
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Controlling The Physics of Humanoids

Permalink
https://escholarship.org/uc/item/6jb8b79w

Author
Backman, Robert

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6jb8b79w
https://escholarship.org
http://www.cdlib.org/

University of California, Merced

Controlling The Physics of Humanoids

A thesis submitted in partial satisfaction of the requirements

for the degree Master of Science

in

Electrical Engineering & Computer Science

by

Robert Backman

Committee in charge:

Marcelo Kallmannn, Committee Chair

Stefano Carpin

David Noelle

2014

c© Copyright by

Robert Backman

2014

The thesis of Robert Backman is approved, and it is acceptable in quality and

form for publication on microfilm and electronically:

David Noelle

Stefano Carpin

Marcelo Kallmannn, Committee Chair

University of California, Merced

2014

2

To my parents . . .

3

Table of Contents

1 Introduction . 1

1.1 Problem Statement . 2

1.2 Thesis Overview . 3

2 Related Work and Motivation . 4

2.1 Kinematic motions . 4

2.2 Early control strategies . 6

2.3 Motion capture . 7

2.4 Foot placement strategies . 10

2.5 Composite controllers . 12

2.6 Summary of related work and contributions 14

3 Physics Based Animation . 15

3.1 Simulation Environment . 15

3.2 Inspiration from Human Biomechanics 16

3.3 System Overview . 17

3.4 Physics Module . 18

3.4.1 Tracking control . 19

3.4.2 Virtual force control . 20

3.5 Animation Module . 22

3.6 Combining Animation and Physics Modules 23

4 A Graphical User Interface for Designing Physics Based Con-

trollers . 24

4

4.1 Time-Dependent Directed Acyclic Graph 25

4.1.1 Operation Nodes . 26

4.2 Trajectory Randomization to discover controllers 28

4.3 Parameters . 30

4.3.1 Control Parameters . 30

4.3.2 Feedback Parameters . 31

4.4 Case Study . 32

5 Application to Robotics . 38

5.1 System Architecture . 40

5.2 Results . 42

6 Learning Hand Configurations Through Back-propagation of an

Artificial Neural Network . 44

6.1 Introduction . 44

6.1.1 Motivation . 45

6.2 Related Work . 46

6.3 System Overview . 47

6.3.1 Data Capture . 47

6.3.2 Image Processing . 51

6.4 Neural Net . 52

6.4.1 Training . 52

6.4.2 Error Measurement . 53

6.4.3 Effect of changing noise function 55

6.4.4 Performance of different noise function 56

5

6.4.5 Additional test . 58

6.5 Operation . 58

6.6 Future Work . 59

6.7 Conclusion . 59

7 Conclusion . 60

References . 61

6

List of Figures

1.1 Vicon motion tracking system. 2

1.2 Character rig and keyframe animation curves. 3

2.1 Image from Continuous Character Control with Low-Dimensional

Embeddings by Levine et al. 5

2.2 Image from Feature-Based Locomotion Controllers by deLasa et al. 5

2.3 Image from Physically Based Motion Transformation by Popovic

et al. 6

2.4 Image from Adapting Simulated Behaviors For New Characters by

Hodgins et al. 6

2.5 Image from Virtual Model Control: by Pratt et al. 7

2.6 Image from Momentum Control for Balance: by Macchietto et al. 8

2.7 Image from Data-Driven Biped Control by Lee et al. 9

2.8 Image from Sampling-based Contact-rich Motion Control by Liu et

al. 9

2.9 Image from SIMBICON by Yin et al. 10

2.10 Image from Capture Point: A Step toward Humanoid Push Recov-

ery by Pratt et al. 11

2.11 Image from Contact-aware Nonlinear Control of Dynamic Charac-

ters by Muico et al. 11

2.12 Image from Generalized Biped Walking Control by Coros et al. . . 12

2.13 Image from Composable Controllers for Physics-Based Character

Animation by Faloutsos et al. 13

7

2.14 Image fromLocomotion Skills for Simulated Quadrupeds by Coros

et al. 13

2.15 Image from Terrain Runner: Control, Parameterization, Composi-

tion, and Planning for Highly Dynamic Motions by Liu et al. . . . 13

3.1 Three types of joint constraints. (Images from ODE wiki) 16

3.2 Contact constraint for collision handling. (image from ODE wiki) 16

3.3 Support polygon during double support. 17

3.4 Data flow of the system. 18

3.5 Simplified model for collision detection (left) and full character

model (right). 19

3.6 Global targets may be difficult to reach with joint control (left).

Virtual forces can be effective (right). 21

3.7 Character performing balance and reaching 22

4.1 Snapshot of system UI . 24

4.2 UI elements for configuring the simulation and character parameters. 25

4.3 Animation nodes can be based on spline input (left) or feedback

input (right). 27

4.4 Operation nodes, in top-down left-right order: addition, multipli-

cation, modulation and switch. 28

4.5 The stance state. 32

4.6 Swing Y trajectory. 32

4.7 The swing Y network. 32

4.8 The Z position of the foot. 33

4.9 The X rotation of the foot. 33

8

4.10 Arm Trajectories. 33

4.11 Trajectories to control arm swing. 34

4.12 Constant values for the virtual force controller. 34

4.13 Feedback Terms. 35

4.14 Sagittal Control. 35

4.15 Example walk from completed network. 35

4.16 Topology of the complete network. 36

5.1 GUI components for getting sensor data(left) and sending individ-

ual DOF commands(right). 39

5.2 The HOAP-3 humanoid robot (left) and its virtual model (right). 40

5.3 The left image illustrates a computed collision-free path and chan-

nel with given clearance radius. The right image shows the ex-

panded nodes of the A* search during the path computation. . . . 40

5.4 Overall system architecture for controlling the robot. 41

5.5 A path planning and execution example. 41

5.6 Footstep generator using the path planning funnel algorithm. . . . 41

6.1 Kinect mounted to tripod next to user 48

6.2 Pointcloud converted to polygon mesh 49

6.3 Image conversion UI . 50

6.4 Example output images from data capture. Red dots on top row

represent the output vector. 50

6.5 Neural Net user interface. 52

6.6 A typical plot of the convergence rate of the training. 54

6.7 Perlin noise(Left)vs random noise(Right). 54

9

6.8 Evolution of weight values using Perlin noise. 55

6.9 Evolution of weight values using random noise. 55

6.10 Error convergence of random noise. 56

6.11 Error convergence of Perlin noise. 57

6.12 Each class represents a different finger. 57

6.13 Trained network running in a realtime environment. 58

10

List of Tables

11

Vita

2010-2013 Teaching Assistant UC Merced

2010-2013 Graduate Student Researcher UC Merced, Computer Graphics

2003-2010 Freelance 3D artist.

2006-2008 Content contributor PSD Magazine.

2005-2008 Graphic Designer IMD Graphics Napa.

Publications

Computer Animation and Virtual Worlds 2013 (CAVW). Designing Controllers

for Physics Based Characters with Motion Networks. R. Backman, M. Kallmann

Motion in Games 2012 (MIG). Modeling Controllers for Physically Simulated

Characters with Motion Networks.R. Backman, M. Kallmann

UCM SoE Technical Report 2011. Walking Gait Generation for HOAP3 Hu-

manoid Robot. Y. Huang, R. Backman M. Kallmann

ICRA 2010. A Skill-Based Motion Planning Framework for Humanoids. M.

Kallmann, Y. Huang, R. Backman

12

CHAPTER 1

Introduction

There is a huge drive in the computer animation world to understand the physics

of human motion in order to synthesize realistic motions. The industry standard

approach is to use either motion capture devices (Figure 1.1) or key framed ani-

mation (Figure 1.2) to generate kinematic(position/angle based) motion data as

input to a virtual character.

This approach is sufficient for many tasks and results in very nice looking mo-

tion, however it has several limitations. The first problem is that it takes a large

amount of human effort and sophisticated equipment to capture the motions or

a large amount of time for animators to hand make the motions. Kinematic mo-

tions are also difficult to transfer between characters of different morphologies; an

active field of research trying to solve this is called kinematic retargeting. Addi-

tionally, since kinematic animation is a purely data driven approach, the resulting

animations are limited to the motions that have been captured and typically are

unrealistic when there are disturbances or changes in the environment. Since

the range of human motions is so vast, possibly infinite, a purely data driven

kinematic approach can not store all the possible human motions. To solve the

inherent issues with kinematic animation techniques researchers are looking at

kinetic or dynamic(energy/force based) motion synthesis techniques. A dream

of many researchers in animation is to understand the underlying principals of

human motion to allow a character to generate new motions and quickly react to

a dynamic environment.

1

Using physics to generate motions is more difficult since the designer no longer

has direct control over the characters configuration but instead has control over

the forces that are being applied. Controlling a character at the force/torque

level, as opposed to the position/velocity level has the advantage that it is easier

to react to disturbances in the environment, since these can be incorporated into

the characters internal forces and feedback mechanisms. Additionally controlling

the forces of the characters allows for a much larger range of output motions

from an equivalent amount of kinematic data. Finally, discovering the low level

principals of control for a physics based character has the potential to solve issues

with retargeting since a physics based controller structure is independent of a

character morphology.

Figure 1.1: Vicon motion tracking system.

1.1 Problem Statement

Developing physics based character controllers is an active field of research, how-

ever, little work has gone towards transferring these technologies to people with

no programming experience. Additionally, there is no standardization across con-

trollers since the framework is often tightly coupled with the related skill, so it is

usually difficult to extend them to new skills.

2

Figure 1.2: Character rig and keyframe animation curves.

1.2 Thesis Overview

Chapter 2 will explore the relevant related work to physics based character an-

imation, starting with kinematic motion transformation, then the development

of simple physics based controllers and finally to multi-skill controllers. Chap-

ter 3 will first look at the function of physics simulation then will go to a system

overview of our system. Chapter 4 describes the primary contribution of my thesis;

which is a user interface that allows non-programmers to develop physics based

controllers. Chapter 5 describes my work developing a control system for a real

humanoid robot. Chapter 6 describes a side project using the XBox Kinect to

recognize hand configurations with the hopes of using it as an interface to control

a physics based character.

3

CHAPTER 2

Related Work and Motivation

This chapter starts by exploring different work with kinematic motion data in

section 2.1.It then looks at early control strategies for physics based characters in

section 2.2. Then, in section 2.3, it explores some attempts at getting a physics

based character to follow motion capture data. Section 2.4 will look at a common

strategy for balance control by stepping. In section 2.5 we describe some more

comprehensive multi-skill controllers that have been developed. Finally in section

2.6 we summarize the progress of controllers and explain the direction that this

research is hoping to open for the field.

2.1 Kinematic motions

Physics based animation has its roots in Kinematic animation. Researchers have

been interested in ways to modify a kinematic motion to achieve a new objective,

that way a single kinematic motion could be used to produce a whole set of new

motions. We will first look at various techniques of kinematic animation to un-

derstand the foundation of physics based animation.The state of the art approach

for real-time motion generation remains based on kinematic animations, typically

using a finite set of motion capture or key-framed clips augmented with some

blending and warping. For example, Levine et al. [1] show how a small number

of motions can control a kinematic character in real time. The method learns a

reduced dimensionally motion model that allows them to synthesize new motions

within the range of the training motions. But as with any kinematic approach,

4

the motions generated are limited to the examples given. Physics can also be

used to transform kinematic animations. For instance, de Lasa et al. [2] show a

feature-based method for creating controllers for dynamic characters of varying

morphologies. Objective terms are developed within a prioritization algorithm to

allow the character to preserve features such as center of mass, angular momentum

and end effector positions.

Figure 2.1: Image from Continuous Character Control with Low-Dimensional

Embeddings by Levine et al.

Figure 2.2: Image from Feature-Based Locomotion Controllers by deLasa et al.

Popovic et al. [3] use a space-time optimization approach to transform motions

in physically accurate ways. Their method combines the expressive richness of

the input animation with the controllability of space-time optimization to allow

motions to be transferred to kinematic characters with very different morphologies

while preserving the style.This approach is ideal but it must be customized for

the given task and the developer is left with the task of determining the objective

function to optimize.

5

Figure 2.3: Image from Physically Based Motion Transformation by Popovic et

al.

2.2 Early control strategies

Since the 90s researchers have been implementing increasingly robust control

strategies for achieving a diverse set of skills for physics based characters. Early

work by Hodgins et al. [4] showed how controllers could be adapted to new char-

acters. They start with a running controller for a man then show how it can

be adapted to a woman, child and a fictional character. Their system is robust

enough to adapt online, so a character can change morphologies at runtime and

the controller can maintain functionality.This was an interesting first work but

their method relies on a functioning controller to be created, which can take a

large amount of work and it is not clear that it generalizes beyond locomotion.

Figure 2.4: Image from Adapting Simulated Behaviors For New Characters by

Hodgins et al.

6

Laszlo et al. [5] explored limit cycle control to combine a closed loop animation

cycle with open loop feedback control. Their system is able to maintain balance

and follow paths while preserving the style of the input motion cycles. Virtual

model control developed by Pratt et al. [6] was a key insight to how to control in-

dividual parts of an articulated figure using a Jacobian transpose method initially

developed for robotics. This work was further developed by Pratt et al. [7] where

they used velocity based control strategies to achieve fast walking. Virtual model

control is widely used due to its simplicity for implementation and its stability.

Our work uses Virtual Model Control extensively, thus becoming the foundation

for our balance and tracking control.

Figure 2.5: Image from Virtual Model Control: by Pratt et al.

2.3 Motion capture

The role of physically simulated characters in video games and movies has been an-

ticipated for quite some time but to this date is mostly present as passive rag-doll

interactions. Promising research has however been proposed to improve physics

based characters while maintaining real-time performance and the realism of mo-

tion capture data. Macchietto et al. [8] used momentum control so a character can

follow motion capture data while responding to large disturbances. Their system

7

shows impressive results of a character standing on a platform on one foot who is

able to maintain balance and produce realistic responses with no input motion,

by using a full body optimization to maintain a zero sum angular momentum.

If a character is pushed in the head the arms and leg will counter the force by

moving against the push. By implementing a control policy to reduce the over

all angular momentum of a character during walking a very natural arm swing

motion is automatically synthesized. This method shows promising results but it

is not clear how this can be generalized beyond standing in place and balancing.

Perhaps this can be integrated in a future version of our system.

Figure 2.6: Image from Momentum Control for Balance: by Macchietto et al.

Methods for automatically switching from kinematics to physics only when

needed have been developed by Zordan et al. [9]. This is an approach that has

been adopted by the industry in games such as Grand Theft Auto or Madden

football, where the characters follow kinematic motions until a collision with the

environment is detected. Then the final state of the kinematic motion is used as

the initial state of the physics simulation. Using a hybrid approach with both

kinematic and physics based animation seems very promising, and our system is

based on a similar hybrid approach. Methods for extracting the style in a motion

capture clip have been transferred to physically simulated characters by Lee et

al. [10]. They are able to extract the style from a motion capture walk and use

it as input to a steerable walking controller for a physics based character. Their

8

controller works by modulating the speed of the input motion and performing a

parallel forward dynamics simulation to correct from deviations between the input

and output motions. It would be highly desirable to use motion capture sequences

as a starting point for a controller, and this paper became an inspiration for our

work, since our approach modulates input motions to achieve a stable controller.

Figure 2.7: Image from Data-Driven Biped Control by Lee et al.

Complex motion capture sequences have also been achieved with physically

simulated characters by Lie et al. [11], however this requires computationally heavy

sampling strategies and is not robust to disturbances. Their system performs a

bidirectional search of the input torques needed to make a physics based character

achieve some objectives defined in the input animation sequence. Since we aim

to have realtime execution and controllability of a control running an expensive

offline process is not feasible.

Figure 2.8: Image from Sampling-based Contact-rich Motion Control by Liu et

al.

DaSilva et al. [12] explored adaptation of human styles from motion capture

to Physics-based characters. The use of motion capture data is desirable because

9

it guarantees realistic motions, but it also serves to broaden our understanding

of the principles of how humans (and other animals) interact with the physical

world.

2.4 Foot placement strategies

Human locomotion is difficult to simulate, mainly because the motion is typically

not statically balanced, it is an inherently unstable system. Many researchers

have investigated foot placement strategies in order to maintain dynamic balance

while walking. Yin et al. [13] introduced simple feedback rules for the swing leg to

produce robust walking behavior called SIMBICON. Our system is used to create

a SIMBICON like controller.

Figure 2.9: Image from SIMBICON by Yin et al.

Tsai et al. [14] used an Inverted Pendulum (IP) model for the swing foot

placement in locomotion. Kajita et al. [15] used Zero Moment Point (ZMP)

strategies to determine swing foot location. While usual IP and ZMP strategies

assume that the contact surface is a plane, Pratt et al. [16] have explored a more

general capture point method that can generalize to non flat surfaces. Using

the ZMP and IP models for balance are promising but they require an analytical

solution to a pretty complex problem. We need strategies such as these for staying

balanced but we look at ways of automatically determine the control parameters.

Muico et al. [17] proposed a system that looks several steps ahead to determine

contact states that can keep a character balanced.

10

Figure 2.10: Image from Capture Point: A Step toward Humanoid Push Recovery

by Pratt et al.

Figure 2.11: Image from Contact-aware Nonlinear Control of Dynamic Characters

by Muico et al.

11

These foot placement control strategies work well for individual locomotion

skills and they provide foundations for more complex systems of combined behav-

iors.

2.5 Composite controllers

With the development of many low level balance control schemes many researchers

have investigated how to incorporate them into a more diverse skill set. Coros et

al. [18] demonstrated robust bipeds performing various skills such as pushing and

carrying objects, extending early work on the use of virtual forces. One of the

goals of our work is to make a set of controllers that are created in a generalized

way that can all be used on the same character.

Figure 2.12: Image from Generalized Biped Walking Control by Coros et al.

Faloutsos et al. [19] determined a range of controller operations considering ini-

tial conditions (pre-conditions) using a Support Vector Machine to learn the range

of post/pre-conditions that allows controllers to be concatenated together.Our

work looks at determining the range of output states (post-conditions) that a

controller can get the character to given an initial state (pre-condition).

Coros et al. [20] developed a task based control framework using a set of

balance-aware locomotion controllers that can operate in complex environments [21].

Jain et al. [22] explored an optimization approach to interactively synthesize

physics based motion in a dynamic environment. Coros et al. [23] developed

a robust parameterizable control framework for a simulated quadruped.This is

perhaps one of the related works that is closest to our own. They build a system

12

Figure 2.13: Image from Composable Controllers for Physics-Based Character

Animation by Faloutsos et al.

so a user can have control of the input trajectories. However their system assumes

that a functioning controller has been developed, our system allows a controller

to be designed from the bottom up.

Figure 2.14: Image fromLocomotion Skills for Simulated Quadrupeds by Coros et

al.

Finally, recent work by Liu et al. [24] have showed impressive results able to

sequence controllers in order to perform parkour-style terrain crossing.

Figure 2.15: Image from Terrain Runner: Control, Parameterization, Composi-

tion, and Planning for Highly Dynamic Motions by Liu et al.

13

2.6 Summary of related work and contributions

Previous work in physics-based character animation has focused on the develop-

ment of successful controllers for a number of tasks and situations. The primary

goal of my thesis is to introduce a system that is able to expose the creation and

exploration of such controllers to designers in an intuitive way. In doing so our

system proposes two main contributions: 1) a set of data processing nodes to

model controllers with graph-like connections able to form complete control feed-

back loops, and 2) a simple and effective sampling-based algorithmic approach to

automatically achieve robustness and parameterization of designed controllers.

14

CHAPTER 3

Physics Based Animation

Here I give a brief overview of physics simulations in section 3.1 and describe

the primary requirements. In section 3.2 we explore human balance strategies.

Section 3.3 gives a brief overview of our system, and then we go into more depth

concerning the physics module in section 3.4 and the animation module in section

3.5. Finally in section 3.6 we show how we combine these two modules together

to build a unified control framework.

3.1 Simulation Environment

A fundamental requirement for physics based animation is to use a physics simu-

lation. The simulation must be able to handle rigid body dynamics with collision

detection. The primary constraints for characters are hinge joints, universal joints,

ball and socket joints (with one,two and three DOF respectively) as shown in Fig-

ure 3.1. Additionally there are contact constraints (Figure 3.2) that are created at

each frame between objects that are colliding. These contact constraints are es-

sentially ball and socket joints that have zero resistance to tension. At each frame

of the simulation the dynamics of the rigid bodies are updated. This means that,

based on the external forces coupled with existing constraints, each rigid body is

assigned a new position, velocity, orientation and rotational velocity. There are

many possible physics simulation environments but for my research I primarily

used Open Dynamics Engine(ODE) since it is fast, free and well documented.

15

Figure 3.1: Three types of joint constraints. (Images from ODE wiki)

Figure 3.2: Contact constraint for collision handling. (image from ODE wiki)

3.2 Inspiration from Human Biomechanics

Generating realistic humanoid motions is an especially difficult problem since we

are all experts in humanoid dynamics. From the moment we are born we start

developing our sense of motion, both from self experience and watching others.

That is not to say it is a trivial problem since it takes several years for a human

to build the dexterity and strength to allow bipedal locomotion and many more

years to learn to do more complex skills like gymnastics. A typical person may

not be aware of the actual control system they develop in order to walk and stay

balanced but for the most part the controls are very similar across individuals. To

maintain static balance (slow motions) we modulate our Center Of Mass (COM)

by moving our upper body to maintain balance. If we want to stay still we keep

our COM directly above our feet, more specifically within the convex polygon

defined by the outline of our feet called the support polygon Figure 3.3.

16

Figure 3.3: Support polygon during double support.

In the case where we are not able to stabilize our COM, because of limitations

in our movement, we can change the contact polygon by taking a step in the right

direction. A quick experiment can show how robust our control algorithm is. If

you walk up to someone and push them slightly they will lean into your push.

If you push them sufficiently hard they will be unable to compensate by leaning

and have to take a step away from you to maintain balance. Additionally we

can modulate our angular momentum to maintain balance, for example swinging

your arms while you are falling can help rotate your body for an optimal landing

orientation. For more energetic motions we maintain not the COM but the Zero

Moment Point(ZMP) or Center of pressure within the support polygon since at

high speeds the overall Kinetic energy of the system becomes important to balance.

3.3 System Overview

The core of our system has two main modules: an animation module and a physics

module. The animation module generates target angles based on input trajecto-

ries. The physics module contains a tracking controller that produces the torques

necessary to drive each joint of the physically simulated character towards the tar-

get angles specified by the animation module. Additionally, the physics module

has a virtual force controller that adds additional torques to achieve higher level

requirements such as staying balanced or achieving a global position of a body

17

part in the joint hierarchy. See Figure 3.4 for an overview of the main parts of

the system.

Figure 3.4: Data flow of the system.

The animation module operates at 60fps feeding a stream of postures to the

physically simulated character. The output trajectories are specified in joint an-

gles, or also as end-effector positions, which are then converted to joint angles

using Inverse Kinematics (IK).

The physically simulated character is composed of a set of rigid bodies con-

nected by hinge, universal and ball joints as shown in Figure 3.5. Each rigid body

in the character is approximated by an oriented bounding box for fast collision

handling. The character is simulated using ODE and is running at 1200 FPS. The

reason for the high simulation frame rate is to handle high speed contacts, which

is a potential problem with typical forward dynamic simulations.

3.4 Physics Module

The Physics Module has two main components: tracking control and virtual force

control. The tracking control makes the character follow joint angles specified by

the animation module. The virtual force control allows higher level goals such as

maintaining balance, global effector goals and gravity compensation.

18

Figure 3.5: Simplified model for collision detection (left) and full character model

(right).

3.4.1 Tracking control

A Proportional Derivative (PD) servo at each joint is responsible for tracking the

target angular value θgoal and rotational velocity vgoal specified from the animation

module for each rigid body. We use PD gain coefficients of kp = 4kn/rad and

kd = 2
√
kp.

The goal angle θgoal for each joint can be either specified in local coordinates

or in a heading-based frame. The heading-based frame is calculated by starting

with the root joint global orientation then aligning it with the world up vector.

Knowing the heading of the character is useful for encoding the notion of front,

back, left and right of the character independent of its orientation and is critical for

balance feedback. However, this approximation can be a problem if the character

flips upside down since the heading will suddenly change. If there are inputs that

cannot be achieved, as is common with PD tracking joint angles, it will approach

the target as close as possible.

19

3.4.2 Virtual force control

Virtual Model Control (VMC) was introduced by Pratt et al.[6] for bipedal robots

and has subsequently been used in many systems such as[18]. Considering the

character is under actuated(the root is not controllable), it is desirable to control

certain components with external forces. It would be a trivial matter to have a

character stay balanced and track arbitrary motions by applying external forces to

each rigid body that composes the character, however this would effectively defeat

the purpose of physics simulation since the result would typically be unrealistic.

Applying forces to arbitrary rigid bodies is commonly called the ’god force’ since

it essentially allows a character to violate the laws of physics and act as if there

were strings attached to its body parts like a puppet. To approximate this level

of global control we can imagine a virtual external force acting on a rigid body to

achieve some goal, then convert this virtual force to internally realizable torques

that span from the affected body up the joint hierarchy to a more stationary body.

For example, to control the position of a character’s hand in global coordinates

we calculate a virtual force that will move the hand towards a goal configuration

(see Figure 3.6), and then convert this virtual force into a set of torques that can

be applied to the arm joints to achieve the goal of precise hand placement. Ideally

this chain of rigid bodies should span all the way to the foot in contact with the

ground but in practice it only needs to go to the torso of the character.

Another use of VMC is to control the swing foot during a walk cycle, since

it will rarely be at the same state as the input motion, this can be critical for

preventing premature foot contact with the ground. To maintain static balance

of the character we employ a similar virtual force on the COM to bring its floor

projection to the center of the support polygon and then convert the virtual force

to joint torques for the stance leg. It is also a simple way to control the velocity

of the COM while walking.

20

Figure 3.6: Global targets may be difficult to reach with joint control (left).

Virtual forces can be effective (right).

Gravity compensation torques are also computed to allow lower gain(less stiff)

tracking by proactively countering the effects of gravity. For each joint that is

considered for gravity compensation the COM and mass of the descendant joints

is calculated, then a torque is applied that would counter the moment this mass

would create. Gravity compensation is typically only applied to the upper body

but can also be used for the swing leg for walking.

An important component of our balance strategy is controlling the orientation

of the torso independent of the contact configuration. Without considering the

root orientation the character typically leans over and falls as soon as it lifts the

swing leg, due to the sudden change in torque requirements for the stance leg.

However, since the torso has no parent joints directly in contact with the ground

it cannot directly be actuated, so instead a virtual torque is calculated for the

root that must be distributed to the stance leg. For double support this torque is

distributed to both legs.

With these components we are able to achieve full body posture control to

maintain balance while completing complex global objectives, such as touching

a characters toe while standing on one foot and holding the arm parallel to the

ground, as shown in Figure 3.7.

21

Figure 3.7: Character performing balance and reaching

3.5 Animation Module

The animation module creates kinematic motions that are used as input to the

physics module. The motion can be described as a sequence of full body postures

determined at each frame by spline trajectories controlling joint angles or effector

trajectories (that are later converted to angles by IK). Trajectories can be encoded

by a sparse list of control points and tangents or by a dense list of points that are

linearly interpolated (typically the case of mocap data). Another common type

of trajectory in our system is a boolean step function, where each control point is

constrained to be either zero or one, representing true or false. These trajectories

are useful for toggling the activity of different components of the system.

The output may be a combination of the above methods, for example the upper

body may be driven by Euler angles derived from motion capture data while

the lower body may be driven by feet IK trajectories. The methods described

above can create simple motions that maintain balance, such as jumping to a

known goal, but they fail when there are external disturbances or changes in

the environment, or if the motion gets complicated with large sudden changes in

22

contact. Typically, to control balance, a separate system of feedback controllers is

layered over the animation module to override or modulate the reference motions

that are produced. But we are interested in a composite/unified approach that

brings feedback terms directly into the animation module.

3.6 Combining Animation and Physics Modules

In addition to having control points (or frames) serving as input for the animation

module, feedback variables become additional inputs to the animation system and

gain parameters become additional outputs. Trajectories can thus control any

parameter in the system and the results of the physics simulation can modify the

trajectories. For example, for jumping, a trajectory is needed for representing a

global gain multiplier for the tracking control so the character can become stiff

before jumping, then less stiff during flight, then gradually stiffer to the default

value for landing. Another trajectory can be used to change the gains on a virtual

force that is computed for the swing foot that gradually transitions towards the

end of a step.

By exposing the lowest level control parameters to the designer we raise the

risk of them creating non-functioning controllers, but we also provide the potential

of exploration and creation of endless possible controllers. In the next chapter we

will describe our user interface for exposing these modules to a designer.

23

CHAPTER 4

A Graphical User Interface for Designing

Physics Based Controllers

This chapter will describe our User Interface(UI) that allows a designer to build a

functioning controller for a physics based character. Section 4.1 looks at the time-

dependent directed acyclic graph, a fundamental data structure of our system.

Then in section 4.2 we show how to modify and parameterize a controller by

using a randomized manifold search algorithm. Section 4.3 lists a subset of the

parameters that are used for a typical controller. Finally in section 4.4 we will

step through the process of creating a SIMBICON(SIMple BIped CONtroller) like

walking controller.

Figure 4.1: Snapshot of system UI

24

Figure 4.2: UI elements for configuring the simulation and character parameters.

4.1 Time-Dependent Directed Acyclic Graph

The physics module is able to maintain balance and achieve high level goals such

as foot and hand global positions but the parameters are static. The animation

engine generates motion but it has no notion of the physics. To interconnect

these two modules we present a system called a Time-dependent Directed Acyclic

Graph (T-DAG), inspired by the Directed Acyclic Graph in Autodesk Maya.

The T-DAG interconnects the animation module with the physics module. To

foster the intuitive development of controllers we then propose a Graphical User

Interface(GUI) to expose the parameters of the physics module and to connect

them with appropriate channels from the animation module.

Any relevant parameter can be exposed as a channel. Channels can represent

the orientation or position of an IK end-effector, an individual joint angle, boolean

values, feedback parameters or gain parameters. Some examples of feedback pa-

rameters are: the pressure of the stance foot, the velocity or relative position of

25

the COM, and many others which are described in more detail in Section 4.3.

The user interface allows the individual or group assignment of channels to

any type of trajectory. For example with a forward jump, since the motion is

typically left-right symmetric, we have one trajectory that specifies the rotation

of the foot but we connect it to both feet.

4.1.1 Operation Nodes

To transform the motions several operation nodes are introduced. Each node

in the control graph takes as input a set of channels (trajectories or feedback

parameters), performs an operation, and then outputs the transformed value.

It is unclear what the optimal set of nodes would be to create a controller.

Our approach was to start with a set of nodes that could achieve important

common actions such as walking or jumping. The work initially started as a way

to modulate input trajectories to parameterize a controller. So for example if a

character wanted to make a step that was a bit higher off the ground it makes

sense to simpy add a value to the IK foot trajectory. However simply adding

a value would not produce the desired result since the entire step would be off

the ground. Instead we can add the original foot trajectory to a spline to have

only the middle of the step be higher off the ground. Scaling trajectories was a

natural need to build feedback controllers to account for gain values. Switching

and modulation nodes were developed since many motions are left right symetric,

so the controller design can be more generic in terms of Stance side or Swing side.

Then a controller can be created for the swing leg and this output can be routed

to either the left or the right side.The operators described later in this section

capture all these identified needs.

An interesting topic, but beyond the scope of this paper, is determining the

optimal set of nodes that are needed and performing some analysis as to the

26

coverage of the control space created by these four operators. Beyond that what

are the results of adding different types of nodes to the system.

The animation module outputs trajectories based on editable splines or on

feedback parameter that are used as input (see Figure 4.3). After a group of nodes

is connected in a desired way, the T-DAG network can be saved as a template to

be used for other controllers or duplicated for other channels. Then, by varying

the input trajectories several goals can be achieved without changing the network

connections.

Figure 4.3: Animation nodes can be based on spline input (left) or feedback input

(right).

Several key operations needed to model controllers are available as nodes to

be interconnected and added to the T-DAG. These operations are illustrated in

Figure 4.4, and are described below:

• Addition node: adds the input trajectories. It can take any number of

inputs.

• Multiplication node: multiplies the values from a set of input trajectories.

• Modulation node: this node requires one step function and at least one

trajectory input. For each high step in the control input (step function) the

first input trajectory is scaled in time to fit within the step, and for each

low step the second input trajectory, if there is one, is scaled in time and fit

within the low step.

• Switch node: it also requires one step function and one or two input channels.

If the step function is high it outputs the first input, and if it is low it outputs

the second input (if there is one).

27

Figure 4.4: Operation nodes, in top-down left-right order: addition, multiplica-

tion, modulation and switch.

An intuitive graphical user interface was developed to allow designers to edit

and explore T-DAGs. Figures 4.5- 4.11 are direct snapshots from the graphical

input panel of our motion network editor. The accompanying video to this paper

illustrates interactive sessions with our system1.

4.2 Trajectory Randomization to discover controllers

Once a T-DAG is built trajectories can be connected in different ways. They

can be designed by hand (using editable Splines) or they can come from mo-

tion capture. Editable offset trajectories can also be easily associated to motion

capture trajectories by using an addition node, allowing different possibilities for

customization. Any set of control points can then be exposed to an automatic

sampling procedure that will explore successful variations of the controller in order

to achieve parameterizations for real-time execution.

A cost function is selected as a network of feedback channels, for example

jumping requires the character to be statically balanced at the end of the motion

and to minimize the total torque of the tracking control. Walking requires the

1video available at http://graphics.ucmerced.edu/projects/12-mig-mnet/

28

character to be upright and have the COM moved by some minimum distance.

Additionally, there is a boolean parameter provided by the physics module which

looks for non-foot contacts with the environment which multiplies with the cost

to ignore any motions that have bad contacts. There is also an objective function

that is the goal of the simulation, the goal can be a certain target distance, or for

example, a certain distance and height for a jump controller to achieve.

Once the objective and cost networks are constructed, a sampling process can

be initiated. The trajectory control points that are exposed are randomly sampled

within initial sampling bounds and the simulation is run along with the controller.

If after n tries the controller does not achieve the objective, the sampling bounds

are enlarged and the process re-starts. If the objective is satisfied then the con-

trol points are saved to a file along with motion descriptors of the outcome (the

achieved jump distance, walk speed, etc). If a controller fails in some more global

way, such as falling over, then it is discarded during the sampling phase. To assure

that a controller will work, some representation of the environment and character

initial state needs to be embedded into the controller.

After several motions are found that successfully complete several objectives,

the successful motions are then used as starting points for a new round of itera-

tions. We randomly choose new objectives and then use radial basis interpolation

of the k-closest previous successful examples to find a set of trajectories which

would ideally meet the objective. This typically does not work at first since there

is no guarantee that interpolating successful controllers will give a new functional

controller, but it works well as a starting point for the next round of sampling.

The longer the sampling process runs, the better the interpolations become. When

enough coverage of the desired variations is achieved, an effective parameterization

of the objective space is achieved.

29

4.3 Parameters

Any parameter in the system can be exposed to the motion network to design a

controller. Here we will explain a few of the parameters that are needed for the

controllers in the paper.

4.3.1 Control Parameters

Root (Position and Rotation): the root of the character can be animated and at

each frame the joint angles are determined based on IK effectors that are specified

in global coordinates.

End-Effectors (Position and Rotation): the character frame based position and

rotation solved with analytical Inverse Kinematics.

Joint Offsets (Rotation): added to the reference joint angle before tracking

torque is calculated.

Joint Angle (Rotation): for non IK joints the desired rotation can be specified

directly.

Desired COM Velocity (Vector): the desired velocity of the COM which is

used as input into the Balance controller.

Toe Heel Ratio (Scalar): specifies how much the COM should shift to the front

or back of the foot, a value of one puts the COM at the toes, 0.5 is midway be-

tween the toe and the heels.

Stance Swing Ratio (Scalar): specifies how much the center of mass should be

above the stance foot(determined by stance state) a value of 1 puts the COM on

the outside edge of the stance foot.

Stiffness Multiplier (Scalar): global value that applies to all joints or per joint

to change the overall stiffness of the tracking controller.

Stance State (Boolean): specifies which foot is the stance state, if Stance State

is true the left foot is the stance foot otherwise it is the right foot.

30

Character Frame (Boolean): specifies if the tracking controller should calculate

torques relative to the parent joint or the character frame.

4.3.2 Feedback Parameters

COM Position (Vector): distance between the COM and stance foot in charac-

ter frame coordinates.

COM Velocity (Vector): velocity of the COM in the character frame coordi-

nates.

Total Torque (Scalar): the sum of all the torques from the tracking control on

the previous frame.

31

4.4 Case Study

In this section we summarize in more detail the steps required for creating a

walking controller including the balance feedback terms. The gait period of the

walk is defined by the step function in Figure 4.5. The step function is defined by

two control points and since we desire a symmetric gate the middle control point

is half the duration of the trajectory.

Figure 4.5: The stance state.

Figure 4.6 shows the trajectory that controls the vertical position of the foot.

The trajectory is routed to the foot in Figure 4.7 modulated by the step function

defined in Figure 4.5.

Figure 4.6: Swing Y trajectory.

Figure 4.7: The swing Y network.

Similarly the Z position (Figure 4.8) of the foot and the X rotation (Figure 4.9)

are modulated based on the step function in Figure 4.5.

32

Figure 4.8: The Z position of the foot.

Figure 4.9: The X rotation of the foot.

The arm rotation is defined by two trajectories (Figure 4.10): one for the stance

(bottom) and one for the swing (top). They are routed to each arm in Figure 4.11

and modulated by the step function in Figure 4.5. The angle is inverted for the

right arm. The value for each arm receives a further offset and is then added to

the forearm.

Figure 4.10: Arm Trajectories.

Up till this point we have simply built a kinematic walking controller that can

be parameterized by editing the control points of the input trajectories. What

we need to do next is define the feedback control that will allow the character

to maintain balance while walking under physics. The first thing we define are

several constant value parameters (Figure 4.12) that are needed by the virtual

33

Figure 4.11: Trajectories to control arm swing.

force controller. These include the stance swing ratio and the toe heel ratio, which

define the desired contact state of the character. The desired forward velocity is

routed to the balance controller and the X rotation of the torso gives the character

an initial lean in the forward direction.

Figure 4.12: Constant values for the virtual force controller.

To generate the Simbicon-like [13] feedback rules we first determine the sagittal

and coronal offset angles based on the current velocity and the offset of the COM

to the stance location. These values are multiplied by gain parameters and routed

to one node for the sagittal plane and to another node for the coronal plane.

Figure 4.13 shows the feedback network for the sagittal plane.

The feedback value is sent to either the right or left leg in Figure 4.14 (the

sagittal plane) depending on the step function in Figure 4.5. The same value is

then scaled and added to the torso orientation.

34

Figure 4.13: Feedback Terms.

Figure 4.14: Sagittal Control.

Figure 4.15: Example walk from completed network.

35

Figures 4.5- 4.14 demonstrate the typical operations needed in order to de-

sign controllers involving walking. While the presented case study is specific for

walking with disturbances, the same operations can be extended for different new

styles of walking or other forms of physics based motion. The resulted network

can then be integrated into a higher level control framework in order to make

sequences of controllers to have more complex behavior. When the entire net-

work presented in Figures 4.5- 4.14 is put together the resulting graph is shown

in Figure 4.16 and the resulting motion is shown in Figure 4.15.

Figure 4.16: Topology of the complete network.

Our prototype system is not yet ready to be used by novice users. With expert

knowledge, the development of a working jump controller can be completed in

under 20 minutes. The walking controller described in this section takes about 35

36

minutes. In addition to developing controllers the system has showed to be very

useful for understanding and visualizing the effects of all terms of a controller,

what indicates great potential for educational use. As future work, we intend to

develop a comprehensive user study in order to better understand the bottlenecks

in developing controllers with the proposed operations.

37

CHAPTER 5

Application to Robotics

Research in the field of physics based character animation is closely related to hu-

manoid robotics. While there are discrepancies between a simulation environment

and execution on a real robot the underlying control strategies are similar. How-

ever there are some difficulties in transferring the knowledge between the domains.

First of all, humanoid robots are typically very expensive and often delicate so it

is difficult to learn new skills directly on the robot without the risk of damaging

it. Additionally the robot is limited on its ability to sense the environment and

its own configuration to guide it’s control policy.

To explore the feasibility of humanoid robot control I built a system to control

the Fujitsu HOAP-3 humanoid robot illustrated in Figure 5.2. This work was

done in collaboration with Yazou Huang. I made two primary contribution to this

work.

My first contribution was building the robot model and simulation environ-

ment. The original model that came with the robot was based on a messy con-

version from a CAD file and had a very large number of polygons, even polygons

for internal components that were not needed. So I used this model as a reference

in Maya to sculpt a much lower resolution mesh that was much more optimal for

out needs. I also modeled several objects representing real world obstacles that

we wanted to track and put in the simulation.

My second contribution to this work was developing the system architecture

for controlling the robot. This consisted of 3 separate threads that had to be

38

Figure 5.1: GUI components for getting sensor data(left) and sending individual

DOF commands(right).

in constant network communication. There was the Real-time Linux layer that

directly actuated the robot motors based on a queue of postures. The next layer

up was a nonreal-time thread that would listen for tcp packages containing robot

commands and hand them to the real-time thread. This thread would also gather

sensor data from the real-time layer. The final layer was the user interface layer

that was compiled as a library for easy integration into various research projects.

With the source code for the interface layer was a comprehensive GUI(Figure

5.1) developed with FLTK to aid in the connection and debugging of the different

components.

This was integrated into Yazou’s footstep pattern generator. I also developed

a footstep pattern generator(Figure 5.6) that was able to find paths with clear-

ance(Figure 5.3) but in the end we used his system that incorporated online

adjustments based on the pressure readings from the foot sensors. The result

was able to determine an environment model and robot position using our Vicon

39

motion tracking system as show in Figure 5.5.

Figure 5.2: The HOAP-3 humanoid robot (left) and its virtual model (right).

Figure 5.3: The left image illustrates a computed collision-free path and channel

with given clearance radius. The right image shows the expanded nodes of the

A* search during the path computation.

5.1 System Architecture

There are three components to the network interface controlling the robot: a user

interface client application, a server application running on the robots on board

computer, and a real-time module that has dedicated access to the motor control

board. The user interface is running on a dedicated computer, and is where the

motion is generated. For each frame of motion the posture of the robot is converted

40

Figure 5.4: Overall system architecture for controlling the robot.

Figure 5.5: A path planning and execution example.

Figure 5.6: Footstep generator using the path planning funnel algorithm.

41

from joint angles to encoder values and is put into a message struct along with the

step size for the real-time module. The main method to control the overall speed

of the robot is by adjusting the step size for each posture sent. The message is then

sent over the network to the server on the robot’s on-board computer. When the

server receives a posture message from the UI it relays it directly to the real-time

module. When the real-time module receives a message it places it into a circular

queue. The real-time module starts interpolating the postures and sends each

increment to the motor control board. For each step the real-time module pulls

a posture from the queue along with the step size. The number of interpolation

steps is determined by the largest difference in motor positions between the current

and next posture divided by the step size. The increment for each motor is given

by the difference in position divided by the number of steps. This ensures that

for each move all of the motors start and end at the same time and the overall

motion is continuous. Each time a posture is taken from the queue a data log

is created that includes the pressure sensors in the feet,accelerometers,gyros and

the corresponding encoder values. This information is then sent back through the

server to the user interface for display and optimization. There is also a separate

computer which is dedicated to tracking the robot and any obstacles. A separate

server is set up on this computer which enables retrieval of the global position

and orientation of the robot and the obstacles any time that it is queried. With

the combination of the sensor data log from the robot and the global position and

orientation from the Tracking system an accurate depiction of the robot and its

environment can be made in real-time.

5.2 Results

We were successful at developing a walk generator for the HOAP robot and we

learned a great deal about some of the difficulties. First of all the method used a

42

projection of the COM to maintain static balance but this limited the maximum

speed of motion to be rather slow. Additionally we found that the surface of

the floor had a serious impact on execution. On carpet the robot had a hard

time balancing since the compliance of the ground allowed the robot to lean over

and fall even with a flat foot. Using a stiffer surface helped the balance but the

surface tended to allow the feet to slide so that there would be deviation from the

footstep plan. Finally there was the overall safety of the robot. Since it is a rather

expensive piece of equipment we were hesitant to let the robot walk on its own so

it required someone to always be holding the safety strap. This has motivated me

to develop a physics simulation for the robot and persuaded me to focus more on

simulation, where a robot model could fall over countless times without causing

any damage.

43

CHAPTER 6

Learning Hand Configurations Through

Back-propagation of an Artificial Neural

Network

Here we explore a method to determine hand configurations using the depth image

provided from an Xbox Kinect and the sensor outputs from a 5DT data glove by

training an artificial neural network with back-propogation. The motivation is to

allow a user a multi dimensional interface to control a physics based character.

Since a humanoid character has so many different DOF using hand gestures would

allow a user to have a greater degree of control than a more standard interface

device like a mouse or keyboard. We are curious about different mappings between

hand configurations and character configurations and are further motivated by the

possibility of using the system for hand therapy. To interpret hand configurations

using the Kinect a comprehensive pipeline was developed to capture,store data to

train a neural network machine learning algorithm. The system is shown to have

promising results and is demonstrated in a real-time application.

6.1 Introduction

A database of depth images was collected from an XBox Kinect along with joint

angle measurements from a data glove to train a two layer artificial neural net-

work. This project analyzed different parameters of the neural network and image

capture and processing to find the optimal parameters to minimize the root mean

44

square error of a testing set while maintaining real-time performance of the fully

trained system.

6.1.1 Motivation

The UC Davis Medical Center has a pediatric unit that specializes in children

with burns on their hands. The children are typically between 6 and 12 years

old and the severity of the burns are varied. Some have additional complications

such as missing fingers, heavy bandages or other ailments. The doctors in this

clinic have a set of protocols (hand motions) that they encourage the children to

exercise during physical therapy. These protocols have multiple functions for both

treatment and diagnosis. The protocols are designed to stretch the skin to help

restore the flexibility that has been lost due to the burns and are also a measure

for the progress the patient is making towards recovery. During the therapy the

doctors make note of the progress by scoring each protocol from 1-10 depending

on how far into the protocol the patient is able to go. This measurement is done

by eye and the readings are taken at intervals of several days during the therapy

sessions. Since the measurements are taken by eye there is bound to be error which

the doctors desire to reduce by using some sort of measurement device. However,

more standard approaches to measure the hand configuration are not feasible since

the burns prevent anything from being attached to the hands. Another issue with

the current method of physical therapy is that the protocols themselves cause pain

in the patients. Since the children are so young, often times they are unwilling

to perform the exercise since it only causes pain with no reward. To address this

issue we want to incorporate a video game into the therapy that is driven by

the progress for each protocol. The theory is that making a reward for achieving

a protocol will distract the children from the pain and expedite the treatment.

Additionally we would like this system to be cheap enough so they can take it

home with them to perform the exercises out of a clinical setting.

45

6.2 Related Work

Since this topic is a bit of a tangent to my research in physics based characters

we will look separately at the related research.Tracking hand motions is a well

researched field, and many approaches have been taken. There are several com-

mercial devices that can easily measure joint angles such as the data glove that is

used for this project [25] however this cannot be used for the final system since

we cant put a glove on the childs hand. There are also several devices that are

still under development such as the finger tracker prototype by Microsoft Research

[26] but this also requires something to be attached to the hands. An interesting

product called Leap Motion is soon to be released [27] but it is unclear how it

works and whether it will offer the resolution that we desire.

Researchers in academia are also trying to solve this problem such as [28]

where they use a colored glove and a standard webcam to reconstruct the joint

angles of the fingers. Argos et al. [29] show impressive results using a Kinect

to reconstruct hand configurations, but this system does not generalize well and

requires calibration for each user. Additionally, the system requires the hand to be

in an initial configuration and performs a computationally expensive continuous

optimization procedure that requires the hand to move relatively slow and always

stay within the capture region. It is also prone to local minima when occlusions

occur.

Perhaps the closest system to what we desire is Three Gear [30] a system

that uses two Kinect cameras to reconstruct hand postures; however, this requires

a lengthy calibration phase and is limited to the small set of postures that are

provided within the system. Additionally, since two Kinects are used, the system

tends to overwhelm the operating system, requiring an extremely fast computer

and still preventing other processes from performing well. We are interested in a

customizable contact-free hand measurement device that can generalize through

46

different hand shapes and sizes. However, we are more flexible in the overall

generality of the system and favor better precision and performance over things

such as global hand position and orientation tracking.

6.3 System Overview

The system developed for this project has three main operating modes: Data

Collection, Training and Operation. The data capture mode is where the train-

ing/testing data is generated and formatted for the learning algorithm. The train-

ing mode allows a user to generate a neural network, adjust the parameters and

train the system. The operation mode allows the results to be verified by using

the fully trained neural network in a real-time application. The physical setup of

the Kinect is show in Figure 6.1 The Kinect is mounted to a tripod looking down

at a chair where the user will sit. All user interfaces are built using Fast Light

Tool Kit (FLTK) [31].

6.3.1 Data Capture

Since the data for this project is to be collected,instead of relying on a preexisting

dataset, a fair amount of time was spent developing the pipeline to capture, process

and store the data. A user interface was developed to facilitate this process shown

in Figure 6.2

When the Kinect is first initialized and the point cloud is generated, the en-

tire field of view has a mesh generated including the background by connecting

neighboring pixels in the depth image with 3D triangles where we use the camera

calibration to project the 2D pixels with their depth values to 3D points in space.

Using a depth sensor allows the background/foreground to be segmented easily

by simply thresholding the depth values and only admitting points within a cer-

tain range. The procedure is rather simple; the user places their hand in front of

47

Figure 6.1: Kinect mounted to tripod next to user

48

Figure 6.2: Pointcloud converted to polygon mesh

the camera in a comfortable position then they enter a bounding region selection

mode by pressing a button. They click the viewer on the hand and this casts a

ray intersecting the geometry and detecting the intersection point. This is then

the center for the cubic capture volume. Then the size of the capture volume can

be adjusted with a slider. After this has been setup the system performance is

greatly increased since only points within this volume are considered.

After the points have been segmented they are projected back to a 2D im-

age(see Figure 6.3) since this is a compact way of storing the information. Pro-

jecting the point cloud back to 2D like this does not lose any information since

the initial capture is only the camera facing shell of the actual object. Each image

is cropped to fit the maximum horizontal and vertical dimension of the hand.

To get the ground truth hand configuration a data glove is used to measure

the joint angles of the hand. Several methods of storing these hand configurations

were explored: The initial approach was to just save all the joint angles; however,

49

Figure 6.3: Image conversion UI

Figure 6.4: Example output images from data capture. Red dots on top row

represent the output vector.

50

this was determined to not be optimal since the large number of degrees of freedom

(DOF) prevented the neural network from converging well. An extension of this

was developed where a user would show two hand postures which represent the

extremes of the motion. For example: hand fully opened and fully closed. Then

at capture time these two postures were used as an interpolation goal to output a

single floating point number which represent relative progress through the motion.

In our example a value of zero was hand fully opened and one was hand fully

closed. This was also found to be less than optimal since it was not clear that we

would capture a uniform distributuion of the hand postures. The final encoding

method for the joint angles was to segment the output value into a discrete set of

classes and create a binary vector representing the motion. For example, with 5

bins a fully open hand would be [1,0,0,0,0] and fully closed would be [0,0,0,0,1].

For convenience’s sake the output values were stored along with the depth image

captured at the same instant. The output value is stored as the top row of red

pixels in the image Figure 6.4.

6.3.2 Image Processing

When the input image stream is set up the images still need to be formatted so

they all have the same dimensionality. Additionally the images are reduced in

size so as to minimize the dimensionality of the input vector. To do this, first

the user specifies the desired dimension for the images (for example 32x32) Then

each image in the captured set is scaled to fit that region maintaining the correct

aspect ratio. Before down-sampling, an edge preserving bilateral filter [32] is

applied to the image to approximate the average value of the pixels depth value

while maintaining the edges for each sub-sampled pixel.

51

6.4 Neural Net

The process of creating and tuning the neural network is aided by an additional

UI(Figure 6.5). Here the user can specify the input dimensions, the number

of hidden units, and the output dimension. Additionally, the user can specify

the learning parameters such as the learning rate, momentum, number of epochs

and weight decay. Another feature was explored to initialize the weights of the

perceptrons with either a typical noise function or something I discuss more later:

a Perlin noise function [33].

Figure 6.5: Neural Net user interface.

6.4.1 Training

After an adequate database of training and testing images is collected and the

neural network is created, the training phase can begin. Initially, all of the net-

work weights are initialized based on a randomization function and user specified

bounds. Each pattern from the training set is presented to the input nodes of

52

the neural network and then propagated through the network to give a specified

output. Then the error between the network output and the output specified by

the data glove is used as the driving force for the back propagation weight update

using the generalized delta rule from chapter 5 of [34]. Each epoch randomizes

the order of the patterns and the updates are updated after each pattern. The

system is coded with C++ and a typical training of a neural network with 1200

training patterns and 300 testing patterns using a1024 input vector(32x32 pixel

image) 200 hidden units and 7 output units takes about 30 min to converge with

30 epochs.

6.4.2 Error Measurement

To measure the performance of the system the RMS error of the test set is used.

From experimentation it seems that the training RMS error always converges very

fast but the test set error seems to converge slower. Once the training error has

reached close to zero the system is no longer able to learn, since it is this error

that drives the generalized delta rule weight updates. Using this measure, several

of the parameters were modified to see how this affects the system performance.

For all the following examples an image of 32x32 pixels was used with 7 output

units.

Many system configurations were tried with variations in the number of hidden

units and different training parameters, Figure 6.6 shows a typical convergence

rate of the training. After several trial configurations were examined, a system

with 200 hidden units was chosen. Since run-time performance is desired a small

increase in the error is justified by the fewer nodes to evaluate.

53

Figure 6.6: A typical plot of the convergence rate of the training.

Figure 6.7: Perlin noise(Left)vs random noise(Right).

54

6.4.3 Effect of changing noise function

The typical approach to seeding a neural net is by using a random number genera-

tor bounded by some min/max value. But out of curiosity a Perlin noise function

was used to seed the initial weights of the network(Figure 6.7). The justification

for seeding the network in this manner was that the Perlin noise still uses a uni-

form distribution of random values but it does so where the random numbers are

correlated with the neighboring pixels. That is because the value of each unit is a

function of the row and column of the weight matrix for each layer. An additional

parameter is used to specify the number of seeds or nodes in the noise function.

This function was applied to both the hidden layer and the output layer and 10

seed nodes were specified for the noise function. The hope was that this would

be just an interesting way to visualize the changes in weights(Figure 6.8), but it

was shown to affect the performance as well which is explored next.

Figure 6.8: Evolution of weight values using Perlin noise.

Figure 6.9: Evolution of weight values using random noise.

55

6.4.4 Performance of different noise function

To test the effect of using this noise function, two identical tests were performed

changing only the weight initialization.One network uses Perlin noise(Figure 6.8)

and the other uses random noise (Figure 6.9) Using a network with 300 hidden

units momentum 0.1 and decay 0.1 the only thing that was changed was the

seeding function in this case with 20 nodes for the Perlin seed. As can be seen

below (Figure 6.10 and Figure 6.11) there is actually a rather dramatic change by

simply changing the noise function. The system converges much faster and results

in a final RMS error of 0.14 for the Perlin noise and 0.23 for the randomized noise.

Further test could be done to explore this affect but maybe clustering the weights

in the manner would create distributed processing units within the network that

are targeting certain parts of the image allowing more generalization, instead of

single points spread throughout the image.

Figure 6.10: Error convergence of random noise.

56

Figure 6.11: Error convergence of Perlin noise.

Figure 6.12: Each class represents a different finger.

57

6.4.5 Additional test

To test the generality of the system an additional protocol was tested but with

less extensive analysis. In this case(Figure 6.12) there are five classes of hand

configurations that are the outputs; one for all fingers open and the then each

additional one has a single finger bent. This would not really be sufficient for

the protocols but it is an interesting test of the robustness. In the end the test

set error didnt converged below 30 percent error but perhaps additional methods

could be used to augment the learning process.

6.5 Operation

Figure 6.13: Trained network running in a realtime environment.

Using the RMS error is useful in terms of training convergence but to get a

real sense of the functionality, the fully trained system was used for real-time

evaluations using the Kinect. In the Image (Figure 6.13) the blue output bar

represents the predicted protocol value from the neural network and the image on

the right is the captured hand image. The system is far from perfect and there is

still a good amount of noise but as a proof of concept it seems to work.

58

6.6 Future Work

There are many interesting direction that this project could be explored. One is

using a more sophisticated method to encode the depth image instead of simply

using the intensity values of the pixels. A Histogram of Oriented Gradients [35]

has been used to detect faces in images but the method basically stores the gradi-

ent information at each pixel, using the gradient would seem to make sense since

it is then capturing the geometry information and would expose correlations in

the neighboring pixels. Additionally there are many feature extraction methods

such as SIFT [36] that could potentially reduce the dimensionality of the image.

Since the output of the system is still rather noisy the output value could be

oversampled or put through a sort of low pass filter to make smoother results.

Another interesting thing to explore would be how to encode the output values

perhaps instead of using a binary vector for the output some sort of Gaussian

distribution can represent the target values which might reduce the output noise

further. Another interesting thing to explore would be to use multiple Kinects to

get a better image of the hand, however this would likely reduce the performance

substantially and would likely introduce other alignment issues.

6.7 Conclusion

The system demonstrates hand gesture recognition using an Xbox Kinect. The

system was able to achieve a convergence of 14% RMSE on the testing set and

was verified in a real-time application.

59

CHAPTER 7

Conclusion

I have presented in this thesis a system that allows users to create controllers

for physically simulated characters without low-level programming. This system

introduces a new methodology to explore, edit and create parameterized physics

based feedback controllers that can be later used in real-time applications. This

system was shown to be general enough to work for both walking and jumping

but there is nothing that would keep it from working for various other skills of

interest. A comprehensive GUI was developed that allows a user to design these

controllers by simply dragging and dropping nodes onto a window then dragging

between the nodes to create connections defining the functionality.

The presented system has the potential to be used for the rapid prototyping

and customization of physics behaviors designed to improve game-based thera-

peutic applications integrated with the XBox Kinect and the results obtained so

far are promising.

Acknowledgments The work from Chapter 6 was partially supported by CITRIS

grant 128.

60

References

[1] Sergey Levine, Jack M. Wang, Alexis Haraux, Zoran Popović, and Vladlen
Koltun. Continuous character control with low-dimensional embeddings.
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 31(4):28, 2012.

[2] Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. Feature-based lo-
comotion controllers. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 29(3), 2010.

[3] Zoran Popovic and Andrew P. Witkin. Physically based motion transforma-
tion. ACM Transactions on Graphics (Proceedings of SIGGRAPH), pages
11–20, 1999.

[4] Jessica K. Hodgins and Nancy S. Pollard. Adapting simulated behaviors
for new characters. In ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), pages 153–162, 1997.

[5] Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. Limit cycle control
and its application to the animation of balancing and walking. In Proceedings
of the 23rd annual conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’96, pages 155–162, New York, NY, USA, 1996. ACM.

[6] Jerry Pratt, Chee-Meng Chew, Ann Torres, Peter Dilworth, and Gill Pratt.
Virtual model control: An intuitive approach for bipedal locomotion. The
International Journal of Robotics Research, 20(2):129–143, 2001.

[7] Jerry E. Pratt and Russ Tedrake. Velocity-based stability margins for fast
bipedal walking. In In Fast Motions in Biomechanics and Robotics, pages
299–324. Springer, 2006.

[8] Adriano Macchietto, Victor Zordan, and Christian R. Shelton. Momentum
control for balance. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 28(3), 2009.

[9] Victor Zordan, Adriano Macchietto, Jose Medina, Marc Soriano, and Chun
chih Wu. Interactive dynamic response for games. In Proceedings of the ACM
SIGGRAPH symposium on video games, 2007.

[10] Sungeun Kim Yoonsang Lee and Jehee Lee. Data-driven biped control. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 29(4), 2010.

[11] Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei
Xu. Sampling-based contact-rich motion control. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 29(4), 2010.

61

[12] Marco da Silva, Yeuhi Abe, and Jovan Popović. Interactive simulation of
stylized human locomotion. In ACM SIGGRAPH 2008 papers, SIGGRAPH
’08, pages 82:1–82:10, New York, NY, USA, 2008. ACM.

[13] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: Simple
biped locomotion control. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 26(3), 2007.

[14] Yao-Yang Tsai, Wen-Chieh Lin, Kuangyou B. Cheng, Jehee Lee, and Tong-
Yee Lee. Real-time physics-based 3d biped character animation using an
inverted pendulum model. IEEE Transactions on Visualization and Com-
puter Graphics, 16(2):325–337, March 2010.

[15] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke
Harada, Kazuhito Yokoi, and Hirohisa Hirukawa. Biped walking pattern
generation by using preview control of zero-moment point. In ICRA, pages
1620–1626, 2003.

[16] Jerry E. Pratt, John Carff, Sergey V. Drakunov, and Ambarish Goswami.
Capture point: A step toward humanoid push recovery. In Humanoids, pages
200–207, 2006.

[17] Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. Contact-
aware nonlinear control of dynamic characters. ACM Transactions on Graph-
ics, 28(3), 2009.

[18] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Generalized
biped walking control. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH), 29(4), 2010.

[19] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Com-
posable controllers for physics-based character animation. In Proceedings of
the 28th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’01, pages 251–260, New York, NY, USA, 2001. ACM.

[20] Stelian Coros, Philippe Beaudoin, KangKang Yin, and Michiel van de Panne.
Synthesis of constrained walking skills. ACM Trans. Graph. (Proc. Siggraph
Asia), 27(5), 2008.

[21] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Robust task-
based control policies for physics-based characters. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia), 28(5), 2009.

[22] Sumit Jain, Yuting Ye, and C. Karen Liu. Optimization-based interactive
motion synthesis. ACM Transaction on Graphics, 28(1):1–10, 2009.

62

[23] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel
van de Panne. Locomotion skills for simulated quadrupeds. ACM Trans-
actions on Graphics, 30(4):Article TBD, 2011.

[24] Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. Ter-
rain runner: control, parameterization, composition, and planning for highly
dynamic motions. ACM Trans. Graph., 31(6):154:1–154:10, November 2012.

[25] 5dt data glove, 2012.

[26] Microsoft hand tracker, 2012.

[27] Leap motion, 2012.

[28] Robert Y. Wang and Jovan Popović. Real-time hand-tracking with a color
glove. ACM Transactions on Graphics, 28(3), 2009.

[29] I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient model-based 3d track-
ing of hand articulations using kinect. In BMVC 2011. BMVA, 2011.

[30] Kin Wang, Twigg. Three gear kinect tracking system, 2012.

[31] Fast light toolkit, 2012.

[32] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In
Proceedings of the Sixth International Conference on Computer Vision, ICCV
’98, pages 839–, Washington, DC, USA, 1998. IEEE Computer Society.

[33] Perlin noise wiki, 2012.

[34] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

[35] Mario Rojas Quiñones, David Masip, and Jordi Vitrià. Automatic detection
of facial feature points via hogs and geometric prior models. In Proceed-
ings of the 5th Iberian conference on Pattern recognition and image analysis,
IbPRIA’11, pages 371–378, Berlin, Heidelberg, 2011. Springer-Verlag.

[36] David G. Lowe. Object recognition from local scale-invariant features. In
Proceedings of the International Conference on Computer Vision-Volume 2
- Volume 2, ICCV ’99, pages 1150–, Washington, DC, USA, 1999. IEEE
Computer Society.

63

