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The big data revolution is only just beginning in the materials science and engineering field, 

offering the promise to enable high-throughput workflows and accelerate material development.  

For this to be realized, a new set of tools capable of using this data for identifying better material 

candidates and assisting in the analysis of samples must be developed. Currently, most material 

development projects require manually searching vast composition space while relying primarily 
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on expert domain knowledge. While this strategy has been reasonably effective throughout history, 

emerging technologies are placing rigorous demands on material performance.  Furthermore, many 

of the simplest combinations of elements (i.e. typically one primary element and one to three minor 

alloying elements) have been thoroughly evaluated.  Within the last two decades, the materials 

science community has become interested in high entropy materials, typically containing five or 

more cations in near-equimolar amounts. This compositional space is largely unexplored and 

challenging to model with traditional tools, making it an excellent use case for machine learning. 

In the first part of the dissertation, machine learning tools are developed and demonstrated for 

predicting the relative synthesizability of high entropy and ultrahigh ceramics as well as the 

prediction of crystal structure for alloys.  These machine learning approaches were validated by 

experiments and comparison with computational predictions where possible.  The second part of 

the dissertation details progress in accelerating post-fabrication aspects of material design 

frameworks.  For material analysis routines, deep neural networks were constructed to analyze 

diffraction patterns and determine symmetry and/or structure of the phases present.  The electron 

backscatter diffraction (EBSD) platform was used to demonstrate the ability for such algorithms 

to not only identify symmetry, but that neural networks are also a potential solution to some of the 

grand challenges state of the art EBSD software cannot solve.  This includes space group 

identification and the phase mapping of materials with similar crystal structures.  Further 

validation is performed to demonstrate the model’s reliability with changing acquisition 

parameters.  Combined, these machine learning-based tools represent an opportunity to reduce the 

time and expertise required for material development and are likely to become valuable 

components in high-throughput workflow.
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Chapter 1 Introduction  

1.1 Motivation 

Material discovery plays a vital role in the technological progress of human civilization.  

Therefore, independent of the industry or potential applications (e.g. medicine, aerospace, or 

energy), the demand for materials with improved performance and better tradeoffs will likely never 

cease.  In modern material design and analysis frameworks, there are several interrelated 

challenges when it comes to designing, fabricating, and analyzing a new material with targeted 

properties.  The first is the design and analysis of materials relies primarily on the domain 

knowledge of experts in their field, sometimes coupled with theoretical models.  In the same vein, 

the amount of data available is often limited to tens or hundreds of points, particularly for inorganic 

materials.  The second challenge is the amount of data collected for each trial that requires analysis 

by a researcher with expertise in the material field and analytical tool.  If the experiment is 

unsuccessful, it must be determined what caused the material not to meet the target and what 

changes could yield improvements if the next iteration is to move closer to the goal.  This means 

that restrictive limitations on the search space are typically necessary to keep the dimensionality 

of the problem tractable and that the amount of information that is truly gleaned from each 

successive experiment can be limited by the available methods for finding patterns in the data.  

Lastly, there is the challenge of the overwhelming search space where the best answers may be 

found.  Despite continuous effort since the bronze age, only a small fraction of the possible 

candidates have been systematically evaluated. However, many of the simplest combinations of 

inorganic materials (i.e., minor additions of alloying elements to a base element) have been studied 

and the field has turned to more complex combinations of the elements where there is little existing 



 

2 

data and fewer models.  Clearly, a new set of tools are needed that will accelerate the discovery 

and characterization of the novel materials needed to solve current and future challenges. 

1.2 Background and Objective  

The current material design cycle is highly inefficient with respect to the number of human-

driven steps that are critical for success.  The process typically begins when an experienced 

metallurgist considers the opportunity to improve an existing alloy or develop a new one.  Data 

about similar materials is gathered and computational tools, such as thermodynamic software or 

first principles calculations, are employed.  Potential candidates are typically fabricated and 

evaluated in a singular fashion with several different characterization techniques often required to 

develop the most complete understanding of the processing-microstructure-properties relationship.  

At this stage, the metallurgist uses the collected data to evaluate why the candidate material 

exhibits this combination of properties and how they can be further tuned in successive trials.  This 

cycle can be repeated hundreds or thousands of times as the complex, multi-element (typically 

only 3-4 elements) space is experimentally evaluated in search of a material that meets the design 

goals.   

Research into the development of methods and tools to improve upon the slow and tedious 

nature of this process have been of considerable interest since the announcement of the Materials 

Genome Initiative in 2011. The federal initiative was launched with the goal of discovering, 

manufacturing, and deploying advanced materials faster and with significantly less capital 

expenditure [1].  Early research stemming from this initiative was focused on the development of 

highly-accessible database infrastructure such as Automatic FLOW (AFLOW) [2], the Open 

Quantum Materials Database (OQMD) [3], and the Materials Project [4].  Each of these platforms 

focus primarily on the reliable automation of first principles calculations for inorganic materials 
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on a large-scale and making the results available to the community.  As the databases grew, the 

potential for leveraging data and algorithms (i.e. materials informatics) became apparent with 

successful undertakings including the design of lithium-ion battery cathodes [5], predicting new 

auxetic materials [6], or searching for topological insulators [7].  While these platforms and the 

materials screening methods they offered significantly reduced the reliance on trial-and-error 

strategies, first principles calculations remain costly and time-consuming owing to the need for 

significant access to a supercomputer.  Furthermore, these computational materials discovery tools 

require information about the materials of interest, such as atomistic structural information, which 

is commonly one of the unknowns in materials discovery.  Additionally, first principles calculation 

of material properties can only be applied to single-phase materials while multi-phase materials 

can be of interest for the combination of properties they offer [8].  As a result, the compositional 

and structural search space that can be reasonably handled by these techniques remains limited. 

With data generation rates accelerating and increasing access to data, interest in applying 

techniques from the field of data science began to emerge.  The application of these tools to 

material design and discovery will be discussed first, followed by their utilization in material 

characterization.  In 2014, Meredig et al. were one of the first to suggest data-driven design of 

materials using computer models trained to find patterns in materials datasets and apply the 

information to identify promising candidates in unconstrained composition space [9].  The key 

components employed in such works are a clean, well-labeled dataset, a feature engineering 

strategy for numerically representing the material composition to a computer, an educated choice 

of learner, and some strategy for model optimization [10,11].  Of these, creating meaningful 

numerical descriptors has proven to be the most challenging owing to the fact that traditional 

representations of crystal structures, i.e. translational vectors and fractional coordinates, are not 
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invariant [11].  Thus far, feature engineering strategies have primarily relied on statistical and rule-

of-mixtures style weighting of a handful of general attributes for the atoms that make up the 

material [10,12,13].  In some cases, more precise features based on domain knowledge are applied; 

the use of valence electron concentration, Pauling electronegativity, or mixing entropy for the 

prediction of single-phase high entropy materials is one such example [14].  Using these strategies, 

data-driven design of multiple classes of materials have been demonstrated [11,15,16], including 

bulk metallic glasses [12], magnetic Heusler compounds [17], shape memory alloys [18], and high 

entropy materials [14,19,20]. In these works, the proposed materials presented to the trained 

machine learning algorithm were ranked on their likelihood of meeting the target goals.  The 

decision of which proposed materials to test experimentally is frequently based on a combination 

of the algorithm’s rankings, researchers’ domain knowledge, insight into how the model made its 

predictions, and other experimental and calculated data.  While the initial predictions from the 

model may not yield novel materials that meet the design goal [21] or every prediction may not be 

correct [18], machine learning models have the advantage of being readily updated to incorporate 

the new results and can be applied in a rapid, iterative fashion that adapts at the pace of the research.  

The rate at which machine learning models can be updated and re-assess materials compared to 

more traditional modeling efforts has become of significant interest.  Recently, there have been 

several proposals and a handful of research efforts to develop automated experimental workflows 

that leverage machine learning models to quickly determine which experiments to run and apply 

the results to make better decisions in successive iterations [22–25].   

An important component of these proposed frameworks will be the ability to rapidly 

characterize the resulting materials.  In fact, the correlation between structure and properties is one 

of the primary relationships of interest in the development or application of any material: proteins 
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[26,27], molecules [28–30], geological materials [31,32], and inorganic materials [33–38].  Herein, 

the focus will be on the development of tools applied primarily to inorganic materials.  In 2015, 

DeCost et al. hypothesized that digital image techniques would eventually be able to segment, 

characterize, and compare microstructures [39].  Applying techniques from the field of computer 

vision, a subset of artificial intelligence concerned with teaching computers to understand and 

potentially respond to information from the visual world, image-based tasks in materials science 

including classification [40–45], segmentation [46,47], and other analyses [48–50] have since been 

accomplished.  Of recent interest has been the application of convolutional neural networks 

(CNNs), a class of deep learning models designed for processing data that comes in multiple arrays 

(e.g. color images composed of three 2D arrays) [51].  CNNs use a training dataset to learn to 

assign importance to features that maximize classification accuracy.  This importance is learned 

autonomously by tuning feature detectors (i.e. filters or weights), which is accomplished by 

computing the gradient of the loss function with respect to all weights and a given input-output 

example (i.e backpropagation), an efficient approach to minimizing the difference between the 

neural network’s predictions and the ground truth [52].  These filters operate in groups called filter 

banks to form feature maps containing distinctive local motifs found somewhere within the input 

image [51].  Efforts into visualizing the knowledge learned by these deep neural networks 

demonstrates that they are indeed capable of learning similar motifs to what would be described 

by a human for a given output category [53–55].  In materials science, these models can accelerate 

characterization efforts for multiple techniques such as optical and electron microscopy [39–

43,45,47,48,56].  Further development of these tools can assist with and eventually even automate 

steps within high-throughput frameworks.  
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The objective of this work is to expand the research and development and application of data-

driven strategies toward materials design and analysis.  Throughout the development of these 

algorithms, we seek to understand how and why the models make their respective predictions.  

Within material discovery, this means decoding both the algorithm’s decisions and the 

fundamental physics that are dictating material synthesizability and properties.  This can reveal 

previously unknown relationships and spark new insight for solving future material challenges.  

The materials characterization work done herein is applied to improve the analysis of electron 

diffraction data.  This relies on deep neural networks that are commonly referred to as ‘black box’ 

models, which by definition humans cannot fully assess; however, techniques from the burgeoning 

field of explainable AI are applied to validate the classification performance of these models.  

Additionally, for both materials design and analysis, comparisons of the developed approaches 

compared to state-of-the-art models and software will be discussed.  By applying these tools in 

experimental studies, we aim to demonstrate their potential as components of high-throughput 

frameworks.  
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Abstract 

Although high-entropy materials are attracting considerable interest due to a combination 

of useful properties and promising applications, predicting their formation remains a hindrance for 

rational discovery of new systems. Experimental approaches are based on physical intuition and/or 

expensive trial and error strategies. Most computational methods rely on the availability of 

sufficient experimental data and computational power. Machine learning (ML) applied to materials 

science can accelerate development and reduce costs. In this study, we propose an ML method, 

leveraging thermodynamic and compositional attributes of a given material for predicting the 

synthesizability (i.e., entropy-forming ability) of disordered metal carbides. The relative 
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importance of the thermodynamic and compositional features for the predictions are then explored. 

The approach’s suitability is demonstrated by comparing values calculated with density functional 

theory to ML predictions. Finally, the model is employed to predict the entropy-forming ability of 

70 new compositions; several predictions are validated by additional density functional theory 

calculations and experimental synthesis, corroborating the effectiveness in exploring vast 

compositional spaces in a high- throughput manner. Importantly, seven compositions are selected 

specifically, because they contain all three of the Group VI elements (Cr, Mo, and W), which do 

not form room temperature-stable rock-salt monocarbides. Incorporating the Group VI elements 

into the rock-salt structure provides further opportunity for tuning the electronic structure and 

potentially material performance. 

2.1 Introduction  

Traditional alloys have been developed utilizing one principal element with minor 

additions of other alloying elements as a means of achieving a desired combination of properties 

and/or microstructures.   Recently, research efforts have been directed toward the study of 

materials with significant atomic fractions of multiple elements, thus opening a richer composition 

space [1–3].  This class of materials typically contains four or more elements that do not 

necessarily result in a single-phase (multi-principle element alloys), and often greater than five 

elements to maximize the configurational entropy and improve the stability of the single-phase 

solid solution (high-entropy alloys) [4].  High-entropy offers increased solubility of components, 

drawing new attention to unexplored center regions of phase diagrams.  Novel high-entropy 

materials that exist as a single, highly disordered, crystalline phase have been of particular research 

interest [5–10].  As this field has continued to evolve, a number of fascinating combinations of 

material properties have begun to emerge [11–16].   
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Finding these materials is often challenging though, owing to the sheer size of these 

unexplored regions away from the corners of phase diagrams.  The search for effective scientific 

strategies and models has thus far required time- and cost-intensive experimental evaluations of 

many candidate single-phase high-entropy materials.  The disordered configuration presents a 

challenge for most computational approaches [17], and there is not always sufficient experimental 

data for validation of positive and negative calculated results.  Phase diagram calculations, often 

combined with other rules and models, have been applied successfully [6,18–20] but the 

underlying databases lack significant experimental underpinnings.  High-throughput 

computational materials design combines thermodynamic and electronic-structure methods with 

data mining capabilities to more quickly evaluate material compositions for novel properties [21–

23].  These ab-initio computing efforts have recently yielded a descriptor known as entropy-

forming-ability (EFA), which has shown considerable promise for predicting the ease of 

synthesizability and homogeneity of such materials [5,12].  A high EFA value for a specific 

composition signifies a small energy penalty to incorporate disorder, i.e. this descriptor can be a 

sorting parameter for likely single-phase, disordered, high-entropy materials.  This descriptor was 

previously calculated for 56 high-entropy carbide compositions and the single-phase cutoff was 

experimentally validated to exist between an EFA value of 45 and 50 [5,12].  The highest EFA 

materials have been demonstrated, via EXAFS, to exhibit minimal short-range chemical order 

[12], a concern in the high entropy materials community [24,25].  While this method is high 

throughput in comparison to other ab-initio efforts, calculation of EFA values remains a 

computationally intensive, time-consuming task.  Thoroughly searching this new composition 

space, conservatively estimated to comprise hundreds of billions of new alloys [1], is simply not 

feasible with this approach alone.  Herein, we propose applying data science tools, specifically 
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machine learning (ML), in order to guide more expensive computational and experimental search 

strategies toward promising candidate materials and therefore accelerate materials discovery. 

Recently, the materials science field has embraced the big data revolution as large 

databases become cost effective and data generation rates continue to accelerate [26–30].  This has 

resulted in the development of a number of powerful data science tools to assist material scientists 

[31–36].  In the realm of materials discovery, data science tools have aided in the accelerated 

discovery or identification of new compositions for bulk metallic glasses [37], shape memory 

alloys [38], Heusler compounds [39,40], and photocatalysts for CO2 reduction [41].  Other work 

has focused on the development of ML methods to establish structure-property linkages [35,42], 

or predict the crystal stability of new materials [43,44].  In 2016, Ward et al. [45] proposed a 

chemically diverse list of attributes, primarily data-mined from the periodic table, as a general set 

of features for broad material property prediction.  These data-driven models can be fit to existing 

experimental data and continuously refined as new data is collected [46].  This inherent flexibility 

of ML-based decision-making frameworks provides an advantage given the dynamic nature of 

phase formation and stability.  Moreover, when compared to density functional theory (DFT), the 

state-of-the-art toolbox for quantum mechanical modeling, ML models can perform well with 

reduced computational cost and without the need for atomic structure information [44,47].  This 

provides an opportunity to search materials space in an unconstrained manner without concern for 

the combinatorial explosion of higher-order compositions (ternaries, quaternaries, quinaries, etc.) 

[48].   

Through this work, we aim to accelerate materials innovation by developing a rapid 

predictor of the stability of high-entropy materials and demonstrating the model’s capability to 

predict single- or multi-phase results.  With regard to speed, our ML model can evaluate the EFA 
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of a single composition in under a millisecond, compared to hundreds of hours per composition 

with DFT, even using efficient automatic frameworks such as AFLOW [49].  The robustness of 

the model is investigated by focusing on locating successful five component compositions 

containing all three of the Group VI metals (Cr, Mo, and W) as 60% of the cation sublattice.  The 

interest in using the ML model to locate single-phase compositions containing all three Group VI 

metals stems from the relationship between the electronic structure and mechanical/physical 

properties of transition metal carbides [50,51].  Prior studies have revealed that the transition metal 

carbides can be more effectively tuned by the enhanced metallic bonding owing to valence filling 

instead of conventional microstructural engineering principles [50,52].  For example, the Group 

IV and V monocarbides readily form the rock-salt structure and demonstrate improved mechanical 

properties, such as fracture toughness, with changing directionality of the bonding as more valence 

electrons become available in Group V [50,53].  Computationally, the trend in increasing 

toughness is expected to continue to the right on the periodic table; however, the Group VI metals 

do not form a room temperature stable rock-salt phase [54–56].   By employing high-entropy 

effects (i.e. increased solubility), we proposed that the three Group VI metals can be incorporated 

into a room temperature stable rock-salt structure, resulting in an increased number of available 

electrons, and a novel group of materials with the potential to overturn previous material 

engineering limitations. 

In this work, several single-phase, rock-salt crystal structure, five-metal cation carbides – 

for which three of the precursors have different structures and stoichiometric ratios of anions to 

cations from the resultant face centered cubic high-entropy material – are evaluated. The available 

precursors for the Group VI metals are hexagonal Mo2C, hexagonal WC, orthorhombic W2C, and 

orthorhombic Cr3C2).  Rock-salt MoC and WC are only stable at temperatures above 1940°C and 
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2500°C, respectively.  The only FCC system in the Cr-C phase diagram is Cr23C6.  See 

Supplementary Figures 1-3 for the binary phase diagrams.  To date, the authors are unaware of 

any previously explored high-entropy carbides containing Cr or the prior calculation of the EFA 

value by DFT for any Cr-containing compounds.   The formation of a rock-salt structured 

monocarbide, wherein 60% of the cation species (Cr, Mo, and W) do not form this structure as 

their stable room temperature phase, is neither obvious nor readily predictable based on current 

theories.  

These design goals are accomplished by supplementing the set of chemical descriptors of 

each composition with information from the calculated phase diagrams and utilizing a ML 

framework to rapidly predict the entropy-forming-ability of seventy previously unstudied high-

entropy carbides containing Cr, an element not considered in the original composition 

space[5].  Complete information on the construction, training, and implementation of the ML 

model is included in the Methods section.  Based on the validation against previously reported 

high-entropy metal carbides, comparison with DFT calculations for several new compositions, and 

the ability to locate and synthesize several otherwise unintuitive materials, we find that this 

screening strategy is aptly designed to identify promising high-entropy systems.  The successful 

outcome demonstrates the synergy between thermodynamics, chemical descriptors, and ML 

methods for rapidly evaluating new materials based on prior experiments and computation. 

2.2 Results 

2.2.1 Model Performance 

The search for new high-entropy ceramics begins with fitting a random forest [57], a type 

of ML model, on 56 previously reported EFA values [5].  This data set includes nine synthesized 

compositions, six single-phase and three multi-phase. The previous study only utilizes eight 
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carbide forming metal elements (Hf, Nb, Ta, Ti, Mo, V, W, and Zr).  As will be demonstrated, 

even this sparse data set with relatively few compositions with high entropic contributions is very 

useful in guiding subsequent experiments toward the best candidates and away from the multi-

phase materials. 

Because our goal is to select the best model hyperparameters for predicting new 

compositions outside our training set, we evaluate the ML model’s performance using 5-fold cross 

validation and a grid search across selected hyperparameters (see the Methods section for further 

details).  The final model hyperparameters selected for both models, with and without CALPHAD 

data, are 10 predictor trees and mean absolute error (MAE) for scoring.  The best hyperparameters 

were used to fit models to the labeled data.  Supplementary Figure 4 shows an example predictor 

tree from the model with CALPHAD data and demonstrates the complex relationships between 

the predictor variables.  Figure 1 compares the performance of the ML model fit with only 

chemical attributes (Figure 1a) and the model fit with chemical attributes and information from 

CALPHAD (Fig. 1b).  The DFT calculated and ML predicted values for each model are listed in 

Supplementary Table 1.  While the mean absolute errors for all models are equivalent (3.8 

(eV/atom)-1), the coefficient of determination (R2) suggests the observed outcomes are better 

replicated by the ML model with access to the CALPHAD data.  However, both models have a 

systematic error in which the compositions with known EFA less than 50 are overestimated and, 

more noticeably, compositions with an EFA above 80 are underestimated.  The small number of 

samples above 80 (6 total) coupled with bootstrapping (~66% of the data is used per tree) results 

in a low probability for them to be included in the construction of each decision tree.  Further, the 

average EFA of the materials in each tree (approx. 58 depending on the tree) is in line with the 

average for the dataset.  With only 1 sample above 100 in the dataset, and these samples having a 
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low probability of being used in tree construction, the averaging process in random forest pulls 

down the predicted values for the highest EFA materials.  It will be demonstrated that the improved 

R2 performance of the model toward fitting the starting dataset will provide improved extrapolation 

on the Cr-containing systems in the search for high-entropy ceramics containing all three Group 

VI precursors.  

 

Figure 2.1 Evaluation of the ML models fit to available data.  a) The ML-predicted EFA using a random 

forest fit with 108 chemical attributes evaluated against the labels of the data set from DFT. b) The ML 

predicted EFA values for a random forest fit with 108 chemical attributes plus 8 features from CALPHAD 

evaluated against the known EFA from DFT. The line y= x is plotted to show the deviation from perfect 

predictions. 

 

2.2.2 Feature importance 

The permutation importance of the chemical attribute and CALPHAD features is studied 

to provide interpretability to the ML model.  Details for each chemical attribute can be found in 

the Supplementary Information.  The rationale for selecting permutation importance is the 

following: randomly permuting the value of predictor variable 𝑋𝑖 and computing the EFA together 

with the unpermuted predictor variables, will result in significantly reduced prediction accuracy if 

the original variable 𝑋𝑖 was significantly associated with the output value.  Permutation importance 
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also has the advantage, compared to univariate screening methods, in that it assesses the impact of 

each predictor variable individually as well as with the other unpermuted predictor variables[58].  

Table 1 shows the top ten features and their importance rank for fitting each random forest model 

to the EFA values calculated from DFT.  As evidenced in the model performance and feature 

importance, the eight additional CALPHAD features provide valuable information about the EFA 

of a given composition, particularly the liquidus temperature (ranked second).  However, 

CALPHAD diagrams alone would also be insufficient for determining the ability to fabricate a 

single-phase material.  Supplementary Figure 5 demonstrates this by comparing ThermoCalc 

SSOL6 database computed diagrams of compositions known to form single or multi-phase 

carbides.  For each of these compositions, CALPHAD alone would predict rock-salt to be the 

primary structure to evolve from the liquid, which would be stable down to nearly 1500K before 

forming a secondary metal carbide.  In reality, only MoNbTaVWC5 (Supplementary Figure 5a) 

readily forms a single phase experimentally, while the other three compositions (Supplementary 

Figure 5b-d) have been demonstrated previously to be multi-phase materials[5]. However, 

including some CALPHAD data as features improves the ML model via this thermodynamic-

based preview of what is likely to occur and improves its extrapolation capabilities beyond that of 

the chemical attributes alone.  
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Table 2.1 Identification of the important features for predicting EFA values.  The top ten features for 

the ML model with only the chemical attributes are on the left. The top ten features for the ML model 

including CALPHAD features are on the right.  Both models rely on similar features regarding 

electronegativity, ionic character, and electron orbitals for making the best predictions.  The avg(x) and 

avg. dev(x) denote the composition-weighted average and average deviation, respectively, calculated over 

the vector of elemental values for each compound.  The min(x), max(x), fwm(x) and range(x) correspond 

to the minimum, maximum, fraction-weighted mean, and range of an attribute for each compound. * 

denotes a predictor variable from CALPHAD. 

Predictor  

rank 

Model 

Stoichiometric Attributes CALPHAD 

1 avg(ionic character) avg(ionic character) 

2 min(electrons) Liquidus temperature* 

3 avg. dev(s-valence electrons) range(electronegativity) 

4 max(atomic weight) avg. dev(d-valence electrons) 

5 max(covalent radius) max(atomic weight) 

6 fwm(covalent radius) fwm(f-valence electrons) 

7 range(Mendeleev number) max(covalent radius) 

8 avg. dev(melting temp) max(unfilled valence electrons) 

9 fwm(unfilled s-valence) fwm(covalent radius) 

10 fwm(f-electrons) range(unfilled valence elctrons) 

 

Important features from the chemical attributes are the average ionic character between 

each of the atomic species, the maximum and fraction-weighted covalent radius, and a few features 

representing the valence electrons or unfilled orbitals.  These chemical attributes quantify the 

expected bonding nature and local environment each atom will experience if single phase (i.e. 

homogeneously disordered).  Along the same lines, these metrics also assist the ML model to 

determine what atomic environments are unfavorable, resulting in multi-phase materials.  Further 
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analysis of the relationship between the entropy-forming-ability of a composition and the top 

ranked predictors reveals there is noticeable correlation (Figure 2).  A plot of average ionic 

character versus EFA reveals that increasing the average ionic character between the pairs of atoms 

is more likely to result in a multi-phase material (Figure 2a).  This property has been previously 

suggested to play a role in determining single or multi-phase outcomes, but has not yet been 

extensively studied and its contribution not well understood[10,59].  A parameter not previously 

studied in the high-entropy literature, the liquidus temperature derived from CALPHAD also 

provides insight into the magnitude of the expected EFA for a given composition (Figure 2b).  

Intuitively, the compositions with the highest EFA values lie furthest away from the trendlines, 

highlighting the need for multi-variable approaches, like those offered in ML, to locate the best 

compositions. 
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Figure 2.2 Correlation between EFA and top two features . a) Increasing the average ionic character of 

each atom pair in the composition is correlated with a decrease in the entropy-forming ability. b) A positive 

correlation exists between the increasing liquidus tempera- ture and higher EFA values. Trendlines shown 

in blue dashes. Note that ten compositions completely overlap when comparing EFA with liquidus 

temperature. 

 

2.2.3 Experimental and computational validation 

New experimental compositions were chosen utilizing all nine of the Group IV, V, and VI 

refractory metals (Cr, Hf, Nb, Mo, Ta, Ti, V, W, and Zr) in equiatomic amounts plus carbon 

occupying the anion lattice.  The ML model fitted to the 56 compositions with DFT derived EFA 
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values is used to rapidly screen the Cr-containing compositions for high and low expected EFA 

values.  The ML calculated EFA values for the full set of 70 new five-metal compositions are 

provided in Table 2.  Seven candidates are selected from this list for analysis by DFT and 

experimental synthesis: (i) three candidates with predicted EFA values over 100 (eV/atom)-1 and 

each containing all of the Group VI metals (CrMoNbVWC5, CrMoTaVWC5, CrMoNbTaWC5), 

(ii) three candidates with a predicted EFA less than or equal to 50 (eV/atom)-1 (CrHfMoTiWC5, 

CrMoTiWZrC5, and CrHfTaWZrC5), and (iii) one composition with an intermediate entropy-

forming-ability (CrMoTiVWC5) also containing the 3 Group VI metals.  Computing the EFA from 

DFT and fabricating the selected compositions with a low predicted EFA serves two purposes: (i) 

to demonstrate the model performs well at finding both the best and worst candidates, and (ii) to 

establish that not every system containing all three Group VI metals will form a single phase. 

Several of the compositions in Table 2 have ML predicted EFA values that suggest they 

will readily form a single-phase high-entropy carbide, despite containing the three Group VI 

refractory metal elements.  If successfully synthesized into a single phase, these novel materials 

would contain three carbides that do not exist as room temperature stable rock-salt monocarbides 

(refer to the binary phase diagrams in Supplementary Figures 1-3).  Several fundamentally 

interesting compositions are those where one of the rock-salt stable precursors (i.e. NbC, TaC, or 

VC) is substituted from MoNbTaVWC5 (EFADFT of 125 (eV/atom)-1)[5] with an orthorhombic 

(Cr3C2 or W2C)  or hexagonal (Mo2C or WC) precursor that do not form stable rock-salt structures.   
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Table 2.2 Results for the ML predicted EFA for seventy new compositions.  Results for both ML 

models are provided for each composition.  For the selected compositions, a DFT computed EFA value is 

listed in the next column. In the experimental result, “S” and “M” stand for single- and multi-phase, 

respectively. Units: EFA in (eV/atom)-1. 

Composition EFAAttributes EFACALPHAD EFADFT Exp. Composition EFAAttributes EFACALPHAD EFADFT Exp. 

CrNbTaVWC5 94 105   CrHfTiVZrC5 76 70   

CrMoNbTaVC5 107 105   CrMoTaVZrC5 70 70   

CrMoNbVWC5 100 104 116 S CrMoTiVZrC5 65 67   

CrMoNbTaWC5 97 104 105 S CrHfMoTiVC5 72 66   

CrMoTaVWC5 97 103 106 S CrMoNbTiZrC5 68 66   

CrMoNbTaTiC5 98 93   CrTaTiVWC5 69 66   

CrMoTaTiVC5 98 93   CrHfMoNbZrC5 63 62   

CrMoNbTiVC5 95 92   CrHfNbTaWC5 63 62   

CrHfNbTaVC5 97 91   CrHfMoVZrC5 69 62   

CrMoTiVWC5 82 88 76 S CrHfMoTaZrC5 61 60   

CrMoTaTiWC5 82 88   CrMoVWZrC5 65 59   

CrHfNbTaTiC5 93 88   CrMoNbWZrC5 64 59   

CrNbTaTiVC5 95 88   CrNbTaWZrC5 59 58   

CrHfTaTiVC5 91 87   CrHfMoVWC5 65 57   

CrHfMoNbVC5 75 84   CrHfMoTaWC5 61 56   

CrNbTaVZrC5 93 83   CrHfTaVWC5 54 56   

CrTaTiVZrC5 91 83   CrHfTaTiWC5 56 55   

CrMoNbTiWC5 74 81   CrHfMoNbWC5 52 54   

CrMoNbVZrC5 80 81   CrMoTaWZrC5 54 54   

CrNbTaTiZrC5 91 79   CrHfNbTiWC5 58 52   

CrHfMoNbTaC5 76 79   CrHfMoTiZrC5 65 51   

CrHfNbTiVC5 91 78   CrHfTaWZrC5 55 51 36 M 

CrMoNbTaZrC5 70 78   CrHfNbVWC5 58 51   

CrHfTaVZrC5 77 78   CrTaTiWZrC5 54 50   

CrHfNbTaZrC5 70 77   CrNbVWZrC5 51 50   

CrNbTiVZrC5 94 76   CrMoTiWZrC5 51 49 52 M 

CrNbTiVWC5 72 74   CrTaVWZrC5 52 48   

CrHfTaTiZrC5 82 74   CrTiVWZrC5 50 48   

CrHfMoTaVC5 73 73   CrNbTiWZrC5 51 48   

CrHfNbTiZrC5 76 72   CrHfVWZrC5 52 47   

CrHfMoNbTiC5 69 72   CrHfNbWZrC5 52 46   

CrHfNbVZrC5 88 71   CrHfTiWZrC5 51 46   

CrHfMoTaTiC5 73 71   CrHfTiVWC5 46 46   

CrMoTaTiZrC5 72 70   CrHfMoWZrC5 53 45   

CrNbTaTiWC5 67 70   CrHfMoTiWC5 53 45 42 M 

 

As the first step in validating the ML model’s extrapolation into the Cr-containing chemical 

space, the entropy-forming-ability of the seven selected compositions were subsequently 
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computed by DFT.  The ab-initio EFA values are located in Table 2 and plots comparing the ML 

model with chemical attributes (Figure 3a) and the ML model including CALPHAD data (Figure 

3b) illustrate the improved regression performance of the model after inclusion of the CALPHAD 

features.  The red circles in Figure 3 are the predicted EFA values for the seven Cr-containing 

compositions compared to their DFT calculated value.  While the ML models were not refit with 

the new DFT-computed EFA values, the R2 and mean absolute error of each ML model can be re-

evaluated after including the extrapolated data.  In comparison to the chemical attributes alone, the 

R2 value remains the same, and the MAE increases only slightly.   

 

Figure 2.3 Machine learning model compared to ab-initio results for high-entropy carbides.  a) The 

ML predicted EFA using a random forest fit with 108 chemical attributes evaluated against the labels of 

the data set from DFT.  b) The ML predicted EFA values for a random forest fit with 108 chemical attributes 

plus 8 features from CALPHAD evaluated against the known EFA from DFT.  The line y = x is plotted to 

show the deviation from perfect predictions. Red circles are used to mark the newly calculated Cr-

containing compositions. 

 

As a secondary method of validating the ML model, the seven selected materials were 

fabricated following conventional fabrication processes described in detail in the Methods 

section.  Successful fabrication of the rock-salt structure after full densification was verified via 

X-ray diffraction (XRD) (Figure 4).  Results of XRD analysis for each sample following spark 
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plasma sintering (SPS) demonstrate that compositions CrMoNbVWC5, CrMoNbTaWC5, 

CrMoTaVWC5, and CrMoTiVWC5 (the top 4) only exhibit a single set of FCC peaks of the desired 

rock-salt high-entropy phase.  Conversely, XRD of CrHfTaWZrC5 CrMoTiWZrC5, and 

CrHfMoTiWC5, (bottom 3) reveal the presence of multiple structures.  In the event there are 

multiple FCC structures present, the majority FCC phase is indexed. In CrMoTiWZrC5 and 

CrHfMoTiWC5 the secondary phase is also FCC.  The CrHfTaWZrC5 system contains a secondary 

hexagonal phase.  The XRD pattern for CrHfMoTiWC5 and CrHfTaWZrC5 also contain a small 

amount (<5%) of HfO2 that remains due to processing.  This is determined not to significantly alter 

the composition of the carbide phase. 
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Figure 2.4 The X-ray diffraction patterns for the same 7 five-metal carbides.  The first four 

compositions (from the top) exhibit only the desired FCC structure peaks, whereas the remaining 

compositions have additional peaks indicating the presence of extra phases.  The primary FCC phase is 

indexed with black circles.  Compositions are listed from largest to smallest ML predicted EFA. S: single-

phase formed; M: multi-phase formed. 

 

Microstructure analysis and energy dispersive X-ray spectroscopy (EDX) were then 

utilized to determine the homogeneity of the sintered pellets as shown in Figure 5. Coupling the 

results of both techniques verified that the as-processed samples were either single-phase and 

chemically homogenous or underwent chemical segregation.  For example, in the CrMoNbVWC5 

microstructure, only grain contrast is present, and no notable indication of clustering or segregation 

is visible in the elemental maps.  On the contrary, the CrHfTaWZrC5 sample has observable 

chemical contrast in the microstructure, and the chemical maps demonstrate that the secondary 
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phase present in XRD is rich in Cr and W.  The CrMoTiWZrC5 and CrHfTaWZrC5 samples 

displayed were sintered at 1600°C to prevent the loss of Cr.  When sintered at 1800°C, EDS 

revealed the Cr content in these samples was as low as 2 at%, and the chrome carbide was found 

to have reacted with the graphite tooling.  The medium entropy composition, CrMoTiVWC5, 

resulted in a single FCC rock-salt structure after initial sintering, but required annealing as 

described in the Methods section to reach chemical homogeneity.  Subsequently, electron 

backscatter diffraction (EBSD) was utilized to study the resulting microstructure of the samples.  

The single-phase, homogenous samples are observed to contain large, nearly equiaxed grains with 

some deviation owing to the remaining pores.  This furthers the assertion these compositions are 

single-phase, since they allow for the kinetics of grain growth.  In stark contrast, the multi-phase 

materials have a significantly reduced grain size, owing to the competing phases preventing further 

grain growth during sintering. 
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Figure 2.5  Microstructural analysis of the synthesized materials.  The first column is an electron 

micrograph for each of the synthesized compositions.  Columns 2-6 are selected EDS chemistry maps are 

present for each of the five metal cations present in each system.  Column 7 is an EBSD map of the grain 

structure, revealing the effect on grain size in multi-phase compared to single-phase compositions.  

Compositions are listed from largest to smallest ML predicted EFA. Scale bar 100 µm. 

 

2.3 Discussion 

A powerful data-driven approach to estimating the synthesizability of high-entropy 

materials, based on data from previous DFT calculations and experimental results, is detailed and 

demonstrated on 70 new chromium containing compositions.  The ML framework is found to be 

improved by the inclusion of data from CALPHAD and robust toward extrapolating outside the 

starting chemical space.  The ML model enhancement achieved by combining general features and 

thermodynamic data from CALPHAD is explored via assessing the impact of each predictor 

variable individually as well as with the other predictor variables (permutation importance) and 
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evaluating compositions outside the original chemical space.  The predictive capability of this 

method is validated by ab-initio calculations and experimental fabrication of several previously 

unreported compositions, including four single-phase rock-salt materials that would not be obvious 

candidates given the stable precursors and binary phase diagrams of the Group VI transition 

metals.  These novel materials, of which 60% of the cation lattice contains Group VI metals, 

represent a step forward in electronic structure engineering of transition metal carbides:   prior 

modeling of the bonding nature with increased valence electrons[54–56] suggests that future 

material property studies are likely to yield useful combinations for practical engineering 

applications.  Furthermore, the experimentally studied compositions result in single or multi-phase 

materials in agreement with their predicted EFA values.  The remaining predicted materials 

include diverse chemistries and present ample opportunity for materials discovery.  Moreover, the 

methodology designed opens the door to locating other high-entropy materials, not just ceramics, 

in a similar manner.  

2.4 Methods 

2.4.1 Machine learning architecture 

Random forests are a combination of decision trees that individually make predictions on 

each input and the overall prediction determined by a majority voting process[57,60].  Random 

forest was selected for its utility and performance on diverse problems when compared to other 

supervised learning models [60].  The random forest regressor is implemented with Scikit-learn 

[61]. Model hyperparameters are selected via an exhaustive 5-fold cross-validated grid search 

using the following parameters: number of tree predictors in range 10 to 110 in steps of 10, mean 

squared error and mean absolute error as criterion, and the number of features to consider when 

looking for the best split from one to the total number of features available.  Each fold is scored 
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using the mean absolute error between the labels from DFT and the predicted values.  To obtain a 

deterministic behavior during model fitting, the random state is seeded.  The best performing 

hyperparameters are selected to fit a model using the entire training set, with bootstrapping, to 

maximize the amount of information available for making future predictions. 

2.4.2 From chemistry to features 

Each composition is converted to a set of features with the goal of creating a quantitative 

representation that relates to the essential chemistry, physics, and thermodynamics of each material 

in a data set.  The attributes utilized in this work should not be considered an exhaustive list, but 

instead a step toward creating a synergistic set of attributes that capture the knowledge of chemistry 

and experimentally robust thermodynamics.  The 108 compositional attributes, defined in the 

Supplementary Information, are a subset of the general ML framework demonstrated previously 

to perform well on diverse material problems [45].  The elemental data used to compute the 

compositional features is sourced from Magpie [45,62].  These chemical attributes are augmented 

with select data about the number of phases and phase fractions calculated in 100 Kelvin steps as 

well as the liquidus and solidus temperature from ThermoCalc Software SSOL6 database version 

6.1 [63].  The ~800 CALPHAD features are reduced to 8 predictor variables (1% of those 

available) using the Select From Model method in Scikit-learn [61] to avoid the “curse-of-

dimensionality” and find the most relevant subset [64–66].  Select From Model was chosen in this 

study for its rapid reduction of features in one step in comparison to other multi-step methods such 

as recursive feature elimination.  The max number of features was set to 8 for this study to target 

1% of the available data. We do not intend for this feature list to be exhaustive or concrete.  The 

selected features are defined in the Supplementary Information.  The data for the predictor 

variables for the training data and new compositions is contained in the GitHub repository. 
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2.4.3 Interpreting the random forest algorithm 

The random forest model is analyzed to provide clarity to how the ML model evaluated 

these materials.   The variable importance is extracted for the fit model using the “rfpimp” package 

in Python (available at https://github.com/parrt/random-forest-importances, last access: 15 August 

2019). The predictor variable importance is ranked on the permutation importance, which directly 

measures importance by observing the effect on model accuracy by randomly permuting the values 

of each predictor variable [67].  That is to say, the permutation importance is measuring the impact 

on output EFA of swapping the value of a selected feature from one composition with the value 

from a different composition.  This method has recently been introduced as an improvement to the 

mean decrease in impurity metric [58]. 

2.4.4 Sample preparation 

All samples were prepared using the same methods and tools utilized in the previous EFA 

and HEC studies [5,12]. Initial powders of each of the five binary precursor carbides (NbC, HfC, 

TiC, ZrC, VC, TaC, Mo2C, W2C, WC, and Cr3C2) are obtained in >99% purity and −325 mesh 

(<44 μm) particle size (Alfa Aesar).  The sample is weighed out in 12 g batches and mixed to 

achieve the desired five-metal carbide compositions.  To ensure adequate mixing, each sample is 

high energy ball milled under argon in a shaker pot mill for a total of 2 h in individual 30-min 

intervals intersected by 15-min rest times to avoid heating and consequent oxide formation.  All 

milling is done in tungsten carbide-lined stainless-steel milling jars with tungsten carbide grinding 

media. Bulk sample pellets are synthesized via solid-state processing routes. The field-assisted 

sintering technique (FAST), also called spark plasma sintering (SPS), is employed to 

simultaneously densify and react the compositions into single-phase materials. Sintering of each 

composition is performed at 1800°C with a heating rate of 100°C/min, 60 MPa uniaxial pressure 
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applied at temperature, with a 10-min dwell at temperature.  Subsequent samples of 

CrMoTiWZrC5 and CrHfTaWZrC5 were necessarily sintered at 1600°C instead to prevent the loss 

of Cr.  The composition with a medium EFA value, CrMoTiVWC5, is annealed at 1800°C for 3 

hours followed by 2000°C for 3 hours to attain chemical homogeneity.  All samples are heated in 

a vacuum environment of less than 20 mtorr with additional holds throughout for adequate off-

gassing of the powder materials. Sintering is done in 20 mm graphite die and plunger sets 

surrounded by carbon-based heat shielding. Additionally, graphite foil surrounds the samples on 

all sides to prevent reaction with the die.  The compositions listed are nominal since actual 

synthesized compositions can very due to carbon vacancies in the anion sublattice.  

2.4.5 Sample analysis 

Microstructural and elemental analysis is performed using a Thermo Fischer (formerly 

FEI) Apreo field emission scanning electron microscope (SEM) equipped with an Oxford X-MaxN 

EDS detector and an Oxford Symmetry electron backscatter diffraction (EBSD) detector. A 

combination of secondary and back-scattered electron detectors are utilized for imaging. EDS 

scans are conducted at length scales of 500x and 1000x to verify multi-length scale homogeneity 

in the resulting microstructure.  EDS quantification confirmed the resulting ratio of metal ions are 

nearly equiatomic.  Crystal structure analysis is implemented using a Rigaku Miniflex X-ray 

Diffractometer with a 1D detector using a step size of 0.02° and 5 degrees per minute scan rate, 

using Cu Kα radiation (wavelength λ = 1.54059 Å) for all measurements.  The lattice parameter is 

calculated utilizing a combinatorial method from both MDI Jade and Match! Phase identification 

software. This is subsequently utilized to model and create a theoretical diffraction profile to be 

utilized in EBSD. 
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2.4.6 Calculation of the entropy-forming-ability 

The EFA is calculated using the AFLOW-POCC module [17] implemented in the 

Automatic-Flow (AFLOW) Framework for Materials Discovery[68]. For each disordered 

composition, a set of representative ordered supercells is resolved. First, AFLOW-POCC 

determines the smallest supercell size accommodating the stoichiometry exactly (for the five-metal 

rock-salt carbides, the value is 5). The unique superlattices of this size are then constructed based 

on the Hermite Normal Form matrices. The lattices are decorated to generate all viable 

configurations. To identify unique configurations and their degeneracies rapidly, the Universal 

Force Field method is employed. The energies of the unique configurations are then calculated 

using density functional theory having input parameters/settings in accordance with the AFLOW 

Standard [29].  K-point meshes are generated using the Monkhorst-Pack scheme (Gamma-centered 

for all materials belonging to the hP and hR Bravais lattice) having at least 6,000 k-points per 

reciprocal atom.  Project-Augmented Wavefunction (PAW) potentials are constructed according 

to the Perdew-Berke-Ernzerhof (PBE) exchange-correlation functional as implemented in VASP.  

The plane-wave basis has a kinetic energy cut-off 1.4 times larger than that recommended for each 

species.  Spin polarization is considered. The electronic and ionic convergence criteria are 10-3 

and 10-2 eV, respectively.  The EFA is defined as the inverse of the spread of these energies [5].   
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Abstract 

For the past decade, considerable research effort has been devoted toward computationally 

identifying and experimentally verifying single phase, high-entropy systems.  However, predicting 

the resultant crystal structure(s) “in silico” remains a major challenge.  Previous studies have 

primarily used density functional theory to obtain correlated parameters and fit them to existing 

data, but this is impractical given the extensive regions of unexplored composition space and 

considerable computational cost.  A rapidly developing area of materials science is the application 

of machine learning to accelerate materials discovery and reduce computational and experimental 

costs.  Machine learning has inherent advantages over traditional modeling owing to its flexibility 

as new data becomes available and its rapid ability to construct relationships between input data 

and target outputs.  In this article, we propose a novel high-throughput approach, called “ML-

HEA”, for coupling thermodynamic and chemical features with a random forest machine learning 

model for predicting the solid solution forming ability.  The model can be a primary tool or 

integrated into existing alloy discovery workflows.  The ML-HEA method is validated by 

comparing the results with reliable experimental data for binary, ternary, quaternary, and quinary 
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systems.  Comparison to other modeling approaches, including CALPHAD and the LTVC model, 

are also made to assess the performance of the machine learning model on labeled and unlabeled 

data.  The uncertainty of the model in predicting the resultant phase of each composition is 

explored via the output of individual predictor trees.  Importantly, the developed model can be 

immediately applied to explore material space in an unconstrained manner and is readily updated 

to reflect the results of new experiments. 

3.1 Introduction 

Alloying has traditionally been performed using one principal element with relatively small 

amounts of other elements to confer desirable material properties.  Recently, research efforts have 

been directed toward a new alloying strategy combining significant atomic fractions of multiple 

elements, thus opening a largely unexplored composition space [1].  Researchers commonly refer 

to this class of materials as complex concentrated alloys, multi-principal element alloys, or high-

entropy alloys (HEAs).  High entropy alloys typically contain five or more elements to maximize 

the configurational entropy and improve the stability of the highly-disordered, fully-homogeneous, 

single-phase solid solution.  The intrinsic properties of an HEA are highly dependent on the 

resultant phase(s) [2,3].  The most common microstructures for high entropy alloys to form are 

either multi-phase, a single face-centered cubic (fcc) phase, or a single body-centered cubic (bcc) 

phase, while other single-phase crystal structures occur very rarely [2].  When an HEA does form 

a single-phase solid solution, the bcc phase is favored owing to its ability to accommodate larger 

ranges of atomic size in the same lattice [4].  HEAs that exist as a single, highly-disordered, 

crystalline phase have been of particular research interest [5–11], since they often exhibit the most 

desirable properties [3,12–18].   
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Determining, a priori, which compositions are most likely to form a single-phase solid 

solution has remained a major challenge in the community.  The original hypothesis that many 

multi-component systems would be entropically stabilized into a single-phase solid solution has 

proven untrue [19].  This has launched exhaustive searches for models and screening tools to better 

understand HEA phase formation [20].  Several features, including enthalpy of mixing, atomic 

size ratios, intrinsic strain, and valence electron configuration, have been demonstrated to provide 

insight into HEA phase formation when fit to the limited experimental data [21–23].  However, 

many of these parameters are derived from the Hume-Rothery rules, which are expectedly limited 

by their origination from observing patterns in a small set of binary alloys [24].  Phase diagram 

calculations, often combined with other rules and models, have also been previously applied 

[6,25,26], but the underlying databases lack significant experimental underpinnings in this vastly 

unexplored space.  Recent high-throughput computational materials design strategies combine 

thermodynamic and electronic-structure methods in density functional theory (DFT) with data 

mining capabilities to more quickly evaluate material compositions for novel properties [5,27,28].  

While these recent DFT-based methods are high throughput in comparison to other ab-initio 

efforts, this method can require 100s of hours of computation per composition. Furthermore, DFT 

calculations are impractical to deal with the large simulation cells required and the increased 

uncertainty surrounding the d-orbitals of transition metal atoms commonly found in HEAs [29].  

The last challenge is adapting these models as new compositions are found that disagree with the 

predicted results.   Thoroughly searching this new composition space, conservatively estimated to 

comprise hundreds of billions of new alloys [1], is simply not feasible with these approaches, 

especially given the time required to update these models to reflect new experimental 

results.  Herein, we propose applying machine learning (ML), combined with thermodynamic data 
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from ThermoCalc [30] and composition-based features [31], as a powerful tool in the rapid search 

for single-phase solid solution HEAs. 

Many aspects of materials science that have been challenging to model or difficult to 

translate into code have benefitted from the recent adoption of machine learning [32–41].  These 

tools have provided useful models in the search for new bulk metallic glasses [42], shape memory 

alloys [43], photocatalysts for CO2 reduction [44], and high entropy ceramics [45]. The successful 

application of ML in complex material space has also motivated recent work utilizing ML for the 

phase prediction of HEAs [46,47].  In comparison to the previous studies [46,47], this work 

employs the more interpretable random forest model and provides significantly more initial 

information about each composition for the machine learning model to determine the most 

important parameters for mapping each composition to its most-likely phase formation.  This work 

also provides an uncertainty metric by tallying and reporting the percentage of predictor trees that 

“vote” for each of the output phases (multi-phase, face-centered cubic, or body-centered cubic) for 

each input composition.  This novel, high-throughput method — called “ML-HEA”—is validated 

by comparing the results with the most reliable experimental data for binary, ternary, quaternary, 

and quinary systems as well as its performance compared to thermodynamic (CALPHAD) and 

state-of-the-art DFT (LTVC [28]) based approaches for determining the expected phase. The ML-

HEA method provides an opportunity to search materials space in a rapid and unconstrained 

manner without concern for the combinatorial explosion of higher-order compositions (ternaries, 

quaternaries, quinaries, etc.) [48].  In fact, modern hardware can evaluate each composition using 

our machine learning framework in under a millisecond.  Thoroughly calculating all alloys in this 

space in one pass using an “off the shelf” computer may still be intractable due to time constraints, 

but this prediction rate offers a clear advantage compared to DFT performed on modern 
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supercomputers [42,45,48].  Furthermore, the model can readily be extended to the search for non-

equiatomic HEAs.  The ML-HEA model can be used as a supplementary model in existing 

workflows, as a preliminary screening tool to constrain material space before performing more 

computationally expensive analyses, or as a standalone module for material discovery. 

3.2 Methods 

3.2.1 Material selection 

To provide a fair comparison with the DFT-based results, the material dataset obtained 

from recent DFT work developing the LTVC model [28] was utilized from time of publication. 

While there may be more up-to-date results for some of the compositions listed with unknown 

solid solutions, fitting our machine learning model to these updated results would provide an unfair 

advantage by means of having more information with which to construct the model.  The dataset 

contains a total of 1,798 unique equiatomic compositions studied by Lederer et al. for the 

construction of a DFT-based model [28].  The 1,798 compositions are comprised of 117 binaries, 

441 ternaries, 1,110 quaternaries, and 130 quinaries.  There is a total of 134 labeled compositions: 

117 binaries, 8 quaternaries, and 9 quinaries. 

3.2.2 Model architecture 

Random forests are a combination of decision trees that individually make predictions on 

each input and the overall prediction determined by a majority voting process [49,50].  This model 

was selected for its well-balanced approach to bias and variance as well as its performance in other 

materials science studies where data is often limited [45,48,51].  The random forest classifier was 

implemented with Scikit-learn [52]. Model hyper-parameters are selected via an exhaustive 5-fold 

cross-validated grid search using the following parameters: number of tree predictors in range 11 

to 111 in steps of 10, the number of features considered at each split, and scoring based on gini (a 
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measure of impurity) or entropy (a measure of information gain) as model performance criterion.  

Other than the number of decision trees, which can be infinite, this searches over all possible 

hyperparameter combinations.   To avoid the effects of collinearity (highly correlated features) and 

dimensionality, 5-fold cross validated recursive feature elimination (RFECV) is performed before 

the grid search through the hyperparameters [53].  Each fold in the 5-fold cross validation was 

scored using prediction accuracy on the test fold.  Eliminating the low-performance features with 

RFECV can improve the model and its interpretability (e.g. feature ranking).  The best performing 

hyperparameters were selected to fit a model using the entire training set, with bootstrap 

aggregation applying the 632+ rule [54] (each decision tree is built using a random subset 

containing approximately 2/3 of the data) [49], to maximize the amount of information available 

for making future predictions; similar to what has been done in other materials science works using 

random forest [42,55]. 

3.2.3 From chemistry to features 

Each composition was converted to numerical representation that relates to the essential 

chemistry, physics, and thermodynamics of each material in the data set.  The features utilized in 

this work should not be considered an exhaustive list, but instead a step toward creating a 

synergistic set of features that capture a significant amount of information from chemistry and 

experimentally robust thermodynamics.  The 108 compositional features, detailed in the 

Supplementary Information, are a subset of the general machine learning framework demonstrated 

previously to perform well on diverse material problems [31].  These chemical features are 

augmented with 244 thermodynamic features regarding the number of phases and phase fractions 

in 50 Kelvin steps as well as the liquidus temperature, solidus temperature, and the single phase 

temperature range for bcc, fcc, and hexagonal from the ThermoCalc Software SSOL6 database 
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version 6.1 [30].  The single phase temperature range was defined as the difference between the 

formation temperature of the first solid phase present at the solidus and the formation temperature 

of the second solid phase.  The features for each chemistry studied are provided in the GitHub 

repository containing the python code, training data, and new compositions. 

3.2.4 Evaluating the random forest algorithm 

The random forest model was first analyzed to improve scientific understanding of how 

the machine learning model translates the compositional data to predicted phases.  The feature 

importance was extracted for the model using the “rfpimp” package in Python (available at 

https://github.com/parrt/random-forest-importances, last access: 15 August 2019). The feature 

importance was ranked on the permutation importance, which directly measures importance by 

observing the effect on model accuracy by randomly permuting the values of each feature [56].  

That is to say, the permutation importance is measuring the impact of swapping the value of a 

selected feature from one composition with the value from a different composition.  This method 

has recently been introduced as an improvement to the mean decrease in impurity metric [57].  The 

uncertainty of the model is extracted by tallying and reporting the percentage of predictor trees 

that “vote” for each of the output phases (none/neither, face-centered cubic, or body-centered 

cubic) for each input composition. 

3.3 Results 

3.3.1 Random forest model 

The ML-HEA machine learning model is fit with the most current and reliable data [28] 

for 117 binaries, 8 quaternaries, and 9 quinaries.  This dataset was selected in order to allow for a 

fair comparison with a DFT-based model constructed and assessed using the same materials 

(LTVC [28]).  The resultant random forest model is first analyzed to determine the 
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hyperparameters and chemical features that resulted in the most effective model in 5-fold cross-

validation.  The best performing set of hyperparameters was 11 decision trees with 3 features made 

available at each split from the available 13 features remaining after recursive feature elimination 

(Supplementary Figure 6).  A statistical analysis of the RFECV results was performed by executing 

the feature selection process one hundred times and recording each score.  The average accuracy 

in combination with the first and second standard deviation are plotted in Supplementary Figure 

7.  The observed standard deviation is observed to always be less than 3.5%.  The use of the 13 

identified features from Supplementary Figure 6 appears reasonable given these results.  With 

increased data, it is possible that the number of optimal features identified may change.  

Fundamentally, this approach combines many individual decision trees (weak learners), where 

each tree is a non-parametric supervised learning method, into a large number of “voting” trees 

that individually predict the value or class of a target descriptor and democratically decide the most 

likely result (strong learners).  Each tree learns simple decision rules inferred from the available 

features and with the goal of maximizing classification accuracy.  An example decision tree from 

the fitted model is shown in Fig. 1.  



 

51 

 

Figure 3.1 Example decision tree from the fitted model.  Each new alloy composition is assessed by 

each fitted tree in the random forest model.  The decision tree makes a structure prediction by starting at 

the top of the tree and answering the true or false question at each node until a leaf is reached.  A random 

forest consists of at least two such decision trees. Color scale is orange for neither fcc or bcc single-phase, 

green for fcc, and purple for bcc. Value order is [Neither single-phase fcc nor bcc, fcc, bcc]. 

 

Table 1 shows the top ten features and their importance rank after fitting the random forest 

model to the 134 compositions with known structure.  The list of features contains a mix of 

information from chemical features and CALPHAD that are both logical and in good agreement 

with previous studies into predicting HEA’s resultant structures [5,6,21–23,25–28].  In contrast to 

these works, the ML-HEA method can incorporate any number of initial input features from 

multiple sources, autonomously determine the most relevant features for solving the problem, and 

subsequently construct non-linear relationships between these features for maximizing accuracy 
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at structure prediction.  Furthermore, the model is readily able to incorporate new features or to 

include new experimental results, each time updating the decision trees and feature importance.   

Table 3.1 Ranking feature importance.  The top ten features ranked by their permutation importance.  

The fwm(x) and range(x) correspond to the fraction-weighted mean and range of the feature for each 

compound.  An * denotes a feature from CALPHAD. 

Feature 

rank 

Feature Feature 

rank 

Feature 

1 fwm (unfilled total valence 
electrons) 

6 *fcc fraction at 1200K 

2 *bcc fraction at 1600K 7 fwm (covalent radii) 

3 *Single phase start 
temperature of fcc 

8 range (electronegativity) 

4 range (covalent radii) 9 Valence Electron Concentration 
(VEC) 

5 fwm (electronegativity) 10 *Single phase start temperature of 
bcc 

 

3.3.2 Model performance 

First, the model’s performance on the binaries, quaternaries, and quinaries that make up 

the labeled training set is assessed (Table 2; known solid solution column). There are no ternaries 

with known solid solution in the dataset and therefore the training set.  Since the model was fit 

with bootstrap aggregation, each decision tree was constructed using ~2/3 of the training data 

(refer to section 2.1 for further information).  Thus, it is not a trivial result that ML-HEA correctly 

predicted the solid solutions for all 134 alloys in the training set.  Moreover, since all 117 of the 

binaries in the dataset have known phase formation, it is possible to make a direct accuracy 

comparison with CALPHAD and the LTVC model.  While ML-HEA correctly identifies the solid 

solution for each of the binaries, CALPHAD and LTVC only score 94% and 87.2% respectively.  

Supplementary Table 2 in the Appendix lists the ML-HEA, CALPHAD, LTVC, and experimental 

results for each of the binary compositions. 
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Second, the predictions from ML-HEA method can be compared to the predictions made 

using CALPHAD or the LTVC model on all 1,798 alloys (Table 2; CALPHAD and LTVC 

columns).  The ML-HEA model’s predictions for the ternary compositions agree with CALPHAD 

and LTVC, 82.1% and 63.3% of the time, respectively.  Supplementary Table 3 in the Appendix 

lists the ML-HEA, CALPHAD, LTVC, and experimental results for each of the ternary 

compositions.  Within the quaternaries (Supplementary Table 4 in the Appendix) and quinaries 

(Supplementary Table 5 in the Appendix), both ML-HEA and LTVC achieve 100% accuracy on 

the known data (17 samples total); however, the two models only agree with each other 62.2% of 

the time for quaternaries and 72.3% of the time for quinaries.  It is reasonable to speculate that the 

small amount of experimental data available to fit these two models is the primary reason for 

disagreement.  Until much of this phase space is solved, it is impossible to ascertain which model, 

if either since there are three available options, is correct in their differing predictions of these 

alloys.  As this phase space is explored further, it will be interesting to study how and why a model 

was (in)correct and will likely yield new design rules and insights, as it has done in other works 

[58].  However, the ML-HEA model has the advantage that each new experimental result can be 

added directly to the training set and the model refit with the goal of improving its prediction 

capabilities.  The ease with which this is performed allows for new results to be added individually 

or in batches, and the model refitting to occur before new compositions are selected.  This ability 

for the ML-HEA model to be rapidly updated and return new predictions is likely to make it a 

valuable tool in the search for new HEAs.  

3.3.3 Gauging model certainty 

The ML-HEA approach has an advantage over CALPHAD and DFT-based methods in that 

we can estimate and quantify (un)certainty in the model using the output from individual decision 
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trees.  Each decision tree that composes the ML-HEA model makes a prediction separately from 

each of the other decision trees.  The percentage of trees voting for each solid solution class is 

recorded and used as a metric of how certain the model is of its answer. Refer to Supplementary 

Table 6 in the Appendix for the decision tree prediction percentages by composition.  Table 3 (part 

a) details the average certainty of the model in predicting each of the classes of solid solutions for 

the binaries, quaternaries, and quinaries for which the answer is known.  There were no ternaries 

with known solid solutions in the dataset.  It has already been established that the model is able to 

predict the correct solid solution with 100% accuracy for the 134 alloys in the training set.  In 

addition, ML-HEA displays a high degree of average certainty, typically greater than 90%, in its 

predictions.  It is not surprising that the fcc class contains the most uncertainty provided the small 

amount of labeled data and the unlikelihood of multi-component materials adopting an fcc 

structure.  Table 3 (part b) details the average certainty of the model in its predictions for 

compositions outside the training set.  In addition to the good agreement with CALPHAD and 

LTVC for these compositions, the model also maintains a reasonably high degree of average 

certainty (~75%).  These two factors combined suggest the model will perform reasonably well as 

a standalone tool or in conjunction with other candidate alloy screening methods. 
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Table 3.2 ML-HEA algorithm agreement with known data and other models.  The predictions from 

the ML-HEA model are first compared with the 134 alloys that have known solid solution.  The ML-HEA 

predictions for all 1,798 alloys are then compared with the predictions from CALPHAD and the LTVC 

model [28].  The percentage of ML-HEA predictions that are in agreement is reported in parentheses for 

each comparison. 

Material Systems 

Known solid solution 

(Neither, FCC, or 

BCC) 

CALPHAD LVTC 

Binaries 117 of 117 (100%) 110 of 117 (94%) 102 of 117 (87.2%) 

Ternaries N/A 362 of 441 (82.1%) 279 of 441 (63.3%) 

Quaternaries 8 of 8 (100%) N/A 690 of 1110 (62.2%) 

Quinaries 9 of 9 (100%) N/A 94 of 130 (72.3%) 
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Table 3.3 Quantifying uncertainty in the ML-HEA model.  (a) The average percentage of decision trees 

that voted for the correct class (certainty) for materials with known phase formation.  (b)  The average 

percentage of decision trees that voted for the correct class (certainty) for materials with unknown phase 

formation.  “N/A” means no materials satisfied the known (a) or unknown (b) criteria and were 

subsequently predicted to belong to the class.  See Supplementary Table 6 in the Appendix for composition 

specific vote tallies. 

 

 

 

3.4 Conclusions 

Herein, a data-driven workflow for predicting whether a given composition will form a 

single- or multi-phase solid solution is presented.  The result is an adaptive learning model that 

can progressively improve through systematic infusion of new data as the high entropy alloy space 

continues to be explored.  Notably, the uncertainty of the model can be quantified by recording 
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each decision tree’s vote and reporting the percentage of votes for each class.  The resultant ML-

HEA model can be used as a standalone module or as a preliminary tool for reducing the list to the 

most likely compositions for further, more computationally expensive analysis. 

An in-depth analysis of the model, particularly the decision trees, the remaining features 

after recursive feature elimination, and the importance rank of those features, reveals the model is 

using similar parameters to those found useful in prior modeling works.  It also reveals the 

opportunity for synergy between chemical features and information from CALPHAD.   

The ML-HEA model identifies the correct lattice for the 134 systems (binary, ternary, quaternary, 

and quinary) with known phase formation.  When compared to the predictions from CALPHAD, 

the ML-HEA method is in good agreement with the predictions for binary and ternary systems 

(94% and 82.1%, respectively).  The machine learning model’s predictions for all 1,798 of the 

binary, ternary, quaternary, and quinary systems are further corroborated using results from the 

DFT-based LTVC method (87.2%, 63.3%, 62.2%, and 72.3% agreement, respectively). Cases 

found to disagree with CALPHAD or LTVC, and later found to be incorrect predictions, could be 

based in the lack of training data for the ternary compositions as well as the absence of 

compositions that are not bcc or fcc in the quaternaries and quinaries.  This is not to state that 

CALPHAD or LTVC will always be correct, but is an explanation of the likely root causes of our 

model’s disagreement with other approaches.   

Like most other models including CALPHAD and LTVC, our approach primarily returns 

a discrete answer that may suggest to the user that the model is 100% confident in the output, while 

in reality the decision tree voting may have been decided by a small fraction.  For this reason, the 

user should also review the decision tree voting records provided.  When searching through a 
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continuous composition space, it is also possible that asymptotic changes in the predictions could 

be observed. 

As further data is collected, the ML-HEA model can continuously be updated with the 

intent of improving accuracy.  Of the 1,110 quaternary and 130 quinary systems, the ML-HEA 

model predicts 436 quaternaries and 91 quinaries will form an fcc or bcc solid solution. This 

suggests there is ample opportunity for material discovery in this composition space.  Furthermore, 

this same methodology can be applied to explore non-equiatomic composition ranges without 

concern for the resultant combinatorial explosion. 
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Abstract 

In the last decade, single-phase high-entropy materials have attracted considerable research 

interest owing to their unexpected existence and unique combinations of properties. Recent 

development of 5-cation high-entropy carbides (HECs) has demonstrated alluring properties 

compared to the rule of mixtures and binary carbides. Proposed here is the development of 

ultrahigh-entropy carbides (UHECs) containing 6+ principal elements with greater combinatorial 

possibilities. The use of 6+ multi-cation compositions allows for the design of ceramics with 

further tunable properties, while likely possessing higher orders of entropic stabilization.  There 

are 133 possible carbide compositions containing 6, 7, 8, or 9 refractory metal cations in 

equiatomic ratios.  Candidate selection for fabrication and material testing was accelerated by 

using a machine learning model that was originally trained to predict the synthesizability of five 

cation disordered metal carbides.  Two compositions from each category of six through eight 

cations, one containing Cr and one without, plus the one possible nine cation carbide were 
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fabricated and characterized.  The potential for these 6+ cation UHECs as improved materials for 

oxidative environments is demonstrated by comparing the oxidation performance of a 5- and 7-

cation system after 10 minutes at 1973K in air.  The oxidation behavior is correlated with 

Ellingham diagrams, and it is demonstrated that the 7-cation carbide has the ability to form a 

transitional stable 5+ cation HEC layer as elements preferentially form oxides, which results in 

significantly improved oxidation resistance. 

4.1 Introduction  

In recent years, high-entropy alloys (HEAs) have attracted much attention, with the first 

publication appearing in 2004 [1].  The novelty of these material systems lies primarily in the 

potential to drive complex compositions into stable single-phase solid-solution materials through 

configurational entropy.  The high configurational entropy is thought to help combat the formation 

of thermodynamically competing intermetallic phases [2,3].  Maximum configurational entropy is 

attained when constituent elements are held in equiatomic amounts in a single phase.  The observed 

entropic effect is thought to be significant, particularly concerning phase formation and stability, 

when the composition consists of at least five principal alloying elements held in roughly 

equiatomic amounts [2,3].  Since the inception of this material class, the exact role that entropy 

plays in the stabilization of the material has remained uncertain [4,5].  The high entropy ceramics 

community has recognized the calculation of configurational entropy per mol of atoms by 

considering the metal cations and the light element anions in their distinct atom positions, or 

‘sublattices.’ [5–8] However, this method is inconsistent with the historical definition of the high-

entropy moniker (i.e. S > 1.5R) [9].  Gild et al. [10] and Wright et al. [7,8] have asserted that the 

configurational entropy requirements for high-entropy must be satisfied on at least one of the 

sublattices in ceramics, and Toher et al. [4] furthered this argument referring to the anion lattice 
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as primarily a “spectator species” with regard to high-entropy materials.  Given the ongoing 

discussions in the community, both calculations are presented here: i) entropy calculated per mole 

of formula units, as well as ii) entropy calculated per mole of atoms.  Regardless of the calculation 

method, the configurational entropy of these novel 6+ cation ceramics is greater than that of any 

previous 5-cation ceramics and are referred to hereafter as ultrahigh-entropy carbides (UHEC).  

For example, an equiatomic 9-cation carbide will have a configurational entropy that is more than 

30% higher than an equiatomic 5-cation carbide.  

Recent interest in high entropy ceramics has yielded a significant number of single-phase 

materials of varying types (e.g. carbides, nitrides, oxides, and borides) [5–7,11–21].  The carbides 

of group IVB, VBs, and VIB transition metals are promising candidates for extreme environment 

applications [22,23] in large part due to their high hardness, excellent corrosion resistance, and 

high melting temperatures [22].  These materials are subjected to extreme environments to meet 

the demands of shielding for nuclear reactors, rocket nozzles, and hypersonic vehicle leading 

edges, where these properties are critical design constraints.    As examples, recent work in high-

entropy ceramics has demonstrated interesting properties including hardness, [11,16,18,20,21,24] 

moduli, [15,16,24–26] and thermal conductivity [18,20,27] that exceed rule of mixtures 

predictions.  The properties observed in high-entropy materials have been partially explained 

through phenomena such as atomic size differences and stabilization of higher symmetry Bravais 

lattices [16,28,29].  Some ceramic properties are also known to be dependent on valence electron 

concentration (VEC) [26,30–32].  The ability to extend the number of cations above five metal 

atoms presents an opportunity for further increasing the configurational entropy, as well as fine-

tuning of the VEC and therefore the material properties of this novel class of ceramics. [24,25,30–

32]  The oxidation behavior of these novel materials is also of considerable interest for enabling 
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high temperature, oxidative atmosphere applications, such as hypersonic vehicle leading edges.   

In this work, the oxidation behavior of bulk 5- and 7-cation compositions are compared.  These 

results are linked to, and corroborated by, Ellingham diagrams [33,34]. Additional intriguing 

combinations of material properties are also likely to be observed as the constituent elements 

become more diverse. 

Despite the unique and desirable combinations of thermo-mechanical properties that high-

entropy alloys and ceramics have demonstrated, [16,35–39] there is a significant lack of logical, 

rapid and effective methodologies for determining suitable candidates for synthesis [2].  

Approaches relying upon phase diagram calculations, as well as other rules and models, have 

demonstrated some success; [40–44] however, the underlying databases lack substantial 

experimental results for optimal fitting and validation. A descriptor known as the entropy-forming-

ability (EFA) has demonstrated significant promise in terms of predicting the synthesizability of 

high-entropy materials [15].  A high EFA value translates to a relatively small energy penalty for 

a given composition exhibit disorder, and a low EFA value suggests challenges to achieving single 

phase random structures (i.e. may favor lattice ordering) [15].  As successful as this approach has 

proven to be in probing likely candidates within the HEC space, there are significant drawbacks 

in terms of relying solely upon this approach.  Ab-initio calculations required for EFA 

determination are computationally intensive, time-consuming, and subsequently expensive.  

Machine learning (ML) is gaining traction in multiple fields within materials science, owing to the 

ability to learn from available data sets, even relatively small ones, to assist in prediction, design, 

and analysis of materials [45–57].  A machine learning based approach to predicting the EFA 

descriptor for high-entropy carbides has recently been demonstrated on 5-component carbides and 

validated by experimental synthesis and follow-up comparison with DFT [12].  The previously 
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demonstrated machine learning model [12] is used here to rapidly probe the vast compositional 

space of 6-9 component UHECs in an unconstrained manner.   

Herein, a data-driven approach for the discovery of 6-9 component ultrahigh-entropy 

carbides (UHEC) is presented and utilized.  Nine bulk samples that have not previously been 

reported are systematically studied for phase formation and mechanical properties.  The specific 

mechanical properties studied are the elastic, bulk, and shear moduli.  The ability to combine 6+ 

metal cations into the carbide lattice is a valuable tool for further enhancing chemical tuning for 

desired properties among diverse applications.  As proof of concept, the capacity to tailor the 

progression of the oxidation process through compositional design is presented. To demonstrate 

this capability, the oxidation behavior of a 5-component HEC and 7-component UHEC are 

compared, and the underlying thermodynamic mechanisms elucidated using relevant Ellingham 

diagrams.   

4.2 Methods  

4.2.1 Entropy forming ability 

The entropy forming ability parameter was introduced by Sarker and Harrington et al. [15] 

to quantify the energy distribution of all possible metastable configurations for a given system.  

The EFA descriptor for the N-species system is the inverse of the standard deviation of the energy 

distribution at a finite temperature above the ground state. Thus, the wider the energy distribution 

of these metastable states, the less likely the system will result in a disordered single-phase 

material.  Refer to Sarker and Harrington et al. [15] for further details regarding the EFA 

formalism. 
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4.2.2 Predicting EFA 

Although many machine learning algorithms are available and potentially suitable for this 

task, random forest was selected for its solution to the bias-variance tradeoff and generally good 

performance on materials science datasets [47,48,57–59].  Random forest is an ensemble method 

consisting of decision tree predictors that are individually fit to a subset of the data, called bootstrap 

aggregating.  While each individual decision tree is potentially overfit to its subset of the training 

data, bootstrap aggregating solves this using the insight that a suitably large number of 

uncorrelated errors average out to zero [60].  Since each tree learns from different subsets of the 

data, they are thus fairly uncorrelated.  The correlation between decision trees can be further 

reduced by tuning hyperparameters such as the number of descriptors considered at each split in 

the decision tree; however, this can come at the cost of an increase in bias since less data is made 

available to the model, and the fit becomes more specific to the data subset.  By averaging the 

results of each decision tree, the random forest model attempts to achieve the same low-variance 

as an individual decision tree with the added benefit of low-bias.  The model used in this work was 

trained (fit) using all available DFT calculated EFA data for high-entropy carbides [12,15].  Five-

fold cross-validated recursive feature elimination and five-fold cross-validated grid search were 

utilized to select the optimal feature set and hyperparameters when fit to the 5-metal cation dataset.  

Refer to the previous work by Kaufmann et al. for in-depth details about the model hyperparameter 

tuning and insight gained from its application to 5-cation HECs [12].  The random forest regressor, 

feature selection, and hyperparameter tuning were implemented with Scikit-learn [61].  

4.2.3 Sample preparation  

Starting powders of each individual carbide compound precursor (NbC, HfC, TiC, ZrC, 

VC, TaC, Mo2C, WC, and Cr3C2) (Alfa Aesar, >99.5% purity, -325 mesh) were weighed out in 
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equiatomic amounts, and hand mixed.  The powders were then inserted into a tungsten carbide 

lined stainless steel jar containing 10mm tungsten carbide milling media to be high energy ball 

milled (HEBM) in a SPEX 8000D shaker pot high energy ball mill (SPEX CertiPrep, NJ, USA) 

for 5 hours in 12 g batches.  The milling occurred in 10 cycles of 30 minutes with 15 minutes of 

rest after each individual cycle to allow for thermal cooling and to prevent significant oxide 

formation.  The entire HEBM process is carried out in an argon atmosphere to further minimize 

possible oxidation of the powders.  Following the HEBM, the sample powders were encapsulated 

within 20mm graphite dies lined with graphite foil on all sides and readied for spark plasma 

sintering (SPS).  The samples were then spark plasma sintered using a Thermal Technologies 3000 

series SPS (Thermal Technologies, CA, USA).  Samples void of chromium carbide were sintered 

at 2473K, while samples containing chromium carbide were sintered at a temperature of 2073K; a 

heating rate of 100 K/min was used for both processes.  This difference is due to the low melting 

temperature of the Cr3C2 precursor powder.  All samples were processed with an applied uniaxial 

load of 20MPa. Samples were brought to desired applied pressure from a starting value of 5 MPa 

up to 20 MPa at 15 MPa/min.  The result of this process is a 20mm diameter pellet approximately 

4 mm in thickness.  The sample is left to slow cool in a vacuum environment until room 

temperature is reached. 

4.2.4 X-ray diffraction and electron microscopy 

Crystal structure analysis is implemented using a Rigaku Miniflex X-ray Diffractometer 

with a 1D detector using a step size of 0.02° and 5 degrees per minute scan rate.  Copper Kα 

radiation (wavelength λ = 1.54059 Å) is used for all measurements.  The lattice parameter is 

calculated utilizing both MDI Jade and Match! phase identification software.  This is subsequently 
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utilized to model and create the theoretical diffraction profile utilized in EBSD to identify the high-

entropy phases.   

Microstructural and elemental analysis is performed using a Thermo Scientific Apreo field 

emission scanning electron microscope (SEM) equipped with an Oxford X-MaxN EDS detector 

and an Oxford Symmetry electron backscatter diffraction (EBSD) detector. A combination of 

secondary and back-scattered electron detectors are utilized for imaging.  EDS scans are conducted 

to verify multi-length scale homogeneity in the resulting microstructure.   

4.2.4 Property testing 

Samples underwent a series of mechanical testing methods to determine modulus 

properties (elastic, shear, and bulk).  Prior to any property measurement, sample density was 

measured via Archimedes principle.  The ratio to theoretical density was computed wherein the 

lattice parameter was determined from respective x-ray diffraction patterns.  Only samples that 

could be fabricated with >95% density were subjected to property measurements to ensure the 

observed properties are not influenced by porosity effects.  While all seven chosen compositions 

fabricated could be made single phase, only three were suitable for mechanical testing as they 

exhibited density >95%.     

The acoustic wave speed method was utilized to determine the elastic, bulk, and shear 

moduli.  Using a transducer coupled to a signal processor and oscilloscope, acoustic wave profiles 

of each sample were collected, and the wave velocity determined.  This wave speed was then used 

to calculate respective modulus values of a sample. This method was repeated across all samples 

in accordance with ASTM standard E494-15.  
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4.2.5 Ellingham diagram calculations 

An Ellingham diagram is a useful tool to study the temperature dependence of various 

compounds, usually oxides, via reactions with various metals.  In an Ellingham diagram, the Gibbs 

free energy is plotted as a function of temperature for the reaction between a gaseous species (O, 

N, S, or F as common examples), a series of metals, and the compounds formed between the 

gaseous species and the metals.  Ellingham diagrams are a thermodynamic calculation that ignore 

any potential kinetic effects. The free energy curves of a given reaction species typically begin at 

large negative values at low temperature and typically possess a positive slope with increasing 

temperature.  For the vast majority of Ellingham diagrams in the literature, the diagrams involve 

reactions between pure metals and the gaseous species, making the chemical potential simply the 

molar Gibbs free energy of the given metal.  In this study, we are concerned with the oxidation 

reaction of HECs, some containing many more than 5 metal species, each of which is associated 

with a carbon atom (M-C pairs).  Therefore, to obtain a representative Ellingham diagram for the 

oxidation of the HECs, the chemical potential of the metals in combination with their bonded 

carbon atoms within a composition is considered.  The free energy of a compound is thus given 

by Equation 1, where x and y are the number of cation and anion atoms in a compound molecule, 

respectively.  µm and µo are the chemical potential of cation and anion (in their compound form).   

  Δ𝐺 = [Δ𝐺𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  ×  (𝑥 + 𝑦) − (𝑥𝜇𝑀 +  𝑦𝜇𝑜)]/𝑦           Equation 1 

The difference between the chemical potential of the pure elements and the elements in the 

compound form is given by Equation 2.  

𝜇𝑀𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑
=  𝜇𝑀𝑝𝑢𝑟𝑒

+ mixing entropy + mixing enthalpy       Equation 2 



 

73 

This Ellingham diagram then can be used to determine the likely sequence of oxidation of 

the various metallic elements present in a given HEC composition. The chemical potential of each 

composition was performed using Thermocalc™ software and the SSOL7 thermodynamic 

database.  Once the chemical potential for the monocarbide pairings in a given carbide compound 

is determined, then the Gibbs Free Energy of complex carbide is determined for the reaction with 

oxygen.  Since many of the metal species involved form multiple possible oxide stoichiometries, 

the most common, and often lowest free energy curve for each metal species oxidation is shown. 

4.2.6 Oxidation Test 

The 5-cation (HfMoNbTaZrC5) HEC and 7-cation (HfMoNbTaVWZrC7) UHEC were 

each placed within an ZrO2 crucible and inserted into a box furnace at a temperature of 1973K and 

a pressure of 1 atm, where the samples remained for a duration of 10 minutes in air. The samples 

were removed, mounted, and cross sectioned. The through thickness cross-section of the sample 

was ground to 4000 grit and polished to 0.05µm colloidal silica and characterized.   

4.3 Results 

4.3.1 Entropic contributions 

Ideal configurational entropy calculations in the field of high-entropy ceramics have been 

published using two different sets of units: entropy per mole of formula units and entropy per mole 

of atoms [5,7,10,15,24]. The ideal configurational entropy for two to nine cation ceramics is 

plotted per mole of formula units (blue curves) and per mole of atoms (red curves), considering 

the cation and anion lattices in the rock-salt FCC crystal structure as two distinct interpenetrating 

sublattices (Figure 1). Treating the structure as being comprised of sublattices allows us to fully 

capture the contribution of all distinct atom positions to configurational entropy.  In Equation 3, as 

is the number of sites on the s sublattice, and Xi
s is the site fraction of element species i randomly 
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distributed on the s sublattice, and in each case, the maximum configurational entropy is achieved 

when the number of cations is equimolar. For rock-salt structured ceramics, the calculated 

contribution from the cation lattice is half of the total potential configurational entropy of the 

system, as this sublattice only occupies one half of all available lattice sites in the system. 

Moreover, for rock-salt structured ceramics with one anion (i.e. carbon in a carbide), the entropic 

contribution for the anion sublattice is zero, as it displays long range ordering. The resulting 

calculation, as shown in Equation 3, will be on a per mole of atoms basis. To instead solve for 

configurational entropy on a per formula unit basis, Equation 3 can be multiplied by ∑ 𝑎𝑆
𝑆  (total 

number of atoms per formula unit), resulting in Equation 4.   Both units of entropy, per mole of 

atoms and per mole formula units, are in line with the sublattice model of ideal configurational 

entropy [2,62,63].   

Δ𝑆𝑚
𝑖𝑑𝑒𝑎𝑙 =

−𝑅 ∑ ∑ 𝑎𝑆𝑋𝑖
𝑆 ln(𝑋𝑖

𝑆)𝑖𝑆

∑ 𝑎𝑆
𝑆

               Equation 3 

Δ𝑆𝑚
𝑖𝑑𝑒𝑎𝑙 = −𝑅 ∑ ∑ 𝑎𝑆𝑋𝑖

𝑆 ln(𝑋𝑖
𝑆)

𝑖
𝑆

              Equation 4 

It should be noted that there is an apparent contradiction in the literature related to the 

definition of ‘high-entropy’ as being greater than 1.5R [9,64] when ideal configurational entropy 

is calculated per mole of atoms in high-entropy ceramic materials.  As shown in Figure 1, none of 

the red curves (entropy per mole of atoms) reach the value of 1.5R, and therefore perhaps the 

metric for ‘high-entropy’ should be redefined for ceramic materials.  Regardless of the method of 

calculation or ‘high-entropy’ definition used, the configurational entropy of the proposed UHECs 

can be significantly greater than that of any 5-component HECs and highlights the interest in 

increasing the number of metal cations in the rock-salt carbides beyond five. 
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Figure 4.1 Modeling ideal configurational entropy.  Configurational entropy per mole of formula units 

(Equation 3) is plotted in blue.  Configurational entropy per mole of atoms (Equation 4) is plotted in red. 

 

4.3.2 EFA predictions 

There are 133 possible compositions using equiatomic combinations of group IVB, VB, 

and VIB transition metal carbides; this is a prohibitively large search space for DFT or trial and 

error experimental strategies. The choice of sample compositions was accelerated using the 

entropy forming ability (EFA) determined via a machine learning (ML) model trained on the 

known DFT-based EFA values for five component HECs [12].  Supplementary Table 7 details all 

possible combinations of 6, 7, 8, and 9 transition metal cations, their ML predicted EFA, as well 
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as the sample compositions selected for experiments.  Feature importance for the machine learning 

model is explored in depth in Kaufmann et al. [12]. Supplementary Figure 8 shows statistics for 

each element’s impact on predicted EFA for a composition.  Interestingly, individual elements do 

not appear to play a very significant role in the final EFA; however, the elements Ti, Zr, and W 

are somewhat less likely to be in compositions with high predicted EFA values.   It has been 

observed that high-entropy carbides and nitrides with lower EFA values can exhibit chromium loss 

[12,24]. Therefore, where applicable, two sample compositions were chosen, wherein one 

composition contains chromium, and the other composition is without chromium.  There appears 

to be ample opportunity for material discovery in this space, as many of the 6-9 cation carbides 

listed have an ML-predicted EFA above the experimentally observed cutoff shown to exist 

between an EFA value of 45 and 50 in previous works [15,16].  Table 1 lists the compositions 

selected for fabrication, the number of metal cations in each composition, and their ML-predicted 

EFA values.  The individual compositions were selected starting from the high EFA 5-cation 

compositions MoNbTaVWC5 [15] and CrMoNbVWC5 [12] and successively adding one cation to 

each composition.  The decision of which metal cation to add was guided by the ML-predicted 

EFA values until converging at all 9 refractory metal cations. 

Table 4.1 Compositions selected for fabrication.  The ML model’s predictions are provided for each 

composition selected for fabrication. The number of metal cations is listed for each composition. Units: 

EFA in (eV/atom)-1
. 

Material 
# of 

Cations 
EFA Material 

# of 

Cations 
EFA 

CrMoNbTaVWC6 6 105 HfMoNbTaTiVWZrC8 8 55 

CrMoNbTaTiVWC7 7 85 CrHfMoNbTaTiVWZrC9 9 51 

HfMoNbTaVWZrC7 7 57 CrMoNbTaTiVWZrC8 8 47 

HfMoNbTaVWC6 6 55 
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4.3.3 Structure determination and chemistry analysis 

For the first time, bulk ultrahigh-entropy carbide samples that contain six, seven, and nine 

metal carbides were successfully synthesized. Wang et al. previously synthesized three eight-metal 

carbides, including HfMoNbTaTiVWZrC8, which is also synthesized in the present work [65]. 

CrMoNbTaTiVWZrC8 is synthesized in this work for the first time, an eight-metal carbide 

containing all three carbide-forming group 6 elements (Cr, Mo, W). Due to the low melting 

temperature of Cr3C2, one of two composition-dependent processing pathways was prescribed 

(Methods section).  Successful fabrication of the rock-salt structure after SPS densification and 

homogenization was verified via X-ray diffraction (Figure 2).  Each of the seven samples exhibit 

only a single set of FCC peaks of the desired ultrahigh-entropy phase.  Even 

CrMoNbTaTiVWZrC8 resulted in a single FCC phase in XRD despite the composition having the 

lowest ML predicted EFA studied experimentally.  The MLEFA value of 47 does lie near the 

previously shown experimental cutoff between 45 and 50; however, the exact cutoff remains 

uncertain, and it is possible the actual EFA is higher than predicted by the ML model for this 

composition, or that the increased configurational entropy plays a role not captured by the ML 

model.  Additional DFT-based studies on these systems are outside the scope of this work, due to 

the DFT computation time for 6+ cation structures. 

Figure 3 depicts the EDS chemistry maps from two fabricated ultrahigh-entropy carbides 

each containing six cations.  The compositions are CrMoNbTaVWC6 and HfMoNbTaVWC6, and 

their ML-predicted EFA values are 105 and 55, respectively.  The EDS maps for all seven 

compositions are shown in Supplementary Figures 9-12 owing to the large number of elemental 

maps.  For each sample, the XRD analysis indicates the successful capture of a single-phase rock-
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salt structure and EDS analysis indicates that each is chemically homogeneous as well.  The SEM 

micrographs for the fabricated samples show large, nearly equiaxed grains, with some small 

deviation in grain size, likely owing to the remaining pores.  If the samples contained multiple 

phases, it would be expected that the grains would be less equiaxed and the microstructure much 

finer as observed in prior works [12,15]. 

 

Figure 4.2 X-ray diffraction patterns for the 6 to 9 cation metal carbides.  The seven compositions 

studied exhibit only the desired FCC structure peaks.  The compositions are grouped by number of cations, 

indicated to the right of the plot. 
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Figure 4.3 Chemistry analysis of the 6-cation UHECs.  The first column is an electron micrograph for 

each of the synthesized compositions.  Columns 2-7 are EDS chemistry maps for each of the six metal 

cations present in each system. Scale bars 50 µm. 

 

4.3.4 Material Properties 

Figure 4 depicts the experimental findings of the corresponding moduli of the 

experimentally fabricated materials as a function of the valence electron concentration (VEC).  The 

data for binary and 5-cation systems is also reported to serve as a juxtaposition of the effects of 

additional cations in the system.  VEC calculations for each composition were computed from the 

nominal compositions.  The observed trends from the elastic, bulk, and shear moduli of these 6+ 

cation UHECs are in good agreement with those previously measured for 5-cation HECs as a 

function of VEC [16].  It is thus reasonable to speculate that other mechanical properties correlated 

with VEC can also be tuned via the cation ratios [31,32,66].  
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Figure 4.4 Moduli comparison for carbides.  (a) Elastic, (b) shear, (c) bulk, and (d) Pugh’s ratio, each as 

a function of valence electron concentration (VEC) for 6+ cation UHEC compositions (blue diamonds) 5-

cation HEC compositions (black circles) and refractory binary materials (red squares).  Properties for the 

binary materials are from Dippo et al.[6] and are representative of their respective FCC phase. Properties 

for the 5-cation HECs are from Harrington et al.[16]. All properties were determined at room temperature. 

 

4.3.5 Ellingham diagram 

To obtain a representative Ellingham diagram for the oxidation of the HECs and UHECs, 

the complete composition of the HEC and UHEC materials were used to determine the proper 

chemical potentials of the M-C compounds prior to calculating the oxidation free energy curves 

(Methods section).  In prior work in high-entropy ceramics, the Ellingham diagrams only 

considered the chemical potential of metals reacting with a gaseous species [33,34].  Figure 5 

details the relative propensity for oxidation of each metal (M) plus carbon pair in each complex 

carbide composition up to 3500°C.   Since many of the metal species involved form multiple 
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possible oxide stoichiometries, the most common, and often most negative free energy curve for 

each metal species oxidation is shown in Figure 5.  These diagrams can be used to relate the 

oxidation species sequence expected in the two corresponding sintered samples discussed in the 

following section.  In fact, the Ellingham diagrams can be used to design the UHEC compositions 

that enable the early oxidation of certain elemental species (e.g. Hf and Zr), while retaining a 

highly stable HEC composition, for which the remaining entropy is greater than would be present 

in any 5-cation HEC following oxidation. 

 

 

Figure 4.5 Ellingham diagrams for each composition. The Ellingham diagrams for (a) 

HfMoNbTaZrC5 and (b) HfMoNbTaVWZrC7.  The Gibbs Free Energy was calculated after 

determining the chemical potential of each species in the respective carbide compound.  A larger 

(i.e. more negative) free energy indicates a preferred reaction compared to a M-C pairing with a 

smaller free energy at the same temperature. 

 

4.3.6 Oxidation analysis 

Two sample compositions, 5-cation HfMoNbTaZrC5 and 7-cation HfMoNbTaVWZrC7, 

were chosen using the analysis of the Ellingham diagrams to demonstrate the effects of adding 

cations with low free energies of oxide formation at high temperature (i.e. VC and WC) to high-
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entropy carbides. The group IV refractory oxides exhibit the most negative free energy of 

formation [33,34] (Fig. 5).  Of these, hafnium and zirconium were selected with the goal of serving 

as primary oxide formers and are thus present in both compositions.  Group VI refractory oxides 

exhibit the highest free energy of formation and may remain as carbides in the system as other 

elements preferentially oxidize.  At the oxidation temperature in this study (1700 °C), the free 

energies of the Group V oxides (Nb, Ta, and V) are nearly equal and lie in between the Group IV 

and VI oxides (Fig. 5).  These elements are thus expected to oxidize collectively after the Group 

IV elements.  The additional two elements in the 7-cation system (vanadium and tungsten) are 

ideal additions in that vanadium has a similar free energy of oxidation to niobium and tantalum, 

while tungsten is only slightly more reactive than molybdenum (Fig. 5).    Assuming that Hf and 

Zr are both the primary initial oxidizing species, the initial 5-cation composition would become a 

3-cation MoNbTa-carbide, no longer high-entropy, and likely inherently less stable at elevated 

temperature.  In contrast, the 7-cation UHEC would reduce to a 5-cation MoNbTaVW-carbide, 

retaining the high-entropy form, and likely stable to higher temperatures.  It was with these 

principles in mind that the two similar compositions were selected to study the experimental order 

and rate of oxidation.  Macroscopic images of the two samples post-oxidation are provided to 

display the differences in porosity and oxide growth (Supplementary Figure S13).  Fig. 6 compares 

the oxide evolution between a HfMoNbTaZrC5 and HfMoNbTaVWZrC7 across a 4mm wide area.  

It can be readily observed that the oxide layer in the 5-cation system is approximately 3 times 

thicker than its 7-cation counterpart. This alone is evidence that the oxidation rate is significantly 

reduced through the chemical tuning of sacrificial oxide formers and subsequent phase formation 

(e.g., the depleted UHEC transition layer).  Additionally, the oxide layer that forms in the 5-cation 

system is extremely porous, likely reducing the overall structural stability of this layer.  
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Conversely, the 7-cation system is relatively dense suggesting more structural stability.  It is 

hypothesized that the thick transition layer present in the 7-cation system facilitates the structural 

stability between the oxide and substrate as well as slows the oxide growth by maintaining a high 

configurational entropy phase as an oxygen diffusion barrier.   

 

Figure 4.6 Overview of oxide layer formation.  Large area electron images for the oxidation interfaces 

of (a) HfMoNbTaZrC5 and (b) HfMoNbTaVWZrC7.  While the 5-cation HEC is observed to rapidly grow 

a highly porous oxide layer, the 7-cation UHEC oxides much more slowly when exposed to the same 

oxidative environment (1973 K, 1 atm for 10 minutes). Scale bars 1 mm. 

 

Fig. 7 depicts the results of the oxidation test of HfMoNbTaZrC5 and HfMoNbTaVWZrC7 

at the interface of oxide formation and the surviving high-entropy substrate. Electron backscatter 

diffraction was used in tandem with EDS (Table 2 and Table 3) and XRD (Fig. 8) to accurately 

determine phases present as well as their compositions.  The legend for each EBSD phase map is 

given in Fig. 7 denoting the primary elements in each phase, not their structure.  Structure 

information for each phase can be found in the XRD patterns (Fig. 8), the prototype structures in 

Table 2 and Table 3, and is further detailed in Supplementary Table 8.  Supplementary Figures 
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S14-S16 and Supplementary Figures S17-S19 further detail the microstructure of the interfacial 

and oxide layers.   
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Figure 4.7 Analysis of the oxidation interfaces.  EDS and EBSD maps of the oxidation interface for (a) 

HfMoNbTaZrC5 and (b) HfMoNbTaVWZrC7.  The legends for each EBSD map denote the primary 

chemistry for each phase, while the structures are correlated in Supplementary Table 8. Scale bars 125 µm. 

Samples tested at 1973K and 1 atm pressure for 10 minutes. 
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Table 4.2 Compositions for each phase in HfMoNbTaZrC5 post-oxidation.  The average and standard 

deviation are reported for each phase not including the bulk HEC. The phase labels denote the major 

elements and correlate with the EBSD maps.  Each average is computed using ten EDS measurements. 

Phase 

Label 
 Zr Nb Mo Hf Ta Prototype 

(HfZr) 

Oxide 
Average 29.70 12.24 10.11 31.54 16.41 

ZrO2 

(Baddeleyite) 

 Std. Dev 5.63 2.04 15.63 5.34 3.11  

(TaNb) 

Oxide 
Average 6.98 38.04 2.83 7.48 44.67 TaO2 

 Std. Dev 1.57 4.11 0.89 1.08 3.66  

(NbTa) 

Oxide 
Average 6.73 60.04 10.31 7.32 15.60 NbO 

 Std. Dev 1.09 6.91 9.56 0.99 2.36  

Mo 

Carbide 
Average 1.67 2.00 92.50 1.73 2.10 MoC1-x 

 Std. Dev 0.22 0.24 0.39 0.06 0.10  
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Table 4.3 Compositions for each phase in HfMoNbTaVWZrC7 post-oxidation.  The average and 

standard deviation are reported for each phase not including the bulk UHEC. The phase labels denote the 

major elements and correlate with the EBSD maps.  Each average is computed using ten EDS 

measurements. 

Phase 

Label 
 V Zr Nb Mo Hf Ta W Prototype 

(TaNb) 

Oxide 
Average 16.94 15.06 22.43 4.07 12.53 22.83 6.15 NbO2 

 
Std. 

Dev 
0.28 1.14 4.10 1.51 0.57 2.20 1.31  

(HfZr) 

Oxide 
Average 5.48 39.64 4.59 3.42 34.27 6.42 6.18 

ZrO2 

(Baddeleyite) 

 
Std. 

Dev 
3.46 8.29 5.71 4.74 11.12 4.65 3.38  

(MoW) 

Carbide 
Average 0.54 1.31 1.00 55.53 0.58 0.23 40.82 MoC1-x 

 
Std. 

Dev 
0.36 1.24 1.72 1.62 0.53 0.47 2.75  

Depleted 

UHEC 
Average 14.40 10.88 14.51 16.43 10.41 15.55 17.82 NaCl 

 
Std. 

Dev 
1.04 2.46 2.92 2.54 2.84 1.72 1.21  
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Figure 4.8 X-ray diffraction data post-oxidation.Labeled XRD data for post-oxidation samples of (a) 

HfMoNbTaZrC5 and (b) HfMoNbTaVWZrC7.  The phase labels denote the crystallographic structures that 

match each phase, not the chemistry.  Refer to Supplementary Table 8 for complete structure information. 
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In each of these materials, it is observed that hafnium and zirconium are indeed the initial 

elements to oxidize, indicated by their presence on the outer edges of the oxide layers in Figure 7.  

Along with the oxidation of these two elements, the 5-cation HEC forms a complex amalgamation 

of oxides with retained islands of MoC1-x dispersed throughout the oxide layer.  There is no 

transitional barrier formed that separates the 5-cation HEC substrate from the oxide, allowing 

unimpeded diffusion, and ultimately resulting in a thicker oxide layer (Fig. 7a).  The 7-cation 

UHEC (Fig. 7b) primarily forms an oxide layer rich in Nb and Ta interspersed with oxides rich in 

Hf and Zr.  This region also contains (Mo,W) carbides, predominantly of the MoC structure 

accompanied by a few fine scale W2C particles that are too small for reliable EDS measurements 

in the SEM.  Between the oxide and 7-cation substrate exists an approximately 75µm thick HEC 

transition layer deficient in Hf and Zr.  Refer to the oxygen EDS map in Fig. 7b for correlation of 

the layers to the EBSD phase map.  The Hf and Zr form fine-scale (Hf,Zr) oxides within this 

depleted UHEC layer (Supplementary Fig. S12), consistent with oxidation predictions.  

4.4 Discussion 

Herein, the synthesis of 6-9 metal cation ultrahigh-entropy carbides is demonstrated with 

compositional guidance from machine learning predicted entropy forming ability, and their 

tailored oxidation performance is evaluated.  The ML model suggests a significant fraction of these 

previously unexplored compositions will form single-phase ceramics, which is validated on seven 

selected chemistries using XRD and EDS chemistry analysis.  While the ML-predicted EFA is 

reported herein for the possible equiatomic combinations of the studied carbide-forming refractory 

metal cations, there is likely ample opportunity for material discovery in the non-equiatomic 

combinations as well.  The introduction of additional metal cations, above that of previously 

identified 5-cation high-entropy carbide structures, presents a new realm of opportunity in terms 
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of chemical tunability in ceramics.  Regarding mechanical properties, the bulk and shear moduli 

are observed to follow previously reported trends corresponding to their valence electron 

concentration (VEC), wherein higher VEC corresponds to a lower G/B ratio, approaching the 

brittle to ductile transition for rock-salt-structured ceramics [6,16,32,66,67].  Compositionally, the 

inclusion of greater than 5 refractory elements in carbide materials marks a significant step forward 

in the field of entropic stabilization.  Importantly for many next generation applications, this is 

expected to yield a net increase in the overall melting temperature of the system owing to the 

increasingly negative slope (i.e. entropy) of the Gibbs free energy equation.   

While much of the previous work involving high-entropy ceramics has been focused on 

the discovery of viable single-phase systems, the present work is also interested in tailoring the 

performance of such materials for extreme conditions.  In this work, we calculate Ellingham 

diagrams that accurately describe the complexity and ceramic nature of these materials, 

demonstrate that the oxidation process correlates well with these Ellingham diagrams.  

Furthermore, we illustrate that a greater number of cations can be employed to create a transitional, 

and possibly protective, HEC layer deficient in the elements that oxidize first.  The ability to slow 

oxidation kinetics using high-entropy alloy nanoparticles compared to monometallic and 

bimetallic nanoparticles has recently been reported, [68] supporting the presented findings.  The 

presence of the Hf- and Zr-rich oxides forming first within the HEC and UHEC corroborates the 

thermodynamically controlled oxidation order.  The absence of other oxides within each carbide 

substrate further corroborates this.  Continued research is required to firmly establish the degree 

to which the oxidation rate is controlled by the same thermodynamic principles and the precise 

role of the depleted UHEC transition layer.  Moreover, there may exist an opportunity to tailor the 
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properties of the resultant oxide(s) and carbide(s); this strategy could pave the way for functional 

ceramics with designed properties, thus extending technologies for extreme environments. 

4.5 Conclusion 

Seven single phase ultrahigh-entropy rock-salt carbides were fabricated via high-energy 

ball milling and spark plasma sintering. The observed mechanical properties agree with trends 

previously observed for 5-cation HECs as a function of VEC. Ellingham diagrams are employed 

to understand the potential for tunability in an oxidative environment. These findings are 

demonstrated through comparison of a 5-cation and 7-cation system in a box furnace at 1973K in 

atmospheric conditions. It is observed that the 7-cation system creates a more uniform oxide layer 

in comparison to the 5-cation system, as well as an oxide transition layer that lead to an overall 

decrease in the oxidation rate. 
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Abstract 

Electron backscatter diffraction (EBSD) is one of the primary tools for crystal structure 

determination.  However, this method requires human input to select potential phases for Hough-

based or dictionary pattern matching and is not well-suited for phase identification.  Automated 

phase identification is the first step in making EBSD into a high-throughput technique.  We utilized 

a machine learning-based approach and developed a general methodology for rapid and 

autonomous identification of the crystal symmetry from EBSD patterns.  We evaluated our 

algorithm with diffraction patterns from materials outside the training set.  The neural network 

assigned importance to the same symmetry features a crystallographer uses for structure 

identification. 

 



 

100 

5.1 Main Text 

Identifying structure is a crucial step for the analysis of proteins [1–3], micro- [4,5] and 

macro-molecules [6], pharmaceuticals [7], geological specimens [8], synthetic materials [9–11], 

and for many other types of materials.  Crystal structure plays an  important role in the material 

properties exhibited [12,13].  Determining the crystal symmetry, lattice parameters, and atom 

positions of the crystal phases is a challenging task, especially for low symmetry phases and multi-

phase materials.  The most common techniques involve either X-ray diffraction (XRD) or 

transmission electron microscopy (TEM)-based convergent beam electron diffraction (CBED) 

[14–16].  X-ray diffraction only requires a sample powder or a polished bulk sample and in most 

cases only a few hours to collect diffraction intensities over a range of angles. Researchers must 

refine diffraction patterns to match the experimentally collected pattern to one in a database or 

from a theoretical model.  This process has drawbacks as structural misclassification occurs due 

to lattice parameter shifts, overlapping XRD peaks in multi-phase samples, texture effects, and the 

matching thresholds set by researchers.  TEM studies employing CBED are more precise than 

XRD in their ability to pinpoint the location of individual crystals, produce singular diffraction 

patterns for a given phase, and capture subtle symmetry information. However, sample 

preparation, data collection rates, data analysis rates, and the requirement of substantial operator 

experience limits the throughput for CBED based studies [17–19].   

A scanning electron microscope (SEM), equipped with an electron backscatter diffraction 

(EBSD) system, has become important for characterization for crystalline materials and geological 

samples [8].  Nishikawa and Kikuchi discovered EBSD patterns in 1928 [20].  Early research by 

Alam et al. [21], Venables et al. [22], and Dingley [23], lead to the émergence of commercial 

EBSD systems.  The development of fully-automated, image analysis methods occurred in the 
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early 1990’s [24,25].  Because of the introduction of automated EBSD, commercial software and 

hardware have evolved to capture more than 3000 patterns per second, which expands the 

applicability of the technique to assist researchers with more complex problems [26].  For example, 

the high-throughput capability of a modern EBSD system enables determination of fine-scale grain 

structures, sample texture, point-to-point crystal orientation, residual stress/strain, geometrically 

necessary dislocation densities, and other information. [27–31].  The relative ease of sample 

preparation compared with TEM samples and the larger sample area analysis in less time makes 

the SEM-EBSD an attractive technique for studies of location specific orientation with high 

precision (~2°), misorientation resolution (0.2°) and spatial resolution (~40 nm) [32].  One of the 

most common applications of EBSD in multi-phase samples is phase differentiation along with 

orientation determination.  A user selects the phases presumed to be in the sample and a program 

finds the best fit phase and orientation to the diffraction pattern [33].  Selected libraries of 

simulated diffraction patterns of phases can be utilized in a dictionary indexing approach to assist 

with phase differentiation, including when working with deformed or fine grain materials [34].  

Phase identification is possible when combined with other analytical techniques such as energy 

dispersive X-ray spectroscopy (EDS) or wavelength dispersive X-ray spectroscopy (WDS) 

[33,35,36].  This requires that the chemical and structural information of the phase exists in a 

theoretical model or crystal database, such as the Inorganic Crystal Structure Database (ICSD).  A 

method was developed to determine the crystal structure using EBSD without EDS data but 

requires hand-drawn lines to be overlaid with a high degree of accuracy on individual Kikuchi 

bands [35,37].  This method is slow and tedious as it requires manual annotation of each individual 

pattern.  In general, EBSD has been limited to elucidating orientation of user-defined crystal 

structures.   
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Recently, the materials science field has begun to embrace the big data revolution [38].  

Researchers have shown the ability to predict new compositions for bulk metallic glasses [39], 

shape memory alloys [40], Heusler compounds [41,42], and ultra-incompressible superhard 

materials [43]. Other groups are developing machine learning methods to establish structure-

property linkages [44–46], or predict the crystal stability of new materials [47].   Holm et al. 

[48,49], have demonstrated the classification of optical microscopy images into one of seven 

groups with greater than 80% accuracy [48], as well as microconstituent segmentation using the 

PixelNet convolutional neural network (CNN) architecture trained on manually annotated 

micrographs of ultrahigh carbon steel [49].  These machine learning driven analysis techniques 

represent important developments in the materials science toolbox.  Previous studies have 

attempted crystal symmetry identification using deep neural networks and TEM diffraction, 

however, the developed model’s practical use is hindered by the choice to use images simulated 

in RGB color, while real TEM diffraction patterns are captured in greyscale [50].  Another study 

utilized full XRD pattern images for single-phase materials [51].  These techniques only provide 

point (TEM) or global (XRD) information about the sample compared to EBSD’s mapping 

capabilities, which can provide spatially-relevant crystallographic information across many length 

scales.  Herein, we demonstrate a hybrid methodology, EBSD coupled with a machine learning 

algorithm, to identify the Bravais lattice or space group of a bulk sample from diffraction patterns.  

The trained machine learning model is subsequently applied to a distinct set of materials it was not 

trained on, but which contain the same crystal symmetry, and identifies the correct Bravais lattice 

or space group with a high degree of accuracy.   

We used two convolutional neural networks (CNN) in this work. The two image 

classification model architectures are ResNet50 [52] and Xception [53] (Fig. 1).   We started by 
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constructing convolution layer, where a learnable filter is convolved across the image. We 

computed the scalar product between the filter and the input at every position, or ‘patch’, to form 

a feature map.  Next, we stacked sequentially a series of alternating convolutional and pooling 

layers.  We organized the feature maps with the units in a convolutional layer and connected each 

feature map to local patches in the previous layer through a set of weights called a filter bank.  All 

units in a feature map shared the same filter banks (also called kernels), while different feature 

maps in a convolutional layer used different filter banks.  We placed pooling layers after 

convolutional layers to down sample the feature maps. This produced coarse grain representations 

and spatial information about the features in the data.   The trained layers of feature detection nodes 

are ‘learned’ from the data as the algorithm finds motifs encoding the underlying crystallographic 

symmetry present in the diffraction patterns. 
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Figure 5.1 Illustration of the inner workings of a convolutional neural network.  Convolutional neural 

networks are composed of a series of alternating convolutional and pooling layers. Each convolutional layer 

extracts features from its preceding layer, using filters (or kernels) learned from training the model, to form 

feature maps. These feature maps are then down-sampled by a pooling layer to exploit data locality. A 

traditional dense neural network, a simple type of classification network, is placed as the last layer of the 

CNN, where the probability that the input diffraction pattern belongs to a given class (e.g. Bravais lattice 

or space group) is computed. 

 

We found that both ResNet50 and Xception [53] CNNs performed similarly well at 

classifying EBSD patterns. We applied the trained model to diffraction patterns that are ‘new’ to 

the algorithm. This means the patterns were not part of the training set but a random mix of 

orientations that may or may not be similar to the training patterns.  Both the ResNet50 (Fig. 2) 

and Xception (Supplementary Figure 20) architecture correctly classified nearly 300,000 

diffraction patterns with >90% overall accuracy for each architecture.  Specifically, this means no 

user input was required for the algorithm to identify to which of the fourteen Bravais lattices each 
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individual EBSP belonged.  The main crystal structure misclassification was jadeite, a monoclinic 

mineral often assigned to structures containing the same symmetry elements (Supplementary 

Figure 20A, C). This specific misclassification resulted in an overall decrease of the algorithm’s 

performance. An in-depth analysis of this misclassification type is performed to understand the 

cause.  The model displayed much higher accuracy on all other materials, typically greater than 

95% for individual materials. 
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Figure 5.2 Confusion matrix displaying the ResNet50 algorithm’s classification results.  (A) A second 

set of diffraction patterns from fourteen of the materials were classified by the trained algorithm.  The 

diagonal (blue shaded boxes) represents the successful matching of the CNN predictions to the true Bravais 

lattices of the sample.  (B) The algorithm classifies electron backscatter diffraction patterns collected from 

materials not used during training of the model.  Correct classification is identified by the green squares 

instead of along the diagonal. 
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We collected 50,000 EBSD patterns from nine completely different materials for blind 

testing of our algorithms’ crystal symmetry identification.  Each architecture correctly classifies 

the Bravais lattice of the unknown material with 93.5% (Fig. 2B) and 91.2% (Supplementary 

Figure 21) overall accuracy for ResNet50 and Xception, respectively.  The base-centered 

monoclinic crystal structure has a propensity to be incorrectly classified as primitive orthorhombic 

or rhombohedral.  The base-centered monoclinic, primitive orthorhombic, and rhombohedral 

Bravais lattices utilized in training belong to the 2/m, mmm, and m point group, respectively.  

The 2/m and mmm point groups each only have 2-fold axis symmetry, mirror plane symmetry, 

and inversion center symmetry in different multiplicity (SupplementaryTable 9).  The 

rhombohedral m point group shares these same symmetry elements, with the addition of one 3-

fold axis symmetry.  As expected for a well fit model, of the misclassification to these two point 

groups, the model displays a lesser degree of misclassification to the m point group containing 

the extra symmetry element.  This sort of misclassification event presents itself as a potential 

source of error, especially in a low symmetry phase, where one pattern from the Kikuchi sphere 

may not contain enough symmetry elements for the best possible classification.    

We used our method to classify the small changes in atomic arrangement that distinguish 

space groups within the 4/m 3̅ 2/m (cubic) point group (Supplementary Figure 22) at a rate of 1 

pattern per second.  We found the ResNet50 algorithm only misclassified a small portion of our 

as-collected dataset between the selected cubic space groups.   

 

 

Walking through a specific example of feature identification by the algorithm helps us 

understand how it arrives at a correct classification.   We start with diffraction patterns of nickel 
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and aluminum with similar crystallographic orientation (Fig. 3).  The importance of features in 

each image are determined by the learned filter banks in the algorithm.  The trained neural network 

architecture and a set of tools called Grad-CAM [54] that provides weighting to local regions in 

the images.  After the algorithm computes the ‘importance’ of these local regions,  Grad-CAM 

maps the normalized weights from 0 (dark blue) to 1 (dark red). These heatmaps are similar for 

nickel and aluminum and show an intense interest of the network in symmetry located at the zone 

axes.  the regions of greatest interest are the [11̅2] and [112] zone axes (2-fold symmetry).  The 

machine learning algorithm couples this information with the presence of the [001] (4-fold 

symmetry) and [01̅3] (2-fold symmetry) and their spatial relationship, owing to pooling layers, to 

correctly identify the Bravais lattice as face-centered cubic. We observed a similar interest in 

information nearest the zone axes for the other materials.     

We determined heatmaps for the 28 materials we used in the training set (Supplementary 

Figure 23). This allowed us to investigate where the algorithm has difficulty with identifications. 

We used Grad-CAM to investigate the misidentification of diopside (Supplementary Figure 24).  

The base centered monoclinic and primitive orthorhombic class both result in similar activations 

with interest centered around the only ‘x-fold’ symmetry present in diopside, two-fold symmetry 

[112̅] zone axis.  Because the base-centered monoclinic and primitive orthorhombic structures 

only differ on the number of 2-fold axes and not having higher symmetry elements, the algorithm 

has difficulty 15 distinguishing between the structures.  It is observed that the area of greatest 

interest is not always centered around the bright spot of a zone axis, like for Cr3Si or Sn, and 

instead favors the side with other zone axes nearby in the diffraction pattern. 
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Figure 5.3 Visualizing the features utilized for classification of a diffraction pattern to face-centered 

cubic (FCC).  An electron backscatter diffraction pattern from nickel (Ni) and aluminum (Al) were selected 

from nearly identical orientations. In the diffraction patterns, four of the zone axes present in each are 

labeled.  The corresponding heatmap displays the importance of information in the image for correctly 

classifying it as FCC.  It is observed that for each of these two images, the symmetry information near the 

[𝟏𝟏̅𝟐] zone axis produces the highest activation, followed by the [𝟏𝟏𝟐] zone axis, and symmetry shared by 

the [001] and [𝟎𝟏̅𝟑] zone axes. 

 

Our algorithm reduced the amount of prior sample knowledge required for crystal structure 

identification. A common approach for crystal identification is to run 20 the diffraction images 

through a Hough transform, which help extract diffraction maxima at Kikuchi band intersections. 

This method can lead to misclassification of similar crystal structures that have similar diffraction 

maxima [55–57].  In contrast, our algorithm autonomously utilizes all the information in each 

diffraction pattern. We demonstrate how this helps with a multi-phase sample using rutilated 

quartz (Fig. 4), containing a phase that was not in our training set. Our machine learning generated 

phase map is nearly identical to the one generated by the Hough transform method.    Of the seven 

errors, five are located where the traditional method could not index the structure. 
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Figure 5.4 Comparison of phase mapping techniques. (A) The phase map on the left was generated by 

traditional Hough-transform EBSD where the user had to select quartz and rutile as the two specific phases 

present in the sample.  Black pixels could not be identified. (B) The center electron image is the region of 

the sample from which the diffraction patterns were collected.  The quartz appears recessed and rutile 

appearing raised above the surface.  (C) The image on right is a phase map generated via machine learning 

determination of the Bravais lattice for each diffraction pattern.  Black scale bar in (A) is 100µm. 

 

Our methodology enables high-throughput and autonomous determination of crystal 

symmetry in electron backscatter diffraction.  We found that the CNN identifies specific features 

resulting from unique crystal symmetry operations within the diffraction pattern images. We 

believe the method can be expanded to encompass a multi-tiered model to determine the complete 

crystal structure.  Improvements building off of our methodology include neural network 

architectures specifically designed for specific multi-phase samples or through incorporating other 

data like phase chemistry into the algorithm. We believe a wide range of research areas including 

pharmacology, structural biology, and geology would benefit by using automated algorithms that 

reduce the amount of time required for structural identification. 

5.2 Materials and Methods 
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5.2.1 Electron backscatter diffraction pattern collection 

Elements or alloys of known crystal structure were collected and polished for EBSD.  High 

purity samples of each metal, alloy, or ceramic material (Cr3Si, Mo3Si, V8C7, Si, Ni, Al, NbC, 

TaC, W, Ta, β-Ti, Fe, WC, Ti, Al2O3, Sn,  Mo5Si3, Mo2C, TiSi2, Al3Zr2, Ni2V, MoPt2, AuSn4, 

ZrSi2, Nb2O5, Fe4Al13, FeNi3,TiC, NiAl, and Ni3Al), and carefully selected geological specimens 

(quartz, ilmenite, rutile, anatase, forsterite, enstatite, malachite, jadeite, diopside, and anorthite) 

were selected.  Supplementary Figure 25 displays the materials and their Bravais lattice.  In multi-

phase geological specimens, only patterns identifiable to one of the phases were analyzed.  EBSPs 

were collected in a Thermo-Fisher (formerly FEI) APREO scanning electron microscope (SEM) 

equipped with an Oxford Symmetry EBSD detector. Supplementary Figure 26 details the 

experimental setup within the SEM chamber.  The Oxford Symmetry EBSD detector was utilized 

in high resolution (1244x1024) mode with frame averaging.  EBSPs were collected from multiple 

large areas with large step sizes chosen to maximize the number of differently oriented patterns 

taken from unique grains.   After collecting high resolution EBSPs from each material, all patterns 

collected were exported as tiff images.  Supplementary Figure 27 displays example images of the 

high-resolution diffraction patterns collected.  None of the collected patterns were excluded from 

training, testing, or validation studies unless their origin was uncertain (i.e. non-indexable patterns 

from multi-phase geological specimens).  That is to say, the collected data was not filtered for 

pattern quality via any means, and the library of images for each phase may contain partial or low-

quality diffraction patterns, which will decrease the accuracy of their identification. 

5.2.2 Neural network architecture and training procedure 

Two well-studied CNN architectures designed for broad image classification tasks, 

ResNet50 [52] and Xception [53], were utilized in this work.  These two architectures were 
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selected for their ease of replication by the scientific community and as baselines for future model 

exploration and development. They also serve as an excellent starting point for efficient pruning 

to a more efficient model via the Lottery Ticket Hypothesis [58].  The Lottery Ticket Hypothesis 

states that there exists a smaller subnetwork within an architecture capable of achieving a similar 

accuracy on the specific task and that the optimal subnetwork can only be located by pruning after 

training the model on that task.  Training was performed using Adam optimization [59], with 

batches of 32 images, and a minimum delta of 0.001 in the validation loss for early stopping 

criteria.  The CNNs were implemented with TensorFlow [60] and Keras [61]. The minimum pixel 

resolution required for the trained models has been set to 246 × 299 (height × width).  Refer to 

Supplementary Figure 28 for a detailed schematic of the test-train workflow and refer to 

Supplementary Figure 29 for the connection between the 7 crystal structures, 14 Bravais lattices, 

32 crystal point groups, and 230 crystal space groups. 

For the 14 Bravais lattices, two materials from each class were selected as training 

materials (e.g. nickel and aluminum for face centered cubic). Two materials were selected for 

training to increase the network’s focus on common symmetry elements in the diffraction patterns.  

For training the model, only 640 diffraction patterns from each material were randomly selected, 

and the remaining diffraction patterns from those same materials were employed as the test set to 

gauge the model’s accuracy after training. An additional distinct set of materials, not used in 

training, were also utilized to demonstrate the utility of the model. 

In the space group classification example, the ResNet50 convolutional neural network was 

trained as a binary classifier between two space groups within the same point group.  The two 

models were trained using diffraction patterns from FeNi3 (L12, space group 221) and Cr3Si 

(primitive cubic, space group 223); and NiAl (B2, space group 221) and Ta (BCC, space group 
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229).  The trained model was then blind tested on two materials that were new to the machine 

learning model but within the same space groups: Ni3Al (L12, space group 221) and Mo3Si 

(primitive cubic, space group 223); and FeAl (B2, space group 221) and W (BCC, space group 

229).  

5.2.3 Validation studies 

The accuracy of the trained models was evaluated using new diffraction patterns collected 

from each of the materials utilized to train the deep neural network as well as diffraction patterns 

from materials the model had not previously encountered.   Furthermore, heatmap overlays giving 

class-specific gradient information at the classification layer of the Xception architecture were 

produced using Grad-CAM [54].  This technique reveals the importance of regions and features 

present in the diffraction pattern to assist in the determination of why the algorithm classified the 

image to a particular structure. 

5.2.4 The classification model 

Having collected approximately 400,000 EBSD patterns from 40 different materials, it is 

necessary to classify each of these images based solely on the information contained in the image.  

The classical computer vision approach is to manually engineer features and use a discriminatory 

model to make the ultimate decision about the Bravais lattice to which the source image belongs.  

Such an approach would require a multitude of heuristics—such as detecting Kikuchi bands, 

accounting for their slight orientation changes, looking for symmetry in the image, etc., and 

carrying the burden of developing the logic that defines these abstract qualities.  The process of 

generating the corresponding computer logic is even more challenging when one considers the 

smallest changes in diffraction patterns resulting from orientation changes or minute atomic 

position differences and defects in materials of the same crystal structure. Thus, the traditional 
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computer vision approach becomes less feasible as the number of categories grows, cannot be 

generalized to other crystal classes (including expanding these capabilities to point and space 

groups), and lacks a procedure to systematically improve prediction capabilities. On the other 

hand, one could use a technique that determines its own internal representation of the data so long 

as it performs well at the discrimination task. This is the underlying principle behind deep 

representation learning (i.e. deep neural networks) [62]. Such methods allow the model to find 

patterns that may be unintuitive or too nuanced for humans to discern.  Other discovered features 

might be obvious to experts, but difficult to translate into specific logic.   

These deep learning systems take in raw data and automatically discover, through filters 

learned via backpropagation [63], the abstract representations that maximize classification 

performance. In convolutional neural networks, such as the ones used in this work, the early layers 

typically learn to look for the presence or absence of edges or curves, while the later layers 

assemble these motifs into representative combinations and eventually familiar objects. In this 

case, these more familiar objects are the symmetry elements present in the diffraction pattern 

encoding a Bravais lattice.  A schematic representation of the CNN utilized in this work is 

addressed in Figure 5.1 of the main text.   
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Abstract 

Electron backscatter diffraction (EBSD) is one of the primary tools in materials 

development and analysis.  The technique can perform simultaneous analyses at multiple length 

scales, providing local sub-micron information mapped globally to centimeter scale.  Recently, a 

series of technological revolutions simultaneously increased diffraction pattern quality and 

collection rate.  After collection, current EBSD pattern indexing techniques (whether Hough-based 

or dictionary pattern matching based) are capable of reliably differentiating between a ‘user 

selected’ set of phases, if those phases contain sufficiently different crystal structures.  EBSD is 

currently less well-suited for the problem of phase identification where the phases in the sample 

are unknown. A pattern analysis technique capable of phase identification, utilizing the 

information rich diffraction patterns potentially coupled with other data, would enable EBSD to 

become a high-throughput technique replacing many slower (x-ray diffraction) or more expensive 

(neutron diffraction) methods.  We utilize a machine learning technique to develop a general 

methodology for the space group classification of diffraction patterns. This is demonstrated within 

the (4/𝑚, 3̅, 2/𝑚) point group.  We evaluate the machine learning algorithm’s performance in 
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real-world situations using materials outside the training set, simultaneously elucidating the role 

of atomic scattering factors, orientation, and pattern quality on classification accuracy.   

 

6.1 Introduction 

Conventional electron backscatter diffraction (EBSD) is a standard scanning electron 

microscope (SEM)-based technique used to determine the three-dimensional orientation of 

individual grains in crystalline materials.  Phase differentiation is a necessary component of this 

technique for analysis of multi-phase samples and has been of particular interest in the community 

[1–4].  However, determining the underlying structure of unknown materials (phase identification) 

has remained a challenge in EBSD.  Currently, Hough- or dictionary-based pattern matching 

approaches require a ‘user-defined’ set of phases at the onset of analysis [5–9].  The Hough 

transform-based method is the most common approach to pattern matching used in commercial 

systems.  Hough-based indexing looks for the diffraction maxima and creates a sparse 

representation of the diffraction pattern [10].  The sparse representation is used with a look-up 

table of interplanar angles constructed from the set of selected reflectors for phases specified by 

the user.  Beyond requiring the user to have sufficient knowledge of the sample before beginning 

analysis, the process remains susceptible to structural misclassification [11–13].  Potential phase 

identification solutions leveraging energy dispersive X-ray spectroscopy (EDS) or wavelength 

dispersive X-ray spectroscopy (WDS) have been previously demonstrated and adopted 

commercially [14–16].  These strategies are effective for single-point identification of crystal 

structure subject to an expert user’s ability to select the correct phase from the potential matches.  

Methods utilizing hand-drawn lines overlaid on individual Kikuchi diffraction patterns have been 

developed for determining the Bravais lattice or point group [15,17–19].  These represent 

important milestones for phase identification from EBSD patterns; however, they remain limited 
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by at least one of the following: analysis time per pattern, the need for an expert crystallographer, 

or necessitating multiples of the same diffraction pattern with different SEM settings [18]. 

Going beyond Bravais lattice and point group identification to determine the space group 

of the crystal phases is in general a challenging task.  X-ray diffraction (XRD) and transmission 

electron microscopy (TEM)-based convergent beam electron diffraction (CBED) are the most 

common solutions [20,21].  X-ray diffraction becomes challenging in multi-phase samples owing 

to overlapping peaks, texture effects, large numbers of peaks for low-symmetry phases, and pattern 

refinement.  Moreover, the information in XRD patterns does not provide detailed microstructure 

information, such as morphology, location, or grain statistics that can be observed using EBSD’s 

better spatial resolution.  However, with careful analysis it is possible to extract crystal symmetry, 

phase fractions, average grain size, and dimensionality from XRD [22].  On the other hand, CBED 

is limited by intense sample preparation, small areas of analysis, and substantial operator 

experience [23–25].  In comparison, EBSD can be performed on large samples [26–29], including 

three-dimensional EBSD [30], with high precision (~2°), high misorientation resolution (0.2°) and 

high spatial resolution (~40 nm) [31].  Furthermore, the diffraction patterns collected in EBSD 

contain many of the same features observed in CBED, including excess and deficiency lines and 

higher-order Laue zone (HOLZ) rings [17,32].  Identification of a space group dependent property 

(chirality) was recently demonstrated in quartz using single experimental EBSD patterns [33].  

However, state of the art EBSD software cannot currently classify the collected diffraction patterns 

to their space group and can misidentify the Bravais lattice.  Common examples encountered in 

EBSD include the difficulty distinguishing L12 (space group 221) from FCC (space group 225) or 

B2 (space group 221) from BCC (space group 229) [34–36].  Inspired by the similarities between 

CBED and EBSD patterns [17,24,37], we propose applying an image recognition technique from 
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the machine learning field to provide an opportunity for real-time space group recognition in 

EBSD.   Given that CBED patterns contain sufficient 3-D structural diffraction detail to allow 

structure symmetry determination to the space group level (Vecchio and Williams, 1987), and 

given the considerable similarity between CBED and EBSD patterns, along with the much larger 

angular view captured in EBSD patterns,  and the demonstration of chirality determination in 

experimental patterns [33], it is reasonable to consider space group differentiation in EBSD 

patterns. 

The recent advent of deep neural networks, such as the convolutional neural network 

(CNN) designed for image data, offer an opportunity to address many of the challenges to 

autonomously extracting information from diffraction data [38,39].  CNNs are of particular interest 

owing to multiple advantages over classical computer vision techniques, which require a multitude 

of heuristics [40–44] — such as detecting Kikuchi bands, accounting for orientation changes, 

determining band width, etc., — and carrying the burden of developing the logic that defines these 

abstract qualities.  Instead, this deep learning technique (e.g. CNNs) determines its own internal 

representation of the data, via backpropagation [45], such that it maximizes performance at the 

discrimination task.  This is the underlying principle behind deep representation learning (i.e. deep 

neural networks) [46].  CNNs operate by convolving learnable filters across the image, and the 

scalar product between the filter and the input at every position, or ‘patch’, is computed to form a 

feature map.  The units in a convolutional layer are organized as feature maps, and each feature 

map is connected to local patches in the previous layer through a set of weights called a filter bank.  

All units in a feature map share the same filter banks, while different feature maps in a 

convolutional layer use different filter banks.  Pooling layers are placed after convolutional layers 

to down sample the feature maps and produce coarse grain representations and spatial information 
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about the features in the data.  The key aspect of deep learning is that these layers of feature 

detection nodes are not programmed into lengthy scripts or hand-designed feature extractors, but 

instead are ‘learned’ from the training data.  CNNs are further advantageous over other machine 

learning models since they can operate on the unprocessed image data and the same architectures 

are applicable to diverse problems.  For example, a similar methodology was recently 

demonstrated to identify the Bravais lattice of an experimental EBSD pattern [47].  Another recent 

example has applied a CNN to simulated EBSD patterns from eight materials that are typically 

confused in conventional analyses [4] with exceptional success.   

In the present work, it is demonstrated that convolutional neural networks can be 

constructed to rapidly classify the space group of singular EBSD patterns.  This process is capable 

of being utilized in a real-time analysis and high-throughput manner in line with recent 

advancements in EBSD technology [48].  The method is described in detail and demonstrated on 

a dataset of samples within the (4/𝑚, 3̅, 2/𝑚) point group.  The dataset utilized further allows for 

studying the impact that scattering intensity factors [49,50] have on classification accuracy.  

Heavier materials tend to have higher atomic scattering factors in electron diffraction, resulting in 

more visible reflectors for a diffraction pattern from the same space group and three-dimensional 

orientation. Training on only low or high atomic number materials is found to reduce future 

classification accuracy.  Increasing the range of atomic scattering factors utilized in the training 

set, even if the minimum and maximum 𝑍̅ materials within the space group are not both included, 

alleviates the effects of this physical phenomenon on the neural network’s classification abilities.  

Furthermore, this work provides a brief analysis on the effect of two common pattern quality 

metrics and train/test orientation differences on classification accuracy.  The inner workings of 

this deep neural network-based method are studied using visual feature importance analysis.  By 
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allowing a machine learning algorithm to perform EBSD pattern classification to the space group 

level, a significant advancement in the utilization and accuracy of phase identification by EBSD 

can be achieved.  When combined with chemical information on phases, for example from energy 

dispersive x-ray spectroscopy, this approach can lead to automated phase identification.  

6.2 Materials and methods 

6.2.1 Materials 

Eighteen different single-phase materials, comprising 6 of the 10 space groups within the 

(4/𝑚, 3̅, 2/𝑚) point group were selected for demonstrating the proposed space group 

classification methodology. Suitable samples for the remaining 4 space groups could not be 

obtained.  This point group was chosen as it contains space groups that are very similar structurally 

and represent a significant classification challenge for conventional EBSD.  The method of 

fabrication and homogenization (if applicable) for each sample are listed in Supplementary Table 

10.  The homogenization heat treatments were performed for three weeks in an inert atmosphere 

at temperatures guided by each phase diagram. 

6.2.2 Electron backscatter diffraction pattern collection 

EBSD patterns (EBSPs) were collected in a Thermo Fisher (formerly FEI) Apreo scanning 

electron microscope (SEM) equipped with an Oxford Symmetry EBSD detector.  The Oxford 

Symmetry EBSD detector was utilized in high resolution (1244x1024) mode.  The geometry of 

the setup was held constant for each experiment. The working distance was 18.1 mm ± 0.1 mm. 

Aztec was used to set the detector insertion distance to 160.2 and the detector tilt to -3.1.  The 

imaging parameters were 20kV accelerating voltage, 51nA beam current, 0.8ms ± 0.1ms dwell 

time, and 30 pattern averaging.  
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After collecting high resolution EBSPs from each material, all patterns collected were 

exported as tiff images.  Supplementary Figure 30 in the Appendix shows example images of the 

high-resolution diffraction patterns collected from the materials utilized in this study, organized 

by space group.  All collected data for each material was individually assessed by the neural 

network, and the collection of images for each sample may contain partial or low-quality 

diffraction patterns, which will decrease the accuracy of their identification. See Supplementary 

Figure 31 for the inverse pole figures (IPFs) for each material. The  IPFs were constructed using 

the MTEX software package [51].  The data in Supplementary Figure 31 has been plotted first 

using the scale bars set by MTEX to show the fine distribution of the data, and then with the scale 

bar fixed from 0 to 5 times random for the purpose of demonstrating the data does not approach 

medium texture levels.  Analysis shows the experimental datasets have very low texture, typically 

in the range of 2-3 multiples of uniform distribution (M.U.D.) also referred to as times random.  

Typically, 5-10 is considered medium texture and greater than 10 is considered strong texture.  See 

Supplementary Figure 32 for histograms of mean angular deviation (MAD) and band contrast (BC) 

to compare pattern quality for each material.  Each plot is also annotated with the mean (µ) and 

standard deviation (σ).  The purpose for not filtering the test data was to assess the model as it 

would be applied in practice.  Only the training sets were visually inspected to confirm high-quality 

diffraction patterns (no partial patterns) were utilized in fitting the neural network.    

6.2.3 Neural network architecture.   

The well-studied convolutional neural network architecture Xception [52] was selected as 

the basis architecture for fitting a model that determines which space group a diffraction pattern 

originated from.  Supplementary Figure 33 in the appendix details a schematic of the convolutional 
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neural network operating on an EBSP.  For a complete description of the Xception architecture, 

please refer to Figure 5 in [52]. 

6.2.4 Neural network training 

Training was performed using 400 diffraction patterns per space group, evenly divided 

between the number of materials the model had access to during training.  For example, if the 

model was given two materials during training, 200 diffraction patterns per material were made 

available.  The validation set contained 100 diffraction patterns per space group, equivalent to the 

standard 80:20 train/validation split.  The test set contains the rest of the patterns that were not 

used for training or validation.  Model hyperparameters were selected or tuned as follows.  Adam 

optimization with a learning rate of 0.001 [53], and a minimum delta of 0.001 as the validation 

loss were employed for stopping criteria.  The weight decay was set to 1e-5 following previous 

optimization work [52].  The CNNs were implemented with TensorFlow [54] and Keras [55].  The 

code for implementing these models can be found at https://github.com/krkaufma/Electron-

Diffraction-CNN or Zenodo (DOI: 10.5281/ zenodo.3564937). 

6.2.5 Diffraction pattern classification 

Each diffraction pattern collected, but not used in training (>140,000 images), was 

evaluated in a random order by the corresponding trained CNN model without further information.  

The output classification of each diffraction pattern was recorded and saved in a (.csv) file and are 

tabulated in the Appendix.  All corresponding bar plots of these data were generated with 

MATLAB.  Precision and recall were calculated for each material and each space group using 

Scikit-learn [56].  Precision (equation 5) for each class (e.g. 225) is defined as the number of 

correctly predicted images out of all photos predicted to belong to that class (e.g. 225).  Recall is 

https://github.com/krkaufma/Electron-Diffraction-CNN
https://github.com/krkaufma/Electron-Diffraction-CNN
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the number of correctly predicted images for each class divided by the actual number of photos for 

the class (equation 6). 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  Equation 5 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  Equation 6 

6.2.6 Neural network interpretability.  

Gradient-weighted class activation mapping (Grad-CAM) was employed to provide insight 

into the deep neural network [57].  This method computes the importance of local regions in the 

diffraction image, normalizes them from 0 to 1, and is overlaid as a localization heatmap 

highlighting the important regions in the image.  The ‘guided’ backpropagation modifier was used 

to achieve pixel-space gradient visualizations and filter out information that suppresses the 

neurons. This information can be safely filtered out since we are only interested in what image 

features the neuron detects with respect to the target space group.  The gradients flowing into the 

final convolution layer were targeted for two reasons: (i) convolutional layers naturally retain 

spatial information unlike the fully-connected layers and (ii) previous works have asserted that 

with increasing depth of a CNN, higher-level visual constructs are captured [58,59]. 

6.3 Results and discussion 

The model is first trained on one material from each of six space groups in the 

(4/𝑚, 3̅, 2/𝑚) point group; there are 10 space groups within the (4/𝑚, 3̅, 2/𝑚) point group, but 

suitable samples for 4 of these space groups could not be obtained.  The first iteration uses the 

material with the largest formula weighted atomic number (𝑍̅) (i.e. atomic scattering factor) in 

order to establish a baseline performance.  Ta was used as the training material for space group 
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229 instead of W since training would require nearly 50% of the available W diffraction patterns.  

Since W and Ta only differ by one atomic number, Ta will serve as a good baseline measurement 

and provide information about small steps in 𝑍̅.  This baseline will be compared to models trained 

using materials with a reduced number of visible reflectors resulting from lower atomic scattering 

factors.  Fig. 1 demonstrates this effect using a similarly oriented experimental diffraction pattern 

from Al and Ni with the same four zone axes labeled.  The diffraction pattern from Ni has 

significantly more observable information (Kikuchi bands) since the atomic scattering factor is 

modulating their intensity.  Using a limited number of materials (e.g. one) to represent the entire 

population of the space group when the neural network is learning the filters that maximize 

classification accuracy is likely to yield representations that are not as effective when Kikuchi 

bands are more or less visible based on diffraction intensity. 

 

Figure 6.1 Effect of atomic scattering factors on observable Kikuchi bands. Al (Z = 13) and Ni (Z = 

28). Despite belonging to the same space group, the symmetry infor- mation visible for the lower atomic 

number Al is noticeably reduced compared with Ni. 

 

Fig. 2 shows the normalized accuracy of the first iteration of the model at classifying each 

of the 18 materials to the correct space group after learning from one material per class.  Using 
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only one material during training creates a significant opportunity for the neural network to 

"invent" representations that are not based on space group symmetry.  The number of patterns from 

a given material that were classified to each space group is given in Supplementary Table 11.  As 

shown in Fig. 2, the model performs significantly better than random guessing (the dashed line at 

16.7%) on multiple materials, including 6 of the 12 materials that were not in the training set.  Of 

those 6, it achieves better than 45% accuracy on 4 of them: (Ni3Al, Cr3Si, W, and Al4Ni3).   This 

is a good indicator that the model is learning useful features for differentiating the space groups, 

instead of trivial ones that only work during the training process.  Furthermore, analysis of the 

IPFs in Supplementary Figure 31 shows that these materials can have distinctly different 

orientation distributions.  As an example, the Al4Ni3 sample has a greater distribution of data with 

orientations near [001] in X, Y, and Z than the material used in training (Al4CoNi2).  Yet, the 

model achieves 95% accuracy on Al4Ni3.  From Supplementary Table 10, the overall accuracy of 

the model is 51.2%, well above the 16.7% chance of guessing correctly.  It is observed that new 

materials with similar atomic scattering factors to the training material tend to have higher 

classification accuracy.  Mo3Si and Cr3Si demonstrate that large differences in atomic scattering 

factor is not the penultimate factor and does not prevent accurate classification when evaluating 

new materials.  There are also several materials with similar average Z that are rarely misclassified 

as one another. These include NiAl (𝑍̅ = 20.5), FeAl (𝑍̅ = 19.5), and Cr3Si (𝑍̅ = 21.5) as well 

as Ni3Al (𝑍̅ = 24.25) and NbC (𝑍̅ = 23.5).   
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Figure 6.2 Plots of normalized classification accuracy after fitting the model with the high atomic 

number materials. (a) Space group 221; trained on FeNi3.(b) Space group 223; trained on Mo3Si. (c) 

Space group 225; trained on TaC. (d) Space group 227; trained on Ge. (e) Space group 229; trained on Ta. 

(f) Space group 230; trained on Al4CoNi2. The dashed line represents the chance of randomly guessing the 

correct space group. The formula weighted atomic number is located below each material. 

 

Studying the misclassification events in Supplementary Table 10 provides further valuable 

insight.  For example, the FeAl and NiAl samples are both B2, an ordered derivative of the BCC 

lattice, and the highest number of misclassifications for these two materials belong to space group 

229 and 230. Fig. 3 shows the difficulty of distinguishing these two space groups, a common 

problem in the literature [35,36]. 
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Figure 6.3 Comparison of diffraction patterns from B2 FeAl (space group 221) and BCC Fe (space 

group 229). B2 FeAl and BCC Fe can produce nearly identical diffraction patterns despite belonging to 

two different space groups. 

 

Using the previous model as a baseline, the next three iterations study the effect of 

swapping the material used to represent a space group with the lowest average atomic number 

material in the dataset.  First, TaC was replaced with Al in space group 225.  The results of the 

exchange is shown in Fig. 4 and Supplementary Table 12 in the Appendix.  The plots in Fig. 4 

look largely unchanged except for space group 225 (Fig. 4c), for which materials with the lowest 

atomic scattering factors are now the most accurately classified.  Furthermore, Supplementary 

Table 12 shows that the incorrect classifications for all other space groups are now primarily space 

group 225. 
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Figure 6.4 Plots of normalized classification accuracy after fitting the model with a single low atomic 

number material. (a) Space group 221; trained on FeNi3. (b) Space group 223; trained on Mo3Si. (c) 

Space group 225; trained on Al. (d) Space group 227; trained on Ge. (e) Space group 229; trained on Ta. 

(f) Space group 230; trained on Al4CoNi2. The dashed line represents the chance of randomly guessing the 

correct space group. The formula weighted atomic number is located below each material. 

 

In order to confirm the effects observed by exchanging Al for TaC in space group 225 

previously, Si is exchanged with Ge in space group 227 (Fig. 5 and Supplementary Table 13).  The 

training set for space group 225 is returned to TaC.  The two space groups most affected by this 

change are 225 and 227, which both have FCC symmetry elements.  For both space groups, as 

well as Fe, the use of Si as the training material causes diffraction patterns to be primarily 

misclassified as space group 221.  The substitution of Si does result in the beneficial effect of 

increasing the classification accuracy of materials belonging to space group 221.   
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Figure 6.5 Plots of normalized classification accuracy after fitting the model with a single low atomic 

number material.  (a) Space group 221; trained on FeNi3.(b) Space group 223; trained on Mo3Si. (c) 

Space group 225; trained on TaC. (d) Space group 227; trained on Si. (e) Space group 229; trained on Ta. 

(f) Space group 230; trained on Al4CoNi2. The dashed line represents the chance of randomly guessing the 

correct space group. The formula weighted atomic number is located below each material. 

 

The last swap studied was the lower atomic number Fe in place of Ta (Fig. 6).  Similar to 

what was observed when Al was used in space group 225, the increased correct classifications 

have shifted toward the low atomic number materials within space group 229.  Furthermore, the 

B2 materials are now primarily misclassified as belonging to the BCC symmetry space group 229 

(Supplementary Table 14).  In comparison to Supplementary Table 10, almost half of the NiAl 

diffraction patterns were classified as 229 instead of 230.  These three examples confirm that 

providing the neural network with only the lightest or heaviest materials will result in avoidable 

misclassification events.  
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Figure 6.6 Plots of normalized classification accuracy after fitting the model with a single low atomic 

number material. (a) Space group 221; trained on FeNi3.(b) Space group 223; trained on Mo3Si. (c) Space 

group 225; trained on TaC. (d) Space group 227; trained on Ge. (e) Space group 229; trained on Fe. (f) 

Space group 230; trained on Al4CoNi2. The dashed line represents the chance of randomly guessing the 

correct space group. The formula weighted atomic number is located below each material. 

 

Previously, the model has only been supplied with information from one material to learn 

from.  It should not be surprising that the limited data representing the population of all materials 

in each class results in misclassification events when extrapolating further away from the training 

data.  To demonstrate the increased accuracy of the technique when the data begins to better 

represent the population, we add a second material to the training set for space groups 221, 225, 

227, and 229.  Materials were not added to space group 223 and 230 since performance on those 

two groups was already well above the probability of the neural network guessing correctly by 

chance (16.7%) for the second material.  The total number of diffraction patterns available to the 

neural network during training remained fixed as described in the Methods section. Supplementary 

Figure 34 and Supplementary Figure 35 display the IPFs and histograms, respectively, for the 
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training data used in this model. As evidenced by the low M.U.D. and wide range of pattern quality, 

the data provided to the model during training is quite diverse.  The classification results with new 

diffraction patterns are shown in Fig. 7 and Supplementary Table 15 in the Appendix.  Compared 

to the neural networks trained with only one material, this model has 29% higher accuracy (now 

80% correct) and demonstrates significantly improved accuracy on materials not utilized in the 

training set.  For example, diffraction patterns from Ni3Al, FeAl, Cr3Si, NbC, TiC, and Al4CoNi2 

are correctly classified significantly more than random guessing even though the neural network 

was not provided diffraction patterns from these materials to learn from.  Moreover, significantly 

increasing the range of atomic scattering factors, such as in Fig 7a and Fig. 7c, improves the neural 

network’s performance on materials with scattering factors further outside the range.  Aluminum 

and tungsten are the only two materials where the neural network’s classification accuracy is below 

the probability of randomly guessing the correct answer.  An analysis of the orientations and 

pattern quality for patterns that were correctly identified and misclassified was performed on 

several materials outside the training set.  NbC, Al, and W were selected in order to make a number 

of comparisons including materials with varying classification accuracy or within the same space 

group. Supplementary Figure 36 shows that for each material, the IPFs for the correctly classified 

patterns resembles the IPFs for patterns that were misclassified.  In other words, specific 

orientations do not seem to be more likely to be classified correctly.  Supplementary Figure 37 

shows the corresponding MAD and BC histograms.  While the plots and associated statistics for 

NbC show patterns with lower band contrast or higher MAD have a slight tendency to be 

misclassified, there does not appear to be a strong relationship between these pattern quality 

metrics and classification accuracy.   
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Figure 6.7 Plots of normalized classification accuracy after fitting the model. (a) Space group 221; 

trained on FeNi3 and NiAl. (b) Space group 223; trained on Mo3Si. (c) Space group 225; trained on TaC 

and Ni. (d) Space group 227; trained on Ge and Si. (e) Space group 229; trained on Ta and Fe. (f) Space 

group 230; trained on Al4CoNi2. The dashed line represents the chance of randomly guessing the correct 

space group. The formula weighted atomic number is located below each material. 

 

The excellent overall performance of the neural network in correctly identifying the space 

group necessitates an understandable interpretation of what information is important to the model, 

since orientation and pattern quality are not seemingly biasing the results of this study.  Fig. 8 is a 

set of “visual explanations” for the decisions made by the Hough-based method and the trained 

CNN from Fig. 7.  The selected diffraction patterns (Fig. 8 left-side) from NbC and Ni3Al are of 

nearly the same orientation and average atomic number but are from space group 225 and 221; 

respectively.  Importantly, the model had not trained on any EBSPs from these two materials at 

this point.  The Hough-based method produces the “butterfly peak” [10] representation (Fig. 8 

middle) for matching the interplanar angles to user selected libraries.    The resulting Hough-

transforms are nearly identical for both NbC and Ni3Al, save for minor differences owing to the 
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small orientation shift.  Furthermore, the Hough-based method creates a sparse representation that 

does not capture the finer detail found within the EBSPs.  For example, the [111] and [112] zone 

axes are each encircled by a discernable HOLZ ring [17] as well as excess and deficiency features 

[32].  In comparison to the Hough method, the convolutional neural network can learn these 

features, or lack of them, and associate them with the correct space group.  Using gradient-

weighted class activation mapping (Grad-CAM) [57], we produce a localization heatmap 

highlighting the important regions for predicting the target class (Fig. 8 right-side).  When visually 

inspecting the importance of local regions to the neural network, it is immediately observed that 

the neural network finds each of the labeled zone axes to be of high importance (orange in color) 

in both EBSPs. In fact, the heatmaps look remarkably similar and are concentrated about the same 

features a crystallographer would use.  These features clearly include the zone axes and HOLZ 

rings.  To investigate this further, a diffraction pattern is simulated for each material using EMSoft 

[60].  In Fig. 9, it is first observed that many of the features of the patterns are similar, such as 

Kikuchi bands and diffraction maxima.  These similarities explain why the Hough transform-based 

method cannot distinguish the two.  However, it is also immediately noticeable that equivalent 

zone axes and surrounding regions have very different appearances.  As examples, two sets of 

equivalent zone axes have been marked with either a red triangle or blue hexagon.  The red triangle 

is the equivalent to the [111] zone axis studied in Fig. 8.  While the fidelity of the simulated patterns 

with experimental patterns is not perfect, the existence of the discussed features can be confirmed 

by comparing them with the experimental patterns previously discussed.  For example, compare 

the red and blue labeled zone axes in Fig. 9 for Ni and Mo3Si with the experimental NbC (Fig. 8) 

and Cr3Si (Supplementary Figure 30) diffraction patterns.  The structure and features visible are 

clearly well correlated. 
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Figure 6.8 Comparison of feature detection with Hough-based EBSD and the trained CNN. (Top row 

from left to right) Experimental EBSP from NbC (space group 225; FCC structure), Hough-based feature 

detection, and gradient-weighted class activated map. (Bottom row from left to right) Experimental EBSP 

from Ni3Al (space group 221; L12 structure), Hough-based feature detection, and gradient-weighted class 

activated map. The importance scale for the heatmaps goes from dark blue (low) to dark red (high). 
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Figure 6.9 Dynamically simulated EBSPs. One diffraction pattern per space group was simulated to study 

the expected differences and assess the feature importance observed in experimental patterns. The observed 

reflectors are similar for each space group; however, attributes nearby the zone axes can vary significantly. 

Two sets of equivalent zone axes have been indicated with either a red triangle or blue hexagon. 

 

Supplementary Figure 38 helps to elucidate the failure mechanism of this model by 

studying the activations of the current model, which incorrectly identified the pattern, compared 

to the activations in the first model, which had correctly identified the same EBSP.  In each case, 

the heatmaps for space group 229 are overlaid onto the diffraction pattern.  When correctly 

identified as belonging to space group 229 (Supplementary Figure 38, center), significantly more 

zone axes are given higher importance scores than when misclassified to space group 225 

(Supplementary Figure 38, right).  The same is observed with features within the HOLZ rings, 

such as near the [001] and [101] axis.  It is important to note, the similarity between the activations 

at zone axes, such as [001], [012], and [102], should not be surprising since the activations for 

class 229 are being studied.  Failures such as this can potentially be alleviated as the number of 

samples, experimental or simulated, used in fitting these models continues to grow.  Previous 
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works using experimental [47] and simulated [4] patterns have further demonstrated the 

attentiveness of the last layers of the model on the zone axes and surrounding features. The study 

using simulated patterns also elucidated each convolutional layer’s attention to specific aspects of 

EBSPs including edges and major Kikuchi bands.  These studies into the “visual” perception of 

the model suggest that the network has learned relevant and intuitive features for identifying space 

groups.   

By providing the neural network with diffraction patterns from many materials, the neural 

network can improve its resiliency to small changes within a space group, simultaneously 

developing a better understanding of what elements in the image are most useful and learning 

filters that better capture the information.  Figure 10 demonstrates this by supplying the same 

number of diffraction patterns to learn from as used previously, but evenly divided between all 

available materials in each space group.  Supplementary Table 16 shows the number of images 

classified to each space group from individual materials.  The classification accuracy has increased 

to 93%, compared to 40-65% for the models that were only provided with one training material 

per space group (Figs. 2, 4, 5, 6, 7) and 80% when using two materials for some of the classes 

(Fig. 8). 
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Figure 6.10 Plots of normalized classification accuracy after fitting the model with data from each 

material. (a) Space group 221. (b) Space group 223. (c) Space group 225. (d) Space group 227. (e) Space 

group 229. (f) Space group 230. The dashed line represents the chance of randomly guessing the correct 

space group. The formula weighted atomic number is located below each material. 

 

6.4 Conclusion 

In this paper, a high-throughput CNN-based approach to classifying electron backscatter 

diffraction patterns at the space group level is developed and demonstrated.  In each study, the 

CNN is shown to be able to classify at least several materials outside the training set with much 

better probability than random guessing.  Several investigations are conducted to explore the 

potential for biases owing to crystallographic orientation, pattern quality, or physical phenomena.  

The number of visible reflectors, directly correlated with atomic scattering factors, is found to have 

an impact classification accuracy when only low or high atomic number materials are used to fit 

the model.  Increasing the range of atomic scattering factors used in training each class is found to 

reduce the number of misclassification events caused by large differences in the number of visible 
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reflectors.  The dataset for each material and space group were of very low texture and good 

distributions of pattern quality metrics.  Continued inclusion of data, particularly from more 

materials, will likely increase the robustness of the model when presented with new data.  

Investigation of the convolutional neural network’s inner workings, through visualization of 

feature importance, strongly indicates the network is using the same features a crystallographer 

would use to manually identify the structure, particularly the information within the HOLZ rings.  

This analysis, combined with IPFs, suggests there is minimal orientation bias present.  We believe 

this method can be expanded to the remaining space groups and implemented as part of a multi-

tiered model for determining the complete crystal structure.  There are no algorithmic challenges 

to extending this framework to all 230 space groups, it is only currently limited by the lack of data, 

which simulated EBSD patterns may help to resolve.  This technique should benefit from 

continued advancements in detectors, such as direct electron detectors, and the framework is 

expected to be immediately applicable to similar techniques such as electron channeling patterns 

and CBED.  A wide range of other research areas including pharmacology, structural biology, and 

geology are expected to benefit by using similar automated algorithms to reduce the amount of 

time required for structural identification. 
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Abstract 

The emergence of commercial electron backscatter diffraction (EBSD) equipment ushered 

in an era of information rich maps produced by determining the orientation of user selected crystal 

structures.  Since then, a technological revolution has occurred in the quality of and the rate these 

diffractions patterns can be collected and analyzed for orientation using the Hough transform.  The 

next revolution in EBSD is the ability to directly utilize the information rich diffraction patterns in 

a high-throughput manner.  Aided by machine learning techniques, this new methodology is, as 

demonstrated herein, capable of accurately separating phases in a material by crystal symmetry, 

chemistry, and even lattice parameters with fewer human decisions.  This work is the first 

demonstration of such capabilities and addresses many of the major challenges faced in modern 

EBSD.  Diffraction patterns are collected from a variety of samples and a convolutional neural 

network, a type of machine learning algorithm, is trained to autonomously recognize the subtle 

differences in the diffraction patterns and output phase maps of the material.  This study offers a 
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path to machine learning coupled phase mapping as databases of EBSD patterns encompass an 

increasing amount of the space groups, chemistry changes, and lattice parameter variations. 

7.1 Introduction 

Conventional electron backscatter diffraction (EBSD) is a scanning electron microscope 

(SEM)-based technique used to determine the three-dimensional orientation of individual grains 

in crystalline materials.  At present, the collected electron backscatter diffraction patterns (EBSPs) 

are primarily utilized to construct representative maps of the microstructure, given user defined 

phases.  The resulting maps and EBSPs can be further utilized to study dislocation evolution [1], 

geometrically necessary dislocations [2], among others [3–6].  These analyses are currently 

achieved in commercial EBSD utilizing the Hough transform on each diffraction pattern combined 

with a look-up table of interplanar angles constructed from a set of selected reflectors as specified 

by the user (typically up to 5 phases).  In the process, the Hough transform strips most of the 

information about crystal structure and chemistry from the image [7–10].  The small subset of 

information being utilized for differentiating the phases often results in mis-classification of 

similar crystal structures [11] and orientations that produce similar diffraction maxima in different 

crystal systems [12,13].  Despite its shortcomings, the Hough transform has continued to be the 

standard in pattern indexing even though computing power has increased exponentially, largely 

because computer algorithms have previously been incapable of Kikuchi band detection, or the 

more challenging problem of autonomously parsing relevant information for determining 

chemistry and crystal structure.   

The inability for state-of-the-art Hough-based EBSD systems to make determinations 

about individual components of or the entire crystal structure of a phase has not gone unnoticed in 

the scientific community. One proposed solution is dictionary-based approaches [14–17].  
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Libraries of selected materials can be selected and simulated with software such as EMSoft [18] 

for the purpose of comparing the experimentally collected diffraction patterns with those 

simulated.  Through this process, the most similar patterns in the dictionary determines the phase 

and orientation of each EBSD pattern, even for deformed or fine-grained materials [14].  These 

approaches have helped to allay major challenges in phase differentiation, such as separating 

martensite from cementite [14].  Other types of phase identification methodologies have been 

demonstrated wherein EBSD is combined with other analytical techniques, such as energy 

dispersive X-ray spectroscopy (EDS) or wavelength dispersive X-ray spectroscopy (WDS), given 

that the chemical and structural information of the phase exists in a theoretical model or crystal 

database [10,19,20].  The problem remains that the collected electron backscatter diffraction 

images are traditionally processed via the Hough transform when attempting to perform phase 

identification.  As mentioned previously, the down sampling of this data allows for patterns from 

multiple crystal structures to be mistaken for others since the computer algorithms are capable of 

finding orientations, which may appear to be correct [12].  In commercial phase identification 

systems, the user must also select a limited number of elements, typically up to 3, from the EDS 

results before the computer narrows down the list of possible candidates.  The combination of 

these two reductions in information results in a multitude of phases from a variety of crystal 

structures being returned for the user to decide is the best fit for each phase present in the 

microstructure.   

The recent advent of machine learning techniques, such as the convolutional neural 

network (CNN), offer an opportunity to address many of the challenges to autonomously 

extracting information from diffraction data [21,22].  The reason CNNs are of particular interest 

is due to multiple advantages over classical computer vision techniques, which require a multitude 
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of heuristics [23–27] — such as detecting Kikuchi bands, accounting for orientation changes, 

determining band width, searching for Higher Order Laue Zones (HOLZ) rings, etc., and carrying 

the burden of developing the logic that defines these abstract qualities.  Instead, this deep learning 

technique determines its own internal representation of the data, via backpropagation [28] 

potentially coupled with one of many possible hyperparameter tuning strategies [29], such that it 

maximizes performance at the discrimination task.  This is the underlying principle behind deep 

representation learning (i.e. deep neural networks) [30].  Such methods allow the model to find 

patterns that may be unintuitive or too nuanced for humans to discern.  Other discovered features 

might be obvious to experts, but difficult to translate into specific logic (e.g. linking the 

background signal to the chemical composition). CNNs are further advantageous over other 

machine learning models since they operate on the image data directly.  As an example of other 

machine learning models applied to EBSD, a nearest neighbor machine learning model has been 

previously explored by Goulden et al. [31] to address the challenge of separating ferrite and 

martensite by machine learning aided pattern quality analysis, but pattern quality is too rigid a 

metric for general use, and the method was reliant on human analysis and confirmation over 

multiple rounds of indexing a single map.  Another advantage is the flexibility of these CNNs, 

allowing for the transfer of knowledge learned from discriminating images in other contexts 

[32,33], the development of models suitable for application in a highly specific materials space, or 

deployment in an application where the phases present are completely unknown.  For example, 

during the initial analysis of a material, a pre-trained CNN could be utilized for the determination 

of which Bravais lattices or space groups are present [34].  Other studies utilizing CNNs in EBSD 

have demonstrated orientation determination [35] and phase classification of several materials that 

may be easily confused in traditional EBSD [36].  The work by Foden et al. demonstrates the 
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application of simulated patterns for achieving this goal.  Simulated EBSPs may alleviate the 

challenges associated with finding suitable materials for data collection, similar to what is being 

done in other applications [21,22].  In well-known classes of materials, application specific models 

could be developed to distinguish phases traditional Hough-based EBSD finds nearly 

indistinguishable, such as martensite and ferrite.  Moreover, modern computing hardware allows 

for real time classification in line with recent advancements in EBSD technology [37]. 

Herein, it is demonstrated that convolutional neural networks can be constructed to 

recognize phases based on their structure/symmetry, chemistry, and even lattice parameter 

variations; some of these well beyond the scope of what the Hough transform is capable of, even 

with user supplied information about the sample.  Several of these CNN-based demonstrations are 

meant to serve as proof of concept models for application specific use cases, while others such as 

the Bravais lattice identification model can readily be applied to materials outside the training set.  

Further automation and improved accuracy of the proposed process could be achieved by the 

development of diffraction pattern databases, inclusion of simulated diffraction patterns into the 

training process, and the development of standard models for various use cases. 

7.2 Materials and methods 

7.2.1 Electron backscatter diffraction pattern collection 

Six different multi-phase materials were selected for demonstrating the proposed phase-

mapping methodology: (1) a rutilated quartz sample, (2) a sample of the Campo del Cielo 

meteorite, (3) an arc-melted ingot of Ni80.8B13.6Si5.4Fe0.2 (at%) blended with 40 wt% eutectic 

tungsten carbide (a metal matrix composite) [38], (4) an Fe-Al metallic-intermetallic laminate 

(MIL) composite [39], (5) a thermally-cycled MCrAlY-based thermal barrier coating [40–42], and 

(6) a sample of 430 stainless steel.  Diffraction patterns from twenty-eight other materials, detailed 
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in [34], were utilized for training the CNN-based model for Bravais lattices  demonstrated herein.  

EBSD patterns (EBSPs) were collected in a Thermo-Fisher (formerly FEI) Apreo scanning 

electron microscope (SEM) equipped with an Oxford Symmetry EBSD detector and Oxford X-

MaxN EDS detector.  The Oxford Symmetry EBSD detector was utilized in high resolution 

(1244x1024) mode with frame averaging and EDS maps were collected simultaneously. The 

Hough indexing parameters were 12 Kikuchi bands, a Hough resolution of 250, and band center 

indexing. After collecting high resolution EBSPs from each material, all patterns collected were 

exported as tiff images.  Supplementary Figure 39  in the Appendix shows example images of the 

high-resolution diffraction patterns collected from the six materials utilized in this study.  The 

collected data was not filtered for pattern quality via any means, each pattern was individually 

assessed by the neural network, and the collection of images for each sample may contain partial 

or low-quality diffraction patterns, which will decrease the accuracy of their identification. 

7.2.2 Neural network architecture and phase mapping procedure 

The well-studied convolutional neural network architecture Xception [43] was selected for 

fitting a model that determines which phase or crystal structure a diffraction pattern originated 

from.  Supplementary Figure 40 in the appendix details a schematic of the convolutional neural 

network operating on an EBSP.  Training was performed using Adam optimization [44], with 

batches of 32 images, and a minimum delta of 0.001 as the validation loss employed for early 

stopping criteria.  Categorical cross-entropy was used as the loss function.  All training data labels 

were created using validated phases in combination with combined EBSD/EDS.  In the cases 

where training data was collected from multi-phase materials, such as the MIL composite, it is 

possible that a small number of diffraction patterns could have been attributed to the incorrect 

class.  If a substantial number of patterns were mislabeled, we expect to see poor performance 
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from the model.  The CNNs were implemented using Python 3.5 with TensorFlow [45] and Keras 

[46].  The conversion from neural network predictions to phase maps is accomplished using 

MATLAB R2018B.  The histogram plot and pattern quality phase map were also made using 

MATLAB R2018B. 

The rutilated quartz specimen was mapped using a convolutional neural network 

previously trained to differentiate the crystal symmetry of the 14 Bravais lattices [34].  This model 

was trained using the same hyperparameters used for all other models in this work.  The model 

was not trained using quartz diffraction patterns. 

For the Campo del Cielo meteorite sample, EBSD patterns were collected from taenite, 

schreibersite, iron, and regions without any evidence of a diffraction pattern (i.e. containing only 

background noise).  The model was trained on five hundred randomly selected patterns from each 

of these phases.   

Diffraction patterns for three of the five phases present in the Ni80.8B13.6Si5.4Fe0.2 plus 40 

wt% eutectic tungsten carbide sample were collected from separate samples of the pure phases 

(Ni, W2C, and WC), similar to a ‘standard’ library. Diffraction patterns from the other two phases, 

Ni3B and W2NiB2, were collected directly from the sample owing to the challenge of making pure 

specimens of these two phases.  The model was trained to differentiate five hundred randomly 

selected patterns from each of these phases.   

The Fe-Al MIL composite is presented herein as four distinct phases.  This material was 

fabricated via diffusion controlled growth from a “multiple-thin foil” configuration and a two-

stage reaction process described elsewhere [39].  This fabrication strategy yields layers of pure 

iron, an Al-enriched α-Fe layer, an Fe-enriched FeAl B2 layer, and a near equiatomic (~48 at.% 
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Fe) FeAl B2 layer.  Multiple layers of the sample were mapped using Hough-based EBSD alone, 

with reference chemistries from EDS for each phase, and separately with the convolutional neural 

network (CNN-based) EBSD approach.  Diffraction patterns for training the CNN were collected 

from each of these regions and separated into four groups based on the chemistry at that location.  

The model was trained to recognize the subtle differences caused by chemistry and structure 

changes using five hundred randomly selected patterns from each of these phases.   

The thermal barrier coating sample contains five face-centered-cubic (FCC) phases, all 

space group 225, and one rhombohedral structure.  The FCC phases are Ni, yttria-stabilized 

zirconia (YS-ZrO2), TaC, Cr23C6, and Hastelloy X.  The rhombohedral phase is the thermally 

grown oxide (TGO) Al2O3.  The sample was phase mapped using standalone Hough-based EBSD, 

EBSD combined with chemistry information from EDS assigned to each phase, and separately 

with the convolutional neural network (CNN-based) EBSD approach.  Five hundred diffraction 

patterns were randomly selected from each phase to train the model. 

A section of 430 stainless steel (max 0.12 wt% carbon) was selected to study the 

methodology’s ability to separate martensite from ferrite.  The lattice parameters for phase 

mapping via traditional EBSD were determined from XRD and the well-defined dependence of 

the lattice parameter c on carbon content [47].  Diffraction patterns used to train the model were 

collected from out-of-sample ‘standards’ of pure Fe and rapidly quenched MMFX steel [48].  The 

training patterns from the MMFX steel (max 0.15 wt% carbon) were filtered such that they were 

of the same high quality as the pure Fe patterns.  Five hundred high quality diffraction patterns 

from each phase were then selected to train the model.   

For each of the six materials, each diffraction pattern collected in an EBSD map was 

evaluated in a random order by the corresponding trained CNN model without further information.  
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The output classification of each diffraction pattern was recorded and saved in a (.csv) file.  A 

custom Matlab script was used to assign an RGB color value to the predicted class for each 

diffraction pattern and assign the color value to the corresponding pixel in the EBSD map.  Unlike 

the results obtained from the commercial Oxford Aztec software, no smoothing algorithm was 

employed for interface boundaries between phases, making the CNN-based maps look more 

pixelated than their commercial counterpart. 

7.3 Results and discussion 

Fig. 1 demonstrates the CNN-based EBSD method’s ability to overcome the first major 

challenge traditional Hough-based EBSD is presented with: “What crystal symmetries are present 

in this material?”  The electron image in Fig. 1b clearly displays the two-phase nature of a rutilated 

quartz sample.  When using a commercially available EBSD software package, such as Oxford’s 

Aztec application, the user must first select a list of phases, which serve as the Hough transform 

libraries, for determining the phase and crystallographic orientation of each diffraction pattern.  

Assuming the phases are known, the user can select the quartz and rutile libraries to produce the 

phase map in Fig. 1a.  However, there is often uncertainty as to which crystal structures are present 

in a sample.  To alleviate this concern, a CNN-based model that analyzes each diffraction pattern 

and returns the most likely Bravais lattice, out of the fourteen possible choices, is developed.  Fig. 

1c demonstrates the model applied to the same high-resolution diffraction patterns collected from 

the rutilated quartz specimen.  The trained CNN can determine, autonomously, the correct Bravais 

lattice with a high degree of accuracy, reproducing the original user-selected phase map with a 

high degree of fidelity.  This achievement is made more significant by the fact that the CNN was 

not trained on any diffraction patterns from quartz.  When comparing the pixels that differ between 

the phase maps generated by traditional Hough-based EBSD (Fig. 1a) and the CNN-based EBSD 
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(Fig. 1c), it is immediately evident that the diffraction patterns classified as neither hexagonal nor 

primitive tetragonal tend to be located on the boundary between the two phases or in pores.  This 

also tends to be the case for the non-indexed pixels (black) in the traditional Hough-based phase 

map. The CNN-based approach is also able to identify a number of theses non-indexed pixels as 

belonging to primitive tetragonal (rutile) or hexagonal (quartz).  Unlike the Hough-based method, 

this implementation is required to choose from one of the 14 Bravais lattices; it does not yet have 

the option to leave a pixel non-indexed based on pattern quality or other metrics.  This is a feature 

that will be explored later in this work.  It is important to note that this CNN-based EBSD approach 

is autonomous, wherein the user is not involved in any phase selection or crystal structure decision 

making process. 

 

Figure 7.1 Phase mapping rutilated quartz based on Bravais lattices. (a) Hough transform 

EBSD map with rutile and quartz as user-selected phases. (b) Electron image showing the two 

phase microstructure. (c) Phase map generated from the CNN-based model’s analysis of each 

diffraction pattern individually.  Scale bar 250 µm.  There are 11,700 total EBSPs (pixels). 

 

In contrast to the previous example, which is designed to be the most broadly applicable, 

the following examples demonstrate the versatility of convolutional neural networks through a 
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series of application specific demonstrations, and their ability to address even more challenging 

crystal structure classification problems encountered in EBSD.  

The first example explores a geological specimen with large variation in pattern quality. 

Fig. 2 compares the performance of the traditional Hough-based approach versus our CNN-based 

EBSD approach on a sample of the Campo del Cielo meteorite.  This specimen contains an Fe rich 

matrix with isolated regions of taenite and schreibersite throughout.  The first challenge is that the 

sample becomes deeply recessed in a section of the schreibersite phase as seen in the lower right 

corner of the electron image (Fig. 2b).  This significantly impacts the pattern quality in this region 

and eventually the collected patterns contain only background noise.  Therefore, it is important 

that the CNN-based model has a method for deciding when there is insufficient information in a 

captured diffraction pattern to make an accurate classification.  This is accomplished by adding a 

zero-solution class as one of the available outputs, as detailed in the methods section.  Comparing 

the output phase map from each method, it is immediately evident that the overall features are very 

similar.  Upon further inspection, it is observed that the CNN-based method is able to fill in a 

greater percentage of the data from the recessed schreibersite phase, up to the point when the CNN 

method determines the diffraction patterns do not contain sufficient information to make a 

classification (Fig. 2c).  Moreover, the sections of taenite are more complete along the zero-

solution boundaries, including the section below the schreibersite phase, which traditional Hough-

based EBSD was unable to map.  In the middle left section of the electron image, it is evident that 

there exists a two-phase structure that traditional Hough-based EBSD identifies only as taenite.  

The EDS maps (Fig. 2d-k), particularly Cu, Co, Fe, and Ni confirm that the chemistry in this region 

is indicative of two phases.  The CNN identifies the second phase regions as schreibersite, which 

is a good match chemically and upon inspection of the diffraction patterns captured from that 
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region.   In the Hough-based phase map, there are four thin black lines that are not identified due 

to low quality patterns and diffraction overlap (Fig. 2a).  The CNN-based EBSD phase map 

identifies these regions as a mixture of taenite and schreibersite, and the EDS maps confirm these 

thin sections to be primarily taenite.  In summary, the machine learning-based method is found to 

be robust to large variations in pattern quality and can be architected with a no-solution class. 

 

Figure 7.2 Phase mapping a meteorite. (a) Hough transform EBSD map with user-selected 

phases. (b) Electron image showing the two phase microstructure. (c) Phase map generated from 

the CNN-based model’s analysis of each diffraction pattern individually. (d) Pattern quality map. 

(e-k) EDS maps of the analyzed region.  Scale bars 50µm.  There are 40,784 total EBSPs (pixels). 

 

Fig. 3 compares the performance of traditional Hough-based approach versus our CNN-

based EBSD approach on an arc-melted metal matrix composite.  This example demonstrates the 

ability to train the CNN-based model on diffraction patterns collected from ‘standards’ of each 

phase (Ni, W2C, and WC) and apply the model to identify these phases in a complex multi-phase 
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sample (described in the Methods section).  The 89,280 diffraction patterns collected for Fig. 3 

(a,c) are independently analyzed by the CNN, which results in a high fidelity map of the material.  

Between Fig. 3a and 3c, only ~5,000 pixels (or 5.6%) have a different label and most of these 

differences are located where the traditional Hough-based method produced no-solution.  The 

CNN-based model excels at applying the information it learned from other systems, or ‘standards’ 

onto a very different system with a high degree of accuracy.   

 

Figure 7.3 Phase mapping a metal matrix composite.  (a) Hough transform EBSD map with 

user-selected libraries. (b) Electron image showing the multi-phase microstructure. (c) Phase map 

generated from the CNN-based model’s analysis of each diffraction pattern individually. (d-g) 

EDS maps of the analyzed region.  Scale bars 25µm.   There are 89,280 total EBSPs (pixels). 

 

Furthermore, due to the significant difference in hardness [38], the phases in the nickel-

based matrix and tungsten carbide particles are susceptible to vastly different polishing rates.  This 

typically reduces pattern quality in protected areas, such as within the WC particles seen in the 

electron image.  The phase map generated via the CNN-based approach shows that much of this 

region produces partial EBSD patterns that the Hough-based approach cannot match to a look-up 

table of interplanar angles.  However, the CNN-based model can utilize the information that is 
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present to identify these EBSPs and primarily classifies them as either W2C or W2NiB2.  The EDS 

maps in Fig. 3 (d-g), as well as the measured chemistry (not shown), support these classifications.  

The map of W and C show that neither of the regions identified as W2C or W2NiB2 contain as 

much carbon as the regions mapped to WC in either phase map.  Furthermore, the map of Ni shows 

that it does indeed diffuse into the large WC particles, where it causes the W2NiB2 phase to form 

near the perimeter.  The combined achievements on this material show the CNN is robust to partial 

patterns and can be trained using other samples as ‘standards’. 

The next demonstration of the CNN-based EBSD approach is perhaps one of the most 

challenging types of problems encountered in EBSD.  The four phases present in the Fe-Al sample 

are formed as the result of a diffusion couple style experiment between Fe and Al foils (described 

in the Methods section).  This results in two body centered cubic phases (space group 229), pure 

Fe and α-Fe from the Al substitution in the lattice, and two primitive cubic phases (space group 

221), nearly equiatomic, FeAl, B2 and the non-equiatomic, B2 solid solution.  The backscattered 

electron image in Fig. 4a shows the alternating layers of the material and gives an early indication 

that multiple phases are present in the sample.  Fig. 4b provides a reference Fe map and the bright 

columns indicate where pure Fe layers remain after the reaction.  If the FeAl B2 and pure Fe 

diffraction libraries are selected by the user, the Hough-based EBSD is unable to differentiate 

between the two phases, and a phase map as shown in Fig. 4c is produced.  Because the diffraction 

maxima are so similar between these two phases, every diffraction pattern is identified as both 

phases with equal confidence, and the software selects, by default, the second phase on the user-

selected list.  Fig. 4d demonstrates a representative result from a user assigning a reference 

chemistry from within each phase, using point EDS, to each of the four phases present.  If the user 

selects the reference chemistry for each phase, with the best of intentions and accuracy, a resultant 
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map as shown in Fig. 4d can be achieved.  While the four phases are now each present, the phase 

map does not accurately describe what is observed in the chemistry analysis.  Instead, the pure Fe 

and α-Fe (Fe-SS) layers are interspersed randomly (rather than layers), and the B2-SS is scattered 

throughout the region known to be near-equiatomic FeAl B2.  After considerable “optimization” 

(repeatedly changing the reference chemistry selected in point EDS for each phase), the user can 

eventually reach a phase map (as shown in Fig. 4e) that looks similar to the known microstructure; 

this of course can only be achieved because the microstructure in this case is known in advance.   

 

Figure 7.4 Phase mapping an Fe-Al MIL composite.  (a) Electron image showing the multi-phase 

microstructure. (b) EDS map of Fe (c) Hough transform EBSD map with user-selected libraries. 

(d) Phase map generated by Hough transform combined with non-optimized EDS measurements. 

(e) Phase map generated by Hough transform combined with optimized EDS measurements as 

reference chemistry. (f) Phase map generated from the CNN-based model’s analysis of each 

diffraction pattern individually. Scale bar 500µm.  There are 10,164 total EBSPs (pixels). 

 

By comparison, a convolutional neural network trained on a small subset of patterns 

belonging to each phase produces the phase map seen in Fig. 4f.  While the phases are not as 
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perfectly linear as in Fig. 4e, it is likely that the merging of phases at their borders is real to some 

degree according to the analysis performed by Wang et al. [39] and their observation that crystal 

orientation influences the diffusion rates.  Otherwise, the phase map is in good agreement with the 

expected results, and the CNN-based EBSD method is adept at separating diffraction patterns 

based on space groups and small changes in chemistry within the same space group.   

Convolutional neural networks applied to EBSD can resolve another challenging problem 

that phase identification including EDS reference chemistry for each phase does not completely 

resolve.  The electron image for a cycled thermal barrier coating containing five FCC phases and 

one rhombohedral phase is shown in Fig. 5c.  The top layer is yttria-stabilized zirconia (YS-ZrO2), 

followed by the thermally grown oxide layer (Al2O3). In the middle section is a complex bond coat 

containing Ni, a chrome-carbide phase (Cr23C6), TaC, and a small amount of Al2O3. The bottom 

layer is the nickel-based superalloy Hastelloy X and Cr23C6 at the grain boundaries from thermal 

cycling.  Except for the Al2O3 phase, each of these phases belongs to space group 225, meaning 

their crystal symmetries are the same, but the lattice parameters can be different.  As seen in Fig. 

5a, the Hough transform method alone is unable to reliably differentiate the FCC phases and 

indexes them primarily as Hastelloy X with some interspersed YS-ZrO2.  The phase fraction of 

TaC (the brightest spots in the electron image) is much too large (based on the known chemistry) 

and is incorrectly included in the substrate.  The Hough transform performs reasonably well at 

identifying the band of Al2O3, which is not surprising given its rhombohedral structure.  Including 

reference chemistry for each of the phases improves the overall quality of the Hough-based EBSD 

phase map shown in Fig. 5b.  The band of TGO is further defined and the YS-ZrO2 layer contains 

much fewer erroneous pixels.  However, the Hastelloy X substrate has large grains and twins that 

are being identified as TaC and the Hastelloy X is indexed as approximately 40% of the bond coat 
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layer (center section).  Furthermore, the phase fraction of TaC in the bond coat is still much higher 

than what is observed to be present in the electron image.  Fig. 5d is the result of training a CNN-

based model to differentiate these phases.  While not free of errors, the resulting phase map is 

observed to be a higher fidelity mapping of the area shown in the electron image than traditional 

Hough-based EBSD offers.  Comparison with the EDS maps in Fig. 5 (e-l) further confirms the 

increased plausibility of the phase fractions and the credible identification of each diffraction 

pattern.  The YS-ZrO2 layer is nearly completely indexed as such with most of the errors present 

residing at pores and cracks in the oxide.  The Al2O3 is now indexed as a continuous band of 

thermally grown oxide in good agreement with the morphology of the Al EDS map.  The central 

region is almost entirely indexed as Ni with interspersed TaC, Cr23C6, and Al2O3.  Careful 

comparison with the EDS maps for Ta, Cr, Al, and O reveal the chemistry to overlap well with the 

presence, or absence, of the respective phase in the CNN-based phase map.  The Hastelloy X 

substrate is well confined and interlaced with Cr23C6 particles that were not identified in Fig.s 5a 

and 5b, but are clearly present in the Cr EDS map.  
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Figure 7.5 Phase mapping a thermal barrier coating.  (a) Hough transform EBSD map with 

user-selected libraries.  (b) Phase map generated by Hough transform combined with optimized 

EDS measurements as reference chemistry. (c) Electron image showing the multi-phase 

microstructure. The Hastelloy X substrate is at the bottom of the image.  (d) Phase map generated 

from the CNN-based model’s analysis of each diffraction pattern individually. (e-l) EDS maps of 

the analyzed region. Scale bars 100µm.  There are 45,052 total EBSPs (pixels). 

 

The final demonstration of the potential for CNNs to revolutionize EBSD technology is 

perhaps the most universally known limitation: the challenge of separating martensite from ferrite.  

This problem has traditionally been resolved by setting band contrast (or pattern quality) thresholds 

and accepting some degree of mis-indexing.  The determination of the threshold value is biased by 

human criterion and can result in drastically different maps and phase fractions depending on the 

user selected threshold.  Another applicable method for mapping tetragonality in martensitic steels, 

called High (Angular) Resolution EBSD (HR-EBSD), uses a reference pattern to measure the 

relative strain rate of all other patterns [49].  While this technique achieves high sensitivity (~10-

4) and can be used to back calculate relative c/a ratios, the absolute strain and c/a ratio of the 

reference pattern is typically unknown.  This method is not compared herein owing to the need for 

a dictionary of simulated patterns for the initial calibration.  The microstructure of commercial 430 
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stainless steel is displayed in Fig. 6a.  While not yet obvious from the electron image alone, the 

martensite regions appear raised compared to the ferrite.  The band contrast map in Fig. 6b 

confirms both the location of the martensite as well as the overlap in pattern quality between the 

martensite and ferrite.  This is the same problem encountered in previous work [31] and explains 

why their pattern quality-based model was dependent on iterative phase discrimination and 

‘locking’ pixels the user deemed correctly identified before re-analysis.  The region depicted in 

Fig. 6a is mapped via traditional EBSD (Fig. 6c) using ferrite and martensite libraries generated 

based on the lattice parameter from XRD and well-established equations from literature [47] (refer 

to the Methods section for more information).  The Hough-based method results in nearly all the 

12,236 collected diffraction patterns being identified as martensite.  In contrast, the machine 

learning model trained on ‘standards’ for martensite and ferrite produces a phase map (Fig. 6d) 

with strong correlation to what is observed in the band contrast map.  As seen in Supplementary 

Figure 39, the martensite and iron diffraction patterns used to train the model as out-of-sample 

‘standards’ are of considerable quality.  Therefore, unlike the previous study [31], our CNN-based 

model is not reliant on pattern quality metrics as a singular variable and each diffraction pattern is 

indexed in one pass through the data.  A histogram of the band contrast values is shown in 

Supplementary Figure 41.  A comparison to the common thresholding method is made in Fig. 6e.  

A threshold of band contrast < 45 is applied to map the lowest quality patterns to martensite.  This 

threshold was selected using the histogram as a guide.  The machine learning model compares 

favorably to this method and many of the most obvious regions overlap.  However, the patterns 

the two models disagree on are not strictly band contrast dependent. In fact, several medium band 

contrast regions are identified as martensite by the machine learning model (Fig. 6d), while other 

medium band contrast regions are mapped to martensite when classified by pattern quality (Fig. 
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6e).  The distinction between ferrite and martensite in EBSD has routinely been considered one of 

the grand challenges in EBSD.  With support from well-designed machine learning models, the 

technique is demonstrated to be capable of highly accurate, autonomous classification of these two 

phases. 

 

Figure 7.6 Phase mapping 430 stainless steel.  (a) Electron image showing the microstructure. (b) 

Band contrast map for the region depicted in (a). (c) Hough transform EBSD map with user-

selected libraries for martensite and ferrite. (d) Phase map generated from the machine learning 

model’s analysis of each diffraction pattern individually, using “out-of-sample” standards. (e) 

Phase map constructed using a threshold value (< 45) for the band contrast in each EBSP. Scale 

bar 25µm.  There are 12,236 total EBSPs (pixels). 

 

7.4 Conclusion 

In this paper, a CNN-based approach to accessing latent signals in electron backscatter 

diffraction patterns is developed and demonstrated.  The flexibility and utility of this methodology 

is established by designing training sets for a variety of cases that are challenging problems in 

traditional Hough-based EBSD, but for which the information is present in the diffraction pattern.  

The output of the trained convolutional neural networks is compared to phase maps generated 
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using state-of-the-art Hough-based EBSD systems and practices.  In each case, the model is 

demonstrated to perform well at the task of properly identifying phases, while validating the 

flexibility of the new methodology.   

Major improvements offered by the convolutional neural network-based phase mapping 

approach are the identification of crystal symmetry (e.g. Bravais lattices or space groups), the 

correct identification of phases from incomplete or otherwise low-quality diffraction patterns, and 

the ability to distinguish crystallographically similar phases with subtle differences in chemical 

composition or lattice parameter.  Even martensite and ferrite, which have nearly equivalent crystal 

structure, can be distinguished using this methodology.  Moreover, these are accomplished without 

the need for additional inputs to the model.  Further development of this technology is expected to 

yield a significant number of advancements to the EBSD platform, specifically this approach can 

move EBSD from a user-dependent methodology, to an autonomous phase identifying 

microstructure characterization platform.  This work demonstrates these potential capabilities 

using in-house development of models and available diffraction patterns. The methodology can 

readily be applied by other researchers for the development of new models.  Inclusion of simulated 

diffraction patterns may help accelerate the process.  In the future, we foresee commercial EBSD 

systems being equipped with standardized models, and potentially even on-demand modelling 

capabilities, for working with specific use cases or elucidating information about unknown 

materials. 
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Abstract 

Deep learning is quickly becoming a standard approach to solving a range of materials 

science objectives, particularly in the field of computer vision.  However, labeled datasets large 

enough to train neural networks from scratch can be challenging to collect.  One approach to 

accelerating the training of deep learning models such as convolutional neural networks is the 

transfer of weights from models trained on unrelated image classification problems, commonly 

referred to as transfer learning.  The powerful feature extractors learned previously can potentially 

be fine-tuned for a new classification problem without hindering performance.  Transfer learning 

can also improve the results of training a model using a small amount of data, known as few-shot 

learning.  Herein, we test the effectiveness of a few-shot transfer learning approach for the 

classification of electron backscatter diffraction (EBSD) pattern images to six space groups within 



 

179 

the (4/𝑚 3̅ 2/𝑚) point group.  Training history and performance metrics are compared with a 

model of the same architecture trained from scratch.  In an effort to make this approach more 

explainable, visualization of filters, activation maps, and Shapley values are utilized to provide 

insight into the model’s operations.  The applicability to real-world phase identification and 

differentiation is demonstrated using dual phase materials that are challenging to analyze with 

traditional methods. 

8.1 Introduction 

Data science-based methods to materials development and analysis have gained great 

popularity in recent years [1–13].  Deep learning algorithms are of significant interest owing to 

their excellent performance without significant feature engineering, and the ubiquity of these 

methods will likely continue owing to the outperformance of systems directly designed by humans.  

While often difficult to assess how and why these ‘black box algorithms’ are capable of performing 

these tasks, these methods can provide significant value or spark new insights [14,15].  Application 

of these tools to image-based tasks in materials science has proved to be useful for classification 

[16–19], segmentation [20–22], and other objectives [23–25].  While deep learning provides 

significant opportunities for the advancement of materials science, robust application of these tools 

often requires much larger datasets than are typically available within the materials science 

community.  Utilizing the knowledge deep neural networks have learned from other domains 

offers an opportunity to develop models in these domains, where data is sparse and further 

collection and labeling could be slow or tedious [26–28]. 

Convolutional neural networks (CNNs) are a class of deep learning models that have 

proven effective for analyzing image data [29].  Before a CNN can be applied to a given task, it 

must learn to assign importance (learnable weights and biases) to various aspects of the image that 
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maximize the network’s differentiation capabilities.  Two general strategies exist for training 

convolutional neural networks: 1) the weights can be randomly initialized, or 2) the weights can 

be transferred from a model pre-trained on a separate but related task, often in a nearby domain 

with significantly more data, and then refined for the current objective.  The first approach, 

commonly referred to as "training from scratch", requires a large dataset to avoid overfitting and 

perform robustly on new, real-world examples.  The second approach, referred to as "transfer 

learning", can significantly reduce the number of training examples required, accelerate the 

training process, and retain or exceed the performance garnered by training from scratch [27,30–

32].  The transfer learning method is motivated by the human ability to intelligently apply 

previously learned knowledge to solve new problems faster or with better solutions [33].  Despite 

the potential, knowledge transfer from a given source domain is not guaranteed to improve 

performance in the target domain and can in fact hinder performance [26,32].  Furthermore, one 

of the requirements to use this approach is that the images in the new domain must conform to the 

processed shape and structure determined at the outset of the previous training.  For models pre-

trained on ImageNet [34], a library of over one million images labeled with one thousand classes, 

the expected input is usually 299×299 pixels with 3-channels (one each for RGB).  When dealing 

with one-channel grayscale images, such as those typically collected from electron diffraction 

studies, the decision to use transfer learning necessitates the stacking of a single image into a 

pseudo-color image [31].   

The number of labeled images that can reasonably be collected must also be considered for 

the appropriate training and application of a CNN.  Computer vision research has recently been 

motivated by children’s ability to learn novel visual concepts almost effortlessly after 

accumulating sufficient past knowledge [35].  In deep learning and computer vision, learning 
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visual models of object categories has notoriously required tens of thousands of training examples 

[36]; however, recent research has demonstrated that it is possible to classify images accurately 

using relatively few labeled examples with the appropriate combination of pretraining of the CNN 

layers on unrelated image classification training sets [37,38], adversarial or unsupervised learning 

[39,40], network pruning [41], and micro architecture tuning [42].  Once several categories have 

been learned the hard way, learning new categories should become more efficient.  The increased 

efficiency allows for a lesser number of images to be used in training, referred to as a “few shots”. 

Electron backscatter diffraction (EBSD) patterns (EBSPs) are an excellent case study for 

the use of few-shot transfer learning toward accelerating analysis of electron diffraction data.  The 

scanning electron microscope (SEM)-based method involves the capture of 2D diffraction patterns 

produced from an incident electron beam scattering, diffracting, and escaping from a well-polished 

‘bulk’ sample [43].  The collected diffraction patterns contain significant structural and chemical 

information and are similar to those collected in other techniques such as convergent beam electron 

diffraction (CBED) [44,45].  Despite the vast amount of information in the patterns, conventional 

EBSD has primarily focused on determining the three-dimensional orientation of individual grains 

in crystalline materials [43,46–48].  Furthermore, the commercial technique typically relies on 

Hough-based indexing with a look-up table of interplanar angles constructed from the set of 

selected reflectors for phases specified by the user [49].  This generally allows for phase 

differentiation of sufficiently distinct crystal structures [50–52], but the process remains 

susceptible to structural misclassification [53–55].  Improvements to phase differentiation have 

been proposed and developed including dictionary indexing[56–59], spherical indexing [60–62], 

and more recently machine learning [63].  While each offers significant advantages over the 

Hough-based method, these tools continue to require assumptions about the number of phases 
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and/or their structure.  For example, the dictionary-based approach requires simulation of a 

“master” pattern for each potential phase and every experimental pattern is matched against a 

dictionary of simulated patterns for all potential phases [56].  The highest similarity match is 

selected as the most likely phase and orientation.  Another available solution to phase 

differentiation is combining an electron backscattered pattern (EBSP) with information from 

energy dispersive X-ray spectroscopy (EDS) or wavelength dispersive X-ray spectroscopy (WDS) 

[64–66].  While these have been adopted commercially, the singular EBSP is still analyzed with 

the Hough-based method and an expert user is required to evaluate the plausibility of returned 

matches. Applications using hand-drawn lines overlaid on individual Kikuchi diffraction patterns 

have been developed for determining the Bravais lattice or point group; however, they remain 

limited by at least one of the following: analysis time per pattern, the need for an expert 

crystallographer, or necessitating multiples of the same diffraction pattern with different SEM 

settings [67].  Clearly, there remains a need for a rapid EBSP classification tool capable of 

functioning with one EBSD pattern while remaining suitable for even the most novice user. 

Recently, the EBSD community has begun to explore the use of convolutional neural 

networks as a foundation for addressing modern EBSD challenges [16,68–70].  Despite the marked 

advances these works have made, the requirements for simulating [71] or collecting experimental 

diffraction patterns from a significant number of materials and crystallographic orientations 

remains a limiting factor. In this work, we test the validity of few-shot transfer learning, starting 

from ImageNet weights, applied to classify EBSPs to one of six space groups.  Herein, space group 

refers to the symmetry group of a configuration in three-dimensional space.  We compare the time 

to converge, the individual kernels (weights of the neurons), activation maps, and the performance 

of models trained from scratch or by transfer learning.  Though there has been considerable 
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progress on interpretability of machine learning systems, mostly in the field of eXplainable AI 

(XAI) [72], fully understanding the internal mechanisms of deep neural networks is still an area of 

active research [15,73].  Visualization of the most similar weights each model independently 

learned, their respective activation maps, and Shapley values can increase understanding of how 

the artificial intelligence models accomplishes its task.  Building these XAI foundations can 

increase trust in the model’s later predictions and help identify when the prediction is incorrect.  

In addition to evaluating each model’s performance on holdout data, each model is also tested with 

6,900 EBSPs collected from a Ni90Al10 sample outside the training, testing, and validation data, 

and a space group map is generated from the individual classifications.   

8.2 Results and Discussion 

8.2.1 Training metrics.   

Each model is first trained until the validation loss converged using a small number of the 

available diffraction patterns from each material in the six available space groups.  The training 

and validation loss were recorded at the end of each pass through the training set (i.e. an epoch) to 

monitor the model’s performance as the weights are updated.  The validation loss is also monitored 

to determine when training should cease to prevent model underfitting or overfitting owing to a 

fixed number of training epochs.  The loss function (categorical cross-entropy) is plotted in 

Supplementary Figure 42 for reference.  The goal of the neural network is to minimize the loss 

function by maximizing its prediction of the correct class.  Fig. 1a shows statistics for the training 

and validation loss for the model trained from scratch in grayscale.  While the average training 

loss is low (0.84 ± .04) by the end of the first epoch, the average validation loss is observed to be 

11.5 ± 2.5.  In comparison, by initializing the model with weights learned from ImageNet, the 

average training and validation loss are both observed to be small 0.56 ± .02 and 0.52 ± .3; 
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repsectively) from the start (Fig. 1b).  Fig. 1c shows a magnified view of Fig. 1b to show the 

detailed training history.  The improved starting loss, presumably owing to the strong filters 

learned in pre-training, also aids in rapid model convergence.  Including the fifteen epochs used to 

establish convergence, the model trained from scratch required 50 ± 12 epochs, while the transfer 

learning model required only 26 ± 3 epochs; this represents a 2-fold reduction in the average 

number of passes through the training set.  Since each epoch with 2,400 diffraction patterns 

requires two minutes on this hardware, a time savings of nearly an hour per training event is gained.  

With the amount of training data available to the CNN expected to grow, and therefore the time 

per epoch expected to increase, the time savings will become more pronounced. 
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Figure 8.1 Training and validation history statistics for the two models.  (a) The model trained from 

scratch using grayscale images. (b) The model trained starting from ImageNet weights using 3-channel 

stacked images.  Data is plotted on the same y-axis as in (b).  (c)  The data in (b) for the transfer learning 

model plotted on a different scale. Error bars are one standard deviation from five trials per approach. 

 

8.2.2 Performance on holdout data 

The time saving advantages garnered by fine-tuning the weights of an existing model are 

only valuable if the model performs similarly well or exceeds the model trained from 

scratch.  Table 1 shows the class-weighted Precision and Recall for the best performing model 

from each approach, for which further analysis into the internal operations will be studied.  See 

Supplementary Table 17 and Supplementary Table 18 for a breakdown of Precision and Recall by 

space group for the transfer learned and trained from scratch models, respectively.  Both metrics 
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are improved for the model using transfer learning even though the training, validation, and test 

sets were held constant.  This implies that the feature extractors learned from ImageNet are not 

only relevant to this new domain, but also at least as valuable as those learned from scratch.  This 

likely results from the more general nature of the feature extractors necessary for optimal 

performance on ImageNet [74].  It is possible that increasing the size of the dataset used to train 

the model from scratch could increase its performance to near that of the few-shot transfer learning 

model; however, the cost to training time would be notable.  For this study, it was also important 

to keep the dataset and its partitions fixed for more deterministic comparisons.   

Table 8.1 Classification metrics.  The class-weighted average Precision and Recall on the test data for 

each model. Both metrics are improved using the transfer learning approach to training the model. The 

same test data was used to benchmark each model. 

 
Precision Recall 

Trained from scratch 0.93 0.92 

Transfer learning 0.97 0.96 

 

8.2.3 Visualization 

Since deep neural networks are used in this study, meaningful information about the 

internal mathematical operations performed necessitates studying several aspects of the model’s 

inner workings.  The first study involves visualization of the filters (or kernels) and corresponding 

feature maps.  Filters and feature maps from the earliest layers in the model are most useful since 

deeper layers become more abstract.  To identify corresponding filters in the two models, the 

Euclidean distance between all possible pairs of filters in a selected layer from the grayscale and 

pseudo RGB models were calculated and the similarity was ranked.  The four most similar kernels 

between the two models in the first convolution layer are shown in Fig. 2.  The pairs are grouped 
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in columns between the model trained from scratch and using transfer learning.  The independent 

co-learning of these filters suggest they are very valuable for feature tuning and selection on 

EBSPs.  At this low-level in the model, the filters will predominantly be designed to identify edges 

at various orientations. The next layer will likely combine those edges into corners and small 

points, and the subsequent layers will figure out larger and larger shapes/features, such as the 

number of and relative angles between Kikuchi lines.  Two of these four filters are recognizable 

as classical edge detection operators.  The second filter has converged close to the x-direction 

Sobel edge detection operator [75] and the third filter resembles the Gabor filters with theta θ =

135°.  Visualization of the feature maps resulting from these four filters can provide insight into 

their function. 

 

Figure 8.2 Kernel pairs with lowest Euclidean distance.  Kernel pairs are grouped by column between 

the two models.  The leftmost pair has the lowest Euclidean distance, with the kernels becoming less similar 

moving to the right. 

 

Fig. 3 shows the result of each filter from Fig. 2 being individually convolved over an input 

image from the six space groups studied.  All feature maps shown are from the grayscale model.  
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The first filter, and therefore the most similar filter between the two models, is primarily observed 

to perform an inversion on the input image.  As a result, the band edges in each image are activated 

(white regions) and become more distinct.  It is reasonable to speculate that deeper parts of the 

network extract the angle and relative locations of these intersections, a function that was also 

suggested in Ding et al.’s recent work[70].   The fourth filter is observed to have normalized the 

contrast of the input image, perhaps to reduce the effects of atomic scattering factors (Z-contrast) 

observed in prior work [68].  Further analysis of the class-specific feature importance can further 

improve understanding of the neural network’s methodology. 
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Figure 8.3 Selected feature maps from the first convolution layer.  Feature maps extracted from the 

grayscale model corresponding to the filters shown previously in Fig. 2.  One input image per space group 

is shown. From top to bottom, the six space groups are 𝑷𝒎𝟑̅𝒎, 𝑷𝒎𝟑̅𝒏, 𝑭𝒎𝟑̅𝒎, 𝑭𝒅𝟑̅𝒎, 𝑰𝒎𝟑̅𝒎, 

and 𝑰𝒂𝟑̅𝒅. 

 

8.2.4 Feature importance 

Measurement and visualization of feature importance is another method to increase 

understanding of the deep neural network.  This type of analysis is performed to help determine 

whether one should trust a prediction and why.  There are a number of techniques available for 

CNNs including Gradient-weighted Class Activation Mapping (Grad-CAM) [76], activation 
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maximization [77], LIME [78], and Shapley values [79].  Several of those listed have been 

effectively demonstrated in other works involving EBSD patterns [16,17,68,70]; however, this is 

the first to use Shapley values.  In game theory, Shapley values are a solution to fairly distributing 

the gains and costs of several actors working in coalition.  By definition, each Shapley value is the 

average expected marginal contribution of one actor after all possible combinations have been 

considered.  In this case, the actors are the features in the images.    Essentially, the Shapley value 

is the average expected marginal contribution of one actor after all possible combinations have 

been considered.  While not perfect, this has proven a fair approach to allocating value in a variety 

of fields [80–82].  The results of this analysis, further described in the Methods section, are shown 

in Fig. 4.  Refer to Supplementary Figure 43 for a demonstration of SHAP analysis on handwritten 

numbers. 

The previously unseen input images are shown in the top row, and as semi-transparent 

grayscale backings behind each of the explanations.  After random selection of the input image, it 

was verified that the model correctly identified the space group (thus pseudo-random selection).  

The middle row in Fig. 4 corresponds to the explanations for the correct prediction, while the 

bottom row displays the explanations for the next most likely (i.e. incorrect) space group.  All 6 

Shapley explanations ordered by most to least likely space group for each input are displayed in 

Supplementary Figure 44.  The positive (red) and negative (blue) contributions to each prediction 

are primarily at diffraction maxima (e.g. zone axes), band intersections, and outlining band edges.  

This lends credence that the model is indeed utilizing information grounded in the physics of 

EBSD. The clustering of Shapley values near zone axes is further reaffirming given the abundance 

of information and their role in classical diffraction pattern indexing [83]. 
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Figure 8.4 Visual explanation of feature contributions.  Shapley values are computed for each 

input image to gauge the importance of features in the EBSPs.  The first row is the raw input 

image. The second row corresponds to the Shapley values for the correct prediction.  Row three 

corresponds to the first incorrect classification as ranked by softmax probability. From left to right, 

the six space groups are 𝑷𝒎𝟑̅𝒎 𝑷𝒎𝟑̅𝒏, 𝑭𝒎𝟑̅𝒎, 𝑭𝒅𝟑̅𝒎, 𝑰𝒎𝟑̅𝒎, and 𝑰𝒂𝟑̅𝒅. 

 

8.2.5 Performance in practice 

It is also of importance to demonstrate and compare the efficacy of both models in a real-

world context, not only the patterns set aside for testing. In this case, the EBSD mapping of a dual 

phase sample serves to demonstrate that both model training strategies are capable in situations 

where the diffraction patterns are not collected from an ideal, single-phase material.  Fig. 5 top-

left shows a backscattered electron image of a Ni90Al10 (wt%) sample containing a Ni-rich matrix 

(space group 225) along with Ni3Al precipitates (space group 221) appearing raised from the 

surface.  It is of importance to note that the model has not yet encountered a solid-solution phase 
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such as the Ni with Al matrix present in this sample.  The Al content in the Ni matrix was 

determined to be 19.7% +/- 0.53% (at%).  The Al chemistry of the Ni3Al precipitates was 

determined to be 25.7% +/- 0.74% (at%).  While partially selected for this reason, the material was 

primarily chosen since space groups 221 and 225 have two of the lowest F1-scores in each model 

and can readily be produced in this singular sample. Furthermore, it was important that the phases 

could be differentiated visually and easily to the reader, such as with EDS maps.  While this means 

the phases could potentially be differentiated if the EBSD operator assigned reference chemistries 

to the phases in advance of collecting the EBSPs, the purpose of this demonstration is really to 

compare the transfer learning and trained from scratch models’ abilities to identify the space group 

without further information.  For the most complete phase identification in EBSD (i.e. lattice 

parameters), multiple analysis methods (e.g. XRD and EDS) may need to be employed. 

The Hough-based phase map in Fig. 5 is a representative image of the expected results 

from commercial systems.  The phase map consists of entirely one phase (shown in red) and 

Oxford Aztec software is observed to predict Ni and Ni3Al with an equal number of bands and 

mean angular deviation (MAD), effectively a combined measure of certainty, for each diffraction 

pattern.  It is the order of phase selection by the user in Oxford Aztec software that ultimately 

determines whether Ni or Ni3Al is selected in this case.  Example diffraction patterns from each 

phase are shown in Supplementary Figure 45.  Black pixels remain unindexed by the Hough 

method, typically a result of poor diffraction pattern quality.  The inverse pole figure (IPF) in the 

Y-direction is provided along with the EDS map for aluminum to elucidate where the Ni3Al is 

expected to be found within the Ni matrix.   

The last two images in Fig. 5 show the phase maps produced by the scratch (MLS) and few-

shot transfer learned (MLT) models.  Over a statistical number of diffraction patterns, the two 
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models are expected to produce similar answers with some variance, although the test set would 

suggest that the transfer learning model will generally outperform.  Comparing the results with the 

Al EDS map and IPF Y, both models perform well at identifying the space group of each EBSP 

with a low false positive rate for the four space groups known not to be present.  There are almost 

certainly some errors with regard to the EBSPs classified as space group 221 (𝑃𝑚3̅𝑚) or 255 

(𝐹𝑚3̅𝑚), the Precision and Recall of each model alert the user of this in advance; however, the 

results over these 6,900 EBSPs demonstrate the improvement over the Hough-based approach and, 

more importantly for this study, the robustness of a few-shot transfer learning approach. 

 

Figure 8.5 Phase mapping a dual-phase sample. Top left shows a backscattered electron image 

of the area to be mapped.  The Ni3Al precipitates appear raised in the Ni-rich matrix.  Top middle 

shows the Hough transform-based phase map. Red pixels are identified as Ni or Ni3Al with equal 

certainty, while black pixels were not solved.  Top right is the inverse pole figure map in the Y-

direction.  Bottom left is the phase map produced using the predictions from the grayscale CNN.  

Bottom middle shows the aluminum EDS map. Bottom right is the phase map produced using the 

predictions from the few-shot transfer learning approach. There are 6,900 total EBSPs (pixels). 

Scale bar = 25µm. 

 



 

194 

The number of EBSPs each model classifies to the available space groups is tallied in Table 

2. A total of 6,900 diffraction patterns were individually identified by each neural network without 

any other information provided.  The transfer learning model is observed to have a reduced 

misclassification rate to the space groups 227 (𝐹𝑑3̅𝑚), 229 (𝐼𝑚3̅𝑚), and 230 (𝐼𝑎3̅𝑑) in this phase 

map.  The largest difference between the two models is for the diffraction patterns classified to 

space group 221; the class with the lowest Precision for each of the two models.  The total 

difference of 517 diffraction patterns only equates to 7% of the total diffraction patterns; well 

within reason and the expected margin of error between the two models, particularly between these 

two space groups for the current models.  Of those 517, only 480 of these predictions differ 

between space groups 221 and 225, the other 37 differences are due to false positives (i.e. 227, 

229, and 230) in the model trained from scratch.  The phase fraction of Ni3Al likely lies somewhere 

between what is predicted by these two models.  The results of this comparison also suggests that 

there is future opportunity to construct an approach leveraging Bayesian deep learning or an 

ensemble of (i.e. at least two) individually trained models making individual classifications 

combined with model averaging (e.g. voting) to reduce variance, provide insight into overall 

uncertainty, and identify when “no solution” is an appropriate answer [84–86]. 
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Table 8.2 Tabulated predictions for the dual-phase sample.  The number of patterns classified 

to each space group by the respective model. The difference is calculated by subtracting the 

number predicted by the few-shot transfer learning model from that predicted by the model trained 

from scratch. Parentheses denotes the transfer learning model predicted fewer EBSPs belonging 

to the respective class.  From left to right, the six space groups are 𝑷𝒎𝟑̅𝒎, 

𝑷𝒎𝟑̅𝒏, 𝑭𝒎𝟑̅𝒎, 𝑭𝒅𝟑̅𝒎, 𝑰𝒎𝟑̅𝒎, and 𝑰𝒂𝟑̅𝒅. 

 221 223 225 227 229 230 

Scratch 984 0 5,822 10 72 12 

Transfer 1,501 0 5,342 0 56 1 

Difference 517 0 480 (10) (16) (11) 

 

Thus, a few-shot transfer learning approach to classifying electron backscatter diffraction 

patterns is an attractive method for leveraging the knowledge a deep neural network has attained 

in a previous context.  The convolutional neural network-based approach to diffraction pattern 

classification is advantageous in that it requires little or no a-priori knowledge of the phases in a 

new sample and can readily be improved or expanded to new classes with the inclusion of new 

data.  The similarity of EBSD patterns to those from techniques such as CBED suggests the few-

shot transfer learning approach could also apply and potentially be more beneficial given the 

slower rate of data collection with other electron diffraction methods.  Limitations of the current 

models exist in the number of space groups currently differentiable and the “black box” nature of 

neural networks.  The number of space groups the model can learn to differentiate can be 

continuously expanded as more data becomes available for training.  One of the goals of this work 

is to discern whether the few-shot transfer learning approach can be used to reduce the amount of 

data necessary for robust expansion to all 230 space groups or other diffraction pattern 

classification tasks.  Indeed, we find that this approach does not hinder the model’s performance 
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on holdout or entirely new data and offers accelerated training time.  While it can be difficult to 

precisely determine how the CNN performs this task, recent advances in eXplainable AI (e.g. 

SHAP) provides tools for developing insight and trust in the model’s predictions.  The combination 

of ease of scaling, flexibility of the framework, and ability to assess aspects of a model’s decision 

process support the utilization of CNNs and few-shot transfer learning as another tool for phase 

differentiation and symmetry identification in electron diffraction. 

8.3 Materials and methods 

8.3.1 Materials 

Eighteen different single-phase materials, comprising 6 of the 10 space groups within the 

(4/𝑚 3̅ 2/𝑚) point group, were selected for training the space group classification CNN. Suitable 

samples for the remaining 4 space groups could not be obtained.  The six space groups are 𝑃𝑚3̅𝑚, 

𝑃𝑚3̅𝑛, 𝐹𝑚3̅𝑚, 𝐹𝑑3̅𝑚, 𝐼𝑚3̅𝑚, and 𝐼𝑎3̅𝑑.  Numerically, these are space groups 221, 223, 225, 227, 

229, and 230.  Space groups 221 and 223 are primitive cubic, 225 and 227 are face centered cubic, 

and 229 and 230 are body centered cubic.  Each of the six space groups share the 3-fold rotary 

inversion necessary for inclusion in the (4/𝑚 3̅ 2/𝑚) point group.  Supplementary Table 19 

details the similarities and differences between the symmetry operations of the six space groups.  

The materials were FeAl, NiAl, Ni3Al, Fe3Ni, Cr3Si, Mo3Si, Ni, Al, NbC, TaC, TiC, Si, Ge, W, 

Ta, Fe, Al4CoNi2, and Al4Ni3. These materials were of low texture, typically less than 2 times 

random in any direction.   Refer to Kaufmann et al. for the distributions of orientation, band 

contrast, and mean angular deviation for these samples [69]. 

A dual-phase material known to challenge Hough-based EBSD was fabricated to 

demonstrate and compare the capabilities of each CNN training approach.  An additional constraint 

for the material selected was that the two space groups be identifiable within an EDS map, even 
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though this meant an operator could force the Hough-based method to differentiate the phases by 

chemistry if they knew the phases in advance.  An ingot of Ni90Al10 (wt%) was arc melted and 

processed via hot rolling at 600°C to 45% reduction in thickness followed by aging at 600°C for 

4 hours and air cooled. X-ray diffraction (XRD) using a Rigaku Miniflex X-ray Diffractometer 

with a 1D detector, a step size of 0.02°, 5° per minute scan rate, and Cu Kα radiation (wavelength 

λ = 1.54059 Å) was performed to confirm the existence of phases belonging to space groups 221 

(𝑃𝑚3̅𝑚) and 225 (𝐹𝑚3̅𝑚) (Supplementary Figure 46). 

8.3.2 Electron backscatter diffraction pattern collection 

EBSD patterns (EBSPs) were collected as previously described in Kaufmann et al. [68].  

Diffraction patterns were collected using a Thermo Scientific (formerly FEI) Apreo scanning 

electron microscope (SEM) equipped with an Oxford Symmetry EBSD detector utilized in high 

resolution (1244x1024) mode.  The geometry of the setup was held constant as follows. The 

working distance was 18.1 mm ± 0.1 mm.  Oxford Aztec software was used to set the detector 

insertion distance to 160.2 and the detector tilt to -3.1.  The imaging parameters were 20kV 

accelerating voltage, 51nA beam current, 0.8ms ± 0.1ms dwell time, and 30-pattern averaging.  

The Hough indexing parameters were 12 Kikuchi bands, a Hough resolution of 250, and band 

center indexing. 

After collecting high resolution EBSPs from each material, all patterns collected were 

exported as tiff images.  The images were resized for the CNN using the resize function in scikit-

image.  All collected data for each material was individually assessed by the neural network, and 

the collection of images for each sample may contain partial or low-quality diffraction patterns, 

which could decrease the accuracy of their identification.  The test data was not filtered to better 

assess the model as it would be applied in practice. 



 

198 

8.3.3 Neural network architecture 

The well-studied convolutional neural network architecture Xception [87] was selected as 

the basis architecture for fitting a model that determines which space group a diffraction pattern 

originated from.  The Xception architecture was used without modifications for training the model 

from scratch and the transfer learning process to facilitate comparison of the training metrics, 

performance, and internal workings.  Selection of this network was partially based on Xception or 

derivatives of Xception being used previously in the EBSD community [16,68–70].  Xception is 

also a standard model with ImageNet weights readily available in deep learning APIs such as Keras 

[88].  A schematic of the convolutional neural network operating on an EBSP is provided in 

Supplementary Figure 47.  Due to space constraints, only the resultant feature maps from selected 

convolutional layers are shown after image input and before the 2048-dimensional vector.  For a 

complete description of the Xception architecture, please refer to Fig. 5 in Xception: Deep 

Learning with Depthwise Separable Convolutions [87]. 

8.3.4 Neural network training 

For both the transfer learning and from scratch approaches, training was performed using 

400 diffraction patterns per space group. The diffraction patterns supplied at training were evenly 

divided between the number of materials per space group that the model had access to during 

training.  For example, if the model was given two materials of the same space group during 

training, 200 diffraction patterns per material were made available.  The validation set contained 

100 diffraction patterns per space group, equivalent to the standard 80:20 train/validation split.  

The validation set was only used to monitor the training progress and model convergence.  The 

test set contains the rest of the patterns (a total of 145,453 images; refer to Supplementary Table 

17 for class distribution) that were not used for training or validation.  The images selected for 
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training, testing, and validation were the exact same for transfer learning and for from scratch 

learning.  

Model hyperparameters were selected or tuned as follows.  Adam (adaptive moment 

estimation) optimization with a learning rate of 0.001 [89], and a minimum delta of 0.001 as the 

validation loss were employed for convergence criteria.  Adam is chosen for its ability to work 

well with little hyperparameter tuning, relatively low memory requirements, and its ability to 

smooth the steps of gradient descent using momentum.  Monitoring of validation loss, i.e. early 

stopping criteria, was employed instead of a fixed number of epochs to allow both models the 

necessary epochs to converge while keeping the risk of overfitting to the training data low.  The 

patience criteria for validation loss convergence was set to 15 epochs to allow for sufficient 

certainty that the model had converged and was unlikely to meaningfully improve.   The weight 

decay was set to 1e-5 following previous optimization work[87].  The CNNs were implemented 

with TensorFlow [90] and the Keras API [88] and model training was performed using an NVIDIA 

Titan V. 

8.3.5 Diffraction pattern classification 

Each diffraction pattern collected, but not used in training (>140,000 images), was 

evaluated in a random order by the corresponding trained CNN model without further information.  

The output classification of each diffraction pattern was recorded, saved in a (.csv) file, and 

tabulated.  Precision  and Recall were calculated for each material and each space group using 

Scikit-learn [91].  Precision (equation 7) for each class (e.g. 230) is defined as the number of 

correctly predicted images out of all photos predicted to belong to that class (e.g. 230).  Recall 

(equation 8) is the number of correctly predicted images for each class divided by the actual 

number of images for the class.  F1-score is the weighted harmonic of the Precision and Recall 
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and is particularly valuable in situations where the number of test images per class is variable. A 

high F1-score means the model has low false positives and low false negatives. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  Equation 7 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  Equation 8 

8.3.6 Neural network insight.  

Comparisons between the resultant models from pseudo RGB transfer learning and training 

the model from scratch offer an opportunity to understand how the CNNs go about their given 

task. Visualization techniques are implemented using the keras-vis package v0.4.1 [77].  Filters 

from the first layer of each model are extracted and plotted as 3×3 matrices with matplotlib [92].  

The first layer was targeted since the earliest filters represent lower level features such as colors 

and edges.  The Euclidean distance between the individual filter arrays in each model was 

computed using the NumPy linear algebra toolbox to compute L2 norms [93] and the four most 

similar learned filters between the two models were identified.  The outputs (a.k.a. feature maps) 

of the first layer corresponding to these four filters are also extracted to examine the activations of 

the two approaches.  The feature maps from earlier convolution layers are more useful since deeper 

layers operate in feature space and are therefore more difficult to understand [29,70].  Lastly, 

Shapley values, deeply rooted in game theory [94,95], are estimated using the DeepSHAP tools in 

SHAP [96].  SHAP uses a distribution of background samples, approximates the model with a 

linear function between each background data sample and the current input to be explained, and 

assumes the input features are independent to compute approximate SHAP values.  The sum of the 

SHAP values equals the difference between the expected model output (averaged over the 

background dataset) and the current model output.  One hundred images per space group were 
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used as background samples in conjunction with one new input image per space group.  The total 

number of diffraction patterns used as a background follows the SHAP software protocols.   When 

plotted as an overlay, red pixels represent positive SHAP values that increase the probability of 

the class, while blue pixels represent negative SHAP values that reduce the probability of the class.  

An example of SHAP analysis on handwritten digits from the MNIST database [97] is shown in 

Supplementary Figure 43.  For a given image, the presence and absence of features that positively 

correlate with a class are shown in red, while negative correlations are shown in blue.  As an 

example, in the image of a ‘four’ the lack of a connection on top makes it a four instead of a nine.  

Combined, these insights into the operations of the neural network can further substantiate the 

validity of the transfer learning approach, increase trust by better understanding the model’s 

methods, and provide indications in cases where the model is incorrect about future predictions. 
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Abstract 

Methods within the domain of artificial intelligence are gaining traction for solving a range 

of materials science objectives, notably in the field of computer vision.  A rapidly growing 

application of deep neural networks for computer vision is the analysis of electron diffraction 

patterns.  An important component of deploying these models is an understanding of the 

performance as experimental diffraction conditions are varied.  This knowledge can inspire 

confidence in the classifications over a range of operating conditions and identify where 

performance is degraded.  Elucidating the relative impact of each parameter will suggest the most 

important parameters to vary during the collection of future training data.  Knowing which data 

collection efforts to prioritize is of concern given the time required to collect or simulate vast 

libraries of diffraction patterns for a wide variety of materials without considering varying any 

parameters.  In this work, five parameters essential to electron diffraction are individually varied 

during collection of electron backscatter diffraction patterns to explore the effect on the 

classifications produced by a deep neural network trained from diffraction patterns captured using 

a fixed set of parameters.  The five parameters studied are frame averaging, detector tilt, sample-
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to-detector distance, accelerating voltage, and pattern resolution.  Ultimately, the model is found 

to be resilient to nearly all the individual changes studied in this work. 

9.1 Introduction 

The fields of materials development and analysis have recently begun to explore the 

possibility of applying data-driven strategies and artificial intelligence (AI) for accelerating or 

automating a variety of tasks [1,2,11–15,3–10].  Computer vision is a subset of AI with the goal 

of training computers to understand the visual world and potentially act on that information 

[16,17].  Deep learning algorithms enable many computer vision applications and are of particular 

interest owing to their excellent performance without significant feature engineering [18].  While 

it can be difficult to precisely determine how and why these ‘black-box algorithms’ are capable of 

performing these tasks, these methods can automate routine tasks, improve upon existing solutions, 

or provide understanding [19,20].  While deep learning provides significant opportunities for the 

advancement of materials science, robust application of these tools requires an understanding of 

the conditions under which optimal performance is achieved.  Unlike most cases involving natural 

images [21], scientific images are less likely to be collected utilizing a wide range of  parameters.  

For instance, micrographs may be captured with only 1 or 2 magnifications, while photographs of 

animals at different distances and from different angles are typically abundant [21].  Moreover, 

knowledge of the conditions for which a model fails can guide the future collection of labeled 

training data to improve subsequent versions.  However, in the context of electron diffraction, 

there likely exists some cases (e.g. no frame averaging) where reduced quality or lack of sufficient 

information in the images may limit performance regardless of training data available for a given 

technique.  
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Convolutional neural networks (CNNs) are the current standard deep learning models for 

processing image data [18].  Before a CNN can be applied to a given task, it must learn to assign 

importance to various aspects of the image that maximize the network’s differentiation 

capabilities.  In doing so, deep learning methods glean intricate functions of the inputs that are 

sensitive to minute details, yet ignore irrelevant information such as backgrounds [18].  However, 

it should be noted that it is only with careful design of a training set and rigorous validation that 

practitioners can be confident that the model has truly learned relevant information, is robust to 

new conditions, and has not found an unscientific approach to solving the problem (such as 

learning the presence of a ruler means a lesion is more likely cancerous [22]) [23,24].  Application 

of these tools to image-based tasks in materials science has proved to be useful for classification 

[4,11,25,26], segmentation [3,14], and other objectives [27,28].  Examples of techniques where 

interest in developing artificial intelligence agents for image-based tasks include optical 

microscopy [3,29], STEM [30,31], TEM [32], and EBSD [4,33–36].  These efforts are motivated 

by accelerating data generation rates and the traditional need for tedious or arduous analysis of the 

data by well-trained individuals with sufficient knowledge of the material domain. Thus, it is 

important that these tools can be applied robustly as imaging parameters are varied to prevent 

increasing, instead of alleviating, researcher workloads.  While different diffraction techniques 

often use distinct terminology, parameters such as accelerating voltage or detector distance are 

common among them and have similar effects on the collected diffraction patterns.  Several of 

these parameters play a role in the amount of time required to collect each diffraction pattern and 

therefore complete the analysis of a sample.  In this work, the electron backscatter diffraction 

(EBSD) technique is used owing to the relatively high rate of data collection and ease of changing 

each parameter.  
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Electron backscatter diffraction is a scanning electron microscope (SEM)-based method 

that involves the capture of 2D diffraction patterns produced from an incident electron beam 

scattering, diffracting, and escaping from a well-polished ‘bulk’ sample [37].  Despite the vast 

amount of information in the patterns [37–39], conventional EBSD has primarily focused on 

determining three-dimensional orientation [17,37,40,41].  Furthermore, the technique typically 

relies on a user-defined phase list and Hough-based indexing [42].  Hough-based indexing 

generally allows for phase differentiation of sufficiently distinct crystal structures [43–45], but the 

process remains susceptible to structural misclassification [46–48].  Improvements to phase 

differentiation have been proposed and developed including dictionary indexing [49–52] and 

spherical indexing [53–55], although each still requires a user to pre-select phases and further 

requires simulating the Kikuchi sphere for each selected phase.  Recently, the EBSD community 

has begun to investigate the use of convolutional neural networks for indexing, phase 

differentiation, and determining components of crystal structure [4,25,33–35].  It is a goal of 

several of these efforts that the onus of phase selection and/or structure determination can be at 

least partially alleviated from the user [4,33].  However, to date there has not been a systematic 

study of CNN performance when the EBSD patterns (EBSPs) are collected using different 

experimental geometry than was used during collection or simulation of the training data.  

Knowledge of how these changes to the diffraction patterns influence proper pattern identification 

is paramount to widespread adoption of these machine learning-based techniques. 

This work seeks to develop an understanding of model performance as several of the most 

common EBSD operating conditions are varied.  The specific parameters are frame averaging, 

detector tilt, sample-to-detector distance, accelerating voltage, and pattern resolution.  With regard 

to parameters that directly affect the time to collect each pattern and therefore complete a map, 
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such as frame averaging and pattern resolution, the ability to collect the data more rapidly without 

a significant reduction in performance is of interest.  With respect to parameters such as detector 

tilt, it is important to determine if the model is susceptible to minor or major changes from the 

training conditions.  Parameters such as detector distance and accelerating voltage can cause much 

more dramatic changes to the EBSPs, and it is therefore necessary to assess their influence.  The 

CNN model tested in this work was trained to classify EBSPs to one of six space groups using 

patterns collected from a fixed EBSD setup [33].  The effect of changing these parameters is tested 

using new EBSD patterns collected from one material from each space group and a dual-phase 

2205 duplex steel for visual demonstration.  Each time one parameter is varied, the EBSPs are re-

collected, and the CNN used to reassess the proper space group identification.  Ultimately, the 

model is found to retain a high classification accuracy even with significant changes to the 

diffraction conditions and therefore the EBSPs.  

9.2 Materials and methods 

9.2.1 Materials 

Eighteen different single-phase materials, comprising 6 of the 10 space groups within the 

(4/𝑚 3̅ 2/𝑚) point group were selected for training the space group classification CNN. The space 

groups are 𝑃𝑚3̅𝑚 (221), 𝑃𝑚3̅𝑛 (223), 𝐹𝑚3̅𝑚 (225), 𝐹𝑑3̅𝑚 (227),  𝐼𝑚3̅𝑚 (229), 

and 𝐼𝑎3̅𝑑 (230).  Suitable samples for the remaining 4 space groups could not be obtained.  The 

materials were [221: FeAl, NiAl, Ni3Al, Fe3Ni], [223: Cr3Si, Mo3Si], [225: Ni, Al, NbC, TaC, 

TiC], [227: Si, Ge], [229: W, Ta, Fe], and [230: Al4CoNi2, and Al4Ni3].  The collected diffraction 

patterns from these materials were of low texture, typically less than 2 times random in any 

direction.   Refer to Kaufmann et al. for the distributions of orientation, band contrast, and mean 

angular deviation for these samples [33].   
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A dual-phase material with phases that are easily differentiable by Hough-based EBSD was used 

to visually demonstrate and compare the classification accuracy of the model as parameters vary.  

A longitudinal cross-section of cold worked 2205 duplex steel was mounted, ground, and polished 

to 0.05µm using colloidal silica.  Looking at the longitudinal cross-section, cold worked 2205 

duplex stainless steel has a ferrite matrix (space group 229) and elongated austenite islands (space 

group 225) [56]. 

9.2.2 Electron backscatter diffraction pattern collection 

EBSD patterns were collected in a Thermo Scientific (formerly FEI) Apreo scanning 

electron microscope (SEM) equipped with an Oxford Symmetry EBSD detector.   

All EBSPs utilized in training were collected with the following fixed geometry.  The 

EBSD detector was utilized in high resolution (1244x1024) mode, the working distance was 18.1 

mm ± 0.1 mm, the sample-to-detector distance was 19.1 mm, and the detector tilt to 13.7 degrees 

above horizontal.  The imaging parameters for the training set EBSPs were 20kV accelerating 

voltage, 51nA beam current, and 30-pattern averaging. This fixed geometry will be referred to as 

the “default” operating conditions and diffraction geometry.  Refer to Figure 1 for an annotated 

image of the diffraction setup in the SEM.  

Diffraction patterns from six single-phase materials (Ni3Al, Cr3Si, TiC, Si, Fe, and 

Al4CoNi2) and the dual-phase 2205 duplex steel were collected separately from the training data 

to determine a baseline accuracy for the model when using the default diffraction geometry. 

Approximately 3,000 individual patterns were collected from a large area of each sample (i.e. low 

magnification) to capture as many unique orientations as possible over the fixed region. After 

collecting data using the default diffraction geometry, each one of the parameters was 
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systematically varied one at a time and the same ~3,000 patterns re-collected from the same 

location.   

The parameters were varied as follows.  Frame averaging was set to 1, 5, 10, 20, or 30. The 

software detector tilt below zero ranged from 1 to 5 in steps of 1.  These values correspond to the 

detector being 14.2, 14.0, 13.7, 13.5, and 13.3 degrees above the horizontal plane.  The software 

detector insertion distance ranged from 156 mm to 164 mm in steps of 2mm.  These values 

correspond to sample-to-detector distances of 24.3, 21.8, 19.1, 16.8, and 14.3 mm.  The sample to 

detector distances were calculated following the methods outlined in [57].  Accelerating voltage 

options were 10, 20, or 30 kV.  The pattern resolution options were 156×128 (low), 622×512 

(medium), or 1244×1024 (high).  The working distance was held constant, since moving the 

sample up or down while at 70 degrees sample tilt would change the location on the sample.  The 

beam current also remained fixed and the exposure time adjusted accordingly by the Oxford Aztec 

software to offset the increase or decrease in signal resulting from a varied parameter (e.g. detector 

distance).  Supplementary Table 20 summarizes the EBSD pattern acquisition rate for each of the 

varied parameters compared to the “default” conditions. 

9.2.3 Convolutional neural network 

The Xception convolutional neural network architecture [58] was selected for fitting the 

model.  Selection of this network was based on Xception or derivatives of Xception being used 

previously in the EBSD community [4,33–35].  Refer to Figure 5 in Xception: Deep Learning with 

Depthwise Separable Convolutions [58] for a complete description of the Xception architecture.  

Further details about the training process can be found in Kaufmann et al. [33].  The CNNs were 

implemented with TensorFlow[59] and Keras [60].   
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9.2.4 Diffraction pattern classification 

During pattern collection, Hough-based indexing was performed with only three options: 

ferrite, austenite, or non-indexed.  After collecting high resolution EBSPs from each material, all 

patterns collected were exported as tiff images.  Diffraction patterns were evaluated in a random 

order by the trained CNN model without further information to assess the model as it would be 

applied in practice.  The output classification of each diffraction pattern was recorded and saved 

in a (.csv) file.  These csv files were utilized to calculate the normalized accuracy of the model for 

each trial.  In the case of 2205 duplex steel, the predictions were converted to a space group map 

using the plotting tools in MATLAB R2018B following the methods established in Kaufmann et 

al. [34]. 

9.3 Results 

9.3.1 Equipment setup and Hough-based results 

The choice of operating parameters for EBSD are not fixed but are instead valid over a 

range of values depending on the manufacturer’s calibration.  The specific parameters defined as 

“default” parameters in this work are those from which all EBSPs in the training set were collected 

(refer to section 2.2 or prior work by Kaufmann et al. [33]).  The equipment setup for EBSD is 

shown and labeled in Figure 1.  The detector distance from the sample and detector tilt are further 

detailed using arrows that describe their geometric role.  EBSPs are collected from a fixed region 

of the specimen each time one parameter is varied.   
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Figure 9.1 EBSD setup and variable parameters.  An annotated view of the EBSD setup. Parameters 

that vary in this study are listed below the equipment label. The sample-to-detector distance (DD) and 

detector tilt (DT) are further detailed by arrows describing their function. 

 

Figure 2 highlights the need for a reliable tool to assist an operator with symmetry 

determination using a section of 2205 duplex steel. In the case where the phases are known in 

advance (Fig. 2a), Hough-based EBSD is shown to produce a high-fidelity phase map of the 

austenite islands (blue) in the ferrite matrix (yellow).  However, in cases where the phases are 

unknown, there exists ample opportunity for misclassification in the Hough-based method even 

when using what could be considered ideal acquisition parameters.  If the six space groups used in 

the CNN study were selected in duplicate, one copy with lattice parameters matching the 

austenite’s lattice parameters and symmetry and the other copy matching the ferrite’s, the results 

can be strikingly different (Fig. 2b).  In fact, not a single pattern is indexed to either of the two 
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correct phases.  In fact, two of the three space groups selected, 𝑃𝑚3̅𝑛 (orange) and 𝐹𝑑3̅𝑚 (lime 

green), are not present in the sample. Thus, a robust classifier of EBSD patterns would be a useful 

tool for assisting with selecting the proper phases or alerting users to potential errors in selected 

phase lists. Figure 2c demonstrates how a CNN-based classifier could be used for such a purpose.  

The CNN has predicted the space group of each high-quality EBSD pattern that Hough-based 

EBSD used for generating Figures 2a,b, yet the CNN-derived phase map is a much higher fidelity 

mapping of Figure 2a than is Figure 2b, albeit without the lattice parameter information at this 

stage of the CNN model.  These results are significant since Figure 2b demonstrates a marked 

failure wherein Hough-based EBSD cannot distinguish between the two correct answers plus ten 

phases with the same lattice parameters but different space group symmetry.  Given the potential 

the CNN-based method has for improving the EBSD process, this work sets out to study how 

reliable the CNN’s classifications are as new data captured under different diffraction conditions 

is presented to it. 

 

Figure 9.2 Hough-based EBSD results with different phase lists.  A comparison of the Hough-

based EBSD method is performed where (a) only the two correct phases are provided as options 

and (b) twelve options are made available based on the six space groups used in this work and the 

two lattice parameters found in the duplex steel sample.  The CNN-derived space group map (c) 

details the classifier’s predictions for the same EBSD patterns used in parts (a) and (b).  The data 

for each map is collected using the ideal parameters defined as “default” in this work. 
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9.3.2 Effects on the EBSD patterns 

It is important to understand the effect of varying the operating conditions of the SEM and 

EBSD detector on the electron diffraction patterns.  Figure 3 visually details the effects by 

displaying the same diffraction pattern observed under different operating conditions.  Larger 

versions of these images are contained in Supplementary Figures 48-52 in the Supplementary 

Materials.  Increasing the number of frames averaged for each diffraction pattern increases the 

signal to noise ratio and results in better resolution of finer details in the diffraction patterns.  

Changing the detector tilt changes the relative position of the image with respect to the interaction 

volume of the sample, referred to as the pattern center in EBSD [37,55,61].  For tilt angles that are 

far from the ideal conditions, the top or bottom edge of the EBSP may display blurring.  The most 

significant blurring is observed when using a tilt of 13.3 degrees. Otherwise, the changes are 

observed to be limited to small differences in the region of the Kikuchi sphere captured.  

Decreasing the sample-to-detector distance, and thus moving closer to the sample, results in the 

capture of significantly more solid angle.  Since the EBSD detector is capturing a gnomonic 

projection, the increase in the solid angle means a greater area of the Kikuchi sphere is observed. 

This likely must be balanced with the ability to resolve the finer details and eventual blurring of 

the pattern edges.  On the other hand, moving the detector further away captures less of the Kikuchi 

sphere but “magnifies” the finer details.  The diffraction elements also appear slightly blurred at 

the furthest distance away from the sample.  Changes to the SEM accelerating voltage affect the 

EBSPs by altering the wavelength of the incoming electrons.  A decrease in the accelerating 

voltage increases the electron wavelength and therefore causes the Kikuchi bands to appear wider 

and vice versa.  This results in more diffraction information from the same region of the Kikuchi 

sphere condensed within the viewing window for higher accelerating voltages.  Note that it does 
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not have the same effect as changing the detector distance.  Lastly, the Oxford Symmetry detector 

can capture patterns at one of three resolutions: 156×128, 622×512, or 1244×1024.  These are 

described as low, medium, and high resolution, respectively, in this work.  For each of the different 

imaging conditions shown, approximately 3,000 diffraction patterns are collected from the same 

region of each sample and the CNNs performance analyzed.   

 

Figure 9.3 Impact of operating conditions on the EBSD patterns.  The diffraction pattern for a point on 

the sample is displayed for different imaging conditions.  The effect of number of frames averaged, the tilt 

of the EBSD detector, the sample-to-detector distance for the EBSD detector, the SEM accelerating voltage, 

and the resolution at which patterns are captured are each visually described. 
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9.3.3 Frame averaging 

Figure 4 presents a visual overview of the pattern classification results for each frame 

averaging condition studied using a sample of 2205 duplex stainless steel, a material with a ferrite 

matrix (space group 229; yellow) and austenite islands (space group 225; blue) [56].  Similar space 

group maps for each of the parameters studied are shown in the Supplementary Materials 

(Supplementary Figures 53-57).  The electron image (Fig. 4a) and Hough-based phase map (Fig. 

4b) are provided as the ground truth, since these phases can be differentiated by Hough with 

relative ease, assuming the operator selects the correct phases at the start (i.e., user knows the 

phases).  Without any frame averaging, the EBSPs are lacking much of the available details and 

essentially all the EBSPs from this sample are misidentified (Fig. 4c).  Increasing the frame 

averaging to 5 improves the result (Fig. 4d), but it is not until 10 frames are averaged that a 

reasonable number of classifications appear to be correct (Fig. 4e) when compared to the Hough-

based map (Fig. 4b).  Figures 4f,g each show sequential improvements over Figure 4e as nearly 

all of the patterns become correctly classified to the correct space group (i.e. matching the Hough-

based phase map).  As seen in the plot (Fig. 4h), the number of patterns classified to each space 

group begins to improve with 10 frames averaged.  While the plot shows the relative number of 

patterns classified to each space group compared to Hough-based EBSD, the space group maps 

made from the CNN’s predictions establish whether the individual EBSPs are correctly classified 

based on their correlation with the Hough-based phase map.  Since each of the other materials 

studied in this work is known to be single phase, normalized classification accuracy precisely 

describes the model performance. 
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Figure 9.4 Visual overview of frame averaging on CNN classification for duplex steel.  (a) 

electron image of the region of dual-phase 2205 duplex steel.  (b) Hough-based EBSD phase map 

of the fcc (225) austenite (blue) and bcc (229) ferrite (yellow).  (c) phase map generated from 

EBSD patterns collected with no frame averaging applied (i.e. one frame). (d) phase map generated 

from EBSD patterns collected with five frame averaging applied.  (e)  phase map generated from 

EBSD patterns collected with ten frame averaging applied.  (f)  phase map generated from EBSD 

patterns collected with twenty frame averaging applied.  (g) phase map generated from EBSD 

patterns collected with thirty frame averaging applied.  (h) Plot showing the fraction of patterns 

indexed to each space group as a function of frame averaging.  Thirty frame averaging is the default 

parameter and is designated as such by the blue star for space group 225 and a yellow star for space 

group 229.  Trend lines are fit with a 3rd order polynomial. Scale bar 25µm. There are 3,848 

diffraction patterns (pixels) in each phase map. 

 

It is worth pointing out that the Hough-based result is considered the ground truth (or 

correct answer) because the phases in the sample are known, and the known answer is provided as 

input to the Hough-based solution.  So in this context, the EBSD solution for phase ID must already 

be known for the Hough-based approach.  The power of the machine learning approach being 
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implemented here, and previously presented in Kaufmann et al. [32], is to perform symmetry 

identification, to the space group level, for samples for which the phases present are not known a 

priori (i.e. enable true phase ID by EBSD). 

Figure 5 details the normalized accuracy of the CNN for each space group as the number 

of frames averaged is varied in subsequent collections of the same EBSD patterns.  The default 

frame averaging is 30 patterns. It is observed that a high overall classification accuracy, compared 

to the accuracy obtained for the default parameter, is generally retained as low as 5-10 frames 

averaged. An exception to this is observed for space groups 221 and 229 which, along with space 

group 225, are the most difficult for the CNN to differentiate owing to the strong similarities 

between the fcc and L12 structures and bcc and B2 structures used in training the model [33].   

 

Figure 9.5 Effect of frame averaging on classification accuracy.  The normalized classification 

accuracy of the trained CNN for each space group based on the number of patterns averaged during 

data collection. The space groups are (a) 𝑷𝒎𝟑̅𝒎 (b) 𝑷𝒎𝟑̅𝒏 (c) 𝑭𝒎𝟑̅𝒎 (d) 𝑷𝒅𝟑̅𝒎 (e) 𝑰𝒎𝟑̅𝒎 and 

(f) 𝑰𝒂𝟑̅𝒅.  The default number of frames averaged is 30. 
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9.3.4 Detector tilt 

Figure 6 details the effect of the detector tilt on the CNN’s classification of the collected 

EBSPs.  Note that the detector tilt is reported as the angle of the detector above horizontal.  

Referring to the EBSPs in Fig. 3 and their enlarged counterparts shown in Supplementary Figure 

49 in the Supplementary Materials, detector tilts of 14.2 to 13.7 degrees show ideal patterns with 

little or no blurring at the edges.  The blurring becomes more apparent at the bottom of the EBSPs 

when a tilt of 13.5 degrees is applied and increases in severity at a tilt of 13.3 degrees.  For most 

space groups in Figure 6, the model is found to be highly resilient, and it is only at or below a tilt 

of 13.5 degrees that any notable changes in accuracy occur. Again, space groups 221 and 229 are 

the exception to this observation.  Referring to the symmetry maps of the duplex steel, the fractions 

do not vary significantly across the individual maps (Supplementary Figure 54) and the space 

group classification of each EBSP aligns well with the Hough-based phase map (ground truth). 

 
Figure 9.6 Effect of detector tilt on classification accuracy.  The normalized classification 

accuracy of the trained CNN for each space group based on the tilt of the detector during data 

collection. The space groups are (a) 𝑷𝒎𝟑̅𝒎 (b) 𝑷𝒎𝟑̅𝒏 (c) 𝑭𝒎𝟑̅𝒎 (d) 𝑷𝒅𝟑̅𝒎 (e) 𝑰𝒎𝟑̅𝒎 and (f) 

𝑰𝒂𝟑̅𝒅.  The detector tilts are reported as  the detector’s angle above horizontal.  The default value 

for detector tilt is 13.7 degrees. 
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9.3.5 Detector Distance 

Figure 7 presents the changes in the CNN’s performance as the EBSD detector collects the 

diffraction patterns at different sample-to-detector distances.  The number of mis-classified pixels, 

however minute the difference is, is observed to scale with increased absolute distance from the 

default condition of 19.1 mm.  When the detector is much further away from the sample, less solid 

angle is captured, and the diffraction patterns become distorted (Fig. 3 and Supplementary Figure 

50).  Moving closer to the sample increases the solid angle, but at the expense of the finer details.  

This likely contributes to the noticeably reduced performance for the closest possible setting (a 

sample-to-detector distance of 14.3 mm).  Referring to the phase maps of the duplex steel 

(Supplementary Figure 55), similar effects are observed. As the sample-to-detector distance gets 

further from the default condition, the CNN-derived maps increasingly differ from the Hough-

based phase map.   

 

Figure 9.7 Effect of sample-to-detector distance on classification accuracy.  The normalized 

classification accuracy of the trained CNN for each space group based on the sample-to-detector 

distance during data collection. The space groups are (a) 𝑷𝒎𝟑̅𝒎 (b) 𝑷𝒎𝟑̅𝒏 (c) 𝑭𝒎𝟑̅𝒎 (d) 𝑷𝒅𝟑̅𝒎 

(e) 𝑰𝒎𝟑̅𝒎 and (f) 𝑰𝒂𝟑̅𝒅.  The default value for sample-to-detector distance is 19.1 mm. 
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9.3.6 Accelerating voltage 

The effect of changing the wavelength of the incoming electrons by modifying the 

accelerating voltage is explored in Figure 8 and Figure A9.  The primary effect of changing the 

wavelength of the incoming electrons is a change in the width of the observed Kikuchi bands (Fig. 

3 and Supplementary Figure 51).  The resulting effect on the collected diffraction patterns is similar 

to changing the detector distance, but notably does not alter the amount of solid angle captured on 

the phosphor screen.  Instead, changing the accelerating voltage effectively changes the 

magnification of the diffraction data within the same screen area.  For example, decreasing to 10kV 

causes the details of the diffraction pattern to increase in size, effectively making the data appear 

expanded.  Note how the same zone axes are present for each accelerating voltage, but the distance 

between the zone axes and the width of the diffraction lines appears to change (Supplementary 

Figure 51).  These changes are observed to have appreciable effects on the classification 

performance of the CNN.  At 10kV, many of the patterns from each space group are misclassified 

(Fig. 8).  On the other hand, increasing to 30kV accelerating voltage yields reasonably good 

classification performance, perhaps because the Kikuchi bands are narrower and more information 

appears to be visible.  The same effects on performance are visually evident in the CNN-derived 

space group maps of the duplex steel (Supplementary Figure 56). 
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Figure 9.8 Effect of accelerating voltage on CNN classification.  The normalized classification 

accuracy of the trained CNN for each space group based on the SEM accelerating voltage. The 

space groups are (a) 𝑷𝒎𝟑̅𝒎 (b) 𝑷𝒎𝟑̅𝒏 (c) 𝑭𝒎𝟑̅𝒎 (d) 𝑷𝒅𝟑̅𝒎 (e) 𝑰𝒎𝟑̅𝒎 and (f) 𝑰𝒂𝟑̅𝒅. An 

accelerating voltage of 20kV is the default. 

 

9.3.7 Pattern resolution 

Reducing the initial resolution of the collected diffraction patterns bins the information 

from neighboring pixels to accelerate the rate of collection.  Figure 9 details the CNN’s 

performance after collecting the diffraction patterns at each of the three available resolutions for 

the Oxford Symmetry EBSD detector. The CNN is capable of achieving a high degree of accuracy 

even when patterns are collected at the lowest resolution setting.  Only space groups 221 and 229 

are appreciably impacted owing to the strong similarities between the fcc and L12 structures and 

bcc and B2 structures used in training the CNN.  Supplementary Figure 57 visually demonstrates 

the reliable performance of the CNN at each pattern resolution by creating structure maps for the 

2205 duplex steel. 
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Figure 9.9 Effect of pattern resolution on CNN classification.  The normalized classification 

accuracy of the trained CNN for each space group based on the EBSD detector resolution. 

Available resolutions are 156×128 (low), 622×512 (medium), and 1244×1024 (high).  The space 

groups are (a) 𝑷𝒎𝟑̅𝒎 (b) 𝑷𝒎𝟑̅𝒏 (c) 𝑭𝒎𝟑̅𝒎 (d) 𝑷𝒅𝟑̅𝒎 (e) 𝑰𝒎𝟑̅𝒎 and (f) 𝑰𝒂𝟑̅𝒅.  High resolution 

(1244×1024) is the default setting. 

 

9.4 Discussion 

The electron diffraction community has recently begun to consider artificial intelligence a 

necessary component of next-generation microscopy [32].  Much of this is driven by the rate at 

which modern microscopes can generate high quality data [62]; as a result, human knowledge and 

experience will no longer be an efficient means of analysis.  If AI-based tools are to be 

implemented effectively, it is necessary for the community to identify potential areas of fragility, 

e.g. changing diffraction conditions, and assess the impact in order to further development and 

increase trust in these ‘black-box’ models.   

Electron backscatter diffraction was selected as an ideal technique owing to the ease of 

varying each parameter and the rates of data collection achievable [37,62].   Furthermore, several 

recent studies have explored the use of CNNs applied to components of EBSD analysis [33–36,63]; 
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however, these efforts have thus far only been tested with new data collected or simulated using 

identical geometry and diffraction conditions.   Herein, a parametric analysis of five parameters 

commonly found among electron diffraction techniques was performed to examine the 

performance of a convolutional neural network trained to classify diffraction patterns.  One 

material was selected per space group and new diffraction patterns were collected starting with 

diffraction conditions matching the training set and then the same patterns were recollected sixteen 

more times after setting just one parameter to a value different from the default conditions.  The 

same analysis was performed for a sample of 2205 duplex steel to demonstrate CNN-based 

symmetry mapping [34] a sample with each varied parameter.  If the trained convolutional neural 

network is highly sensitive to the diffraction conditions, we would have expected to see large 

decreases in performance with the smallest changes.  For example, by changing the sample-to-

detector distance, the Kikuchi bands from the same material can appear wider or narrower and the 

distance between diffraction information (e.g. zone axes) appears to change.  However, the CNN’s 

classification accuracy is observed to be quite stable (i.e. small reductions in classification 

accuracy) in comparison to the results achieved with the default conditions, suggesting the features 

detectors learned by the model are not biased to these characteristics.  This was one of the intended 

goals of using multiple materials with different z-contrast and lattice parameters for the same space 

group in the training set [33] and this study indicates its effectiveness.  Moreover, the CNN is also 

observed to be highly dependable after decreasing the signal to noise ratio of the captured 

diffraction pattern by reducing the frame averaging.  Decreasing the number of frames averaged 

will allow for faster data collection, as much as 6 times faster if averaging five frames compared 

to thirty, while maintaining a high degree of classification accuracy for most materials.  In each of 

the studies within this work, the space groups most likely to be misclassified by the model were 
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221 (𝑃𝑚3̅𝑚 ) and 229 (𝐼𝑚3̅𝑚 ).  As previously mentioned, the misclassification of these patterns 

can be at least partially attributed to the strong similarities between diffraction patterns from the 

fcc (𝐹𝑚3̅𝑚) and L12 (𝑃𝑚3̅𝑚) structures and bcc (𝐼𝑚3̅𝑚) and B2 (𝑃𝑚3̅𝑚) structures used in 

training the CNN [33].  Inclusion of more diverse data for these space groups may help alleviate 

this concern in addition to being a practical advancement toward commercial adoption.  While the 

model’s dependability and trustworthiness with respect to equipment parameters has now been 

evaluated for phase differentiation and identification problems, it is still important to test this 

hypothesis for EBSD orientation indexing CNNs [35,36,63].  A much larger study should also be 

performed to investigate the effects of co-varying operating parameters; however, we expect that 

similar tolerances will be observed based on the reliability observed under diffraction conditions 

far from the training data.  This expectation stems from the observation that changing individual 

parameters can cause drastic changes to the patterns and the CNN generally maintains exceptional 

performance. 

9.5 Conclusions 

In this work, a systematic study of the EBSD operating parameters and their individual 

effects on the classification performance of a convolutional neural network is performed.  Despite 

the CNN being trained from diffraction patterns captured with a fixed geometry and SEM settings, 

it is found to be resilient over a wide range of conditions.  Markedly decreased performance is 

generally only observed for the most challenging materials to differentiate (e.g. B2 and bcc or L12 

and fcc).  Furthermore, it is encouraging to verify that parameters that effect the time to map an 

area (e.g. frame averaging or pattern resolution) can be modified to accelerate the process without 

substantially degrading model performance. For parameters such as tilt, it is reassuring to validate 

the model performs well over a variety of reasonable parameters.  Although the CNN may not 
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achieve high accuracy under all conditions, such as a low number of frames averaged, when used 

appropriately it remains a highly capable method for assisting the user with phase identification 

and provides a level of phase differentiation markedly above what state of the art commercial 

methods are currently capable of.  In the current version of the CNN, the parameter settings that 

cause noteworthy reductions in performance across a majority of space groups are a frame 

averaging of 1 or utilizing 10kV accelerating voltage.   In the future, training models with patterns 

collected using a wider variety of operating conditions, particularly those with the largest effect 

on performance, could result in a model that is even more resilient to some of these types of 

perturbations to the diffraction patterns; although it may still not be possible to overcome all 

limitations, such as no frame averaging, owing to significant reductions in the signal to noise ratio.  

A future study should also investigate the co-variation of parameters from the default conditions.  

Ultimately, we expect the results of this research to encourage the continued development of these 

tools given the reliability observed and their potential to assist with or automate the analysis of 

electron diffraction patterns. 
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Supplementary Figure 1 Cr-C binary phase diagram from ThermoCalc Software SSOL6 database 

version 6.1. 
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Supplementary Figure 2 Mo-C binary phase diagram from ThermoCalc Software SSOL6 database 

version 6.1. 
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Supplementary Figure 3 W-C binary phase diagram from ThermoCalc Software SSOL6 database 

version 6.1. 
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Supplementary Figure 4 Example of a decision tree from the fitted model. Each decision tree utilizes 

a subset of the labeled data and features in an order that maximizes the “unmixing” of the data. The rules 

leading to each subset are written inside individual rectangles. The subset population percentage is given 

by “samples”, the mean absolute error (mae) within each node is recorded, and the node shade represents 

the average EFA of that subset, i.e., dark orange illustrates a high proportion of materials with a large EFA. 
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Supplementary Figure 5 Phase evolution diagrams for single and multi-phase compositions. a) The 

only one of the four compositions found to form a single phase. b-d) These three compositions would appear 

to form a single phase; however, DFT and experimental results confirm their multi-phase nature. 
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Supplementary Table 1 Model performance on existing data. Units: EFA in (eV/atom)-1.      

Composition EFAAttrib

utes 

EFACALP

HAD 

EFAD

FT 

Ex

p. 

Composition EFAAttribu

tes 

EFACALP

HAD 

EFAD

FT 

Exp

. MoNbTaVWC

5 

99 106 125 S HfNbTiVWC5 50 58 59  

HfNbTaTiZrC

5 

88 91 100 S HfNbTaWZr

C5 

55 60 59  

HfNbTaTiVC5 97 92 100 S NbTaVWZrC5 55 57 56  

MoNbTaTiVC

5 

94 89 100  HfTaTiVWC5 55 55 56  

NbTaTiVZrC5 90 77 83  HfMoTaVWC

5 

56 58 56  

HfMoNbTaTi

C5 

75 73 83  HfMoNbVWC

5 

55 58 56  

NbTaTiVWC5 67 78 77 S HfNbTiWZrC

5 

51 53 53  

MoNbTaTiW

C5 

73 78 77  HfMoTaTiWC

5 

54 54 53  

MoNbTiVWC5 72 77 71  HfMoNbTiW

C5 

54 50 53  

MoNbTaTiZr

C5 

69 69 71  HfTaTiWZrC5 54 50 50 S 

HfTaTiVZrC5 72 75 71  TaTiVWZrC5 52 50 50  

HfNbTiVZrC5 69 72 71  NbTiVWZrC5 51 50 50  

HfMoNbTiVC5 70 69 71  HfMoTiVZrC5 57 55 50  

HfMoNbTaZr

C5 

63 67 71  HfMoTaVZrC

5 

53 61 50  

HfMoNbTaW

C5 

63 68 71  HfMoNbVZrC

5 

60 56 50  

HfMoNbTaVC

5 

68 70 71  MoTaVWZrC5 49 51 48  

HfNbTaTiWC5 61 63 67 S MoTaTiWZrC

5 

49 50 48  

MoTaTiVWC5 72 71 67  MoNbVWZrC

5 

49 53 48  

HfNbTaVZrC5 68 74 67  MoNbTiWZr

C5 

50 47 48  

HfNbTaVWC5 62 63 67  HfMoNbWZr

C5 

49 49 48  

HfMoTaTiVC5 71 65 67  HfTiVWZrC5 48 47 45  

HfMoNbTiZr

C5 

64 62 67  HfNbVWZrC5 44 46 45  

MoNbTaWZr

C5 

57 61 63  HfMoTiVWC5 45 45 45  

HfMoTaTiZrC

5 

63 62 59  HfMoTaWZr

C5 

47 50 45 M 

NbTaTiWZrC5 56 61 59  HfTaVWZrC5 47 55 43  

MoTaTiVZrC5 62 61 59  MoTiVWZrC5 44 43 40  

MoNbTiVZrC5 61 65 59  HfMoTiWZrC

5 

42 40 38 M 

MoNbTaVZrC

5 

60 65 59  HfMoVWZrC5 41 45 37 M 
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Supplementary Figure 6 Model performance as features are eliminated.  The 5-fold cross validation 

scores computed during the cross validated recursive feature elimination (RFECV) are plotted. After the 

current number of features is used to construct a model, the average score is recorded and the least important 

feature is removed.  This process is repeated until all each number of features is scored.  The highest score 

is achieved when thirteen features remain. 
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Supplementary Figure 7 Statistical analysis of RFECV over 100 runs.  The average 5-fold cross 

validation scores computed over 100 individually seeded RFECV runs are plotted in blue. The dark and 

light gray shaded regions identify one and two standard deviations away from the average, respectively.  

The horizontal red line marks thirteen features, the number of features ultimately used in this study. 
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Supplementary Table 2 ML-HEA results for binary alloys. S.S.(ML)
 class of single solid solution phase 

predicted by the ML-HEA model (“none” = other or not found); S.S. class of single solid solution phase 

found using LTVC model from DFT [28] (“none” = other or not found); S.S.* class of single solid solution 

phase found using CALPHAD (“none” = other or not found); S.S. Exp class of single solid solution phase 

found experimentally (“none” = other or not found). 

  
S.S.(ML) S.S. S.S.(*) 

S.S. 
Exp.   

S.S(ML) S.S. S.S.(*) 
S.S. 
Exp. 

AgAu fcc fcc fcc fcc HfNb bcc bcc bcc bcc 

AgCu none none none none HfTa bcc bcc bcc bcc 

AgFe none none none none HfTi bcc none bcc bcc 

AgNi none none none none HfV none none none none 

AgPd fcc fcc fcc fcc HfZr bcc none bcc bcc 

AgPt fcc fcc fcc fcc IrMo none none none none 

AgSi none none none none IrNi fcc fcc fcc fcc 

AgTi none none none none IrPd fcc none fcc fcc 

AIMn none none none none IrPt fcc fcc fcc fcc 

AlCu none none none none IrRh fcc fcc fcc fcc 

AlHf none none none none IrRu fcc fcc none fcc 

AlSi none none none none MnNb none none bcc none 

AlTa none none none none MnNi fcc none fcc fcc 

AlTi none none none none MnTa none none bcc none 

AlW none none none none MnV bcc none bcc bcc 

AlZr none none none none MoNb bcc bcc bcc bcc 

AuCo none none none none MoNi none none none none 

AuCu fcc fcc fcc fcc MoPd fcc fcc none fcc 

AuNi fcc none fcc fcc MoRh none none none none 

AuPd fcc fcc fcc fcc MoRu none none none none 

AuPt fcc fcc fcc fcc MoTa bcc bcc bcc bcc 

AuTi none none none none MoTi bcc bcc bcc bcc 

AuV fcc fcc bcc fcc MoV bcc bcc bcc bcc 

CoCr bcc none bcc bcc MoW bcc bcc bcc bcc 

CoCu none none none none MoZr none none none none 

CoIr fcc fcc fcc fcc NbTa bcc bcc bcc bcc 

CoMn fcc none fcc fcc NbTi bcc bcc bcc bcc 

CoMo none none none none NbV bcc bcc bcc bcc 

CoNi fcc fcc fcc fcc NbW bcc bcc bcc bcc 

CoPd fcc none fcc fcc NbZr bcc bcc bcc bcc 

CoPt fcc fcc fcc fcc NiPd bcc bcc fcc bcc 

CoRh fcc fcc fcc fcc NiPt fcc fcc fcc fcc 

CoW none none none none NiRh fcc fcc fcc fcc 

CrCu none none none none NiRu none fcc none none 

CrFe bcc none bcc bcc NiV none none none none 
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Supplementary Table 2, Continued. 

 S.S.(ML) S.S. S.S.(*) 
S.S. 
Exp. 

 S.S(ML) S.S. S.S.(*) 
S.S. 
Exp. 

Crlr none none none none NiW none none none none 

CrMn bcc bcc bcc bcc PdPt fcc fcc fcc fcc 

CrMo bcc bcc bcc bcc PdRh fcc fcc fcc fcc 

CrNb none none none none PdRu none none none none 

CrNi fcc fcc fcc fcc PdW none none none none 

CrPt fcc fcc fcc fcc PtRh fcc fcc fcc fcc 

CrRh none none none none PtRu fcc fcc fcc fcc 

CrTa bcc none bcc bcc PtTi none none none none 

CrTi bcc none bcc bcc PtW none none none none 

CrV bcc bcc bcc bcc RhRu fcc fcc none fcc 

CrW bcc bcc bcc bcc RhV none fcc none none 

CuFe none none none none RhW none none none none 

Culr none none none none RuW none none none none 

CuNi fcc fcc fcc fcc TaTi bcc bcc bcc bcc 

CuPd fcc fcc fcc fcc TaV bcc bcc bcc bcc 

CuPt fcc fcc fcc fcc TaW bcc bcc bcc bcc 

CuRh fcc fcc fcc fcc TaZr bcc bcc bcc bcc 

CuSi none none none none TiV bcc bcc bcc bcc 

CuV none none none none TiW bcc bcc bcc bcc 

FeMn fcc fcc fcc fcc TiZr bcc bcc bcc bcc 

FeMo none none none none VW bcc bcc bcc bcc 

FeNb none none none none VZr none none none none 

FeNi bcc none bcc bcc WZr none none none none 

FePd fcc fcc fcc fcc      
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Supplementary Table 3 ML-HEA results for ternary alloys. S.S.(ML)
 class of single solid solution phase 

predicted by the ML-HEA model (“none” = other or not found); S.S. class of single solid solution phase 

found using LTVC model from DFT [28] (“none” = other or not found); S.S.* class of single solid solution 

phase found using CALPHAD (“none” = other or not found). 

  S.S(ML) S.S. S.S.(*)   S.S(ML) S.S. S.S.(*) 

AgAINi none none none AlCuSi none none none 

AgAlAu none none fcc AlFeMn none none none 

AgAlFe none none none AlHfSi none none none 

AgAlV none none none AlHfTa none none none 

AgAsAu none none none AlHfTi none fcc bcc 

AgAsCu none none none AlMnNi none none none 

AgAsPd none none none AlMnSi none none none 

AgAuCo none none none AlTaZr none none none 

AgAuCu none none fcc AlTiV bcc none bcc 

AgAuFe none none none AlTiZr bcc fcc bcc 

AgAuMo none none none AlVW bcc none bcc 

AgAuNi none none none AsAuCu none none none 

AgAuPd fcc fcc fcc AsAuPd none none none 

AgAuPt fcc fcc fcc AsCuPd none none none 

AgAuRh fcc none none AuCoCu none none none 

AgAuSi none none none AuCoIr fcc none fcc 

AgAuTi none none none AuCoMo none none none 

AgAuV none none none AuCoNi none none none 

AgCoCu none none none AuCoPd fcc none fcc 

AgCoPd fcc none fcc AuCoPt fcc none none 

AgCoPt none none none AuCoRh fcc none none 

AgCoRh none none none AuCoV none none none 

AgCuFe none none none AuCuFe none none none 

AgCuIr none none none AuCuIr fcc none none 

AgCuMn none none none AuCuNi fcc none fcc 

AgCuNi none none none AuCuPd fcc bcc fcc 

AgCuPd none none none AuCuPt fcc fcc fcc 

AgCuPt none none none AuCuRh fcc none none 

AgCuRh none none none AuCuSi none none none 

AgCuSi none none none AuCuTi none none none 

AgCuTi none none none AuCuV none fcc none 

AgCuV none none none AuCuW none none none 

AgCuZr none none none AuFeNi fcc none fcc 

AgFeNi none none none AuFePd fcc fcc fcc 

AgFePd none none none AuHfTi none fcc none 

AgHfZr none fcc bcc AulrNi fcc none fcc 
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Supplementary Table 3, Continued. 

  S.S(ML) S.S. S.S.(*)   S.S(ML) S.S. S.S.(*) 

AglrNi none none none AulrPd fcc none fcc 

AglrPd fcc none none AulrPt fcc none fcc 

AglrPt fcc none none AulrRh fcc none none 

AglrRh fcc none none AuMoNi none none none 

AgNiPd none none none AuMoPd fcc none none 

AgNiPt none none none AuMoRh none none none 

AgNiRh none none none AuNiPd fcc none fcc 

AgPdPt fcc fcc fcc AuNiPt fcc none fcc 

AgPdRh fcc none none AuNiRh fcc none none 

AgPdV none none none AuNiV none none fcc 

AgPtRh fcc none none AuPdPt fcc fcc fcc 

AgPtRu fcc fcc none AuPdRh fcc none none 

AgPtTi none none none AuPdTi none none fcc 

AgPtV none none none AuPdV none fcc none 

AgTiV none none none AuPdW none none none 

AgTiZr none none bcc AuPtRh fcc none none 

AlAuCu none none fcc AuPtRu fcc none none 

AlAuNi none none none AuPtTi none none none 

AlAuSi none none none AuRhV none none none 

AlCoCr none none none AuRhW none none none 

AlCoCu none none none AuTaTi none fcc none 

AlCoNi none none none AuTiV none fcc none 

AlCrCu none none none AuTiZr none fcc fcc 

AlCrMn bcc none bcc CoCrCu none none none 

AlCrV bcc none bcc CoCrlr fcc fcc fcc 

AlCrW none none none CoCrMn none none bcc 

AlCuFe none none none CoCrNb none none none 

AlCuMn none none bcc CoCrNi fcc fcc fcc 

AlCuNi none none none CoCrPd fcc none fcc 

CoCrPt fcc none fcc CrMoTi bcc bcc bcc 

CoCrRh fcc fcc fcc CrMoV bcc bcc bcc 

CoCrW none none none CrMoW bcc bcc bcc 

CoCuIr none none none CrMoZr none none none 

CoCuMn none none none CrNbTa bcc none none 

CoCuNi fcc bcc none CrNbTi bcc none none 

CoCuPd fcc none fcc CrNbV bcc none bcc 

CoCuPt fcc none none CrNbW bcc none bcc 

CoCuRh fcc none none CrNbZr none none none 

CoCuV none none none CrNiPd fcc none fcc 
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Supplementary Table 3, Continued. 

  S.S(ML) S.S. S.S.(*)   S.S(ML) S.S. S.S.(*) 

CoFeMn fcc none fcc CrNiPt fcc fcc fcc 

CoIrMn fcc none fcc CrNiRh fcc fcc fcc 

CoIrMo fcc none fcc CrPdPt fcc none none 

CoIrNi fcc fcc fcc CrPdRh fcc none fcc 

CoIrPd fcc none fcc CrPtRh fcc none fcc 

CoIrPt fcc fcc fcc CrReTa none none bcc 

CoIrRh fcc fcc fcc CrReW bcc bcc bcc 

CoIrV none none fcc CrTaTi bcc bcc none 

CoIrW none none none CrTaV none bcc bcc 

CoMnNi fcc none fcc CrTaW none bcc bcc 

CoMnRh fcc none fcc CrTaZr none none none 

CoMoNi none fcc none CrTcW bcc bcc bcc 

CoMoPt none fcc none CrTiV bcc bcc bcc 

CoMoRh fcc none fcc CrTiW none bcc none 

CoNiPd fcc fcc fcc CrTiZr none none none 

CoNiPt fcc fcc fcc CrVW none bcc bcc 

CoNiRh fcc fcc fcc CrWZr none none none 

CoNiV fcc none fcc CuFeMn none none none 

CoPdPt fcc fcc fcc CuFeNi fcc none fcc 

CoPdRh fcc fcc fcc CuFePd none fcc none 

CoPdV none none none CuFeRh none none none 

CoPdW none none none CuFeV none none none 

CoPtRh fcc fcc fcc CuHfTi none fcc none 

CoPtV none none fcc CuHfZr none fcc none 

CoRhV none none fcc CuIrMn none none none 

CoRhW none none none CuIrNi fcc fcc none 

CrCuFe none none none CuIrPd fcc none none 

CrCuMo none none none CuIrPt fcc none none 

CrCuNi none none none CuIrRh fcc none none 

CrCuPd none none none CuMnNi fcc none fcc 

CrCuPt none none none CuNiPd fcc none fcc 

CrCuRh none none none CuNiPt fcc fcc fcc 

CrCuV none none none CuNiRh fcc fcc fcc 

CrCuW none none none CuNiSi none none none 

CrFelr none fcc fcc CuNiV none none none 

CrFeMn bcc bcc bcc CuPdPt fcc fcc fcc 

CrFeMo none none none CuPdRh fcc none fcc 

CrFeNb none none none CuPdTi none none fcc 

CrFeNi fcc none fcc CuPdV none fcc none 

CrFeRh none none fcc CuPtRh fcc fcc fcc 
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Supplementary Table 3, Continued. 

  S.S(ML) S.S. S.S.(*)   S.S(ML) S.S. S.S.(*) 

CrFeTa none none none CuPtRu fcc none fcc 

CrFeTi none none none CuPtTi none none none 

CrFeV bcc bcc bcc CuPtV none none none 

CrFeW none none none CuRhV none none none 

CrHfNb bcc none bcc CuTaTi none fcc bcc 

CrHfTa none bcc bcc CuTaV none none none 

CrHfTi bcc none bcc CuTiV none none none 

CrHfW none none none CuTiZr none none none 

CrlrMn none none fcc CuVW none none bcc 

CrlrNi fcc fcc fcc FelrMn fcc none fcc 

CrlrPd fcc none fcc FelrMo none none none 

CrlrPt fcc none none FelrNi fcc fcc fcc 

CrlrRh fcc fcc fcc FelrRh fcc fcc fcc 

CrMnMo none none bcc FelrRu fcc none fcc 

CrMnNb bcc none bcc FeMnMo none none none 

CrMnNi none none none FeMnNb none none none 

CrMnRh none none none FeMnNi fcc none fcc 

CrMnTa bcc none bcc FeMnRh fcc none fcc 

CrMnTi none none none FeMnTa none none none 

CrMnV bcc none bcc FeMnTi none none none 

CrMnW none none none FeMnV bcc none bcc 

CrMoNb bcc none bcc FeMoNb none none none 

CrMoRe none bcc bcc FeMoNi none fcc none 

CrMoTa none none bcc FeMoPd fcc none none 

CrMoTc none bcc bcc FeMoRh none none none 

FeMoTa none none none MoNbTa bcc bcc bcc 

FeMoTi none none none MoNbTc bcc none bcc 

FeMoV bcc none bcc MoNbTi bcc bcc bcc 

FeMoW none none none MoNbV bcc bcc bcc 

FeNbTa none none none MoNbW bcc bcc bcc 

FeNbTi none none none MoNbZr bcc none bcc 

FeNbV none none none MoNiPd none none none 

FeNiRh fcc none fcc MoNiPt none fcc none 

FeTaTi none none none MoNiRh none fcc none 

FeTaV none none none MoPdPt fcc fcc fcc 

FeTaW none none none MoPdRh fcc fcc fcc 

FeTiV none none bcc MoReTa bcc none bcc 

FeVW none none none MoReTi bcc bcc bcc 
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Supplementary Table 3, Continued. 

  S.S(ML) S.S. S.S.(*)   S.S(ML) S.S. S.S.(*) 

HfMoNb bcc bcc bcc MoReV bcc bcc bcc 

HfMoRe none none bcc MoReW bcc bcc bcc 

HfMoTa none bcc bcc MoTaTc bcc none bcc 

HfMoTi bcc bcc bcc MoTaTi bcc bcc bcc 

HfMoV bcc bcc bcc MoTaV bcc bcc bcc 

HfMoW none none none MoTaW bcc bcc bcc 

HfMoZr bcc none bcc MoTaZr bcc none none 

HfNbTa bcc bcc bcc MoTcTi bcc none bcc 

HfNbTi bcc bcc bcc MoTcV bcc none bcc 

HfNbV bcc bcc bcc MoTcW bcc bcc bcc 

HfNbW bcc bcc bcc MoTiV bcc bcc bcc 

HfNbZr bcc bcc bcc MoTiW bcc bcc bcc 

HfReTa bcc none bcc MoTiZr bcc bcc bcc 

HfTaTc none bcc bcc MoVW bcc bcc bcc 

HfTaTi bcc bcc bcc MoVZr bcc none bcc 

HfTaV bcc bcc bcc MoWZr none none none 

HfTaW bcc bcc bcc NbPdRh none fcc none 

HfTaZr bcc bcc bcc NbReTa bcc none bcc 

HfTiV bcc bcc bcc NbReTi bcc bcc bcc 

HfTiW none bcc none NbReV bcc bcc bcc 

HfTiZr bcc bcc bcc NbReW bcc bcc bcc 

HfVW bcc bcc bcc NbReZr bcc none bcc 

HfVZr bcc none bcc NbTaTc bcc none bcc 

HfWZr none none none NbTaTi bcc bcc bcc 

IrMnNi fcc none fcc NbTaV bcc bcc bcc 

IrMnRh fcc none fcc NbTaW bcc bcc bcc 

IrMoNi none none none NbTaZr bcc bcc bcc 

IrMoPd fcc none fcc NbTcV bcc none bcc 

IrMoPt fcc fcc none NbTcW bcc none bcc 

IrNbPd none none none NbTiV bcc bcc bcc 

IrNiPd fcc none fcc NbTiW bcc bcc bcc 

IrNiPt fcc fcc fcc NbTiZr bcc bcc bcc 

IrNiRh fcc fcc fcc NbVW bcc bcc bcc 

IrNiRu fcc fcc fcc NbVZr bcc none bcc 

IrNiW none none none NbWZr bcc none none 

IrOsPt fcc fcc fcc NiPdPt fcc fcc fcc 

IrPdPt fcc fcc fcc NiPdRh fcc fcc fcc 

IrPdRh fcc fcc fcc NiPdV none none fcc 

IrPdRu fcc none fcc NiPtRh fcc fcc fcc 

IrPdV fcc none fcc NiPtRu fcc fcc fcc 
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Supplementary Table 3, Continued. 

  S.S(ML) S.S. S.S.(*)   S.S(ML) S.S. S.S.(*) 

IrPdW none none none NiPtV fcc fcc fcc 

IrPtRe fcc fcc fcc NiRhV fcc none fcc 

IrPtRh fcc fcc fcc NiRhW none fcc none 

IrPtRu fcc fcc fcc PdPtRh fcc fcc fcc 

IrPtTc fcc fcc fcc PdPtRu fcc fcc fcc 

IrRhV fcc none fcc PdPtTi none fcc none 

MnMoNb bcc none bcc PdRhV fcc fcc fcc 

MnMoTa none none bcc PdRhW none fcc none 

MnMoTi none none none PdRuW none fcc bcc 

MnMoV bcc none bcc PdTiV none none bcc 

MnMoW none bcc none PtRhRu fcc fcc fcc 

MnNbTa none none bcc PtRhV fcc none none 

MnNbTi bcc none bcc PtRhW none fcc none 

MnNbV bcc none bcc ReTaTi bcc none bcc 

MnNbW none none none ReTaV bcc none bcc 

MnTaTi bcc none bcc ReTaW bcc none bcc 

MnTaV bcc none bcc ReTaZr none none bcc 

MnTaW none none none ReTiW bcc bcc bcc 

MnTiV bcc none bcc ReVW bcc bcc bcc 

MnTiW none none none TaTcTi bcc none bcc 

MnVW bcc none none TaTcV bcc none bcc 

MoNbRe bcc bcc bcc TaTcW bcc none bcc 

TaTiV bcc bcc bcc TcTiW bcc none bcc 

TaTiW bcc bcc bcc TcVW bcc none bcc 

TaTiZr bcc bcc bcc TiVZr none none bcc 

TaVW bcc bcc bcc TiWZr bcc none none 

TaVZr bcc none none VWZr bcc none none 

TaWZr bcc none none     
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Supplementary Table 4 ML-HEA results for quaternary alloys. S.S.(ML)
 class of single solid solution 

phase predicted by the ML-HEA model (“none” = other or not found); S.S. class of single solid solution 

phase found using LTVC model from DFT [28] (“none” = other or not found); S.S.* class of single solid 

solution phase found using CALPHAD (“none” = other or not found). 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

AgAlAuCo none none AgAuNiRu none none AgCrNiRh none none 

AgAlAuCu none fcc AgAuNiSi none none AgCrNiRu none none 

AgAlAuFe none none AgAuPdPt fcc fcc AgCrOsPt none none 

AgAlAuNi none none AgAuPdRe fcc fcc AgCrPdPt fcc none 

AgAlAuSi none none AgAuPdRh fcc none AgCrPdRh fcc none 

AgAlAuZr none none AgAuPdRu fcc fcc AgCrPdRu none none 

AgAlCoCu none none AgAuPtRh fcc fcc AgCrPtRh none none 

AgAlCoNi none none AgAuPtRu fcc fcc AgCrPtRu none fcc 

AgAlCuFe none none AgAuRhRu fcc fcc AgCrRhRu none fcc 

AgAlCuMn none none AgCoCrCu none none AgCuFelr none none 

AgAlCuNi none none AgCoCrNi none none AgCuFeNi none none 

AgAlCuSi none none AgCoCrOs none none AgCuFeOs none fcc 

AgAlCuZr none none AgCoCrPd none none AgCuFePd none fcc 

AgAlFeNi none none AgCoCrPt none none AgCuFeRe none none 

AgAlNiSi none none AgCoCrRh none none AgCuFeRh none none 

AgAuCoCr none none AgCoCrRu none none AgCuFeRu none none 

AgAuCoCu none none AgCoCuFe none none AgCuIrPd none none 

AgAuCoIr none fcc AgCoCuPd none none AgCuIrPt none none 

AgAuCoMo none none AgCoCuPt none none AgCuNbPd none none 

AgAuCoNi none fcc AgCoIrMo none none AgCuNiPd none none 

AgAuCoPd fcc none AgCoIrPd fcc fcc AgCuNiPt none none 

AgAuCoPt none none AgCoIrPt none fcc AgCuNiSi none none 

AgAuCoRe none none AgCoMoNi none none AgCuPdPt fcc fcc 

AgAuCoRh none fcc AgCoMoOs none none AgCuPdRe none none 

AgAuCoRu none none AgCoMoPd none fcc AgCuPdRh none none 

AgAuCrCu none none AgCoMoPt none none AgCuPdRu none none 

AgAuCrNi none fcc AgCoMoRe none none AgCuPtRe none none 

AgAuCuFe none fcc AgCoMoRh none none AgCuPtRh fcc none 

AgAuCuIr fcc none AgCoMoRu none none AgCuPtRu none none 

AgAuCuNi none fcc AgCoNiPd none fcc AgFelrNi none none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

AgAuCuPd fcc fcc AgCoNiPt none none AgFelrRu none none 

AgAuCuPt fcc none AgCoOsPd none none AgFeMoNi none none 

AgAuCuRh none none AgCoOsPt none none AgFeMoOs none fcc 

AgAuCuRu fcc none AgCoPdPt fcc fcc AgFeMoPd none fcc 

AgAuCuSi none none AgCoPdRe none fcc AgFeMoRe none fcc 

AgAuCuZr none none AgCoPdRh fcc fcc AgFeMoRh none none 

AgAuFeMo none none AgCoPdRu none none AgFeMoRu none none 

AgAuFeNi none none AgCoPtRe none fcc AgFeNiOs none none 

AgAuFePd none fcc AgCoPtRh none fcc AgFeNiPd none fcc 

AgAuFeRh none fcc AgCoPtRu none none AgFeNiRe none none 

AgAuIrMo none none AgCrCuFe none none AgFeNiRh none none 

AgAuIrNi none none AgCrCuNi none none AgFeNiRu none none 

AgAuIrPd fcc fcc AgCrCuPd none none AgFeOsPd none none 

AgAuIrPt fcc fcc AgCrCuPt none none AgFeOsRe none fcc 

AgAuIrRh fcc none AgCrCuRh none none AgFeOsRh none none 

AgAuIrRu fcc none AgCrCuRu none none AgFeOsRu none fcc 

AgAuMoNi none none AgCrFeNi none none AgFePdRe none none 

AgAuMoPd fcc fcc AgCrlrNi none none AgFePdRh none fcc 

AgAuMoRh none none AgCrlrPd fcc none AgFePdRu none none 

AgAuNbRh none none AgCrlrRh none none AgFeReRu none fcc 

AgAuNiPd none none AgCrlrRu none fcc AgFeRhRu none none 

AgAuNiPt none none AgCrNiOs none none AglrMoNi none none 

AgAuNiRe none fcc AgCrNiPd none none AglrMoPd none none 

AgAuNiRh none fcc AgCrNiPt none none AglrMoRh fcc none 

AglrNbPt none none AlCrMnV bcc none AuCuPtRu fcc fcc 

AglrNiPd fcc fcc AlCrMnW none none AuFeMoPd none none 

AglrNiPt none fcc AlCrMoRe bcc bcc AuFeNiPd fcc fcc 

AglrOsPd fcc fcc AlCrMoTi bcc bcc AuFeOsPd fcc none 

AglrOsPt fcc none AlCrMoV bcc bcc AuFePdRe none fcc 

AglrPdPt fcc none AlCrMoW bcc bcc AuFePdRh fcc none 

AglrPdRe none none AlCrNbV bcc none AuFePdRu fcc none 

AglrPdRh fcc none AlCrReTi none none AulrMoPd fcc none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

AglrPdRu none fcc AlCrReV none bcc AulrNiPd fcc fcc 

AglrPtRe none fcc AlCrReW bcc bcc AulrNiPt fcc none 

AglrPtRh fcc fcc AlCrTiV bcc none AulrOsPd fcc fcc 

AglrPtRu fcc fcc AlCrTiW bcc bcc AulrOsPt fcc fcc 

AgMoNiOs none none AlCrVW bcc bcc AulrPdPt fcc fcc 

AgMoNiPd none none AlCuFeMn none none AulrPdRe fcc none 

AgMoNiPt none none AlCuFeNi none bcc AulrPdRh fcc fcc 

AgMoNiRe none none AlCuFeV none none AulrPdRu fcc fcc 

AgMoNiRh none none AlFeMnRe none none AulrPtRe fcc none 

AgMoNiRu none fcc AlFeMnTi none none AulrPtRh fcc fcc 

AgMoOsPd none none AlFeMnV bcc none AulrPtRu fcc fcc 

AgMoOsRe none fcc AlFeTiV bcc none AuMoNiPd none fcc 

AgMoOsRh fcc none AlHfTiV bcc bcc AuMoNiPt fcc none 

AgMoPdPt none none AlHfTiW none bcc AuMoOsPd fcc none 

AgMoPdRe none fcc AlHfVW none none AuMoPdPt fcc none 

AgMoPdRh none none AlMnMoRe none none AuMoPdRe none fcc 

AgMoPdRu none none AlMnReW none none AuMoPdRh fcc none 

AgMoPtRe none none AlMnTiV bcc bcc AuMoPdRu fcc fcc 

AgMoPtRh none none AlMnVW none none AuMoPtRe none none 

AgMoPtRu none none AlMoTiV bcc bcc AuMoPtRh fcc fcc 

AgMoReRh none none AlMoVW bcc bcc AuMoPtRu none none 

AgMoRhRu fcc none AlReVW bcc bcc AuNbPdRh none none 

AgNbPdPt none none AlTiVW bcc bcc AuNbPtRh none none 

AgNbPdRh none none AuCoCrPd fcc fcc AuNiOsPd none fcc 

AgNbPtRh none none AuCoCrPt none none AuNiOsPt none none 

AgNiOsPd none fcc AuCoCuPd none none AuNiPdPt fcc none 

AgNiOsPt none none AuCoCuPt none none AuNiPdRe none none 

AgNiPdPt fcc fcc AuCoIrPd fcc fcc AuNiPdRh fcc none 

AgNiPdRe none fcc AuCoIrPt fcc none AuNiPdRu none fcc 

AgNiPdRh fcc fcc AuCoMoPd fcc fcc AuNiPtRe none fcc 

AgNiPdRu none none AuCoMoPt none none AuNiPtRh fcc none 

AgNiPtRe none fcc AuCoNiPd fcc fcc AuNiPtRu none none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

AgNiPtRh none fcc AuCoNiPt fcc none AuOsPdPt fcc fcc 

AgNiPtRu none fcc AuCoOsPd none none AuOsPdRe none fcc 

AgOsPdPt fcc none AuCoOsPt none none AuOsPdRh fcc fcc 

AgOsPdRe none fcc AuCoPdPt fcc none AuOsPtRh fcc fcc 

AgOsPdRh fcc fcc AuCoPdRe none none AuOsPtRu fcc none 

AgOsPdRu none fcc AuCoPdRh fcc none AuPdPtRe fcc fcc 

AgOsPtRe none fcc AuCoPdRu none none AuPdPtRh fcc none 

AgOsPtRh fcc fcc AuCoPtRe none none AuPdPtRu fcc fcc 

AgOsPtRu fcc fcc AuCoPtRh fcc none AuPdReRh fcc fcc 

AgPdPtRe none fcc AuCoPtRu none none AuPdReRu none fcc 

AgPdPtRh fcc none AuCrCuPd fcc none AuPdRhRu fcc fcc 

AgPdPtRu fcc fcc AuCrCuPt none none AuPtReRh fcc none 

AgPdReRh none fcc AuCrlrPd fcc none AuPtReRu fcc fcc 

AgPdReRu none none AuCrlrPt fcc none AuPtRhRu fcc fcc 

AgPdRhRu none fcc AuCrNiPd fcc none CoCrCuNi none none 

AgPtReRh none fcc AuCrNiPt none none CoCrCuPd none none 

AgPtReRu none fcc AuCrOsPt none none CoCrCuPt none none 

AgPtRhRu none fcc AuCrPdPt fcc fcc CoCrFeNi fcc fcc 

AINbTiV bcc bcc AuCrPdRh fcc none CoCrlrPd fcc none 

AINbVW bcc bcc AuCrPdRu none none CoCrlrPt fcc none 

AlCoCrCu none none AuCrPtRh none none CoCrMnMo none none 

AlCrCuFe none none AuCrPtRu none none CoCrMnNb none none 

AlCrFeMn bcc none AuCuFePd none fcc CoCrMnNi fcc fcc 

AlCrFeMo bcc none AuCuIrPd fcc none CoCrMoNb none bcc 

AlCrFeNi none none AuCuIrPt fcc none CoCrMoW none bcc 

AlCrFeRe none none AuCuNiPd fcc none CoCrNbW none bcc 

AlCrFeTi bcc none AuCuNiPt fcc none CoCrNiPd fcc none 

AlCrFeV bcc none AuCuOsPt fcc none CoCrNiPt fcc none 

AlCrFeW none none AuCuPdPt fcc none CoCrOsPd none none 

AlCrHfTi bcc bcc AuCuPdRe none fcc CoCrOsPt none none 

AlCrHfW none none AuCuPdRh fcc none CoCrPdPt fcc none 

AlCrMnMo bcc none AuCuPdRu fcc fcc CoCrPdRh fcc none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

AlCrMnRe none none AuCuPtRe none fcc CoCrPdRu none none 

AlCrMnTi bcc none AuCuPtRh fcc none CoCrPtRh fcc none 

CoCrPtRu none fcc CrCuMnV none none CrHfReTi none none 

CoCuIrPd fcc none CrCuMnW none none CrHfReV none none 

CoCuIrPt fcc none CrCuMoTa none none CrHfReW none none 

CoCuNiPd fcc none CrCuMoTi none none CrHfReZr none none 

CoCuNiPt fcc fcc CrCuMoV none none CrHfTaTi bcc bcc 

CoCuOsPd none none CrCuMoW none none CrHfTaV none bcc 

CoCuOsPt none none CrCuNbTa none none CrHfTaW none bcc 

CoCuPdPt fcc fcc CrCuNbTi none none CrHfTaZr none bcc 

CoCuPdRe none fcc CrCuNbV none none CrHfTiV bcc bcc 

CoCuPdRh fcc none CrCuNbW none none CrHfTiW none bcc 

CoCuPdRu none none CrCuNiPd none none CrHfTiZr bcc bcc 

CoCuPtRe none fcc CrCuNiPt fcc none CrHfVW none none 

CoCuPtRh fcc fcc CrCuOsPd none fcc CrHfVZr bcc none 

CoCuPtRu fcc none CrCuOsPt none fcc CrHfWZr none bcc 

CoFeMnNi fcc fcc CrCuPdPt fcc none CrlrNiPd fcc none 

CoIrMoPd fcc none CrCuPdRh fcc none CrlrNiPt fcc none 

CoIrMoPt fcc none CrCuPdRu none none CrlrOsPd none none 

CoIrNiPd fcc none CrCuPtRh fcc none CrlrOsPt none fcc 

CoIrNiPt fcc none CrCuPtRu none none CrlrPdPt fcc none 

CoIrOsPd none fcc CrCuTaTi none none CrlrPdRh fcc fcc 

CoIrOsPt fcc fcc CrCuTaV none none CrlrPdRu none none 

CoIrPdPt fcc none CrCuTaW none none CrlrPtRh fcc fcc 

CoIrPdRe none fcc CrCuTiV none none CrlrPtRu none fcc 

CoIrPdRh fcc none CrCuTiW none none CrMnMoNb bcc none 

CoIrPdRu none none CrCuVW none none CrMnMoNi none none 

CoIrPtRe fcc fcc CrFeMnMo bcc none CrMnMoRe none bcc 

CoIrPtRh fcc fcc CrFeMnNb none none CrMnMoTa bcc none 

CoIrPtRu fcc none CrFeMnNi fcc none CrMnMoTi none none 

CoMoNbW none bcc CrFeMnRe none bcc CrMnMoV bcc none 

CoMoNiPd fcc none CrFeMnTa none none CrMnMoW none bcc 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

CoMoNiPt fcc none CrFeMnTi none none CrMnMoZr none none 

CoMoOsPd none none CrFeMnV bcc bcc CrMnNbNi none none 

CoMoOsPt none fcc CrFeMnW none bcc CrMnNbRe none none 

CoMoPdPt fcc none CrFeMoNb none none CrMnNbTa bcc none 

CoMoPdRe none fcc CrFeMoNi none bcc CrMnNbTi bcc none 

CoMoPdRh fcc none CrFeMoRe none bcc CrMnNbV bcc none 

CoMoPdRu none none CrFeMoTa none none CrMnNbW none none 

CoMoPtRe none fcc CrFeMoTi bcc none CrMnNbZr none none 

CoMoPtRh fcc fcc CrFeMoV bcc bcc CrMnNiRe none bcc 

CoMoPtRu none fcc CrFeMoW none bcc CrMnNiV none none 

CoNiOsPd none none CrFeNbRe none none CrMnReTa none none 

CoNiOsPt none none CrFeNbTa none none CrMnReTi none none 

CoNiPdPt fcc none CrFeNbTi none none CrMnReV none bcc 

CoNiPdRe none fcc CrFeNbV none none CrMnReW none bcc 

CoNiPdRh fcc none CrFeNbW none bcc CrMnReZr none none 

CoNiPdRu none none CrFeNiPd fcc none CrMnTaTi bcc none 

CoNiPtRe none fcc CrFeNiRe none bcc CrMnTaV bcc none 

CoNiPtRh fcc fcc CrFeNiV none bcc CrMnTaW none none 

CoNiPtRu fcc none CrFeOsPd none fcc CrMnTaZr none none 

CoOsPdPt none none CrFePdRu none fcc CrMnTiV none none 

CoOsPdRe none fcc CrFeReTa none none CrMnTiW none none 

CoOsPdRh none fcc CrFeReTi none none CrMnTiZr none none 

CoOsPdRu none fcc CrFeReV none bcc CrMnVW none bcc 

CoOsPtRe none fcc CrFeReW none bcc CrMnWZr none none 

CoOsPtRh none fcc CrFeTaTi none none CrMoNbNi none none 

CoOsPtRu none fcc CrFeTaV none none CrMoNbRe bcc bcc 

CoPdPtRe none fcc CrFeTaW none none CrMoNbTa none bcc 

CoPdPtRh fcc fcc CrFeTiV none none CrMoNbTi bcc bcc 

CoPdPtRu fcc fcc CrFeTiW none none CrMoNbV none bcc 

CoPdReRh none none CrFeVW none bcc CrMoNbW none none 

CoPdReRu none fcc CrHfMoNb bcc bcc CrMoNbZr none none 

CoPdRhRu none none CrHfMoRe none none CrMoNiRe none bcc 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

CoPtReRh none fcc CrHfMoTa none bcc CrMoReTa none none 

CoPtReRu none fcc CrHfMoTi bcc bcc CrMoReTi bcc bcc 

CoPtRhRu fcc fcc CrHfMoV bcc none CrMoReV bcc bcc 

CrCuFeMn none none CrHfMoW none bcc CrMoReW bcc bcc 

CrCuFeMo none none CrHfMoZr none bcc CrMoReZr none none 

CrCuFeNb none none CrHfNbRe none none CrMoTaTi bcc bcc 

CrCuFeNi none none CrHfNbTa bcc bcc CrMoTaV bcc bcc 

CrCuFePd none none CrHfNbTi bcc bcc CrMoTaW none bcc 

CrCuFeV none none CrHfNbV bcc none CrMoTaZr none none 

CrCuFeW none none CrHfNbW none bcc CrMoTiV bcc bcc 

CrCuIrPd fcc none CrHfNbZr none bcc CrMoTiW bcc bcc 

CrCuIrPt none none CrHfReTa none none CrMoTiZr bcc none 

CrMoVW bcc bcc CuFeVW none none FeMnMoV bcc none 

CrMoVZr none none CuIrNiPd fcc none FeMnMoW none none 

CrMoWZr none none CuIrNiPt fcc none FeMnNbRe none none 

CrNbNiV none none CuIrOsPd none fcc FeMnNbTa none none 

CrNbReTa bcc none CuIrOsPt fcc none FeMnNbTi none none 

CrNbReTi bcc bcc CuIrPdPt fcc none FeMnNbV none none 

CrNbReV bcc none CuIrPdRe none none FeMnNbW none none 

CrNbReW bcc bcc CuIrPdRh fcc none FeMnReTa none none 

CrNbReZr none none CuIrPdRu none none FeMnReTi none bcc 

CrNbTaTi bcc bcc CuIrPtRe fcc none FeMnReV none bcc 

CrNbTaV bcc bcc CuIrPtRh fcc none FeMnReW none bcc 

CrNbTaW none bcc CuIrPtRu fcc none FeMnTaTi none none 

CrNbTaZr none none CuMnMoTa none none FeMnTaV none none 

CrNbTiV bcc bcc CuMnMoV none none FeMnTaW none none 

CrNbTiW bcc bcc CuMnMoW none none FeMnTiV none none 

CrNbTiZr none none CuMnNbTa none none FeMnTiW none none 

CrNbVW bcc bcc CuMnNbV none none FeMnVW none bcc 

CrNbVZr none none CuMnTaV none none FeMoNbRe bcc none 

CrNbWZr none none CuMnTaW none none FeMoNbTa none none 

CrNiOsPd none fcc CuMnTiV none none FeMoNbTi none none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

CrNiOsPt none none CuMnVW none none FeMoNbV bcc bcc 

CrNiPdPt fcc none CuMoNbTa none none FeMoNbW none none 

CrNiPdRh fcc none CuMoNbV none none FeMoNiPd fcc fcc 

CrNiPdRu none none CuMoNbW none none FeMoNiV none none 

CrNiPtRh fcc none CuMoTaTi none none FeMoOsPd none none 

CrNiPtRu none none CuMoTaW none none FeMoPdRe none fcc 

CrNiReV none bcc CuMoTiV none none FeMoPdRh fcc none 

CrOsPdPt none none CuMoVW none none FeMoPdRu none fcc 

CrOsPdRh none none CuNbPdPt none none FeMoReTa none none 

CrOsPdRu none none CuNbPdRh none fcc FeMoReTi none bcc 

CrOsPtRh none fcc CuNbPtRh none none FeMoReV none bcc 

CrOsPtRu fcc none CuNbTaTi none none FeMoReW none bcc 

CrPdPtRh fcc none CuNbTaV none none FeMoTaTi none none 

CrPdPtRu none none CuNbTaW none none FeMoTaV none none 

CrPdRhRu none none CuNbTiV none bcc FeMoTaW none none 

CrPtRhRu none fcc CuNbVW none none FeMoTiV bcc none 

CrReTaTi bcc none CuNiOsPd none fcc FeMoTiW none none 

CrReTaV bcc none CuNiOsPt none fcc FeMoVW none none 

CrReTaW bcc none CuNiPdPt fcc fcc FeNbReTa none none 

CrReTaZr none none CuNiPdRe none fcc FeNbReTi none none 

CrReTiV none bcc CuNiPdRh fcc none FeNbReV bcc none 

CrReTiW bcc none CuNiPdRu none none FeNbReW none none 

CrReTiZr none none CuNiPtRe none fcc FeNbTaTi none none 

CrReVW bcc bcc CuNiPtRh fcc fcc FeNbTaV none bcc 

CrReVZr none none CuNiPtRu fcc fcc FeNbTaW none none 

CrReWZr none none CuOsPdPt fcc fcc FeNbTiV none none 

CrTaTiV bcc bcc CuOsPdRe none none FeNbTiW none none 

CrTaTiW bcc bcc CuOsPdRh fcc none FeNbVW none bcc 

CrTaTiZr none none CuOsPdRu none none FeNiOsPd none none 

CrTaVW none bcc CuOsPtRe none fcc FeNiPdRe none fcc 

CrTaVZr none none CuOsPtRh fcc fcc FeNiPdRh fcc none 

CrTaWZr none none CuOsPtRu fcc fcc FeNiPdRu none none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

CrTiVW bcc bcc CuPdPtRe none fcc FeOsPdRe none fcc 

CrTiVZr none none CuPdPtRh fcc none FeOsPdRh none fcc 

CrTiWZr none none CuPdPtRu fcc fcc FeOsPdRu none fcc 

CrVWZr none none CuPdReRh none fcc FePdReRh none none 

CuFelrPd fcc none CuPdReRu none none FePdReRu none fcc 

CuFeMnNb none none CuPdRhRu none fcc FePdRhRu none none 

CuFeMnTa none none CuPtReRh none fcc FeReTaTi none none 

CuFeMnTi none none CuPtReRu none fcc FeReTaV none none 

CuFeMnV none none CuPtRhRu fcc fcc FeReTiV none none 

CuFeMoTi none none CuTaTiV bcc none FeReVW none bcc 

CuFeMoV none none CuTaTiW none none FeTaTiV none none 

CuFeNbTa none none CuTaVW none none FeTaTiW none none 

CuFeNbTi none none CuTiVW none none FeTaVW none none 

CuFeNbV none none FelrMoPd fcc none FeTiVW none none 

CuFeNiPd fcc none FelrNiPd fcc fcc HfMoNbRe bcc none 

CuFeNiV none none FelrOsPd none fcc HfMoNbTa bcc bcc 

CuFeOsPd none fcc FelrPdRe none none HfMoNbTi bcc bcc 

CuFePdRe none fcc FelrPdRu none fcc HfMoNbV bcc bcc 

CuFePdRh fcc none FeMnMoNb none none HfMoNbW bcc bcc 

CuFePdRu none none FeMnMoRe none bcc HfMoNbZr bcc bcc 

CuFeTaV none none FeMnMoTa none none HfMoReTa none none 

CuFeTiV none none FeMnMoTi none none HfMoReTi bcc bcc 

HfMoReV bcc none IrOsPdRe none none MnTiVW bcc none 

HfMoReW none none IrOsPdRh fcc none MnTiVZr none none 

HfMoReZr none none IrOsPdRu none none MnTiWZr none none 

HfMoTaTi bcc bcc IrOsPtRe none fcc MnVWZr none none 

HfMoTaV none bcc IrOsPtRh fcc fcc MoNbNiV none bcc 

HfMoTaW bcc bcc IrOsPtRu fcc fcc MoNbReTa bcc none 

HfMoTaZr bcc bcc IrPdPtRe fcc fcc MoNbReTi bcc bcc 

HfMoTiV bcc bcc IrPdPtRh fcc fcc MoNbReV bcc bcc 

HfMoTiW bcc bcc IrPdPtRu fcc none MoNbReW bcc bcc 

HfMoTiZr bcc bcc IrPdReRh fcc none MoNbReZr bcc none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

HfMoVW none bcc IrPdReRu none none MoNbTaTi bcc bcc 

HfMoVZr none bcc IrPdRhRu fcc none MoNbTaV bcc bcc 

HfMoWZr none bcc IrPtReRh fcc fcc MoNbTaW bcc bcc 

HfNbReTa bcc bcc IrPtReRu fcc fcc MoNbTaZr bcc none 

HfNbReTi bcc bcc IrPtRhRu fcc fcc MoNbTiV bcc bcc 

HfNbReV bcc bcc MnMoNbRe none bcc MoNbTiW bcc bcc 

HfNbReW bcc bcc MnMoNbTa bcc none MoNbTiZr bcc bcc 

HfNbReZr none bcc MnMoNbTi bcc none MoNbVW bcc bcc 

HfNbTaTi bcc bcc MnMoNbV bcc none MoNbVZr bcc bcc 

HfNbTaV bcc bcc MnMoNbW none bcc MoNbWZr none bcc 

HfNbTaW bcc bcc MnMoNbZr none none MoNiOsPd none fcc 

HfNbTaZr bcc bcc MnMoNiV none none MoNiOsPt none fcc 

HfNbTiV bcc bcc MnMoReTa none none MoNiPdPt fcc fcc 

HfNbTiW bcc bcc MnMoReTi none none MoNiPdRe none fcc 

HfNbTiZr bcc bcc MnMoReV bcc bcc MoNiPdRh fcc none 

HfNbVW none bcc MnMoReW none bcc MoNiPdRu none none 

HfNbVZr bcc bcc MnMoReZr none none MoNiPtRe none fcc 

HfNbWZr bcc bcc MnMoTaTi bcc none MoNiPtRh fcc fcc 

HfReTaTi bcc bcc MnMoTaV bcc none MoNiPtRu none fcc 

HfReTaV bcc bcc MnMoTaW none none MoNiReV none bcc 

HfReTaW none none MnMoTaZr none none MoOsPdPt none fcc 

HfReTaZr none none MnMoTiV bcc none MoOsPdRe none fcc 

HfReTiV none bcc MnMoTiW none none MoOsPdRh none fcc 

HfReTiW none bcc MnMoTiZr none none MoOsPdRu none fcc 

HfReTiZr none bcc MnMoVW bcc bcc MoOsPtRe none fcc 

HfReVW bcc bcc MnMoVZr none none MoOsPtRh fcc fcc 

HfReVZr none none MnMoWZr none none MoOsPtRu none fcc 

HfReWZr none bcc MnNbNiV none none MoPdPtRe none fcc 

HfTaTiV bcc bcc MnNbReTa none none MoPdPtRh fcc fcc 

HfTaTiW bcc bcc MnNbReTi bcc none MoPdPtRu none fcc 

HfTaTiZr bcc bcc MnNbReV bcc none MoPdReRh none fcc 

HfTaVW bcc bcc MnNbReW bcc bcc MoPdReRu none fcc 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

HfTaVZr bcc bcc MnNbReZr bcc none MoPdRhRu none fcc 

HfTaWZr bcc bcc MnNbTaTi bcc none MoPtReRh none fcc 

HfTiVW bcc bcc MnNbTaV bcc none MoPtReRu none fcc 

HfTiVZr bcc none MnNbTaW none none MoPtRhRu fcc fcc 

HfTiWZr none bcc MnNbTaZr none none MoReTaTi bcc none 

HfVWZr none none MnNbTiV bcc none MoReTaV bcc none 

IrMoNiPd fcc none MnNbTiW none none MoReTaW bcc bcc 

IrMoNiPt fcc fcc MnNbTiZr none none MoReTaZr none none 

IrMoOsPd none fcc MnNbVW bcc none MoReTiV bcc bcc 

IrMoOsPt none fcc MnNbVZr none none MoReTiW bcc bcc 

IrMoPdPt fcc fcc MnNbWZr none none MoReTiZr bcc bcc 

IrMoPdRe none none MnNiOsPd none none MoReVW bcc bcc 

IrMoPdRh fcc none MnNiPdRe none none MoReVZr none none 

IrMoPdRu none none MnNiPdRu none fcc MoReWZr bcc bcc 

IrMoPtRe none fcc MnOsPdRe none none MoTaTiV bcc bcc 

IrMoPtRh fcc fcc MnOsPdRu none fcc MoTaTiW bcc bcc 

IrMoPtRu fcc fcc MnPdReRu none none MoTaTiZr bcc bcc 

IrNbPdPt none none MnReTaTi bcc none MoTaVW bcc bcc 

IrNbPdRh fcc fcc MnReTaV bcc none MoTaVZr none none 

IrNbPdRu none none MnReTaW none none MoTaWZr none bcc 

IrNbPtRh none none MnReTaZr none none MoTiVW bcc bcc 

IrNbPtRu fcc none MnReTiV none none MoTiVZr bcc bcc 

IrNiOsPd none fcc MnReTiW none none MoTiWZr bcc bcc 

IrNiOsPt fcc fcc MnReTiZr none none MoVWZr bcc none 

IrNiPdPt fcc none MnReVW none bcc NbPdPtRh none fcc 

IrNiPdRe none fcc MnReVZr none none NbPdRhRu none none 

IrNiPdRh fcc fcc MnReWZr none none NbPtRhRu none none 

IrNiPdRu fcc fcc MnTaTiV bcc none NbReTaTi bcc bcc 

IrNiPtRe fcc fcc MnTaTiW none none NbReTaV bcc bcc 

IrNiPtRh fcc fcc MnTaVW none none NbReTaW bcc bcc 

IrNiPtRu fcc fcc MnTaVZr none none NbReTaZr bcc bcc 

IrOsPdPt fcc none MnTaWZr none none NbReTiV bcc bcc 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

NbReTiW bcc bcc NiOsPtRh none fcc PdPtReRh fcc fcc 

NbReTiZr bcc bcc NiOsPtRu none fcc PdPtReRu fcc fcc 

NbReVW bcc bcc NiPdPtRe none fcc PdPtRhRu fcc fcc 

NbReVZr none bcc NiPdPtRh fcc fcc PdReRhRu none none 

NbReWZr bcc bcc NiPdPtRu fcc fcc PtReRhRu fcc fcc 

NbTaTiV bcc bcc NiPdReRh none fcc ReTaTiV bcc bcc 

NbTaTiW bcc bcc NiPdReRu none fcc ReTaTiW bcc bcc 

NbTaTiZr bcc bcc NiPdRhRu none fcc ReTaTiZr none bcc 

NbTaVW bcc bcc NiPtReRh none fcc ReTaVW bcc bcc 

NbTaVZr bcc bcc NiPtReRu none fcc ReTaVZr none bcc 

NbTaWZr bcc bcc NiPtRhRu fcc fcc ReTaWZr bcc none 

NbTiVW bcc bcc OsPdPtRe fcc fcc ReTiVW bcc bcc 

NbTiVZr bcc bcc OsPdPtRh fcc fcc ReTiVZr none none 

NbTiWZr bcc bcc OsPdPtRu none fcc ReTiWZr bcc bcc 

NbVWZr bcc none OsPdReRh fcc fcc ReVWZr none bcc 

NiOsPdPt none none OsPdReRu none fcc TaTiVW bcc bcc 

NiOsPdRe none fcc OsPdRhRu none none TaTiVZr bcc bcc 

NiOsPdRh none fcc OsPtReRh fcc fcc TaTiWZr bcc bcc 

NiOsPdRu none fcc OsPtReRu fcc fcc TaVWZr bcc none 

NiOsPtRe none fcc OsPtRhRu fcc fcc TiVWZr bcc none 

AgAlAuCo none none AgAuNiRu none none AgCrNiRh none none 

AgAlAuCu none fcc AgAuNiSi none none AgCrNiRu none none 

AgAlAuFe none none AgAuPdPt fcc fcc AgCrOsPt none none 

AgAlAuNi none none AgAuPdRe fcc fcc AgCrPdPt fcc none 

AgAlAuSi none none AgAuPdRh fcc none AgCrPdRh fcc none 

AgAlAuZr none none AgAuPdRu fcc fcc AgCrPdRu none none 

AgAlCoCu none none AgAuPtRh fcc fcc AgCrPtRh none none 

AgAlCoNi none none AgAuPtRu fcc fcc AgCrPtRu none fcc 

AgAlCuFe none none AgAuRhRu fcc fcc AgCrRhRu none fcc 

AgAlCuMn none none AgCoCrCu none none AgCuFelr none none 

AgAlCuNi none none AgCoCrNi none none AgCuFeNi none none 

AgAlCuSi none none AgCoCrOs none none AgCuFeOs none fcc 

AgAlCuZr none none AgCoCrPd none none AgCuFePd none fcc 

AgAlFeNi none none AgCoCrPt none none AgCuFeRe none none 

AgAlNiSi none none AgCoCrRh none none AgCuFeRh none none 
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Supplementary Table 4, Continued 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

AgAuCoCr none none AgCoCrRu none none AgCuFeRu none none 

AgAuCoCu none none AgCoCuFe none none AgCuIrPd none none 

AgAuCoIr none fcc AgCoCuPd none none AgCuIrPt none none 

AgAuCoMo none none AgCoCuPt none none AgCuNbPd none none 

AgAuCoNi none fcc AgCoIrMo none none AgCuNiPd none none 

AgAuCoPd fcc none AgCoIrPd fcc fcc AgCuNiPt none none 

AgAuCoPt none none AgCoIrPt none fcc AgCuNiSi none none 

AgAuCoRe none none AgCoMoNi none none AgCuPdPt fcc fcc 

AgAuCoRh none fcc AgCoMoOs none none AgCuPdRe none none 

AgAuCoRu none none AgCoMoPd none fcc AgCuPdRh none none 

AgAuCrCu none none AgCoMoPt none none AgCuPdRu none none 

AgAuCrNi none fcc AgCoMoRe none none AgCuPtRe none none 

AgAuCuFe none fcc AgCoMoRh none none AgCuPtRh fcc none 

AgAuCuIr fcc none AgCoMoRu none none AgCuPtRu none none 

AgAuCuNi none fcc AgCoNiPd none fcc AgFelrNi none none 

AgAuCuPd fcc fcc AgCoNiPt none none AgFelrRu none none 

AgAuCuPt fcc none AgCoOsPd none none AgFeMoNi none none 

AgAuCuRh none none AgCoOsPt none none AgFeMoOs none fcc 

AgAuCuRu fcc none AgCoPdPt fcc fcc AgFeMoPd none fcc 

AgAuCuSi none none AgCoPdRe none fcc AgFeMoRe none fcc 

AgAuCuZr none none AgCoPdRh fcc fcc AgFeMoRh none none 

AgAuFeMo none none AgCoPdRu none none AgFeMoRu none none 

AgAuFeNi none none AgCoPtRe none fcc AgFeNiOs none none 

AgAuFePd none fcc AgCoPtRh none fcc AgFeNiPd none fcc 

AgAuFeRh none fcc AgCoPtRu none none AgFeNiRe none none 

AgAuIrMo none none AgCrCuFe none none AgFeNiRh none none 

AgAuIrNi none none AgCrCuNi none none AgFeNiRu none none 

AgAuIrPd fcc fcc AgCrCuPd none none AgFeOsPd none none 

AgAuIrPt fcc fcc AgCrCuPt none none AgFeOsRe none fcc 

AgAuIrRh fcc none AgCrCuRh none none AgFeOsRh none none 

AgAuIrRu fcc none AgCrCuRu none none AgFeOsRu none fcc 

AgAuMoNi none none AgCrFeNi none none AgFePdRe none none 

AgAuMoPd fcc fcc AgCrlrNi none none AgFePdRh none fcc 

AgAuMoRh none none AgCrlrPd fcc none AgFePdRu none none 

AgAuNbRh none none AgCrlrRh none none AgFeReRu none fcc 

AgAuNiPd none none AgCrlrRu none fcc AgFeRhRu none none 

AgAuNiPt none none AgCrNiOs none none AglrMoNi none none 

AgAuNiRe none fcc AgCrNiPd none none AglrMoPd none none 

AgAuNiRh none fcc AgCrNiPt none none AglrMoRh fcc none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

AglrNbPt none none AlCrMnV bcc none AuCuPtRu fcc fcc 

AglrNiPd fcc fcc AlCrMnW none none AuFeMoPd none none 

AglrNiPt none fcc AlCrMoRe bcc bcc AuFeNiPd fcc fcc 

AglrOsPd fcc fcc AlCrMoTi bcc bcc AuFeOsPd fcc none 

AglrOsPt fcc none AlCrMoV bcc bcc AuFePdRe none fcc 

AglrPdPt fcc none AlCrMoW bcc bcc AuFePdRh fcc none 

AglrPdRe none none AlCrNbV bcc none AuFePdRu fcc none 

AglrPdRh fcc none AlCrReTi none none AulrMoPd fcc none 

AglrPdRu none fcc AlCrReV none bcc AulrNiPd fcc fcc 

AglrPtRe none fcc AlCrReW bcc bcc AulrNiPt fcc none 

AglrPtRh fcc fcc AlCrTiV bcc none AulrOsPd fcc fcc 

AglrPtRu fcc fcc AlCrTiW bcc bcc AulrOsPt fcc fcc 

AgMoNiOs none none AlCrVW bcc bcc AulrPdPt fcc fcc 

AgMoNiPd none none AlCuFeMn none none AulrPdRe fcc none 

AgMoNiPt none none AlCuFeNi none bcc AulrPdRh fcc fcc 

AgMoNiRe none none AlCuFeV none none AulrPdRu fcc fcc 

AgMoNiRh none none AlFeMnRe none none AulrPtRe fcc none 

AgMoNiRu none fcc AlFeMnTi none none AulrPtRh fcc fcc 

AgMoOsPd none none AlFeMnV bcc none AulrPtRu fcc fcc 

AgMoOsRe none fcc AlFeTiV bcc none AuMoNiPd none fcc 

AgMoOsRh fcc none AlHfTiV bcc bcc AuMoNiPt fcc none 

AgMoPdPt none none AlHfTiW none bcc AuMoOsPd fcc none 

AgMoPdRe none fcc AlHfVW none none AuMoPdPt fcc none 

AgMoPdRh none none AlMnMoRe none none AuMoPdRe none fcc 

AgMoPdRu none none AlMnReW none none AuMoPdRh fcc none 

AgMoPtRe none none AlMnTiV bcc bcc AuMoPdRu fcc fcc 

AgMoPtRh none none AlMnVW none none AuMoPtRe none none 

AgMoPtRu none none AlMoTiV bcc bcc AuMoPtRh fcc fcc 

AgMoReRh none none AlMoVW bcc bcc AuMoPtRu none none 

AgMoRhRu fcc none AlReVW bcc bcc AuNbPdRh none none 

AgNbPdPt none none AlTiVW bcc bcc AuNbPtRh none none 

AgNbPdRh none none AuCoCrPd fcc fcc AuNiOsPd none fcc 

AgNbPtRh none none AuCoCrPt none none AuNiOsPt none none 

AgNiOsPd none fcc AuCoCuPd none none AuNiPdPt fcc none 

AgNiOsPt none none AuCoCuPt none none AuNiPdRe none none 

AgNiPdPt fcc fcc AuCoIrPd fcc fcc AuNiPdRh fcc none 

AgNiPdRe none fcc AuCoIrPt fcc none AuNiPdRu none fcc 

AgNiPdRh fcc fcc AuCoMoPd fcc fcc AuNiPtRe none fcc 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

AgNiPdRu none none AuCoMoPt none none AuNiPtRh fcc none 

AgNiPtRe none fcc AuCoNiPd fcc fcc AuNiPtRu none none 

AgNiPtRh none fcc AuCoNiPt fcc none AuOsPdPt fcc fcc 

AgNiPtRu none fcc AuCoOsPd none none AuOsPdRe none fcc 

AgOsPdPt fcc none AuCoOsPt none none AuOsPdRh fcc fcc 

AgOsPdRe none fcc AuCoPdPt fcc none AuOsPtRh fcc fcc 

AgOsPdRh fcc fcc AuCoPdRe none none AuOsPtRu fcc none 

AgOsPdRu none fcc AuCoPdRh fcc none AuPdPtRe fcc fcc 

AgOsPtRe none fcc AuCoPdRu none none AuPdPtRh fcc none 

AgOsPtRh fcc fcc AuCoPtRe none none AuPdPtRu fcc fcc 

AgOsPtRu fcc fcc AuCoPtRh fcc none AuPdReRh fcc fcc 

AgPdPtRe none fcc AuCoPtRu none none AuPdReRu none fcc 

AgPdPtRh fcc none AuCrCuPd fcc none AuPdRhRu fcc fcc 

AgPdPtRu fcc fcc AuCrCuPt none none AuPtReRh fcc none 

AgPdReRh none fcc AuCrlrPd fcc none AuPtReRu fcc fcc 

AgPdReRu none none AuCrlrPt fcc none AuPtRhRu fcc fcc 

AgPdRhRu none fcc AuCrNiPd fcc none CoCrCuNi none none 

AgPtReRh none fcc AuCrNiPt none none CoCrCuPd none none 

AgPtReRu none fcc AuCrOsPt none none CoCrCuPt none none 

AgPtRhRu none fcc AuCrPdPt fcc fcc CoCrFeNi fcc fcc 

AINbTiV bcc bcc AuCrPdRh fcc none CoCrlrPd fcc none 

AINbVW bcc bcc AuCrPdRu none none CoCrlrPt fcc none 

AlCoCrCu none none AuCrPtRh none none CoCrMnMo none none 

AlCrCuFe none none AuCrPtRu none none CoCrMnNb none none 

AlCrFeMn bcc none AuCuFePd none fcc CoCrMnNi fcc fcc 

AlCrFeMo bcc none AuCuIrPd fcc none CoCrMoNb none bcc 

AlCrFeNi none none AuCuIrPt fcc none CoCrMoW none bcc 

AlCrFeRe none none AuCuNiPd fcc none CoCrNbW none bcc 

AlCrFeTi bcc none AuCuNiPt fcc none CoCrNiPd fcc none 

AlCrFeV bcc none AuCuOsPt fcc none CoCrNiPt fcc none 

AlCrFeW none none AuCuPdPt fcc none CoCrOsPd none none 

AlCrHfTi bcc bcc AuCuPdRe none fcc CoCrOsPt none none 

AlCrHfW none none AuCuPdRh fcc none CoCrPdPt fcc none 

AlCrMnMo bcc none AuCuPdRu fcc fcc CoCrPdRh fcc none 

AlCrMnRe none none AuCuPtRe none fcc CoCrPdRu none none 

AlCrMnTi bcc none AuCuPtRh fcc none CoCrPtRh fcc none 

CoCrPtRu none fcc CrCuMnV none none CrHfReTi none none 

CoCuIrPd fcc none CrCuMnW none none CrHfReV none none 

CoCuIrPt fcc none CrCuMoTa none none CrHfReW none none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

CoCuNiPd fcc none CrCuMoTi none none CrHfReZr none none 

CoCuNiPt fcc fcc CrCuMoV none none CrHfTaTi bcc bcc 

CoCuOsPd none none CrCuMoW none none CrHfTaV none bcc 

CoCuOsPt none none CrCuNbTa none none CrHfTaW none bcc 

CoCuPdPt fcc fcc CrCuNbTi none none CrHfTaZr none bcc 

CoCuPdRe none fcc CrCuNbV none none CrHfTiV bcc bcc 

CoCuPdRh fcc none CrCuNbW none none CrHfTiW none bcc 

CoCuPdRu none none CrCuNiPd none none CrHfTiZr bcc bcc 

CoCuPtRe none fcc CrCuNiPt fcc none CrHfVW none none 

CoCuPtRh fcc fcc CrCuOsPd none fcc CrHfVZr bcc none 

CoCuPtRu fcc none CrCuOsPt none fcc CrHfWZr none bcc 

CoFeMnNi fcc fcc CrCuPdPt fcc none CrlrNiPd fcc none 

CoIrMoPd fcc none CrCuPdRh fcc none CrlrNiPt fcc none 

CoIrMoPt fcc none CrCuPdRu none none CrlrOsPd none none 

CoIrNiPd fcc none CrCuPtRh fcc none CrlrOsPt none fcc 

CoIrNiPt fcc none CrCuPtRu none none CrlrPdPt fcc none 

CoIrOsPd none fcc CrCuTaTi none none CrlrPdRh fcc fcc 

CoIrOsPt fcc fcc CrCuTaV none none CrlrPdRu none none 

CoIrPdPt fcc none CrCuTaW none none CrlrPtRh fcc fcc 

CoIrPdRe none fcc CrCuTiV none none CrlrPtRu none fcc 

CoIrPdRh fcc none CrCuTiW none none CrMnMoNb bcc none 

CoIrPdRu none none CrCuVW none none CrMnMoNi none none 

CoIrPtRe fcc fcc CrFeMnMo bcc none CrMnMoRe none bcc 

CoIrPtRh fcc fcc CrFeMnNb none none CrMnMoTa bcc none 

CoIrPtRu fcc none CrFeMnNi fcc none CrMnMoTi none none 

CoMoNbW none bcc CrFeMnRe none bcc CrMnMoV bcc none 

CoMoNiPd fcc none CrFeMnTa none none CrMnMoW none bcc 

CoMoNiPt fcc none CrFeMnTi none none CrMnMoZr none none 

CoMoOsPd none none CrFeMnV bcc bcc CrMnNbNi none none 

CoMoOsPt none fcc CrFeMnW none bcc CrMnNbRe none none 

CoMoPdPt fcc none CrFeMoNb none none CrMnNbTa bcc none 

CoMoPdRe none fcc CrFeMoNi none bcc CrMnNbTi bcc none 

CoMoPdRh fcc none CrFeMoRe none bcc CrMnNbV bcc none 

CoMoPdRu none none CrFeMoTa none none CrMnNbW none none 

CoMoPtRe none fcc CrFeMoTi bcc none CrMnNbZr none none 

CoMoPtRh fcc fcc CrFeMoV bcc bcc CrMnNiRe none bcc 

CoMoPtRu none fcc CrFeMoW none bcc CrMnNiV none none 

CoNiOsPd none none CrFeNbRe none none CrMnReTa none none 

CoNiOsPt none none CrFeNbTa none none CrMnReTi none none 



 

273 

Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

CoNiPdPt fcc none CrFeNbTi none none CrMnReV none bcc 

CoNiPdRe none fcc CrFeNbV none none CrMnReW none bcc 

CoNiPdRh fcc none CrFeNbW none bcc CrMnReZr none none 

CoNiPdRu none none CrFeNiPd fcc none CrMnTaTi bcc none 

CoNiPtRe none fcc CrFeNiRe none bcc CrMnTaV bcc none 

CoNiPtRh fcc fcc CrFeNiV none bcc CrMnTaW none none 

CoNiPtRu fcc none CrFeOsPd none fcc CrMnTaZr none none 

CoOsPdPt none none CrFePdRu none fcc CrMnTiV none none 

CoOsPdRe none fcc CrFeReTa none none CrMnTiW none none 

CoOsPdRh none fcc CrFeReTi none none CrMnTiZr none none 

CoOsPdRu none fcc CrFeReV none bcc CrMnVW none bcc 

CoOsPtRe none fcc CrFeReW none bcc CrMnWZr none none 

CoOsPtRh none fcc CrFeTaTi none none CrMoNbNi none none 

CoOsPtRu none fcc CrFeTaV none none CrMoNbRe bcc bcc 

CoPdPtRe none fcc CrFeTaW none none CrMoNbTa none bcc 

CoPdPtRh fcc fcc CrFeTiV none none CrMoNbTi bcc bcc 

CoPdPtRu fcc fcc CrFeTiW none none CrMoNbV none bcc 

CoPdReRh none none CrFeVW none bcc CrMoNbW none none 

CoPdReRu none fcc CrHfMoNb bcc bcc CrMoNbZr none none 

CoPdRhRu none none CrHfMoRe none none CrMoNiRe none bcc 

CoPtReRh none fcc CrHfMoTa none bcc CrMoReTa none none 

CoPtReRu none fcc CrHfMoTi bcc bcc CrMoReTi bcc bcc 

CoPtRhRu fcc fcc CrHfMoV bcc none CrMoReV bcc bcc 

CrCuFeMn none none CrHfMoW none bcc CrMoReW bcc bcc 

CrCuFeMo none none CrHfMoZr none bcc CrMoReZr none none 

CrCuFeNb none none CrHfNbRe none none CrMoTaTi bcc bcc 

CrCuFeNi none none CrHfNbTa bcc bcc CrMoTaV bcc bcc 

CrCuFePd none none CrHfNbTi bcc bcc CrMoTaW none bcc 

CrCuFeV none none CrHfNbV bcc none CrMoTaZr none none 

CrCuFeW none none CrHfNbW none bcc CrMoTiV bcc bcc 

CrCuIrPd fcc none CrHfNbZr none bcc CrMoTiW bcc bcc 

CrCuIrPt none none CrHfReTa none none CrMoTiZr bcc none 

CrMoVW bcc bcc CuFeVW none none FeMnMoV bcc none 

CrMoVZr none none CuIrNiPd fcc none FeMnMoW none none 

CrMoWZr none none CuIrNiPt fcc none FeMnNbRe none none 

CrNbNiV none none CuIrOsPd none fcc FeMnNbTa none none 

CrNbReTa bcc none CuIrOsPt fcc none FeMnNbTi none none 

CrNbReTi bcc bcc CuIrPdPt fcc none FeMnNbV none none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

CrNbReV bcc none CuIrPdRe none none FeMnNbW none none 

CrNbReW bcc bcc CuIrPdRh fcc none FeMnReTa none none 

CrNbReZr none none CuIrPdRu none none FeMnReTi none bcc 

CrNbTaTi bcc bcc CuIrPtRe fcc none FeMnReV none bcc 

CrNbTaV bcc bcc CuIrPtRh fcc none FeMnReW none bcc 

CrNbTaW none bcc CuIrPtRu fcc none FeMnTaTi none none 

CrNbTaZr none none CuMnMoTa none none FeMnTaV none none 

CrNbTiV bcc bcc CuMnMoV none none FeMnTaW none none 

CrNbTiW bcc bcc CuMnMoW none none FeMnTiV none none 

CrNbTiZr none none CuMnNbTa none none FeMnTiW none none 

CrNbVW bcc bcc CuMnNbV none none FeMnVW none bcc 

CrNbVZr none none CuMnTaV none none FeMoNbRe bcc none 

CrNbWZr none none CuMnTaW none none FeMoNbTa none none 

CrNiOsPd none fcc CuMnTiV none none FeMoNbTi none none 

CrNiOsPt none none CuMnVW none none FeMoNbV bcc bcc 

CrNiPdPt fcc none CuMoNbTa none none FeMoNbW none none 

CrNiPdRh fcc none CuMoNbV none none FeMoNiPd fcc fcc 

CrNiPdRu none none CuMoNbW none none FeMoNiV none none 

CrNiPtRh fcc none CuMoTaTi none none FeMoOsPd none none 

CrNiPtRu none none CuMoTaW none none FeMoPdRe none fcc 

CrNiReV none bcc CuMoTiV none none FeMoPdRh fcc none 

CrOsPdPt none none CuMoVW none none FeMoPdRu none fcc 

CrOsPdRh none none CuNbPdPt none none FeMoReTa none none 

CrOsPdRu none none CuNbPdRh none fcc FeMoReTi none bcc 

CrOsPtRh none fcc CuNbPtRh none none FeMoReV none bcc 

CrOsPtRu fcc none CuNbTaTi none none FeMoReW none bcc 

CrPdPtRh fcc none CuNbTaV none none FeMoTaTi none none 

CrPdPtRu none none CuNbTaW none none FeMoTaV none none 

CrPdRhRu none none CuNbTiV none bcc FeMoTaW none none 

CrPtRhRu none fcc CuNbVW none none FeMoTiV bcc none 

CrReTaTi bcc none CuNiOsPd none fcc FeMoTiW none none 

CrReTaV bcc none CuNiOsPt none fcc FeMoVW none none 

CrReTaW bcc none CuNiPdPt fcc fcc FeNbReTa none none 

CrReTaZr none none CuNiPdRe none fcc FeNbReTi none none 

CrReTiV none bcc CuNiPdRh fcc none FeNbReV bcc none 

CrReTiW bcc none CuNiPdRu none none FeNbReW none none 

CrReTiZr none none CuNiPtRe none fcc FeNbTaTi none none 

CrReVW bcc bcc CuNiPtRh fcc fcc FeNbTaV none bcc 

CrReVZr none none CuNiPtRu fcc fcc FeNbTaW none none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

CrReWZr none none CuOsPdPt fcc fcc FeNbTiV none none 

CrTaTiV bcc bcc CuOsPdRe none none FeNbTiW none none 

CrTaTiW bcc bcc CuOsPdRh fcc none FeNbVW none bcc 

CrTaTiZr none none CuOsPdRu none none FeNiOsPd none none 

CrTaVW none bcc CuOsPtRe none fcc FeNiPdRe none fcc 

CrTaVZr none none CuOsPtRh fcc fcc FeNiPdRh fcc none 

CrTaWZr none none CuOsPtRu fcc fcc FeNiPdRu none none 

CrTiVW bcc bcc CuPdPtRe none fcc FeOsPdRe none fcc 

CrTiVZr none none CuPdPtRh fcc none FeOsPdRh none fcc 

CrTiWZr none none CuPdPtRu fcc fcc FeOsPdRu none fcc 

CrVWZr none none CuPdReRh none fcc FePdReRh none none 

CuFelrPd fcc none CuPdReRu none none FePdReRu none fcc 

CuFeMnNb none none CuPdRhRu none fcc FePdRhRu none none 

CuFeMnTa none none CuPtReRh none fcc FeReTaTi none none 

CuFeMnTi none none CuPtReRu none fcc FeReTaV none none 

CuFeMnV none none CuPtRhRu fcc fcc FeReTiV none none 

CuFeMoTi none none CuTaTiV bcc none FeReVW none bcc 

CuFeMoV none none CuTaTiW none none FeTaTiV none none 

CuFeNbTa none none CuTaVW none none FeTaTiW none none 

CuFeNbTi none none CuTiVW none none FeTaVW none none 

CuFeNbV none none FelrMoPd fcc none FeTiVW none none 

CuFeNiPd fcc none FelrNiPd fcc fcc HfMoNbRe bcc none 

CuFeNiV none none FelrOsPd none fcc HfMoNbTa bcc bcc 

CuFeOsPd none fcc FelrPdRe none none HfMoNbTi bcc bcc 

CuFePdRe none fcc FelrPdRu none fcc HfMoNbV bcc bcc 

CuFePdRh fcc none FeMnMoNb none none HfMoNbW bcc bcc 

CuFePdRu none none FeMnMoRe none bcc HfMoNbZr bcc bcc 

CuFeTaV none none FeMnMoTa none none HfMoReTa none none 

CuFeTiV none none FeMnMoTi none none HfMoReTi bcc bcc 

HfMoReV bcc none IrOsPdRe none none MnTiVW bcc none 

HfMoReW none none IrOsPdRh fcc none MnTiVZr none none 

HfMoReZr none none IrOsPdRu none none MnTiWZr none none 

HfMoTaTi bcc bcc IrOsPtRe none fcc MnVWZr none none 

HfMoTaV none bcc IrOsPtRh fcc fcc MoNbNiV none bcc 

HfMoTaW bcc bcc IrOsPtRu fcc fcc MoNbReTa bcc none 

HfMoTaZr bcc bcc IrPdPtRe fcc fcc MoNbReTi bcc bcc 

HfMoTiV bcc bcc IrPdPtRh fcc fcc MoNbReV bcc bcc 

HfMoTiW bcc bcc IrPdPtRu fcc none MoNbReW bcc bcc 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

HfMoTiZr bcc bcc IrPdReRh fcc none MoNbReZr bcc none 

HfMoVW none bcc IrPdReRu none none MoNbTaTi bcc bcc 

HfMoVZr none bcc IrPdRhRu fcc none MoNbTaV bcc bcc 

HfMoWZr none bcc IrPtReRh fcc fcc MoNbTaW bcc bcc 

HfNbReTa bcc bcc IrPtReRu fcc fcc MoNbTaZr bcc none 

HfNbReTi bcc bcc IrPtRhRu fcc fcc MoNbTiV bcc bcc 

HfNbReV bcc bcc MnMoNbRe none bcc MoNbTiW bcc bcc 

HfNbReW bcc bcc MnMoNbTa bcc none MoNbTiZr bcc bcc 

HfNbReZr none bcc MnMoNbTi bcc none MoNbVW bcc bcc 

HfNbTaTi bcc bcc MnMoNbV bcc none MoNbVZr bcc bcc 

HfNbTaV bcc bcc MnMoNbW none bcc MoNbWZr none bcc 

HfNbTaW bcc bcc MnMoNbZr none none MoNiOsPd none fcc 

HfNbTaZr bcc bcc MnMoNiV none none MoNiOsPt none fcc 

HfNbTiV bcc bcc MnMoReTa none none MoNiPdPt fcc fcc 

HfNbTiW bcc bcc MnMoReTi none none MoNiPdRe none fcc 

HfNbTiZr bcc bcc MnMoReV bcc bcc MoNiPdRh fcc none 

HfNbVW none bcc MnMoReW none bcc MoNiPdRu none none 

HfNbVZr bcc bcc MnMoReZr none none MoNiPtRe none fcc 

HfNbWZr bcc bcc MnMoTaTi bcc none MoNiPtRh fcc fcc 

HfReTaTi bcc bcc MnMoTaV bcc none MoNiPtRu none fcc 

HfReTaV bcc bcc MnMoTaW none none MoNiReV none bcc 

HfReTaW none none MnMoTaZr none none MoOsPdPt none fcc 

HfReTaZr none none MnMoTiV bcc none MoOsPdRe none fcc 

HfReTiV none bcc MnMoTiW none none MoOsPdRh none fcc 

HfReTiW none bcc MnMoTiZr none none MoOsPdRu none fcc 

HfReTiZr none bcc MnMoVW bcc bcc MoOsPtRe none fcc 

HfReVW bcc bcc MnMoVZr none none MoOsPtRh fcc fcc 

HfReVZr none none MnMoWZr none none MoOsPtRu none fcc 

HfReWZr none bcc MnNbNiV none none MoPdPtRe none fcc 

HfTaTiV bcc bcc MnNbReTa none none MoPdPtRh fcc fcc 

HfTaTiW bcc bcc MnNbReTi bcc none MoPdPtRu none fcc 

HfTaTiZr bcc bcc MnNbReV bcc none MoPdReRh none fcc 

HfTaVW bcc bcc MnNbReW bcc bcc MoPdReRu none fcc 

HfTaVZr bcc bcc MnNbReZr bcc none MoPdRhRu none fcc 

HfTaWZr bcc bcc MnNbTaTi bcc none MoPtReRh none fcc 

HfTiVW bcc bcc MnNbTaV bcc none MoPtReRu none fcc 

HfTiVZr bcc none MnNbTaW none none MoPtRhRu fcc fcc 

HfTiWZr none bcc MnNbTaZr none none MoReTaTi bcc none 

HfVWZr none none MnNbTiV bcc none MoReTaV bcc none 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

IrMoNiPd fcc none MnNbTiW none none MoReTaW bcc bcc 

IrMoNiPt fcc fcc MnNbTiZr none none MoReTaZr none none 

IrMoOsPd none fcc MnNbVW bcc none MoReTiV bcc bcc 

IrMoOsPt none fcc MnNbVZr none none MoReTiW bcc bcc 

IrMoPdPt fcc fcc MnNbWZr none none MoReTiZr bcc bcc 

IrMoPdRe none none MnNiOsPd none none MoReVW bcc bcc 

IrMoPdRh fcc none MnNiPdRe none none MoReVZr none none 

IrMoPdRu none none MnNiPdRu none fcc MoReWZr bcc bcc 

IrMoPtRe none fcc MnOsPdRe none none MoTaTiV bcc bcc 

IrMoPtRh fcc fcc MnOsPdRu none fcc MoTaTiW bcc bcc 

IrMoPtRu fcc fcc MnPdReRu none none MoTaTiZr bcc bcc 

IrNbPdPt none none MnReTaTi bcc none MoTaVW bcc bcc 

IrNbPdRh fcc fcc MnReTaV bcc none MoTaVZr none none 

IrNbPdRu none none MnReTaW none none MoTaWZr none bcc 

IrNbPtRh none none MnReTaZr none none MoTiVW bcc bcc 

IrNbPtRu fcc none MnReTiV none none MoTiVZr bcc bcc 

IrNiOsPd none fcc MnReTiW none none MoTiWZr bcc bcc 

IrNiOsPt fcc fcc MnReTiZr none none MoVWZr bcc none 

IrNiPdPt fcc none MnReVW none bcc NbPdPtRh none fcc 

IrNiPdRe none fcc MnReVZr none none NbPdRhRu none none 

IrNiPdRh fcc fcc MnReWZr none none NbPtRhRu none none 

IrNiPdRu fcc fcc MnTaTiV bcc none NbReTaTi bcc bcc 

IrNiPtRe fcc fcc MnTaTiW none none NbReTaV bcc bcc 

IrNiPtRh fcc fcc MnTaVW none none NbReTaW bcc bcc 

IrNiPtRu fcc fcc MnTaVZr none none NbReTaZr bcc bcc 

IrOsPdPt fcc none MnTaWZr none none NbReTiV bcc bcc 

NbReTiW bcc bcc NiOsPtRh none fcc PdPtReRh fcc fcc 

NbReTiZr bcc bcc NiOsPtRu none fcc PdPtReRu fcc fcc 

NbReVW bcc bcc NiPdPtRe none fcc PdPtRhRu fcc fcc 

NbReVZr none bcc NiPdPtRh fcc fcc PdReRhRu none none 

NbReWZr bcc bcc NiPdPtRu fcc fcc PtReRhRu fcc fcc 

NbTaTiV bcc bcc NiPdReRh none fcc ReTaTiV bcc bcc 

NbTaTiW bcc bcc NiPdReRu none fcc ReTaTiW bcc bcc 

NbTaTiZr bcc bcc NiPdRhRu none fcc ReTaTiZr none bcc 

NbTaVW bcc bcc NiPtReRh none fcc ReTaVW bcc bcc 

NbTaVZr bcc bcc NiPtReRu none fcc ReTaVZr none bcc 

NbTaWZr bcc bcc NiPtRhRu fcc fcc ReTaWZr bcc none 

NbTiVW bcc bcc OsPdPtRe fcc fcc ReTiVW bcc bcc 
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Supplementary Table 4, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S.   S.S(ML) S.S. 

NbTiVZr bcc bcc OsPdPtRh fcc fcc ReTiVZr none none 

NbTiWZr bcc bcc OsPdPtRu none fcc ReTiWZr bcc bcc 

NbVWZr bcc none OsPdReRh fcc fcc ReVWZr none bcc 

NiOsPdPt none none OsPdReRu none fcc TaTiVW bcc bcc 

NiOsPdRe none fcc OsPdRhRu none none TaTiVZr bcc bcc 

NiOsPdRh none fcc OsPtReRh fcc fcc TaTiWZr bcc bcc 

NiOsPdRu none fcc OsPtReRu fcc fcc TaVWZr bcc none 

NiOsPtRe none fcc OsPtRhRu fcc fcc TiVWZr bcc none 
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Supplementary Table 5 ML-HEA results for quinary alloys. S.S.(ML)
 class of single solid solution phase 

predicted by the ML-HEA model (“none” = other or not found); S.S. class of single solid solution phase 

found using LTVC model from DFT [28] (“none” = other or not found); S.S.* class of single solid solution 

phase found using CALPHAD (“none” = other or not found). 

  S.S(ML) S.S.   S.S(ML) S.S. 

AlCrMoTiW bcc bcc CrMoNbTaW bcc none 

CoCrFeMnNi fcc fcc CrMoNbTaZr none none 

CrNbTaVW bcc bcc CrMoNbTiV bcc bcc 

CrNbTaVZr none none CrMoNbTiW bcc bcc 

CrNbTaWZr none none CrMoNbTiZr bcc bcc 

CrHfMoNbTa bcc bcc CrMoNbVW bcc bcc 

CrHfMoNbTi bcc bcc CrMoNbVZr bcc none 

CrHfMoNbV bcc none CrMoNbWZr none none 

CrHfMoNbW none bcc CrMoTaTiV bcc bcc 

CrHfMoNbZr bcc bcc CrMoTaTiW bcc bcc 

CrHfMoTaTi bcc bcc CrMoTaTiZr none none 

CrHfMoTaV none none CrMoTaVW bcc bcc 

CrHfMoTaW none bcc CrMoTaVZr none none 

CrHfMoTaZr none bcc CrMoTaWZr none none 

CrHfMoTiV bcc none CrMoTiVW bcc bcc 

CrHfMoTiW bcc bcc CrMoTiVZr bcc none 

CrHfMoTiZr none bcc CrMoTiWZr none none 

CrHfMoVW bcc bcc CrMoVWZr none none 

CrHfMoVZr bcc none CrNbTaTiV bcc bcc 

CrHfMoWZr none bcc CrNbTaTiW bcc bcc 

CrHfNbTaTi bcc bcc CrNbTaTiZr none bcc 

CrHfNbTaV none none CrNbTiVW bcc bcc 

CrHfNbTaW none bcc CrNbTiVZr none none 

CrHfNbTaZr bcc none CrNbTiWZr none none 

CrHfNbTiV bcc none CrNbVWZr none none 

CrHfNbTiW bcc bcc CrTaTiVW bcc bcc 

CrHfNbTiZr bcc bcc CrTaTiVZr none none 

CrHfNbVW none bcc CrTaTiWZr none none 

CrHfNbVZr bcc none CrTaVWZr none none 

CrHfNbWZr none bcc CrTiVWZr none none 

CrHfTaTiV bcc bcc HfMoNbTaTi bcc bcc 

CrHfTaTiW bcc bcc HfMoNbTaV bcc bcc 

CrHfTaTiZr none bcc HfMoNbTaW bcc bcc 

CrHfTaVW none bcc HfMoNbTaZr bcc bcc 

CrHfTaVZr bcc none HfMoNbTiV bcc bcc 

CrHfTaWZr none bcc HfMoNbTiW bcc bcc 
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Supplementary Table 5, Continued. 

  S.S(ML) S.S.   S.S(ML) S.S. 

CrHfTiVW bcc bcc HfMoNbTiZr bcc bcc 

CrHfTiVZr bcc none HfMoNbVW bcc bcc 

CrHfTiWZr none bcc HfMoNbVZr bcc bcc 

CrHfVWZr none none HfMoNbWZr none bcc 

CrMoNbTaTi bcc bcc HfMoTaTiV bcc bcc 

CrMoNbTaV bcc bcc HfMoTaTiW bcc bcc 

HfMoTaTiZr bcc bcc MoNbReTaW bcc bcc 

HfMoTaVW bcc bcc MoNbTaTiV bcc bcc 

HfMoTaVZr bcc bcc MoNbTaTiW bcc bcc 

HfMoTaWZr none bcc MoNbTaTiZr bcc bcc 

HfMoTiVW bcc bcc MoNbTaVW bcc bcc 

HfMoTiVZr bcc bcc MoNbTaVZr bcc none 

HfMoTiWZr bcc bcc MoNbTaWZr none bcc 

HfMoVWZr none bcc MoNbTiVW bcc bcc 

HfNbTaTiV bcc bcc MoNbTiVZr bcc bcc 

HfNbTaTiW bcc bcc MoNbTiWZr bcc bcc 

HfNbTaTiZr bcc bcc MoNbVWZr bcc none 

HfNbTaVW bcc bcc MoTaTiVW bcc bcc 

HfNbTaVZr bcc bcc MoTaTiVZr bcc bcc 

HfNbTaWZr bcc bcc MoTaTiWZr none bcc 

HfNbTiVW bcc bcc MoTaVWZr bcc none 

HfNbTiVZr bcc bcc MoTiVWZr none none 

HfNbTiWZr bcc bcc NbReTaTiV bcc bcc 

HfNbVWZr bcc bcc NbTaTiVW bcc bcc 

HfTaTiVW bcc bcc NbTaTiVZr bcc none 

HfTaTiVZr bcc none NbTaTiWZr bcc bcc 

HfTaTiWZr bcc bcc NbTaVWZr none none 

HfTaVWZr bcc bcc NbTiVWZr bcc bcc 

HfTiVWZr bcc none TaTiVWZr bcc none 
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Supplementary Table 6 Percentage votes for each class by alloy.  The certainty of the model is quantified 

by reporting the percent of trees that vote for each option (none, fcc, or bcc). The closer to 1, the more 

certain the ML-HEA model is of the resultant solid solution.  The S.S.(ML) predictions are provided for quick 

reference. Experimental results (S.S. Exp.) are provided when available.  The voting percentages are 

displayed to three decimal points and therefore may not add up to unity. 

  none fcc bcc S.S(ML) S.S. Exp. 

AgAu 0 1 0 fcc fcc 

AgCu 0.909 0.090 0 none none 

AgFe 0.909 0.090 0 none none 

AgNi 0.909 0 0.090 none none 

AgPd 0 1 0 fcc fcc 

AgPt 0 1 0 fcc fcc 

AgSi 1 0 0 none none 

AgTi 1 0 0 none none 

AlMn 1 0 0 none none 

AlCu 1 0 0 none none 

AlHf 0.909 0 0.090 none none 

AlSi 1 0 0 none none 

AlTa 1 0 0 none none 

AlTi 1 0 0 none none 

AlW 0.909 0 0.090 none none 

AlZr 0.909 0 0.090 none none 

AuCo 0.727 0.272 0 none none 

AuCu 0.272 0.727 0 fcc fcc 

AuNi 0.181 0.818 0 fcc fcc 

AuPd 0 1 0 fcc fcc 

AuPt 0 1 0 fcc fcc 

AuTi 1 0 0 none none 

AuV 0.272 0.545 0.181 fcc fcc 

CoCr 0.272 0 0.727 bcc bcc 

CoCu 0.818 0.090 0.090 none none 

CoIr 0 1 0 fcc fcc 

CoMn 0.090 0.909 0 fcc fcc 

CoMo 1 0 0 none none 

CoNi 0 0.909 0.090 fcc fcc 

CoPd 0 1 0 fcc fcc 

CoPt 0.090 0.909 0 fcc fcc 

CoRh 0.090 0.818 0.090 fcc fcc 

CoW 1 0 0 none none 

CrCu 0.818 0.090 0.090 none none 

CrFe 0.181 0 0.818 bcc bcc 

CrIr 1 0 0 none none 
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Supplementary Table 6, Continued 

  none fcc bcc S.S(ML) S.S. Exp. 

CrMn 0.090 0.090 0.818 bcc bcc 

CrMo 0 0 1 bcc bcc 

CrNb 0.818 0.090 0.090 none none 

CrNi 0 1 0 fcc fcc 

CrPt 0.090 0.909 0 fcc fcc 

CrRh 1 0 0 none none 

CrTa 0.454 0 0.545 bcc bcc 

CrTi 0 0 1 bcc bcc 

CrV 0.090 0 0.909 bcc bcc 

CrW 0.363 0 0.636 bcc bcc 

CuFe 0.636 0.272 0.090 none none 

CuIr 0.727 0.272 0 none none 

CuNi 0 0.727 0.272 fcc fcc 

CuPd 0 1 0 fcc fcc 

CuPt 0 1 0 fcc fcc 

CuRh 0.090 0.909 0 fcc fcc 

CuSi 1 0 0 none none 

CuV 1 0 0 none none 

FeMn 0.181 0.818 0 fcc fcc 

FeMo 1 0 0 none none 

FeNb 1 0 0 none none 

FeNi 0 0.090 0.909 bcc bcc 

FePd 0 1 0 fcc fcc 

HfNb 0 0 1 bcc bcc 

HfTa 0 0 1 bcc bcc 

HfTi 0 0 1 bcc bcc 

HfV 0.727 0 0.272 none none 

HfZr 0.181 0.090 0.727 bcc bcc 

IrMo 1 0 0 none none 

IrNi 0 0.909 0.090 fcc fcc 

IrPd 0.090 0.909 0 fcc fcc 

IrPt 0.090 0.909 0 fcc fcc 

IrRh 0.090 0.909 0 fcc fcc 

IrRu 0.454 0.545 0 fcc fcc 

MnNb 0.818 0 0.181 none none 

MnNi 0 1 0 fcc fcc 

MnTa 0.909 0 0.090 none none 

MnV 0 0 1 bcc bcc 

MoNb 0 0 1 bcc bcc 
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

MoNi 0.909 0.090 0 none none 

MoPd 0.272 0.727 0 fcc fcc 

MoRh 0.818 0.090 0.090 none none 

MoRu 1 0 0 none none 

MoTa 0 0 1 bcc bcc 

MoTi 0 0 1 bcc bcc 

MoV 0 0 1 bcc bcc 

MoW 0 0 1 bcc bcc 

MoZr 1 0 0 none none 

NbTa 0 0 1 bcc bcc 

NbTi 0.181 0 0.818 bcc bcc 

NbV 0 0 1 bcc bcc 

NbW 0 0 1 bcc bcc 

NbZr 0 0 1 bcc bcc 

NiPd 0 0.454 0.545 bcc bcc 

NiPt 0.090 0.909 0 fcc fcc 

NiRh 0.090 0.909 0 fcc fcc 

NiRu 0.818 0.181 0 none none 

NiV 1 0 0 none none 

NiW 0.818 0.181 0 none none 

PdPt 0 1 0 fcc fcc 

PdRh 0 0.909 0.090 fcc fcc 

PdRu 0.727 0.272 0 none none 

PdW 0.636 0.181 0.181 none none 

PtRh 0 1 0 fcc fcc 

PtRu 0 0.818 0.181 fcc fcc 

PtTi 1 0 0 none none 

PtW 0.818 0.181 0 none none 

RhRu 0.181 0.818 0 fcc fcc 

RhV 1 0 0 none none 

RhW 0.909 0.090 0 none none 

RuW 0.727 0.090 0.181 none none 

TaTi 0 0 1 bcc bcc 

TaV 0 0 1 bcc bcc 

TaW 0.090 0 0.909 bcc bcc 

TaZr 0 0.090 0.909 bcc bcc 

TiV 0 0 1 bcc bcc 

TiW 0 0 1 bcc bcc 

TiZr 0 0 1 bcc bcc 
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

VW 0 0 1 bcc bcc 

VZr 0.909 0 0.090 none none 

WZr 0.909 0 0.090 none none 

AgAlNi 0.909 0.090 0 none  
AgAlAu 0.727 0.272 0 none  
AgAlFe 0.909 0.090 0 none  
AgAlV 0.909 0.090 0 none  

AgAsAu 0.909 0.090 0 none  
AgAsCu 0.818 0.181 0 none  
AgAsPd 0.818 0.181 0 none  
AgAuCo 0.727 0.272 0 none  
AgAuCu 0.636 0.363 0 none  
AgAuFe 0.636 0.363 0 none  
AgAuMo 0.727 0.272 0 none  
AgAuNi 0.636 0.363 0 none  
AgAuPd 0 1 0 fcc  
AgAuPt 0 0.909 0.090 fcc  
AgAuRh 0.363 0.636 0 fcc  
AgAuSi 0.818 0.181 0 none  
AgAuTi 0.727 0.272 0 none  
AgAuV 0.636 0.363 0 none  
AgCoCu 0.909 0 0.090 none  
AgCoPd 0.181 0.727 0.090 fcc  
AgCoPt 0.818 0.181 0 none  
AgCoRh 0.818 0.181 0 none  
AgCuFe 0.909 0.090 0 none  
AgCuIr 0.636 0.363 0 none  

AgCuMn 0.909 0.090 0 none  
AgCuNi 0.909 0 0.090 none  
AgCuPd 0.636 0.363 0 none  
AgCuPt 0.636 0.363 0 none  
AgCuRh 0.636 0.363 0 none  
AgCuSi 0.909 0.090 0 none  
AgCuTi 1 0 0 none  
AgCuV 0.909 0.090 0 none  
AgCuZr 1 0 0 none  
AgFeNi 0.909 0.090 0 none  
AgFePd 0.818 0.181 0 none  
AgHfZr 0.909 0 0.090 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AgIrNi 0.818 0.181 0 none  
AgIrPd 0 1 0 fcc  
AgIrPt 0.363 0.636 0 fcc  
AgIrRh 0.272 0.727 0 fcc  
AgNiPd 0.727 0.272 0 none  
AgNiPt 0.727 0.272 0 none  
AgNiRh 0.818 0.181 0 none  
AgPdPt 0 1 0 fcc  
AgPdRh 0 1 0 fcc  
AgPdV 0.909 0.090 0 none  
AgPtRh 0.454 0.545 0 fcc  
AgPtRu 0.454 0.545 0 fcc  
AgPtTi 0.909 0.090 0 none  
AgPtV 0.727 0.272 0 none  
AgTiV 0.818 0 0.181 none  
AgTiZr 0.727 0.090 0.181 none  
AlAuCu 0.727 0.272 0 none  
AlAuNi 0.727 0.272 0 none  
AlAuSi 0.727 0.181 0.090 none  
AlCoCr 0.818 0.090 0.090 none  
AlCoCu 0.909 0.090 0 none  
AlCoNi 0.727 0.272 0 none  
AlCrCu 0.909 0.090 0 none  
AlCrMn 0.272 0 0.727 bcc  
AlCrV 0.181 0 0.818 bcc  
AlCrW 0.636 0 0.363 none  
AlCuFe 0.727 0.181 0.090 none  
AlCuMn 0.727 0.181 0.090 none  
AlCuNi 0.818 0.181 0 none  
AlCuSi 0.909 0.090 0 none  

AlFeMn 0.818 0.090 0.090 none  
AlHfSi 1 0 0 none  
AlHfTa 0.818 0 0.181 none  
AlHfTi 0.636 0 0.363 none  

AlMnNi 0.818 0.181 0 none  
AlMnSi 0.909 0 0.090 none  
AlTaZr 0.818 0 0.181 none  
AlTiV 0.181 0 0.818 bcc  
AlTiZr 0.363 0 0.636 bcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AlVW 0.454 0 0.545 bcc  
AsAuCu 0.636 0.363 0 none  
AsAuPd 0.636 0.363 0 none  
AsCuPd 0.818 0.181 0 none  
AuCoCu 0.636 0.363 0 none  
AuCoIr 0.090 0.909 0 fcc  

AuCoMo 0.727 0.181 0.090 none  
AuCoNi 0.636 0.363 0 none  
AuCoPd 0.181 0.818 0 fcc  
AuCoPt 0.272 0.727 0 fcc  
AuCoRh 0.454 0.545 0 fcc  
AuCoV 0.818 0.181 0 none  
AuCuFe 0.636 0.363 0 none  
AuCuIr 0.272 0.727 0 fcc  
AuCuNi 0.181 0.818 0 fcc  
AuCuPd 0.181 0.818 0 fcc  
AuCuPt 0 1 0 fcc  
AuCuRh 0.363 0.636 0 fcc  
AuCuSi 0.818 0.181 0 none  
AuCuTi 0.909 0.090 0 none  
AuCuV 0.727 0.272 0 none  
AuCuW 0.636 0.363 0 none  
AuFeNi 0.272 0.636 0.090 fcc  
AuFePd 0.090 0.909 0 fcc  
AuHfTi 0.727 0.181 0.090 none  
AuIrNi 0.090 0.909 0 fcc  
AuIrPd 0.090 0.909 0 fcc  
AuIrPt 0 1 0 fcc  
AuIrRh 0.090 0.909 0 fcc  

AuMoNi 0.727 0.181 0.090 none  
AuMoPd 0.181 0.818 0 fcc  
AuMoRh 0.545 0.454 0 none  
AuNiPd 0.181 0.727 0.090 fcc  
AuNiPt 0.090 0.909 0 fcc  
AuNiRh 0.454 0.545 0 fcc  
AuNiV 0.636 0.363 0 none  

AuPdPt 0 1 0 fcc  
AuPdRh 0.090 0.909 0 fcc  
AuPdTi 0.545 0.454 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AuPdV 0.636 0.363 0 none  
AuPdW 0.727 0.272 0 none  
AuPtRh 0.090 0.909 0 fcc  
AuPtRu 0.090 0.909 0 fcc  
AuPtTi 0.818 0.181 0 none  
AuRhV 0.545 0.454 0 none  
AuRhW 0.727 0.272 0 none  
AuTaTi 0.909 0 0.090 none  
AuTiV 1 0 0 none  
AuTiZr 0.727 0.181 0.090 none  
CoCrCu 0.727 0.272 0 none  
CoCrIr 0.090 0.909 0 fcc  

CoCrMn 0.818 0.090 0.090 none  
CoCrNb 0.909 0 0.090 none  
CoCrNi 0 0.818 0.181 fcc  
CoCrPd 0.090 0.909 0 fcc  
CoCrPt 0.090 0.909 0 fcc  
CoCrRh 0.090 0.909 0 fcc  
CoCrW 0.909 0 0.090 none  
CoCuIr 0.727 0.181 0.090 none  

CoCuMn 0.727 0.181 0.090 none  
CoCuNi 0.272 0.636 0.090 fcc  
CoCuPd 0.181 0.727 0.090 fcc  
CoCuPt 0.272 0.636 0.090 fcc  
CoCuRh 0.272 0.727 0 fcc  
CoCuV 1 0 0 none  

CoFeMn 0.090 0.909 0 fcc  
CoIrMn 0.090 0.727 0.181 fcc  
CoIrMo 0.363 0.636 0 fcc  
CoIrNi 0 0.909 0.090 fcc  
CoIrPd 0.090 0.909 0 fcc  
CoIrPt 0.090 0.909 0 fcc  
CoIrRh 0.090 0.909 0 fcc  
CoIrV 0.636 0.363 0 none  
CoIrW 0.454 0.454 0.090 none  

CoMnNi 0 0.909 0.090 fcc  
CoMnRh 0.090 0.909 0 fcc  
CoMoNi 0.909 0.090 0 none  
CoMoPt 0.545 0.363 0.090 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CoMoRh 0.454 0.545 0 fcc  
CoNiPd 0 0.909 0.090 fcc  
CoNiPt 0.090 0.909 0 fcc  
CoNiRh 0.181 0.818 0 fcc  
CoNiV 0.363 0.636 0 fcc  
CoPdPt 0.090 0.909 0 fcc  
CoPdRh 0.090 0.909 0 fcc  
CoPdV 0.545 0.454 0 none  
CoPdW 0.727 0.272 0 none  
CoPtRh 0.090 0.909 0 fcc  
CoPtV 0.545 0.454 0 none  
CoRhV 0.636 0.363 0 none  
CoRhW 0.545 0.363 0.090 none  
CrCuFe 0.818 0.181 0 none  
CrCuMo 0.909 0 0.090 none  
CrCuNi 0.818 0.090 0.090 none  
CrCuPd 1 0 0 none  
CrCuPt 0.818 0.181 0 none  
CrCuRh 0.727 0.272 0 none  
CrCuV 0.909 0 0.090 none  
CrCuW 0.727 0 0.272 none  
CrFeIr 0.454 0.454 0.090 none  

CrFeMn 0.181 0 0.818 bcc  
CrFeMo 0.909 0 0.090 none  
CrFeNb 0.909 0 0.090 none  
CrFeNi 0 0.909 0.090 fcc  
CrFeRh 0.454 0.454 0.090 none  
CrFeTa 0.818 0 0.181 none  
CrFeTi 0.818 0 0.181 none  
CrFeV 0.454 0 0.545 bcc  
CrFeW 0.909 0 0.090 none  
CrHfNb 0.454 0 0.545 bcc  
CrHfTa 0.545 0 0.454 none  
CrHfTi 0.272 0 0.727 bcc  
CrHfW 0.727 0 0.272 none  
CrIrMn 0.454 0.363 0.181 none  
CrIrNi 0.090 0.909 0 fcc  
CrIrPd 0.181 0.818 0 fcc  
CrIrPt 0.181 0.818 0 fcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrIrRh 0.090 0.909 0 fcc  
CrMnMo 0.636 0 0.363 none  
CrMnNb 0.272 0 0.727 bcc  
CrMnNi 0.727 0.272 0 none  
CrMnRh 0.818 0.090 0.090 none  
CrMnTa 0.454 0 0.545 bcc  
CrMnTi 0.818 0 0.181 none  
CrMnV 0 0 1 bcc  
CrMnW 0.818 0.090 0.090 none  
CrMoNb 0.181 0 0.818 bcc  
CrMoRe 0.545 0 0.454 none  
CrMoTa 0.545 0 0.454 none  
CrMoTc 0.545 0 0.454 none  
CrMoTi 0.090 0 0.909 bcc  
CrMoV 0 0 1 bcc  
CrMoW 0.272 0 0.727 bcc  
CrMoZr 0.727 0 0.272 none  
CrNbTa 0.454 0 0.545 bcc  
CrNbTi 0.363 0 0.636 bcc  
CrNbV 0.181 0 0.818 bcc  
CrNbW 0.454 0 0.545 bcc  
CrNbZr 0.636 0 0.363 none  
CrNiPd 0.090 0.818 0.090 fcc  
CrNiPt 0.181 0.818 0 fcc  
CrNiRh 0.181 0.818 0 fcc  
CrPdPt 0.181 0.818 0 fcc  
CrPdRh 0.090 0.909 0 fcc  
CrPtRh 0.181 0.818 0 fcc  
CrReTa 0.636 0 0.363 none  
CrReW 0.454 0 0.545 bcc  
CrTaTi 0.454 0 0.545 bcc  
CrTaV 0.636 0 0.363 none  
CrTaW 0.636 0 0.363 none  
CrTaZr 0.727 0 0.272 none  
CrTcW 0.454 0 0.545 bcc  
CrTiV 0 0 1 bcc  
CrTiW 0.727 0 0.272 none  
CrTiZr 0.636 0 0.363 none  
CrVW 0.545 0 0.454 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrWZr 0.818 0 0.181 none  
CuFeMn 0.818 0.181 0 none  
CuFeNi 0.272 0.454 0.272 fcc  
CuFePd 0.727 0.272 0 none  
CuFeRh 0.727 0.272 0 none  
CuFeV 0.818 0.090 0.090 none  
CuHfTi 0.909 0 0.090 none  
CuHfZr 1 0 0 none  
CuIrMn 0.818 0.181 0 none  
CuIrNi 0.090 0.818 0.090 fcc  
CuIrPd 0.090 0.909 0 fcc  
CuIrPt 0.090 0.909 0 fcc  
CuIrRh 0.090 0.909 0 fcc  

CuMnNi 0.363 0.636 0 fcc  
CuNiPd 0 0.636 0.363 fcc  
CuNiPt 0 1 0 fcc  
CuNiRh 0.090 0.909 0 fcc  
CuNiSi 0.909 0.090 0 none  
CuNiV 1 0 0 none  
CuPdPt 0 1 0 fcc  
CuPdRh 0.090 0.909 0 fcc  
CuPdTi 0.727 0.272 0 none  
CuPdV 1 0 0 none  
CuPtRh 0 1 0 fcc  
CuPtRu 0 1 0 fcc  
CuPtTi 1 0 0 none  
CuPtV 0.818 0.181 0 none  
CuRhV 0.727 0.181 0.090 none  
CuTaTi 0.636 0.090 0.272 none  
CuTaV 0.545 0 0.454 none  
CuTiV 0.818 0 0.181 none  
CuTiZr 0.909 0 0.090 none  
CuVW 0.636 0 0.363 none  
FeIrMn 0 0.818 0.181 fcc  
FeIrMo 0.727 0.272 0 none  
FeIrNi 0 0.909 0.090 fcc  
FeIrRh 0.090 0.818 0.090 fcc  
FeIrRu 0 1 0 fcc  

FeMnMo 0.909 0 0.090 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

FeMnNb 0.909 0 0.090 none  
FeMnNi 0 1 0 fcc  
FeMnRh 0.090 0.727 0.181 fcc  
FeMnTa 0.909 0 0.090 none  
FeMnTi 0.909 0 0.090 none  
FeMnV 0.454 0 0.545 bcc  

FeMoNb 0.818 0 0.181 none  
FeMoNi 0.909 0.090 0 none  
FeMoPd 0.454 0.545 0 fcc  
FeMoRh 0.818 0.090 0.090 none  
FeMoTa 0.818 0 0.181 none  
FeMoTi 0.727 0 0.272 none  
FeMoV 0.454 0 0.545 bcc  
FeMoW 1 0 0 none  
FeNbTa 0.636 0 0.363 none  
FeNbTi 0.818 0 0.181 none  
FeNbV 0.818 0 0.181 none  
FeNiRh 0.181 0.727 0.090 fcc  
FeTaTi 0.818 0 0.181 none  
FeTaV 0.636 0 0.363 none  
FeTaW 0.818 0 0.181 none  
FeTiV 0.727 0.090 0.181 none  
FeVW 0.545 0 0.454 none  

HfMoNb 0.272 0 0.727 bcc  
HfMoRe 0.727 0 0.272 none  
HfMoTa 0.545 0 0.454 none  
HfMoTi 0.090 0 0.909 bcc  
HfMoV 0.272 0 0.727 bcc  
HfMoW 0.909 0 0.090 none  
HfMoZr 0.454 0 0.545 bcc  
HfNbTa 0 0 1 bcc  
HfNbTi 0 0 1 bcc  
HfNbV 0.181 0 0.818 bcc  
HfNbW 0.363 0 0.636 bcc  
HfNbZr 0 0 1 bcc  
HfReTa 0.454 0 0.545 bcc  
HfTaTc 0.818 0 0.181 none  
HfTaTi 0 0 1 bcc  
HfTaV 0.181 0 0.818 bcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

HfTaW 0.272 0 0.727 bcc  
HfTaZr 0.181 0.090 0.727 bcc  
HfTiV 0 0 1 bcc  
HfTiW 0.727 0 0.272 none  
HfTiZr 0 0 1 bcc  
HfVW 0.454 0 0.545 bcc  
HfVZr 0.272 0 0.727 bcc  
HfWZr 0.818 0 0.181 none  
IrMnNi 0.090 0.818 0.090 fcc  
IrMnRh 0.090 0.909 0 fcc  
IrMoNi 0.545 0.454 0 none  
IrMoPd 0.181 0.727 0.090 fcc  
IrMoPt 0.181 0.727 0.090 fcc  
IrNbPd 0.818 0.090 0.090 none  
IrNiPd 0.181 0.818 0 fcc  
IrNiPt 0 0.909 0.090 fcc  
IrNiRh 0.090 0.909 0 fcc  
IrNiRu 0.272 0.727 0 fcc  
IrNiW 0.636 0.272 0.090 none  
IrOsPt 0.090 0.909 0 fcc  
IrPdPt 0.090 0.909 0 fcc  
IrPdRh 0 1 0 fcc  
IrPdRu 0.272 0.727 0 fcc  
IrPdV 0.090 0.909 0 fcc  
IrPdW 0.636 0.363 0 none  
IrPtRe 0 1 0 fcc  
IrPtRh 0.090 0.909 0 fcc  
IrPtRu 0 0.909 0.090 fcc  
IrPtTc 0 0.909 0.090 fcc  
IrRhV 0.454 0.545 0 fcc  

MnMoNb 0.272 0 0.727 bcc  
MnMoTa 0.636 0 0.363 none  
MnMoTi 0.636 0 0.363 none  
MnMoV 0 0 1 bcc  
MnMoW 0.727 0.090 0.181 none  
MnNbTa 0.636 0 0.363 none  
MnNbTi 0.363 0 0.636 bcc  
MnNbV 0.181 0 0.818 bcc  
MnNbW 0.727 0 0.272 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

MnTaTi 0.363 0 0.636 bcc  
MnTaV 0.181 0 0.818 bcc  
MnTaW 0.636 0 0.363 none  
MnTiV 0.181 0 0.818 bcc  
MnTiW 0.818 0 0.181 none  
MnVW 0.363 0 0.636 bcc  

MoNbRe 0.181 0 0.818 bcc  
MoNbTa 0 0 1 bcc  
MoNbTc 0.181 0 0.818 bcc  
MoNbTi 0 0 1 bcc  
MoNbV 0 0 1 bcc  
MoNbW 0 0 1 bcc  
MoNbZr 0.363 0 0.636 bcc  
MoNiPd 0.545 0.454 0 none  
MoNiPt 0.545 0.454 0 none  
MoNiRh 0.545 0.454 0 none  
MoPdPt 0.090 0.818 0.090 fcc  
MoPdRh 0.181 0.727 0.090 fcc  
MoReTa 0.181 0 0.818 bcc  
MoReTi 0.181 0 0.818 bcc  
MoReV 0.181 0.090 0.727 bcc  
MoReW 0.363 0 0.636 bcc  
MoTaTc 0.454 0 0.545 bcc  
MoTaTi 0 0 1 bcc  
MoTaV 0.454 0 0.545 bcc  
MoTaW 0 0 1 bcc  
MoTaZr 0.454 0 0.545 bcc  
MoTcTi 0.272 0 0.727 bcc  
MoTcV 0.181 0.090 0.727 bcc  
MoTcW 0.363 0 0.636 bcc  
MoTiV 0 0 1 bcc  
MoTiW 0 0 1 bcc  
MoTiZr 0.090 0 0.909 bcc  
MoVW 0 0 1 bcc  
MoVZr 0.090 0 0.909 bcc  
MoWZr 0.545 0 0.454 none  
NbPdRh 0.727 0.272 0 none  
NbReTa 0 0 1 bcc  
NbReTi 0.090 0 0.909 bcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

NbReV 0 0 1 bcc  
NbReW 0.181 0 0.818 bcc  
NbReZr 0.363 0 0.636 bcc  
NbTaTc 0.181 0 0.818 bcc  
NbTaTi 0 0 1 bcc  
NbTaV 0 0 1 bcc  
NbTaW 0.090 0 0.909 bcc  
NbTaZr 0 0 1 bcc  
NbTcV 0 0 1 bcc  
NbTcW 0 0 1 bcc  
NbTiV 0 0 1 bcc  
NbTiW 0 0 1 bcc  
NbTiZr 0 0 1 bcc  
NbVW 0 0 1 bcc  
NbVZr 0.090 0 0.909 bcc  
NbWZr 0.363 0 0.636 bcc  
NiPdPt 0 0.909 0.090 fcc  
NiPdRh 0.090 0.909 0 fcc  
NiPdV 0.545 0.454 0 none  
NiPtRh 0.090 0.909 0 fcc  
NiPtRu 0.272 0.727 0 fcc  
NiPtV 0.454 0.545 0 fcc  
NiRhV 0.454 0.545 0 fcc  
NiRhW 0.727 0.272 0 none  
PdPtRh 0 1 0 fcc  
PdPtRu 0.090 0.818 0.090 fcc  
PdPtTi 0.727 0.272 0 none  
PdRhV 0.090 0.909 0 fcc  
PdRhW 0.636 0.363 0 none  
PdRuW 0.363 0.272 0.363 none  
PdTiV 0.727 0.090 0.181 none  

PtRhRu 0 0.818 0.181 fcc  
PtRhV 0.181 0.818 0 fcc  
PtRhW 0.636 0.363 0 none  
ReTaTi 0.090 0 0.909 bcc  
ReTaV 0 0 1 bcc  
ReTaW 0.090 0 0.909 bcc  
ReTaZr 0.545 0 0.454 none  
ReTiW 0.090 0 0.909 bcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

ReVW 0 0 1 bcc  
TaTcTi 0.272 0 0.727 bcc  
TaTcV 0.181 0 0.818 bcc  
TaTcW 0.363 0 0.636 bcc  
TaTiV 0 0 1 bcc  
TaTiW 0.090 0 0.909 bcc  
TaTiZr 0 0 1 bcc  
TaVW 0 0 1 bcc  
TaVZr 0.363 0 0.636 bcc  
TaWZr 0.272 0 0.727 bcc  
TcTiW 0.181 0 0.818 bcc  
TcVW 0 0 1 bcc  
TiVZr 0.545 0.090 0.363 none  
TiWZr 0.363 0 0.636 bcc  
VWZr 0.454 0 0.545 bcc  

AgAlAuCo 0.909 0.090 0 none  
AgAlAuCu 0.909 0.090 0 none  
AgAlAuFe 0.909 0.090 0 none  
AgAlAuNi 0.909 0.090 0 none  
AgAlAuSi 0.909 0 0.090 none  
AgAlAuZr 1 0 0 none  
AgAlCoCu 0.909 0.090 0 none  
AgAlCoNi 0.909 0.090 0 none  
AgAlCuFe 0.909 0.090 0 none  
AgAlCuMn 0.909 0.090 0 none  
AgAlCuNi 0.909 0.090 0 none  
AgAlCuSi 1 0 0 none  
AgAlCuZr 1 0 0 none  
AgAlFeNi 0.909 0.090 0 none  
AgAlNiSi 1 0 0 none  

AgAuCoCr 0.818 0.181 0 none  
AgAuCoCu 0.636 0.363 0 none  
AgAuCoIr 0.636 0.363 0 none  

AgAuCoMo 0.818 0.181 0 none  
AgAuCoNi 0.727 0.272 0 none  
AgAuCoPd 0.272 0.727 0 fcc  
AgAuCoPt 0.636 0.363 0 none  
AgAuCoRe 0.727 0.272 0 none  
AgAuCoRh 0.636 0.363 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AgAuCoRu 0.727 0.272 0 none  
AgAuCrCu 0.636 0.363 0 none  
AgAuCrNi 0.727 0.272 0 none  
AgAuCuFe 0.636 0.363 0 none  
AgAuCuIr 0.454 0.545 0 fcc  
AgAuCuNi 0.636 0.363 0 none  
AgAuCuPd 0.181 0.636 0.181 fcc  
AgAuCuPt 0.181 0.727 0.090 fcc  
AgAuCuRh 0.636 0.363 0 none  
AgAuCuRu 0.454 0.545 0 fcc  
AgAuCuSi 0.818 0.181 0 none  
AgAuCuZr 1 0 0 none  

AgAuFeMo 0.727 0.181 0.090 none  
AgAuFeNi 0.727 0.272 0 none  
AgAuFePd 0.636 0.363 0 none  
AgAuFeRh 0.545 0.454 0 none  
AgAuIrMo 0.727 0.272 0 none  
AgAuIrNi 0.636 0.363 0 none  
AgAuIrPd 0.181 0.818 0 fcc  
AgAuIrPt 0.454 0.545 0 fcc  
AgAuIrRh 0.272 0.727 0 fcc  
AgAuIrRu 0.454 0.545 0 fcc  

AgAuMoNi 0.818 0.181 0 none  
AgAuMoPd 0.363 0.636 0 fcc  
AgAuMoRh 0.636 0.363 0 none  
AgAuNbRh 0.818 0.181 0 none  
AgAuNiPd 0.636 0.363 0 none  
AgAuNiPt 0.636 0.363 0 none  
AgAuNiRe 0.727 0.272 0 none  
AgAuNiRh 0.727 0.272 0 none  
AgAuNiRu 0.727 0.272 0 none  
AgAuNiSi 0.818 0.181 0 none  
AgAuPdPt 0 1 0 fcc  
AgAuPdRe 0.454 0.545 0 fcc  
AgAuPdRh 0.090 0.909 0 fcc  
AgAuPdRu 0.272 0.636 0.090 fcc  
AgAuPtRh 0.363 0.636 0 fcc  
AgAuPtRu 0.272 0.727 0 fcc  
AgAuRhRu 0.272 0.727 0 fcc  



 

297 

Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AgCoCrCu 1 0 0 none  
AgCoCrNi 0.909 0 0.090 none  
AgCoCrOs 0.909 0.090 0 none  
AgCoCrPd 0.909 0.090 0 none  
AgCoCrPt 0.909 0.090 0 none  
AgCoCrRh 0.818 0.181 0 none  
AgCoCrRu 0.909 0.090 0 none  
AgCoCuFe 0.909 0 0.090 none  
AgCoCuPd 0.818 0.181 0 none  
AgCoCuPt 0.909 0.090 0 none  
AgCoIrMo 0.727 0.272 0 none  
AgCoIrPd 0.363 0.636 0 fcc  
AgCoIrPt 0.727 0.272 0 none  

AgCoMoNi 0.909 0.090 0 none  
AgCoMoOs 0.727 0.272 0 none  
AgCoMoPd 0.818 0.181 0 none  
AgCoMoPt 0.818 0.181 0 none  
AgCoMoRe 0.818 0.181 0 none  
AgCoMoRh 0.727 0.272 0 none  
AgCoMoRu 0.727 0.272 0 none  
AgCoNiPd 0.454 0.454 0.090 none  
AgCoNiPt 0.909 0.090 0 none  
AgCoOsPd 0.818 0.181 0 none  
AgCoOsPt 0.727 0.272 0 none  
AgCoPdPt 0.272 0.727 0 fcc  
AgCoPdRe 0.909 0.090 0 none  
AgCoPdRh 0.272 0.727 0 fcc  
AgCoPdRu 0.727 0.272 0 none  
AgCoPtRe 0.909 0.090 0 none  
AgCoPtRh 0.727 0.272 0 none  
AgCoPtRu 0.818 0.181 0 none  
AgCrCuFe 0.818 0.090 0.090 none  
AgCrCuNi 1 0 0 none  
AgCrCuPd 0.909 0.090 0 none  
AgCrCuPt 0.727 0.272 0 none  
AgCrCuRh 0.818 0.181 0 none  
AgCrCuRu 0.909 0.090 0 none  
AgCrFeNi 0.909 0.090 0 none  
AgCrIrNi 1 0 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AgCrIrPd 0.181 0.818 0 fcc  
AgCrIrRh 0.636 0.363 0 none  
AgCrIrRu 0.818 0.181 0 none  
AgCrNiOs 0.909 0.090 0 none  
AgCrNiPd 1 0 0 none  
AgCrNiPt 0.909 0.090 0 none  
AgCrNiRh 0.818 0.181 0 none  
AgCrNiRu 0.909 0.090 0 none  
AgCrOsPt 0.636 0.363 0 none  
AgCrPdPt 0.181 0.818 0 fcc  
AgCrPdRh 0.272 0.636 0.090 fcc  
AgCrPdRu 0.909 0.090 0 none  
AgCrPtRh 0.727 0.272 0 none  
AgCrPtRu 0.636 0.363 0 none  
AgCrRhRu 0.727 0.272 0 none  
AgCuFeIr 0.818 0.181 0 none  
AgCuFeNi 0.909 0 0.090 none  
AgCuFeOs 0.818 0.181 0 none  
AgCuFePd 0.818 0.181 0 none  
AgCuFeRe 1 0 0 none  
AgCuFeRh 0.818 0.181 0 none  
AgCuFeRu 0.818 0.181 0 none  
AgCuIrPd 0.727 0.272 0 none  
AgCuIrPt 0.545 0.454 0 none  

AgCuNbPd 0.909 0 0.090 none  
AgCuNiPd 0.727 0.272 0 none  
AgCuNiPt 0.545 0.363 0.090 none  
AgCuNiSi 0.909 0.090 0 none  
AgCuPdPt 0.090 0.909 0 fcc  
AgCuPdRe 0.909 0.090 0 none  
AgCuPdRh 0.545 0.454 0 none  
AgCuPdRu 0.727 0.272 0 none  
AgCuPtRe 0.818 0.181 0 none  
AgCuPtRh 0.272 0.727 0 fcc  
AgCuPtRu 0.636 0.363 0 none  
AgFeIrNi 0.727 0.272 0 none  
AgFeIrRu 0.727 0.272 0 none  

AgFeMoNi 0.909 0.090 0 none  
AgFeMoOs 0.727 0.272 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AgFeMoPd 0.818 0.181 0 none  
AgFeMoRe 0.818 0.181 0 none  
AgFeMoRh 0.727 0.272 0 none  
AgFeMoRu 0.727 0.272 0 none  
AgFeNiOs 0.909 0.090 0 none  
AgFeNiPd 0.909 0.090 0 none  
AgFeNiRe 1 0 0 none  
AgFeNiRh 0.727 0.272 0 none  
AgFeNiRu 0.909 0.090 0 none  
AgFeOsPd 0.727 0.272 0 none  
AgFeOsRe 0.909 0.090 0 none  
AgFeOsRh 0.727 0.272 0 none  
AgFeOsRu 0.636 0.363 0 none  
AgFePdRe 0.909 0.090 0 none  
AgFePdRh 0.727 0.272 0 none  
AgFePdRu 0.727 0.272 0 none  
AgFeReRu 0.818 0.181 0 none  
AgFeRhRu 0.727 0.272 0 none  
AgIrMoNi 0.818 0.181 0 none  
AgIrMoPd 0.636 0.363 0 none  
AgIrMoRh 0.454 0.545 0 fcc  
AgIrNbPt 0.818 0.181 0 none  
AgIrNiPd 0.454 0.545 0 fcc  
AgIrNiPt 0.727 0.272 0 none  
AgIrOsPd 0.363 0.636 0 fcc  
AgIrOsPt 0.454 0.545 0 fcc  
AgIrPdPt 0.090 0.909 0 fcc  
AgIrPdRe 0.727 0.272 0 none  
AgIrPdRh 0 1 0 fcc  
AgIrPdRu 0.636 0.363 0 none  
AgIrPtRe 0.636 0.363 0 none  
AgIrPtRh 0.272 0.727 0 fcc  
AgIrPtRu 0.363 0.636 0 fcc  

AgMoNiOs 0.727 0.272 0 none  
AgMoNiPd 0.818 0.181 0 none  
AgMoNiPt 0.818 0.181 0 none  
AgMoNiRe 0.909 0.090 0 none  
AgMoNiRh 0.818 0.181 0 none  
AgMoNiRu 0.727 0.272 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AgMoOsPd 0.636 0.363 0 none  
AgMoOsRe 0.727 0.272 0 none  
AgMoOsRh 0.454 0.545 0 fcc  
AgMoPdPt 0.636 0.363 0 none  
AgMoPdRe 0.727 0.272 0 none  
AgMoPdRh 0.545 0.454 0 none  
AgMoPdRu 0.636 0.363 0 none  
AgMoPtRe 0.818 0.181 0 none  
AgMoPtRh 0.636 0.363 0 none  
AgMoPtRu 0.545 0.454 0 none  
AgMoReRh 0.636 0.363 0 none  
AgMoRhRu 0.454 0.545 0 fcc  
AgNbPdPt 0.909 0.090 0 none  
AgNbPdRh 0.727 0.181 0.090 none  
AgNbPtRh 0.636 0.272 0.090 none  
AgNiOsPd 0.818 0.181 0 none  
AgNiOsPt 0.818 0.181 0 none  
AgNiPdPt 0.272 0.727 0 fcc  
AgNiPdRe 0.909 0.090 0 none  
AgNiPdRh 0.454 0.545 0 fcc  
AgNiPdRu 0.818 0.181 0 none  
AgNiPtRe 0.818 0.181 0 none  
AgNiPtRh 0.727 0.272 0 none  
AgNiPtRu 0.818 0.181 0 none  
AgOsPdPt 0.454 0.545 0 fcc  
AgOsPdRe 0.727 0.272 0 none  
AgOsPdRh 0.272 0.727 0 fcc  
AgOsPdRu 0.636 0.363 0 none  
AgOsPtRe 0.636 0.363 0 none  
AgOsPtRh 0.454 0.545 0 fcc  
AgOsPtRu 0.454 0.545 0 fcc  
AgPdPtRe 0.636 0.363 0 none  
AgPdPtRh 0.090 0.909 0 fcc  
AgPdPtRu 0.090 0.909 0 fcc  
AgPdReRh 0.636 0.363 0 none  
AgPdReRu 0.727 0.272 0 none  
AgPdRhRu 0.545 0.454 0 none  
AgPtReRh 0.636 0.363 0 none  
AgPtReRu 0.636 0.363 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AgPtRhRu 0.545 0.454 0 none  
AlNbTiV 0.090 0 0.909 bcc bcc 

AlNbVW 0.181 0 0.818 bcc  
AlCoCrCu 0.909 0.090 0 none  
AlCrCuFe 0.727 0.181 0.090 none  
AlCrFeMn 0.272 0 0.727 bcc  
AlCrFeMo 0.454 0 0.545 bcc  
AlCrFeNi 0.727 0.181 0.090 none  
AlCrFeRe 0.818 0 0.181 none  
AlCrFeTi 0.363 0 0.636 bcc  
AlCrFeV 0.363 0 0.636 bcc  
AlCrFeW 0.545 0 0.454 none  
AlCrHfTi 0.272 0 0.727 bcc  
AlCrHfW 0.636 0 0.363 none  

AlCrMnMo 0.363 0 0.636 bcc  
AlCrMnRe 0.818 0 0.181 none  
AlCrMnTi 0.454 0 0.545 bcc  
AlCrMnV 0.363 0 0.636 bcc  
AlCrMnW 0.545 0 0.454 none  
AlCrMoRe 0.363 0 0.636 bcc  
AlCrMoTi 0.090 0 0.909 bcc  
AlCrMoV 0.181 0 0.818 bcc  
AlCrMoW 0.272 0 0.727 bcc  
AlCrNbV 0.181 0 0.818 bcc  
AlCrReTi 0.727 0 0.272 none  
AlCrReV 0.636 0 0.363 none  
AlCrReW 0.454 0 0.545 bcc  
AlCrTiV 0 0 1 bcc  
AlCrTiW 0.454 0 0.545 bcc  
AlCrVW 0.454 0 0.545 bcc  

AlCuFeMn 0.727 0.181 0.090 none  
AlCuFeNi 0.818 0.181 0 none  
AlCuFeV 0.727 0.181 0.090 none  

AlFeMnRe 1 0 0 none  
AlFeMnTi 0.818 0.090 0.090 none  
AlFeMnV 0.454 0 0.545 bcc  
AlFeTiV 0 0 1 bcc  
AlHfTiV 0.363 0 0.636 bcc  
AlHfTiW 0.727 0 0.272 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AlHfVW 0.727 0 0.272 none  
AlMnMoRe 0.909 0 0.090 none  
AlMnReW 0.818 0 0.181 none  
AlMnTiV 0.181 0 0.818 bcc  
AlMnVW 0.545 0 0.454 none  
AlMoTiV 0.090 0 0.909 bcc  
AlMoVW 0.181 0 0.818 bcc  
AlReVW 0.363 0 0.636 bcc  
AlTiVW 0.454 0 0.545 bcc  

AuCoCrPd 0.090 0.909 0 fcc  
AuCoCrPt 0.636 0.363 0 none  
AuCoCuPd 0.636 0.363 0 none  
AuCoCuPt 0.636 0.363 0 none  
AuCoIrPd 0.090 0.909 0 fcc  
AuCoIrPt 0.090 0.909 0 fcc  

AuCoMoPd 0.363 0.636 0 fcc  
AuCoMoPt 0.636 0.272 0.090 none  
AuCoNiPd 0.272 0.636 0.090 fcc  
AuCoNiPt 0.272 0.636 0.090 fcc  
AuCoOsPd 0.545 0.454 0 none  
AuCoOsPt 0.545 0.454 0 none  
AuCoPdPt 0.090 0.909 0 fcc  
AuCoPdRe 0.727 0.272 0 none  
AuCoPdRh 0.090 0.909 0 fcc  
AuCoPdRu 0.727 0.272 0 none  
AuCoPtRe 0.727 0.272 0 none  
AuCoPtRh 0.181 0.818 0 fcc  
AuCoPtRu 0.545 0.454 0 none  
AuCrCuPd 0.272 0.727 0 fcc  
AuCrCuPt 0.636 0.363 0 none  
AuCrIrPd 0.090 0.909 0 fcc  
AuCrIrPt 0.181 0.818 0 fcc  

AuCrNiPd 0.090 0.909 0 fcc  
AuCrNiPt 0.636 0.363 0 none  
AuCrOsPt 0.545 0.454 0 none  
AuCrPdPt 0.181 0.818 0 fcc  
AuCrPdRh 0.181 0.818 0 fcc  
AuCrPdRu 0.636 0.363 0 none  
AuCrPtRh 0.545 0.454 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AuCrPtRu 0.545 0.454 0 none  
AuCuFePd 0.727 0.272 0 none  
AuCuIrPd 0.181 0.818 0 fcc  
AuCuIrPt 0.090 0.909 0 fcc  

AuCuNiPd 0.181 0.818 0 fcc  
AuCuNiPt 0.181 0.727 0.090 fcc  
AuCuOsPt 0.454 0.545 0 fcc  
AuCuPdPt 0 1 0 fcc  
AuCuPdRe 0.727 0.272 0 none  
AuCuPdRh 0.181 0.818 0 fcc  
AuCuPdRu 0.363 0.636 0 fcc  
AuCuPtRe 0.727 0.272 0 none  
AuCuPtRh 0.363 0.636 0 fcc  
AuCuPtRu 0.363 0.636 0 fcc  
AuFeMoPd 0.636 0.363 0 none  
AuFeNiPd 0.090 0.909 0 fcc  
AuFeOsPd 0.272 0.727 0 fcc  
AuFePdRe 0.545 0.454 0 none  
AuFePdRh 0.090 0.909 0 fcc  
AuFePdRu 0.090 0.818 0.090 fcc  
AuIrMoPd 0.090 0.909 0 fcc  
AuIrNiPd 0.090 0.909 0 fcc  
AuIrNiPt 0 1 0 fcc  
AuIrOsPd 0.363 0.636 0 fcc  
AuIrOsPt 0 1 0 fcc  
AuIrPdPt 0 1 0 fcc  
AuIrPdRe 0.454 0.545 0 fcc  
AuIrPdRh 0.090 0.909 0 fcc  
AuIrPdRu 0.272 0.727 0 fcc  
AuIrPtRe 0 1 0 fcc  
AuIrPtRh 0.090 0.909 0 fcc  
AuIrPtRu 0.090 0.909 0 fcc  

AuMoNiPd 0.636 0.363 0 none  
AuMoNiPt 0.363 0.636 0 fcc  
AuMoOsPd 0.363 0.636 0 fcc  
AuMoPdPt 0.090 0.909 0 fcc  
AuMoPdRe 0.636 0.363 0 none  
AuMoPdRh 0.181 0.818 0 fcc  
AuMoPdRu 0.454 0.545 0 fcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

AuMoPtRe 0.636 0.363 0 none  
AuMoPtRh 0.454 0.545 0 fcc  
AuMoPtRu 0.545 0.454 0 none  
AuNbPdRh 0.818 0.181 0 none  
AuNbPtRh 0.818 0.181 0 none  
AuNiOsPd 0.636 0.363 0 none  
AuNiOsPt 0.545 0.454 0 none  
AuNiPdPt 0 1 0 fcc  
AuNiPdRe 0.727 0.272 0 none  
AuNiPdRh 0.181 0.818 0 fcc  
AuNiPdRu 0.545 0.454 0 none  
AuNiPtRe 0.818 0.181 0 none  
AuNiPtRh 0.181 0.818 0 fcc  
AuNiPtRu 0.545 0.454 0 none  
AuOsPdPt 0.363 0.636 0 fcc  
AuOsPdRe 0.545 0.454 0 none  
AuOsPdRh 0.363 0.636 0 fcc  
AuOsPtRh 0.272 0.727 0 fcc  
AuOsPtRu 0.272 0.727 0 fcc  
AuPdPtRe 0.363 0.636 0 fcc  
AuPdPtRh 0.090 0.909 0 fcc  
AuPdPtRu 0.090 0.909 0 fcc  
AuPdReRh 0.363 0.636 0 fcc  
AuPdReRu 0.545 0.454 0 none  
AuPdRhRu 0.272 0.727 0 fcc  
AuPtReRh 0.272 0.727 0 fcc  
AuPtReRu 0.363 0.636 0 fcc  
AuPtRhRu 0.181 0.818 0 fcc  
CoCrCuNi 0.727 0.181 0.090 none  
CoCrCuPd 0.909 0.090 0 none  
CoCrCuPt 0.909 0.090 0 none  
CoCrFeNi 0 0.727 0.272 fcc fcc 

CoCrIrPd 0.181 0.818 0 fcc  
CoCrIrPt 0.181 0.818 0 fcc  

CoCrMnMo 0.818 0.090 0.090 none  
CoCrMnNb 0.909 0 0.090 none  
CoCrMnNi 0 1 0 fcc fcc 

CoCrMoNb 0.909 0 0.090 none  
CoCrMoW 0.727 0.090 0.181 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CoCrNbW 0.818 0 0.181 none  
CoCrNiPd 0.090 0.818 0.090 fcc  
CoCrNiPt 0.181 0.818 0 fcc  
CoCrOsPd 0.818 0.181 0 none  
CoCrOsPt 0.727 0.272 0 none  
CoCrPdPt 0.181 0.818 0 fcc  
CoCrPdRh 0.090 0.818 0.090 fcc  
CoCrPdRu 0.818 0.181 0 none  
CoCrPtRh 0.181 0.818 0 fcc  
CoCrPtRu 0.727 0.272 0 none  
CoCuIrPd 0.181 0.818 0 fcc  
CoCuIrPt 0.181 0.818 0 fcc  

CoCuNiPd 0 0.818 0.181 fcc  
CoCuNiPt 0.181 0.818 0 fcc  
CoCuOsPd 0.818 0.181 0 none  
CoCuOsPt 0.818 0.181 0 none  
CoCuPdPt 0.181 0.818 0 fcc  
CoCuPdRe 0.909 0.090 0 none  
CoCuPdRh 0.181 0.818 0 fcc  
CoCuPdRu 0.818 0.181 0 none  
CoCuPtRe 0.909 0.090 0 none  
CoCuPtRh 0.090 0.909 0 fcc  
CoCuPtRu 0.454 0.545 0 fcc  
CoFeMnNi 0 0.909 0.090 fcc fcc 

CoIrMoPd 0.454 0.545 0 fcc  
CoIrMoPt 0.363 0.636 0 fcc  
CoIrNiPd 0 0.909 0.090 fcc  
CoIrNiPt 0.090 0.909 0 fcc  
CoIrOsPd 0.727 0.272 0 none  
CoIrOsPt 0.181 0.818 0 fcc  
CoIrPdPt 0.090 0.909 0 fcc  
CoIrPdRe 0.818 0.181 0 none  
CoIrPdRh 0.090 0.909 0 fcc  
CoIrPdRu 0.727 0.272 0 none  
CoIrPtRe 0.454 0.545 0 fcc  
CoIrPtRh 0.090 0.909 0 fcc  
CoIrPtRu 0.363 0.636 0 fcc  

CoMoNbW 0.727 0 0.272 none  
CoMoNiPd 0.363 0.636 0 fcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CoMoNiPt 0.454 0.545 0 fcc  
CoMoOsPd 0.727 0.272 0 none  
CoMoOsPt 0.727 0.272 0 none  
CoMoPdPt 0.363 0.636 0 fcc  
CoMoPdRe 0.818 0.181 0 none  
CoMoPdRh 0.363 0.636 0 fcc  
CoMoPdRu 0.727 0.272 0 none  
CoMoPtRe 0.727 0.272 0 none  
CoMoPtRh 0.363 0.636 0 fcc  
CoMoPtRu 0.727 0.272 0 none  
CoNiOsPd 0.727 0.181 0.090 none  
CoNiOsPt 0.818 0.181 0 none  
CoNiPdPt 0.090 0.909 0 fcc  
CoNiPdRe 0.909 0.090 0 none  
CoNiPdRh 0.181 0.818 0 fcc  
CoNiPdRu 0.727 0.272 0 none  
CoNiPtRe 0.909 0.090 0 none  
CoNiPtRh 0.181 0.818 0 fcc  
CoNiPtRu 0.363 0.636 0 fcc  
CoOsPdPt 0.545 0.454 0 none  
CoOsPdRe 0.818 0.181 0 none  
CoOsPdRh 0.636 0.363 0 none  
CoOsPdRu 0.727 0.272 0 none  
CoOsPtRe 0.818 0.181 0 none  
CoOsPtRh 0.545 0.454 0 none  
CoOsPtRu 0.727 0.272 0 none  
CoPdPtRe 0.818 0.181 0 none  
CoPdPtRh 0.090 0.909 0 fcc  
CoPdPtRu 0.363 0.636 0 fcc  
CoPdReRh 0.818 0.181 0 none  
CoPdReRu 0.818 0.181 0 none  
CoPdRhRu 0.727 0.272 0 none  
CoPtReRh 0.818 0.181 0 none  
CoPtReRu 0.818 0.181 0 none  
CoPtRhRu 0.363 0.636 0 fcc  
CrCuFeMn 0.909 0.090 0 none  
CrCuFeMo 1 0 0 none  
CrCuFeNb 1 0 0 none  
CrCuFeNi 0.636 0.363 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrCuFePd 1 0 0 none  
CrCuFeV 0.909 0 0.090 none  
CrCuFeW 0.727 0 0.272 none  
CrCuIrPd 0.272 0.727 0 fcc  
CrCuIrPt 0.636 0.363 0 none  

CrCuMnV 0.909 0 0.090 none  
CrCuMnW 0.636 0.090 0.272 none  
CrCuMoTa 0.818 0 0.181 none  
CrCuMoTi 0.818 0 0.181 none  
CrCuMoV 0.818 0 0.181 none  
CrCuMoW 0.727 0 0.272 none  
CrCuNbTa 0.909 0 0.090 none  
CrCuNbTi 0.818 0 0.181 none  
CrCuNbV 0.818 0 0.181 none  
CrCuNbW 0.818 0 0.181 none  
CrCuNiPd 0.909 0.090 0 none  
CrCuNiPt 0.181 0.818 0 fcc  
CrCuOsPd 0.818 0.181 0 none  
CrCuOsPt 0.636 0.363 0 none  
CrCuPdPt 0.272 0.727 0 fcc  
CrCuPdRh 0.181 0.818 0 fcc  
CrCuPdRu 0.818 0.181 0 none  
CrCuPtRh 0.181 0.818 0 fcc  
CrCuPtRu 0.636 0.363 0 none  
CrCuTaTi 0.909 0 0.090 none  
CrCuTaV 0.818 0 0.181 none  
CrCuTaW 0.727 0 0.272 none  
CrCuTiV 0.818 0 0.181 none  
CrCuTiW 0.818 0 0.181 none  
CrCuVW 0.636 0 0.363 none  

CrFeMnMo 0.454 0 0.545 bcc  
CrFeMnNb 0.909 0 0.090 none  
CrFeMnNi 0.363 0.636 0 fcc  
CrFeMnRe 0.909 0 0.090 none  
CrFeMnTa 0.818 0 0.181 none  
CrFeMnTi 0.909 0 0.090 none  
CrFeMnV 0.454 0 0.545 bcc  
CrFeMnW 0.636 0 0.363 none  
CrFeMoNb 0.727 0 0.272 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrFeMoNi 1 0 0 none  
CrFeMoRe 0.636 0 0.363 none  
CrFeMoTa 0.909 0 0.090 none  
CrFeMoTi 0.363 0.090 0.545 bcc  
CrFeMoV 0.454 0 0.545 bcc  
CrFeMoW 0.818 0 0.181 none  
CrFeNbRe 0.909 0 0.090 none  
CrFeNbTa 0.818 0 0.181 none  
CrFeNbTi 0.818 0 0.181 none  
CrFeNbV 0.727 0 0.272 none  
CrFeNbW 0.818 0 0.181 none  
CrFeNiPd 0.090 0.909 0 fcc  
CrFeNiRe 0.909 0.090 0 none  
CrFeNiV 1 0 0 none  

CrFeOsPd 0.636 0.363 0 none  
CrFePdRu 0.636 0.363 0 none  
CrFeReTa 0.909 0 0.090 none  
CrFeReTi 0.909 0 0.090 none  
CrFeReV 0.636 0 0.363 none  
CrFeReW 0.727 0 0.272 none  
CrFeTaTi 0.818 0 0.181 none  
CrFeTaV 0.636 0 0.363 none  
CrFeTaW 0.818 0 0.181 none  
CrFeTiV 0.636 0.090 0.272 none  
CrFeTiW 0.818 0 0.181 none  
CrFeVW 0.727 0 0.272 none  

CrHfMoNb 0.272 0 0.727 bcc  
CrHfMoRe 0.545 0 0.454 none  
CrHfMoTa 0.727 0 0.272 none  
CrHfMoTi 0.272 0 0.727 bcc  
CrHfMoV 0.181 0 0.818 bcc  
CrHfMoW 0.818 0 0.181 none  
CrHfMoZr 0.727 0 0.272 none  
CrHfNbRe 0.636 0 0.363 none  
CrHfNbTa 0.454 0 0.545 bcc  
CrHfNbTi 0.272 0 0.727 bcc  
CrHfNbV 0.363 0 0.636 bcc  
CrHfNbW 0.636 0 0.363 none  
CrHfNbZr 0.727 0 0.272 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrHfReTa 0.636 0 0.363 none  
CrHfReTi 0.636 0 0.363 none  
CrHfReV 0.545 0 0.454 none  
CrHfReW 0.636 0 0.363 none  
CrHfReZr 0.818 0 0.181 none  
CrHfTaTi 0.454 0 0.545 bcc  
CrHfTaV 0.545 0 0.454 none  
CrHfTaW 0.727 0 0.272 none  
CrHfTaZr 0.727 0 0.272 none  
CrHfTiV 0.272 0 0.727 bcc  
CrHfTiW 0.545 0 0.454 none  
CrHfTiZr 0.454 0 0.545 bcc  
CrHfVW 0.636 0 0.363 none  
CrHfVZr 0.363 0 0.636 bcc  
CrHfWZr 0.818 0 0.181 none  
CrIrNiPd 0.181 0.818 0 fcc  
CrIrNiPt 0.181 0.818 0 fcc  
CrIrOsPd 0.636 0.363 0 none  
CrIrOsPt 0.545 0.454 0 none  
CrIrPdPt 0.090 0.909 0 fcc  
CrIrPdRh 0.090 0.909 0 fcc  
CrIrPdRu 0.727 0.272 0 none  
CrIrPtRh 0.090 0.909 0 fcc  
CrIrPtRu 0.545 0.454 0 none  

CrMnMoNb 0.181 0 0.818 bcc  
CrMnMoNi 1 0 0 none  
CrMnMoRe 0.545 0 0.454 none  
CrMnMoTa 0.363 0 0.636 bcc  
CrMnMoTi 0.727 0 0.272 none  
CrMnMoV 0.181 0 0.818 bcc  
CrMnMoW 0.818 0 0.181 none  
CrMnMoZr 0.727 0 0.272 none  
CrMnNbNi 0.909 0 0.090 none  
CrMnNbRe 0.636 0 0.363 none  
CrMnNbTa 0.272 0 0.727 bcc  
CrMnNbTi 0.090 0 0.909 bcc  
CrMnNbV 0.272 0 0.727 bcc  
CrMnNbW 0.545 0 0.454 none  
CrMnNbZr 0.727 0 0.272 none  



 

310 

Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrMnNiRe 0.909 0 0.090 none  
CrMnNiV 0.545 0.090 0.363 none  

CrMnReTa 0.727 0 0.272 none  
CrMnReTi 0.909 0 0.090 none  
CrMnReV 0.818 0 0.181 none  
CrMnReW 0.818 0 0.181 none  
CrMnReZr 0.909 0 0.090 none  
CrMnTaTi 0.181 0 0.818 bcc  
CrMnTaV 0.181 0 0.818 bcc  
CrMnTaW 0.545 0 0.454 none  
CrMnTaZr 0.727 0 0.272 none  
CrMnTiV 0.636 0.090 0.272 none  
CrMnTiW 0.727 0 0.272 none  
CrMnTiZr 0.818 0 0.181 none  
CrMnVW 0.545 0 0.454 none  
CrMnWZr 0.636 0 0.363 none  
CrMoNbNi 0.909 0 0.090 none  
CrMoNbRe 0.363 0 0.636 bcc  
CrMoNbTa 0.545 0 0.454 none  
CrMoNbTi 0.090 0 0.909 bcc  
CrMoNbV 0.545 0 0.454 none  
CrMoNbW 0.545 0 0.454 none  
CrMoNbZr 0.545 0 0.454 none  
CrMoNiRe 1 0 0 none  
CrMoReTa 0.545 0 0.454 none  
CrMoReTi 0.181 0 0.818 bcc  
CrMoReV 0 0 1 bcc  
CrMoReW 0.454 0 0.545 bcc  
CrMoReZr 0.727 0 0.272 none  
CrMoTaTi 0.272 0 0.727 bcc  
CrMoTaV 0.454 0 0.545 bcc  
CrMoTaW 0.545 0 0.454 none  
CrMoTaZr 0.727 0 0.272 none  
CrMoTiV 0.090 0 0.909 bcc  
CrMoTiW 0.090 0 0.909 bcc  
CrMoTiZr 0.363 0 0.636 bcc  
CrMoVW 0.181 0 0.818 bcc  
CrMoVZr 0.545 0 0.454 none  
CrMoWZr 0.818 0 0.181 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrNbNiV 0.818 0 0.181 none  
CrNbReTa 0.454 0 0.545 bcc  
CrNbReTi 0.090 0 0.909 bcc  
CrNbReV 0.090 0 0.909 bcc  
CrNbReW 0.363 0 0.636 bcc  
CrNbReZr 0.636 0 0.363 none  
CrNbTaTi 0.454 0 0.545 bcc  
CrNbTaV 0.090 0 0.909 bcc  
CrNbTaW 0.636 0 0.363 none  
CrNbTaZr 0.727 0 0.272 none  
CrNbTiV 0 0 1 bcc  
CrNbTiW 0.090 0 0.909 bcc  
CrNbTiZr 0.636 0 0.363 none  
CrNbVW 0.363 0 0.636 bcc  
CrNbVZr 0.545 0 0.454 none  
CrNbWZr 0.818 0 0.181 none  
CrNiOsPd 0.818 0.181 0 none  
CrNiOsPt 0.727 0.272 0 none  
CrNiPdPt 0.181 0.818 0 fcc  
CrNiPdRh 0.181 0.727 0.090 fcc  
CrNiPdRu 0.909 0.090 0 none  
CrNiPtRh 0.272 0.727 0 fcc  
CrNiPtRu 0.727 0.272 0 none  
CrNiReV 0.636 0 0.363 none  

CrOsPdPt 0.545 0.454 0 none  
CrOsPdRh 0.545 0.454 0 none  
CrOsPdRu 0.727 0.272 0 none  
CrOsPtRh 0.636 0.363 0 none  
CrOsPtRu 0.454 0.545 0 fcc  
CrPdPtRh 0.090 0.909 0 fcc  
CrPdPtRu 0.545 0.454 0 none  
CrPdRhRu 0.636 0.363 0 none  
CrPtRhRu 0.545 0.454 0 none  
CrReTaTi 0.272 0 0.727 bcc  
CrReTaV 0.181 0 0.818 bcc  
CrReTaW 0.454 0 0.545 bcc  
CrReTaZr 0.636 0 0.363 none  
CrReTiV 0.636 0 0.363 none  
CrReTiW 0.090 0 0.909 bcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrReTiZr 0.727 0 0.272 none  
CrReVW 0.363 0 0.636 bcc  
CrReVZr 0.636 0 0.363 none  
CrReWZr 0.727 0 0.272 none  
CrTaTiV 0.181 0 0.818 bcc  
CrTaTiW 0.181 0 0.818 bcc  
CrTaTiZr 0.727 0 0.272 none  
CrTaVW 0.636 0 0.363 none  
CrTaVZr 0.727 0 0.272 none  
CrTaWZr 0.818 0 0.181 none  
CrTiVW 0.090 0 0.909 bcc  
CrTiVZr 0.636 0 0.363 none  
CrTiWZr 0.727 0 0.272 none  
CrVWZr 0.727 0 0.272 none  

CuFeIrPd 0.181 0.818 0 fcc  
CuFeMnNb 1 0 0 none  
CuFeMnTa 0.909 0.090 0 none  
CuFeMnTi 1 0 0 none  
CuFeMnV 0.909 0 0.090 none  
CuFeMoTi 0.909 0 0.090 none  
CuFeMoV 0.909 0 0.090 none  
CuFeNbTa 1 0 0 none  
CuFeNbTi 0.909 0 0.090 none  
CuFeNbV 0.909 0 0.090 none  
CuFeNiPd 0 0.818 0.181 fcc  
CuFeNiV 0.909 0.090 0 none  

CuFeOsPd 0.727 0.272 0 none  
CuFePdRe 0.909 0.090 0 none  
CuFePdRh 0.181 0.818 0 fcc  
CuFePdRu 0.727 0.272 0 none  
CuFeTaV 0.909 0 0.090 none  
CuFeTiV 0.818 0 0.181 none  
CuFeVW 0.636 0 0.363 none  
CuIrNiPd 0.090 0.818 0.090 fcc  
CuIrNiPt 0.090 0.909 0 fcc  
CuIrOsPd 0.545 0.454 0 none  
CuIrOsPt 0.090 0.909 0 fcc  
CuIrPdPt 0.090 0.909 0 fcc  
CuIrPdRe 0.818 0.181 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CuIrPdRh 0.090 0.909 0 fcc  
CuIrPdRu 0.636 0.363 0 none  
CuIrPtRe 0.363 0.636 0 fcc  
CuIrPtRh 0.090 0.909 0 fcc  
CuIrPtRu 0.090 0.909 0 fcc  

CuMnMoTa 0.909 0.090 0 none  
CuMnMoV 0.909 0 0.090 none  
CuMnMoW 0.909 0 0.090 none  
CuMnNbTa 0.727 0.090 0.181 none  
CuMnNbV 0.818 0 0.181 none  
CuMnTaV 0.545 0 0.454 none  
CuMnTaW 0.727 0.090 0.181 none  
CuMnTiV 0.818 0 0.181 none  
CuMnVW 0.636 0.090 0.272 none  

CuMoNbTa 0.727 0 0.272 none  
CuMoNbV 0.818 0 0.181 none  
CuMoNbW 0.727 0.090 0.181 none  
CuMoTaTi 0.818 0 0.181 none  
CuMoTaW 0.727 0 0.272 none  
CuMoTiV 0.818 0 0.181 none  
CuMoVW 0.727 0 0.272 none  
CuNbPdPt 0.727 0.181 0.090 none  
CuNbPdRh 0.909 0.090 0 none  
CuNbPtRh 0.636 0.272 0.090 none  
CuNbTaTi 0.727 0.090 0.181 none  
CuNbTaV 0.727 0.090 0.181 none  
CuNbTaW 0.636 0 0.363 none  
CuNbTiV 0.727 0 0.272 none  
CuNbVW 0.636 0.090 0.272 none  
CuNiOsPd 0.818 0.181 0 none  
CuNiOsPt 0.636 0.363 0 none  
CuNiPdPt 0 1 0 fcc  
CuNiPdRe 0.909 0.090 0 none  
CuNiPdRh 0.090 0.909 0 fcc  
CuNiPdRu 0.636 0.363 0 none  
CuNiPtRe 0.909 0.090 0 none  
CuNiPtRh 0.090 0.909 0 fcc  
CuNiPtRu 0.272 0.727 0 fcc  
CuOsPdPt 0.454 0.545 0 fcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CuOsPdRe 0.818 0.181 0 none  
CuOsPdRh 0.090 0.909 0 fcc  
CuOsPdRu 0.636 0.363 0 none  
CuOsPtRe 0.818 0.181 0 none  
CuOsPtRh 0.454 0.545 0 fcc  
CuOsPtRu 0.454 0.545 0 fcc  
CuPdPtRe 0.818 0.181 0 none  
CuPdPtRh 0.090 0.909 0 fcc  
CuPdPtRu 0 1 0 fcc  
CuPdReRh 0.818 0.181 0 none  
CuPdReRu 0.818 0.181 0 none  
CuPdRhRu 0.545 0.454 0 none  
CuPtReRh 0.727 0.272 0 none  
CuPtReRu 0.818 0.181 0 none  
CuPtRhRu 0 1 0 fcc  
CuTaTiV 0.454 0 0.545 bcc  
CuTaTiW 0.545 0 0.454 none  
CuTaVW 0.545 0 0.454 none  
CuTiVW 0.545 0 0.454 none  

FeIrMoPd 0.363 0.636 0 fcc  
FeIrNiPd 0.090 0.909 0 fcc  
FeIrOsPd 0.636 0.363 0 none  
FeIrPdRe 0.818 0.181 0 none  
FeIrPdRu 0.636 0.363 0 none  

FeMnMoNb 0.727 0.090 0.181 none  
FeMnMoRe 0.909 0 0.090 none  
FeMnMoTa 0.909 0 0.090 none  
FeMnMoTi 0.909 0 0.090 none  
FeMnMoV 0.454 0 0.545 bcc  
FeMnMoW 0.818 0.090 0.090 none  
FeMnNbRe 0.727 0 0.272 none  
FeMnNbTa 0.909 0 0.090 none  
FeMnNbTi 0.909 0 0.090 none  
FeMnNbV 0.454 0.090 0.454 none  
FeMnNbW 0.818 0 0.181 none  
FeMnReTa 0.818 0 0.181 none  
FeMnReTi 0.909 0 0.090 none  
FeMnReV 0.818 0 0.181 none  
FeMnReW 0.818 0 0.181 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

FeMnTaTi 0.818 0 0.181 none  
FeMnTaV 0.727 0 0.272 none  
FeMnTaW 0.818 0 0.181 none  
FeMnTiV 0.818 0 0.181 none  
FeMnTiW 0.818 0 0.181 none  
FeMnVW 0.636 0 0.363 none  

FeMoNbRe 0.454 0 0.545 bcc  
FeMoNbTa 0.545 0 0.454 none  
FeMoNbTi 0.727 0 0.272 none  
FeMoNbV 0.363 0 0.636 bcc  
FeMoNbW 0.727 0 0.272 none  
FeMoNiPd 0.272 0.727 0 fcc  
FeMoNiV 1 0 0 none  

FeMoOsPd 0.636 0.363 0 none  
FeMoPdRe 0.818 0.181 0 none  
FeMoPdRh 0.363 0.636 0 fcc  
FeMoPdRu 0.727 0.272 0 none  
FeMoReTa 0.909 0 0.090 none  
FeMoReTi 0.636 0 0.363 none  
FeMoReV 0.636 0 0.363 none  
FeMoReW 0.636 0 0.363 none  
FeMoTaTi 0.636 0 0.363 none  
FeMoTaV 0.727 0 0.272 none  
FeMoTaW 0.727 0 0.272 none  
FeMoTiV 0.090 0 0.909 bcc  
FeMoTiW 0.727 0 0.272 none  
FeMoVW 0.636 0 0.363 none  
FeNbReTa 0.636 0 0.363 none  
FeNbReTi 0.818 0 0.181 none  
FeNbReV 0.363 0 0.636 bcc  
FeNbReW 0.545 0 0.454 none  
FeNbTaTi 0.636 0 0.363 none  
FeNbTaV 0.545 0 0.454 none  
FeNbTaW 0.818 0 0.181 none  
FeNbTiV 0.636 0.090 0.272 none  
FeNbTiW 0.636 0 0.363 none  
FeNbVW 0.636 0 0.363 none  
FeNiOsPd 0.727 0.272 0 none  
FeNiPdRe 0.727 0.272 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

FeNiPdRh 0.181 0.818 0 fcc  
FeNiPdRu 0.636 0.363 0 none  
FeOsPdRe 0.818 0.181 0 none  
FeOsPdRh 0.636 0.363 0 none  
FeOsPdRu 0.636 0.363 0 none  
FePdReRh 0.818 0.181 0 none  
FePdReRu 0.727 0.272 0 none  
FePdRhRu 0.636 0.363 0 none  
FeReTaTi 0.727 0 0.272 none  
FeReTaV 0.727 0 0.272 none  
FeReTiV 0.636 0 0.363 none  
FeReVW 0.636 0 0.363 none  
FeTaTiV 0.727 0 0.272 none  
FeTaTiW 0.727 0 0.272 none  
FeTaVW 0.818 0 0.181 none  
FeTiVW 0.545 0.090 0.363 none  

HfMoNbRe 0.363 0 0.636 bcc  
HfMoNbTa 0.272 0 0.727 bcc  
HfMoNbTi 0.090 0 0.909 bcc  
HfMoNbV 0.181 0 0.818 bcc  
HfMoNbW 0.454 0 0.545 bcc  
HfMoNbZr 0.272 0 0.727 bcc  
HfMoReTa 0.636 0 0.363 none  
HfMoReTi 0.363 0 0.636 bcc  
HfMoReV 0.363 0 0.636 bcc  
HfMoReW 0.545 0 0.454 none  
HfMoReZr 0.636 0 0.363 none  
HfMoTaTi 0.363 0 0.636 bcc  
HfMoTaV 0.545 0 0.454 none  
HfMoTaW 0.454 0 0.545 bcc  
HfMoTaZr 0.454 0 0.545 bcc  
HfMoTiV 0.090 0 0.909 bcc  
HfMoTiW 0.363 0 0.636 bcc  
HfMoTiZr 0.272 0 0.727 bcc  
HfMoVW 0.545 0 0.454 none  
HfMoVZr 0.545 0 0.454 none  
HfMoWZr 0.909 0 0.090 none  
HfNbReTa 0.454 0 0.545 bcc  
HfNbReTi 0.272 0 0.727 bcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

HfNbReV 0.272 0 0.727 bcc  
HfNbReW 0.363 0 0.636 bcc  
HfNbReZr 0.545 0 0.454 none  
HfNbTaTi 0 0 1 bcc  
HfNbTaV 0.272 0 0.727 bcc  
HfNbTaW 0.272 0 0.727 bcc  
HfNbTaZr 0 0 1 bcc  
HfNbTiV 0 0 1 bcc  
HfNbTiW 0.181 0 0.818 bcc  
HfNbTiZr 0 0 1 bcc bcc 

HfNbVW 0.545 0 0.454 none  
HfNbVZr 0.181 0 0.818 bcc  
HfNbWZr 0.272 0 0.727 bcc  
HfReTaTi 0.454 0 0.545 bcc  
HfReTaV 0.454 0 0.545 bcc  
HfReTaW 0.545 0 0.454 none  
HfReTaZr 0.545 0 0.454 none  
HfReTiV 0.636 0 0.363 none  
HfReTiW 0.545 0 0.454 none  
HfReTiZr 0.909 0 0.090 none  
HfReVW 0.454 0 0.545 bcc  
HfReVZr 0.909 0 0.090 none  
HfReWZr 0.727 0 0.272 none  
HfTaTiV 0.181 0 0.818 bcc  
HfTaTiW 0.272 0 0.727 bcc  
HfTaTiZr 0 0 1 bcc  
HfTaVW 0.363 0 0.636 bcc  
HfTaVZr 0.090 0 0.909 bcc  
HfTaWZr 0.272 0 0.727 bcc  
HfTiVW 0.181 0 0.818 bcc  
HfTiVZr 0.181 0 0.818 bcc  
HfTiWZr 0.727 0 0.272 none  
HfVWZr 0.818 0 0.181 none  

IrMoNiPd 0.454 0.545 0 fcc  
IrMoNiPt 0.272 0.727 0 fcc  
IrMoOsPd 0.545 0.454 0 none  
IrMoOsPt 0.636 0.363 0 none  
IrMoPdPt 0.272 0.636 0.090 fcc  
IrMoPdRe 0.636 0.363 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

IrMoPdRh 0 0.727 0.272 fcc  
IrMoPdRu 0.545 0.454 0 none  
IrMoPtRe 0.636 0.363 0 none  
IrMoPtRh 0.090 0.727 0.181 fcc  
IrMoPtRu 0.272 0.636 0.090 fcc  
IrNbPdPt 0.727 0.272 0 none  
IrNbPdRh 0.363 0.636 0 fcc  
IrNbPdRu 0.636 0.363 0 none  
IrNbPtRh 0.545 0.454 0 none  
IrNbPtRu 0.454 0.545 0 fcc  
IrNiOsPd 0.636 0.363 0 none  
IrNiOsPt 0.272 0.727 0 fcc  
IrNiPdPt 0 1 0 fcc  
IrNiPdRe 0.818 0.181 0 none  
IrNiPdRh 0.090 0.909 0 fcc  
IrNiPdRu 0.363 0.636 0 fcc  
IrNiPtRe 0.272 0.727 0 fcc  
IrNiPtRh 0.090 0.909 0 fcc  
IrNiPtRu 0.272 0.727 0 fcc  
IrOsPdPt 0.181 0.818 0 fcc  
IrOsPdRe 0.636 0.363 0 none  
IrOsPdRh 0.181 0.818 0 fcc  
IrOsPdRu 0.545 0.454 0 none  
IrOsPtRe 0.545 0.454 0 none  
IrOsPtRh 0 0.909 0.090 fcc  
IrOsPtRu 0.272 0.727 0 fcc  
IrPdPtRe 0.090 0.909 0 fcc  
IrPdPtRh 0.090 0.909 0 fcc  
IrPdPtRu 0.272 0.727 0 fcc  
IrPdReRh 0.181 0.727 0.090 fcc  
IrPdReRu 0.636 0.363 0 none  
IrPdRhRu 0.272 0.727 0 fcc  
IrPtReRh 0 1 0 fcc  
IrPtReRu 0.090 0.909 0 fcc  
IrPtRhRu 0 0.909 0.090 fcc  

MnMoNbRe 0.545 0 0.454 none  
MnMoNbTa 0.272 0 0.727 bcc  
MnMoNbTi 0.090 0 0.909 bcc  
MnMoNbV 0.090 0 0.909 bcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

MnMoNbW 0.545 0 0.454 none  
MnMoNbZr 0.727 0 0.272 none  
MnMoNiV 0.727 0.181 0.090 none  

MnMoReTa 0.636 0 0.363 none  
MnMoReTi 0.727 0 0.272 none  
MnMoReV 0.454 0 0.545 bcc  
MnMoReW 0.818 0 0.181 none  
MnMoReZr 0.636 0 0.363 none  
MnMoTaTi 0.090 0 0.909 bcc  
MnMoTaV 0.454 0 0.545 bcc  
MnMoTaW 0.545 0 0.454 none  
MnMoTaZr 0.818 0 0.181 none  
MnMoTiV 0.090 0 0.909 bcc  
MnMoTiW 0.636 0 0.363 none  
MnMoTiZr 0.636 0 0.363 none  
MnMoVW 0.454 0 0.545 bcc  
MnMoVZr 0.545 0 0.454 none  
MnMoWZr 0.818 0 0.181 none  
MnNbNiV 0.909 0 0.090 none  

MnNbReTa 0.545 0 0.454 none  
MnNbReTi 0.272 0 0.727 bcc  
MnNbReV 0.181 0 0.818 bcc  
MnNbReW 0.454 0 0.545 bcc  
MnNbReZr 0.363 0 0.636 bcc  
MnNbTaTi 0.272 0 0.727 bcc  
MnNbTaV 0.181 0 0.818 bcc  
MnNbTaW 0.727 0 0.272 none  
MnNbTaZr 0.636 0 0.363 none  
MnNbTiV 0.181 0 0.818 bcc  
MnNbTiW 0.636 0 0.363 none  
MnNbTiZr 0.545 0.090 0.363 none  
MnNbVW 0.363 0 0.636 bcc  
MnNbVZr 0.636 0 0.363 none  
MnNbWZr 0.818 0 0.181 none  
MnNiOsPd 0.909 0.090 0 none  
MnNiPdRe 0.909 0.090 0 none  
MnNiPdRu 0.909 0.090 0 none  
MnOsPdRe 0.636 0.363 0 none  
MnOsPdRu 0.727 0.272 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

MnPdReRu 0.636 0.363 0 none  
MnReTaTi 0.272 0 0.727 bcc  
MnReTaV 0.272 0 0.727 bcc  
MnReTaW 0.636 0 0.363 none  
MnReTaZr 0.545 0 0.454 none  
MnReTiV 0.636 0 0.363 none  
MnReTiW 0.636 0 0.363 none  
MnReTiZr 0.727 0 0.272 none  
MnReVW 0.545 0 0.454 none  
MnReVZr 0.727 0 0.272 none  
MnReWZr 0.818 0 0.181 none  
MnTaTiV 0.090 0 0.909 bcc  
MnTaTiW 0.636 0 0.363 none  
MnTaVW 0.545 0 0.454 none  
MnTaVZr 0.727 0 0.272 none  
MnTaWZr 0.818 0 0.181 none  
MnTiVW 0.363 0 0.636 bcc  
MnTiVZr 0.636 0 0.363 none  
MnTiWZr 0.636 0 0.363 none  
MnVWZr 0.727 0 0.272 none  
MoNbNiV 0.909 0 0.090 none  

MoNbReTa 0 0 1 bcc  
MoNbReTi 0 0 1 bcc  
MoNbReV 0 0 1 bcc  
MoNbReW 0.090 0 0.909 bcc  
MoNbReZr 0.363 0 0.636 bcc  
MoNbTaTi 0 0 1 bcc  
MoNbTaV 0 0 1 bcc  
MoNbTaW 0 0 1 bcc bcc 

MoNbTaZr 0.454 0 0.545 bcc  
MoNbTiV 0 0 1 bcc  
MoNbTiW 0 0 1 bcc  
MoNbTiZr 0 0 1 bcc  
MoNbVW 0 0 1 bcc  
MoNbVZr 0 0 1 bcc  
MoNbWZr 0.545 0 0.454 none  
MoNiOsPd 0.818 0.181 0 none  
MoNiOsPt 0.727 0.272 0 none  
MoNiPdPt 0.272 0.727 0 fcc  



 

321 

Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

MoNiPdRe 0.818 0.181 0 none  
MoNiPdRh 0.272 0.636 0.090 fcc  
MoNiPdRu 0.818 0.181 0 none  
MoNiPtRe 0.818 0.181 0 none  
MoNiPtRh 0.272 0.727 0 fcc  
MoNiPtRu 0.818 0.181 0 none  
MoNiReV 1 0 0 none  

MoOsPdPt 0.636 0.363 0 none  
MoOsPdRe 0.727 0.272 0 none  
MoOsPdRh 0.545 0.454 0 none  
MoOsPdRu 0.545 0.454 0 none  
MoOsPtRe 0.727 0.272 0 none  
MoOsPtRh 0.454 0.545 0 fcc  
MoOsPtRu 0.636 0.363 0 none  
MoPdPtRe 0.727 0.272 0 none  
MoPdPtRh 0.090 0.727 0.181 fcc  
MoPdPtRu 0.636 0.363 0 none  
MoPdReRh 0.545 0.454 0 none  
MoPdReRu 0.636 0.363 0 none  
MoPdRhRu 0.545 0.454 0 none  
MoPtReRh 0.545 0.454 0 none  
MoPtReRu 0.636 0.363 0 none  
MoPtRhRu 0.454 0.545 0 fcc  
MoReTaTi 0.272 0 0.727 bcc  
MoReTaV 0.272 0 0.727 bcc  
MoReTaW 0.272 0 0.727 bcc  
MoReTaZr 0.818 0 0.181 none  
MoReTiV 0 0 1 bcc  
MoReTiW 0.090 0 0.909 bcc  
MoReTiZr 0.272 0 0.727 bcc  
MoReVW 0.181 0 0.818 bcc  
MoReVZr 0.545 0 0.454 none  
MoReWZr 0.363 0 0.636 bcc  
MoTaTiV 0 0 1 bcc  
MoTaTiW 0 0 1 bcc  
MoTaTiZr 0.363 0 0.636 bcc  
MoTaVW 0 0 1 Bcc  
MoTaVZr 0.636 0.090 0.272 none  
MoTaWZr 0.545 0 0.454 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

MoTiVW 0 0 1 bcc  
MoTiVZr 0 0 1 bcc  
MoTiWZr 0.454 0 0.545 bcc  
MoVWZr 0.363 0 0.636 bcc  

NbPdPtRh 0.636 0.363 0 none  
NbPdRhRu 0.636 0.272 0.090 none  
NbPtRhRu 0.636 0.363 0 none  
NbReTaTi 0 0 1 bcc  
NbReTaV 0 0 1 bcc  
NbReTaW 0 0 1 bcc  
NbReTaZr 0.363 0 0.636 bcc  
NbReTiV 0 0 1 bcc  
NbReTiW 0 0 1 bcc  
NbReTiZr 0.272 0 0.727 bcc  
NbReVW 0.090 0 0.909 bcc  
NbReVZr 0.636 0 0.363 none  
NbReWZr 0.272 0 0.727 bcc  
NbTaTiV 0 0 1 bcc bcc 

NbTaTiW 0.090 0 0.909 bcc  
NbTaTiZr 0 0 1 bcc  
NbTaVW 0 0 1 bcc  
NbTaVZr 0.181 0 0.818 bcc  
NbTaWZr 0.272 0 0.727 bcc  
NbTiVW 0 0 1 bcc  
NbTiVZr 0 0 1 bcc bcc 

NbTiWZr 0.181 0 0.818 bcc  
NbVWZr 0.454 0 0.545 bcc  
NiOsPdPt 0.636 0.363 0 none  
NiOsPdRe 0.818 0.181 0 none  
NiOsPdRh 0.727 0.272 0 none  
NiOsPdRu 0.818 0.181 0 none  
NiOsPtRe 0.818 0.181 0 none  
NiOsPtRh 0.636 0.363 0 none  
NiOsPtRu 0.727 0.272 0 none  
NiPdPtRe 0.818 0.181 0 none  
NiPdPtRh 0.090 0.909 0 fcc  
NiPdPtRu 0.363 0.636 0 fcc  
NiPdReRh 0.818 0.181 0 none  
NiPdReRu 0.818 0.181 0 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

NiPdRhRu 0.727 0.272 0 none  
NiPtReRh 0.818 0.181 0 none  
NiPtReRu 0.818 0.181 0 none  
NiPtRhRu 0.272 0.727 0 fcc  
OsPdPtRe 0.454 0.545 0 fcc  
OsPdPtRh 0.363 0.636 0 fcc  
OsPdPtRu 0.545 0.454 0 none  
OsPdReRh 0.454 0.545 0 fcc  
OsPdReRu 0.636 0.363 0 none  
OsPdRhRu 0.636 0.363 0 none  
OsPtReRh 0.454 0.545 0 fcc  
OsPtReRu 0.454 0.545 0 fcc  
OsPtRhRu 0.181 0.818 0 fcc  
PdPtReRh 0.272 0.727 0 fcc  
PdPtReRu 0.454 0.545 0 fcc  
PdPtRhRu 0 1 0 fcc  
PdReRhRu 0.545 0.454 0 none  
PtReRhRu 0.454 0.545 0 fcc  
ReTaTiV 0 0 1 bcc  
ReTaTiW 0 0 1 bcc  
ReTaTiZr 0.727 0 0.272 none  
ReTaVW 0.090 0 0.909 bcc  
ReTaVZr 0.636 0 0.363 none  
ReTaWZr 0.454 0 0.545 bcc  
ReTiVW 0 0 1 bcc  
ReTiVZr 0.727 0 0.272 none  
ReTiWZr 0.363 0 0.636 bcc  
ReVWZr 0.636 0 0.363 none  
TaTiVW 0 0 1 bcc  
TaTiVZr 0.090 0 0.909 bcc  
TaTiWZr 0.272 0 0.727 bcc  
TaVWZr 0.454 0 0.545 bcc  
TiVWZr 0.272 0 0.727 bcc  

AlCrMoTiW 0.090 0 0.909 bcc bcc 

CoCrFeMnNi 0 1 0 fcc fcc 

CrNbTaVW 0.363 0 0.636 bcc  
CrNbTaVZr 0.727 0 0.272 none  
CrNbTaWZr 0.818 0 0.181 none  

CrHfMoNbTa 0.454 0 0.545 bcc  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

CrHfMoNbTi 0.090 0 0.909 bcc  
CrHfMoNbV 0.272 0 0.727 bcc  
CrHfMoNbW 0.636 0 0.363 none  
CrHfMoNbZr 0.181 0 0.818 bcc  
CrHfMoTaTi 0.363 0 0.636 bcc  
CrHfMoTaV 0.545 0 0.454 none  
CrHfMoTaW 0.727 0 0.272 none  
CrHfMoTaZr 0.818 0 0.181 none  
CrHfMoTiV 0.090 0 0.909 bcc  
CrHfMoTiW 0.272 0 0.727 bcc  
CrHfMoTiZr 0.545 0 0.454 none  
CrHfMoVW 0.454 0 0.545 bcc  
CrHfMoVZr 0.181 0 0.818 bcc  
CrHfMoWZr 0.909 0 0.090 none  
CrHfNbTaTi 0.181 0 0.818 bcc  
CrHfNbTaV 0.545 0 0.454 none  
CrHfNbTaW 0.545 0 0.454 none  
CrHfNbTaZr 0.454 0 0.545 bcc  
CrHfNbTiV 0.272 0 0.727 bcc  
CrHfNbTiW 0.363 0 0.636 bcc  
CrHfNbTiZr 0.181 0 0.818 bcc  
CrHfNbVW 0.727 0 0.272 none  
CrHfNbVZr 0.363 0 0.636 bcc  
CrHfNbWZr 0.818 0 0.181 none  
CrHfTaTiV 0.363 0 0.636 bcc  
CrHfTaTiW 0.454 0 0.545 bcc  
CrHfTaTiZr 0.545 0 0.454 none  
CrHfTaVW 0.636 0 0.363 none  
CrHfTaVZr 0.454 0 0.545 bcc  
CrHfTaWZr 0.909 0 0.090 none  
CrHfTiVW 0.181 0 0.818 bcc  
CrHfTiVZr 0.272 0 0.727 bcc  
CrHfTiWZr 0.727 0 0.272 none  
CrHfVWZr 0.727 0 0.272 none  

CrMoNbTaTi 0.181 0 0.818 bcc  
CrMoNbTaV 0.363 0 0.636 bcc  
CrMoNbTaW 0.181 0 0.818 bcc  
CrMoNbTaZr 0.545 0 0.454 none  
CrMoNbTiV 0.090 0 0.909 bcc  



 

325 

Supplementary Table 6, Continued.  

  none fcc bcc S.S(ML) S.S. Exp. 

CrMoNbTiW 0.090 0 0.909 bcc  
CrMoNbTiZr 0.363 0 0.636 bcc  
CrMoNbVW 0.454 0 0.545 bcc  
CrMoNbVZr 0.454 0 0.545 bcc  
CrMoNbWZr 0.727 0 0.272 none  
CrMoTaTiV 0.272 0 0.727 bcc  
CrMoTaTiW 0.090 0 0.909 bcc  
CrMoTaTiZr 0.636 0 0.363 none  
CrMoTaVW 0.363 0 0.636 bcc  
CrMoTaVZr 0.636 0 0.363 none  
CrMoTaWZr 0.909 0 0.090 none  
CrMoTiVW 0.090 0 0.909 bcc  
CrMoTiVZr 0.363 0 0.636 bcc  
CrMoTiWZr 0.636 0 0.363 none  
CrMoVWZr 0.636 0 0.363 none  
CrNbTaTiV 0.090 0 0.909 bcc  
CrNbTaTiW 0.090 0 0.909 bcc  
CrNbTaTiZr 0.636 0 0.363 none  
CrNbTiVW 0.090 0 0.909 bcc  
CrNbTiVZr 0.636 0 0.363 none  
CrNbTiWZr 0.636 0 0.363 none  
CrNbVWZr 0.727 0 0.272 none  
CrTaTiVW 0.090 0 0.909 bcc  
CrTaTiVZr 0.818 0 0.181 none  
CrTaTiWZr 0.727 0 0.272 none  
CrTaVWZr 0.727 0 0.272 none  
CrTiVWZr 0.727 0 0.272 none  

HfMoNbTaTi 0.272 0 0.727 bcc  
HfMoNbTaV 0.181 0 0.818 bcc  
HfMoNbTaW 0.272 0 0.727 bcc  
HfMoNbTaZr 0.363 0 0.636 bcc  
HfMoNbTiV 0.181 0 0.818 bcc  
HfMoNbTiW 0.090 0 0.909 bcc  
HfMoNbTiZr 0.272 0 0.727 bcc  
HfMoNbVW 0.181 0 0.818 bcc  
HfMoNbVZr 0.272 0 0.727 bcc  
HfMoNbWZr 0.545 0 0.454 none  
HfMoTaTiV 0.181 0 0.818 bcc  
HfMoTaTiW 0.272 0 0.727 bcc  



 

326 

Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

HfMoTaTiZr 0.181 0 0.818 bcc  
HfMoTaVW 0.181 0 0.818 bcc  
HfMoTaVZr 0.454 0 0.545 bcc  
HfMoTaWZr 0.545 0 0.454 none  
HfMoTiVW 0.272 0 0.727 bcc  
HfMoTiVZr 0.090 0 0.909 bcc  
HfMoTiWZr 0.454 0 0.545 bcc  
HfMoVWZr 0.636 0 0.363 none  
HfNbTaTiV 0.181 0 0.818 bcc  
HfNbTaTiW 0.181 0 0.818 bcc  
HfNbTaTiZr 0 0 1 bcc bcc 

HfNbTaVW 0.363 0 0.636 bcc  
HfNbTaVZr 0.090 0 0.909 bcc  
HfNbTaWZr 0.181 0 0.818 bcc  
HfNbTiVW 0.454 0 0.545 bcc  
HfNbTiVZr 0.090 0 0.909 bcc bcc 

HfNbTiWZr 0.272 0 0.727 bcc  
HfNbVWZr 0.454 0 0.545 bcc  
HfTaTiVW 0.363 0 0.636 bcc  
HfTaTiVZr 0.090 0 0.909 bcc  
HfTaTiWZr 0.272 0 0.727 bcc  
HfTaVWZr 0.454 0 0.545 bcc  
HfTiVWZr 0.272 0 0.727 bcc  

MoNbReTaW 0.090 0 0.909 bcc bcc 

MoNbTaTiV 0 0 1 bcc bcc 

MoNbTaTiW 0 0 1 bcc  
MoNbTaTiZr 0.272 0 0.727 bcc  
MoNbTaVW 0 0 1 bcc bcc 

MoNbTaVZr 0.363 0 0.636 bcc  
MoNbTaWZr 0.636 0 0.363 none  
MoNbTiVW 0 0 1 bcc  
MoNbTiVZr 0 0 1 bcc bcc 

MoNbTiWZr 0.363 0 0.636 bcc  
MoNbVWZr 0.454 0 0.545 bcc  
MoTaTiVW 0 0 1 bcc  
MoTaTiVZr 0.181 0 0.818 bcc  
MoTaTiWZr 0.545 0 0.454 none  
MoTaVWZr 0.454 0 0.545 bcc  
MoTiVWZr 0.545 0 0.454 none  
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Supplementary Table 6, Continued. 

  none fcc bcc S.S(ML) S.S. Exp. 

NbReTaTiV 0 0 1 bcc bcc 

NbTaTiVW 0 0 1 bcc  
NbTaTiVZr 0.090 0 0.909 bcc  
NbTaTiWZr 0.181 0 0.818 bcc  
NbTaVWZr 0.545 0 0.454 none  
NbTiVWZr 0.363 0 0.636 bcc  
TaTiVWZr 0.454 0 0.545 bcc  
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Appendix C Supplementary Information for Chapter 4 

Development of ultrahigh-entropy ceramics with tailored oxidation behavior 

William M. Mellora†, Kevin Kaufmannb†, Olivia F. Dippoa, Samuel D. Figueroab, Grant D. 

Schraderb, Kenneth S. Vecchioa,b‡ 

aMaterials Science and Engineering Program, UC San Diego, La Jolla, CA 92093, USA. 

bDepartment of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA. 

†These authors contributed equally.  ‡Corresponding author. 
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Supplementary Figure 8 Statistical analysis of elemental impact on predicted EFA. On the left, 

boxplots show the distribution of predicted EFA values for compositions containing the individual element. 

Notably, the ML model predicts Ti, Zr, and W to be slightly less likely to be present in compositions with 

a higher EFA. The box plot for each element is an analysis of 93 data points. On the right, the meaning of 

each component of a boxplot is denoted. Diamonds denote outliers in the dataset. The maximum is defined 

as the largest value in the dataset that is less than or equal to 1.5 times the interquartile range (IQR).  Next 

is Q3, which marks the middle number between the median and the largest value in the dataset.  The middle 

value of the data is marked by a bar within Q1 and Q3. The middle number between median and the smallest 

value is Q1. The range between Q1 and Q3 is called the interquartile range and describes the range of the 

middle 50% of the data. Lastly, the minimum marks the smallest value in the dataset that is greater than or 

equal to Q1 minus 1.5 times the IQR. 
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Supplementary Figure 9 EDS maps for each experimental composition.  An electron image and 

chemical maps for the corresponding 6 cations are shown for UHEC compositions: (a) CrMoNbTaVWC6, 

(b) HfMoNbTaVWC6.   
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Supplementary Figure 10 EDS maps for each experimental composition.  An electron image and 

chemical maps for the corresponding 7 cations are shown for UHEC compositions: (a) CrMoNbTaTiVWC7, 

(b) HfMoNbTaVWZrC7.   
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Supplementary Figure 11 EDS maps for experimental compositions.  An electron image and chemical 

maps for the corresponding 8 cations are shown for UHEC compositions: (a) CrMoNbTaTiVWZrC8, (b) 

HfMoNbTaTiVWZrC8.   
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Supplementary Figure 12 EDS maps for each experimental composition.  An electron image and 

chemical maps for the corresponding 9 cations are shown for each composition CrHfMoNbTaTiVWZrC9.  

The small regions enriched in Hf, Zr, and Cr evident in the maps are due to small amounts of oxides present 

of these three elements. 
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Supplementary Figure 13 Post-oxidation images of the samples.  Macroscopic images of the two 

samples show differences in the oxidation behavior.  The HfMoNbTaZrC5 (left) is compared with 

HfMoNbTaVWZrC7 (right). Scale bars 5mm. 
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Supplementary Figure 14 Analysis of the oxide edge and interface for HfMoNbTaZrC5.  EBSD and 

EDS maps for the edge of the oxide layer facing out to the environment Scale bars 25µm.  Note that phases 

are described by their primary cations instead of crystal structure. 
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Supplementary Figure 15Analysis of the oxide edge and interface for HfMoNbTaZrC5.  EBSD and 

EDS maps for the middle of the oxide layer and (9) the interface between the oxide layer and the HEC 

substrate.  Scale bars 25µm.  Note that phases are described by their primary cations instead of crystal 

structure. 
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Supplementary Figure 16 Analysis of the oxide edge and interface for HfMoNbTaZrC5.  EBSD and 

EDS maps for the interface between the oxide layer and the HEC substrate.  Scale bars 25µm.  Note that 

phases are described by their primary cations instead of crystal structure. 
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Supplementary Figure 17 Analysis of the transition layers within oxidized HfMoNbTaVWZrC7.  

EBSD and EDS maps for the edge of the oxide layer facing out to the environment.  Note the scale bar and 

that the phases are described by their primary cations instead of crystal structure. 
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Supplementary Figure 18 Analysis of the transition layers within oxidized HfMoNbTaVWZrC7.  

EBSD and EDS maps for the interface between the oxide layer and the UHEC transition layer.  Note scale 

change and that the phases are described by their primary cations instead of crystal structure. 
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Supplementary Figure 19Analysis of the transition layers within oxidized HfMoNbTaVWZrC7.  

EBSD and EDS maps within the (Hf,Zr)-deficient HEC transition layer.  Note scale bars vary between S10, 

S11, and S12 based on microstructure feature sizes.  Also note that phases are described by their primary 

cations instead of crystal structure. 
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Supplementary Table 7 Machine learning predicted EFA values for 6-9 cation compositions.  Results 

of the ML model’s predictions are provided for each composition. Compositions in bold were selected for 

experimental fabrication and characterization. Units: EFA in (eV/atom)-1
. 

Material 
# of 

Cations 
EFA Material 

# of 

Cations 
EFA 

CrMoNbTaVWC6 6 105 MoNbTaVWZrC6 6 54 

CrMoNbTiVWC6 6 88 HfTaTiVWZrC6 6 54 

CrMoNbTaTiVC6 6 87 CrHfNbTaTiVWZrC8 8 54 

CrMoNbTaTiVWC7 7 85 CrHfMoNbWZrC6 6 54 

CrMoTaTiVWC6 6 83 HfNbTiVWZrC6 6 53 

CrMoNbTaTiWC6 6 80 NbTaTiVWZrC6 6 53 

HfNbTaTiVZrC6 6 75 CrHfMoTiVZrC6 6 53 

CrNbTaTiVWC6 6 74 HfMoNbVWZrC6 6 53 

MoNbTaTiVWC6 6 73 CrHfTaTiVWZrC7 7 53 

CrHfMoNbTaWC6 6 73 CrMoTiVWZrC6 6 53 

CrMoNbVWZrC6 6 68 CrHfNbTaTiWZrC6 7 53 

CrHfMoNbVWC6 6 67 CrNbTaTiWZrC6 6 53 

CrHfMoNbTaTiC6 6 66 CrNbTaTiVWZrC7 7 52 

CrMoNbTaTiZrC6 6 66 HfNbTaTiVWC6 6 52 

CrMoNbTaWZrC6 6 66 MoNbTaTiWZrC6 6 52 

CrHfMoNbTaTiVC7 7 65 CrHfMoNbTaTiWZrC8 8 52 

CrMoNbTaTiVZrC7 7 64 HfMoTaVWZrC6 6 52 

CrHfMoNbTiVC6 6 64 CrHfMoTaVWZrC7 7 52 

CrMoNbTiVZrC6 6 64 CrHfMoNbTaTiVWC8 8 52 

CrHfMoNbTaVC6 6 63 CrHfMoNbTaWZrC7 7 52 
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Supplementary Table 7, Continued. 

Material 
# of 

Cations 
EFA Material 

# of 

Cations 
EFA 

CrHfMoNbTaVZrC7 7 63 CrHfNbTaVWZrC7 7 52 

CrMoNbTaVZrC6 6 63 CrHfMoNbTaVWZrC8 8 51 

CrHfMoTaVZrC6 6 63 CrHfMoNbTiWC6 6 51 

CrHfMoNbTaZrC6 6 62 CrHfMoTiVWC6 6 51 

HfMoNbTiVZrC6 6 62 HfMoTaTiVWZrC7 7 51 

HfMoNbTaVZrC6 6 62 CrHfTaTiVWC6 6 51 

CrHfMoNbTaTiVZrC8 8 61 CrHfMoTaTiWZrC7 7 51 

CrHfMoNbVZrC6 6 61 CrHfMoNbTaTiVWZrC9 9 51 

CrHfMoNbTiZrC6 6 61 CrMoNbTiWZrC6 6 50 

CrHfMoNbTaTiZrC7 7 61 HfMoTaTiWZrC6 6 50 

HfNbTaVWZrC6 6 60 HfMoNbTiWZrC6 6 50 

CrHfNbTiVZrC6 6 60 CrHfNbTiVWZrC7 7 50 

CrHfMoNbTaVWC7 7 60 CrMoNbTaTiWZrC7 7 50 

CrHfNbTaTiVZrC7 7 60 CrHfNbTaVWC6 6 50 

CrMoTaTiVZrC6 6 60 HfMoNbTiVWC6 6 50 

HfMoNbTaTiVZrC7 7 60 CrHfNbTaWZrC6 6 50 

CrHfNbTaVZrC6 6 60 MoNbTiVWZrC6 6 50 

HfMoNbTaTiZrC6 6 59 HfMoNbTiVWZrC7 7 50 

HfMoTaTiVZrC6 6 59 CrNbTaVWZrC6 6 50 

CrHfNbTaTiVC6 6 59 CrHfMoTaTiVWC7 7 49 

CrHfTaTiVZrC6 6 59 CrHfNbVWZrC6 6 49 
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Supplementary Table 7, Continued. 

Material 
# of 

Cations 
EFA Material 

# of 

Cations 
EFA 

CrMoNbTaVWZrC7 7 59 CrMoNbTiVWZrC7 7 49 

HfMoNbTaTiVWC7 7 58 CrHfMoNbTiVWC7 7 49 

CrHfMoTaTiVC6 6 58 CrTaTiVWZrC6 6 49 

HfMoNbTaWZrC6 6 58 CrHfTiVWZrC6 6 49 

HfMoNbTaTiWZrC7 7 58 CrHfMoNbVWZrC7 7 49 

HfMoNbTaTiVC6 6 58 HfMoTaTiVWC6 6 48 

CrHfMoNbTiVZrC7 7 58 CrHfMoNbTiWZrC7 7 48 

CrHfNbTaTiZrC6 6 58 CrHfTaVWZrC6 6 48 

HfMoNbTaTiWC6 6 57 CrHfMoTaTiWC6 6 48 

CrHfMoNbTaTiWC7 7 57 CrHfMoTiVWZrC7 7 48 

CrNbTaTiVZrC6 6 57 CrNbTiVWZrC6 6 48 

HfMoNbTaVWZrC7 7 57 MoTaTiVWZrC6 6 48 

CrHfMoTaVWC6 6 56 CrHfMoTaWZrC6 6 47 

CrMoTaVWZrC6 6 56 CrHfMoVWZrC6 6 47 

CrHfNbTaTiVWC7 7 56 CrHfNbTiVWC6 6 47 

CrHfMoTaTiVZrC7 7 56 CrMoTaTiVWZrC7 7 47 

MoNbTaTiVZrC6 6 56 CrMoNbTaTiVWZrC8 8 47 

CrHfNbTaTiWC6 6 55 CrHfMoTiWZrC6 6 47 

HfMoNbTaVWC6 6 55 CrHfNbTiWZrC6 6 47 

HfMoNbTaTiVWZrC8 8 55 HfMoTiVWZrC6 6 46 

MoNbTaTiVWZrC7 7 55 CrHfMoTaTiVWZrC8 8 46 
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Supplementary Table 7, Continued. 

Material 
# of 

Cations 
EFA Material 

# of 

Cations 
EFA 

HfNbTaTiWZrC6 6 55 CrMoTaTiWZrC6 6 46 

HfNbTaTiVWZrC7 7 54 CrHfTaTiWZrC6 6 46 

CrHfMoTaTiZrC6 6 54 CrHfMoNbTiVWZrC8 8 43 
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Supplementary Table 8 ICSD structure information for the matched phases.  The phase labels from 

the EBSD maps are linked with the structure prototype, space group, symmetry, and the lattice parameters 

in angstroms.  The last column denotes which oxidized sample the phase was found in the sample. 

Phase Label 
ICSD 

COD# 

Space 

Group 
Symmetry a (Å) b (Å) c (Å) Present in Sample 

(NbTa) Oxide 237585 𝑃𝑚𝑚𝑚 (47) Orthorhobmic 3.94 6.15 3.66 HfMoNbTaZrC5 

(TaNb) Oxide 60627 𝐼41/𝑎𝑍 (88) Tetragonal 13.32 13.32 6.12 HfMoNbTaZrC5 

(HfZr) Oxide 67004 𝑃𝑏𝑐𝑚 (57) Orthorhombic 5.04 5.25 5.09 HfMoNbTaZrC5 

MoC1-X 1326 𝑃𝑏𝑐𝑛 (60) Orthorhombic 4.72 6.00 5.20 HfMoNbTaZrC5 

HfMoNbTaZrC5 N/A 𝐹𝑚3̅𝑚 (225) FCC 4.52 4.52 4.52 HfMoNbTaZrC5 

(NbTa) Oxide 96 𝐼41/𝑎𝑍 (88) Tetragonal 13.32 13.32 6.12 HfMoNbTaVWZrC7 

(HfZr) Oxide 41010 
𝑃121/𝑐1 

(14) Monoclinic 5.12 5.19 5.28 

HfMoNbTaVWZrC7 

(MoW) Carbide 156478 
𝑃63/𝑚𝑚𝑐 

(194) Hexagonal 3.01 3.01 14.61 

HfMoNbTaVWZrC7 

W2C 77567 
𝑃63

/𝑚𝑚𝑐 (194) Hexagonal 2.99 2.99 4.72 

HfMoNbTaVWZrC7 

Depleted UHEC N/A 𝐹𝑚3̅𝑚 (225) FCC 4.44 4.44 4.44 HfMoNbTaVWZrC7 

HfMoNbTaVWZrC7 N/A 𝐹𝑚3̅𝑚 (225) FCC 4.44 4.44 4.44 HfMoNbTaVWZrC7 
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Appendix D Supplementary Information for Chapter 5 

Crystal symmetry determination in electron diffraction using machine learning 

Kevin Kaufmann1, Chaoyi Zhu2†, Alexander S. Rosengarten1†, Daniel Maryanovsky3, Tyler J. 

Harrington2, Eduardo Marin1, and Kenneth S. Vecchio1,2* 

1Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA. 
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3Department of Cognitive Science, UC San Diego, La Jolla, CA 92093, USA. 

*Correspondence to: kvecchio@eng.ucsd.edu. 

† These authors contributed equally to this work. 
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Supplementary Figure 20 Confusion matrices displaying the classification results for the 14 Bravais 

lattices.  A new set of diffraction patterns were classified by the ResNet50 (A) and Xception (B, C) 

architecture.  The two trained models were tested using newly collected diffraction patterns from the 

twenty-eight materials used to train the machine learning models.  The diagonal (blue shaded boxes) in 

these tables represent the successful matching of the CNN predictions to the true Bravais lattices of the 

sample. 
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Supplementary Figure 21 Performance of the Xception machine learning model on nine different 

materials. The convolutional neural network architecture classifies electron backscatter diffraction patterns 

collected from materials not used to train the model.  Correct classification is identified by the green squares 

instead of along the diagonal. 
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Supplementary Figure 22 Demonstration of machine learning aided EBSD’s capability to 

autonomously identify space groups in new materials. (A, D, G, J) An example electron backscatter 

diffraction pattern for each of the materials. Zone axes with the same symmetry can be seen in each 

diffraction pattern. (B, E, H, K) Results of training the algorithm to discriminate between space group 221, 

space group 223, and space group 229 crystal structures. (C, F, I, L) Resultant confusion matrix after testing 

the algorithm blindly on two different materials from the same space groups. 
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Supplementary Figure 23 Heatmaps elucidating the normalized importance of features (dark blue to 

dark red) in each diffraction pattern for classification of the correct Bravais lattice.  One example is 

presented for each material utilized in the training set. It is observed that the symmetry features, areas 

nearest the zone axes, present in the image produce the highest activations for determining their origin 

Bravais lattice. 
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Supplementary Figure 24 Heatmaps demonstrating the classification of diopside. (a) An electron 

backscatter diffraction pattern from the base centered monoclinic phase with 2-fold axes marked.  (b) The 

heatmap for the activations of the diffraction pattern for the base centered (BAC) monoclinic class.  (c) The 

heatmap for the same diffraction pattern with respect to the primitive orthorhombic class.  The symmetry 

features near the 2-fold axis produce the largest activations for each of these two classes. 

 

 

Supplementary Figure 25 Diagram of the materials and their Bravais lattice. For each of the fourteen 

Bravais lattices, diffraction patterns from at least two materials were collected.  Diffraction patterns from 

supplementary materials in each Bravais lattice were utilized to test the performance of the model without 

it having any prior knowledge of the material. 
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Supplementary Figure 26 Annotated image of the experimental setup within the SEM chamber. The 

sample is at 70 degrees from horizontal and is facing the EBSD detector. Some of the electrons which enter 

the sample may backscatter and exit the sample at the Bragg condition of the periodic atomic lattice planes.  

These electrons diffract to form Kikuchi bands corresponding to each of the lattice diffracting crystal 

planes.  Most commercial systems then use look-up tables of interplanar angles for user selected phases for 

orientation indexing. 
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Supplementary Figure 27 An example diffraction pattern for each of the 28 materials used for 

training the machine learning model.  This represents just one of the nearly infinite number of 

orientations, and therefore diffraction patterns, the crystal can occupy in three-dimensional space. 
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Supplementary Figure 28 Schematic describing the process of training a machine learning algorithm 

to recognize the symmetry features present in diffraction patterns.  In the presented approach, a small 

subset of the EBSD patterns were randomly selected from two materials per class and then randomly 

subdivided into a training and testing set.  The training set is then randomly divided again into a training 

set from which the machine learning model extracts features, and a validation set is used to test the 

usefulness of the features in correctly classifying the diffraction patterns.  The feature bank is constantly 

tuned and evaluated such that the learned features produce the highest accuracy in classifying the validation 

set.  When the machine learning algorithm determines it has found the best features for accurate 

classification, the learned filters are saved, and the predictive model can be applied to the classification of 

new diffraction patterns. 
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Supplementary Figure 29 Crystal structure relationships from the seven crystal systems to the 230 

space groups. (a) Illustration of the fourteen Bravais lattices and their associated symmetries. (b) A table 

of the 32 point groups and the crystal family they belong to. (c) An example of each of the 230 space groups. 

Space groups represent the minute details of atomic arrangement within a point group. (c) has been 

reproduced with permission from creator Frank Hoffmann under a creative commons (CC BY-NC-SA) 

license (64) and the crystal structures drawn with VESTA. 
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Supplementary Table 9 The point groups and their respective lattices are listed with the symmetry 

elements that are present for the crystal structure. 
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Appendix E Supplementary Information for Chapter 6 

Deep neural network enabled space group identification in EBSD 
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Supplementary Figure 30 Representative diffraction patterns from each material studied. The 

space group and material are denoted in the upper left corner of each diffraction pattern. 
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Supplementary Figure 31 Inverse pole figures of the entire dataset.  Orientation analysis shows 

the materials are of very low texture, typically in the range of 2-3 multiples of uniform density 

(M.U.D.). Note that the scale bars are all below 5 M.U.D.  The data is first plotted with the scale 

bars automatically determined by MTEX to show the data distribution.  The second set of plots 

uses the fixed scale of 0 to 5 M.U.D. to demonstrate that the data does not approach medium 

texture levels. 
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Supplementary Figure 32 Probability plots of mean angular deviation and band contrast for 

the entire dataset.  The pattern quality distribution of each material is assessed using mean angular 

deviation (MAD) and band contrast (BC) as descriptors.  Each plot is also annotated with the mean 

(µ) and standard deviation (σ).   
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Supplementary Figure 33 Schematic of the neural network.  In convolutional layers, a learnable 

filter is convolved across the image and the scalar product between the filter and the input at every 

position is computed to form a feature map.  Pooling layers are placed after convolutional layers 

to down sample the feature maps and produce coarse grain representations and spatial information 

about the features in the data.   A traditional dense neural network is placed as the last layer, where 

the probability that the input diffraction pattern belongs to each space group is computed. 
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Supplementary Figure 34 Histograms of mean angular deviation and band contrast in the 

training set for the associated model.  The pattern quality distribution of each material is assessed 

using mean angular deviation (MAD) and band contrast (BC) as descriptors.  Each plot is also 

annotated with the mean (µ) and standard deviation (σ). 
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Supplementary Figure 35 Inverse pole figures for each space group training set in the 

associated model.  The range of possible orientations are well represented for each class.  Note 

that the scale bars are all below 5 M.U.D. 

 

 

Supplementary Figure 36 Inverse pole figures for patterns based on correct or incorrect 

classification.  The distribution of orientations that were correctly classified and misclassified are 

very similar, suggesting texture is not having a profound effect.  Note that the scale bars are all 

below 5 M.U.D. 
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Supplementary Figure 37 Histograms of mean angular deviation and band contrast separated 

by correct or incorrect classification.  The pattern quality distribution of each material is 

assessed using mean angular deviation (MAD) and band contrast (BC) as descriptors.  Each plot 

is also annotated with the mean (µ) and standard deviation (σ). 

 

 

Supplementary Figure 38 Feature comparison for correct and incorrect classifications. The 

activations for the 229 class are studied when the pattern is correctly identified (middle) and 

misclassified to 255 (right). Similar information is identified; however, the zone axis activations 

are weaker for the misclassified pattern. 
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Supplementary Table 10 Material acquisition and processing.  The method of fabrication is listed 

for each material studied.  SPS denotes spark plasma sintering from a commercial powder.  The 

homogenization heat treatments were performed for one week in an inert atmosphere. 
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Supplementary Table 11 Number of diffraction patterns classified to each space group.  Space 

group 221; trained on FeNi3.  Space group 223; trained on Mo3Si.  Space group 225; trained on 

TaC.  Space group 227; trained on Ge.  Space group 229; trained on Ta.  Space group 230; trained 

on Al4CoNi2. 
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Supplementary Table 12 Number of diffraction patterns classified to each space group.  Space 

group 221; trained on FeNi3.  Space group 223; trained on Mo3Si.  Space group 225; trained on 

Al.  Space group 227; trained on Ge.  Space group 229; trained on Ta.  Space group 230; trained 

on Al4CoNi2. 
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Supplementary Table 13 Number of diffraction patterns classified to each space group.  Space 

group 221; trained on FeNi3.  Space group 223; trained on Mo3Si.  Space group 225; trained on 

TaC.  Space group 227; trained on Si.  Space group 229; trained on Ta.  Space group 230; trained 

on Al4CoNi2. 
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Supplementary Table 14 Number of diffraction patterns classified to each space group.  Space 

group 221; trained on FeNi3.  Space group 223; trained on Mo3Si.  Space group 225; trained on 

TaC.  Space group 227; trained on Ge.  Space group 229; trained on Fe.  Space group 230; trained 

on Al4CoNi2. 
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Supplementary Table 15 Number of diffraction patterns classified to each space group.  Space 

group 221; trained on FeNi3 and NiAl.  Space group 223; trained on Mo3Si.  Space group 225; 

trained on TaC and Ni.  Space group 227; trained on Ge and Si.  Space group 229; trained on Ta 

and Fe.  Space group 230; trained on Al4CoNi2. 
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Supplementary Table 16 Number of diffraction patterns classified to each space group.  The 

model was trained using a small subset of patterns from each of the available materials. 
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Appendix F Supplementary Information for Chapter 7 

Phase Mapping in EBSD using Convolutional Neural Networks 

Kevin Kaufmann1, Chaoyi Zhu2, Alexander S. Rosengarten1, Daniel Maryanovsky3, Haoren 

Wang1, and Kenneth S. Vecchio1,2 

 

1Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA 
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3Department of Cognitive Science, UC San Diego, La Jolla, CA 92093, USA 
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Supplementary Figure 39 Representative diffraction patterns from each phase in the six 

materials studied.  All patterns shown are collected from the material studied.  The sample 

number is denoted to the left of each group of patterns. 
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Supplementary Figure 40 Schematic of the neural network.  In convolutional layers, a learnable 

filter is convolved across the image and the scalar product between the filter and the input at every 

position is computed to form a feature map.  Pooling layers are placed after convolutional layers 

to down sample the feature maps and produce coarse grain representations and spatial information 

about the features in the data.   A traditional dense neural network is placed as the last layer, where 

the probability that the input diffraction pattern belongs to a given class is computed. These outputs 

are used to construct a phase map. 

 

 

Supplementary Figure 41 Histogram of band contrast values for the 430 stainless steel map.  

Band contrast values are binned in groups in steps of 5, starting from 0. The left edge value is 

included in the count for each bin, but not the right edge value. 
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Appendix G Supplementary Information for Chapter 8 

Efficient few-shot machine learning for classification of EBSD patterns 

Kevin Kaufmann1, Hobson Lane2,3, Xiao Liu4, and Kenneth S. Vecchio1,4* 
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Supplementary Figure 42 The categorical cross-entropy loss function. Categorical cross-entropy 

increases as the predicted probability diverges from the actual label. 

 

 

Supplementary Figure 43 Shapley value analysis for handwritten digits. Shapley values are 

computed for several new images to gauge the importance of features (present or not) in predicting 

the handwritten number.  The first column is the raw input image. The ensuing columns correspond 

to the Shapley values for each possible class in 0-9 order. 
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Supplementary Figure 44 Visual explanation of feature contributions.  Shapley values are 

computed for each input image to gauge the importance of features in the EBSPs.  The first column 

is the raw input image. The second column corresponds to the Shapley values for the correct 

prediction.  Columns three through seven correspond to incorrect classifications in softmax order. 
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Supplementary Figure 45 Example EBSPs from the Ni90Al10 sample.  An EBSP from (A) the Ni-

rich matrix and (B) the Ni3Al precipitates are shown as examples. 

 

 

Supplementary Figure 46  XRD Pattern for the Ni90Al10 sample. The peaks for Ni3Al (space 

group 221) and Ni (space group 225) are labeled with purple circles and green diamonds, 

respectively. 
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Supplementary Figure 47 Schematic of Neural Network Operating on an EBSP. Individual 

EBSPs are input to the neural network wherein a series of mathematical operations extract features 

learned during the training or fine-tuning process.  Selected feature maps obtained from several 

layers are shown. Eventually, the input image is reduced to a 2048-dimensional vector that is 

passed into a series of fully connected layers (FC) followed by multi-class logistic regression. 

 

Supplementary Table 17 Classification metrics by space group for the transfer learning model. 

Precision is the number of patterns correctly identified to a class divided by the total number of 

patterns identified as that class.  Recall is the percentage of patterns in a space group that were 

correctly identified. F1-score is the weighted harmonic mean of Precision and Recall.  Test EBSPs 

is the total number of diffraction patterns in the test set for the given class. 

Space Group Precision  Recall F1-score Test EBSPs 

221 0.89 0.98 0.93 25,955 

223 1.00 1.00 1.00 23,248 

225 0.99 0.94 0.96 62,277 

227 0.95 1.00 0.97 10,978 

229 0.98 0.96 0.97 19,374 

230 0.87 0.99 0.93 3,621 

 

  



 

380 

Supplementary Table 18 Classification metrics by space group for the model trained from 

scratch. Precision  is the number of patterns correctly identified to a class divided by the total 

number of patterns identified as that class.  Recall is the percentage of patterns in a space group 

that were correctly identified. F1-score is the weighted harmonic mean of Precision and Recall. 

Support is the total number of images in the test set. 

Space Group Precision  Recall F1-score Support 

221 0.83 0.94 0.88 25,955 

223 0.99 0.99 0.99 23,248 

225 0.98 0.87 0.92 62,277 

227 0.83 1.00 0.91 10,978 

229 0.89 0.93 0.91 19,374 

230 0.92 0.98 0.95 3,621 

 

  



 

381 

Supplementary Table 19 Comparison of the symmetry elements that describe each space 

group. For each space group in this work, the Bravais lattice and primary, secondary, and tertiary 

symmetry operations are detailed. Within the (𝟒/𝒎 𝟑̅ 𝟐/𝒎) point group, the secondary symmetry 

element is always a 3-fold rotary inversion, while the primary and tertiary symmetry operations 

vary. 

Space Group 

Number 

Space 

Group 

Name 

Bravais 

Lattice 
Symmetry and [Direction] 

   Primary 

[100]/[010]/[001] 

Secondary 

[111] 

Tertiary 

[110] 

221 𝑃𝑚3̅𝑚 Primitive 

Crystal is mapped 

onto itself by 

reflecting across a 

mirror plane 

perpendicular to 

[100]/[010]/[001] 

Crystal is 

mapped back 

onto itself by a 3-

fold rotary 

inversion in the 

[111] 

Crystal is mapped 

onto itself by 

reflecting across 

a mirror plane 

perpendicular to 

[110] 

223 𝑃𝑚3̅𝑛 Primitive 

Crystal is mapped 

onto itself by 

reflecting across a 

mirror plane 

perpendicular to 

[100]/[010]/[001] 

Crystal is 

mapped back 

onto itself by a 3-

fold rotary 

inversion in the 

[111] 

Crystal is mapped 

back onto itself 

by a diagonal 

glide in the [110] 

225 𝐹𝑚3̅𝑚 
Face 

Centered 

Crystal is mapped 

onto itself by 

reflecting across a 

mirror plane 

perpendicular to 

[100]/[010]/[001] 

Crystal is 

mapped back 

onto itself by a 3-

fold rotary 

inversion in the 

[111] 

Crystal is mapped 

onto itself by 

reflecting across 

a mirror plane 

perpendicular to 

[110] 

227 𝐹𝑑3̅𝑚 
Face 

Centered 

Crystal is mapped 

back onto itself by a 

diamond glide in the 

[100]/[010]/[001] 

direction 

Crystal is 

mapped back 

onto itself by a 3-

fold rotary 

inversion in the 

[111] 

Crystal is mapped 

onto itself by 

reflecting across 

a mirror plane 

perpendicular to 

[110] 

229 𝐼𝑚3̅𝑚 
Body 

Centered 

Crystal is mapped 

onto itself by 

reflecting across a 

mirror plane 

perpendicular to 

[100]/[010]/[001] 

Crystal is 

mapped back 

onto itself by a 3-

fold rotary 

inversion in the 

[111] 

Crystal is mapped 

onto itself by 

reflecting across 

a mirror plane 

perpendicular to 

[110] 

230 𝐼𝑎3̅𝑑 
Body 

Centered 

Crystal is mapped 

onto itself by gliding 

half the lattice 

vector in the [100]/a 

direction 

Crystal is 

mapped back 

onto itself by a 3-

fold rotary 

inversion in the 

[111] 

Crystal is mapped 

back onto itself 

by a diamond 

glide in the [110] 
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Appendix H Supplementary Information for Chapter 9 

Chapter 1 An Acquisition Parameter Study for Machine-Learning-Enabled 

Electron Backscatter Diffraction 
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* Corresponding Author 
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Supplementary Figure 48 Diffraction pattern with increasing frame averaging. A visual 

explanation of the observed changes based on the number of frames averaged during the capture 

of each diffraction pattern. 
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Supplementary Figure 49 Diffraction pattern with different detector tilt. A visual explanation 

of the observed changes based on the tilt of the EBSD detector above the horizontal. 
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Supplementary Figure 50 Diffraction pattern with decreasing sample-to-detector distance. A 

visual explanation of the observed changes based on the proximity of the EBSD detector to the 

sample. Larger detector distances are further from the sample. 

 



 

386 

 

Supplementary Figure 51 Diffraction pattern with variable accelerating voltage. A visual 

explanation of the observed changes based on the accelerating voltage applied to the incoming 

electrons. 

 

 

Supplementary Figure 52 A visual explanation of the observed changes based on the resolution 

of the EBSD detector. 
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Supplementary Figure 53 Visual overview of frame averaging on CNN classification for duplex 

steel.  (a) electron image of the region of dual-phase 2205 duplex steel.  (b) Hough-based EBSD 

phase map of the fcc (225) austenite (blue) and bcc (229) ferrite (yellow).  (c) phase map generated 

from EBSD patterns collected with no frame averaging applied (i.e. one frame). (d) phase map 

generated from EBSD patterns collected with five frame averaging applied.  (e)  phase map 

generated from EBSD patterns collected with ten frame averaging applied.  (f)  phase map 

generated from EBSD patterns collected with twenty frame averaging applied.  (g) phase map 

generated from EBSD patterns collected with thirty frame averaging applied.  (h) Plot showing the 

fraction of patterns indexed to each space group as a function of frame averaging.  Thirty frame 

averaging is the default parameter and is designated as such by the blue star for space group 225 

and a yellow star for space group 229.  Trend lines are fit with a 3rd order polynomial. Scale bar 

25µm. There are 3,848 diffraction patterns (pixels) in each phase map. 
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Supplementary Figure 54 Visual overview of detector tilt on CNN classification for duplex 

steel.  (a) phase map generated from EBSD patterns collected with a detector tilt of 14.2 degrees. 

(b) phase map generated from EBSD patterns collected with a detector tilt of 14.0 degrees.  (c)  

phase map generated from EBSD patterns collected with a detector tilt of 13.7 degrees.  (d)  phase 

map generated from EBSD patterns collected with a detector tilt of 13.5 degrees.  (e) phase map 

generated from EBSD patterns collected with a detector tilt of 13.3 degrees.  (f) Plot showing the 

fraction of patterns indexed to each space group as a function of detector tilt.  A detector tilt of 

13.7 degrees above horizontal is the default parameter and is designated as such by the blue star 

for space group 225 and a yellow star for space group 229.  Trend lines are fit with a 3rd order 

polynomial.  There are 3,848 diffraction patterns (pixels) in each phase map. 
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Supplementary Figure 55 Visual overview of detector distance on CNN classification for 

duplex steel.  (a) phase map generated from EBSD patterns collected with a sample-to-detector 

distance of 24.3 mm. (b) phase map generated from EBSD patterns collected with a detector 

distance of 21.8 mm.  (c)  phase map generated from EBSD patterns collected with a detector 

distance of 19.1 mm.  (d)  phase map generated from EBSD patterns collected with a detector 

distance of 16.8 mm.  (e) phase map generated from EBSD patterns collected with a detector 

distance of 14.3 mm.  (f) Plot showing the fraction of patterns indexed to each space group as a 

function of sample-to-detector distance.  A detector distance of 19.1 mm is the default parameter 

and is designated as such by the blue star for space group 225 and a yellow star for space group 

229.  Trend lines are fit with a 3rd order polynomial.  There are 3,848 diffraction patterns (pixels) 

in each phase map. 
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Supplementary Figure 56 Visual overview of accelerating voltage on CNN classification for 

duplex steel.  (a) phase map generated from EBSD patterns collected with an electron accelerating 

voltage of 10kV.  (b)  phase map generated from EBSD patterns collected with an electron 

accelerating voltage of 20kV.  (c)  phase map generated from EBSD patterns collected with an 

electron accelerating voltage of 30kV.  (d)  Plot showing the fraction of patterns indexed to each 

space group as a function of accelerating voltage.  An electron accelerating voltage of 20kV is the 

default parameter and is designated as such by the blue star for space group 225 and a yellow star 

for space group 229.  Trend lines are fit with a 3rd order polynomial.  There are 3,848 diffraction 

patterns (pixels) in each phase map. 
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Supplementary Figure 57 Visual overview of pattern resolution on CNN classification for duplex 

steel.  (a) phase map generated from EBSD patterns collected with a detector resolution of 156×128 (low).  

(b)  phase map generated from EBSD patterns collected with a detector resolution of 622×512 (medium).  

(c)  phase map generated from EBSD patterns collected with a detector resolution of 1244×1024 (high).  

(d)  Plot showing the fraction of patterns indexed to each space group as a function of EBSD pattern 

resolution.  The default pattern resolution is 1244×1024 and is designated as such by the blue star for space 

group 225 and a yellow star for space group 229.  Trend lines are fit with a 3rd order polynomial.  There 

are 3,848 diffraction patterns (pixels) in each phase map. 
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Supplementary Table 20 Pattern acquisition rates. A summary of the acquisition rates compared 

to the default settings used in this work. Default conditions: 30 frame averaging, high resolution, 

20kV accelerating voltage, 13.7 degree detector tilt, and 19.1 mm detector-to-sample distance. 

Units: Patterns/second (Hz). 

 




