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A B S T R A C T   

Knowledge of the recurrence intervals of precipitation extremes is vital for infrastructure design, risk assessment, 
and insurance planning. However, trends and shifts in rainfall patterns globally pose challenges to the appli
cation of extreme value analysis (EVA) which relies critically on the assumption of stationarity. In this paper, we 
explore: (1) the suitability of nonstationary (NS) models in the presence of statistically significant trends, and (2) 
their potential in modeling out-of-sample data to improve frequency analysis of extreme precipitation. We 
analyze the benefits of using a nonstationary Generalized Extreme Value (GEV) model for annual extreme pre
cipitation records from Southern Brazil. The location of the GEV distribution is allowed to change with time. The 
unknown GEV model parameters are estimated using Bayesian techniques coupled with Markov chain Monte 
Carlo simulation. Next, we use GAME sampling to compute the evidence (and their ratios, the so-called Bayes 
factors) for stationary and nonstationary models of annual maximum precipitation. Our results show that the 
presence of a statistically significant trend in annual maximum precipitation alone does not justify the use of a NS 
model. The location parameter of the GEV distribution must also be well defined, otherwise, stationary models of 
annual maximum precipitation receive more support by the data. These findings reiterate the importance of 
accounting for GEV model parameters and predictive uncertainty in frequency analysis and hypothesis testing of 
annual maximum precipitation data records. Furthermore, a meaningful EVA demands detailed knowledge about 
the origin and persistence of observed changes.   

1. Introduction 

Understanding the frequency and intensity of rainfall extremes is key 
to infrastructure design and risk assessment (Hailegeorgis and Alfredsen, 
2017; Veneziano et al., 2006). Increases in Earth’s temperature in recent 
decades (Barnett et al., 1999; Cheng et al., 2015), alongside with shifts 
in hydroclimatic and atmospheric circulation patterns (Milly et al., 
2015, 2008), have altered the occurrence frequency of extreme rainfall 
(Barbero et al., 2019; Cheng and Aghakouchak, 2014; Moustakis et al., 
2021; Papalexiou and Montanari, 2019; Prein and Mearns, 2021; Ragno 
et al., 2019; Touma et al., 2022), and changed significantly its intensity, 
as outlined by IPCC reports (Pachauri et al., 2014). Therefore, under
standing the trends and patterns of future extreme precipitation and 
developing quantitative methods for describing statistics of changing 
extremes is essential for society’s resilience (Milly et al., 2015, 2008). 

Typically, the estimation of design rainfall relies on Extreme Value 
Analysis (EVA), a prevalent approach that estimates the recurrence of 
rare events through probabilistic methods (Huard et al., 2010; Ner
antzaki and Papalexiou, 2019; Papalexiou and Koutsoyiannis, 2013). 
This involves techniques built on the assumption of stationarity, where 
extreme rainfall events are described as samples from some extreme 
value distribution with fixed parameters resulting in time-invariant 
statistics of extremes (Petrow and Merz, 2009; Read and Vogel, 2015; 
Serago and Vogel, 2018; Vogel et al., 2011). This approach ignores 
trends or changes in the precipitation distribution over time (Milly et al., 
2008; Papalexiou et al., 2018). 

One way to account for changes in extreme rainfall is by using the 
output of Global Climate Models (GMC) as input to EVA, enabling an 
assessment of both current and future extreme rainfall intensity and 
frequency (Bador et al., 2018; Emmanouil et al., 2023; Fadhel et al., 
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2017; Lopez-Cantu et al., 2020; Prein et al., 2017; Ragno et al., 2018). 
However, the output of GCMs is subject to considerable bias and un
certainty due to limitations and errors in process parametrization, 
insufficient spatial resolution, and inaccurate characterization of natural 
and anthropogenic climate variability (e.g., Bador et al., 2018; Cook 
et al., 2017, 2020; Emmanouil et al., 2023; Fadhel et al., 2017; 
Haughton et al., 2015; Lopez-Cantu et al., 2020; Ragno et al., 2018). 
This impacts the simulation accuracy of extreme precipitation, partic
ularly in regions with complex terrain, convective rainfall, and strong 
seasonal variability (e.g., Barbero et al., 2019; Fatichi et al., 2016; 
Fischer et al., 2013; Gregersen et al., 2013; Kendon et al., 2017; Mous
takis et al., 2020; Pereima et al., 2022). 

To overcome those limitations, nonstationary (NS) models – which 
allow the mean, variance or shape of an extreme value distribution to 
change over time – are a pragmatic alternative to analyzing the fre
quency and recurrence interval of extreme rainfall. Yet, the potential 
usefulness of such nonstationary models of climatic variables is actively 
debated in the hydrologic literature and there are conflicting opinions 
on how and when such models should be applied (Cheng and Agha
kouchak, 2014; Milly et al., 2008, 2015; Montanari and Koutsoyiannis, 
2014; Ragno et al., 2019; Serinaldi and Kilsby, 2015). The use of a non- 
constant mean of the extreme value distribution increases the number of 
estimable model parameters, for example. This enlarges parameter un
certainty and if juxtaposed with epistemic uncertainty due to (among 
others) the use of inappropriate covariates (Emmanouil et al., 2022) 
requires a leap of faith in the application of nonstationary models. While 
nonstationary models enhance the description of recurrence intervals 
within-sample (e.g., Cheng and Aghakouchak, 2014; Ouarda et al., 

2020, 2019; Ragno et al., 2019; Serago and Vogel, 2018; Šraj et al., 
2016; Vu and Mishra, 2019 and many others), fewer studies have 
demonstrated their superiority in predicting the frequency of out-of- 
sample extreme events (e.g., Anzolin et al., 2023; Lee et al., 2020; 
Luke et al., 2017; Roderick et al., 2020). There is still a need to assess 
whether nonstationary models can be used to predict the frequency of 
extreme rainfall, especially out-of-sample, thereby properly taking into 
account model parameters and predictive uncertainty. 

Here, we test: (1) the suitability of NS models in the presence of 
statistically significant trends, and (2) their potential in modeling out-of- 
sample data to understand whether the presence of significant trends 
justifies the use of a nonstationary frequency analysis model. We analyze 
daily annual maximum rainfall records from Southern Brazil and eval
uate the performance of the GEV distribution by comparing a constant 
and a non-constant location parameter (and hence, a constant and 
nonconstant mean). We implement a Bayesian method and draw in
ferences from the data through the posterior distribution of the GEV 
model parameters using Bayes factors. This approach explicitly accounts 
for model parameters and predictive uncertainty in hypothesis testing 
and model selection. 

2. Material and methods 

2.1. Study area and data 

Southern Brazil (SB), is in the transition of tropical and extratropical 
climates (Fig. 1a), a sensitive area to a changing climate, susceptible to 
the expansion of the tropics in the Southern Hemisphere (Lucas et al., 

Fig. 1. (a) Location of South America, Brazil and Southern Brazil (SB), (b) surface elevation above the mean sea level (shading) for SB, and location of the 777 
rainfall gauges selected for this study. 
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2014). The region has a complex topography that creates a diversity of 
rainfall generation mechanisms, with frontal rainfall in high areas, and a 
high occurrence of convective rainfall in the summer months. It is also 
characterized by varying spatial seasonality in precipitation, with 
summer monsoons in the north region and no seasonality in the 
remaining areas (Cavalcanti et al., 2009). This is especially relevant 
considering that GCM models do not perform well in this transition zone 
(Pereima et al., 2022). 

We use daily rainfall data from the HidroWeb Portal of the Brazilian 
National Water Agency (ANA; https://www.snirh.gov.br/hidroweb/). 
We screen gauges based on their available record length and data quality 
as in CAMELS-BR (Chagas et al., 2020). We select rainfall gauges with at 
least 30 years of data with less than 5 % of missing values. Gauges with 
spurious values (e.g., data with incorrect order of magnitudes, or zeros 
in place of missing data) are not included in the analysis. Fig. 1b shows 
the 777 high-quality rainfall gauges that passed our quality control 
procedure. For each rainfall gauge, we generate annual maximum series 
(AMS), by extracting the maximum value of each year. The full record of 
each AMS is a vector P = {P1,⋯,PN}, where N is the number of available 
years. First, we define the fitting period data, X = {P1,⋯,Pn}, where n is 
the number of years in the fitting period. In the case of the within-sample 
analysis, the vector X has n equal to the total number of observations – 
the full record is used as fitting period. For the out-of-sample analysis, 
we split the data into two periods: (1) a fitting period with the first 30 
observations (n = 30), and (2) an evaluation period with the remaining 
observations, i.e., X* = {Pn+1,⋯,PN}. For the out-sample-sample anal
ysis, we only use AMS with at least 40 years of observations (358 re
cords), to ensure 30 years of observations for the fitting period and at 
least 10 years to test the model performance. 

2.2. Frequency analysis 

We use the generalized extreme value (GEV) distribution in the 
extreme rainfall frequency analysis. This distribution summarizes three 
families of extreme value distributions that arise from the nature of the 
dimensionless shape parameter, κ – the Gumbel (κ = 0), the heavy-tailed 
Frechét (κ > 0), and the upper bounded Weibull distribution (κ < 0)
distributions (Coles, 2001). The Cumulative Distribution Function (CDF) 
of the GEV distribution is given by: 

F(x|κ, β, α) = exp

(

−

(

1 + κ
(

x − α
β

))− 1/κ
)

,1+ κ
(

x − α
β

)

≥ 0 (1)  

where α and β signify the location and scale parameter, respectively, in 
units of x. Here we use two different approaches to estimate extreme 
rainfall events: the stationary (ST) model, which considers the param
eters of the GEV distribution constant over time; and the nonstationary 
(NS) model, in which the parameters of the extreme value distribution 
are considered as time-dependent (i.e., time is the covariate). We use a 
linear time-dependency between the location parameter (α) and time (t), 
i.e., 

αt = α0 +α1t (2)  

where α0 is the intercept and α1 the slope of the linear model. Thus, the 
ST model has three unknown parameters to be inferred θs = {κ, β, α}; 
and the NS model has four unknown parameters, θn = {κ, β, α0, α1}. 

The quantile function of the GEV is given by (Coles, 2001): 

xp =

((

−
1

log(p)

)− κ

− 1
)(

β
κ

)

+ αt , κ ∕= 0 (3) 

where xp is the quantile associated with the annual non-exceedance 
probability p. The extreme rainfall quantiles are estimated using the 
return period (Tr) as a proxy of non-exceedance probability, i.e., Tr =

1/(1 − p). Note that in the case of the NS model, the quantiles of the GEV 
will vary over time. 

Bayesian inference is used for parameter and uncertainty estimation 
of ST and NS models. Within the framework of Bayesian inference for 
parameter estimation, Bayes’ theorem becomes pivotal, allowing the 
update of the probability associated with a hypothesis – a model and its 
parameter values – by considering the available evidence, embodied as 
data. This approach provides a distribution of parameter values rather 
than point estimates, which is useful for hypothesis testing and uncer
tainty quantification (Luke et al., 2017). The posterior of parameter 
values of the model M j with parametrization θj, P

(
θj|X,M j

)
, is calculated 

from the prior distribution P
(
θj|M j

)
, the likelihood function L

(
θj|X,M j

)
, 

and the evidence P
(
X|M j

)
, i.e, 

P
(
θj|X,M j

)
=

P
(
θj|M j

)
L
(
θj|X,M j

)

P
(
X|M j

) (4)  

where the subscript j denotes the model: j = s for the ST model and j = n 
for the NS model. X is a vector of n observations X = {x1,⋯, xn} with the 
fitting period data of the AMF series (in our case, the full record for 
within-sample, and the first 30 observations for the out-of-sample). The 
prior distribution (Table 1) represents the knowledge of parameter 
values before data analysis. Here, we use a uniform distribution for the 
location (for both intercept and slope in the NS case) and scale param
eters, in which the lower and upper limits of each parameter are set. For 
the shape parameter, there are some available priors in the literature, 
such as a Normal distribution with mean μ = 0.093 and variance σ2 =

0.122 (Papalexiou and Koutsoyiannis, 2013) based on regional infor
mation or a Beta distribution with mean μ = − 0.1 0 and variance σ2 =

0.1222 (Martins and Stedinger, 2000) based on knowledge of experts. 
These priors allow the sampling of negative values of the shape 
parameter. Negative values of the shape parameter imply an upper 
threshold in the GEV distribution, which is not realistic for rainfall, 
unless attributed to statistical variability (Deidda et al., 2021; Emma
nouil et al., 2020). Therefore, we use a uniform distribution in the range 
[0, 0.3], to avoid an upper threshold in the GEV distribution, as well as 
an infinite variance process (see also Hosking et al., 1985). 

The likelihood function summarizes the information provided by the 
data. Mathematically, L

(
θj|X,M j

)
is calculated using the probability 

density function of the GEV, i.e., 

L
(
θj|X,M j

)
=
∏n

i=1
P
(
Xi
⃒
⃒θj,M j

)
(5) 

The denominator of Bayes’ theorem, also called the marginal prob
ability or evidence, acts as a normalization constant to ensure that the 
posterior distribution has a unit area and is defined as: 

P
(
X|M j

)
=

∫

P
(
θj|M j

)
L
(
θj|X,M j

)
dθj (6) 

The parameter inference procedure can be made with the unnor
malized values of the posterior distribution, i.e., 

P
(
θj|X,M j

)
∝P
(
θj|M j

)
L
(
θj|X,M j

)
(7)  

To approximate the posterior distribution of the parameter values, we 
use Markov chain Monte Carlo (MCMC) simulations with the Differen
tial Evolution Adaptive Metropolis (DREAM(ZS)) algorithm (Vrugt, 

Table 1 
Specification of the prior distribution of the GEV parameters of the stationary 
and nonstationary models. U (a,b) is the uniform distribution on the closed in
terval between a and b.  

Parameter Prior a b Unit 

к U (a,b) 0 0.3 −

β U (a,b) 0 50 mm d-1 

α0 U (a,b) 0 250 mm d-1 

α1 U (a,b) − 5 5 mm d-1 y-1  
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2016). DREAM(ZS) requires the setup of some parameters that depend on 
the case study: the dimension of the problem (number of parameters); 
the number of Markov chains; and the number of generations. We follow 
Luke et al. (2017) and generate 3 Markov chains with 8,000 samples 
each, which is enough to ensure the convergence of the chains in this 
case. Convergence metrics are monitored to determine when conver
gence of the sampled chains has been achieved to a limiting distribution. 
We use the last quarter of the sampled chains to summarize the posterior 
distribution of the GEV model parameters. This amounts to 6,000 pos
terior samples. We modify the source code available in the Support In
formation of Luke et al. (2017) to perform the parameter inference 
procedure described here for the GEV distribution. 

2.3. Performance assessment 

The posterior samples of the MCMC simulations with the DREAM(ZS) 
algorithm are used for model comparison and selection. We evaluate the 
performance of the ST and NS models for within-sample prediction, i.e., 
ability of the model to reproduce the data used in the fitting period, and 
for out-of-sample prediction, in which data that are not used in the 
fitting procedure are used to assess model performance. To predict the 
out-of-sample data with the NS model, we follow the same methodology 
as used by Luke et al., 2017. The first approach extrapolates the trend of 
the fitting period to the evaluation period (NS model). In the second 
approach, the values of the NS model parameters at the end of the fitting 
period are used to predict the evaluation period. This so-called updated 
stationary or uST model, and assumes that the distribution of annual 
maximum precipitation is invariant in the evaluation period. 

We use two different methods to assess the performance of the ST 
and NS models for the fitting (within-sample) and evaluation (out-of- 
sample) data sets. First, we assess the within-sample and out-of-sample 
model performance using the Continuous Ranked Probability Score 
(CRPS; Vrugt, 2023), i.e., 

CRPSj = (α̂ − x)(2F(x|κ̂, β̂, α̂) − 1 )+
β̂
κ̂
(1 − (2 − 2κ̂)Γ(1 − κ̂) )+

2β̂
κ
(Γ(1

− κ̂, − loge(F(x|κ̂, β̂, α̂) ) − F(x|κ̂, β̂, α̂) )
(8)  

where F(x|κ̂, β̂, α̂) is the GEV CDF evaluated at θ̂ j = {κ̂, β̂, α̂}, which is 
the maximum a posteriori (MAP) parameter set, and Γ is the is the upper 
incomplete gamma function. The CRPS is a so-called scoring rule that 
summarizes the GEV distribution forecast (or simulation) of the MAP 
parameter values in a single reward-oriented value. Larger values of this 
scoring rule are preferred. 

In the second approach, we assess the model’s performance using the 
evidence (denominator) of Bayes’ theorem (previously introduced in 
Equation (6). This so-called marginal likelihood is equal to the proba
bility that the model has generated the data for all possible values of the 
parameters and is often referred to as the model evidence. The evidence 
is a formalization of Occam’s Razor in that a simple model is preferred 
unless a more complex model is significantly better at explaining the 
data. We compare different GEV models using the Bayes factor (BF): 

Bj,k = 2loge

(
P
(
X|M j

)

P(X|M k)

)

(9)  

where Bj,k is the value of the BF of the model M j against the model M k. 
Log-scale formulation of the BF is chosen for a simpler interpretation: BF 
> 0 supports the selection of M j, while BF < 0 supports the selection of 
M k. According to Kass and Raftery (1995), values of Bj,k between 0 and 2 
indicate weak support, values between 2 and 6 a positive support, values 
between 6 and 10 a strong support, and values greater than 10 indicate a 
very strong support to the M j. The evidence of each model is estimated 
using the Gaussian Mixture Importance (GAME; Volpi et al., 2017) 
sampling, available in DREAM Package version 2.0. Essentially, GAME is 

a Monte Carlo integration technique. The use of GAME requires the user 
to provide as input the posterior distribution – in our case for both fitting 
and evaluation periods. Therefore, for the within-sample frequency 
analysis, GAME estimates the model evidence by P

(
θj|X,M j

)
, and for the 

out-of-sample frequency analysis by P
(
θj|X*,M j

)
– in this case, it is 

necessary to specify the prior distribution of the evaluation period for 
the ST, uST and NS models. Similar to Luke et al. (2017), the prior 
distributions of the evaluation period of the ST, uST, and NS models are 
taken from the posterior distribution of the fitting period of each model 
by fitting a Gaussian Mixture Model (GMM) with m components. The 
GMM parameters are estimated by maximum likelihood, with the suc
cessive increase in the number of components until BICm − BICm+1 < 2 
using the Expectation Maximization (EM) algorithm, where BIC is the 
Bayesian information criterion (Schwarz, 1978). 

2.4. Trend analysis 

Here, we assume the presence of a significant trend as a proxy to the 
nonstationarity of the AMS. The trend analysis of the AMS is based on 
the posterior distribution of the slope of the location parameter of the 
GEV distribution (α1). Trends are considered significant if the posterior 
distribution agrees with the signal of the change – in this case, if the zero 
value (no trend) is not included in the 95 % credibility interval of α1. 

2.5. Magnification factors 

The impact of the observed trends in rainfall AMS is estimated using 
the magnification factor (Vogel et al., 2011). The magnification factor 
(MF) is the ratio of extreme rainfall quantiles of some future year and 
some reference year, i.e., 

MF =
xp(t0 + Δt)

xp(t0)
(10)  

where xp is the quantile function of the GEV distribution, t0 is the 
reference year and Δt is some future planning horizon. As suggested by 
Vogel et al. (2011), we employ a decadal MF (Δt = 10 years). We esti
mate the MF for the 2-year quantile (median quantile, as a proxy of 
mean extreme rainfall behavior), and for the 100-year quantile, as a 
proxy for large rainfall events. The MF is estimated using the MAP 
parameter set inferred from the full record of each AMS. 

3. Results and discussion 

3.1. Performance evaluation 

Here, we present the results of the models’ performance assessment 
using the Continuous Ranked Probability Score (CRPS) evaluated with 
the MAP parameter set for both within-sample and out-of-sample pre
diction. Intuitively, we would expect a better performance of the NS 
model in nonstationary rainfall records (i.e., with significant trends). 
Thus, to test the hypothesis that the NS model would be preferable in 
nonstationary rainfall records, the rainfall records were initially sepa
rated in AMS with and without statistically significant trends in the 
fitting period (within-sample case), and with persistent trends (trend 
detected in both fitting period and full record for the out-of-sample 
case). Here, the presence of significant trends is detected by evalu
ating whether the zero value (i.e., no trend) is outside the 95 % credi
bility interval of the posterior distribution of the parameter α1 (slope of 
the GEV location parameter). The results are summarized in Fig. 2. 
Considering the within-sample case (Fig. 2a), the NS model resulted in 
larger values of CRPS for most of the records when compared with the ST 
model – the NS model is preferred over the ST model in 78 % of the 
records. These results can be easily observed by the predominance of 
points above the 1:1 line. This is also the case when we compare the ST 
and NS models only for nonstationary records, in which the NS model is 
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supported in 94 % of the records – which is expected since the NS model 
is strongly preferred in most of the records. One of the main purposes of 
the NS models is to be used to estimate, for example, the distribution of 
extreme rainfall events in a future scenario. Therefore, it is important to 
test its out-of-sample prediction abilities, and not only within-sample 
prediction abilities. Fig. 2(b-d) summarizes the results for the out-of- 
sample prediction using the ST, uST, and NS models. Our results sug
gest that models with NS characteristics (i.e., uST and NS) show a better 
predictive ability over the ST model in roughly 86 % of the records (NS 
model in 65 % and uST in 21 %). Looking only at records with persistent 
trends, the models with nonstationary characteristics also outperform 
the ST model in 93 % of the records (NS model in 48 % and uST in 45 %). 
These results suggest that the NS model has a better performance 
compared to the ST model for both descriptive (reproduce historical 
data) and predictive (reproduce out-of-sample data) abilities and would 
be preferred to extreme rainfall frequency analysis. 

The results derived from the within-sample and out-of-sample model 
performance assessment with the Bayes Factor (BF) using the full pos
terior samples derived from DREAM(ZS) are shown in Fig. 3. The BF is the 
ratio of two probabilities, which can take on a value between 0 and 1. By 
extension, the ratio of two probabilities cannot be negative. However, 
the log scale used here is symmetrical and allows for negative values (BF 
< 0, which is evidence against the alternative). For instance, a BF of − 3 
is as much evidence against it as a BF of + 3 is evidence in favor of the 
hypothesis. Considering the within-sample case (Fig. 3a) and analyzing 
the record pool as a whole, can be seen that the support for the NS model 
decreased significantly when we used the BF for model selection, with 
the ST model showing better performance in 85 % of the records. 
Pooling the nonstationary records, the results suggest that the presence 
of significant trends in the fitting period tends to favor the selection of 

the NS model in 58 % of the records (see markers with thick borders in 
Fig. 3a). For out-of-sample forecast Fig. 3 (b-d), the BF suggests that, 
overall, the ST model outperforms the uST and NS models in 56 % of the 
records. Even considering only records that exhibit persistent trends, 
extrapolation with the NS model is rarely preferred, with the NS model 
being selected only in 16 % of the records. In this case, the uST and ST 
models showed better forecast ability, with the uST model being selected 
in most of the records (57 %), followed by the ST model (27 %). 

Our results suggest that there is a difference regarding the model 
selection when the CRPS and the BF are considered – it is a consequence 
of how these metrics work. It is important to note that the CRPS is a 
generalization of the absolute error (residual) in the context of 
descriptive or predictive distribution. Therefore, it accounts only for the 
ability of the model to reproduce the historical or out-of-sample data – 
the CRPS tends to support the selection of the NS model even when the 
AMS does not exhibit significant trends. In the case of no significant 
trends, predictions under ST and NS models are quite similar to each 
other. If models provide similar representations of the data, the simplest 
model should be chosen to avoid the selection of an overparameterized 
model. In addition, it is known that when we use more complex models, 
uncertainties arising from additional model complexity and epistemic 
uncertainty due to the use of the time-dependent model (i.e., the 
inability of the time to explain extreme rainfall variability) should be 
taken into account (Emmanouil et al., 2020; Luke et al., 2017; Serinaldi 
and Kilsby, 2015; Luke et al., 2017a). On the other hand, the BF can 
properly account for adding complexity and uncertainty, in which the 
simplest model is statistically preferred unless the more complex model 
is significantly better at explaining the data. Therefore, the use of CRPS 
tends to overestimate model complexity (i.e., tends to select the more 
complex model). According to our interpretation, the use of the BF for 

Fig. 2. Comparison of ST, uST and NS models using Continuous Ranked Probability Score (CRPS) evaluated with the MAP parameter set for (a) within-sample 
frequency analysis comparing ST and NS models, and (b-d) out-of-sample frequency analysis, comparing (b) ST and NS models, (c) uST and NS models, and (d) 
ST and uST models. The black line represents the 1:1 line. 

Fig. 3. Comparison of ST, uST and NS models using the Bayes Factor (BF) evaluated with the full posterior samples derived from DREAM(ZS) for (a) within-sample 
frequency analysis comparing ST and NS models, and (b-d) out-of-sample frequency analysis, comparing (b) ST and NS models, (c) uST and NS models, and (d) ST 
and uST models. Markers with thick borders indicate AMS with statistically significant trends in the fitting period (within-sample case), and with persistent trends 
(trend detected in both fitting period and full record for the out-of-sample case). 
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model selection provides a more consistent result – the BF demonstrates 
that the NS model rarely enhances sufficiently the statistical description 
of the out-of-sample data to justify the selection of a more complex 
model and associated prediction uncertainty (Luke et al., 2017). These 
findings lead to the main results of our work, in which the underlying 
uncertainties triggered by additional model complexity and epistemic 
uncertainties from the time-dependent structure prevent the selection of 
the NS model. 

Although our results suggest that the uST model is the most appro
priate model when there is a persistent nonstationary behavior in the 
AMS, it is not recommended its use to derive design rainfall or insurance 
analyses, as previously pointed out by Luke et al. (2017). Firstly, if the 
trends are indeed persistent over time, it is very unlikely that the pre
dictions with the uST model to be accurate over a long period (in our 
case, about 30 years) – in this situation, despite the uncertainties and 
additional complexity issues, a safer prediction with the NS model can 
provide a more conservative design rainfall. Second, we only tested the 
ability of the models to predict the observed data of the fitting and 
evaluation periods, which does not ensure that the model predicts high 
return periods accurately – further efforts should be made to evaluate 
the accuracy of the models to predict specific return period events, in 
this case, focused on high quantiles with Monte Carlo simulations. (e.g., 
Martins and Stedinger, 2000, Yu et al., 2015). Therefore, due to the 
limitation of the NS model (i.e., its uncertainties) in predicting out-of- 
sample data and lack of knowledge about its accuracy in estimating 
high quantiles, we argue that its use should be restricted to detecting 
past changes or assessing current risks related to extreme precipitation 
with return period consistent with the length of the available data. 

3.2. Extreme rainfall quantiles 

Here, we present the results from the extreme rainfall quantiles 
under nonstationary assumption. Since the NS model structure can take 
into account the observed trend in the AMS, there are impacts on the 
estimated quantiles. These results are summarized using decadal 
magnification factors (i.e., the ratio of the 10-year future quantile 
relative to some reference year), estimated to 2- and 100-year extreme 
rainfall quantiles (Figs. 4-5). When we examine the record pool as a 
whole, there is a predominance of magnification factor values above 1 (i. 
e., future quantiles are higher than the reference period), with 73 % of 
the records exhibiting increases in extreme quantiles (blue tones in Fig. 4 
and white histograms in Fig. 5). If we evaluate only AMS with significant 
trends, approximately 91 % of the records show increases in extreme 

quantiles, which can be observed in the gray histograms in Fig. 5(a-b), 
with the magnification factor values shifted towards large values. 
Several studies also report that extreme rainfall in SB is increasing in 
magnitude, independently of the period analyzed and method utilized 
(e.g., Chagas and Chaffe, 2018; Doyle et al., 2011; Haylock et al., 2006; 
Liebmann et al., 2004; Naumann et al., 2012; Penalba and Robledo, 
2010; Pinheiro et al., 2013; Re and Barros, 2009; da Teixeira, 2011). The 
sign of change for both return periods is the same, but the magnitude of 
the change is different, with the magnification factor values of the 2-year 
return period being slightly larger than the 100-year. This is a direct 
consequence of our model assumptions, in which the linear trend in the 
location parameter with fixed scale parameter results in a changing 
coefficient of variation – in this case, the ratio between quantiles in 
different return periods is not constant (Prosdocimi and Kjeldsen, 2021). 
Even though our model parameterization does not explicitly evaluate 
trends in different quantiles, the differences in the magnification factor 
can be expected since extreme events with different magnitudes could 
have different signs and rates of change due to different causing 
mechanisms. For example, Berg et al. (2013) and Fowler et al. (2021) 
outlined that there is evidence that long-duration extreme rainfall (1 day 
or more) increases with climate warming at approximately the Clau
sius–Clapeyron relationship (about 6–7 % K− 1). On the other hand, rare 
events can respond at higher rates, and short-duration extreme rainfall 
(hourly and sub-hourly) can respond more severely, about 2 times more 
(Fowler et al., (2021). 

To further illustrate the results of the extreme rainfall quantiles, 
Fig. 6 portrays the return level estimates, reflecting the extreme rainfall 
quantiles evaluated at the most recent available year within the record 
(uST model), and for 15-year parameter extrapolation (NS model), for 
three specific rainfall gauges. These gauges serve as proxies in illus
trating our findings regarding both ST and NS models. The results 
highlight important facets of the nonstationary models. Firstly, in some 
cases, the NS models exhibit notably wider credibility intervals, indi
cating higher uncertainty compared to the ST assumption. When a 
positive slope is observed in the GEV location parameter, the predictions 
derived from the NS model (Fig. 6, first to third frames) demonstrate 
larger return levels. Examining the distribution of return level values 
that delineates the probability density for a 50-year rainfall event 
(Fig. 6, fourth frame), a pattern emerges: under the ST model, extreme 
rainfall quantiles tend to concentrate around a common region – closer 
to the MAP estimates. In contrast, the NS model portrays a lower and 
more dispersed probability density, underscoring increased uncertainty 
and a tendency toward larger values. Conversely, in cases where 

Fig. 4. Spatial distribution of decadal magnification factor values (in percentage) for (a) 2-year and (b) 100-year extreme rainfall quantiles. Large markers with thick 
borders show rainfall records with significant trends detected in the fitting period. 
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negative slopes are evident (Fig. 6b), careful attention is warranted. 
Beyond the heightened uncertainty associated with parameter infer
ence, return level predictions under NS models are smaller, signifying a 
decreasing GEV location parameter over time. This assumption implies a 
higher risk, advocating caution in opting for the NS model in such 
scenarios. 

For rainfall records devoid of significant trends (Fig. 6c), although 
estimates under ST and NS models might appear similar, nuanced dif
ferences emerge in the probabilistic distribution of quantiles. Here, the 
NS model demonstrates substantial uncertainty, as evidenced by a more 
dispersed density. This highlights the necessity for measures controlling 
complexity to steer clear of selecting a more intricate model with sub
stantial uncertainty, especially when it yields a similar representation of 

the data. 

4. Impact of the observed trends in the parameter inference 

Here, we used the simplest nonstationary model, i.e., with a linear 
trend in the location parameter. Although simple, this assumption is 
reasonable since a more complex trend model can easily result in an 
overfitted model. However, even considering the simplest trend model 
for the GEV location parameter, there are important implications in the 
inference of the scale parameter which is kept constant in the model, 
that was kept constant over time. Fig. 7 presents the values of the GEV 
distribution parameters for the MAP parameter set. The results suggest 
that the NS model tends to favor lower values of the scale parameter 

Fig. 5. Histograms of decadal magnification factor values for rainfall gauges without significant trend detected in the fitting period (white), and with significant 
trend detected in the fitting period (grey) for (a) 2-year and (b) 100-year extreme rainfall events. 

Fig. 6. (a-c) Frequency curves under ST (blue) and uST (yellow, extreme rainfall quantiles evaluated at last available year of the record), and NS (red, 15 years 
extrapolation) models, and probability density for a 50-year return period extreme rainfall event (p = 98%) derived from the (a) Bananal rainfall record (ANA No. 
02548043). (b) and (c) is the same as in (a), but for São Bernando (ANA No.02854013) and Triolância (ANA No.02350052) rainfall records. The solid lines represent 
the maximum a posteriori (MAP) estimate of the posterior distribution, the dashed lines represent the 95 % credibility intervals, and the black circles represent the 
data under the empirical return period (stationary). 
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compared to the ST model, especially in the case of records with sig
nificant trends detected in the fitting period. This is a consequence of our 
model assumptions and the way that each model represents the data. For 
the ST model, the increase observed in the AMS (caused by the presence 
of a trend) is represented by a relatively large value of the scale 
parameter, which is simply a representation of the dispersion of the 
data. Under the NS model, the increase observed in the AMS is 
accounted for by an increase in the location parameter rather than the 
scale parameter. In the NS model, the scale parameter does not describe 
the dispersion of the sample as a whole, but rather the dispersion of the 
change in the location parameter over time. This result is also reported 
by Luke et al. (2017) and Prosdocimi and Kjeldsen (2021) for the Log- 
Pearson III and GEV distributions, respectively. 

This concept is further illustrated in Fig. 8, which shows the posterior 
parameter distribution of a specific AMS that serves as a proxy of our 
findings regarding both ST and NS model’s parameter inference. The 
posterior distribution of the scale parameter under the uST and NS 
model is shifted towards lower values compared with the NS model. 
Also, the posterior distribution of the location and shape parameters 

under the nonstationary assumption show lower and more dispersed 
densities relative to the stationary assumption, especially for the loca
tion parameter – indicating higher uncertainties. 

5. Conclusions 

In this study, we use annual maximum rainfall records from Southern 
Brazil to test: (1) the suitability of NS models in the presence of statis
tically significant trends, and (2) their potential in modeling out-of- 
sample data to understand whether the presence of significant trends 
justifies the use of a nonstationary frequency analysis model. Employing 
a nonstationary model based on the generalized extreme value distri
bution, we allow the location parameter to dynamically change over 
time via a linear trend model, taking into account the underlying un
certainties in the model’s performance and quantiles estimation. 

Model selection based on maximum a posteriori parameter estimates 
may lead to the selection of a nonstationary model for within-sample 
and out-of-sample extreme rainfall prediction. However, taking into 
account the uncertainty associated with the estimated parameters, the 

Fig. 7. Spatial distribution of MAP parameter set values estimated using the full record of each AMS for (a-c) stationary, and (d-g) nonstationary models. Large 
markers with thick borders show rainfall records with significant trends detected in the fitting period. 

Fig. 8. Histogram of the posterior distribution of the estimated parameters under (a) ST (blue), (b) uST (yellow), and (c) NS (red) models for the Capela da Ribeira 
rainfall record (ANA No. 02449000). 
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NS model is rarely supported for prediction. The uncertainty triggered 
by the additional parameter and epistemic uncertainties due to the time- 
varying structure of the nonstationary model is the main limitation of 
the nonstationary assumption. We suggest that only the presence of 
significant trends is not sufficient to justify the selection of the NS model 
and that its use should be addressed with physical knowledge about the 
origin and persistence of the observed changes over time, properly 
taking into account the uncertainty resulting from additional 
parameters. 
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