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RESEARCH ARTICLE

An efficient exact method to obtain 
GBLUP and single-step GBLUP when the 
genomic relationship matrix is singular
Rohan L. Fernando1* , Hao Cheng1 and Dorian J. Garrick1,2

Abstract 

Background: The mixed linear model employed for genomic best linear unbiased prediction (GBLUP) includes the 
breeding value for each animal as a random effect that has a mean of zero and a covariance matrix proportional to 
the genomic relationship matrix (Ggg), where the inverse of Ggg is required to set up the usual mixed model equations 
(MME). When only some animals have genomic information, genomic predictions can be obtained by an extension 
known as single-step GBLUP, where the covariance matrix of breeding values is constructed by combining the ped-
igree-based additive relationship matrix with Ggg. The inverse of the combined relationship matrix can be obtained 
efficiently, provided Ggg can be inverted. In some livestock species, however, the number Ng of animals with genomic 
information exceeds the number of marker covariates used to compute Ggg, and this results in a singular Ggg. For such 
a case, an efficient and exact method to obtain GBLUP and single-step GBLUP is presented here.

Results: Exact methods are already available to obtain GBLUP when Ggg is singular, but these require working with 
large dense matrices. Another approach is to modify Ggg to make it nonsingular by adding a small value to all its 
diagonals or regressing it towards the pedigree-based relationship matrix. This, however, results in the inverse of Ggg 
being dense and difficult to compute as Ng grows. The approach presented here recognizes that the number r of 
linearly independent genomic breeding values cannot exceed the number of marker covariates, and the mixed linear 
model used here for genomic prediction only fits these r linearly independent breeding values as random effects.

Conclusions: The exact method presented here was compared to Apy-GBLUP and to Apy single-step GBLUP, both of 
which are approximate methods that use a modified Ggg that has a sparse inverse which can be computed efficiently. 
In a small numerical example, predictions from the exact approach and Apy were almost identical, but the MME from 
Apy had a condition number about 1000 times larger than that from the exact approach, indicating ill-conditioning of 
the MME from Apy. The practical application of exact SSGBLUP is not more difficult than implementation of Apy.

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In animal breeding, two equivalent mixed linear mod-
els have been used for genomic prediction using pheno-
types on genotyped individuals [1]. In the first, random 
effects of markers are explicitly included in the model 
[2, 3]. We will refer to this model as the marker effects 
model (MEM). In the second, the breeding value of each 
animal, which is a linear combination of the random 

marker effects, is included as a random effect [1, 2, 4, 5]. 
We will refer to this model as the breeding value model 
(BVM). The mixed model equations (MME) that corre-
sponds to the MEM has order p+ k, where p is the num-
ber of non-genetic effects and k is the number of marker 
covariates, and the MME that correspond to the BVM 
has order p+ Ng, where Ng is the number of animals. 
When genomic data were first available, the number Ng 
of animals with genotypic and phenotypic records was 
much smaller than the number k of marker effects. Thus, 
genomic prediction with the BVM was more efficient 
than using the MEM [1, 5], and prediction using this 
approach is now known as GBLUP.
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However, at present, in some livestock species such 
as dairy cattle, Ng has increased to over 100,000 if not 1 
million. When Ng exceeds k, the matrix Ggg of genomic 
relationships will have at least n− k eigen values that 
are zero, and therefore Ggg is guaranteed to be singular. 
In practice, depending on the effective population size, 
some of the smallest of the k largest eigen values may be 
very near to zero if not zero. In either event, the MME 
that require the inverse of Ggg cannot be employed to 
obtain GBLUP. In that situation, an alternate form of 
the MME [4, 6–8] that can accommodate a singular Ggg 
can be employed, but this results in a completely dense 
set of MME of order p+ Ng. Thus, when Ng is large, 
this formulation of the MME is not useful for comput-
ing GBLUP. An alternative is to use a modified matrix 
G∗ obtained from Ggg by adding a small value to all its 
diagonals or by regressing it towards the pedigree-based 
relationship matrix, A, so that it retains full rank, but this 
is no longer an exact representation of the model if the 
markers completely explain the breeding values. Further-
more, this modified relationship matrix still has a dense 
inverse, which may be impossible to compute when Ng is 
large.

Suppose the rank of Ggg is r ≤ k < Ng. Then, we will 
show here how to obtain exact GBLUP without approxi-
mation from a set of MME that has order p+ r, which 
can be much lower than p+ Ng . We also show how this 
approach can be used to obtain exact single-step GBLUP 
without approximation when some animals have not 
been genotyped. These formulations are useful to bet-
ter understand predictions that are obtained by using 
the recursive algorithm for “parents (core)” and “young 
(noncore)” animals i.e. Apy, which is gaining popular-
ity [9–13] as an approach to approximate the inverse of 
Ggg [9] or G∗ [13]. The exact inverse of the nonsingular 
matrix G∗ = 0.95Ggg + 0.05A will be dense whereas Apy 
approximates this with a sparse inverse [9, 10]. We will 
show here that when a full-rank G∗ is obtained by adding 
a small number to the diagonals of only noncore animals, 
the inverse calculated in Apy for a suitable choice of core 
animals will be sparse and an exact inverse of G∗, but the 
inverse may be ill conditioned. The approximate inverse 
calculated in Apy cannot ever be that of Ggg , which is sin-
gular when r < Ng. The Apy algorithm will never yield 
exact GBLUP predictions contrary to the claims in [9, 
11], but it has been demonstrated to be a useful approxi-
mation for some choices of G∗ [11–13].

Theory
Let Mg denote the centered marker genotype covari-
ate matrix of order Ng × k with Ng > k , which is the 
case when the number Ng of genotyped animals is larger 
than the number k of marker covariates. Then, the row 

rank r of Mg is r ≤ k < Ng [14]. Suppose Mg is ordered 
such that its first r rows are linearly independent and 
are denoted Mgi. It follows that the remaining Ng − r 
dependent rows of Mg, denoted Mgd can be written as a 
linear combination:

so that

Now, a commonly-used form of the genomic relationship 
matrix [5] becomes

where it can be seen that the last Ng − r rows are a linear 
combination of the first r rows. The last Ng − r columns 
of G are similarly a linear combination of the first r col-
umns. Thus, in this case, G is singular and its inverse does 
not exist. It can be seen from (2) that L′ can be written as:

where Ggdgi =
1
k
MgdM

′
gi

 and Ggigi =
1
k
MgiM

′
gi
.

GBLUP when G is singular
In the following, we will assume that the vector ug of 
breeding values of animals can be adequately modeled as:

where the vector α of marker effects is assumed to have 
zero mean and covariance matrix Iσ 2

α . It follows that the 
covariance matrix of the breeding values is:

where σ 2
u = kσ 2

α . To proceed, we further assume the fol-
lowing mixed linear model for the vector y of phenotypic 
values:

where β is a vector of non-genetic fixed effects, X and Z 
are incidence matrices relating β and ug to y, and e is a vec-
tor of residuals with zero mean and covariance matrix Iσ 2

e . 

Mgd = L′Mgi ,

(1)

Mg =

[

Mgi
Mgd

]

=

[

Mgi
L′Mgi

]

.

(2)
Ggg =

MgM
′
g

k

=
1

k

[

MgiM
′
gi

MgiM
′
gi
L

L′MgiM
′
gi

L′MgiM
′
gi
L

]

,

(3)L′ = GgdgiG
−1
gigi

,

(4)ug = Mgα,

(5)

Var(ug |Mg ) = MgM
′
gσ

2
α

= Ggg kσ
2
α

= Gggσ
2
u ,

(6)y = Xβ + Zug + e,
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Here, we have assumed that the markers fully explain the 
breeding values. If this is not the case, a random polygenic 
residual effect with zero mean and covariance matrix that 
is proportional to A can be included in the model.

Strategy I
When G is singular, one strategy to get the BLUP of u is 
to use the formula:

where β̂ is a solution to the system

and V = (ZGggZ
′σ 2

u + Iσ 2
e ) [7]. When Ng is large, this 

strategy is not computationally feasible because the 
matrix V is dense, has order Ng, and its inverse is needed 
in (7) and (8).

Strategy II
Another strategy is to get the solution to the following 
MME as proposed by Harville [6]:

where R−1 = I 1
σ 2
e
. These MME are dense and have order 

p+ Ng. Thus, although the above approaches do not 
require inverting Ggg, explicitly using these MME do not 
provide a feasible approach as the number Ng of geno-
typed animals approaches or exceeds a million, because 
storing and solving such large and dense system of equa-
tions would exceed the capacity of the typical computer 
used for genetic evaluation. An implementation with 
iteration on data using the PCG algorithm may be feasi-
ble by computing matrix products like Gggx in parts as 
1
k
Mg(Mg

′x) [15]. However, Aguilar et  al. [16] reported 
these asymmetric equations do not scale up well and suf-
fer convergence problems.

Strategy III
We show here that it is possible to obtain BLUP of ug by 
solving a set of MME that has order p+ r, which can be 
much lower than p+ Ng. To do so, the breeding values of 
the r animals with genotypes Mgi is denoted ugi and the 
breeding values of the Ng − r animals with genotypes 
Mgd is denoted ugd . The model for the breeding values in 
(4) can be written as:

(7)
ûg = Cov(ug , y

′)Var−1(y)(y − Xβ̂)

= GggZ
′V−1(y − Xβ̂),

(8)(X′V−1X)β̂ = X′V−1y,

(9)

[

X′R−1X X′R−1Z

GggZ
′R−1X GggZ

′R−1Z+ I

][

β̂

ûg

]

=

[

X′R−1y

GggZ
′R−1y

]

,

(10)

ug = Mgα

=

[

Mgi
Mgd

]

α,

and writing Mgd = L′Mgi as in (1), this becomes:

Note that the vector of breeding values given by (11) is 
identical to (4), and thus these two vectors have the same 
covariance matrix that is given by (5).

Now, using (11) for ug in (6), the mixed linear model for 
the phenotypic values can be written in terms of ugi as:

The random effect ugi of this model has order r and can 
be much lower than Ng the order of ug . Furthermore, as 
ug =

[

I
L′

]

ugi , the models given by (6) and (12) have the 

same first and second moments, and thus they are equiv-
alent models and yield the same BLUP for ug [7]. The 
MME for the model (12) are

where W = Z

[

I
L′

]

,G−1
gigi

 is the inverse of the r × r non-

singular matrix Ggigi =
1
k
(MgiM

′
gi
), and � =

σ 2
e

σ 2
u
. The 

BLUP of ugd is obtained as ûgd = L′ûgi .

Strategy IV
A key assumption in Strategy III is that the matrix Mg of 
marker covariates can be reordered such that the first r 
rows are linearly independent and the remaining depend-
ent rows can be expressed as a linear combination of the 
first set of r linearly independent rows. Determining the 
precise rank of Mg may be inexact as the eigen values 
of Ggg decay slowly [17]. On the one hand, if the cho-
sen Mgi contains less rows than the rank of Ggg, it would 
not be possible to express Mgd as Mgd = L′Mgi. On the 
other hand, if Mgd contains more rows than the rank of 
Ggg ,Ggigi will be singular. Even when the number of rows 
in Mgi is equal to the rank of Ggg ,Ggigi may be ill condi-
tioned if the smallest eigen value of Ggigi is close to zero. 
The condition number of a matrix is represented by the 
ratio of the largest to the smallest eigen value, and it is 1 
for a perfectly conditioned matrix and a large number for 
an ill-conditioned matrix. There are many combinations 
of individuals that can be placed in Mgi, but the condition 

(11)

ug =

[

Mgi
L′Mgi

]

α

=

[

I
L′

]

Mgiα

=

[

I
L′

]

ugi .

(12)y = Xβ + Z

[

I
L′

]

ugi + e.

(13)

[

X′X X′W

W′X W′W + �G−1
gigi

][

β̂
ûgi

]

=

[

X′y
W′y

]

,
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number of the resultant Ggigi may vary greatly accord-
ing to the chosen combination. The condition number 
of Ggigi will impact the condition number of the result-
ant MME, and poorly-conditioned equations take longer 
to solve iteratively than well-conditioned equations. In 
comparing the choice of core used in Apy in a pig evalu-
ation, Ostersen et  al. [18] reported similar numbers of 
PCG iterations for non-genomic analyses and 8 choices 
of core, but the correlation between the Apy-SSGBLUP 
and SSGBLUP ranged from 0.93 to more than 0.99 for 
genotyped animals. That paper did not report the crite-
rion used to determine PCG convergence.

One way to improve the condition number of the MME 
is to fit an equivalent model obtained by orthonormaliz-
ing the rows of Mgi. Suppose U = TMgi, where UU′ = I. 
Then, the transformed vector v = Tugi of breeding values 
will have a genomic covariance matrix:

Then, as in [17], formulating the model in terms of v , 
which has a well-conditioned covariance matrix, will 
result in a well-conditioned MME.

Another way to improve the condition of the MME 
without explicitly reordering Mg is by using an RQ 
decomposition [19] that involves expressing Mg as 
Mg = RU, where R is a lower triangular Ng × k matrix 
and U is a k × k orthogonal matrix. The RQ decompo-
sition applies to the rows of a matrix in the same man-
ner that the QR decomposition is applied to the columns. 
Exploiting the decomposition, the model equation for the 
phenotypic values can be written in terms of v = Uα as:

where now W = ZR. The MME for this model are:

and predictions for all individuals on the original scale 
can be obtained as ûg = Rv̂. Also, the marker effects can 
be obtained as α̂ = U′v̂. Note that this factorization does 
not require us to know or determine the rank of Mg. Fur-
thermore, the orthogonal matrix U can be obtained by 
applying the RQ factorization to just the first k rows of 

Var(v) = TVar(ugi)T
′σ 2

α

= TMgiM
′
gi
T′σ 2

α

= UU′σ 2
α

= Iσ 2
α .

y = Xβ + ZMgα + e

= Xβ + ZRUα + e

= Xβ + ZRv + e

= Xβ +Wv + e,

(14)

[

X′X X′W

W′X W′W + I
σ 2
e

σ 2
α

]

[

β̂
v̂

]

=

[

X′y
W′y

]

,

Mg, for which the number of operations is proportional 
to k3 [19]. The matrix R can be obtained as R = MgU

′.

Comparison to Apy‑GBLUP
The efficient algorithm to obtain the inverse of the additive 
relationship matrix is based on the property that the addi-
tive relationships between an animal and any non-descend-
ant (an individual that is not a descendant) can be written 
as a linear combination of the relationships between the 
non-descendant and the parents of the animal [20, 21]. This 
property of additive relationships also allows construction 
of the additive relationship matrix by the tabular method 
[22]. The so-called Apy algorithm [9, 10] attempts to extend 
this idea to genomic relationships by classifying animals 
into two groups: “core” and “noncore” animals. The Apy 
algorithm seems to imply that the relationship between a 
noncore animal and any other animal can be written as a 
linear combination of relationships between the other ani-
mal and the animals in the core group. We will refer to this 
property of the genomic relationships that is required for 
Apy as the Apy property. Provided this property holds, it 
is claimed that Apy results in an efficient inverse of Ggg 
that leads to exact calculations of GBLUP [9, 11]. However, 
when Ng > k ,Ggg is singular and cannot have an inverse. 
Thus, Apy-GBLUP cannot be exact.

To better understand the matrix portrayed as an inverse 
by the Apy algorithm, the genomic relationship matrix is 
partitioned into the core and noncore animals as follows:

where the subscripts c and n denote the core and noncore 
animals. The Apy algorithm implies that Gcc is nonsin-
gular and that Gnc can be written as Gnc = PGcc, where 
P = GncG

−1
cc . Similarly, Gcn = GccP

′. Now, using these 
results, Ggg can be written as:

where

Assuming D is nonsingular, the inverse of Ggg can be 
obtained as follows. We start by expressing Ggg as:

Then, the inverse of Ggg can be written as:

Ggg =

[

Gcc Gcn

Gnc Gnn

]

,

Ggg =

[

Gcc GccP
′

PGcc PGccP
′ +D

]

,

(15)D = Gnn − PGcc P
′.

Ggg =

[

I 0
P I

][

Gcc 0
0 D

][

I P′

0 I

]

.

(16)

G−1
gg =

[

I − P′

0 I

][

G−1
cc 0

0 D−1

][

I 0
−P I

]

=

[

G−1
cc 0
0 0

]

+

[

−P′

I

]

D−1
[

−P I
]

,
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which is identical to the formula given in Misztal et al. [9] 
provided D is diagonal.

To examine the situation when Ng > k and Ggg is sin-
gular, suppose the animals with genotypes in Mgi are 
considered as the core animals and those with geno-
types in Mgd are considered as the noncore animals. 
Then, Gcc = Ggigi ,Gnc = Ggdgi =

1
k
L′MgiM

′
gi

, and 
Gnn = Ggdgd = 1

k
L′MgiM

′
gi
L, and P = L′, where from (2) 

L′ can also be written as L′ = GgdgiG
−1
gigi

. Given this def-
inition of the core and noncore animals, it can be seen 
from (2) that the Apy property holds, because the rows 
of Ggg for the noncore animals is a linear function of 
those in the core. Furthermore, it can be seen from (2)  
that:

which shows that D is null, and thus (16) cannot be 
computed. In this situation, D can be replaced by Is for 
a positive scalar s. Then, (16) gives the exact inverse for 
a matrix G∗

gg of modified genomic relationships that is 
obtained by adding s to only the diagonals of the non-
core group. If the scalar s is chosen to be small, G∗

gg will 
be close to Ggg. Regardless of the size of s, the resulting 
inverse is sparse because the sub-matrix corresponding 
to Gnn in the inverse has non-zero elements only on the 
diagonal. If the core group is chosen such that Gcc has 
rank less than r the rank of Ggg, the matrix D will not be 
null, but as can be seen by examining Eq.  (2) and dem-
onstrated in the numerical example, it is not likely to be 
diagonal as assumed in the Apy algorithm. In this case 
the inverse computed by the Apy algorithm is the inverse 
of:

Gnn = Ggdgd

=
1

k
LL′MgiM

′
gi

= PGccP
′,

(17)G∗ =

[

Gcc GccP
′

PGcc PGcc P
′ + diag(D)

]

,

where diag( D) sets all the off-diagonal elements of D to 
zero, thus always leading to an approximation for that 
choice of core. Also, when Ggg is blended with A,D will 
generally not be diagonal (see Additional file 3), and the 
inverse obtained in Apy is of G∗ given by (17), where the 
off-diagonal elements of D have been set to zero.

Numerical example
A small example with seven animals is used to illustrate 
the calculation of GBLUP and Apy-GBLUP. The pedigree 
for the seven animals is in Table 1. Genotype covariates 
coded as −1, 0, 1 at four loci are in Table 2. Julia scripts 
and results for GBLUP by strategies I to IV and for Apy-
GBLUP are in Additional file 1. Only the calculations by 
strategy III and by Apy-GBLUP are described below.

Strategy III
The first step in this approach is to reorder the rows of 
Mg such that the first r rows are linearly independent, 
where r is the rank of Mg. As described below, this can 
be done using Gaussian elimination with pivoting on Mg 
to transform it to row echelon form, where all elements 
below the diagonal are zero. Starting in row i = 1, zeros 
are obtained below the diagonal by subtracting a mul-
tiple of row i from each subsequent row. Before doing 
these row operations to obtain zeros under the diagonal, 
the element with the largest absolute value is located in 
the sub-matrix comprising all rows below row i − 1 and 
all columns to the right of column i − 1. Then by swap-
ping rows and columns, this element is moved to the ith 
diagonal. If the element with the largest absolute value is 
zero, Gaussian elimination is terminated. The rank of the 
matrix is the number of non-zero diagonals in the trans-
formed matrix, and the rows used for Gaussian elimina-
tion provide a maximal set of linearly independent rows.

When Gaussian elimination was applied to genotype 
covariates in Table  2, the resulting matrix is in Table  3. 
All four diagonals of this matrix are non-zero, and so Mg 
has a rank equal to four. As a result of swapping rows, 
the rows were ordered as 2, 7, 1, 4, 5, 6, 3, where rows 

Table 1 Pedigree for numerical example

PV, BV and EBV are the phenotypic values, breeding values and the BLUPs of the 
BV

Animal Sire Dam PV BV EBV

1 0 0 99.25 −0.25 0.14

2 0 0 97.92 −0.94 −0.95

3 0 0 103.2 1.12 1.09

4 1 2 99.39 −1.01 −0.69

5 1 2 102.03 0.79 0.25

6 1 3 100.59 0.18 0.14

7 1 3 101.7 1.55 1.08

Table 2 Genotype covariates at four loci

Animal Locus 1 Locus 2 Locus 3 Locus 4

1 0.0 0.0 −1.0 0.0

2 −1.0 1.0 0.0 0.0

3 1.0 0.0 −1.0 0.0

4 −1.0 0.0 0.0 1.0

5 0.0 1.0 0.0 1.0

6 0.0 1.0 −1.0 0.0

7 1.0 1.0 −1.0 0.0
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2, 7, 1 and 4 were used for Gaussian elimination. Thus, 
these four rows are a linearly independent set, and they 
were taken to form Mgi and rows 5, 6, and 3 were taken 
to form Mgd . The genomic relationship matrix that was 
constructed using the reordered genotype covariates is 
in Table 4. The upper-left, 4 × 4 sub matrix of this rela-
tionship matrix, denoted Ggigi, gives the relationships for 
individuals 2, 7, 1, and 4, and it is non-singular because 
the genotype covariates for these four individuals are lin-
early independent. Now, the matrix L′ can be calculated 
using (3), and is in Table 5.  

The last three rows of the matrix Ggg of genomic rela-
tionships in Table 4 can be written as a linear combina-
tion of the first four rows as shown in (2), by using the L′ 
matrix in Table 5. Thus, breeding values for individuals 5, 
6, and 3 can be written as:

where ugi is the vector of breeding values for individuals 
2, 7, 1, and 4. Now, the phenotypes for these seven indi-
viduals are modeled in terms of ugi, which has a non-sin-
gular covariance matrix proportional to Ggigi . All seven 
individuals in this example have one phenotypic value, 
and so assuming that the vector β of fixed effects con-
tains a single element for the overall mean, the matrix X 

ugd = L′ugi ,

for this example is equal to a vector of seven 1s and Z is 
equal to an identity matrix of order seven. It follows that 
W =

[

I
L′

]

 for L′ in Table  5. The MME to fit the overall 

mean (µ) and the breeding values ugi are in Table 6, where 

a value of 1.0 was used for � =
σ 2
e

σ 2
u
. BLUP of ug is obtained 

as ûg = Wûgi. Results for strategies I through IV are in 
Additional file 1, and they are all identical, as expected. 
The condition numbers of the left-hand-side of the MME 
for strategies II through IV were 10.9, 11.3, and 6.8, dem-
onstrating the improved condition of the MME obtained 
by fitting a RQ transformed vector of breeding values.

Apy‑GBLUP
Here, we can see that if animals 2, 7, 1, and 4 are used as 
the core group, the Apy property is met because the last 
three rows of Ggg, which correspond to the animals in the 
noncore group, can be written as a linear combination of 
the first four rows, which correspond to the animals in 
the core group, using the L′ matrix in Table 5 (see Addi-
tional file  1). Equation  (2) shows that this property also 
holds for the columns of Ggg, where the last three col-
umns of Ggg can be written as a linear combination of the 
first four columns. In this case, the matrix D, the inverse 
of which is needed in the Apy algorithm, is null (Addi-
tional file 1). In order to proceed with the Apy algorithm, 
we set D = Is for a small value of s such as 0.0001. The 
inverse that is obtained from equation (16) will now be 
sparse because the sub-matrix corresponding to Gnn in 

Table 3 Genotype matrix transformed to  row echelon 
form by Gaussian elimination with pivoting

−1.0 1.0 0.0 0.0

0.0 2.0 −1.0 0.0

0.0 0.0 −1.0 0.0

0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

Table 4 Genomic relationship matrix

0.5 0.0 0.0 0.25 0.25 0.25 −0.25

0.0 0.75 0.25 −0.25 0.25 0.5 0.5

0.0 0.25 0.25 0.0 0.0 0.25 0.25

0.25 −0.25 0.0 0.5 0.25 0.0 −0.25

0.25 0.25 0.0 0.25 0.5 0.25 0.0

0.25 0.5 0.25 0.0 0.25 0.5 0.25

−0.25 0.5 0.25 −0.25 0.0 0.25 0.5

Table 5 The matrix L′ that relates Mgi to Mgd as Mgd = L
′
Mgi

0.0 1.0 −1.0 1.0

0.5 0.5 0.5 0.0

−0.5 0.5 0.5 0.0

Table 6 Mixed model equations for µ and ugi

The last two rows give the right-hand-side and the solutions of the equations

µ u2 u7 u1 u4

µ 7.0 1.0 3.0 1.0 2.0

u1 1.0 4.5 −1.0 1.0 −2.0

u7 3.0 −1.0 5.5 −3.5 3.0

u1 1.0 1.0 −3.5 9.5 −3.0

u4 2.0 −2.0 3.0 −3.0 6.0

rhs 704.08 96.62 305.62 99.12 201.42

sol 100.43 −0.95 1.08 0.14 −0.69



Page 7 of 12Fernando et al. Genet Sel Evol  (2016) 48:80 

the inverse is diagonal. Inverting a modified Ggg matrix, 
G∗
gg, by adding s to the diagonals of Ggg corresponding to 

the animals in the noncore group gives the same result 
(Additional file  1). Setting up and solving the MME for 
µ and ug assuming Var(ug ) = G∗

ggσ
2
u give results that are 

approximate but very close in this instance to the exact 
BLUP results obtained by strategies I through IV (Addi-
tional file  1), but the condition number of these MME 
was 56,548, which indicates that they are ill-conditioned 
relative to those for strategies II through IV. However, 
if individuals 2, 7, and 1 are chosen as the core animals, 
the Apy property does not hold. In that case, the last four 
rows of Ggg cannot be written as a linear combination 
of the first three rows (Additional file  2). Furthermore, 
the matrix D computed by using equation (15) is not 
diagonal (Additional file  2). Now, the matrix G∗

gg that is 
inverted in the Apy algorithm deviates substantially from 
Ggg, and as a result, solving the MME for µ and ug assum-
ing Var(ug ) = G∗

ggσ
2
u gives results that are substantially 

different from the exact BLUP (Additional file 2).
Recent publications [12, 13, 18] in which the Apy 

algorithm was applied to obtain a matrix portrayed 
as the inverse of the genomic relationship matrix use 
0.95Ggg + 0.05A rather than the singular Ggg. This 
approach applied to the example gives a solution that 
is neither the same as the exact solution obtained using 
any of the strategies I to IV (Additional file  1), nor the 
exact solution to the MME constructed with the blended 
genomic relationship matrix. However, the condition 
number of these equations was 62.1, which is much bet-
ter than that obtained without blending but poorer than 
with strategies II through IV.

Exact single‑step GBLUP when Ggg is singular
Single-step GBLUP (SS-GBLUP) was proposed [23, 24] 
to obtain genomic evaluations when genotypes are not 
available on all animals.

Strategy III
Let ug denote the breeding values of animals with geno-
types and um denote the breeding values of those without 
genotypes. Now, the mixed linear model for SSGBLUP can 
be written as:

It is convenient to similarly partition the vector of pheno-

typic values as y =

[

ym
yg

]

, where ym are phenotypic values 
from animals that were not genotyped and yg are from ani-
mals that were genotyped. However, because Ggg is singu-
lar, ug is written as in Eq. (11) in terms of ugi, and then the 
model becomes:

y = Xβ + Z

[

um
ug

]

+ e.

where S =

[

I
L′

]

,Wr = Z

[

I 0
0 S

]

, and ur =
[

um
ugi

]

. The 

MME that correspond to (18) are:

where

To obtain H−1
r , as in [23], um is written as:

where, in the last line, we have used the identity: 
AmgA

−1
gg = −(Amm)−1Amg . Now, ur is written in terms of 

ugi and ǫ as:

where ug = Sugi and T =

[

I − (Amm)−1AmgS
0 I

]

, and Hr 
is written as

Following [23], Var(ǫ) = (Amm)−1σ 2
a , Var(ugi) = Ggigiσ

2
u , 

and Cov(ǫ,ugi) = 0. Unlike in [23], two variance com-
ponents σ 2

a and σ 2
u are used here, where σ 2

a is the additive 
genetic variance and σ 2

u = kσ 2
α stems from the prior used 

for the marker effects (α), and its relationship to the genetic 
variance may not be straightforward [25]. Finally, H−1

r  is as 
follows:

where

(18)

[

ym
yg

]

= Xβ + Z

[

I 0
0 S

][

um
ugi

]

+ e

= Xβ +Wrur + e,

(19)

[

X′X X′Wr

W′
rX W′

rWr +H−1
r

][

β̂
ûr

]

=

[

X′y
W′

ry

]

,

Hr = Var(ur).

um = AmgA
−1
gg ug + um − AmgA

−1
gg ug

= AmgA
−1
gg ug + ǫ

= −(Amm)−1Amgug + ǫ,

ur =

[

I − (Amm)−1AmgS
0 I

][

ǫ
ugi

]

= T

[

ǫ
ugi

]

,

Hr = TVar

([

ǫ
ugi

])

T′.

H−1
r = (T′)−1

[

Amm 1

σ 2
a

0

0 G−1
gigi

1

σ 2
u

]

T−1

=

[

I 0

S′Agm(Amm)−1 I

]

[

Amm 1

σ 2
a

0

0 G−1
gigi

1

σ 2
u

]

[

I (Amm)−1AmgS

0 I

]

=

[

Amm 1

σ 2
a

AmgS 1

σ 2
a

S′Agm 1

σ 2
a

Q 1

σ 2
a
+G−1

gigi
1

σ 2
u

]

,

Q = S′Agm(Amm)−1AmgS.
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Following [26], the MME given in equation (19) can be aug-
mented to avoid the expression involving (Amm)−1 in Q. To 
do so, equation (19) is first rewritten to show the partitions 
for um and ugi. Note that the matrix Z has the following 
form:

where Zm relates ym to um and Zg relates yg to ug. Then, Wr 
can be partitioned as:

where Wgi = ZgS. Now the MME that show the partitions 
for um and ugi are:

Z =

[

Zm 0
0 Zg

]

,

Wr =

[

Zm 0
0 Zg

][

I 0
0 S

]

=

[

Zm 0
0 Wgi

]

,

where Wv = ZgR and Qv = R′Agm(Amm)−1AmgR.

Comparison to Apy‑SSGBLUP
The SSGBLUP method given in [23] requires computing 
the inverse of the matrix Ggg of genomic relationships and 
of the matrix Agg of additive relationships for the geno-
typed animals. At the time those papers were published, 
Ng was typically smaller than the number of markers so 
that Ggg was relatively small and of full rank. Since then 
Ng has greatly increased in most livestock applications. 
Computational effort in matrix manipulation is deter-
mined by the number of non-zero coefficients and these 
increase as Ng increases. To fully store a dense matrix of 
order one million in single precision requires about 4 TB. 
Therefore, it would be advantageous to have a sparse rep-
resentation of all the large matrices involved in the MME.

Furthermore, the matrix Ggg is singular when Ng > k 
and thus cannot be inverted when more animals than 

(20)









X′X X′
mZm X′

gWgi

Z′
mXm Z′

mZm + Amm σ 2
e

σ 2
a

AmgS
σ 2
e

σ 2
a

W′
gi
Xg S′Agm σ 2

e

σ 2
a

W′
gi
Wgi +G−1

gigi

σ 2
e

σ 2
u
+Q

σ 2
e

σ 2
a













β̂
ûm
ûgi



 =





X′y
Z′
mym

W′
gi
yg



,

where Xm and Xg are partitions of X corresponding to ym 
and yg. Consider now the following augmented MME:

(21)















X′X X′
mZm X′

gWgi 0

Z′
mXm Z′

mZm + Amm σ 2
e

σ 2
a

AmgS
σ 2
e

σ 2
a

0

W′
gi
Xg S′Agm σ 2

e

σ 2
a

W′
gi
Wgi +G−1

gigi

σ 2
e

σ 2
u

−S′Agm σ 2
e

σ 2
a

0 0 −AmgS
σ 2
e

σ 2
a

−Amm σ 2
e

σ 2
a























β̂
ûm
ûgi
c









=







X′y
Z′
mym

W′
gi
yg

0






.

These equations do not have Q in them, and so they may be 
easier to construct. However, the left-hand-side is not posi-
tive definite and it has been reported that these equations 
are poorly conditioned [26]. Elimination of c from Eq. (21) 
results in equation (20), and thus, solutions for β̂ , ûm and 
for ûgi from Eq. (21) are identical to those from Eq. (20).

Strategy IV
The model for SSGBLUP can also be formulated in terms 
of v as:

and the MME corresponding to model (22) are:

(22)

[

ym
yg

]

= Xβ + Z

[

I 0
0 R

][

um
v

]

+ e,

(23)









X′X X′
mZm X′

gWv

Z′
mXm Z′

mZm + Amm σ 2
e

σ 2
a

AmgR
σ 2
e

σ 2
a

W′
vXg R′Agm σ 2

e

σ 2
a

W′
vWv + I

σ 2
e

σ 2
α
+Qv

σ 2
e

σ 2
a













β̂
ûm
v̂



 =





X′y
Z′
mym

W′
vyg



,

the number of SNPs have been genotyped. This suggests 
that there should be a sparse representation of Ggg. Sup-
pose Ggg has rank r and it is ordered such that the first 
r rows are linearly independent. Then, the sub-matrix of 
the first r rows and columns of Ggg denoted Gcc gives the 
genomic relationships among the r core animals of the 
Apy algorithm, and that sub-matrix is nonsingular. The 
remaining n− r animals are referred to as noncore and 
their genomic relationship matrix is denoted Gnn. When 
the genomic relationship matrix has not been blended, a 
nonsingular matrix G∗ can be obtained by adding a small 
value to the diagonals of Ggg for the animals in the non-
core group, and in the inverse of G∗, the sub-matrix cor-
responding to Gnn will be diagonal. This exact inverse of 
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that particular G∗ can be obtained efficiently using the 
Apy algorithm given in [9]. When the genomic relation-
ship matrix is blended with A, the matrix resulting from 
the Apy algorithm is the exact inverse of the G∗ where 
all the off-diagonals of D have been ignored. That matrix 
may or may not be a close approximation of the blended 
genomic relationship matrix depending on the size of 
the core, the particular animals chosen for the core, the 
relationship among noncore animals and the relationship 
between core and noncore animals. Regardless of the 
form of the matrix the Apy algorithm is applied to, the 
resultant inverse is sparse.

The MME for Apy-SSGBLUP, which includes the 
inverse of G∗, are:

(24)









X′X X′
mZm X′

gZg

Z′
mXm Z′

mZm + Amm σ 2
e

σ 2
a

Amg σ
2
e

σ 2
a

Z′
gXg Agm σ 2

e

σ 2
a

Z′
gZg + [(G∗)−1 − A−1

gg ]
σ 2
e

σ 2
u













β̂
ûm
ûg



 =





X′y
Z′
mym
Z′
gyg



.

In addition to the inverse G∗, SSGBLUP requires the 
inverse of Agg. However, A−1

gg  is a dense matrix, and so 
subtracting it from the inverse of G∗ will make the result-
ant matrix dense.

Part of the appeal of the Apy algorithm was to obtain a 
sparse representation of the MME for SSGBLUP. Accord-
ingly, Misztal et al. [9] proposed that Apy could also be 
used to approximate the inverse of the nonsingular Agg . 
However, the nature of Agg depends on the genotyp-
ing strategy such that genotyping unrelated individuals 
results in a diagonal Agg whereas genotyping relatives 
results in non-zero off-diagonals between each related 
pair. If off-diagonal elements in the noncore sub matrix 
of Agg are not well predicted by PGccP

′, the Apy inverse 
can significantly depart from its true inverse as eas-
ily demonstrated by using an example (see Additional 
file 1). This means the adequacy of Apy applied to Agg will 
depend on the pedigree structure, the nature of the gen-
otyping strategy, and the choice of core group. Presum-
ably, this inadequacy of Apy for inverting Agg has been 
recognized because recent implementations [13] have 
adopted an alternative approach that is computationally 
more demanding than applying Apy to approximate the 
inverse of Agg. Rather than forming A−1

gg  prior to solving 
the MME, a partitioned matrix inverse result is used to 
calculate products such as A−1

gg x as Aggx − Agmq, where 
q is the solution to Ammq = Amgx. This requires storing 
the sparse matrices Agg ,Amg and the sparse Cholesky 
factors of Amm. Each PCG iteration involves a matrix 
product A−1

gg x for a different vector x, which requires one 
forward and one backward triangular solve to obtain q, 
two sparse matrix vector multiplications, and one vector 
subtraction.

Both the MME for Apy-SSGBLUP and that for SSGB-
LUP using strategy IV (SIV-SSGBLUP), include equations 
for the same fixed effects and the random effects cor-
responding to the breeding values of animals that were 
not genotyped. In the MME for Apy-SSGBLUP, there is 
an additional vector of random effects corresponding 
to the breeding values for animals that were genotyped, 
which comprises sub-vectors representing core and non-
core animals. In contrast, the MME for SSGBLUP using 
strategy IV contains a vector of random effects that is not 
larger than k regardless of the number of animals geno-
typed. If the core size in Apy-SSGBLUP was chosen to be 
k, Eq. (24) would contain an additional random effect of 
order equal to the number of noncore animals compared 

to Eq. (23), and this number increases with the number of 
animals genotyped.

Given a core of k animals, both MME contain a dense 
k × k matrix on the diagonal. Both MME contain the 
same sparse block on the diagonal for non-genotyped 
animals. Comparing the upper off-diagonals of the two 
sets of symmetric MME, that for Apy-SSGBLUP has 
the sparse Amg matrix whereas SIV-SSGBLUP has the 
product of that Nm × Ng matrix with the mostly dense 
Ng × k matrix R. Rather than forming the dense Nm × k 
product, matrix computations involving that matrix can 
be done more efficiently when Ng < Nm in parts (e.g. 
AmgRx = Amg (Rx)) storing only Amg and R in memory. 
The Apy-SSGBLUP MME contain on the upper diago-
nal a dense Nc × Nn block that does not appear in SIV-
SSGBLUP and which increases in size as more animals 
are genotyped. The computation required to form the 
diagonal block of SIV-SSGBLUP involves computing 
(Amm)−1Amgri, where ri is column i of R. This calculation 
is virtually identical to the computation of A−1

gg x in Apy-
SSGBLUP, but the former needs to be done for each gen-
otyped animal once whereas the latter needs to be done 
for each PCG iteration.

Discussion
When the number Ng of genotyped animals is larger than 
the number k of marker covariates, the matrix Ggg of 
genomic relationships becomes singular. In this situation, 
we have shown here how to obtain exact GBLUP without 
any approximation from either Eqs. (13) or (14) of order 
p+ r or p+ k, where r ≤ k is the rank of Gcc. The MME 
given by Eq. (9) can also be used to obtain GBLUP with-
out approximation, but these asymmetric MME are of 
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order p+ Ng. When more individuals are genotyped and 
Ng grows, the order of those MME (9) also grows. In con-
trast, the order of the MME presented here (Eqs. 13 and 
14) will remain constant even as Ng grows.

An alternative to these exact GBLUP calculations is 
used in Apy-GBLUP. Here, the pedigree is divided into 
two groups of animals: the core group and the noncore 
group. We have shown here that the inverse computed in 
the Apy algorithm is for a modified genomic relationship 
matrix, where the sub-matrix Gnn of genomic relation-
ships among the noncore group of animals is replaced by 
PGccP

′ + diag(D). If the core group is chosen such that 
the rank of Gcc is equal to the rank of Ggg ,D will be null 
and the Apy algorithm will fail. In that case, the diagonals 
of D can be set to some small value, but this can result in 
ill-conditioned MME as shown by the example in Addi-
tional file 1. The MME can be ill-conditioned even when 
D is not null but contains very small values on the diago-
nal. Although the MME for Apy-GBLUP will also grow 
with Ng, it contains a Ngd × Ngd block that is diagonal, 
and thus is very sparse.

The approach presented here can also be used to obtain 
exact SSGBLUP when some animals are not genotyped. 
In contrast to the Apy algorithm, the method presented 
here is never an approximation. In agreement with 
[10], “BVs of core individuals can all be written as linear 
combinations of effective SNP effects” when SNP effects 
fully explain the BV. In contrast to the claim in [10] that 
“BVs of noncore individuals depend approximately only 
on the BVs of the core individuals” we have shown that 
the BVs of noncore individuals are an exact linear func-
tion of the BVs of the core individuals when the rank 
of Gcc is equal to the rank of Ggg . This requires the core 
group to contain at least as many animals as the rank of 
Ggg . When the number of genotyped animals exceeds the 
number of markers, Ggg will be singular and its rank can-
not be greater than the number of markers. Only when 
the rank of Gcc is less than the rank of Ggg, will the “BVs 
of noncore individuals depend approximately only on the 
BVs of the core individuals”.

The Apy algorithm when applied to Agg may or may 
not be a good approximation depending on the particu-
lar Agg. It will be exact for any core if genotyped animals 
are all unrelated as the matrix D is strictly diagonal.The 
quality of the approximation will erode with increases in 
the number of large-magnitude off-diagonal elements in 
D. Demonstrating with real data that the Apy gives good 
results in one or more field data sets is no guarantee that 
it will perform well for all applications. This raises con-
cerns that the same could be true for the application of 
Apy to the genomic relationship matrix. When the num-
ber of genotyped individuals increases and the number 
of core animals remains constant, there may be a large 

increase in the number of off-diagonal coefficients in D. 
Those coefficients are ignored in the Apy algorithm, and 
the predictions approximated by Apy are expected to 
deviate further from the exact predictions as more coef-
ficients are ignored. Thus, inference that the Apy algo-
rithm based on 100,000 or 500,000 genotyped animals is 
appropriate cannot be extrapolated to similar data struc-
tures with a million or more animals genotyped.

If SNP effects do not fully explain the BV, an addi-
tional polygenic effect for all animals can be readily fit-
ted in addition to ugi, the breeding values explained by 
the markers for a subset of genotyped animals. Lourenco 
et  al. [12] used default options of BLUP90IOD2, which 
means they blended Ggg with A22, and included com-
petitive results from Apy compared to exact predictions 
obtained by direct inversion for various analyses with 
Ng that were smaller than 52,000. Fragomeni et  al. [11] 
limited their analyses to Ng = 100, 000 in order to allow 
direct inversion of a Ggg matrix based on 42,503 SNPs 
but do not mention whether blending was used. In the 
absence of blending, the rank of Ggg matrix could not 
exceed 42,503 and a direct inverse of Ggg does not exist. 
Pocrnic et  al. [27] simulated genotypes on 75,000 indi-
viduals and blended Ggg with Agg. They showed that Apy 
exceeded the accuracy of exact ssGBLUP by direct inver-
sion. Their QTL effects were simulated from a Gamma 
distribution, which creates a few loci with large effects. 
In those circumstances, methods such as BayesB typi-
cally outperform GBLUP [3], and Apy with a small set 
of core individuals may similarly benefit from reducing 
the dimension of the model. Masuda et al. [13] blended 
Ggg with Agg to guarantee nonsingularity of the blended 
matrix with Ng greater than 500,000. The exact inverse 
of that blended matrix will be a dense matrix of order 
Ng, which will make exact calculations computationally 
infeasible when Ng exceeds about 150,000. This makes 
it impossible to compare the accuracy of Apy approxi-
mations to exact predictions using that approach. They 
show high correlations between approximations for dif-
ferent core definitions but the correlations between their 
approximations and the exact predictions are not known.

There are no published results demonstrating the com-
parative accuracy of Apy and the exact approach when 
NG is too large for direct inversion of Ggg . However, using 
the exact SSGBLUP calculations presented in this paper 
such a comparison is feasible, requiring only special com-
putation for R and Q in the MME (23). Computation of 
the matrix Q involves the same calculations as required 
to impute genotypes for non-genotyped animals as pre-
sented in Fernando et  al. [28]. The computation of R is 
straightforward and analogous to matrix P that is funda-
mental to computations in the Apy algorithm. Accord-
ingly, we do not consider that the practical application 
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of exact SSGBLUP will be any more difficult than imple-
mentation of Apy.

Conclusions
When the number of genotyped animals exceeds the 
number of marker loci, the genomic relationship matrix 
cannot be full rank. We introduce an approach that parti-
tions the genotyped animals into two sets, one of which 
can be referred to as core animals, and the other as non-
core animals whose breeding values can be written as a 
linear function of the breeding values of core animals. The 
MME used for genomic prediction are then constructed 
with only the breeding values of the core animals, and 
with phenotpyes of the non-core animals contributing 
to the predictions for core animals through their linear 
relationships to the core animals. The estimated breed-
ing values of the non-core animals are obtained as a lin-
ear function of the estimates of the breeding values of 
the core animals. This gives exact solutions for all ani-
mals. Another approach is to blend the genomic rela-
tionship matrix with a numerator relationship matrix or 
a scaled identity matrix to ensure the blended genomic 
relationship matrix is full rank. In that case, standard 
mixed model computing procedures can be used, but the 
increase in computing effort will be proportional to the 
cube of the number of animals genotyped. That effort can 
be reduced by approximating the inverse of the blended 
genomic relationship matrix using the Apy algorithm. 
That approximation also partitions the animals into core 
and non-core groups, but explicitly fits both sets of ani-
mals in the MME. In some cases, it has been reported that 
this approach gives useful approximations. However, the 
computing effort for that approximate approach is similar 
to that of the exact approach introduced here.
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