ)]
[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1 − cosΦ) − 𝛽𝛽Φ sinΦ

� 

𝐾𝐾𝐶𝐶,12
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − cosΦ)
[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1 − cosΦ) − 𝛽𝛽Φ sinΦ

� 

𝐾𝐾𝐶𝐶,21
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿2

 �
𝛽𝛽Φ2(1 + 𝜇𝜇)(1− cosΦ)

[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1 − cosΦ) − 𝛽𝛽Φ sinΦ
� 

𝐾𝐾𝐶𝐶,22
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶′

Φ{[𝛽𝛽2(1 + 𝜇𝜇) + 𝛽𝛽Φ2]sinΦ− 𝛽𝛽2Φ cosΦ} 

𝐾𝐾𝐶𝐶,24
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶′

𝛽𝛽2Φ[Φ− (1 + 𝜇𝜇)sinΦ] 

−𝐾𝐾𝐶𝐶,13
′ = −𝐾𝐾𝐶𝐶,31

′ = 𝐾𝐾𝐶𝐶,33
′ = 𝐾𝐾𝐶𝐶,11

′   

−𝐾𝐾𝐶𝐶,32
′ = −𝐾𝐾𝐶𝐶,34

′ =  𝐾𝐾𝐶𝐶,14
′ = 𝐾𝐾𝐶𝐶,12

′  

 −𝐾𝐾𝐶𝐶,23
′ = −𝐾𝐾𝐶𝐶,43

′ = 𝐾𝐾𝐶𝐶,41
′ = 𝐾𝐾𝐶𝐶,21

′  

𝐾𝐾𝐶𝐶,44
′ = 𝐾𝐾𝐶𝐶,22

′ ;  𝐾𝐾𝐶𝐶,42
′ = 𝐾𝐾𝐶𝐶,24

′  

(3.65) 

Member with Axial Tension 

Eq. (3.66) expresses internal moment and shear along the member length: 

(a) when 𝑣𝑣1 = 1, 𝑣𝑣2 = 0, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 0, 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − 𝜇𝜇){cosh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cosh(𝜑𝜑𝑥𝑥)}
[−2𝛽𝛽(1 − 𝜇𝜇) + Φ2](1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

𝑉𝑉𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[−Φ(1− coshΦ) + 𝛽𝛽 sinhΦ]
[−2𝛽𝛽(1 − 𝜇𝜇) + Φ2](1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

(b) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝜃𝜃1 = 1, and 𝜃𝜃2 = 0, 

𝑀𝑀𝜃𝜃1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝑇𝑇

′ Φ{𝛽𝛽2Φ cosh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] 

−[𝛽𝛽2(1− 𝜇𝜇) − 𝛽𝛽Φ2]sinh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − 𝛽𝛽2(1 − 𝜇𝜇) sinh(𝜑𝜑𝑥𝑥)} 

(3.66) 
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𝑉𝑉𝜃𝜃1(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1− coshΦ)
[−2𝛽𝛽(1 − 𝜇𝜇) + Φ2](1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

(c) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 1, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 0, 

𝑀𝑀𝑣𝑣2(𝑥𝑥) = −𝑀𝑀𝑣𝑣1(𝑥𝑥) 

𝑉𝑉𝑣𝑣2(𝑥𝑥) = −𝑉𝑉𝑣𝑣1(𝑥𝑥) 

(d) when 𝑣𝑣1 = 0, 𝑣𝑣2 = 0, 𝜃𝜃1 = 0, and 𝜃𝜃2 = 1, 

𝑀𝑀𝜃𝜃2(𝑥𝑥) = −
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝑇𝑇

′ Φ{𝛽𝛽2Φ cosh(𝜑𝜑𝑥𝑥)−[𝛽𝛽2(1 − 𝜇𝜇) − 𝛽𝛽Φ2]sinh(𝜑𝜑𝑥𝑥) 

−𝛽𝛽2(1− 𝜇𝜇) sinh[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]} 

𝑉𝑉𝜃𝜃2(𝑥𝑥) = 𝑉𝑉𝛼𝛼1(𝑥𝑥) 

where 

Ψ𝑇𝑇
′ = −2[𝛽𝛽2(1 − 𝜇𝜇) − 𝛽𝛽Φ2](1 − coshΦ) 

−Φ[𝛽𝛽2 − 2𝛽𝛽(1 − 𝜇𝜇) + Φ2] sinhΦ− 2𝛽𝛽Φ2 
(3.67) 

In the stiffness matrix format, 

𝐾𝐾𝑇𝑇,11
′ = −

𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[𝛽𝛽 sinhΦ−Φ(1 − coshΦ)]
[−2𝛽𝛽(1 − 𝜇𝜇) + Φ2](1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

𝐾𝐾𝑇𝑇,12
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − coshΦ)
[−2𝛽𝛽(1 − 𝜇𝜇) + Φ2](1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

𝐾𝐾𝑇𝑇,21
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − 𝜇𝜇)(1− coshΦ)
[−2𝛽𝛽(1 − 𝜇𝜇) + Φ2](1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� 

𝐾𝐾𝑇𝑇,22
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝑇𝑇

′ Φ{[𝛽𝛽2(1 − 𝜇𝜇) − 𝛽𝛽Φ2]sinhΦ− 𝛽𝛽2Φ coshΦ} 

𝐾𝐾𝑇𝑇,24
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝑇𝑇

′ 𝛽𝛽
2Φ[Φ− (1 − 𝜇𝜇)sinhΦ] 

−𝐾𝐾𝑇𝑇,13
′ = −𝐾𝐾𝑇𝑇,31

′ = 𝐾𝐾𝑇𝑇,33
′ = 𝐾𝐾𝑇𝑇,11

′  

(3.68) 
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−𝐾𝐾𝑇𝑇,32
′ = −𝐾𝐾𝑇𝑇,34

′ =  𝐾𝐾𝑇𝑇,14
′ = 𝐾𝐾𝑇𝑇,12

′  

 −𝐾𝐾𝑇𝑇,23
′ = −𝐾𝐾𝑇𝑇,43

′ = 𝐾𝐾𝑇𝑇,41
′ = 𝐾𝐾𝑇𝑇,21

′  

𝐾𝐾𝑇𝑇,44
′ = 𝐾𝐾𝑇𝑇,22

′ ;  𝐾𝐾𝑇𝑇,42
′ = 𝐾𝐾𝑇𝑇,24

′  

3.2.3 Comparisons 

Flexural stiffness expressions derived with respect to the Timoshenko elastic beam 

theory are similar in structure to those derived based on the Euler elastic beam theory. The 

only difference is the inclusion of variable 𝜇𝜇 [see Eq. (3.38)] in the Timoshenko 

expressions for beam-columns. As 𝐺𝐺𝐴𝐴𝑆𝑆 approaches infinity (i.e., the member has infinite 

shear rigidity), 𝜇𝜇 becomes zero, and the Timoshenko expressions converge to the Euler 

expressions. 

The [1,1] term in each flexural stiffness matrix represents the theoretical lateral 

stiffness of the member under consideration. Given geometric properties of the test 

specimens and their applied axial load magnitudes, the theoretical Euler and Timoshenko 

lateral stiffnesses, assuming ideal boundary conditions, can be calculated according to 

Sections 3.2.1.2 and 3.2.2.2, respectively; these are 𝐾𝐾�𝐶𝐶,11 and 𝐾𝐾𝐶𝐶,11, respectively. Ignoring 

the effect of axial loads, the corresponding Euler and Timoshenko lateral stiffnesses can 

also be determined according to Sections 3.2.1.1 and 3.2.2.1, respectively; these are 𝐾𝐾�11 

and 𝐾𝐾11, respectively. Results are shown in Table 3.1. Since all specimens in Phase 2 test 

program were subjected to strong-axis bending, the effect of axial compression on stiffness 

reduction is insignificant; 𝐾𝐾�11 and 𝐾𝐾�𝐶𝐶,11 are similar in magnitude, which is also true for 

𝐾𝐾11 and 𝐾𝐾𝐶𝐶,11. However, the effect of shear deformation on lateral stiffness is significant 

as demonstrated by the percent difference between 𝐾𝐾�𝐶𝐶,11 and 𝐾𝐾𝐶𝐶,11; these values carry the 
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Euler and Timoshenko beam assumptions, respectively. Indeed, the Euler beam theory 

ignores shear deformation and, as a result, overestimates the member lateral stiffness.  

In addition, the two theoretical quantities (𝐾𝐾�𝐶𝐶,11 and 𝐾𝐾𝐶𝐶,11) are also compared with 

the measured lateral stiffnesses (𝐾𝐾𝑚𝑚𝑚𝑚) of each test specimen. Indeed, Timoshenko beam 

theory, which considers shear deformation, can predict stiffness values closer to the 

measured values; the difference between the theoretical lateral stiffness 𝐾𝐾𝐶𝐶,11, assuming 

ideal boundary conditions, and the measured lateral stiffness 𝐾𝐾𝑚𝑚𝑚𝑚 results from flexibility 

of the member end connections, which is unavoidable in testing. Due to this reason, 

behavior of Timoshenko beam-columns with flexible end restraints is studied in Section 

3.2.2.3. By idealizing the member end connection flexibility as a rotational spring, the 

derived lateral stiffness relationship from Section 3.2.2.3 can be used to calibrated with the 

test data (i.e., the lateral force vs. measured drift response) to determine the equivalent end 

rotational spring stiffness 𝛽𝛽(𝐸𝐸𝐼𝐼/𝐿𝐿), which represents and quantifies connection flexibility. 

The calibrated 𝛽𝛽 values are also reported in Table 3.1. Ultimately, after considering both 

the effects of axial load and end connection flexibility, theoretical Timoshenko flexural 

stiffnesses corelate well with test data in elastic range. Finite element analysis results are 

also consistent with this conclusion (results not shown). Consequently, Timoshenko beam-

column equations are used in the data reduction process discussed in Section 3.3. 

3.3 Drift Correction Procedure 

Ideal rigid boundary conditions were difficult to achieve in this testing program as 

some relative rotations between the specimen ends and the reaction fixtures were observed 

despite the use of fully-restrained connections. Furthermore, moment-rotation 

characteristics of these fully-restrained connections varied for each specimen. To make 
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meaningful comparisons between the specimen responses, it is necessary to correct the test 

data to eliminate the effect of end connection flexibility. The theoretical study of elastic 

beam-column behavior corresponding to rigid- and flexible-end boundary conditions, 

utilizing the Timoshenko theory, is discussed in Sections 3.2.2.2 and 3.2.2.3, respectively; 

theoretical expressions that considered both shear deformation and the second-order effects 

were derived. All test results were corrected according to the theoretical study to represent 

ideal (or rigid) boundary conditions; the procedure is summarized in this section. 

Figure 2.2(b) shows bolted end connections of typical specimens. Despite that 1½-

in. diameter high-strength bolts were used to fasten the end plates to fixed fixtures, 

unintended end rotations were unavoidable due to the out-of-plane flexibility of the end 

plates and elongation of the bolts. These end rotations due to connection flexibility caused 

rigid-body rotation of the specimens. Accordingly, the measured (or imposed) lateral drift 

at the moving end of the specimens, ∆𝑚𝑚, can be expressed as: 

∆𝑚𝑚= ∆𝑚𝑚𝑚𝑚 + ∆𝑚𝑚𝑐𝑐 + ∆𝑚𝑚𝑚𝑚 (3.69) 

where ∆𝑚𝑚𝑚𝑚 and ∆𝑚𝑚𝑚𝑚 represent the elastic and plastic components of the measured lateral 

drift due to column straining, respectively, and ∆𝑚𝑚𝑐𝑐 is the drift resulting from rigid-body 

rotation of the column due to connection flexibility. Removing Δ𝑚𝑚𝑐𝑐 from Δ𝑚𝑚 gives the 

corrected story drift corresponding to ideal boundary conditions. Since it is difficult to 

measure Δ𝑚𝑚𝑐𝑐 experimentally, this component was removed using the following procedure. 

Assuming that ∆𝑚𝑚𝑐𝑐 remains elastic, ∆𝑚𝑚𝑚𝑚+∆𝑚𝑚𝑐𝑐 collectively represents the elastic 

component of ∆𝑚𝑚. Accordingly, the plastic component of ∆𝑚𝑚 can be extracted as follows: 

∆𝑚𝑚𝑚𝑚= ∆𝑚𝑚 −
𝑉𝑉
𝐾𝐾𝑚𝑚𝑚𝑚

 (3.70) 
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where 𝑉𝑉 is the measured column shear (i.e., lateral force), and 𝐾𝐾𝑚𝑚𝑚𝑚 is the measured elastic 

stiffness (i.e., the initial slope of the ∆𝑚𝑚 versus 𝑉𝑉 response). Corrected lateral drift due to 

the column deformation only is then the sum of the theoretical elastic drift, Δ𝑚𝑚, and the 

experimentally determined ∆𝑚𝑚𝑚𝑚:  

∆= Δ𝑚𝑚 + ∆𝑚𝑚𝑚𝑚 (3.71) 

where  

Δ𝑚𝑚 =
𝑉𝑉
𝐾𝐾𝑚𝑚

 (3.72) 

𝐾𝐾𝑚𝑚 is the best estimate of the elastic lateral stiffness and is represented by the theoretical 

lateral stiffness of a Timoshenko beam-column with ideal boundary conditions, 

considering both the second-order effect and the shear deformation effect. Calculation of 

𝐾𝐾𝑚𝑚 is discussed in the following sections for fixed-fixed boundary condition case, fixed-

rotating boundary condition case, and varying-axial load case. Eq. (3.71) can be re-written 

as follows: 

∆ = Δ𝑚𝑚 + ∆𝑚𝑚𝑚𝑚=
𝑉𝑉
𝐾𝐾𝑚𝑚

+ �∆𝑚𝑚 −
𝑉𝑉
𝐾𝐾𝑚𝑚𝑚𝑚

� (3.73) 

Then, the corrected story drift angle (SDA) is defined as the corrected drift, ∆, divided by 

the column clear length, L (i.e., excluding end plate thicknesses).  

𝑆𝑆𝑆𝑆𝐴𝐴 =
∆
𝐿𝐿

 (3.74) 
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3.3.1 Specimens with Fixed-fixed Boundary Conditions and Constant Axial 

Compression 

Lateral Drift and End Moment Calculation 

The lateral movement measured at the center of the SRMD platen, ∆𝑇𝑇, reflects the 

exact lateral drift at the moving (or east) end of the column; see Figure 3.7(a). Thus,  

∆𝑚𝑚 = ∆𝑇𝑇 (3.75) 

This drift includes the effect of rigid-body rotation due to connection flexibility. In testing, 

the connection rotations were practically the same in magnitude and direction at both 

column ends due to symmetry of the test setup; this allowed the inflection point to be 

assumed to still remain at the midspan [see Figure 3.8(a)]. With this assumption, east and 

west end moments including P-∆ effect are computed as follows: 

𝑀𝑀𝑊𝑊 = 𝑀𝑀𝐸𝐸 =
1
2

[𝑉𝑉(𝐿𝐿 − Δ𝑠𝑠) + 𝑃𝑃∆𝑚𝑚] (3.76) 

where Δ𝑠𝑠 = axial shortening, and 𝑃𝑃 = applied axial load (see Figure 3.9 for sign 

conventions). The calculated end moment can be normalized by either the plastic moment, 

𝑀𝑀𝑚𝑚, or the reduced plastic moment, 𝑀𝑀𝑚𝑚𝑐𝑐, of the section (ASCE-WRC 1971): 

For 𝑃𝑃/𝑃𝑃𝑦𝑦 ≥ 0.15, 

𝑀𝑀𝑚𝑚𝑐𝑐 = 1.18�1 −
𝑃𝑃
𝑃𝑃𝑦𝑦
�𝑀𝑀𝑚𝑚  (3.77a) 

For 𝑃𝑃/𝑃𝑃𝑦𝑦 < 0.15, 

𝑀𝑀𝑚𝑚𝑐𝑐 = 𝑀𝑀𝑚𝑚  (3.77b) 

The measured yield stresses from tensile coupon testing (see Table 2.2) are used to compute 

𝑃𝑃𝑦𝑦 and 𝑀𝑀𝑚𝑚. 
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Corrected Lateral Drift 

Eq. (3.78) expresses the theoretical elastic shear-drift relationship of a beam-

column with ideal fixed-fixed boundary conditions with the inflection point at the midspan. 

𝑉𝑉 = 𝐾𝐾𝐶𝐶,11Δ (3.78) 

Thus, 𝐾𝐾𝑚𝑚 based on the Timoshenko theory considering both shearing and second-order 

effects (compression case) is 

𝐾𝐾𝑚𝑚 = 𝐾𝐾𝐶𝐶,11 =
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ𝐶𝐶

Φ3 sinΦ (3.79) 

which is used in Eq. (3.73) to compute the corrected drift. The dimensionless factors are 

defined as   

Φ = 𝜑𝜑𝐿𝐿 = �𝑃𝑃
𝐸𝐸𝐼𝐼
𝐿𝐿 (3.80) 

𝜇𝜇 =
𝑃𝑃
𝐺𝐺𝐴𝐴𝑠𝑠

 (3.81) 

Ψ𝐶𝐶 = 2(1 + 𝜇𝜇)(1− cosΦ) −Φ sinΦ (3.82) 

where 𝑃𝑃 = axial force magnitude (i.e., absolute value), 𝐸𝐸 = elastic modulus, 𝐼𝐼 = moment 

of inertia about the bending axis, and 𝐺𝐺 = shear modulus. 𝐴𝐴𝑠𝑠 is the effective shear area, 

accounting for the fact that shear stress and shear strain are not uniformly distributed over 

the cross section (Cowper 1966); it also varies based on bending direction. Therefore, 

calculation of 𝐴𝐴𝑠𝑠 is discussed below for strong- and weak-axis bending cases, respectively. 

For a wide-flange member bent about its strong axis, shear stress distribution 

concentrates mostly in the web. Defining   

𝐴𝐴𝑠𝑠 = 𝑘𝑘𝐴𝐴 (3.83) 
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where 𝐴𝐴 is the member’s cross-sectional area, Cowper (1966) provides an extensive 

expression for the Timoshenko shear coefficient: 

𝑘𝑘 =
10(1 + 𝜈𝜈)(1 + 3𝑚𝑚)2

(12 + 72𝑚𝑚 + 150𝑚𝑚2 + 90𝑚𝑚3) + 𝜈𝜈(11 + 66𝑚𝑚 + 135𝑚𝑚2 + 90𝑚𝑚3) + 30𝑛𝑛2(𝑚𝑚 + 𝑚𝑚2) + 5𝜈𝜈𝑛𝑛2(8𝑚𝑚 + 9𝑚𝑚2) (3.84) 

where Poisson’s ratio 𝜈𝜈 = 0.3 for steel, 𝑚𝑚 = 2𝑏𝑏𝑓𝑓𝑡𝑡𝑓𝑓
ℎ0𝑡𝑡𝑤𝑤

, ℎ0 = distance between the flange 

centroids, and 𝑛𝑛 = 𝑏𝑏𝑓𝑓
ℎ0

. Alternatively, 𝐴𝐴𝑠𝑠 can be reasonably estimated as the web area, i.e., 

�𝑑𝑑 − 2𝑡𝑡𝑓𝑓�𝑡𝑡𝑤𝑤, of the section as shown in Figure 3.10. 

For a wide-flange member bent about its weak axis, shear stress distribution 

concentrates mostly in the flanges. Neglecting the web contribution in resisting shear, the 

effective shear area becomes 

𝐴𝐴𝑠𝑠 = 𝑘𝑘𝐴𝐴𝑓𝑓 (3.85) 

where 𝐴𝐴𝑓𝑓 is the total flange area (= 2𝑏𝑏𝑓𝑓𝑡𝑡𝑓𝑓), and 𝑘𝑘 associated with the shear stress 

distribution in a rectangular cross section (i.e., the flanges) is (Cowper 1966) 

𝑘𝑘 =
10(1 + 𝜈𝜈)
12 + 11𝜈𝜈

 (3.86) 

An example correction of the column shear-drift response of Specimen 13M 

subjected to strong-axis bending is shown in Figure 3.11. Note that the calculated values 

of 𝐾𝐾𝑚𝑚𝑚𝑚 and 𝐾𝐾𝑚𝑚 are 177.18 and 231.26 kips/in., respectively; the measured lateral stiffness 

was reduced by 23% due to flexibility of the end connections.  

By idealizing the connection flexibility at both column ends as end rotational 

springs with an equivalent spring stiffness of  

𝐾𝐾𝜃𝜃 = 𝛽𝛽 �
𝐸𝐸𝐼𝐼
𝐿𝐿
�  (3.87) 
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Eq. (3.88) was calibrated with the elastic portion of shear-drift test responses to determine 

𝛽𝛽 and 𝐾𝐾𝜃𝜃 

𝑉𝑉 = 𝐾𝐾𝐶𝐶,11
′ Δ𝑚𝑚 (3.88) 

where 

𝐾𝐾𝐶𝐶,11
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[𝛽𝛽 sinΦ−Φ(1 − cosΦ)]
[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1 − cosΦ) − 𝛽𝛽Φ sinΦ

� (3.89)  

The results are listed in Table 3.1. Note that a connection can be considered “fully 

restrained” for 𝛽𝛽 greater than 20 (Commentary of AISC 2016c).   

3.3.2 Specimens with Fixed-rotating Boundary Conditions and Constant Axial 

Compression 

Lateral Drift and End Moment Calculation 

For fixed-rotating boundary condition tests conducted in Phase 2 program, cyclic 

end rotations in-phase with and proportional to cyclic lateral drifts were prescribed to the 

east or moving end; thus, the east end rotation can be expressed as follows: 

𝜃𝜃𝑚𝑚 = 𝜉𝜉𝑚𝑚 �
Δ𝑚𝑚
𝐿𝐿
� (3.90) 

where 𝜉𝜉𝑚𝑚 is the rotation-to-drift ratio and is set equal to 1 for Specimens 13M-BC and 

16M-BC and 1.1 for Specimen 11H-BC. 

Forces, moments, displacements, and rotations applied to the specimens in all three 

primary directions of interest were recorded at the center of the SRMD platen [see Figure 

3.7(b)]. The column east end was connected to the SRMD platen a distance 𝐿𝐿𝑇𝑇 away from 

this reference point. Because of this setup, prescribing 𝜃𝜃𝑚𝑚 to the SRMD platen for it to 

rotate about its center, which simulated the east end rotation, resulted in a displacement of 

the column east end. To maintain a consistent loading protocol, this displacement was 
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accounted for in the lateral-drift loading protocol prescribed to the platen. Accordingly, the 

lateral drift at the column moving end can be obtained from the following relationship.  

∆𝑚𝑚 = ∆𝑇𝑇 − 𝜃𝜃𝑚𝑚𝐿𝐿𝑇𝑇 (3.91) 

Given Δ𝑚𝑚 and 𝜃𝜃𝑚𝑚, lateral movements of the platen, Δ𝑇𝑇, can be determined from Eq. (3.91).   

 Figure 3.8 compares deformed configurations of a column with ideal fixed-fixed 

boundary conditions and a column with ideal fixed-rotating boundary conditions. The 

inflection point of the fixed-rotating column locates closer to the rotating end, depending 

on the magnitude of the end rotation in proportion to the applied lateral drift (i.e., 𝜉𝜉𝑚𝑚). Due 

to the unsymmetrical nature of the fixed-rotating boundary condition tests, the inflection 

point location also moves once the column exhibits inelastic behavior. Therefore, the 

approach described in Section 3.3.1 cannot be used to determine end moments. Instead, 

utilizing the recorded strong-axis moment applied by the SRMD platen, 𝑀𝑀𝑇𝑇, a moment 

equilibrium can be applied to the entire system so that the moment at the column west end 

can be calculated; Figure 3.7(b) demonstrates this free body diagram. Thus, west end 

moment becomes  

𝑀𝑀𝑊𝑊 = 𝑉𝑉(𝐿𝐿 + 𝐿𝐿𝑇𝑇 − Δ𝑠𝑠) + 𝑃𝑃Δ𝑇𝑇 − 𝑀𝑀𝑇𝑇 (3.92) 

Enforcing moment equilibrium in the column, the following equation calculates east end 

moment: 

𝑀𝑀𝐸𝐸 = 𝑉𝑉(𝐿𝐿 − Δ𝑠𝑠) + 𝑃𝑃Δ𝑚𝑚 −𝑀𝑀𝑊𝑊 (3.93a) 

or  

𝑀𝑀𝐸𝐸 = 𝑀𝑀𝑇𝑇 − 𝑃𝑃𝜃𝜃𝑚𝑚𝐿𝐿𝑇𝑇 − 𝑉𝑉𝐿𝐿𝑇𝑇 (3.93b) 
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The accuracy of the calculated moment was confirmed by comparing it with that computed 

from the strain gauge data when the column responded in the elastic range (results not 

shown). 

Corrected Lateral Drift 

Because the west and east end moments were not the same in magnitude like those 

observed in the fixed-fixed boundary condition case, connection rotation at each column 

end also differed in magnitude. Consequently, in addition to the applied end rotation at the 

moving end, connection flexibility also influenced the location of inflection point in the 

specimens. The following steps determine 𝐾𝐾𝑚𝑚 for fixed-rotating specimens, which is used 

in Eq. (3.73) to remove the effect of connection flexibility from the lateral drift responses: 

(1) determine the equivalent end rotational spring stiffness and locate the inflection point 

in the specimens, (2) based on the determined inflection point location, calculate an 

equivalent moving-end rotation assuming both column-end connections are rigid, and (3) 

calculate 𝐾𝐾𝑚𝑚 based on the equivalent moving-end rotation determined in (2). The theoretical 

expressions provided by Chansuk et al. (2018) were utilized in this calculation.   
 

Step 1: Determine the equivalent end rotational spring stiffness and inflection point  

location 

By idealizing the connection flexibility at both ends of the specimens as end 

rotational springs with an identical equivalent stiffness of 𝛽𝛽(𝐸𝐸𝐼𝐼/𝐿𝐿), Eq. (3.94) expresses 

the theoretical elastic lateral stiffness relationship of a fixed-rotating beam-column with 

flexible end restraints: 

𝑉𝑉 = �𝐾𝐾𝐶𝐶,11
′ −

𝜉𝜉𝑚𝑚
𝐿𝐿
𝐾𝐾𝐶𝐶,12
′ � Δ𝑚𝑚 (3.94) 

where 𝐾𝐾𝐶𝐶,11
′  is per Eq. (3.89) and  
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𝐾𝐾𝐶𝐶,12
′ =

𝐸𝐸𝐼𝐼
𝐿𝐿2
�

𝛽𝛽Φ2(1 − cosΦ)
[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1 − cosΦ) − 𝛽𝛽Φ sinΦ

� (3.95)  

Eq. (3.94) is calibrated with the measured shear-drift elastic response to back-calculate 𝛽𝛽. 

Once 𝛽𝛽 is determined, internal moment along the member can be expressed using the 

superposition principle: 

𝑀𝑀′(𝑥𝑥) = �𝑀𝑀𝑣𝑣1
′ (𝑥𝑥) −

𝜉𝜉𝑚𝑚
𝐿𝐿
𝑀𝑀𝜃𝜃1
′ (𝑥𝑥)� Δ𝑚𝑚 (3.96) 

where 

𝑀𝑀𝑣𝑣1
′ (𝑥𝑥) =

𝐸𝐸𝐼𝐼
𝐿𝐿2
�
𝛽𝛽Φ2(1 + 𝜇𝜇){cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cos(𝜑𝜑𝑥𝑥)}

[2𝛽𝛽(1 + 𝜇𝜇) + Φ2](1 − cosΦ) − 𝛽𝛽Φ sinΦ
� (3.97) 

𝑀𝑀𝜃𝜃1
′ (𝑥𝑥) =

𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶′

Φ{𝛽𝛽2Φ cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)]−[𝛽𝛽2(1 + 𝜇𝜇) + 𝛽𝛽Φ2]sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] 

−𝛽𝛽2(1 + 𝜇𝜇) sin(𝜑𝜑𝑥𝑥)} 

(3.98) 

The dimensionless factor Ψ𝐶𝐶′  is defined as 

Ψ𝐶𝐶′ = 2[𝛽𝛽2(1 + 𝜇𝜇) + 𝛽𝛽Φ2](1− cosΦ) −Φ[𝛽𝛽2 − 2𝛽𝛽(1 + 𝜇𝜇) −Φ2] sinΦ− 2𝛽𝛽Φ2 (3.99) 

Physically, 𝑀𝑀𝑣𝑣1
′ (𝑥𝑥) and 𝑀𝑀𝜃𝜃1

′ (𝑥𝑥) represent the moment distribution along the member length 

due to a unit lateral displacement and a unit rotation, respectively, at the moving end; where 

𝑥𝑥 is measured from the moving end. Setting Eq. (3.96) to zero and solving for 𝑥𝑥 give the 

inflection point location, 𝑥𝑥𝐼𝐼𝐼𝐼, in the specimen.  
 

Step 2: Determine an equivalent moving-end rotation 

To eliminate the effect of rigid-body rotation caused by connection flexibility that 

contributed to the measured lateral drift, the specimen is assumed to have ideal fixed-

rotating boundary conditions, i.e., rigid end connections, and sustain an equivalent moving-

end rotation of 
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𝜃𝜃 = 𝜉𝜉 �
Δ
𝐿𝐿
� (3.100) 

Essentially, if the specimen sustained 𝜃𝜃 and Δ at the moving end with ideal boundary 

conditions, it would have the same inflection point location as if it sustained 𝜃𝜃𝑚𝑚 and Δm 

with flexible end connections, i.e., both the ideal and real configurations are equivalent. 𝜃𝜃 

is determined as follows. 

Eq. (3.101) expresses the theoretical internal moment along a beam-column with 

ideal fixed-rotating boundary conditions: 

𝑀𝑀(𝑥𝑥) = �𝑀𝑀𝑣𝑣1(𝑥𝑥) −
𝜉𝜉
𝐿𝐿
𝑀𝑀𝛼𝛼1(𝑥𝑥)� Δ (3.101) 

where 

𝑀𝑀𝑣𝑣1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝐶𝐶

Φ2(1 + 𝜇𝜇){cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − cos(𝜑𝜑𝑥𝑥)} (3.102) 

𝑀𝑀𝛼𝛼1(𝑥𝑥) =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶

Φ{Φ cos[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − (1 + 𝜇𝜇) sin[𝜑𝜑(𝐿𝐿 − 𝑥𝑥)] − (1 + 𝜇𝜇) sin(𝜑𝜑𝑥𝑥)} (3.103) 

Substituting 𝑥𝑥𝐼𝐼𝐼𝐼 determined in Step 1 into Eq. (3.101) gives 

𝑀𝑀(𝑥𝑥𝐼𝐼𝐼𝐼) = �𝑀𝑀𝑣𝑣1(𝑥𝑥𝐼𝐼𝐼𝐼) −
𝜉𝜉
𝐿𝐿
𝑀𝑀𝛼𝛼1(𝑥𝑥𝐼𝐼𝐼𝐼)� Δ (3.104) 

Accordingly, 𝜉𝜉 can be calibrated such that 𝑀𝑀(𝑥𝑥𝐼𝐼𝐼𝐼) = 0 to make the inflection point location 

of the ideal configuration identical to that of the actual configuration. 𝜃𝜃 is then calculated 

per Eq. (3.100). 
 

Step 3: Calculate 𝑲𝑲𝒆𝒆 

Eq. (3.105) expresses the theoretical elastic shear-drift relationship of the specimen 

with the equivalent ideal fixed-rotating boundary conditions. 

𝑉𝑉 = �𝐾𝐾𝐶𝐶,11 −
𝜉𝜉
𝐿𝐿
𝐾𝐾𝐶𝐶,12� Δ (3.105) 
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Thus, 𝐾𝐾𝑚𝑚 based on the Timoshenko theory considering both shearing and second-order 

effects (compression case) becomes 

𝐾𝐾𝑚𝑚 = 𝐾𝐾𝐶𝐶,11 −
𝜉𝜉
𝐿𝐿
𝐾𝐾𝐶𝐶,12 (3.106) 

where 𝐾𝐾𝐶𝐶,11 is calculated as in Eq. (3.79) and   

𝐾𝐾𝐶𝐶,12 =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝐶𝐶

Φ2(1 − cosΦ) (3.107) 

The calculated 𝐾𝐾𝑚𝑚 is then used in Eq. (3.73) to compute the corrected drift. An example 

correction of the shear-drift response of Specimen 13M-BC is shown in Figure 3.12. Note 

that the calculated values of 𝐾𝐾𝑚𝑚𝑚𝑚 and 𝐾𝐾𝑚𝑚 are 88.45 and 106.31 kips/in., respectively. Table 

3.2 summarizes key variables associated with this drift correction procedure for each fixed-

rotating specimen. 

3.3.3 Specimens with Fixed-fixed Boundary Conditions and Varying Axial Load 

Sequences 

Lateral Drift and End Moment Calculation 

This process is the same as that described in Section 3.3.1 since the specimens 

sustain fixed-fixed boundary conditions.  

Corrected Lateral Drift 

Because the applied axial load varies during testing, the member elastic flexural 

stiffness varies accordingly due to the beam-column effect. In strong-axis bending, this 

effect is insignificant because the strong-axis moment of inertia is relatively high. 

Nonetheless, to capture this phenomenon and establish a standard procedure for future 

uses, the theoretical lateral stiffness relationship of a beam-column with flexible end 

restrains as in Eq. (3.108) is calibrated with the column shear-drift test response in the 

elastic range to determine the equivalent end rotational spring stiffness 𝛽𝛽(𝐸𝐸𝐼𝐼/𝐿𝐿). 
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𝑉𝑉 = (𝐾𝐾𝐶𝐶,11
′  or 𝐾𝐾𝑇𝑇,11

′ ) Δ𝑚𝑚 (3.108) 

where 𝐾𝐾𝐶𝐶,11
′  is expressed as in Eq. (3.89) for when the axial force is in compression and  

𝐾𝐾𝑇𝑇,11
′ = −

𝐸𝐸𝐼𝐼
𝐿𝐿3
�

Φ3[𝛽𝛽 sinhΦ−Φ(1− coshΦ)]
[−2𝛽𝛽(1 − 𝜇𝜇) + Φ2](1 − coshΦ) − 𝛽𝛽Φ sinhΦ

� (3.109) 

for when the axial force is in tension. In computing Φ, 𝑃𝑃 is always positive. Using the 

determined 𝛽𝛽, 𝐾𝐾𝑚𝑚𝑚𝑚 is estimated as either 𝐾𝐾𝐶𝐶,11
′  or 𝐾𝐾𝑇𝑇,11

′  per Eq. (3.89) and (3.109), 

respectively, for each loading step in the response history: it varies based on each 

corresponding axial load magnitude and direction.  

Eq. (3.110) expresses the theoretical elastic shear-drift relationship of a beam-

column with ideal fixed-fixed boundary conditions subjected to varying axial loads. 

𝑉𝑉 = (𝐾𝐾𝐶𝐶,11 or 𝐾𝐾𝑇𝑇,11) Δ (3.110) 

Thus, 𝐾𝐾𝑚𝑚 for axial compression case is estimated as 𝐾𝐾𝐶𝐶,11 per Eq. (3.79). For axial tension 

case, 

𝐾𝐾𝑚𝑚 = 𝐾𝐾𝑇𝑇,11 = −
𝐸𝐸𝐼𝐼
𝐿𝐿3Ψ𝑇𝑇

Φ3 sinhΦ (3.111)  

where  

Ψ𝑇𝑇 = −2(1 − 𝜇𝜇)(1 − coshΦ) −Φ sinhΦ (3.112) 

Similarly, 𝐾𝐾𝑚𝑚 is calculated for each loading step in the response history based on each 

respective axial load magnitude and direction. Ultimately, the corrected drift is determined 

using Eq. (3.73) based on the calculated varying 𝐾𝐾𝑚𝑚𝑚𝑚 and 𝐾𝐾𝑚𝑚. 

Chapter 2, 3, 4, and 5 in part are currently being prepared for submission for 

publication of the material. Chansuk, P., Ozkula, G., and Uang, C.-M. (2018). “ATC-106 

Phase 2: Seismic behavior and design of deep, slender wide-flange structural steel beam-
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columns.” Report No. SSRP-18/02, University of California, San Diego, La Jolla, CA. The 

thesis author was the primary investigator and author of this material. 
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(a) Ideal or Rigid Boundary 

Conditions 

(b) Flexible or Partially 

Restrained Boundary Conditions 

Figure 3.1 Fixed-fixed Beam-columns 

 
 

(c) Ideal or Rigid Boundary 

Conditions 

(d) Flexible or Partially 

Restrained Boundary Conditions 

Figure 3.2 Fixed-rotating Beam-columns 

 

 
Figure 3.3 Two-node Member with Four Degrees of Freedom 
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Figure 3.4 Equilibriums of an Axially Loaded Beam in its Deformed Configuration 

 

 
Figure 3.5 Four-node Member with End Rotational Springs 

 

 
Figure 3.6 Rotational Spring Moment and Member Internal Moment Relationship  

𝑤𝑤(𝑥𝑥) 
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(a) Fixed-fixed Boundary Condition 

 

 

(b) Fixed-rotating Boundary Condition 

Figure 3.7 Platen Free Body Diagram 

 

  

E 
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(a) Fixed-fixed Boundary Condition (b) Fixed-rotating Boundary Condition 

Figure 3.8 Boundary Condition Effect 

 
Figure 3.9 Sign Convention 

 
Figure 3.10 Web Area vs. Shear Area per Eq. (3.22)  
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Figure 3.11 Corrected versus Uncorrected Hysteresis Response of Specimen 13M 

 

 
Figure 3.12 Corrected versus Uncorrected Hysteresis Response of Specimen 13M-BC 

 

  



80 

4. TEST RESULTS 

4.1 Introduction 

With respect to the scope of this thesis, measured responses and observed behavior 

of certain specimens from NIST Phase 2 testing are presented in this chapter. Figures are 

included to illustrate the progression of yielding, buckling, and the overall deformed 

configuration of each specimen as the magnitudes of the story drift angle (SDA) increased. 

Global responses of the specimens are presented in the form of lateral force (i.e., column 

shear), end moment, and axial shortening versus story drift plots. An out-of-plane (OOP) 

displacement at the column midspan is also reported for some specimens. For simplicity, 

story drift angle in radian is also referred to as percent drift (e.g., 0.01 rad SDA corresponds 

to 1% drift). As discussed in Section 2.5, the AISC loading protocol applied 6, 6, 6, 4, and 

2 cycles at 0.375%, 0.5%, 0.75%, 1%, and 1.5% drift and greater to the specimens, 

respectively. 

Since all specimens bended in reverse curvature in strong-axis due to the applied 

lateral drift and boundary conditions, the column flanges diagonal to each other at member 

ends experienced the same in-plane bending effect (either tension or compression). With 

respect to the test setup as shown in Figure 4.1, the northwest and southeast flanges were 

under flexural compression in the positive drift, and the same for the southwest and 

northeast flanges in negative drift. The terms “flange(s) under compression” or 

“compression flange(s)” and “flange(s) under tension” or “tension flange(s)” are used in 

this chapter for briefness to describe this in-plane flexural effect in the specimens due to 

the applied cyclic story drift. To further facilitate column behavior explanation, positive 

and negative excursions referred to when a specimen was displaced in the positive and 
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negative directions, respectively. In addition, failure mode classifications and certain 

phenomena defined in Section 2.8 are referenced here to help explain column behavior 

during testing. 

 

Figure 4.1 Test Setup and Specimen Orientation 

4.2 Group 11 Specimens: Section W24×176  

4.2.1 General 

Group 11 comprised three W24×176 columns labeled as Specimens 11M, 11H-VA, 

and 11H-BC. The shape was identical to that of Group 1 specimens in Phase 1 testing, 

which experienced the CB failure mode. Specimen 11M was subjected to constant axial 

compression with 𝐶𝐶𝑎𝑎 = 0.4 and served as a re-test of Specimen 1M in Phase 1 testing to 

confirm that the same CB mode could be reproduced. Specimen 11H-VA underwent 

varying axial compression (𝐶𝐶𝑎𝑎 = 0.3 to 0.6) to simulate an exterior column response. Both 
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Specimens 11M and 11H-VA were tested with fixed-fixed boundary conditions. Specimen 

11H-BC was subjected to constant axial compression with 𝐶𝐶𝑎𝑎 = 0.6 and the end rotation 

sequence (see Section 2.6) to simulate rotation at the top end of first-story columns in real 

application. 

4.2.2 Specimen 11M 

The governing failure mode of Specimen 11M is CB with the single-curvature 

global configuration. Yielding as well as local and global buckling progression is illustrated 

in Figure 4.2 and Figure 4.3. At 1% drift, the sloped flaking pattern initiated. At 1.5% drift, 

minor LTB movements initiated at the west end. In addition, web and flange local buckles 

with minor amplitudes were observed at both ends. Thus, the sequence of local and global 

instabilities was not obvious for this specimen; both appeared to initiate at 1.5% drift. LTB 

of the specimen aggravated at 2% and 3% drifts: during the positive excursion of each drift 

cycle, the positive-drift compression flanges buckled out of plane more, and the same 

happened for the negative-drift compression flanges during the negative excursion. As a 

result, the specimen experienced significant twisting and downward movement with higher 

out-of-plane amplitude observed toward the west end. LTB-type movement was limited at 

the east end; instead, it appeared to exhibit the ALB configuration. Indeed, yielding seemed 

more uniform and localized at the east end during 2% and 3% drifts compared to that at 

the west end. Nonetheless, LTB-induced flange local buckling at the bottom half-width 

flanges at both ends as shown with arrows in Figure 4.3 for SDA = 0.03 rad exacerbated 

corresponding to the drastic downward movement of the column. The excessive out-of-

plane displacement prompted the termination of testing. During the attempt to unload the 

specimen after the test was terminated, the northeast flange ruptured near the end plate 
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across the entire flange width as shown in Figure 4.4. The rupture appeared to initiate from 

the column web weld access hole. Figure 4.5 shows local buckling configurations at both 

column ends at the end of test.  

Figure 4.6 shows the global responses. Flexural strength degradation was obvious 

during the 3% drift cycles when LTB aggravated. Axial shortening was moderate during 

the 1.5% and 2% drift cycles due to the observed local buckling and moderate out-of-plane 

movements. As their amplitudes increased during the 3% drift cycles, axial shortening 

grew rapidly. As shown in Figure 4.6(d) and Figure 4.6(e) respectively, the column axial 

shortening history and the out-of-plane displacement history were similar in shape, 

indicating that the two quantities had a direct correlation due to geometry of the deformed 

specimen. 

 

  
(a) SDA = 0.01 rad (b) SDA = 0.015 rad 

  
(c) SDA = 0.02 rad (d) SDA = 0.03 rad 

Figure 4.2 Specimen 11M: Overall Yielding and Buckling Progression 
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Figure 4.4 Specimen 11M: Column Fracture at End of Test (Northeast Flange) 

 

  
(a) Southwest Flange (b) Northwest Flange 

  
(c) Northeast Flange (d) Southeast flange 

Figure 4.5 Specimen 11M: Local Buckling at End of Test 
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(a) Lateral Force vs. SDA 

 
(b) End Moment vs. SDA (c) End Moment vs. Plastic SDA 

  
(d) Axial Shortening vs. SDA (e) Midspan OOP Disp. vs. SDA 

Figure 4.6 Specimen 11M: Global Repsonses 
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4.2.3 Specimen 11H-VA 

The governing failure mode of Specimen 11H-VA is CB with the single-curvature 

global configuration. Again, this specimen was subjected to the varying axial load 

sequence in conjunction with the AISC loading protocol (see Section 2.5). The lowest and 

highest axial compression (𝐶𝐶𝑎𝑎 = 0.3 to 0.6) was reached in the positive and negative drift, 

respectively. Yielding and buckling progression is illustrated in Figure 4.7 to Figure 4.9.  

The sloped flaking pattern initiated at 1% drift. At 1.5% drift, minor LTB 

movements initiated at both ends. At 2% and 3% drifts, LTB of the specimen aggravated; 

during each cycle, compression flanges in the negative drift buckled downward out of plane 

more than those in positive drift since the former experienced a higher axial compression 

than the latter. Expansion of the sloped flaking pattern of the former demonstrated the 

immensity of their out-of-plane movements; in contrast, whitewash flaking of the latter 

was relatively limited corresponding to their less aggressive out-of-plane movements. The 

test was terminated after completing the first cycle at 3% drift due to excessive out-of-

plane buckling. Figure 4.10 shows the ALB configuration (with minor amplitudes) at both 

column ends at the end of test.  

Figure 4.11 shows the global responses. The end moment response indicated 

maximum flexural strengths of 1,980 and 2,580 kip-ft for the negative and positive 

excursions, respectively; the latter was 30% greater than the former because it sustained 

only half of the axial load applied to the former. Flexural strength degradation was apparent 

in the negative excursion of the 3% drift cycle corresponding to the severe LTB observed 

during testing. Axial shortening of Specimen 11H-VA grew rapidly starting at 2% drift 

corresponding to the aggravated out-of-plane, LTB-type movements. In Specimen 11M, 
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Figure 4.6(d) shows that axial shortening remained relatively constant when the specimen 

was unloaded in in-plane flexure. In Specimen 11H-VA, axial shortening slightly reduced 

in magnitude during the positive excursions due to the progressive decrease in axial 

compression.  
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(a) SDA = 0.01 rad (b) SDA = 0.015 rad

(c) SDA = 0.02 rad (d) SDA = 0.03 rad

Figure 4.7 Specimen 11H-VA: Overall Yielding and Buckling Progression 

(a) SDA = 0.02 rad

(b) SDA = 0.03 rad

Figure 4.8 Specimen 11H-VA: Overall Yielding and Buckling Progression (Sideview) 
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(a) Southwest Flange (b) Northwest Flange

(c) Northeast Flange (d) Southeast Flange

(e) West End (Top view) (f) East End (Top view)

Figure 4.10 Specimen 11H-VA: Local Buckling at End of Test
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(a) Lateral Force vs. SDA

(b) End Moment vs. SDA (c) End Moment vs. Plastic SDA

(d) Axial Shortening vs. SDA (e) Midspan OOP Disp. vs. SDA

Figure 4.11 Specimen 11H-VA: Global Responses 
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4.2.4 Specimen 11H-BC 

The governing failure mode of Specimen 11H-BC is CB with the single-curvature 

global configuration. Yielding and buckling progression is illustrated in Figure 4.12 and 

Figure 4.14. No significant deformation was observed at the east (or rotating) end until 2% 

drift was reached. In contrast, the sloped flaking pattern initiated at 1% drift at the west (or 

fixed) end.  At 1.5% drift, downward LTB movements initiated at the west end; a web local 

buckle with a minor amplitude was also observed. LTB of the specimen exacerbated at 2% 

drift: the west flange under compression in positive drift and that in negative drift buckled 

out of plane more during the positive and negative excursions of each cycle, respectively. 

This induced flange local buckling at the bottom half-width flanges at the west end as 

shown with arrows in Figure 4.14 (for SDA = 0.02 and 0.0225 rad) and Figure 4.13. The 

test was terminated after reaching 2.25% drift due to the excessive out-of-plane buckling. 

Note the contrast between the extents of yielding at the west (i.e., fixed) and east (i.e., 

rotating) ends by the end of the test. 

Figure 4.15 shows the global responses. Flexural strength at the west end degraded 

significantly during the 2% drift cycles when LTB at the west end became more severe. In 

addition, the onset of LTB at 1.5% drift boosted the axial shortening rate from that point 

onward.  

4.2.5 Concluding Remarks 

Group 11 testing demonstrated that the same CB failure mode observed in Phase 1 

testing could be reproduced. Furthermore, the effects of varying axial load and fixed-

rotating boundary conditions did not alter the governing failure mode associated with this 

section. 
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(a) SDA = 0.0075 rad (b) SDA = 0.01 rad

(c) SDA = 0.015 rad (d) SDA = 0.02 rad

Figure 4.12 Specimen 11H-BC: Overall Yielding and Buckling Progression 

Figure 4.13 Specimen 11H-BC: LTB-induced Flange Local Buckling at End of Test 

(West End)
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(a) Lateral Force vs. SDA (b) East End Moment vs. SDA

(c) West End Moment vs. SDA (d) West End Moment vs. Plastic SDA

(e) Axial Shortening vs. SDA (f) Midspan OOP Disp. vs. SDA

Figure 4.15 Specimen 11H-BC: Global Responses 
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4.3 Group 13 Specimens: Section W30×173 

4.3.1 General 

Web and flange slenderness of Group 13 specimens was similar to that of Group 2 

specimens with W24×131 section, which experienced the ALB failure mode. Test results 

from these groups were compared to study the effect of section depths on column inelastic 

cyclic responses involving in-plane plastic hinging. To investigate boundary condition 

effect, Specimens 13M and 13M-BC were subjected to fixed-fixed and fixed-rotating 

boundary conditions, respectively. Loading sequence of the latter boundary condition test 

was discussed in Chapter 2. Both specimens sustained constant axial load with 𝐶𝐶𝑎𝑎 = 0.4.  

4.3.2 Specimen 13M 

Specimen 13M exhibited the ALB failure mode; Figure 4.16 and Figure 4.17 depict 

yielding and buckling progression. Web and flange local buckling was first observed at 

both ends at 1% drift; apexes of the outward flange local buckles located closer to the end 

plates than those of the inward ones. The buckled elements underwent larger deformation 

at 1.5% drift, forming plastic hinges at the column ends. No out-of-plane, LTB-type motion 

was observed. Yield length was much shorter than that observed in testing of Group 11 

specimens, which experienced the CB mode. Due to excessive web local buckling, the test 

was terminated after completing the positive excursion of the second 1.5% drift cycle. 

Figure 4.18 shows the global responses. Flexural strength degradation began during 

the 1% drift cycles corresponding to the onset of web and flange local buckling. The 

specimen lost its flexural capacity rapidly, decreasing to 75% of its maximum moment 

capacity after four cycles of 1% drift. The onset of web and flange local buckling also 
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triggered significant axial shortening, which continued to grow in proportion to the 

amplitudes of the local buckling.  
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(a) Lateral Force vs. SDA

(b) End Moment vs. SDA (c) End Moment vs. Plastic SDA

(d) Axial Shortening vs. SDA

Figure 4.18 Specimen 13M: Global Responses 
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4.3.3 Specimen 13M-BC 

Like Specimen 13M, Specimen 13M-BC experienced the ALB failure mode. As 

expected in a boundary condition test, neither plastic deformation nor local buckling 

occurred at the east (or rotating) end. In contrast, web and flange local buckling initiated 

at the west (or fixed) end at 1.5% drift as demonstrated in Figure 4.19 and Figure 4.20; the 

ALB configuration was observed. LTB behavior was not observed in this specimen.  

Figure 4.21 illustrates the global responses. Entering 1.5% drift, flexural strength 

of the specimen began to degrade corresponding to the onset of local buckling at the west 

end; it reduced to 62% of the maximum flexural strength after completing two cycles at 

1.5% drift. In addition, the formation of local buckles triggered a rapid increase in axial 

shortening during the 1.5% drift cycles and beyond. 

In comparison, Specimens 13M and 13M-BC experienced ALB at 1% and 1.5% 

drift, respectively. This demonstrated the effect of the fixed-rotating boundary conditions; 

the applied end rotation helped relieving some of the flexural moment demand that would 

have been produced with fixed-fixed boundary conditions at the same drift level. As a 

result, the specimen with fixed-rotating boundary conditions could withstand larger story 

drifts before it failed. Despite this difference, the global responses of Specimen 13M-BC 

had a similar characteristic to those of Specimen 13M. 

4.3.4 Concluding Remarks 

As predicted, ALB was the failure mode although the depth of this W30 section 

was larger than that of Group 2 specimens (W24) tested in Phase 1. Allowing one end of 

the column to rotate produced plastic hinging at one end (i.e., fixed end) only, but it did 

not alter the governing buckling mode.  
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(a) Lateral Force vs. SDA (b) East End Moment vs. SDA

(c) West End Moment vs. SDA (d) West End Moment vs. Plastic SDA

(e) Axial Shortening vs. SDA

Figure 4.21 Specimen 13M-BC: Global Responses 
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4.4 Group 16 Specimens: Section W18×130 

4.4.1 General 

Two W18×130 specimens were tested in this group to study the boundary condition 

and section depth effects; the section had similar slenderness properties to those of Group 

1 (and Group 11) specimens. Both specimens were subjected to the AISC loading protocol 

and constant axial compression with 𝐶𝐶𝑎𝑎 = 0.4. For Specimen 16M-BC, the end rotation 

sequence discussed in Section 2.6.3 was also applied at the east (or moving) end to simulate 

rotation at the top end of a first-story column in an SMF.  

4.4.2 Specimen 16M 

The governing failure mode of Specimen 16M is CB with the single-curvature 

global configuration; yielding and buckling progression is shown in Figure 4.22 and Figure 

2.16. The sloped flaking pattern was apparent at 1% drift. At 2% drift, LTB movements 

initiated; at 3% drift, they exacerbated with compression flanges buckling out of plane 

more during each cycle. This led to a significant downward out-of-plane displacement at 

the column midspan. Corresponding to this out-of-plane curvature, an LTB-induced flange 

local buckle formed at each bottom half-width flange at each end (see the arrowed locations 

in Figure 4.23). The test was terminated due to the excessive downward displacement and 

significant flexural strength degradation in the specimen.  

Figure 4.24 shows the global responses. Flexural strength was stable throughout 

the 2% drift cycles even though LTB had initiated in some degree. After completing the 

first 3% drift cycle, flexural strength reduced to 86% of the maximum value despite 

considerable out-of-plane buckling in the specimen. Very significant flexural strength 

degradation was observed during the positive excursion of the second 3% drift cycle, at 
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which point the out-of-plane displacement increased rapidly. As shown in Figure 4.24(d) 

and Figure 4.24(e) respectively, the column axial shortening history and the out-of-plane 

displacement history were similar in shape, indicating that the two quantities had a direct 

correlation due to geometry of the deformed specimen. 
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(a) Lateral Force vs. SDA

(b) End Moment vs. SDA (c) End Moment vs. Plastic SDA

(d) Axial Shortening vs. SDA (e) Midspan OOP Disp. vs. SDA

Figure 4.24 Specimen 16M: Global Responses 
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4.4.3 Specimen 16M-BC 

Like Specimen 16M, Specimen 16M-BC experienced the CB failure mode with the 

single-curvature global configuration; yielding and buckling progression is illustrated in 

Figure 4.25 and Figure 4.26. As expected in a boundary condition test, no significant 

deformation was observed at the east end; it remained mostly elastic and underwent some 

yielding toward the end of the test. At the west end, the sloped flaking pattern initiated at 

2% drift. Successively at 3% drift, LTB of the specimen initiated and exacerbated at 4% 

drift: the west flange under compression in positive drift and that in negative drift buckled 

upward out of plane more during the positive and negative excursions of each cycle, 

respectively. The exacerbated LTB movements caused a rapid increase in the column out-

of-plane displacement, which concentrated near the west end. Corresponding to this out-

of-plane curvature, an LTB-induced flange local buckle formed at each top half-width 

flange at the west end as shown in Figure 4.27. Significant flexural strength degradation in 

the specimen during the 4% drift cycles prompted the termination of the test. 

Figure 4.28 shows the global responses. Flexural strength remained stable during 

the 3% drift cycles despite the considerable development of the out-of-plane buckling near 

the west end. Strength degradation prevailed at 4% drift, corresponding to when the drastic 

out-of-plane movements occurred. Due to geometry of the deformed specimen, axial 

shortening aggravated proportionally to the amplitudes of the out-of-plane buckling. In 

comparison, Specimens 16M and 16M-BC reached their peak flexural strengths at 2% and 

3% drift, respectively, and experienced strength degradation at 3% and 4% drift, 

respectively. This demonstrated the effect of the fixed-rotating boundary conditions; the 

applied end rotation helped relieving some of the flexural moment demand that would have 
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been produced with fixed-fixed boundary conditions at the same drift level. As a result, the 

specimen with fixed-rotating boundary conditions could withstand larger story drifts before 

it failed. Despite this difference, the global responses of Specimen 16M-BC had a similar 

characteristic to those of Specimen 16M.   

4.4.4 Concluding Remarks 

As predicted, CB was the failure mode although the depth of this W18 section was 

shallower than that of Groups 1 and 11 specimens (W24). Allowing one end of the column 

to rotate did not alter the governing buckling mode. 
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(a) Lateral Force vs. SDA (b) East End Moment vs. SDA

(c) West End Moment vs. SDA (d) West End Moment vs. Plastic SDA

(e) Axial Shortening vs. SDA (f) Midspan OOP Disp. vs. SDA

Figure 4.28 Specimen 16M-BC: Global Responses 
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4.5 Group 21 Specimens: Section W18×130 

4.5.1 General 

In Group 16, two W18×130 specimens—Specimens 16M and 16M-BC—were 

tested with constant axial compression (𝐶𝐶𝑎𝑎 = 0.4); Specimen 16M -BC was also subjected 

to the end rotation sequence in conjunction with the typical AISC loading protocol. In this 

group, four specimens with the same section and geometry as Group 16 specimens were 

tested with four different loading scenarios. Specimen 21M-VAM was subjected to varying 

compressive axial load with 𝐶𝐶𝑎𝑎 ranging from 0.1 to 0.7, while Specimen 21M-VAU was 

subjected to varying tensile and compressive axial load with 𝐶𝐶𝑎𝑎 ranging from -0.2 (tension) 

to 0.4 (compression). Note that the former axial load sequence had its mean 𝐶𝐶𝑎𝑎 value equal 

to 0.4; in contrast, the 𝐶𝐶𝑎𝑎 value of 0.4 represented the upper bound value in the latter axial 

load sequence. In both cases, the axial load range (Δ𝐶𝐶𝑎𝑎) remained the same (= 0.6). 

Specimen 21M-NF was tested with the near-fault loading protocol. Lastly, Specimen 21M-

VAU-BC was subjected to both varying axial load and the end rotation sequence. 

Characteristics of all loading scenarios were discussed in Section 2.6. 

4.5.2 Specimen 21M-VAM 

The governing failure mode of Specimen 21M-VAM is CB with the single-

curvature global configuration; yielding and buckling progression is shown in Figure 4.29 

and Figure 4.30. Local buckling was not observed before the sloped flaking pattern and 

LTB movements initiated at 1.5% and 2% drift, respectively. LTB movements were 

triggered in the first negative excursion at 2% drift when axial compression increased to 

its highest amplitude (𝐶𝐶𝑎𝑎 = 0.7). They exacerbated at 3% drift: during each cycle, 
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compression flanges in the negative drift buckled out of plane more than those in positive 

drift since the former experienced higher combined axial and in-plane flexural compression 

than the later. In addition, out-of-plane amplitudes of the former decreased (or recovered) 

somewhat in the positive excursions due to the progressive decrease in axial compression. 

Since axial shortening grew proportionally to the out-of-plane amplitudes, it also recovered 

somewhat in the positive excursions as shown in Figure 4.33(d). 

Significant LTB movements induced flange local buckling at both column ends as 

shown in Figure 4.31. At the west end, the two half-wave buckles formed at the top half-

width flanges; at the east end, they formed at the top and bottom half-width flanges of the 

northeast and southeast flanges, respectively. The former appeared to be triggered 

primarily by out-of-plane stresses while the later appeared to be induced primarily by 

warping stresses due to significant twisting at the east end as shown in Figure 4.32.  

Influenced by web-flange interactions, the web at each end also buckled in the 

direction that conformed to the flange local buckling configurations. In summary, global 

buckling occurred first in this specimen, followed by local buckling. It will be shown later 

that the order was reversed for Specimen 27L; local buckling initiated before global 

buckling was triggered. 

Figure 4.33 shows the global responses. The specimen exhibited higher plastic 

moment capacity in the positive excursions compared to that in the negative excursions 

since lower axial compression was applied in the former. A drastic flexural strength 

degradation occurred during the second negative excursion at 3% drift as the applied axial 

load progressively returned to its highest amplitude. Axial shortening began to grow at an 

increasing rate at 2% drift, corresponding to the onset of LTB movements.  
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(a) Southwest Flange (b) Northwest Flange

(c) Web Local Buckling at West End

(d) Northeast Flange (e) Southeast Flange

Figure 4.31 Specimen 21M-VAM: LTB-induced Local Buckling at End of Test 
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(a) Overall

(b) East End

Figure 4.32 Specimen 21M-VAM: Significant Twisting at East End 
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(a) Lateral Force vs. SDA

(b) End Moment vs. SDA (c) End Moment vs. Plastic SDA

(d) Axial Shortening vs. SDA (e) Midspan OOP Disp. vs. SDA

Figure 4.33 Specimen 21M-VAM: Global Repsonses 
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4.5.3 Specimen 21M-VAU 

Testing of Specimen 21M-VAM, which had an axial force coefficient 𝐶𝐶𝑎𝑎 varied 

from 0.1 to 0.7, was stopped after completing two cycles at 3% drift due to excessive global 

buckling and strength degradation. By varying 𝐶𝐶𝑎𝑎 from -0.2 to 0.4, Specimen 21M-VAU 

was able to experience one cycle at 5% drift. The governing failure mode of Specimen 

21M-VAU is CB with the reverse-curvature global configuration; yielding and buckling 

progression is shown in Figure 4.34 and Figure 4.35.  

LTB of the specimen was triggered during the 4% and 5% drift cycles only in the 

negative excursions with downward and upward amplitudes at the northeast and southwest 

flanges, respectively. In the positive excursions, the column sustained axial tension, which 

stretched it and mitigated the out-of-plane buckling amplitudes as shown in Figure 4.36; 

the column axial shortening also recovered corresponding to this phenomenon as shown in 

Figure 4.39(d).  

Severe LTB movements were observed during the first negative excursion at 5% 

drift, at which point the member flexural strength began to degrade considerably as shown 

in Figure 4.39(b). Out-of-plane and warping stresses associated with the LTB deformation 

contributed significant tension at the free edges of the column flange CJP welds. In an 

attempt to displace the specimen to +5% drift with increasing tensile axial load for the 

second time, a rupture occurred at the northeast flange near the end plate as shown in Figure 

4.37; the test was terminated. A partial fracture of a CJP weld was also observed at the top 

edge of the southwest flange (see Figure 4.38). Indeed, the combined effects of in-plane 

bending, LTB-type movements, and axial tension were detrimental to CJP welded joints 

(it will be shown in the next section that a similar flange rupture was also observed in 
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Specimen 21M-VAU-BC, which also experienced axial tension). Unlike Specimen 21M-

VAM that experienced considerable LTB-induced local buckling at the member ends, 

Specimen 21M-VAU did not experience local buckling although this latter specimen 

underwent higher drift levels. Partly, this was due to the axial compression applied to the 

latter (maximum 𝐶𝐶𝑎𝑎 = 0.4) was lower than that applied to the former (maximum 𝐶𝐶𝑎𝑎 = 0.7).   
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SDA = -0.04 rad (1st Cycle) SDA = +0.04 SDA (2nd Cycle) 

(a) Southwest Flange

(b) Northeast Flange

Figure 4.36 Specimen 21M-VAU: Tensile Axial Load Effect on Out-of-Plane Buckling 

Figure 4.37 Specimen 21M-VAU: Rupture at Northeast Flange 

N 

N 

N 
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(a) Northeast Flange

(b) Southwest Flange

Figure 4.38 Specimen 21M-VAU: Column Flange CJP Weld Fracture 

Web Underside 

Top Edge 

Top Edge 
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(a) Lateral Force vs. SDA 

 
(b) End Moment vs. SDA (c) End Moment vs. Plastic SDA 

 
(d) Axial Shortening vs. SDA 

Figure 4.39 Specimen 21M-VAU: Global Repsonses  

1 
2 3 
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4.5.4 Specimen 21M-VAU-BC 

Section 2.5 discussed the end rotation sequence utilized in fixed-rotating boundary 

condition tests; it intended to apply a strong-axis end rotation at the east (or moving) end 

of the specimen with the same magnitude as the applied story drift angle (i.e., the AISC 

loading protocol). However, the SRMD platen could only apply approximately 0.035 rad 

rotation in both the clockwise and counterclockwise directions. Therefore, for 4% and 

greater drift cycles, the rotation-to-drift ratio 𝜉𝜉 defined in Section 2.7 became less than 1 

for some portions of the test where the applied story drift angle exceeded 0.035 rad; 𝜉𝜉 

equaled to 1 anywhere else. Figure 4.40(a) compares the story drift angle and end rotation 

histories of Specimen 21M-VAU-BC; two horizontal dashed lines indicates the maximum 

rotation the platen could accommodate during testing. It shows the load steps at which the 

applied story drift angle exceeded the applied end rotation. The corresponding global 

response portions are shown in dashed line in  Figure 4.40(b); the solid line indicates the 

portions at which 𝜉𝜉 is maintained at 1. The plot shows that lateral stiffness of the former is 

greater than that of the later when considering each loading and unloading branch of the 

4% and greater drift cycles separately; this demonstrated the effect of varying 𝜉𝜉. 

With the imposed rotation at the east end, the specimen was able to displace further 

compared to Specimen 21M-VAU; it completed two cycles at 5% drift and one cycle at 

5.5% drift (the platen setup at that time did not allow 6% drift displacement) before the test 

was terminated. Specimen 21M-VAU only completed one cycle at 5% drift before its 

northeast flange and CJP weld ruptured. 

The governing failure mode of Specimen 21M-VAU-BC is CB with the single-

curvature global configuration; yielding and buckling progression is shown in Figure 4.41 
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and Figure 4.42. LTB behavior of this specimen was similar to that of Specimen 21M-

VAU except that (1) the east end remained essentially in the elastic range up to 3% drift 

(see Figure 4.42) and did not exhibit obvious LTB movements until 5% drift, and (2) CJP 

weld ruptured at the southwest flange as shown in Figure 4.43. A minor LTB-induced 

flange local buckling was observed at the top half-width southwest flange, which was 

accompanied by a minor web local buckling due to the influence of web-flange interactions 

as shown in Figure 4.44.  

(a) Story Drift Angle and End Rotation (at Moving End) History Comparison

(b) Lateral Force vs. SDA

Figure 4.40 Specimen 21M-VAU-BC: End Rotation History and the Corresponding 

Global Response 
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(a) Lateral Force vs. SDA (b) East End Moment vs. SDA

(c) West End Moment vs. SDA (d) West End Moment vs. Plastic SDA

(e) Axial Shortening vs. SDA

Figure 4.45 Specimen 21M-VAU-BC: Global Repsonses 
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4.5.5 Specimen 21M-NF 

Figure 4.46(a) shows the near-fault loading protocol, which is characterized by its 

large initial pulse and the following, smaller drift cycles that oscillate about a level of 

residual drift. The specimen underwent all these cycles but did not exhibit significant 

damage. Thus, after this “first run,” the same loading protocol was applied from the 4% 

residual drift as shown in Figure 4.46(b); the “second run” refers to this portion of the test. 

Although the specimen was subjected to a constant level of axial load, it underwent 

asymmetric lateral drift loading: except for the first negative drift peak in the combined 

near-fault loading protocol, all cycles were in a positive drift range.  

Figure 4.47 illustrates the overall yielding and buckling progression. At the first -

2% drift, the specimen already experienced plastic deformation. In the following positive 

excursion to +6% drift, LTB of the specimen initiated with upward and downward 

amplitudes at the northwest and southeast flanges (i.e., compression flanges in positive 

drift), respectively. Since plastic deformation had already established, the southwest and 

northeast flanges (i.e., compression flanges in negative drift) experienced in-plane flexural 

compression in the following negative excursion to +1% drift, even though the specimen 

was not displaced into the negative drift range; Figure 4.48(a) shows the corresponding 

expansion of flaking. LTB of the specimen aggravated slightly but less aggressive than that 

observed during the former positive excursion. For the remaining first run cycles, LTB 

exacerbated more in the positive excursions than in the negative excursions, demonstrating 

the effect of the asymmetrical lateral drift loading. Figure 4.52(b) shows a slight flexural 

strength degradation in the positive excursions but not in the negative excursions of the 

first run.   
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In the positive excursion to +10% drift during the second run, LTB of the specimen 

aggravated drastically with significant out-of-plane amplitudes at the compression flanges 

in the positive drift as shown in Figure 4.47(b) and Figure 4.49. This led to a drastic flexural 

strength degradation as shown in Figure 4.52(b). Like the first run, LTB exacerbated in the 

positive excursions; unlike the first run, it appeared that LTB amplitudes recovered 

somewhat during the negative excursions. Since axial shortening grew proportionally to 

the out-of-plane amplitudes, it also recovered somewhat in the negative excursions as 

shown in Figure 4.52(d). Again, only the flexural strength in the positive excursions 

degraded while that in the negative excursions remained relatively stable because of the 

asymmetrical lateral drift loading. The test was terminated due to excessive reduction in 

lateral force resistance. 

LTB-induced flange local buckling configurations of this specimen were like those 

of Specimen 21M-VAM as shown in Figure 4.50; those at the west end appeared to be 

triggered primarily by out-of-plane stresses while those at the east end later appeared to be 

induced primarily by warping stresses due to significant twisting at the east end as shown 

in Figure 4.51. Influenced by web-flange interactions, the web at each end also buckled 

locally in the direction that conformed to the flange local buckling configurations. 
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(a) Near-fault Loading Protocol

(b) Combined Near-fault Loading Protocol

Figure 4.46 Specimen 21M-NF: Near-fault Loading Protocols 

End of Test 
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SDA = -0.02 rad SDA = +0.06 rad 

SDA = +0.01 rad SDA = +0.05 rad 

(a) First Run

SDA = +0.02 rad SDA = +0.10 rad 

SDA = +0.05 rad End of Test 

(b) Second Run

Figure 4.47 Specimen 21M-NF: Overall Yielding and Buckling Progression 

N 
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Figure 4.51 Specimen 21M-NF: Significant Twisting at East End 

N 
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(a) Lateral Force vs. SDA

(b) End Moment vs. SDA (c) End Moment vs. Plastic SDA

(d) Axial Shortening vs. SDA

Figure 4.52 Specimen 21M-NF: Global Repsonses

First Run 

Second Run 
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4.5.6 Concluding Remarks 

Column end moment and axial shortening responses of all W18×130 specimens 

tested in Phase 2 are shown in Figure 4.53 and Figure 4.54, respectively, with consistent 

range in the horizontal and vertical axes. Comparisons can be made as follows: 

(1) Flexural strengths of Specimens 16M and 16M-BC are similar in magnitude since the

two specimens sustain the same level of axial compression (𝐶𝐶𝑎𝑎 = 0.4). Specimen 21M-

VAM experiences varying axial compression with 𝐶𝐶𝑎𝑎 ranging from 0.1 in the positive

excursions to 0.7 in the negative excursions. This causes its end moment response to

be asymmetrical with higher and lower flexural strength relative to those of the former

specimens in the positive and negative excursions respectively.

(2) Specimens 21M-VAU and 21M-VAU-BC exhibit increased flexural and ductility

capacities as their axial load range is offset from 𝐶𝐶𝑎𝑎 = 0.1 to 0.7 to 𝐶𝐶𝑎𝑎 = -0.2 to 0.4.

Their end moment responses are also less asymmetrical compared to that of Specimen

21M-VAM because they sustain axial tension and compression that are relatively close

in magnitude (0.2 and 0.4). For Specimen 21M-VAM, the magnitudes of the lowest

and highest compression (0.1 and 0.7) are much more different.

(3) While flexural strength degradation is observed in both the positive and negative

excursions for constant axial load tests, it is only observed in the negative excursions

for varying axial load tests.

(4) Specimens 16M-BC and 21M-VAU-BC with fixed-rotating boundary conditions

exhibit lower elastic flexural stiffness than that of their counterparts with fixed-fixed

boundary conditions, i.e., Specimens 16M and 21M-VAU respectively. The former
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also sustains a higher drift level than the latter before significant strength degradation 

or a column flange CJP weld rupture occurs. 

(5) Specimen 21M-NF with the near-fault loading protocol exhibits a relatively stable end

moment response compared to others despite being pushed to 6% drift during the first

run test (see Section 4.5.5).

(6) Specimens 16M, 16M-BC, and 21M-VAM experience LTB movements at 2%, 3%,

and 2% drifts, respectively. Their axial shortening is relatively limited before the onset

of LTB. Such grows at an increasing rate proportional to the out-of-plane amplitude

once LTB initiates. All three specimens exhibit similar out-of-plane amplitudes when

their flexural strengths degrade significantly, prompting termination of the tests. As a

result, they exhibit relatively similar level of axial shorting (roughly 4 to 5 in.) at the

end of the tests.

(7) With a varying axial load that oscillates below the medium level (i.e., 𝐶𝐶𝑎𝑎 ≤ 0.4),

Specimens 21M-VAU and 21M-VAU-BC exhibit significantly less axial shortening

compared to others. This is because their LTB movements are not triggered until 4%

drift and do not exacerbate much before the specimens experience column flange CJP

weld ruptures.

(8) In constant axial compression tests, axial shortening remains constant and exacerbates

during each in-plane flexural unloading and reloading branch, respectively. In contrast,

that of varying axial load tests recovers (i.e., reduces in magnitude) in the positive

excursions due to the simultaneous reduction of axial and in-plane flexural

compression; it then aggravated in the negative excursions, corresponding to when

axial load progressively returns to its highest compressive level.
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Chapter 2, 3, 4, and 5 in part are currently being prepared for submission for 

publication of the material. Chansuk, P., Ozkula, G., and Uang, C.-M. (2018). “ATC-106 

Phase 2: Seismic behavior and design of deep, slender wide-flange structural steel beam-

columns.” Report No. SSRP-18/02, University of California, San Diego, La Jolla, CA. The 

thesis author was the primary investigator and author of this material. 
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5. BOUNDARY CONDITION EFFECT

5.1 Introduction 

In real application, the top end of first-story columns in a moment frame 

experiences rotation due to the flexibility of the connected beams, i.e., the columns sustain 

fixed-rotating boundary conditions. Accordingly, in NIST Phase 2 testing, four specimens 

(Specimens 11H-BC, 13M-BC, 16M-BC, and 21M-VAU-BC) were cyclically tested with 

the fixed-rotating boundary conditions (see Section 2.6.3 for loading protocols): a cyclic 

end rotation in-phase with and proportional to the applied cyclic lateral drift was prescribed 

to the east or moving end, which can be expressed as follows: 

𝜃𝜃 = 𝜉𝜉 �
Δ𝑚𝑚
𝐿𝐿
� (5.1) 

where 𝜉𝜉 is the rotation-to-drift ratio and is set equal to 1 for Specimens 13M-BC, 16M-BC, 

and 21M-VAU-BC, and 1.1 for Specimen 11H-BC.  

Based on the test results and finite element simulations, the effect of boundary 

conditions on column responses was studied. In addition, a procedure to adjust fixed-fixed 

column responses to account for this top-end rotation effect is proposed in this chapter. 

5.2 Fixed-fixed vs. Fixed-rotating Column Responses 

This section investigates the boundary condition effect by comparing the test 

responses of nominally identical specimens with fixed-fixed and fixed-rotating boundary 

conditions, respectively; the pairs of Specimens 11H and 11H-BC, Specimens 13M and 

13M-BC, and Specimens 16M and 16M-BC with constant axial loads were considered. 

Finite element models of these specimens were also analyzed to support the experimental 

findings.   
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For fixed-fixed columns, the inflection point was assumed to remain at the column 

midspan throughout the tests; thus, the end moment hysteresis was identical at both ends 

that underwent significant plastic deformation. For fixed-rotating columns, the rotating end 

stayed mostly in the elastic range; significant plastic hinging only occurred at the fixed 

end. Therefore, the fixed-end moment responses of the two respective cases were 

considered to study the boundary condition effects on the column maximum flexural 

strengths, plastic rotation capacities, strength degradation behaviors, etc. Furthermore, to 

facilitate the test response comparisons, backbone curves were constructed for the lateral 

force and fixed-end moment responses of each column as shown in Figure 5.1; it was 

accomplished by connecting each data point at the peak drift (both positive and negative) 

of the first cycle of each drift level (ASCE 2013). 

The backbone curve comparison of each specimen pair is shown in Figure 5.2. In 

general, each backbone curve can be characterized into three zones: (1) the elastic zone, 

(2) the inelastic zone up to the peak flexural strength, and (3) the strength degradation zone.

Figure 5.3 color-codes each corresponding zone for both the fixed-fixed and fixed-rotating 

backbone curves associated with the ALB and CB failure modes. With respect to the fixed-

fixed backbone curve, the gray, green, and unshaded regions represent the elastic, inelastic, 

and degradation zones, respectively; theses were represented by the red, yellow, and 

unshaded regions for the fixed-rotating backbone curves. Mechanism of the boundary 

condition effect is discussed below with respect to each zone. 

In the elastic zone, the fixed-fixed columns experienced more flexural bending 

demand than the fixed-rotating columns at the same drift level because the bending 

curvatures in the latter was relieved somewhat by the rotation at its rotating end. 
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Essentially, elastic flexural stiffnesses decreased as the result of the end rotation: the latter 

exhibited lower elastic stiffness than the former. This trend was more prominent in the 

lateral force responses (see Figure 5.2). Due to the reduction in flexural demand, the latter 

was also able to undergo a higher drift level before it experienced substantial yielding and 

entered the inelastic zone. Nonetheless, both the former and the latter exhibited similar 

flexural yield strengths since they had the same sectional properties, and strain hardening 

was minimal during the elastic cycles.  

In the inelastic zone, fixed-rotating boundary conditions had different effects on 

specimens with the ALB and CB failure modes. For ALB specimens, flange and web local 

buckling initiated shortly after small portions of the column ends became fully plastic and 

softened in material (i.e., the Young’s modulus decreased). Accordingly, not many 

inelastic drift cycles beyond the elastic zone were required to set this condition prone to 

local instability. This was true for both the fixed-fixed and fixed-rotating columns, even 

though the latter experienced somewhat less moment demand per additional lateral drifts 

than the former as the result of the end rotation. Indeed, as shown in Figure 5.3(a), the 

inelastic zones of the former (green region) and the latter (yellow region) were both limited, 

i.e., both columns sustained similar limited amount of inelastic cycles beyond their

respective elastic cycles before experiencing local buckling. Consequently, they also 

developed similar extent of strain hardening, which was limited, and thus exhibited similar 

peak flexural strengths that could be approximated by the reduced plastic moment capacity, 

𝑀𝑀𝑚𝑚𝑐𝑐, of the section. 

Specimens with the CB failure mode, however, usually sustained more inelastic 

drift cycles than the ALB specimens before they experienced global and local buckling. As 



154 

a result, their inelastic zones were much larger than those of the latter as shown in Figure 

5.3, i.e., the green and yellow regions in Figure 5.3(b) are much larger than those in Figure 

5.3(a). Since they underwent significant lateral drifts beyond the elastic zone, the effect of 

the rotating end became apparent as shown in Figure 5.3(b): the yellow region was much 

wider than the green region. That is, the fixed-rotating column could undergo a larger 

lateral drift beyond the elastic zone than the fixed-fixed column before global and local 

buckling initiated and trigger flexural strength degradation. Essentially, inelastic flexural 

stiffnesses also decreased as the result of the end rotation, i.e., it reduced the end moment 

demand per an additional drift in the fixed-rotating column, which allowed the column to 

sustain a larger drift level before buckling. 

Despite this difference in the lateral drift range, both the fixed-fixed and fixed-

rotating CB columns exhibited similar peak flexural strengths. This implies that they 

experienced similar extent of strain hardening before global instability exacerbated. To 

verify this observation, finite element analysis of Specimen 16M and 16M-BC was 

conducted. As an indirect measure of the extent of strain hardening, the cumulative energy 

dissipation as the result of plastic straining is plotted against the story drift angle for each 

specimen as shown in Figure 5.4. The horizontal lines indicate the energy levels at which 

each respective specimen reached its peak flexural strength before global buckling 

initiated; both are very close. Accordingly, this signifies that the two columns, indeed, 

underwent similar extent of strain hardening before they buckled out-of-plane and, hence, 

exhibited similar peak flexural strengths. This trend was also confirmed with other fixed-

fixed and fixed-rotating CB specimen pairs (results not shown). 
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Further investigation revealed that the fixed-rotating CB columns exhibited a 

slightly lower peak flexural strength than the fixed-fixed CB columns. Since lateral-

torsional buckling (LTB) was the important limit state that influenced the peak flexural 

strengths of these CB columns under cyclic loading, the elastic LTB design principle could 

be used to understand the boundary condition effect on the peak strengths. AISC 360 (AISC 

2016c) used 𝐶𝐶𝑏𝑏, the lateral-torsional buckling modification factor, in determining the 

nominal flexural strength of flexural members with nonuniform moment diagrams. For 

doubly symmetric members with no transverse loading between brace points, 𝐶𝐶𝑏𝑏 equaled 

to 2.27, 1.67, and 1.0 for the case of equal end moments of the same sign (reverse curvature 

bending), zero moment at one end, and uniform moment, respectively. Essentially, as the 

moment diagram becomes more uniform, i.e., has a flatter slope, the corresponding LTB 

capacity decreases. This principle can be applied to the CB specimens that experience LTB. 

Figure 3.8 shows that fixed-fixed columns bend in reverse curvature with the inflection 

point at the midspan, while that of the fixed-rotating columns locates closer to the rotating 

end. As a result, at the same fixed-end moment magnitude, the latter would have a less 

steep moment diagram than the former and, thus, be assigned with 𝐶𝐶𝑏𝑏 less than 2.27. 

Essentially, the “more uniform” moment diagram of the fixed-rotating column makes it 

more prone to LTB and, thus, reduces its peak flexural strength even under cyclic loading. 

This effect is amplified as the magnitude of the end rotation increases since this results in 

a more uniform moment diagram. For instant, Specimen 11H-BC was subjected to a larger 

end rotation (𝜉𝜉 = 1.1) than the other fixed-rotating specimens (𝜉𝜉 = 1.0); consequently, its 

peak flexural strength was much lower than that of Specimen 1H as shown in Figure 5.2(a). 
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Based on the inflection point location, 𝐶𝐶𝑏𝑏 could be calculated for each fixed-fixed 

and fixed-rotating CB column as shown in Table 5.1. For each specimen pair, the ratio 

between the two quantities, i.e., 𝐶𝐶𝑏𝑏𝐹𝐹𝐹𝐹/𝐶𝐶𝑏𝑏𝐹𝐹𝐹𝐹 , was determined. Similarly, a ratio between the 

peak fixed-end moments with respect to the two boundary condition cases, i.e., 

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝐹𝐹 /𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥

𝐹𝐹𝐹𝐹 , was also calculated. The former and latter ratios appeared to correlate 

relatively well. Finite element results also supported this claim as shown in Table 5.2.  

Lastly, in the flexural-strength degradation zone, it was observed that the degrading 

rate, i.e., the slope of the degrading branch of the backbone curve, was similar for the fixed-

fixed and fixed-rotating specimens with the ALB failure mode. This was also true for the 

CB specimen pairs, but in some cases, the fixed-rotating column degraded slower; the 

flexural demand reduction as the result of the end rotation appeared to moderate the 

degrading rate in the fixed-rotating CB specimens. 

5.3 Conversion between Fixed-fixed and Fixed-rotating Boundary Conditions 

5.3.1 Plastic Story Drift Angle 

As discussed in Section 5.2, elastic and inelastic flexural stiffnesses decreased as 

the result of the end rotation at one end of the column. In turn, these stiffnesses affected 

the lateral drift range of each zone in the backbone curve. In the elastic zone, cyclic 

behavior of a beam-column could be predicted based on the Timoshenko theory as 

discussed in Section 3.2.2.2; Eq. (5.2) expresses the elastic stiffness relationship between 

the fixed-end moment and the moving end’s lateral displacement and rotation. 

𝑀𝑀 = �𝐾𝐾𝐶𝐶,41 −
𝜉𝜉
𝐿𝐿
𝐾𝐾𝐶𝐶,42� Δ = 𝐾𝐾𝑚𝑚Δ (5.2)

where 𝐾𝐾𝐶𝐶,41 and 𝐾𝐾𝐶𝐶,42 are calculated as follows [refer to Eq. (3.45)]:  
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𝐾𝐾𝐶𝐶,41 =
𝐸𝐸𝐼𝐼
𝐿𝐿2Ψ𝐶𝐶

Φ2(1 + 𝜇𝜇)(1− cosΦ) 

𝐾𝐾𝐶𝐶,42 =
𝐸𝐸𝐼𝐼
𝐿𝐿Ψ𝐶𝐶

Φ[Φ− (1 + 𝜇𝜇)sinΦ] 

(5.3) 

To investigate the plastic component of the moment-displacement response, which was 

more difficult to predict in cyclic tests, the elastic component of the lateral drift was isolated 

per Eq. (5.4), resulting in the plastic drift response. 

∆𝑚𝑚= Δ −
𝑀𝑀
𝐾𝐾𝑚𝑚

(5.4) 

As shown in Figure 5.5, the fixed-fixed and fixed-rotating backbone curves were plotted 

against this plastic component of the lateral drift divided by the undeformed column length, 

i.e., the plastic story drift angle (SDA). The results showed that, for Group 13 and 16

specimen pairs, the two moment versus plastic SDA backbone curves resembled similar 

shapes, indicating that the plastic rotation capacity remained relatively the same for both 

boundary condition cases, and the effect of the end rotation mostly concentrated in the 

elastic component of the lateral drift response. 

5.3.2 Equivalent Story Drift Angle and Response Conversion  

Accordingly, to convert the backbone curves of the fixed-fixed case to the fixed-

rotating case, and vice versa, the elastic lateral drift corresponding to the boundary 

condition of interest could be added to the plastic drift response: 

(1) Fixed-fixed (FF) to fixed-rotating (FR)

Δ𝑚𝑚𝑒𝑒𝑣𝑣𝐹𝐹𝐹𝐹→𝐹𝐹𝐹𝐹 = ∆𝑚𝑚𝐹𝐹𝐹𝐹 +
𝑀𝑀𝐹𝐹𝐹𝐹

𝐾𝐾𝑚𝑚𝐹𝐹𝐹𝐹
(5.5) 
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(2) Fixed-rotating (FR) to fixed-fixed (FF)

Δ𝑚𝑚𝑒𝑒𝑣𝑣𝐹𝐹𝐹𝐹→𝐹𝐹𝐹𝐹 = ∆𝑚𝑚𝐹𝐹𝐹𝐹 +
𝑀𝑀𝐹𝐹𝐹𝐹

𝐾𝐾𝑚𝑚𝐹𝐹𝐹𝐹
 (5.6) 

With respect to the test results, Figure 5.6 and Figure 5.7 show the backbone curve 

conversion based on Eqs. (5.5) and (5.6), respectively; the converted backbone curves 

agree reasonably well with the intended ones.  

5.3.3 Validation of Response Conversion Method with Finite Element Models  

To further assess the proposed conversion procedure, it was applied to finite 

element simulation results, which provided clean data that covered wider drift ranges than 

what could be accomplished in testing. Software ABAQUS-CAE was utilized in this study. 

Three models with the W18, W24, and W30 sections, respectively, were considered for 

each failure mode, i.e., the ALB and CB modes. Geometry of the wide-flange cross sections 

was simplified in the models, ignoring the fillet portions; a shell extrusion technique was 

used in constructing the models. The models employed 4-node doubly curved “S4R” shell 

elements suitable in analyses that involved severe local buckling; such was expected to 

occur at the member ends in this study.  

Figure 5.8 shows an example model with boundary condition details. To simulate 

a fixed column base, all six degrees of freedom of the nodes at the bottom end were fixed. 

At the top end, all edge nodes were coupled, and movements were prescribed at the edge 

node at the centroid of the cross section. Lateral displacement was prescribed to U2 degree 

of freedom. For fixed-rotating column simulation, rotation sequence was also prescribed 

to UR1 degree of freedom. U3 was a free degree of freedom allowing the column to shorten 

under the applied loads. The remaining degrees of freedom at the top column end were 

fixed.  
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Obtained from elastic buckling analysis (i.e., eigen analysis), the right figure in 

Figure 5.8 shows the first buckling mode of the column subjected to a unit axial and lateral 

force. This deformed configuration scaled to a hundredth in magnitude was applied to the 

model as its initial geometric imperfection.   

The elastic material properties of steel were defined by a Young’s Modulus of 

29000 ksi and a Poisson’s ratio of 0.3. Regarding inelastic material behavior, yield stresses 

were specified for the flange and web components of the model, respectively, according to 

stress-strain relationships obtained from tensile coupon tests. To capture cyclic material 

behavior of steel, both nonlinear isotropic and nonlinear kinematic hardening rules were 

included in the material model. Their related parameters were calibrated using the available 

cyclic and tensile coupon test results based on procedures provided in the ABAQUS 

manual (HKS, 2007). 

Some simulation results of these models were first correlated with the test data 

(Specimens 13M, 13M-BC, 16M, and 16M-BC) as shown in Figure 5.9 to Figure 5.12 to 

ensure that the finite element models were reliable. The same comparison approach 

implemented on the test data was utilized: Figure 5.13 to Figure 5.16 compare the fixed-

fixed and fixed-rotating backbone curves of each model pairs with respect to the SDA, 

plastic SDA, and equivalent SDA, respectively. In conclusion, finite element results support 

the previous observations regarding the backbone-curve characteristics and the effect of 

the end rotation; they also validate the proposed procedure in calculating the equivalent 

lateral drifts. 

While 𝜉𝜉, the rotation-to-drift ratio, of Specimens 13M-BC and 16M-BC was equal 

to 1, Specimen 11H-BC sustained a slightly greater end-rotation magnitude, i.e., 𝜉𝜉 = 1.1. 



160 

Since the latter failed in the CB mode, the greater end-rotation magnitude considerably 

affected its peak flexural strength (discussed in Section 5.2). Consequently, its plastic 

backbone curve did not resemble that of its fixed-fixed counterpart as well as the others. 

Further research is needed to investigate the effects of large end-rotation magnitudes on 

the responses of columns with CB failure mode. 

Chapter 2, 3, 4, and 5 in part are currently being prepared for submission for 

publication of the material. Chansuk, P., Ozkula, G., and Uang, C.-M. (2018). “ATC-106 

Phase 2: Seismic behavior and design of deep, slender wide-flange structural steel beam-

columns.” Report No. SSRP-18/02, University of California, San Diego, La Jolla, CA. The 

thesis author was the primary investigator and author of this material. 
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Table 5.1 Test Results: LTB Modification Factors of CB Specimens 

Specimen Shape Boundary 
Condition 𝐶𝐶𝑏𝑏 

𝐶𝐶𝑏𝑏𝐹𝐹𝐹𝐹

𝐶𝐶𝑏𝑏𝐹𝐹𝐹𝐹
 

Moment 
Range 

(×1000 kip-ft) 

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝐹𝐹

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝐹𝐹

1H W24×176 Fixed-fixed 2.27 
0.89 

(-1.96, 2.01) 
(0.86, 0.87) 

11H-BC W24×176 Fixed-rotating 2.02 (-1.69, 1.75) 
16M W18×130 Fixed-fixed 2.27 

0.95 
(-1.30,1.35) 

(0.99,0.93) 
16M-BC W18×130 Fixed-rotating 2.16 (-1.28,1.26) 

Table 5.2 ABAQUS Results: LTB Modification Factors of CB Specimens 

Model Shape Boundary 
Condition 𝐶𝐶𝑏𝑏 

𝐶𝐶𝑏𝑏𝐹𝐹𝐹𝐹

𝐶𝐶𝑏𝑏𝐹𝐹𝐹𝐹
 

Moment 
Range 

(×1000 kip-ft) 

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝐹𝐹

𝑀𝑀𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝐹𝐹

11M W24×176 Fixed-fixed 2.27 
0.95 

(-2.51, 2.53) 
(0.97, 0.96) 

11M-BC W24×176 Fixed-rotating 2.16 (-2.43, 2.43) 
16M W18×130 Fixed-fixed 2.27 

0.95 
(-1.42, 1.42) 

(0.95, 0.95) 
16M-BC W18×130 Fixed-rotating 2.16 (-1.35, 1.35) 

22L W30×148 Fixed-fixed 2.27 
0.95 

(-3.04, 3.04) 
(0.97, 0.97) 

22L-BC W30×148 Fixed-rotating 2.15 (-2.96, 2.97) 
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(a) Specimen 1H

(b) Specimen 11H-BC

(c) Specimen 13M

Figure 5.1 Test Results: Construction of Backbone Curves 
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(d) Specimen 13M-BC

(e) Specimen 16M

(f) Specimen 16M-BC

Figure 5.1 Test Results: Construction of Backbone Curves (continued) 
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(a) Specimens 1H vs. 11H-BC (CB Mode)

(b) Specimens 13M vs. 13M-BC (ALB Mode)

(c) Specimens 16M vs. 16M-BC (CB Mode)

Figure 5.2 Test Results: Comparison of Backbone Curves 



165 

(a) ALB Specimens (b) CB Specimens

Figure 5.3 Elastic, Inelastic, Degradation Cyclic Zones 

Figure 5.4 Plastic-straining Energy Dissipation 

Fixed-fixed 
Fixed-rotating 
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(a) Specimens 1H vs. 11H-BC

(b) Specimens 13M vs. 13M-BC

(c) Specimens 16M vs. 16M-BC

Figure 5.5 Test Results: Comparison of Plastic Component of Backbone Curves 
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(a) Specimens 1H vs. 11H-BC

(b) Specimens 13M vs. 13M-BC

(c) Specimens 16M vs. 16M-BC

Figure 5.6 Response Conversion from Fixed-fixed to Fixed-rotating Boundary Conditions 

(Based on Test Results) 
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(a) Specimens 1H vs. 11H-BC

(b) Specimens 13M vs. 13M-BC

(c) Specimens 16M vs. 16M-BC

Figure 5.7 Response Conversion from Fixed-rotating to Fixed-fixed Boundary Conditions 

(Based on Test Results) 
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Figure 5.8 ABAQUS Modeling Details 
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(a) Lateral Force vs. SDA (b) Axial Shortening vs. SDA 

 
(c) Fixed-end Moment vs. SDA 

Figure 5.9 Specimen 13M: Test (solid black) and ABAQUS (dashed red) Result 

Correlation 
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(a) Lateral Force vs. SDA (b) Axial Shortening vs. SDA

(c) Fixed-end Moment vs. SDA (d) Moving-end Moment vs. SDA

Figure 5.10 Specimen 13M-BC: Test (solid black) and ABAQUS (dashed red) Result 

Correlation 
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(a) Lateral Force vs. SDA (b) Axial Shortening vs. SDA

(c) Fixed-end Moment vs. SDA

Figure 5.11 Specimen 16M: Test (solid black) and ABAQUS (dashed red) Result 

Correlation 
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(a) Lateral Force vs. SDA (b) Axial Shortening vs. SDA 

  
(c) Fixed-end Moment vs. SDA (d) Moving-end Moment vs. SDA 

Figure 5.12 Specimen 16M-BC: Test (solid black) and ABAQUS (dashed red) Result 

Correlation 
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6. SUMMARY AND CONCLUSIONS

6.1 Summary 

Twenty-five W24 columns were tested in Phase 1 program (Ozkula and Uang 2015) 

to evaluate the behavior and response of deep columns for seismic application in SMF 

design. Phase 1 testing intended to investigate the effects of slenderness parameters, 

constant axial load levels, lateral drift loading protocols, and biaxial loading on the column 

responses. In Phase 2 program, twenty-three additional “shallow” (W14) and “deep” (W18, 

W24, and W30) columns were tested to further investigate Phase 1 objectives and examine 

the effects of section depths, fixed-rotating boundary conditions, and varying axial loads. 

Phase 2 test data and numerical simulation results are presented in this thesis to investigate 

seismic behavior of deep, slender wide-flange structural steel beam-columns. Theoretical 

study was also conducted to predict the beam-column elastic responses. The following 

conclusions can be made from this study. 

6.2 Conclusions 

(1) Timoshenko compatibility and constitutive laws were used to derive elastic flexural

stiffness relationships of a two-node member with and without nodal end rotational

springs; the derived stiffness relationships account for both shear deformation and the

second-order effect.

(2) A data reduction procedure utilizing Timoshenko beam-column theoretical expressions

derived in this study was proposed to eliminate the effect of connection flexibility from

the column global responses.
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(3) Test results showed that boundary conditions, varying axial loads, and lateral-drift

sequences had significant effects on the column response but did not influence the

governing buckling mode of the specimens.

(4) Cyclic responses of interior columns and exterior columns are very different in terms

of maximum flexural strength, post-buckling stiffness degradation, and axial

shortening. The backbone curves associated with the interior and exterior columns need

to be distinguished from one another for seismic design applications.

(5) Elastic flexural stiffness of specimens subjected to fixed-rotating boundary conditions

is lower than that of their nominally identical specimens with fixed-fixed ends. A

procedure to convert flexural-strength backbone curves of fixed-fixed columns to

account for rotation at the top end was proposed.
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