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Building Electricity Load Forecasting
via Stacking Ensemble Learning Method

with Moving Horizon Optimization
Eric M. Burger, Scott J. Moura

Abstract—The short-term forecasting of building electricity de-
mand is certain to play a vital role in the future power grid. Given
the deployment of intermittent renewable energy sources and
the ever increasing consumption of electricity, the generation of
accurate demand-side electricity forecasts will be valuable to both
grid operators and building energy management systems. The
literature is rich with forecasting models for individual buildings.
However, an ongoing challenge is the development of a broadly
applicable method for electricity forecasting across geographic
locations, seasons, and use-types. This paper addresses the need
for a generalizable approach to electricity demand forecasting
through the formulation of a stacking ensemble learning method.
Rather than using a single model to predict electricity demand,
our method uses a weighted linear combination of forecasts from
multiple sub-models. By learning the model weights in real-time
using electricity demand data streams and a moving horizon
training technique, the method is more robust than a single
model approach. By applying our method to electricity demand
data sets for 8 different buildings, we show that this data-driven
approach is capable of producing accurate multivariate forecasts
for building level applications.

Index Terms—building electricity load forecasting, stacking
ensemble learning, moving horizon optimization, ordinary least
squares (OLS) regression, least squares with L2 regularization
(Ridge) regression, k-nearest neighbors (k-NN) regression

I. INTRODUCTION

A. Motivation & Background

Commercial and residential buildings account for 74.1%
of U.S. electricity consumption, more than either the trans-
portation sector or the industrial sector (0.2% and 25.7%,
respectively) [1]. Maintaining a continuous and instantaneous
balance between generation and load is a fundamental require-
ment of the electric power system [2]. To reliably match supply
with demand, the forecasting of grid-level electricity loads has
long been a central part of the planning and management
of electrical utilities [3]. The accuracy of these forecasts
has a strong impact on the reliability and cost of power
system operations. Trends, such as vehicle electrification and
distributed generation, are expected to pose new challenges
for grid operators. In particular, traditionally centralized power
flow and generator dispatch tasks are becoming increasingly
decentralized, creating a critical need for local electricity
forecasting.

E. M. Burger and S. J. Moura are with the Energy, Controls, and Appli-
cations Lab (eCAL), 611 Davis Hall, Civil and Environmental Engineering
Department, University of California Berkeley, Berkeley, CA, USA. E-mail:
ericburger@berkeley.edu

To improve the accuracy of electricity demand forecasts
and aid in power system management, recent attention has
been placed on short-term building-level electricity demand
forecasting using a wide range of models [4][5]. Accurate and
adaptive forecasting of demand-side loads will play a critical
role in maintaining grid stability and enabling renewables
integration. Additionally, many novel optimal control schemes,
under research umbrellas such as demand response and mi-
crogrid management, require short-term building electricity
demand forecasts to aid in decision making [6].

B. Literature Review

Supply-side and demand-side electricity forecasting has
been a topic of research for many decades. The literature
is filled with a variety of well-cited modeling approaches,
each differing in algorithmic complexity, estimation procedure,
and computational cost. Of particular note are the variants
of Artificial Neural Networks (ANN) [3][4][5][7][8][9][10],
Support Vector Regression (SVR) [11][12][13][14] and Au-
toregressive Integrated Moving Average (ARIMA) models
[3][12][13][15][16][17][18]. Lesser but nonetheless notewor-
thy attention has been given to approaches such as Multiple
Linear Regression [3][11][19], Fuzzy Logic [3][20], Decision
Trees [4], and k-Nearest Neighbors (k-NN).

These studies provide a broad catalog of use-cases and
demonstrate the performance of certain forecasting algo-
rithms when applied to specific building types. In particu-
lar, [3][4][10][17] provide a survey of electricity forecasting
methods and a high-level comparison of techniques. In [8],
the authors provide a detailed description of ANNs and their
application to load forecasting, including data pre-processing
and ANN architectures. The work in [5] details the develop-
ment of a seasonal ANN approach and the advantage over
a Seasonal ARIMA (SARIMA) model when applied to 6
building datasets. The focus of [18] is on the introduction
of motion sensor data to improve the accuracy of an ARIMA
model. In [9][11][15][18][20], the authors perform an in-depth
analysis of the power demand patterns of a particular building
in order to customize a forecasting model.

In papers with experimental results, the authors have gener-
ally applied their electricity demand forecasting technique to
only a small number of datasets. Consequently, the literature
is rich with forecasting algorithms tailored for individual
buildings. This leads us to the following question: Is it possible
to design a minimally-customized forecasting algorithm that is
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widely applicable across a diversity of building types, enabling
scalability? We pursue this question by proposing a stacking
ensemble learning method for electricity demand forecasting.

Specifically, due to unique building characteristics, occu-
pancy patterns, and individual energy use behaviors, the litera-
ture demonstrates that no single “silver bullet” model structure
can accurately forecast electricity demand across all buildings.
For example, some forecasting models may produce accurate
predictions under identifiable conditions, such as a seasonal
trend, a morning routine, or an extended absence. Other
models may be ideal for buildings with energy use behaviors
that are periodic over long periods of time. For buildings with
frequent changes in occupancy patterns, recursively trained
models may yield the highest accuracy.

C. Contributions

A key contribution of this paper is to develop an ensemble
learning method that reduces the need for intensive model se-
lection on a case-by-case basis. Rather, an engineer can select
a set of different forecasting models that have proven effective
in past case studies (e.g. the literature cited above). Once
the models have been trained on building-specific electricity
demand records, our ensemble method can learn, in real-time,
which sub-models to favor and which to avoid for a particular
building.

With our stacking ensemble method, we generate electricity
demand forecasts using the weighted sum of predictions
from multiple different forecasting sub-models. The sub-model
weights are recursively learned using an electricity demand
data stream and a moving horizon training technique. In this
way, the ensemble method is able to learn in real-time and
to produce short-term electricity demand forecasts that are
automatically tailored to a particular building and instance in
time. In addition to forecast accuracy, this paper will place
an emphasis on method adaptability and ease of use. While
we have implemented certain forecasting sub-models in this
paper, the method is intended to allow the sub-models to be
interchangeable.

D. Assumptions

In this paper, we will make the following assumptions with
respect to the availability of building electricity demand data:

A1. We have access to hourly historical building electric-
ity demand at the meter.

A2. We have access to hourly historical weather data near
the building location.

A3. We do not have access to submetered electricity
demand data or building operations data, such a oc-
cupancy measurements or mechanical system sched-
ules.

The limited access to input data with which to produce fore-
casts is representative of the challenge faced by grid operators.
Accordingly, this paper will demonstrate the potential of our
ensemble method to non-invasively forecast total electricity
demand using data-driven methods. Additionally, unlike in
[9][11][15][18][20], where the authors perform an in-depth

analysis of the power demand patterns in order to customize
a model to a particular building, this paper will focus on
developing a forecasting approach that is generally applicable
to all buildings with minimal customization.

E. Outline

This paper is organized into three sections: Methods, Re-
sults, and Conclusions. In Section II. Methods, we briefly
present background theory for the two exemplary regres-
sion sub-models employed in this paper, Ordinary (Linear)
Least Squares with `2 Regularization (Ridge) and k-Nearest
Neighbors (k-NN). These regression models will compose the
sub-models in our ensemble method. Additionally, Section II
presents the stacking ensemble learning method for electricity
demand forecasting with a moving horizon training technique.
In Section III. Results, we apply and analyze the ensemble
method to 8 commercial/university building electricity demand
datasets. Key conclusions and future research directions are
summarized in Section IV. Conclusions.

II. METHODS

A. Regression Models

In this paper, we will consider one parametric regression
model, Ordinary (Linear) Least Squares with `2 Regularization
(Ridge), and one nonparametric model, k-Nearest Neighbors
with uniform weights and binary tree data structure (k-NN),
for use as sub-models in our stacking ensemble method. The
structure of both regression models are briefly described in
the following subsections. While we have elected to employ
relatively simple regression models, our ensemble method is
such that these models could easily be replaced with more
complex regression models, such as Artificial Neural Networks
(ANNs) or Seasonal Autoregressive Integrated Moving Aver-
age (SARIMA) models.

B. Ordinary Least Squares with `2 Regularization

Ordinary Least Squares with `2 Regularization (Ridge) fits a
linear model with coefficients w ∈ Rn to minimize the sum of
squared errors between the observed and predicted responses,
while imposing a penalty on the size of coefficients measured
by their `2-norm. The linear model of a system with univariate
output is given by

ŷ = w0x0 + w1x1 + . . .+ wnxn

=
∑
k

wkxk = wTx (1)

with variables x ∈ Rn, the model input, ŷ ∈ R, the predicted
response, n, the number of inputs or features in x, and k =
1, . . . , n.

The linear model is trained on a set of inputs and observed
responses by solving the quadratic program:

min
w

∑
i

‖wTxi − yi‖22 + λ‖w‖22 (2)

with variables xi ∈ Rn, the model input for the i-th data point,
yi ∈ R, the i-th observed response, w ∈ Rn, the weighting
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coefficients, and i = 1, . . . , N , where N is the number of data
samples and n is the number of features in xi. Lastly, λ is a
weighting term for the regularization penalty.

For a system with a multivariate output ŷ ∈ Rm, we
will treat the outputs as uncorrelated and define a set of
coefficients wj ∈ Rn for each predicted response ŷj ∈ R
for j = 1, . . . ,m. Thus, the multivariate linear model is

ŷj = wTj x, ∀j = 1, . . . ,m (3)

The weights of the multivariate model are determined by
solving the quadratic program:

min
w

∑
i

∑
j

‖wTj xi − yi,j‖22 +
∑
j

λ‖wj‖22 (4)

with variables xi ∈ Rn, the model input, yi,j ∈ R, the j-th
response observed response, wj ∈ Rn, the weighting coeffi-
cients of the j-th response, i = 1, . . . , N , and j = 1, . . . ,m,
where N is the number of data samples, n is the number of
features in xi, and m is the number of observations in yi.

C. k-Nearest Neighbors Regression

In k-Nearest Neighbors Regression (k-NN), an input x ∈
Rn is mapped to a continuous output value according to the
weighted mean of the k nearest data points or neighbors, as
defined by the Euclidean distance. In this paper, we will use
uniform weights. In other words, each point in a neighborhood
a contributes uniformly and thus the predicted univariate
response ŷ ∈ R is the mean of the k-nearest neighbors.

ŷ =
1

k

k∑
i=1

ya,i (5)

with variable ya, the set of k observed responses y ∈ R in
neighborhood a. For a system with multivariate output ŷ ∈
Rm, the model is defined as the mean of each observation j
over the k-nearest neighbors.

ŷj =
1

k

k∑
i=1

ya,i,j ∀j = 1, . . . ,m (6)

Given a new input x, it is possible to determine the
neighborhood by computing the Euclidean distance (i.e. `2-
norm of the difference) between the new input x and every
data point in the training data set xi for i = 1, . . . , N and
then ordering the distances to identify the nearest neighbors.
However, this brute-force search is computationally inefficient
for large datasets.

To improve the efficiency of the neighborhood identifica-
tion, the training data points are partitioned into a tree data
structure. A commonly used approach for organizing points
in a multi-dimensional space is the ball tree data structure,
a binary tree in which every node defines a D-dimensional
hypersphere or ball. At each node, data points are assigned
to the left or right balls according to their distance from the
ball’s center. At each terminal node or leaf, the data points are
enumerated inside the ball. We refer the reader to [21] for a
description of ball tree construction algorithms.

D. Stacking Ensemble Learning

In this section, we develop a regression method that pro-
duces a prediction according to the weighted sum of predic-
tions from multiple sub-models. Ensemble learning methods
which linearly combine the predictions of multiple models
are generally referred to as stacking or stacked generalization
methods and can often outperform any one of the trained
sub-models (see e.g. [22][23]). To produce a multivariate
prediction ŷΣ ∈ Rm, the ensemble model is defined as the
weighted sum of each prediction ŷs ∈ Rm from each sub-
model s, as given by

ŷΣ =

M∑
s=1

θsŷs (7)

with variable θs ∈ R, the weighting coefficient of sub-model
s where M is the number of sub-models and subscript s =
1, . . . ,M indexes the coefficients (i.e. [θ1, . . . , θM ] = θ ∈
RM ). Note that we are not calculating the weighted mean of
the sub-models. Therefore, we are not requiring that the values
of the weighting coefficients sum to 1 or that the individual
weights are positive.

We will employ an Ordinary Least Squares with `2 Regu-
larization (Ridge) approach for learning the weighting coef-
ficients θ. By solving a quadratic optimization problem, we
can identify the weighting coefficients that minimize the error
between the observations and the weighted sum of the sub-
model predictions. The optimization problem and stacking
ensemble model at time step t are given by

θ? = argmin
θ

N∑
i=1

m∑
j=1

(
yi,j −

M∑
s=1

θsŷs,i,j

)2

+ λ

M∑
s=1

θ2
s (8)

ŷΣ,t =

M∑
s=1

θ?s ŷs,t (9)

with variables θ? ∈ RM, the optimal weighting coefficients,
yi ∈ Rm, the i-th observed multivariate response, ŷs,i ∈ Rm,
the i-th prediction from sub-model s, ŷΣ,t ∈ Rm, the ensem-
ble model prediction at t, and i = 1, . . . , N , where N is the
number of data samples used for training and m is the length of
yi. Subscript j = 1, . . . ,m indexes the j−th response. Lastly,
λ is a weighting term for the regularization penalty.

E. Stacking Ensemble with Moving Horizon Training

To enable the ensemble model to learn and adapt to changes
in the observed system, we will utilize time-varying weights,
θt,s ∈ R for s = 1, . . . ,M (i.e. θt ∈ RM ). These time-
varying weights will be calculated by minimizing the error
between the observations and the weighted sum of the sub-
model predictions over a retrospective moving horizon of data
samples. In other words, at each time step t, we will retrain the
ensemble model using only the most recent T observations.
Therefore, the observations used for calculating the weights
θt will move with the current time step. The moving horizon
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optimization problem and stacking ensemble model at time
step t are

θ?t = argmin
θt

T∑
i=1

m∑
j=1

(
yt−i,j −

M∑
s=1

θt,sŷs,t−i,j

)2

+ λ

M∑
s=1

θ2
t,s

(10)

ŷΣ,t =

M∑
s=1

θ?t,sŷs,t (11)

with variables θ?t ∈ RM, the optimal weighting coefficients
at time step t, yt ∈ Rm, the observation at t, ŷs,t ∈ Rm, the
prediction of sub-model s at t, and ŷΣ,t ∈ Rm, the ensemble
model prediction at t where T is the number of observations
in the moving horizon.

F. Data

For experimentation, this paper considers 2 years of metered
hourly electricity demand (kW) data for 8 buildings on the
University of California, Berkeley campus. This time-series
data has been provided by the facilities team at the University
of California, Berkeley and will be used as the observation
data for the sub-models and ensemble model. Submetered
electricity demand data and building operations data, such a
occupancy measurements and mechanical system schedules,
were not available. The 8 buildings were selected for their
diversity. These buildings include classrooms, offices, libraries,
and research facilities. We have also acquired hourly air
temperature (◦C) and relative humidity (%RH) data from a
local weather station [24].

G. Ensemble Learning for Electricity Demand Forecasting

In this paper, we will apply the stacking ensemble model
above to the building electricity forecasting problem. Given
the many unpredictable behaviors of occupants and the unique
physical and mechanical characteristics of every building, a
single model approach to electricity demand forecasting may
perform very well in one case and very poorly in another. Fur-
thermore, the incorporation of exogenous signals like regional
weather conditions may improve a model’s accuracy but such
benefits cannot be guaranteed. Only through observation and
experimentation can the best regression models and input types
be identified for a particular building.

By employing our stacking ensemble learning method with
moving horizon training technique, we seek to improve the
robustness of our electricity demand forecaster. Before we
test the ensemble model, we must first train and test the sub-
models. In this paper, we will use 8 sub-models, 4 using Ridge
and 4 using k-NN. These models will be used to generate
short-term multivariate electricity demand forecasts, specifi-
cally 6 consecutive hourly electricity demand predictions (i.e.
ŷ ∈ R6).

The regression models will employ 4 different input types
or feature sets: electricity demand (D), time (T), electricity
demand and time (DT), and electricity demand, time, and
exogenous weather data (DTE). Thus, there is 1 Ridge model
and 1 k-NN model for each of the 4 input types. The electricity
demand input type (D) consists of the 24 hourly records that

precede the desired forecast (x ∈ R24). The time input type
(T) is the current weekday and hour represented as a sparse
binary vector (x ∈ {0, 1}31). The demand and time input type
(DT) combines the demand and time inputs (x ∈ R55). The
demand, time, and exogenous weather data input type (DTE)
is the demand and time input plus current air temperature
(◦C) and relative humidity (%RH) data retrieved from a local
weather station (x ∈ R57)[24].

In this study, we train a set of 8 sub-models for each
building. Training data from one building is not used to fit
the models of another building. The sub-models are trained
in an off-line batch manner (i.e. trained once on a large
dataset) using 18 months of hourly input data from January
1st, 2012, to July 1st, 2013 (i.e. 13,128 training data points).
The remaining 6 months of hourly data, July 1st, 2013, to
January 1st, 2014 are reserved for testing of the sub-models
and the ensemble method (i.e. 4,416 testing data points).

Testing of the stacking ensemble method is done by repeat-
ing the following procedure for each time step t = 1, . . . , 4416
where t represents the integer-valued hour between July 1st,
2013, and January 1st, 2014.

1) Using each of the 8 sub-models, generate a 6 hour
electricity demand forecast, ŷs,t ∈ R6 for s = 1, . . . , 8,
as given by either (3) or (6).

2) Learn the model weights θ?t,s ∈ R for s = 1, . . . , 8 by
minimizing (10) over a moving horizon of the previous
T = 168 observations (i.e. 7 days)

3) Generate the ensemble model’s forecast, ŷΣ,t ∈ R6, as
given by (11).

Once a forecast has been generated for every data point in
the testing set, we calculate the errors between the observation
yt and the forecast ŷΣ,t for t = 1, . . . , 4416. To evaluate
the advantage of our ensemble method over a single model
approach, we also calculate the errors between the observation
yt and the sub-model forecasts ŷΣ,t for s = 1, . . . , 8 and
t = 1, . . . , 4416. To enable the comparison of forecasting
error between different buildings, the performance of the sub-
models and the ensemble model will be reported as the mean
absolute percent error (MAPE),

MAPE =
100%

mN

N∑
i=1

m∑
j=1

∣∣∣∣yi,j − ŷi,jyi,j

∣∣∣∣ (12)

with variables yi ∈ Rm, the i-th observation, and ŷi ∈ Rm,
the i-th prediction, where m represents the number of outputs
in the prediction (m = 6) and N , the number of predictions.

III. RESULTS

The sub-model and ensemble model performances for each
of the 8 building datasets are summarized in Fig. 1. In the
figure, the marker color indicates the regression technique used
by each model (Ridge, k-NN, or Ensemble) and the marker
shape indicates the data type (D, T, DT, DTE, or Ensemble).
The sub-model results (Ridge and k-NN) denote the fore-
cast MAPE produced from that particular sub-model, over
the testing dataset. The ensemble model results indicate the
forecast MAPE produced by minimizing the moving horizon
optimization problem and a weighted linear combination of the
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Fig. 1. Ensemble Model and Sub-Model Performance Results. The mean absolute percent error (MAPE) of the ensemble model and sub-models of each
building for every 6 hour forecast between July 1st, 2013, and January 1st, 2014.
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Fig. 2. Time-Varying Sub-Model Weights. Examples of time varying weights θt,s for building E from July 1st to November 1st, 2013.

sub-model forecasts. Examples of the multivariate electricity
demand forecasts ŷΣ,t ∈ R6 produced by the ensemble model
are presented in Fig. 3. Note that the figure plots ŷΣ,t starting
at but excluding the most recent observation.

By comparing the results in Fig. 1 for each building, we
can distinguish sub-models that generally perform poorly (e.g.
Ridge and k-NN with T input) from sub-models that generally
perform well (e.g. Ridge and k-NN with DT input). We also
observe dispersion among the results, particularly in Buildings
E, F, and H. This dispersion represents a challenge for building
level electricity forecasting. To produce the best results using
a single model approach, an engineer must perform model
selection for every deployment. This is difficult to scale.
Just because a certain regression model and input type has
performed well for one building does not guarantee it will do
the same for another building.
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Fig. 3. Building E Ensemble Forecasts. Examples of 6 hour electricity
demand forecasts for building E using the stacking ensemble learning method.
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As indicated by the results, the ensemble model performs
comparable to or better than the best sub-model for each build-
ing. Therefore, by minimizing the moving horizon optimiza-
tion problem, the ensemble model is able to (i) learn the sub-
model weights in an online manner, and (ii) produce a linear
combination of sub-model forecasts that is comparable to or
better than the best sub-model forecast. This characteristic
is valuable to grid operators and building-level applications.
Specifically, engineers need only identify a set of sub-models
which generally perform well for demand-side electricity
demand forecasting. Then, after training each sub-model on
data from a particular building, the stacking ensemble learning
method with moving horizon training technique can adaptively
identify the weighting of each sub-model for that building.

Fig. 2 presents the sub-model weights θt,s of the Building
E ensemble model from July 1st to November 1st, 2013.
The weights θt,1, θt,2, θt,3, and θt,4 correspond to the Ridge
models with D, T, DT, and DTE input types, respectively.
Similarly, the weights θt,5, θt,6, θt,7, and θt,8 correspond
to the k-NN models with D, T, DT, and DTE input types,
respectively. As shown, the model weights do not converge but
rather continuously evolve in time. Because the weights are
determined by minimizing the moving horizon optimization
problem, there are trends in the weighting values, but as the
training data changes, so do the weights. Of particular note is
the sharp change in the parameter values around September
1st, 2013. This can be attributed to the start of the fall
academic semester at UC Berkeley and the corresponding
change in electricity demand patterns.

IV. CONCLUSIONS

This paper presents a stacking ensemble learning method
with a moving horizon training approach. We have applied
the method to the short-term building-level electricity demand
forecasting problem. These results demonstrate enhanced fore-
casting accuracy across a diversity of buildings due to two
features: (i) applying a linear combination of sub-models, and
(ii) adaptively learning the stacked model weights in real-time.
The practical advantages are notable. Namely, the proposed
method enables reliable forecasts over evolving use patterns
across a wide diversity of buildings, in contrast to selecting
and tailoring a single model for each building.

Additionally, the adaptability provided by the moving hori-
zon training approach enables enhanced control applications.
Rather than assuming that demand behaviors are time invari-
ant, the proposed method responds to changes in electricity
demand patterns. We have demonstrated this method on 8
buildings’ datasets using 8 sub-models each. The results
demonstrate that the stacking ensemble method produces equal
or better accuracy than single models for multivariate electric-
ity demand forecasts for building-level applications.
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