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Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). Initial
symptoms of cystinosis correspond to the renal Fanconi syndrome. Patients then develop chronic kidney disease and multi-organ
failure due to accumulation of cystine in all tissue compartments. LSDs are commonly characterized by a defective activity of
lysosomal enzymes. Hematopoietic stem and progenitor cell (HSPC) transplantation is a treatment option for several LSDs based
on the premise that their progeny will integrate in the affected tissues and secrete the functional enzyme, which will be recaptured
by the surrounding deficient cells and restore physiological activity. However, in the case of cystinosis, the defective protein is a
transmembrane lysosomal protein, cystinosin. Thus, cystinosin cannot be secreted, and yet, we showed that HSPC transplanta-
tion can rescue disease phenotype in the mouse model of cystinosis. In this review, we are describing a different mechanism by
which HSPC-derived cells provide cystinosin to diseased cells within tissues, and how HSPC transplantation could be an
effective one-time treatment to treat cystinosis but also other LSDs associated with a lysosomal transmembrane protein
dysfunction.

Keywords Cystinosis . Lysosomal storage disorders . Hematopoietic stem and progenitor cells . Gene therapy . Lysosomal
transfer . Tunneling nanotubes

Introduction

Lysosomal storage disorders (LSDs) are a group of metabolic
diseases characterized by a disruption of a lysosomal function
leading to the storage of diverse macromolecules within lyso-
somes [1]. The progressive accumulation of incompletely de-
graded substrates in several tissues ultimately leads tomultiple
organ dysfunction and clinical complications that usually
shorten the lifespan of affected children [1]. The majority of
LSDs are due to defective activity of lysosomal hydrolases.
For years, the only available treatment for LSDs was the en-
zyme replacement therapy (ERT) based on the discovery of
Hasilik and colleagues that wild-type cells could secrete func-
tional enzymes that are captured and directed to lysosomes of
deficient cells through the mannose-6-phosphate receptor
pathway [2]. Nine US Food and Drug Administration

(FDA)-approved ERT for the treatment of six LSDs
(mucopolysaccharidoses, MPS, I, II, and VI, Gaucher,
Fabry, Pompe) are currently available and they are all admin-
istered by intravenous infusion, usually weekly or every other
week, typically for the life of a patient [3]. Although ERT has
improved patients’ life expectancy, the major limitation, be-
sides a potential immune-response against the injected pro-
tein, is that administrated enzymes cannot cross the blood-
brain barrier (BBB) which reduces treatment efficacy for
LSDs with central nervous system (CNS) manifestations [4].

Among the ∼ 50 known LSDs, 1/5 are caused by lysosomal
membrane protein dysfunction [5]. Cystinosis, which belongs
to this category, is an autosomal recessive metabolic disorder
with an estimated incidence of 1/100,000 to 200,000 live
births. The gene involved, CTNS gene, encodes for the 7
transmembrane H+-driven lysosomal cystine transporter,
cystinosin [6–8]. Defects in CTNS result in accumulation of
cystine, the oxidized dimer of the amino acid cysteine, within
lysosomes resulting in intracellular crystal formation, cell
death, and eventually tissue damage. Because cystinosin is
ubiquitously expressed, most of the organs are affected.
However, depending on the type of mutation in the CTNS
gene, there are different forms and severity of the disease [9,
10]. The most common and most severe form is infantile
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cystinosis (MIM 219800). Patients are normal at birth, but
develop renal tubular Fanconi syndrome at 6–18 months of
age, accompanied by failure to thrive, polyuria and polydipsia,
dehydration, and hypophosphatemic rickets. Patients also de-
velop chronic kidney disease that eventually leads to end-
stage renal failure requiring renal transplantation. They also
present with photophobia and eventually later in life with ret-
inal blindness, hypothyroidism, diabetes mellitus, muscle
weakness, and neurological defects [11]. There are two other
forms of cystinosis that are rarer and less severe, juvenile
cystinosis (MIM 219900) characterized by photophobia and
glomerular and tubular alterations leading to proteinuria and
eventually end-stage renal disease (ESRD) [12], and the ocu-
lar cystinosis (MIM 219750) defined by adult-onset of mild
photophobia [13].

The current care for patients affected by cystinosis, beyond
supportive therapy (dietary recommendations, indomethacin,
angiotensin-converting enzyme inhibitors, angiotensin recep-
tor blockers, growth hormones, etc.) [14], is the oral drug
cysteamine (mercapto-ethylamine), which allows lysosomal
cystine clearance. Cysteamine has certainly improved the life
expectancy of cystinotic patients and improved the disease
outcome, especially if started before the age of 5 years [15].
However, this treatment delays disease progression, but is not
a cure. Indeed, cysteamine fails to correct the Fanconi syn-
drome and only delays ESRD; dialysis and renal transplanta-
tion remain mandatory for most of the cystinotic patients
[15–17]. Between supportive therapy and cysteamine, daily
medication for a cystinotic patient can reach up to 60 pills.
In addition, severe gastric side effects are often associated
with cysteamine therapy. Therefore, there is a pressing need
for a new therapy for cystinosis.

Hematopoietic stem and progenitor cell
transplantation for non-hematopoietic
diseases

In most cases, HSPC transplantation is used to treat blood-
related diseases (e.g., blood or bone marrow malignancies,
non-malignant blood disease, immunodeficiency disorders).
However, HSPC transplantation can also treat non-
hematopoietic disorders. Exploiting the property that HSPC
can home to damage tissues, differentiate in hematopoietic
cells, and have a paracrine effect on neighboring cells,
HSPC transplantation proved to be effective to treat LSDs that
are due to defective lysosomal enzymes. Indeed, with a one-
time intervention, bone marrow engrafted cells become a per-
manent source of healthy cells that can deliver functional ly-
sosomal enzymes to neighbor diseased cells after integrating
within tissues including the CNS [18]. Treatment of Hurler
patients with HSPC transplantation has been the most gratify-
ing. Indeed, bone marrow transplantation for severe MPS-I,

performed before the age of two, prolongs survival and allows
normal or near normal cognitive development and myocardial
function [19]. Same results have been obtained for patients
affected with Krabbe disease, a demyelinating disorder caused
by a deficiency of galactosylceramidase if early transplanta-
tion is performed [20–22]. Nonetheless, for some LSDs
(Sanfilippo or GM1 gangliosidosis), HSPC transplantation
did not show clinical benefit [23, 24]. The reason for unsuc-
cessful HSPC transplant is unclear. In the case of Sanfilippo, it
is suggested that the donor-derived microglia cells secrete
insufficient amounts of enzymes for cross-correction of the
neuronal tissue [24].

Cystinosis belongs to a different class of LSD as the protein
involved is a transmembrane lysosomal protein. However, the
idea of HSPC transplantation for the multisystemic disorder,
cystinosis, emerged from an attempt to try to find an optimal
vehicle to bring the functional protein to damaged tissues.
Studies have been performed in the mouse model of cystinosis,
the Ctns−/− mice [25, 26]. Ctns−/− mice accumulate cystine and
cystine crystals in all tissues and develop similar symptoms to
those observed in patients, proximal tubulopathy, and ESRD by
15months of age, ocular anomalies, bone andmuscular defects,
behavioral anomalies, and hypothyroidism [26–30]. We first
hypothesized that mesenchymal stem cells (MSCs) would be
the best candidate since they are multipotent stromal cells that
can be mobilized from the bone marrow and differentiate into a
variety of cell type of tissue cells including osteoblasts,
chondrocytes, myocytes, and adipocytes [31]. Moreover,
several studies showed that, in the setting of renal injury,
transplanted MSCs could generate mesangial and tubular
epithelial cells [32] and restore renal structure and function
[33, 34]. In our model, MSC transplantation only led to some
short-term improvement in tissue cystine content and we ob-
served by confocal microscopy that green florescent protein
(GFP)-expressing MSCs did not integrate efficiently within tis-
sues [35]. In parallel, we also performed syngeneic whole bone
marrow cell (BMC) transplantation in lethally irradiated Ctns−/−

mice, which, surprisingly, led to the dramatic reduction of cys-
tine content in all tissues tested [35]. Therefore, we also inves-
tigated the impact of purified HSPCs. Transplantation of Sca1+

HSPCs, Sca1 being the murine homolog marker for CD34 in
humans, in lethally irradiated Ctns−/− mice, was as efficient as
BMC transplantation leading to significant tissue cystine de-
crease [35].

HSPC transplantation leads to multi-organ
rescue in the Ctns−/− mice

Kidney preservation

Kidney is the primary tissue compartment impacted by
cystinosis with the development of the renal Fanconi
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syndrome at 6–18months of age [36]. In addition, the glomer-
ular filtration rate progressively starts to deteriorate after
2 years of age which leads to ESRD at the end of the first
decade [37]. In the appropriate genetic background, Ctns−/−

mice develop kidney pathology, in particular a mild renal
Fanconi syndrome, and eventually end-stage renal failure
but late in life (~ 18 months of age) as opposed to cystinosis
patients [29]. Characteristic histological anomalies of the dis-
ease could be observed such as swan neck deformities at the
glomerulo-tubular junction, thick basal membrane and
perivascular mononuclear infiltrates, and cystine crystals are
present within interstitial and proximal tubular cells. HSPC
transplantation in Ctns−/− mice prevented the progression of
the kidney disease in cystinosis. Indeed, this treatment led to
long-term preservation of the kidney function and structure
including the Fanconi syndrome, despite lack of HSPC
reprogramming into proximal tubular cells (PTCs) [38].
However, effective therapy depended on achieving at least
50% of donor-derived blood cells engraftment of Ctns-
expressing HSPCs within the bone marrow. This means that,
at least 50% of the exogenous HSPCs have to express a func-
tional CTNS gene in the bone marrow for the treatment to be
fully effective in the Ctns−/−mice; the cells will then become a
permanent source of circulating blood cells expressing CTNS.
We also tested the impact of HSPC transplantation in older
mice, between 6 and 10 months of age, when the disease is
already established, and observed normal kidney function if
the blood engraftment was sufficient [38]. This would suggest
that if injury is not too advanced, the remaining kidney tissue
could be rescued or protected by stem cell therapy. However,
we do not know if established kidney injury could be reversed.
Of note, since the mice male are fertile, in contrast to men
affected with cystinosis, impact of HSPC transplantation on
fertility could not be evaluated.

Eye pathology

The second tissue impacted by cystinosis is the eye and the
main ocular manifestation is crystal deposition within the cor-
nea. Crystals can be observed by slit lamp examination as
early as 1 year of age, increases with age, and gradually leads
to photophobia, blepharospasm, keratopathy, and recurrent
corneal erosion [39]. In older patients, filamentous keratopa-
thy, band keratopathy, and peripheral corneal neovasculariza-
tion are also observed [39–41]. The mouse model for
cystinosis also develops ocular pathology similar to humans
[28, 30]. Cornea is a challenging tissue for stem cell-mediated
therapy because it is avascular rendering its access by HSPC-
derived cells difficult. However, abundant HSPC-derived cells
could be observed in the cornea at 1 year post-transplantation,
but also in the retina, lens, and ciliary margin [42]. Ctns ex-
pression in the eye was increased and cystine level decreased.
Using in vivo confocal microscopy, we showed that, if

engraftment of Ctns-expressing HSPCs was sufficient (more
than 50%), cystine build up was almost completely prevented
in the Ctns−/− corneas. We also demonstrated that we could
restore normal intra-ocular pressure as well as normal corneal
thickness and structure.

These results demonstrate the versatility of the HPSCs and
their therapeutic potential for corneal disorders. However, the
limitation resides in the risk of bone marrow transplantation
when the pathology is strictly localized to the eye. Recent
studies investigated the feasibility of intravitreal HSPC trans-
plantation in different mouse models of retinal degeneration,
macular oedema, or ischemia showing phenotypical improve-
ment [43–45].

Hypothyroidism

Accumulation of cystine crystals also leads to impairment of
endocrine tissues, hypothyroidism being the most common
endocrine involvement [46]. The team of Dr. Courtoy previ-
ously showed that Ctns−/− mice present with impaired thyroid
hormone production resulting in subclinical hypothyroidism,
thyrocyte hyperplasia/hypertrophy, and accelerated cell turn-
over [27]. In collaboration with Dr. Courtoy’s lab, we showed
that wild-type HSPC transplantation into Ctns−/− mice de-
creased thyroid cystine content, normalized thyroid function
(TSH and T4), prevented thyrocyte hyperplasia and hypertro-
phy, and improved biosynthetic and lysosomal overloaded in
Ctns−/− thyroid [47].

Overall, these data show that one single systemic injection
of HPSC is sufficient to address the serious global effects of
cystinosis for the life of the mice. However, cystinosin is a
lysosomal transmembrane protein that cannot be secreted and
the mechanism by which HSPC participate to the phenotypi-
cal rescue of the Ctns−/− mouse model was then unclear.

Mechanism of action of HSPC in the case
of cystinosis

Fate of the transplanted HSPCs within tissues

Our first hypothesis to explain the drastic effect of BMC and
HSPC transplantation to prevent the development of
cystinosis were the following: (1) wild-type HSPCs were in-
tegrating within the diseased tissue and differentiating into
proficient tissue-specific cells or (2) HSPCs were fusing with
the deficient Ctns−/− tissue cells. In order to investigate the fate
of HSPCs after transplantation, we generated a new system
consisting of a DsRed+ Ctns−/− mouse model, constitutively
expressing the red fluorescent protein DsRed, and HSPCs
isolated fromwild-type GFP-transgenic donor mice. This dual
fluorescent model allowed us to unequivocally discern fusion
events (yellow cells) from differentiation/transdifferentiation
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(green). We observed that the majority of the bone marrow-
derived cells were strictly GFP+, excluding fusion as the main
mechanism for tissue repair. In conjunction with lineage-
specific antibody staining, we identified the GFP-expressing
cells as macrophages within tissues [48]. Macrophages are
among the most plastic of immune cells with a large variety
of phenotypes and physiological functions [49, 50]. However,
their impact for tissue repair in the context of a transmembrane
protein was unknown.

In vitro demonstration of lysosomal cross-correction

Cystinosin transfer from the HSPC-derived cells to the dis-
eased cells was the most plausible explanation to account for
the long-term tissue preservation in cystinosis. Cystinosin-
containing microvesicles/exosomes shed by cystinosin-
expressing cells have been shown as vehicles to decrease cys-
tine in cystinotic cells [51, 52]. To address the mechanism
in vitro, we established co-culture models using wild-type
macrophages and DsRed+ Ctns/− fibroblasts. When wild-
type macrophages were co-cultured with Ctns−/− fibroblasts,
cystine levels decreased by ~ 75% in FACS-sorted fibroblasts,
whereas when the two populations were physically separated
using transwells porous to exclusively microvesicles, cystine
levels decreased only by ~ 20%. These findings showed that
direct cell:cell contact was necessary for an optimal cystinosin
cross-correction as compared to microvesicle-mediated trans-
fer. A large number of macrophages were extending long pro-
trusions connecting to fibroblasts, also known as tunneling
nanotubes (TNTs) [48], which could be a route for cystinosin
transfer. TNTs have been first described in vitro in 2004 by
Rustom et al. [53] formed de novo between numerous cell
types allowing complex connections between distant cells

observed both in vitro [53, 54] and in vivo [55, 56]. They have
been implicated in a wide variety of biological processes rang-
ing from to bacterial and prion pathogenesis [57, 58] to
calcium-mediated cellular communication [54, 59] but also
lysosomal and mitochondrial trafficking [60, 61]. To verify
the transfer of lysosomes via TNTs in our in vitro assays, we
used macrophages transduced with self-inactivating lentivirus
(SIN-LV) carrying the cDNA of the fusion protein cystinosin-
GFP. Time-lapse confocal microscopy revealed that lyso-
somes (stained with LysoTracker) containing cystinosin-GFP
migrated along the TNTs toward the fibroblasts [48].
Interestingly, we found that this transfer was bidirectional,
cystinosin-deficient lysosomes, marked with Lamp2-DsRed
also traveled through TNTs to reach macrophages [48] (Fig.
1). Lysosome fusion in both cell types probably occurs, re-
leasing cystine in both cell types and providing a bidirectional
correction, accounting for the efficient tissue cystine decrease.

In vivo demonstration of lysosomal cross-correction
within the Ctns−/− kidney

TNTs have been reported in vivo by others in the cornea [55]
and lung [56], but not in a context of tissue repair. One of the
primary and earliest sites affected in cystinosis is the proximal
tubular cells (PTCs) responsible for the Fanconi syndrome. As
mentioned earlier, we found that HSPC transplantation could
prevent the kidney disease including the proximal tubulopathy
[35, 38, 62]. And yet, PTCs are known to be protected from
the interstitium by a thick tubular basement membrane (TBM)
that strongly limits the passage of macromolecules [63]. By
confocal microscopy, we observed that abundant GFP-
expressing bone marrow-derived macrophages were indeed
surrounding but never inside the proximal tubules in the

Fig. 1 Mechanism of in vitro lysosomal cross-correction via tunneling
nanotubes. Ctns−/− fibroblasts virally transduced to express the fusion
protein Lamp2-DsRed are co-cultured with macrophages expressing
cystinosin-GFP. The macrophages extend tunneling nanotubes (TNTs)
toward the fibroblasts and establish an intercellular connection leading

to a bidirectional exchange of lysosomes between both cell types.
Fibroblasts are then rescued by the presence of healthy lysosomes carry-
ing the functional cystinosin, while macrophages help discarding cystine-
loaded lysosomes
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Ctns−/− kidneys. However, long tubular protrusions were ob-
served apposing on and even crossing the TBM [48]. To con-
firm that those nanotubes were able to deliver cystinosin-
containing vesicles to PTCs, we transplanted Ctns−/− mice
with DsRed+ HSPCs transduced with SIN-LV-CTNS-GFP,
and observed GFP-positive lysosomes in the DsRed-
expressing HSPC-derivedmacrophages surrounding the prox-
imal tubules but also within the PTCs, providing a mechanism
for the preservation of the proximal tubules in Ctns−/− mice
[48] (Fig. 2). To our knowledge, this is the first evidence of
direct transfer of proteins/organelles from interstitial macro-
phages to epithelial cells via TNTs penetrating the TBM.

Demonstration of bone marrow cell rescue via TNTs
in another kidney disease

This novel mechanism of transmembrane lysosomal protein cor-
rection, leading to long-term kidney preservation after HSPC
transplantation in cystinosis, may be expanded for treatment of
other inherited renal disorders. Thus, Dr. Devuyst’s group recent-
ly tested bone marrow transplantation in a mouse model of Dent
disease [64]. Dent disease (MIM #300009) is a rare X-linked
tubulopathy caused by mutations in the endosomal chloride-
proton exchanger (ClC-5) resulting in defective receptor-
mediated endocytosis, severe proximal tubule dysfunction, low
molecular weight proteinuria, kidney stones, and renal failure
[65]. They demonstrated that transplantation of wild-type bone
marrow cells in Clcn5Y/− mice significantly improved proximal
tubule dysfunction. Similar to our findings, they observed that

kidney-engrafted cells were mononuclear phagocytes found in
the interstitium, surrounding proximal tubules, and also extend-
ing TNTs. In vitro experiments showed that cell:cell contact was
also mandatory to rescue defective endocytosis suggesting that
not only lysosomes but also endosomes could be transferred to
diseased cells via TNTs [64].

Mechanism of action in non-nephropathic tissues

We also studied the mechanism of HSPC-mediated tissue repair
in the eye and thyroid. In the cornea, HSPCs also differentiated
into macrophages that were also capable of generating TNTs
and delivering cystinosin-bearing lysosomes to diseased adja-
cent corneal cells [42]. Similarly, HSPCs differentiated into
macrophages/dendritic cells in the thyroid frequently apposed
onto the follicular basement laminae and generating TNTs.
However, in addition, some HSPC-derived cells were able to
entirely cross the membrane laminae of thyrocytes and fully
squeeze into the epithelial monolayer [47].

From bench to bedside: hematopoietic stem
cell gene therapy using SIN-lentivirus vectors

Ex vivo HSPC gene therapy as a treatment option
for genetic disorders

Allogeneic HSPC transplantation in patients requires a com-
patible donor and still represents a procedure with high

Fig. 2 Mechanism of in vivo lysosomal cross-correction via tunneling
nanotubes. Transplanted Ctns−/−HSPCs ex vivo transduced with SIN-LV
carrying CTNS-GFP repopulate the bone marrow of Ctns−/− mice, mi-
grate into the kidney where they differentiate into macrophages.
Affected proximal tubular cells (PTCs) are protected from the
extracellular environment by the tubular basement membrane (TBM).

The rescue of PTCs requires that macrophages extend tunneling
nanotubes (TNTs) crossing the TBM to deliver functional cystinosin-
bearing lysosomes and may be take away the endogenous cystine-
loaded lysosomes (never shown in vivo) from the PTCs, accounting for
the long-term recue of the proximal tubules in Ctns−/− treated by
hematopoietic stem and progenitor cell (HSPC) transplantation
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risk of morbidity and mortality, graft versus host disease be-
ing the major complication [66]. In contrast, autologous
ex vivo gene-corrected HSPC transplantation represents a saf-
er treatment option because it abrogates the risk of GVHD and
immune rejection. However, it requires the use of virus vec-
tors to introduce a normal copy of the gene, which could be a
limitation to achieve high enough gene-corrected cell level
and could integrate near cancer genes. SIN-LVs are now used
for most of the ex vivo gene correction of the cells as they
have a great ability to transduce human HSCs, and contain
only one internal enhancer/promoter, which reduces the inci-
dence of interactions with nearby cellular genes and thus sig-
nificantly decreases the risk of oncogenic integration [67].
Clinical trials using SIN-LV to transduce human CD34+

HSPCs are being undertaken in the USA and Europe for ge-
netic diseases especially immune deficiency disorders (e.g.,
X-linked severe combined immunodeficiency, adenosine de-
aminase deficiency, and Wiskott-Aldrich syndrome) [68–70].
In the context of LSDs, an important example of successful
HSPC gene therapy approach using SIN-LV is for metachro-
matic leukodystrophy, due to the deficiency of the lysosomal
enzyme, arylsulfatase A (ARSA). Nine patients have been
treated so far with no vector-related toxicity reported. The first
three patients have been reported to have extensive and stable
ARSA expression in the periphery and in the cerebrospinal
fluid, with no manifestation of disease from 7 to 21 months
after the predicted age of symptom onset [71]. Autologous
CD34+ cells transduced with a SIN-LV strategy was also suc-
cessful for the treatment of X-linked cerebral adrenoleukodys-
trophy (ALD) [72, 73]. A total of 17 boys have been treated in
a phase II/III study and after 29.4-month follow-up; they all
presented with significant gene-marking and ALD protein
was physiologically expressed [74].

HSPC gene therapy for cystinosis

We developed an ex vivo gene-modified HSPC strategy using
a SIN-LV carrying CTNS cDNA, pCCL-CTNS, and tested
this approach in the mouse model of cystinosis. Pre-clinical
studies showed that transduced HSPCs kept their
differentiative capabilities, populating all tissue compartments
and allowing long-term transgene expression [62]. Cystine
content was decreased in all tissues tested and kidney function
was improved.We are currently finishing the pharmacological
and toxicological studies and assembling the Investigational
New Drug (IND) application for a phase I/II clinical trial to
assess the safety and efficacy of autologous transplantation of
CD34+ HSPCs ex vivo modified using pCCL-CTNS in pa-
tients affected with infantile cystinosis. If successful, i.e., if we
can achieve significant reduction of cystine level and restore
normal cellular functions in the majority of diseased cells, this
treatment could be a life-long therapy that may eliminate or
reduce renal deterioration and the need for kidney

transplantation, as well as the long-term complications asso-
ciated with cystinosis. However, it is important to note that
this treatment will be the first ex vivo HSPC gene therapy for a
lysosomal storage disease for which the protein involved is a
transmembrane lysosomal protein so cautious optimism is
warranted on the efficacy of such a strategy in patients with
cystinosis.

Conclusion

Despite the fact that the protein involved in cystinosis is a
transmembrane lysosomal protein, HSPC transplantation
proved to be efficient to rescue the pathology through their
differentiation into macrophages within tissues and the trans-
fer of cystinosin-bearing lysosomes via TNTs to adjacent host
cells. This study not only allowed us to reveal for the first time
a new potential curative property of the HSPC-derived cells
for cystinosis but also demonstrates that HSPCs can act as
intelligent vehicles to deliver functional organelle-associated
proteins to defective cells in the entire body. These findings
open new perspectives to treat diseases for which HSPC trans-
plantation was not considered as a treatment option. Indeed, as
mentioned earlier, a new pre-clinical study for Dent disease
showed that an endosomal transmembrane protein could be
transferred to surrounded the proximal tubular cells through
TNTs and prevent the proximal tubulupathy [64].Most recent-
ly, because mitochondria can also be transferred via TNTs [56,
75–77], we also investigated if HSPC transplantation could
help to prevent the mitochondrial disorder Friedreich’s ataxia,
a neuromuscular degenerative disorder, for which there is no
treatment. We showed that HSPCs were able to migrate effi-
ciently to all the sites of injury, i.e., the brain, spinal cord, and
dorsal root ganglia (DRGs), but also to the heart and skeletal
muscle, and differentiate into microglia/macrophages and de-
liver frataxin to neurons and myocytes [78]. Locomotor defi-
cits and muscle weakness were prevented as well as degener-
ation of the large sensory neurons in DRGs, andmitochondrial
dysfunction was improved in these tissues. Altogether, these
findings highlight the potential of HSPC for tissue repair and
may expend their use to treat a wider panel of hereditary
disorders.
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